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Abstract 

Image super-resolution is an area of great interest in recent years and is extensively used in 

applications like video streaming, multimedia, internet technologies, consumer electronics, 

display and printing industries. Image super-resolution is a process of increasing the 

resolution of a given image without losing its integrity. Its most common application is to 

provide better visual effect after resizing a digital image for display or printing. One of the 

methods of improving the image resolution is through the employment of a 2-D interpolation.  

An up-scaled image should retain all the image details with very less degree of 

blurring meant for better visual quality. In literature, many efficient 2-D interpolation 

schemes are found that well preserve the image details in the up-scaled images; particularly at 

the regions with edges and fine details. Nevertheless, these existing interpolation schemes too 

give blurring effect in the up-scaled images due to the high frequency (HF) degradation 

during the up-sampling process. Hence, there is a scope to further improve their performance 

through the incorporation of various spatial domain pre-processing, post-processing and 

composite algorithms. 

Therefore, it is felt that there is sufficient scope to develop various efficient but 

simple pre-processing, post-processing and composite schemes to effectively restore the HF 

contents in the up-scaled images for various online and off-line applications. An efficient and 

widely used Lanczos-3 interpolation is taken for further performance improvement through 

the incorporation of various proposed algorithms.  

The various pre-processing algorithms developed in this thesis are summarized here. 

The term pre-processing refers to processing the low-resolution input image prior to image 

up-scaling. The various pre-processing algorithms proposed in this thesis are: Laplacian of 

Laplacian based global pre-processing (LLGP) scheme; Hybrid global pre-processing (HGP); 

Iterative Laplacian of Laplacian based global pre-processing (ILLGP); Unsharp masking 

based pre-processing (UMP); Iterative unsharp masking (IUM); Error based up-sampling 

(EU) scheme.  

The proposed algorithms: LLGP, HGP and ILLGP are three spatial domain pre-

processing algorithms which are based on 4th, 6th and 8th order derivatives to alleviate non-

uniform blurring in up-scaled images. These algorithms are used to obtain the high frequency 

(HF) extracts from an image by employing higher order derivatives and perform precise 



ix 

sharpening on a low resolution image to alleviate the blurring in its 2-D up-sampled 

counterpart. 

In case of unsharp masking based pre-processing (UMP) scheme, the blurred version 

of a low resolution image is used for HF extraction from the original version through image 

subtraction. The weighted version of the HF extracts are superimposed with the original 

image to produce a sharpened image prior to image up-scaling to counter blurring effectively. 

IUM makes use of many iterations to generate an unsharp mask which contains very 

high frequency (VHF) components. The VHF extract is the result of signal decomposition in 

terms of sub-bands using the concept of analysis filter bank. Since the degradation of VHF 

components is maximum, restoration of such components would produce much better 

restoration performance.  

EU is another pre-processing scheme in which the HF degradation due to image up-

scaling is extracted and is called prediction error. The prediction error contains the lost high 

frequency components. When this error is superimposed on the low resolution image prior to 

image up-sampling, blurring is considerably reduced in the up-scaled images. 

Various post-processing algorithms developed in this thesis are summarized in 

following. The term post-processing refers to processing the high resolution up-scaled image. 

The various post-processing algorithms proposed in this thesis are: Local adaptive Laplacian 

(LAL); Fuzzy weighted Laplacian (FWL); Legendre functional link artificial neural network 

(LFLANN).  

LAL is a non-fuzzy, local based scheme. The local regions of an up-scaled image with 

high variance are sharpened more than the region with moderate or low variance by 

employing a local adaptive Laplacian kernel. The weights of the LAL kernel are varied as per 

the normalized local variance so as to provide more degree of HF enhancement to high 

variance regions than the low variance counterpart to effectively counter the non-uniform 

blurring. Furthermore, FWL post-processing scheme with a higher degree of non-linearity is 

proposed to further improve the performance of LAL. FWL, being a fuzzy based mapping 

scheme, is highly nonlinear to resolve the blurring problem more effectively than LAL which 

employs a linear mapping. 

Another LFLANN based post-processing scheme is proposed here to minimize the 

cost function so as to reduce the blurring in a 2-D up-scaled image. Legendre polynomials are 

used for functional expansion of the input pattern-vector and provide high degree of 

nonlinearity. Therefore, the requirement of multiple layers can be replaced by single layer 

LFLANN architecture so as to reduce the cost function effectively for better restoration 
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performance. With single layer architecture, it has reduced the computational complexity and 

hence is suitable for various real-time applications. 

There is a scope of further improvement of the stand-alone pre-processing and post-

processing schemes by combining them through composite schemes. Here, two spatial 

domain composite schemes, CS-I and CS-II are proposed to tackle non-uniform blurring in an 

up-scaled image. CS-I is developed by combining global iterative Laplacian (GIL) pre-

processing scheme with LAL post-processing scheme. Another highly nonlinear composite 

scheme, CS-II is proposed which combines ILLGP scheme with a fuzzy weighted Laplacian 

post-processing scheme for more improved performance than the stand-alone schemes. 

Finally, it is observed that the proposed algorithms: ILLGP, IUM, FWL, LFLANN 

and CS-II are better algorithms in their respective categories for effectively reducing blurring 

in the up-scaled images. 

Keywords: image up-sampling, image super-resolution, image deblurring, 2-D 

interpolation, Nearest-neighbour interpolation, Bilinear interpolation, Bicubic 

interpolation, Lanczos interpolation, DCT interpolation, Laplacian of Laplacian, fuzzy 

logic, FLANN, fuzzy Laplacian, iterative unsharp masking, low resolution, high resolution 
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Introduction 
Preview 
Image up-scaling is a promising area of research in the field of digital image processing. The 

image up-scaling or resolution enhancement is a process of improving the resolution of a given 

image without losing its integrity. Image up-scaling is widely used in numerous applications 

such as video streaming, high resolution display (HDTV), digital camera, multimedia, consumer 

electronics, video surveillance, satellite imaging, image correction, quality control, medical 

image processing and printing industries. In many such applications, it is required to increase the 

size of a low resolution image without losing much image details meant for better visual quality. 

Various 2-D, spatial-domain and transform-domain interpolation schemes are employed for this 

purpose. However, most of the interpolation schemes produce blurring in the up-scaled images 

due to high frequency degradation during the up-sampling process. Hence, it is very much 

essential to up-scale an image and to preserve the edges and fine details. Therefore, it is felt that 

there is sufficient scope to further improve the performance of the existing 2-D interpolation 

schemes. In the present research work, efforts are made to develop various efficient spatial-

domain pre-processing and post-processing schemes to alleviate blurring in up-scaled images.    

 The following topics are covered in this introductory chapter. 

• Introduction to Image Up-scaling 

• Fundamentals of Image Interpolation 

• Some Basic Interpolation Schemes 

• Brief Literature Review on Image Interpolation Schemes 

• Problem Statement 

• Methodologies Adopted 

• Performance Measures 

• Chapter-wise Organization of the Thesis 

• Conclusion 
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1.1 Introduction to Image Up-scaling 
Image up-scaling is a topic of great interest in recent years and is used for generating a high 

resolution (HR) image from a low resolution (LR) image data.  An efficient image up-scaling 

scheme must preserve the high frequency information, texture, geometrical regularities and 

smoothness of the original LR image while producing its corresponding HR counterpart. The 

most common application of image up-scaling is to provide an enhanced visual effect after 

resizing a digital image for display and printing [1]. There are many applications of image up-

scaling techniques; some of them are described below. 

 There is a great need to facilitate flexible image/video format conversion among various 

multimedia terminals such as digital cameras, cellular phones, computers and HDTV. Generally, 

the low resolution image captured by mobile phones and digital camera can’t be displayed in a 

high definition television (HDTV). Hence, the resolution of input signal coming from low 

resolution source is converted to high resolution through a 2-D interpolation technique prior to 

display in a high definition screen. So, image super-resolution or up-scaling is used to enhance 

the ability of the existing viewing devices for displaying signal from a low resolution source [2]. 

 Moreover, image super-resolution is used in streaming video websites, which often store 

low resolution videos for bandwidth constraint. If the user wishes to enhance the resolution to 

watch full screen, then the process is accomplished through 2-D interpolation [2]. Now-a-days, 

the up-sampling technologies are also employed in scalable video coding (SVC) to provide 

spatial scalability which can provide several video resolutions as desired by various consumer 

applications. 

 Image up-scaling or super-resolution has a wide range of applications in numerous fields 

such as medical image processing, military applications, satellite image enhancement, video 

surveillance etc. Zooming or rotating medical images after their acquisition is often desired for 

proper diagnosis and treatment. Therefore, interpolation methods are incorporated into the 

systems for computer aided diagnosis [3].  

 Currently, satellite images are used in many applications such as geosciences studies, 

remote sensing, weather forecasting, geographical information system and military applications. 

In such applications, very often it is desired to improve the native resolution offered by imaging 
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hardware using interpolation for proper visibility and quality enhancement for subsequent 

analysis and interpretation. 

 Now-a-days digital cameras are abundantly available that produce high resolution 

images. However, there are many existing LR cameras as well as low-grade sensors found in 

existing mobile devices and surveillance systems for cost effectiveness. Hence, to improve the 

quality and resolution of such images at a lower cost, 2-D interpolation is employed. This 

ensures proper video surveillance at a low cost. Likewise, infra-red (IR) cameras generally have 

low resolution because of high cost of the IR sensors. Hence, the quality and resolution of IR 

images can be enhanced using interpolation in a cost-effective way. Up-scaling techniques are 

also used in digital camera to vary the resolution of the captured image according to the zooming 

criteria as desired by the user for proper visibility.  

Various spatial domain interpolation schemes are used in many image up-scaling 

applications. For most of the real-time applications, various conventional, spatial-domain 

interpolation schemes such as nearest-neighbor, bilinear, bicubic and cubic-spline interpolation 

are used for their simplicity and much reduced computational complexities. Fundamentals of 

interpolation along with some basic interpolation schemes are discussed in the next section.  

   

1.2 Fundamentals of Image Interpolation 
Image interpolation is the process of estimating the intermediate values of a spatially continuous 

image from a set of its discrete samples. It typically estimates an unknown pixel value within a 

neighborhood from the known pixel neighbors. To determine the intensity at a particular position 

in between the known pixels, the intensities of the neighboring pixels and the distance between 

the estimating point and the neighboring pixels are incorporated into the estimation process. 

Interpolation is widely used in various fundamental digital image processing operations such as 

re-sampling, translation, scaling, rotation and geometric correction. These general operations 

require image values at locations for which no samples are available. Typically, the interpolated  

values at these locations are computed as a weighted average or convolution of the neighboring 

image samples. The weighting function used in local convolution is called the kernel. So, 

interpolation is the process of determining the values of a function at positions lying between its 

samples. It achieves this process by fitting a continuous function through the discrete input 
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samples. The interpolation function is a special type of approximating function. A fundamental 

property of interpolation function is that they must coincide with the sampled data at the 

interpolation nodes or sample point. In between the sample points; it estimates the function value 

using the convolution of the neighboring samples.  

If )( kxg is a sampled function and )(ˆ xf is the corresponding interpolated function, then

)()(ˆ
kk xgxf = whenever kx is an interpolation node. For equally spaced 1-D sample data )( kxg , 

many 1-D interpolation techniques can be used. The interpolated function )(ˆ xf can be 

determined in 1-D form by 

                                                        





 −

=∑ δ
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xxhcxf )(ˆ                                                 (1.1) 

where δ represents the sampling increment and kx ’s are the interpolation nodes. h  is the 
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interpolation condition, )()(ˆ
kk xgxf =  for each kx is satisfied [4]. The interpolation kernel, h
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Generally, h  is a symmetric kernel, i.e., )()( xhxh =− . The interpolation kernel, weighted by 
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location, .x   

An image interpolation attempts to reconstruct a two-dimensional continuous signal 

),(ˆ yxf from its discrete image samples ),( kj yxg  and hence is an extension of 1-D interpolation 
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image samples ),( kj yxg with a 2-D reconstruction filter or interpolation kernel ),( yxh  meant 
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consider a point ),( yx in a rectangular sub-division ],[],[ 11 ++ × kkjj yyxx . The pixel intensity at that 

point using 2-D interpolation [4] is given by, 
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where, h is the interpolation kernel, xδ and yδ are sampling increments of the x and y co-ordinates. 

For interior grid points, the jkc ’s are given by ),( kjjk yxfc = . The range of ml, defines the size 

of the neighborhood for pixel estimation. Their values range from -1 to 2 for a 4×4 

neighborhood. 

 For interpolating a point in a 2-D signal such as image, 1-D interpolation can also be 

employed separately in both x  and y directions at the given location. So, the 2-D interpolation 

kernel, ),( yxh can be represented as the product of two separable 1-D interpolation kernel in x  

and y direction. Mathematically, the representation of a 2-D interpolation kernel ),( yxh in terms 

of 1-D is given by, 

                                                       )().(),( yhxhyxh =                                                        

where, )(xh  and )(yh represent 1-D interpolation kernel in x  and y direction respectively.  

 For image re-sampling, the interpolation step must reconstruct a two dimensional 

continuous signal ),(ˆ yxf  from its discrete samples ),( kj yxg . Thus the amplitude at ),( yx  

position is estimated from its discrete neighbors. This process is analogous to the convolution of 

discrete samples with the continuous 2-D impulse response ),( yxh of a 2-D reconstruction filter. 

Therefore (1.2) can also be written in the following form [3]. 

                                        ),(),(),(ˆ
kjk

k
j

j
yyxxhyxgyxf −−= ∑∑                                 (1.3) 

Sometimes, it is necessary to down-sample an image for display or for transmission 

through a channel with bandwidth constraints. This sampling process generates an infinite 

bandwidth signal out of a band limited signal. An interpolation scheme performs inverse 

operation on the discrete signal by reducing its bandwidth by filtering through a low-pass filter. 

So, interpolation reconstructs the signal lost in the sampling process by smoothing the data 

samples with an interpolation function or kernel. Hence, there occurs high frequency degradation 

during the interpolation process resulting in blurring of the 2-D data samples. 

 There are some basic criteria for an efficient interpolation scheme. The interpolation 

method should preserve the geometry and relative sizes of objects in an image so that the subject 

matter doesn’t change under interpolation. The method should show contrast invariance by 

preserving the luminance values of objects in an image and by maintaining the overall contrast of 

the image. It must not add noise and other artifacts to the image such as ringing artifacts near the 
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boundaries. It should preserve edges and boundaries without significant blurring. Jagged artifacts 

or “staircase” edges generated because of aliasing ought to be prevented by the interpolation 

scheme. The textured region must be well preserved without blurring or smoothing during 

interpolation. The interpolated image should be free from blocking artifacts. 

 

1.3 Some Basic Interpolation Schemes 
There are several interpolation techniques. Some of the basic interpolation schemes such as 

nearest-neighbor, bilinear and bicubic are discussed in this section meant for 2-D interpolation. 

The performance and computational complexity of interpolation algorithms are related to their 

interpolation kernel. So, the development of efficient interpolation kernels is the objective of 

design and analysis. A tradeoff between accuracy and efficiency is one of the influencing factors 

while designing an efficient interpolation kernel. In this section, we will discuss various 1-D and 

2-D interpolation schemes.  

 

1.3.1 Nearest-neighbor Interpolation 

Nearest-neighbor interpolation is the simplest interpolation technique in which the interpolated 

pixel value is determined by the nearest neighbor in the proximity. It is called nearest neighbor 

interpolation because it assigns to each new location the intensity of its nearest neighbor in the 

original image. Hence, this interpolation is also called pixel replication. In case of 1-D 

interpolation, it takes two pixels into consideration while, in 2-D interpolation, it takes four 

pixels into account for estimating the pixel intensity at any point within the neighborhood of the 

original image. This interpolation is also called point-shift algorithm as the interpolated image is 

shifted with respect to original image by the difference between positions of co-ordinate location. 

The interpolated value at a given location using nearest-neighbor interpolation is given by the 

following expression. 

                                          
22

,)()(ˆ 11 +− +
≤<

+
= kkkk

k
xxxxxxgxf                                        (1.4) 

where, )( kxg represents a discrete 1-D function and )(ˆ xf represents the interpolated function. The 

interpolated value in one-dimension at a given point using nearest-neighbor interpolation can be 
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estimated by convolving the input data sample with the following interpolation kernel in spatial 

domain. The interpolation kernel for nearest-neighbor algorithm is given by, 

                                                  




≤
<≤

=
x

x
xh

5.0,0
5.00,1

)(                                                        (1.5) 

The interpolation in 2-D can be performed by convolving the input image in both x and y

directions using the above kernel [3]. 

This method requires minimum computational time because it uses the square pulse as 

kernel function and hence is the fastest among the basic interpolation schemes. This approach is 

simple but has the tendency to produce undesirable artifacts, such as distortion at the straight 

edges. An image under high magnification looks blocky using nearest-neighbor interpolation. 

Hence, these artifacts are called blocking artifacts. For this reason it is infrequently used in 

practice. 

The convolution in spatial domain with the rectangular function, )(xh is equivalent to 

frequency domain multiplication with a sinc function. The spectrum of a rectangular function is a 

sinc function which represents a poor frequency response for-low pass filter due to prominent 

side-lobes and infinite extent [3]. The problems encountered in nearest-neighbor interpolation are 

to some extent resolved using bilinear interpolation at the cost of a little computational 

complexity which is discussed in the next section. 

 

1.3.2 Bilinear Interpolation 

For interpolating a 1-D function, linear interpolation technique is used. However, to interpolate a 

2-D function bilinear interpolation is employed. The bilinear interpolation is a 2-D interpolation 

scheme which makes use of the linear interpolation in horizontal and vertical directions for 

determining pixel intensity at a desired location within a 2×2 neighbourhood. It uses the 

weighted average of the four neighboring pixels to arrive at the final interpolated value at the 

desired location. 

 In case of bilinear interpolation, the pixel intensity at a given location is estimated as a 

linear combination of the four neighboring pixel with weights inversely proportional to their 

distance from the estimating location. The weighted combination of neighboring pixel simply 
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represents a low- pass filtering operation which blurs the fine details and edges of an image due 

to high frequency attenuation. 

 Bilinear interpolation is more complex and computationally demanding than the nearest 

neighbor interpolation. It eliminates the blocking artifacts produced by the nearest neighbor 

interpolation up to a certain level at the cost of blurring the fine details and edges of the original 

image. The impulse response in case of linear interpolation is a triangle function. Linear 

interpolation is a first degree method or a first order polynomial because it passes a straight line 

through every two consecutive points of the input signal [3]. The expression of the impulse 

response of a linear interpolation is given by, 

                                                    




≤
<≤−

=
x
xx

xh
1,0

10,1
)(                                                 (1.6) 

 The frequency response of the linear interpolation function is the square of a sinc 

function whose side lobes are less prominent than the side lobes of the sinc function and hence is 

having an improved frequency response over nearest-neighbor interpolation. It attenuates the 

harmonics of the input signal near its cut-off frequency and moderately attenuates the pass-band 

resulting in smoothing of an image. The side lobes are far less prominent, indicating improved 

performance in the stop band [3]. However, a significant amount of spurious high frequency 

components continue to leak the pass-band, contributing to some aliasing.  

 

Point Estimation in 2-D using Bilinear Interpolation:  

Suppose the value of an unknown function f at a point ),( yx is to be determined. It is assumed 

that the value of f at the four points 211211 ,, QQQ and 22Q is known. The locations of the four 

points are given by, ),(,),(,),( 122121121111 yxQyxQyxQ === and ),( 2222 yxQ = as shown in Fig. 

1.1. To estimate the pixel intensity an unknown location ),( yx , linear interpolation is carried out 

initially in x - direction. This yields, 
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Fig. 1.1 Estimation of pixel intensity at an unknown location ),( yx using bilinear interpolation 

 

where, 1R is located at ),( 1yx . Similarly, the function value at 2R is given by, 
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The point 2R  is located at ),( 2yx . After performing linear interpolation in x -direction, linear 

interpolation is done in y -direction to determine the functional value, )(ˆ Pf at the desired 

location ),( yx and is given by, 

                                         )()()(ˆ
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Substituting (1.7) and (1.8) into (1.9) we have, 
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where )(,)(,)( 211211 QfQfQf and )( 22Qf represent pixel intensities at four different locations as 

shown in Fig. 1.1. The result of bilinear interpolation is independent of the order of interpolation 

[5].  

Bilinear interpolation performs much better than nearest-neighbor interpolation by 

reducing blocking artifacts. However, it shows much blurring at the edges and fine details and 

can be alleviated to a considerable extent using bicubic interpolation which is discussed in the 

next section. 

 

1.3.3 Bicubic Interpolation 

For interpolating a 1-D function, cubic interpolation is used. Likewise, for interpolating a 2-D 

function, cubic interpolation is employed in both x and −y directions which is otherwise called 

as bicubic interpolation. The interpolated surface is smoother than nearest-neighbor interpolation 

but preserves fine detail and edge information more than bilinear interpolation. In image 

processing, bicubic interpolation is preferred over bilinear interpolation or nearest neighbor 

interpolation when speed is not an issue. In addition, this interpolation has fewer interpolation 

artifacts than nearest-neighbor and bilinear interpolation. 

 A bicubic interpolation involves the sixteen nearest neighbors of a point while 

determining the intensity of a particular point ),( yx and hence is computationally more complex 

than bilinear interpolation. The pixel intensity at an unknown location ),( yx is determined by the 

linear combination of its sixteen neighboring pixels using the following expression [6]. 

                                                       ∑∑
==

=
3

0

3

0
),(ˆ

j

ji
ij

i
yxayxf                                                  (1.11) 

where the sixteen coefficients are determined from the sixteen equations in sixteen unknowns 

that can be written using sixteen nearest-neighbors of the point of estimation. 

 Generally, bicubic interpolation does a better job [6] of preserving fine detail than its 

bilinear counterpart. Bicubic interpolation is the standard used in commercial image editing 

program such as Adobe Photoshop and Corel Photo-point.  

 Bicubic interpolation employs cubic convolution in x and y directions which is a third-

degree interpolation algorithm and produces good resizing results. The impulse response of cubic 

interpolation is composed of piecewise cubic polynomial defined on the subintervals (-2,-1), (-
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1,0), (0,1) and (1,2). Outside the interval (-2, 2), the impulse response is zero.  As a result, each 

interpolated point is a weighted sum of four consecutive input points. This has the desirable 

symmetry property of retaining two input points on each side of the interpolation region. It gives 

rise to a symmetric, space-invariant property of the interpolation kernel. 

 It is required to solve eight linear equations with seven unknowns to derive the cubic 

interpolation impulse response. The performance of the interpolation impulse response depends 

on parameter, a  and the frequency content of an image which is to be interpolated. For different 

images, different values of a  yield the best performance. The impulse response of the cubic 

convolution is of the form: 
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                                       (1.12) 

The value of the parameter a determines the kernel performance. Choice for value of a  between 

3−  and 0 approximates the sinc function kernel. If the value of 1−=a , the kernel will amplify 

the high frequency components in the pass band resulting in image sharpening. If the 

interpolation function is to agree with the first three terms of the Taylor series expansion for the 

given function, then the parameter a  must be equal to 5.0− . Hence, putting 5.0−=a in (1.12) 

the expression becomes: 
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                              (1.13) 

Two-dimensional cubic interpolation, otherwise known as bicubic interpolation is 

accomplished by performing one-dimensional cubic interpolation with respect to each co-

ordinate as shown in Fig. 1.2. Therefore, the 2-D cubic convolution interpolation function is a 

separable extension of the 1-D interpolation. Let us consider a point ),( yx in a rectangular sub-

division ],[],[ 11 ++ × kkjj yyxx . The pixel intensity at that point using the bicubic interpolation [4] is 

given by, 
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Fig. 1.2 Estimation of pixel intensity at an unknown location ),( yx employing bicubic 

interpolation 
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where, h is the interpolation kernel of (1.13) and xδ and yδ are the x and y co-ordinate sampling 

increments. For interior grid points, the jkc ’s are given by ),( kjjk yxfc = . 

The frequency response in case of cubic interpolation is better than the bilinear 

interpolation where high frequency components are almost attenuated at the stop band resulting 

in reduced aliasing and blurring as compared to bilinear interpolation [3].  

 

1.4 Advantages and Disadvantages of Various Existing 

Interpolation Schemes  
Image interpolation is the process of estimating the intermediate values of a spatially continuous 

image from a set of its discrete samples. It typically estimates an unknown pixel value within a 

neighborhood from the known pixel neighbors. Typically, the interpolated value at a particular 

location is computed by the weighted average or convolution of the neighboring image samples. 

The weighting function used in local convolution is called the interpolation kernel. Many image 
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interpolation schemes, developed so far, are broadly classified into the following three 

categories. They are namely, 

• Polynomial based interpolation schemes [14-36] 

• Edge directed interpolation schemes [37-65] 

• Transform-domain interpolation schemes [66-82] 

The polynomial based interpolation schemes are based on the convolution of sampled 

data with an interpolation kernel. In these cases, the pixel intensity at an unknown location is 

directly estimated based on convolution without considering the local statistical features of an 

image and hence are not adaptive techniques. Most of such techniques are simple, easy to 

implement and computationally less complex and so are suitable for various real-time 

applications. However, they suffer from aliasing, blurring at the edges in the reconstructed 

image. In general, the perfect reconstruction of a band limited 2-D signal such as image from a 

set of its sample requires 2-D convolution in spatial domain. In case of polynomial based 

interpolation, the interpolated value at an estimating point is computed as a weighted average or 

convolution of the neighboring image samples. Hence, interpolation is analogous to a low pass 

filtering operation resulting in blurring at the edges and fine details. On the other hand, the key 

concern with spatial aliasing in images are the introduction of artifacts such as jaggedness in line 

features, spurious highlights and the appearance of frequency patterns not present in the original 

image. Spatial aliasing is due to under-sampling. For instance, a continuous 2-D function of two 

continuous variables can be band limited only if it extends infinitely in both co-ordinate 

directions. The very act of spatially limiting the 2-D function introduces frequency components 

extending to infinity in frequency domain. Since we cannot sample a function infinitely, aliasing 

is always present in digital images.  The effect of aliasing can be reduced by band limiting or 

slightly blurring an image to be re-sampled so that high frequencies are attenuated. Various 

polynomial based interpolation schemes are nearest-neighbor, bilinear, bicubic, cubic-spline, 

lanczos-3 etc. The performance of the polynomial based interpolation schemes can be enhanced 

through incorporation of some adaptive and / or hybrid techniques. Those interpolation schemes 

are advance polynomial based interpolation schemes and perform better than conventional 

interpolation schemes [32-36]. Various advance polynomial based interpolation schemes are 

image interpolation using adaptive fast B-spline filtering, adaptive least-square bilinear 
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interpolation, parametric cubic convolution scaler, sub-pixel edge localization and interpolation, 

adaptive interpolation based Gaussian function etc. 

Various edge directed interpolation schemes eliminate the unwanted artifacts to a 

certain extent that are frequently encountered in polynomial based interpolation schemes at the 

cost of additional computational complexities. The conventional polynomial based techniques 

only preserve the low frequency details but fail to preserve the high frequency details resulting in 

undesirable blurring at the edges. This problem can be alleviated using various edge-directed 

algorithms which preserve high frequency information in an up-scaled image for a better visual 

quality. Although the edge directed interpolation schemes are efficient in preserving fine details 

and edge information in an image while up-scaling, they are computationally more complex than 

polynomial interpolation schemes because of the employment of adaptive and local based 

techniques. Hence, these schemes are not suitable for real-time applications. Various edge 

directed interpolation schemes [37-65] are new edge directed interpolation (NEDI), soft-decision 

adaptive interpolation (SAI), bilateral soft-decision adaptive interpolation (BSAI) etc. 

Many transform domain techniques [66-82] for image resizing have been developed. 

Up-sampling in DCT domain is implemented by padding zero coefficients to the high frequency 

side and then by taking the inverse DCT (IDCT) to get back the up-scaled image in spatial 

domain. Image resizing in DCT domain shows very good result in terms of scalability and image 

quality. However, these techniques although improved, suffer through undesirable ringing and 

blocking artifacts and are computationally more complex than various spatial domain 

interpolation techniques. Ringing artifacts appear as spurious signals near sharp transitions in an 

image. The main cause of ringing is due to the band limiting of an image in frequency domain by 

padding zero coefficients to the high frequency side or truncating image coefficients in 

frequency domain. The DCT domain image resizing methods make use of a truncation that 

discards HF coefficients to down-scale and zero padding to up-scale an image. However, these 

truncation and zero padding in frequency domain generate ringing artifacts near object 

boundaries in spatial domain. Furthermore, DCT is computationally more complex than 

polynomial based interpolation schemes because of the requirement of forward transform and 

inverse transform during the up-sampling process as depicted in Table 2.1.  

Likewise, various wavelet domain resolution enhancement schemes have been developed 

[79-82] so as to preserve the high frequency contents in up-scaled images. Although the wavelet 
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domain interpolation schemes preserve the HF information quite effectively in the up-scaled 

images, they demand more computational time as compared to conventional interpolation 

schemes. Since wavelet is a transform domain interpolation scheme, it consumes more 

computation time like DCT interpolation. The forward discrete wavelet transform decomposes 

an image to LL, LH, HL and HH components. These components are individually up-scaled to 

higher dimensions using bicubic interpolation followed by inverse discrete wavelet transform to 

obtain the up-scaled image in spatial domain. Therefore, wavelet requires more computation time 

than polynomial interpolation schemes as depicted in Table 2.1. 

Hence, there is a requirement to develop some better interpolation schemes which are not 

only computationally efficient but also would give better image quality by preserving HF 

information in the up-scaled images. The research problem taken up is presented in the next 

section. 

 

1.5 Problem Statement 
From the literature review, it is apparent that the polynomial based interpolation schemes are 

computationally efficient but produce undesirable artifacts such as blurring and aliasing. Though 

edge-directed and transform domain interpolation schemes preserve the edge information and 

fine details effectively than polynomial based interpolation schemes, they are computationally 

more complex. Hence, it is felt that there is further scope to develop efficient up-scaling schemes 

which are not only computationally efficient but also produce better visual quality by preserving 

the fine details and edge information. Hence, in this current research work, efforts are made to 

improve the performance of the existing 2-D polynomial based interpolation schemes through 

the incorporation of various spatial domain pre-processing, post-processing and composite 

techniques so as to obtain a better up-scaled image quality along with reduced computational 

complexity. The polynomial based interpolation schemes are taken-up for up-gradation because 

of their reduced computational complexities than transform-domain schemes and their suitability 

for real-time applications. 

Hence, the objective of the research work is to develop various efficient but simple pre-

processing, post-processing and composite schemes using Lanczos-3 interpolation to effectively 

restore the HF contents in the up-scaled images for various online and off-line applications. 
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Although all the polynomial based interpolation schemes show improvement through 

incorporation of various pre-processing and post-processing schemes, Lanczos-3 interpolation 

scheme is preferred because of its better HF restoration performance with less blurring. In 

addition, it is free from artifacts such as ringing which is found in DCT interpolation scheme. 

Furthermore, it is computationally less complex than transform-domain schemes such as DCT 

and Wavelet. Hence, Lanczos-3 interpolation is preferred among various polynomial and 

transform-domain up-scaling schemes because of its overall better performance. 

 

1.6 Methodologies Adopted 
In order to overcome the challenges posed by various interpolation schemes, many pre-

processing, post-processing and composite algorithms are proposed in this thesis.  

The pre-processing algorithms are based on higher order derivatives and unsharp 

masking. The term pre-processing refers to processing the low-resolution input image prior to 

image up-scaling. The various pre-processing algorithms proposed in this thesis are :  

• Laplacian of Laplacian (LLGP) based Global Pre-processing Scheme  

• Hybrid Global Pre-processing (HGP) Scheme 

• Iterative Laplacian of Laplacian based Global Pre-processing (ILLGP) Scheme 

• Unsharp Masking based Pre-processing (UMP)  

• Iterative Unsharp Masking (IUM)  

• Error based Up-sampling (EU) Scheme 

 

The post-processing schemes are local adaptive schemes and work on high resolution, up-scaled 

images. The various post-processing algorithms proposed in this thesis are: 

• Local Adaptive Laplacian (LAL) based Post-processing Algorithm  

• Fuzzy Weighted Laplacian (FWL)based Post-processing Algorithm 

• Legendre Functional Link Artificial Neural Network (LFLANN) based Post-

processing Algorithm 

 

There is a scope of further improvement of the stand-alone pre-processing and post-processing 

schemes by combining them through composite schemes. Two spatial-domain composite 
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schemes, CS-I and CS-II are proposed in this thesis to tackle non-uniform blurring in an up-

scaled image and are given below.  

• Composite Scheme (CS-I) using Iterative Laplacian and Local Adaptive 

Laplacian 

• Composite Scheme (CS-II) using Iterative Laplacian of Laplacian and Fuzzy 

Weighted Laplacian 

 

1.7 Performance Measures 
The performances of different algorithms are evaluated by objective and subjective measures. 

The objective performance of an image is evaluated by determining error and error-related 

parameters mathematically. However, for subjective evaluation, the image has to be observed by 

several observers [7, 8].  

There are various metrics used to measure the objective performance of an image. The 

commonly used metrics are mean square error (MSE), root mean square error (RMSE), mean 

absolute error (MAE), peak signal to noise ratio (PSNR) and universal quality index (UQI). 

However, objective performance metrics like PSNR and UQI are taken here for objective 

evaluation. The mean square error (MSE) and peak-signal-to-noise-ratio (PSNR) of the up-

sampled, restored image are computed and compared with other existing algorithms for the 

objective evaluation. Universal quality index (UQI) is another quality metric to measure the 

image quality by combining correlation, average luminance and contrast level similarity and 

hence becomes a good performance measure. It takes care of human visual system (HVS) and 

hence its performance is quite similar to what a human expert observes. Therefore, it corresponds 

to subjective evaluation to some extent [8].  

Let the original and restored images be represented by ),( yxf and ),(ˆ yxf respectively.  

Let them be of size .NM ×  Then MSE is given by, 
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The PSNR is defined in logarithmic scale, and is expressed in dB. It is a ratio of peak 

signal power to noise power. The PSNR is defined as: 
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provided the signal lies in the range [0, 1]. On the other hand, if the signal is represented in the 

range of [0,255], the numerator in (1.16) will be (255)2 instead of 1. 

  The universal quality index (UQI) [8] is used to measure the quality of an image. The 

universal quality is modeled by considering three different factors and is defined by: 
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The UQI consists of three components. The first component is the correlation between the 

original image, f and the restored image, f̂ . It measures the degree of linear correlation between 

them and its dynamic range is [-1, 1]. The second component, with the range of [0, 1], measures 

the closeness between the average luminance of f and f̂ . It reaches the maximum value of 1 if 

and only if f equals f̂ . The standard deviations of these two images, fσ and 
f̂σ are also 

regarded as estimates of their contrast levels. The value of contrast level ranges from 0 to 1 and 

the optimum value of 1 is achieved only when
ff ˆσσ = . Hence, combining the three parameters: 

correlation, average luminance similarity and contrast level similarity, the universal quality index 

(UQI) becomes a very good performance measure. 

Error image is an important tool to study the HF restoration performance of various 

algorithms. The error is calculated by taking the absolute value of the difference between the 

restored image and the original image. For display purpose, the error is scaled up by an 

appropriate scaling factor for proper visibility. Let ),( yxf  and ),(ˆ yxf  be the original and 

restored image. The error ),( yxe  for different algorithms is computed for performance analysis 

and is given by, 

                                              ),(),(ˆ),( yxfyxfyxe −=                                                       (1.18) 

               Computational complexity plays a major role to define the effectiveness and suitability 

of the proposed algorithms for a specific application. Execution time (TE) is related to the 

complexity of an algorithm. As complexity of an algorithm increases, so does the execution time. 

For simulating the algorithms, a digital computing platform having an Intel® core™ i3-3217U 

processor running at 1.8 GHz clock with 3.89 GB usable RAM and 64 bit Window-10 operating 

system has been employed. MATLAB R2010a software is used for simulation of all these 

algorithms in the above mentioned digital computing platform. To understand the computational 

complexity of the algorithms, simulation studies are carried out on this platform to find the 

execution time for various algorithms.  

 

1.8 Chapter-wise Organization of the Thesis 
The chapter-wise organization of the thesis is outlined here.  
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Chapter 1: Introduction 
Preview; Introduction to image up-scaling; Fundamentals of image interpolation; Some basic 

interpolation schemes; Advantages and disadvantages of various existing interpolation schemes; 

Problem statement; Methodologies adopted; Performance measures; Chapter-wise organization 

of the thesis; Conclusion.  

 

Chapter 2: Literature Review 
Preview; image up-scaling using 2-D interpolation; Review on polynomial, edge directed and 

transform-domain interpolation schemes; Study of some existing interpolation schemes; 

Performance analysis; Conclusion. 

  

Chapter 3: Spatial-domain Pre-processing Algorithms using Higher Order 

Derivatives 
Preview; Laplacian of Laplacian based global pre-processing (LLGP); Hybrid global pre-

processing (HGP); Iterative Laplacian of Laplacian based global pre-processing (ILLGP); 

Experiment and simulation; Results and discussion; Conclusion.  

 

Chapter 4: Pre-processing Algorithms using Unsharp Masking 
Preview; Unsharp masking based pre-processing (UMP); Iterative unsharp masking (IUM); Error 

based up-sampling (EU); Experiment and simulation; Results and discussion; Conclusion. 

 

Chapter 5: Post-processing Algorithms using Soft-computing Techniques 
Preview; Local adaptive Laplacian; Fuzzy weighted Laplacian; Legendre functional link 

artificial neural network (LFLANN); Results and discussion; Conclusion. 

 

Chapter 6: Development of Some Spatial Domain Composite Algorithms 
Preview; Composite scheme (CS-I) using iterative Laplacian and local adaptive Laplacian; 

Composite scheme (CS-II) using iterative Laplacian of Laplacian and fuzzy weighted Laplacian; 

Results and discussion; Conclusion.   
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Chapter 7: Conclusion 
Comparative analysis; Conclusion; Scope for future work 
 

1.9 Conclusion 
In this chapter, introduction to image up-scaling, fundamentals of image interpolation and some 

basic interpolation schemes are discussed. The challenges associated with various polynomial, 

edge-directed and transform based interpolation schemes are discussed in brief literature review. 

Based on the challenges, the research problem is clearly stated. Various methodologies adopted 

based on pre-processing, post-processing and composite schemes to overcome the challenges of 

the existing schemes are reported. In addition, image metrics associated with performance 

evaluation of various algorithms are discussed. Finally, the organization of the thesis is 

presented.  

 The literature review on various interpolation schemes is described in the subsequent 

chapter. 
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Chapter 2 

 

Literature Review 
 

Preview 
In this chapter a study of different interpolation schemes has been presented. The advantages and 

limitations of different interpolation schemes are discussed in the prospective of visual quality 

and their suitability for various online and offline applications. 

 Image up-scaling or super-resolution can be accomplished using single image or through 

multiple images. Image super-resolution using multiple images produces a high resolution (HR) 

image of better visual quality. But it is computationally more demanding and hence is not 

preferred for real-time applications. Therefore, the focus is more on super-resolution using single 

image which requires less processing time. Resolution enhancement using single image can be 

accomplished through interpolation-based, learning-based and reconstruction-based schemes [9]. 

Amongst the various single image resolution enhancement methods, interpolation-based 

techniques are preferred for their simplicity and suitability for various online applications. The 

interpolation based up-sampling schemes are further classified into polynomial-based, edge-

directed and transform-domain techniques. Various 2-D interpolation schemes are discussed in 

this chapter. The topics covered in this chapter are: 

• Preview 

• Image Up-scaling using 2-D Interpolation 

• Review of Polynomial based Interpolation Schemes 

• Review of Edge Directed Interpolation Schemes 

• Review of Transform Domain Interpolation Schemes 

• Study of some Existing Interpolation Schemes 

• Comparative Analysis 

• Conclusion   
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2.1 Image Up-scaling using 2-D Interpolation 
 

 

 

 

   

 

 

 

 

 

Fig. 2.1 Classification of interpolation schemes 

 

Image interpolation is the process of estimating the intermediate values of a spatially continuous 

image from a set of its discrete samples. It typically estimates an unknown pixel value within a 

neighborhood from the known pixel neighbors. 2-D interpolation is used for resolution 

enhancement of a low resolution image data and is employed in many online applications such as 

video streaming, HDTV and video surveillance. Many image interpolation schemes, developed 

so far, are broadly classified into three categories. They are namely polynomial based, edge 

directed and transform domain interpolation schemes. The polynomial interpolation scheme is 

classified into conventional and advanced-polynomial based interpolation. Likewise, the 

transform-domain interpolation schemes are categorized into DCT and wavelet based 

interpolation.  In addition, there are several edge-directed interpolation schemes employed for 

efficient image up-sampling. The detail classification of interpolation schemes are shown in Fig. 

2.1. A review of various interpolation schemes is given in the subsequent sections. 

 

2.2 Review of Polynomial based Interpolation Schemes 
The polynomial based interpolation schemes are based on the convolution of sampled data with 

an interpolation kernel. They are broadly classified into conventional and advanced polynomial 

Wavelet DCT Advanced Conventional 

Transform-domain Edge-directed Polynomial-based 

Image Interpolation 
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based interpolation schemes. In case of conventional polynomial based interpolation schemes [3-

5], the pixel intensity at an unknown location is directly estimated based on convolution without 

considering the local statistical features of an image and hence are not adaptive techniques. Most 

of such techniques are simple, easy to implement and computationally less complex and so are 

suitable for various real-time applications. However, they suffer from aliasing, blurring at the 

edges in the reconstructed image. Various polynomial based interpolation schemes are nearest-

neighbor, bilinear, bicubic, cubic-spline [3], lanczos-3 [10-13] etc. Some of the basic polynomial 

based interpolation schemes such as nearest-neighbor [3], bilinear [5] and bicubic [4] 

interpolation schemes are already discussed in Chapter-1.  

The problems encountered in conventional polynomial based interpolation schemes are to 

some extent are resolved using various advanced polynomial based techniques at the cost of 

additional computational complexities [14-36]. The advanced polynomial based schemes modify 

or hybridize the conventional schemes for performance improvement. These schemes can also be 

adaptive and can be employed in various real-time applications because of their reduced 

computational complexities. In this section, some of the advanced polynomial based 

interpolation schemes are discussed. 

Lehman et al. [14] have developed a high-degree B-spline interpolation scheme for 

medical image processing applications. The high-degree B-spline interpolation has superior 

spectral characteristics, less interpolation error in comparison to low-degree B-spline 

interpolation. In addition, the proposed scheme has reduced computational complexity. For this 

reason, it is employed in numerous medical image processing applications which demand high 

precision and less interpolation artifacts. 

Chung et al. [15] have introduced a fractal based image enhancement technique to reduce 

the image degradation due to sub-optimal contractive mapping. The proposed technique 

preserves the details in the edge regions and at the same time maintain the smoothness of the 

slowly varying or flat regions. This technique shows better performance than conventional 

bilinear and bicubic interpolation techniques. 

Hadhoud et al. [16] have suggested an adaptive image interpolation based on local 

activity levels. In this case, different conventional interpolation schemes such as bilinear, 

bicubic, cubic-spline and warped distance technique are modified based on the level of activity 
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in the local regions of an image. This process is accomplished by assigning different weights to 

the pixels used in the interpolation process according to the degree of local information. The 

warped distance is based on modifying a distance based on homogeneity or in-homogeneity in a 

neighbor. The proposed adaptive technique shows better performance than the conventional 

interpolation and warped distance technique. 

Blu et al. [17] have presented an original method to improve piecewise-linear 

interpolation with uniform knots. In this paper, the sampling knots are shifted by a fixed amount 

while enforcing the interpolation property. The optimal shift that produces maximum 

performance improvement is found to be roughly 0.2 for linear interpolation. Experimental 

results show the performance improvement of the proposed scheme over linear interpolation. 

Malvar et al. [18] have introduced a new linear interpolation technique for demosaicing 

of bayer-patterned color images. Demosaicing is a digital image processing technique used to 

reconstruct a full color image from in-complete color samples through color filter array 

interpolation. The proposed technique is simple and show better performance than bilinear 

interpolation. 

Aly et al. [19] have introduced a image up-sampling using total variation regularization 

with a new observation model. In this paper, a formulation and analysis for the image up-

sampling problem employing total-variation regularizer is developed. A new observation and the 

total variation regularizer are used at the formation level. The formation is set as an optimization 

problem and is numerically solved by a level-set motion algorithm. The proposed scheme shows 

better performance than many state-of-art techniques. 

Zhen et al. [11] have employed four image interpolation techniques for down-sampled 

ultrasound breast phantom data acquired using Fischer’s full field digital mammography so as to 

reduce the size of large images for online diagnosis. This scheme improves the processing speed 

without sacrificing the quality of ultrasound images and hence is suitable for real-time 

applications. Experimental results show that Lanczos algorithm performs better than bilinear, 

bicubic and wavelet domain interpolation schemes. 

Shen et al. [20] have developed a modified Laplacian filter and an intensity correction 

technique for image resolution enhancement. The modified Laplacian filter restores the 

frequency components degraded during the down sampling and averaging process. The intensity 
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correction gives a better visual effect to an image subjected to different degree of resolution 

enhancement. The proposed technique is computationally efficient and gives better results than 

bilinear and bicubic interpolation.  

Xiangjian et al. [21] have introduced a reversible fast image translation and rotation 

scheme based on a hexagonal structure. Images are conventionally represented on a square pixel 

structure. However, the hexagonal structure provides a more flexible and efficient way to 

perform image translation and rotation without the loss of information. The resolution of the 

image is also retained by virtual hexagonal structure during image transformation. The hexagon 

structural mode of representation shows better performance than traditional square structural 

mode. 

Xiangjian et al. [22] have developed an approach to edge detection on a virtual hexagonal 

structure employing bilinear interpolation that converts an image from square structure to 

hexagonal structure. The experimental results show better edge detection accuracy. 

Gharavi et al. [23] have presented a spatial interpolation algorithm for intra-frame error 

concealment. In this method, the image regions that are being affected due to loss of packets can 

be restored using a composite algorithm comprising bilinear interpolation and edge detection. 

The edge detection technique is based on Hough transform meant for performance improvement 

of bilinear interpolation. 

Bera et al. [24] have proposed multirate scan conversion of ultrasound images using 

warped distance based adaptive bilinear interpolation. In this method, the regions with fine 

details and edges are enhanced and at the same time the smoothness of the flat regions are 

preserved employing adaptive bilinear interpolation with reduced computational complexities. 

This shows the suitability of the proposed scheme for online medical applications. 

Shen et al. [25] have developed a novel interpolation algorithm for nonlinear omni-

catadioptric images to overcome the reduced visual accuracy of omni images taken by nonlinear 

catadioptric camera. The proposed interpolation scheme improves the resolution of omni images 

to compensate the lack of visual content. The camera property of interpolated images is also 

preserved by utilizing epipolar geometry constraint of nonlinear images. The proposed scheme 

shows better performance than bilinear and bicubic interpolation schemes. 
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Jiang et al. [26] have developed a configurable system for role-specific video imaging 

during laparoscopic surgery. In this paper, a configurable system is introduced that implements 

real-time and role specific imaging. The role-specific imaging displays panoramic and close-up 

views at the same time. Two separate video bit streams are displayed in real-time for this 

purpose employing real-time interpolation schemes. The user can dynamically adjust the frame 

rate, interpolation method and zooming factor through real-time configurable setting. The 

performance of the system is monitored for various real-time interpolation schemes such as 

nearest, bilinear, bicubic and lanczos interpolation. 

Kang at al. [27] have introduced a new real-time super-resolution technique for digital 

zooming using finite kernel based edge orientation and truncated image restoration. The 

proposed method minimizes the interpolation artifacts and restores high frequency details using 

finite impulse response (FIR) filter. In this case, the edge orientation is precisely estimated using 

steerable filters with edge refinement. The input image is then adaptively interpolated along the 

estimated edge orientation. The authors claim that the proposed scheme produces better results 

with reduced jagged edges and other interpolation artifacts than other existing schemes. 

Xiao et al. [28] have proposed an image zooming method using hierarchical structure in 

the year 2013. In this paper, retinex model is employed to decompose image into low frequency 

and high frequency layers. Corresponding to low frequency layer, a low-pass filter is realized to 

filter the mirror signals which are introduced during up-sampling. A nonlinear iterative method 

based on heat equation is used to reconstruct the high frequency layer that contains the fine 

details and texture information. The resulting zoomed image is obtained by merging both the 

layers. Experimental results show that the proposed algorithm improves the defects of linear and 

non-linear interpolation algorithms.  

Dai et al. [29] have developed a directionally adaptive Cubic-spline interpolation using 

optimized interpolation kernel and edge orientation for mobile digital zoom system. To reduce 

blurring and jagged artifacts in linear and cubic-spline interpolation, the authors have suggested a 

new directional adaptive cubic-spline interpolation scheme. The proposed scheme is based on 

cubic-spline interpolation using edge orientation and the employment of an optimized 

interpolation kernel using kernel map. Experimental results show better zooming performance 

with reduced interpolation artifacts than various existing schemes. 
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Zhong et al. [30] have proposed an adaptive image amplification method with integer 

multiples for superior zooming. Generally, a pixel in a low-resolution (LR) image corresponds to 

a block of unknown pixels in the corresponding high-resolution (HR) image. For each pixel in 

the LR belonging to an edge region, weighted least square estimation algorithm is adopted to get 

its eight orientation parameters for estimating its associated block of pixels in the HR image. 

Subsequently, each LR pixel is substituted by linear weighted summation of its eight surrounding 

HR pixels so that the model parameters are obtained. Finally, correction is done on each block to 

refine each HR pixel. Experimental results show superiority of the proposed scheme over other 

zooming methods.  

Hung et al. [31] have introduced a modified bicubic interpolation scheme and employed 

it for frame enhancement in a camera based traffic monitoring. The proposed technique modifies 

the bicubic interpolation by considering edge map on the interpolated images for reducing the 

blurring artifacts while preserving the edge information effectively. The proposed method proves 

a promising pre-processing stage to perform traffic analysis on the acquired video at low 

resolution.  

In addition, there are many advanced polynomial based interpolation schemes which are 

adaptive [32-36] and provide superior resolution enhancement than conventional polynomial 

based interpolation schemes.  

The next section presents various edge directed interpolation schemes. 

 

2.3 Review of Edge-directed Interpolation Schemes 
Edges are visually attractive to human visual system. The interpolation quality is considered to 

be better if the edges of an interpolated image are sharp and free from blurring and other 

artifacts. The basic objective of various edge-directed interpolation schemes is to preserve 

sharpness during the up-sampling process. Various edge-directed interpolation schemes are 

discussed below. 

 Li et al. [37] have introduced a new edge-directed interpolation (NEDI) scheme for 

natural images. In this method, the local covariance coefficients are estimated from an LR image. 

These coefficients are used to adaptively control the interpolation at higher resolution based on 
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duality between LR covariance and HR covariance. The proposed scheme performs better than 

the conventional linear interpolation schemes. 

 Loung et al. [38] have proposed a method for interpolating images with repetitive 

structures. In this method, an unknown pixel is estimated based on information of the entire 

image unlike other conventional interpolation schemes and shows performance improvement 

over those conventional schemes. 

 Tam et al. [39] have developed a modified edge-directed interpolation scheme which is 

the modified version of new edge directed interpolation (NEDI). The prediction error 

accumulation problem in NEDI is eliminated by adopting a modified training window structure. 

The proposed scheme further extends covariance matching to multiple directions for suppressing 

covariance mismatch and shows much better subjective performance over existing schemes. 

 Shi et al. [40] have proposed context based adaptive image resolution up-conversion in 

which an LR image patch is used as a context in which missing HR pixels are estimated. The 

context is quantized into classes and for each class an adaptive linear filter is designed using a 

training set. The training set incorporates the prior knowledge of point spread function, edges, 

texture, smooth shades, etc. into the up-conversion filter design. Experimental results show 

improved performance of the algorithm over the existing schemes. 

 Dung et al. [41] have proposed a selective data pruning-based compression scheme to 

improve the rate distortion relation of compressed images and video sequences. The original 

frames are pruned to a smaller size before compression. After decoding, they are interpolated 

back to their original size by an edge-directed interpolation method. The data pruning phase is 

optimized to obtain the minimal distortion in the interpolation phase. Furthermore, a novel high-

order interpolation is proposed to adapt the interpolation to several edge directions in the current 

frame. This high-order filtering uses more surrounding pixels in the frame than the fourth-order 

edge-directed method and it is more robust. The algorithm is also considered for multi-frame 

based interpolation by using spatio-temporally surrounding pixels coming from the previous 

frame. Simulation results are shown for both image interpolation and coding applications to 

validate the effectiveness of the proposed methods. 

 Mishiba et al. [42] have proposed an edge adaptive image interpolation to estimate a HR 

image from its LR counterpart using constrained least squares. The adaptive image interpolation 
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makes use of edge-directed smoothness filter and constrains the interpolated image to have edge-

directed smoothness and fidelity to the original image based on observation model. 

 Shaode et al. [43] have proposed an edge-directed interpolation (EDI) method and 

applied it on a group of fetal spine MR images to evaluate its feasibility and performance. This 

method extracts edge information using canny edge detector and perform further pixel 

modification based on the edge information. Initially, low-resolution (LR) images of fetal spine 

are interpolated into high-resolution (HR) images with targeted scaling factor using bilinear 

interpolation. Later on, the edge information from LR and HR images is put into a twofold 

strategy to sharpen or soften edge structures. Finally, a HR image with well-preserved edge 

structures is generated. The proposed method provides proper resolution enhancement for 

accurate medical diagnosis. 

 There are many more edge directed interpolation schemes [44-65] which not only provide 

better objective and subjective performance than the conventional interpolation schemes but are 

also employed for various up-sampling applications. However, these algorithms demand more 

processing time due to their adaptive and complex structures.  

 In the next section, various transform domain interpolation schemes are discussed. 

  

2.4 Review of Transform-domain Interpolation Schemes 
DCT and wavelet are widely used transform-domain interpolation schemes. Image resizing in 

DCT domain shows very good result in terms of scalability and image quality. However, these 

techniques suffer through undesirable ringing artifacts and computationally more complex than 

conventional spatial-domain interpolation techniques. Likewise, various wavelet domain 

resolution enhancement schemes have been developed to effectively preserve the high frequency 

contents in up-scaled images but demand more computational time as compared to conventional 

interpolation schemes. Some of the DCT and wavelet based interpolation schemes are discussed 

in this section. 

 Alkachouh et al. [66] have developed a technique using DCT based interpolation of 

blocks in images to restore a block in an image, using a reduced set of border pixels.  In case of 

DCT transformed blocks, most of the high frequency coefficients are likely to be negligible and 
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can be dropped. Generally, the block to be transformed is made of the missing block and the 

border pixels. It is by setting as many DCT coefficients to zero, a system of linear equation 

results, whose solution yields approximations for the values of the lost pixels. The solution of the 

system is actually an interpolation operation which yields approximations of the unknown 

values. Dugad et al. [67] have proposed a fast scheme for image size change in compressed 

domain. The proposed algorithm for down-sampling and up-sampling in DCT domain is 

computationally faster and produces visually sharper images. Various other algorithms [68, 69] 

are developed for image resizing in compressed domain and show performance improvement 

over various existing schemes. Shu et al. [70] proposed an efficient down-scaling algorithm for 

video transcoding employing DCT-based interpolation. In this method, the spatial resolution of a 

video signal is reduced using DCT so as to transmit over a bandwidth constrained channel. The 

proposed scheme gives satisfactory down-scaling performance compared to existing methods. 

 Park et al. [71] have developed a fast arbitrary-ratio image resizing method for recovery 

of compressed images. The downscaling process in the DCT-domain can be implemented by 

truncating high-frequency coefficients, whereas the up-scaling process is implemented in the 

DCT domain by padding zero coefficients to the high-frequency part. The proposed method 

combines a fast inverse and forward DCT of composite length for arbitrary-ratio up-scaling or 

down-scaling. According to the resizing ratio, truncating the high-frequency coefficients and 

padding zeros are appropriately considered by combining the inverse DCT and forward DCT. 

The proposed method shows a good peak-signal-to-noise-ratio and less computational 

complexity compared with the spatial-domain and previous DCT-domain image resizing 

methods. Similar image resizing techniques are proposed with better scalability and improved 

up-scaled image quality [72, 73]. 

 Shin et al. [74] have proposed an adaptive up-sampling method using DCT for spatial 

scalability of scalable video coding (SVC) using type-II DCT for H.264 SVC up-scaling. The 

proposed scheme is based on a combination of the forward and backward type-II discrete cosine 

transform (DCT). Here, a fast algorithm of type-II DCT-based up-sampling method is also 

proposed. For further improvement of the up-sampling performance, an adaptive filtering 

method in the type-II DCT up-sampling is introduced, which applies different weighting 

parameters to DCT coefficients. The proposed adaptive up-sampling method shows a much 



 

Chapter 2  Literature Review 

 

32 

 

improved PSNR in comparison with the recent H.264 SVC up-sampling. Wu et al. [75] have 

introduced a new hybrid DCT-wiener-based interpolation scheme for video intra-frame up-

sampling. The proposed scheme exploits the advantages of DCT-domain and spatial-domain 

interpolation schemes to develop an improved up-sampling filter for better resolution 

enhancement over the existing schemes. Some modified version of DCT-wiener based 

algorithms are proposed for more improved performance [76, 77]. Lim et al. [78] have developed 

a DCT based up-scaling scheme to counter ringing artifacts in the up-scaled image. 

 Wavelet-domain interpolation is a type of transform-domain interpolation scheme which 

is widely used in image up-scaling applications. Some of the wavelet domain interpolation 

schemes are discussed below. Zhao et al. [79] have introduced wavelet image super-resolution 

using wavelet domain Hidden Markov Tree (HMT) model. In this paper, image super-resolution 

is formulated as a constrained optimization problem using HMT. Cycle spinning technique is 

employed to suppress the artifacts in the HR image.  

Temizel et al. [80] have developed an image resolution enhancement algorithm using 

cycle –spinning. In the proposed scheme, an HR image is generated by wavelength domain zero 

padding of a LR image followed by inverse wavelet transform. The cycle-spinning technique is 

used for quality improvement of HR image.  

Wu et al. [81] have developed a wavelet-based image resolution enhancement technique 

in which the edges are enhanced by introducing an intermediate stage of stationary wavelet 

transform (SWT). Experimental results show the superiority of the proposed scheme over 

conventional 2-D up-sampling scheme. 

 Demiral. et al. [82] have proposed an image super-resolution employing discrete and 

stationary wavelet decomposition. The authors propose an image resolution enhancement 

technique based on interpolation of the high frequency sub-band images obtained by discrete 

wavelet transform (DWT) and the input image. The edges are enhanced by introducing an 

intermediate stage by using stationary wavelet transform (SWT). DWT is applied in order to 

decompose an input image into different sub-bands. Afterwards, the high frequency sub-bands as 

well as the input image are interpolated. The estimated high frequency sub-bands are being 

modified by using high frequency sub-band obtained through SWT. Finally, all these sub-bands 

are combined to generate a new high resolution image employing inverse DWT (IDWT). 
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Experimental results show that there is a improvement in the performance of the proposed 

technique compared to the conventional and state-of-art image resolution enhancement 

techniques. 

 Besides the polynomial, edge-directed and transform-domain interpolation schemes, there 

are many other schemes which are used for image super-resolution. They are categorized as 

learning-based, reconstruction-based, multi-frame based image super-resolution [83-117]. A 

recent study on image super-resolution reveals that the sparse and deep-learning based super-

resolution schemes [120-128] show better performance under various constraints. Some of the 

recent sparse and deep-learning based super-resolution techniques are discussed here.  

Dictionaries are crucial in sparse coding based algorithms for image super-resolution. 

Sparse coding is a typical unsupervised learning method to study the relationship between the 

patches of high- and low-resolution images. However, when an LR image and its corresponding 

HR image are represented in their feature spaces, the two sets of dictionaries and the obtained 

coefficients have intrinsic links which have not yet been studied. Motivated by the development 

on nonlocal self similarity and manifold learning, Lu et al. [120] proposed a novel sparse coding 

method to preserve the geometrical structure of the dictionary and the sparse coefficients of the 

data to reduce the super-resolution reconstruction artifacts. The purpose of incorporating 

nonlocal self similarity and manifold learning is to have good reconstruction and discrimination 

properties which can enhance the learning performance. 

Dong et al. [121] have developed an effective image interpolation scheme by nonlocal 

autoregressive modeling (NARM) and incorporated it in the sparse representation model (SRM). 

The conventional SRM method becomes less effective in the image interpolation problem 

because the data fidelity term fails to impose structural constraint on the missing pixels. This 

problem is properly addressed by exploiting the image non-local self similarity with NARM. The 

NARM acts as a new structural data fidelity term in SRM by connecting a missing pixel with its 

nonlocal neighbors. It reduces much coherence between the sampling matrix and the sparse 

representation dictionary so that SRM becomes more effective for image interpolation. 

Experimental results reveal that the proposed scheme achieve better performance than various 

state-of-the-art image interpolation schemes. 
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M. Nazzal and H. Ozkaramanli [122] have introduced a single image super-resolution 

approach that employs dictionary learning and signal reconstruction in wavelet domain. The 

proposed algorithm makes use of DWT and classification to design structured dictionaries which 

are compact and effectively directional since they inherit the structural and directional properties 

of the respective wavelet subband. The diagonal wavelet details are classified as diagonal and 

anti-diagonal. For each horizontal and vertical subband, a pair of dictionaries (LR and HR) is 

designed. Since wavelet transform is unable to separate diagonals and anti diagonal orientations, 

two pairs of dictionaries are designed for the diagonal detail subbands. Moreover, the proposed 

algorithm reduces the dictionary learning computational complexity by designing compactly 

sized structural dictionaries and shows better performance than the existing schemes. 

Various existing sparse coding based super-resolution techniques partition the image into 

overlapped patches and process each patch separately. These methods however ignore the 

consistency of pixels in overlapped patches which is a strong constraint for image reconstruction. 

To resolve this issue, Gu et al. [123] proposed a convolutional sparse coding based super-

resolution. This method decomposes the whole image by filtering which naturally takes the 

consistency of pixels in overlapped patches into consideration. This process involves 

decomposition of LR images into LR sparse feature map using a set of filters, prediction of HR 

feature maps from the LR using a mapping function and reconstruction of HR images from the 

predicted HR feature maps through convolution operations using a set of filters. The proposed 

algorithm doesn’t need to divide the image into overlap patches and exploits the image global 

correlation for better reconstruction of image local structures. 

 Ahmed et al. [124] have presented a selective sparse coding algorithm with a 

directionally structured dictionary learnt through a coupled K-singular value decomposition (K-

SVD) algorithm for single image super-resolution. In this algorithm, the LR and HR patches are 

assumed to have the same sparse coefficients. Furthermore, the learning of dictionaries is 

performed using K-SVD algorithm which represents HR and LR patches by enforcing the 

coefficients of one on the other alternately. The algorithm is made more efficient by introducing 

selective sparse coding using clustering of data by creating a set of vertical, horizontal and one 

non-directional template. These templates have a directional structure and are helpful in creating 

more directional and compact dictionaries. Two sets of HR and LR dictionaries are generated 



 

Chapter 2  Literature Review 

 

35 

 

along with one non-directional dictionary. A given LR image can be up-scaled by using these 

HR dictionaries based on its LR counterpart and correlation criteria. Experimental results show 

the superiority of the proposed scheme over the existing schemes.   

Han et al. [125] have proposed a novel sparse based technique to generate high resolution 

hyper spectral (HR-HS) image from the available low resolution hyper spectral (LR-HS) and 

high resolution multi spectral (HR-MS) images using data-guided sparse spectral representation. 

The proposed scheme makes use of HS dictionary from the input LR-HS image and transforms it 

to RGB dictionary for calculating the sparse representation of all HR pixels in the input HR RGB 

image. Subsequently, the sparse representation of the spectrum based on RGB dictionary is used 

to reconstruct hyper spectrum by combining the HS dictionaries for recovering the HR hyper 

spectral image. Experimental results on two public hyper spectral datasets validate that the 

proposed method achieves promising performance than the state-of-the-art methods.    

 Face hallucination is an example of the image super-resolution problem, where the HR 

face images can be obtained from the LR ones. Pei et al. [126] have proposed a gradient 

constrained sparse representation based face hallucination algorithm which incorporates gradient 

information and reweighted constraint into the image super-resolution problem to achieve better 

performance. The iterative algorithm refines the reconstructed HR images. The experimental 

results on several face data bases show the better performance of the proposed algorithm than 

other baseline algorithms. 

Recently, various deep learning methods are applied to super-resolution problem and are 

giving promising results. Guo et al. [127] have introduced a new low-complexity and effective 

super-resolution algorithm called super-resolution with coupled back propagation (SR-CBP). 

This algorithm builds two deep neural networks called coupled auto-encoder networks (CAN) 

that capture the features of HR and LR images. SR-CBP allows joint training of the LR and HR 

networks to have middle layer representations that agree for a LR and its corresponding HR 

image. For a LR input image, its middle layer representation obtained through the trained LR 

network can be used by the HR network to generate a HR image. In addition, SR-CBP has 

smaller memory and less computation requirement than the state-of-the-art deep learning based 

super-resolution method. 
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Sharma et al. [128] have developed an end-to-end deep learning based framework for 

noise resilient super-resolution algorithm which performs de-noising and super-resolution 

simultaneously by preserving the textural details of an image without blurring. In this algorithm, 

a novel deep learning based image super-resolution architecture, termed as coupled deep 

convolutional auto-encoder (CDCA) is used for better performance. It computes the 

convolutional features of LR and HR image patches and learns the nonlinear function that maps 

these convolutional features of LR image patches to their corresponding convolutional features   

of HR image patches. Initially, stacked sparse de-noising auto encoder (SSDA) is learned for LR 

image de-noising. The proposed CDCA is learned for image super-resolution. A cascaded deep 

learning network is developed by combining SSDA and CDCA and is employed as one integral 

network, where the pre-trained weights are taken as initial weights. In fine tuning, all the layers 

of the combined end-to-end network are jointly optimized to perform image de-noising and 

super-resolution simultaneously. Experimental results show the proposed algorithm shows better 

performance than various state-of-the-art schemes in terms of PSNR and SSIM metrics.     

 An analytical study of some well-known state-of-art schemes is presented in the next 

section. 

 

2.5 Study of Some Existing Interpolation Schemes  

2.5.1 Lanczos-3 Interpolation Scheme [12] 
Lanczos is a spatial domain interpolation technique which is implemented by multiplying a sinc 

function with a sinc window which is scaled to be wider and truncated to zero outside the main 

lobe. In case of Lanczos-3 interpolation, the main lobe of the sinc function along with the two 

subsequent side lobes on either side is used as a sinc window. The Lanczos window is a product 

of sinc function, s i n c x( )with the scaled version of it, s i nc x a( / ) restricted to the main period 

,axa ≤≤−  to form a convolution kernel for up-sampling the input field [10]. In 1-D, the 

expression for Lanczos interpolation is given by, 

                                 
0

s i nc x s i nc x a a x a
L x

otherwise
− ≤ ≤

= 


( ) ( / ),
( )

,
                                         (2.1) 
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where ‘a’ is a positive integer, typically 2 or 3, used for controlling the size of the kernel. The 

parameter ‘a’ corresponds to the number of lobes of the sinc function. The parameter a is taken 

two for Lanczos-2 interpolation. The three lobed Lanczos windowed sinc function (Lanczos-3) is 

given by,  

                          




 ≤≤−

=
otherwise

x
x

x
x

x
xLanczos

,0

33,
3/

)3/(sin)(sin
)(3 π

π
π
π

                                (2.2) 

For a two dimensional low resolution image ),( yxg , an interpolated value at an arbitrary point 

),( 00 yx using Lanczos-3 interpolation is given by, 
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where, L ⋅( ) is Lanczos-3 kernel given by (2.2) and ),(ˆ
00 yxf denotes the Lanczos-3 interpolated 

up-sampled image. The Lanczos-3 interpolation in 2-D uses a support region of 6×6=36 pixels 

from the original low-resolution image ),( yxg to generate the 2-D up-sampled image ),(ˆ yxf  

[12]. 

 

2.5.2   DCT Interpolation Scheme [74] 
The up-sampling process in the DCT domain is performed by padding zero coefficients to the 

high-frequency part. For this purpose, we need to add N  zeros in the high frequency regions, 

where N is the signal length. Subsequently, type-II IDCT of the extended N2 samples is 

performed to obtain the two-fold up-sampled data. This process is described Fig 2.2. In the case 

of 2-D video intra frames or image, the twofold up-sampling process in a matrix form can be 

described as:  

                                  2 2 2 2 2 2
2 0

0 0

T
U T N N N N N N

N N N N N N
W b W

b W W× × ×
× × ×

 
= × × 

 
                                 (2.4)                                                                                                                                       

where, W  denotes the 1-D type-II DCT kernel. b and Ub are the down-sized and the up-sampled 

frame block. 0  denotes a NN × zero matrix [74]. 
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Fig 2.2 DCT interpolation for obtaining HR image from a LR image 

 

2.5.3 New Edge-directed Interpolation (NEDI) [37] 
Various 2-D linear interpolation schemes generate blurring artifacts in the up-scaled images due 

to HF degradation. In the new edge directed interpolation, the covariance based adaptation 

(CBA) method is used to adjust the predictor which finds the edge pixel values for better 

reconstruction of an image. This is achieved by finding the geometric duality between the HR 

covariance and LR covariance which is used to connect the pair of pixels along the same 

orientation. In NEDI, the estimated HR covariance is used to derive the optimal MMSE 

interpolation by modeling the image as a locally stationary Gaussian process. The drawback of 

this method is that the processing time is about two times higher than that of processing time 

taken in linear interpolation. So the CBA interpolation is used only for the edge pixels. The 

bilinear interpolation technique is used for the non-edge pixels in the smooth regions due to its 

simplicity. This hybrid approach is used in NEDI because the edge pixels are very less in 

comparison to the non-edge pixels and the computation time of this hybrid approach in 

reconstructing the image will be less than the covariance-based adaptive interpolation for the 

whole image. The analytical model of NEDI is presented below. 

 New edge-directed interpolation uses the FIR Wiener filter, equivalently, the linear 

minimum mean squares error estimator [37] for linear prediction. The 4th order linear estimation 

model is given by, 

                                          PiforYAY iki
k

ki ,...,2,1
4

1
=+= ∆

=
∑ ε                                        (2.5) 
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where iε  is the estimation error, P is the number of data point samples, KA is the model 

parameters and each available data point sample )( iY  has four neighboring data points kiY ∆ . The 

model parameters kA can be found by using the least squares estimation: 

                                              { } { }
2

1

4

1
.ˆ

minargˆ ∑ ∑
= =

∆ 







−=

P

i k
kiki

k
k YAY

A
A                                        (2.6) 

where the matrix form of (2.6) is given by, 

                                                   2

2

minargˆ AYY
A

A A−=                                                       (2.7) 

and the matrices are defined as 

                                            { } { } { }T
k

T
kiA

T
i AAYYYY === ∆ ,,                                             (2.8) 

The sizes of matrices ofY , AY and A are 4,1 ×× PP and 14× , respectively. The close form 

solution (2.7) is given by, 

                                                  YYYYA T
AA

T
A

1)(ˆ −=                                                        (2.9) 

where, Â is called as the ordinary least square estimator. Due to the geometry duality, the 

missing data point X can be interpolated by its four neighboring data points KX as: 

                                                             k
k

k XAX ∑
=

=
4

1

ˆ                                                      (2.10) 

 

2.5.4 Image Super-resolution based on Interpolation of Wavelet-domain High 

Frequency Sub-bands [116] 
The detail operation of image super-resolution based on interpolation of wavelet-domain high 

frequency sub-bands scheme is illustrated in the Fig. 2.3. This super-resolution technique makes 

use of interpolated high frequency sub-bands along with low resolution image to generate a high 

resolution image counterpart. In this algorithm, discrete wavelet transform (DWT) is used to 

decompose a low resolution image to different sub-bands such as LL, LH, HL and HH. The sub-

bands LH, HL and HH contain high frequency information whereas LL sub-band contains low 

frequency information of the input image. The up-scaled HF subbands are obtained using bicubic  
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Fig 2.3 Block diagram of Demirel-Anwarjafari super-resolution (DASR) algorithm 

 

interpolation, where α is taken as the interpolation factor. Since the interpolated low resolution 

image contains more information than LL sub-band, LL sub-band is replaced by low resolution 

interpolated image in the reconstruction process. Finally, the high resolution image is obtained 

by taking the inverse discrete wavelet transform of the up-scaled high frequency sub-bands and 

the interpolated low resolution image. The edges and fine details are preserved in the HR image 

because of the high frequency enhancement in wavelet domain. 

 

2.5.5 Image Resolution Enhancement using Discrete and Stationary wavelet 

Decomposition (DSWD) [82] 
In this paper, DWT and SWT are employed to preserve the HF information in the super resolved 

image. The detail block diagrammatic representation of the algorithm is shown in Fig. 2.4. In this 

algorithm, one level DWT is used to decompose a low resolution input image into different sub-

band images. The three high frequency sub-bands: LH, HL and HH contain high frequency 

information. Down-sampling each of the DWT sub-bands causes information loss. Therefore, 

SWT is employed to minimize the loss. The interpolated HF sub-bands of DWT and the SWT 
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Fig 2.4 Block diagram of image resolution enhancement using DSWD algorithm 
 

high frequency sub-bands have the same size and hence are added correspondingly to generate 

the estimated HF sub-bands. These HF sub-bands are further interpolated by a factor of 2/α

meant for further up-conversion in the subsequent process. The LL sub-band is the low 

resolution version of the original image and contains less information than the original. 

Therefore, the interpolated version of the original image is used instead of LL sub-band to 

improve the super-resolution performance. The low resolution image and the DWT high 

frequency sub-bands are interpolated by 2/α and 2 interpolation factor. The estimated HF sub-

bands are also interpolated by a factor of 2/α so that the dimensions of the estimated sub-bands 

will be same as that of the dimension of the interpolated input image. Finally, the inverse discrete 

wavelet transform (IDWT) of all the estimated sub-bands along with the interpolated input image 

is taken to generate a high resolution image. The edges and fine details of the super resolved 

image are well preserved because of the correction made by superimposing the SWT high 

frequency sub-bands with the interpolated DWT sub-bands of the input image. 

IDWT 

HR image )( NM αα ×  
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2.6 Comparative Analysis 
To evaluate the HF restoration performance of various interpolation schemes, images of different 

types are down-sampled at 4:1 compression ratio (CR). Afterwards, the down-sampled images 

are up-scaled to their original size using various interpolation schemes for comparison with the 

original images. The down-sampled image is considered as a low-resolution (LR) image while 

the up-scaled images with various interpolation schemes are considered as a high resolution 

(HR) image. The computational complexity in terms of CPU execution time of various 

interpolation algorithms is also computed to determine whether they will be well suited for real-

time or off-line applications. In addition, peak-signal-to-noise-ratio (PSNR) in dB is measured to 

quantify the objective performance of the proposed algorithms. The interpolation algorithms are 

tested for twenty publicly available 512×512 images for performance analysis.  

 The execution time comparison of different existing algorithms is given in Table 2.1. 

Likewise, the objective evaluation at 4:1 and 8:1 compression ratios of various existing 

algorithms in terms of PSNR (dB) is given in Table 2.2 and Table 2.3. The best performance is 

shown in bold for clear presentation. In addition, the subjective performance comparisons of 

these algorithms are given in Fig. 2.5, Fig. 2.6 and Fig. 2.7. 

 The various existing techniques used for quantitative analysis are: Nearest-neighbor 

interpolation [3], Bilinear interpolation [5], Bicubic interpolation [4], Lanzos-2 interpolation 

[12], Lanczos-3 interpolation [12], DCT-based interpolation [74], Demirel-Anbarjafari super-

resolution [116], Image resolution enhancement using discrete and stationary wavelet 

decomposition [82]. 

 It may be observed from Table 2.2 and Table 2.3 that DCT and Lanczos-3 interpolation 

schemes show better objective performance at 4:1 and 8:1 compression ratios than all other 

existing schemes. However, DCT is the winner in most of the images though it has undesirable 

ringing artifacts. In contrast, Lanczos-3 interpolation shows better subjective performance than 

other existing schemes because of less interpolation artifacts such as blurring and ringing as 

illustrated in Fig. 2.5, Fig. 2.6 and Fig. 2.7. In addition, Lanczos-3, being a spatial domain 

polynomial based interpolation scheme, takes less computation time than transform-domain DCT 

interpolation as shown in Table 2.1. Hence, Lanczos-3 is preferable because of reduced 
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computational complexity and less interpolation artifacts. Since the proposed post-processing 

and composite algorithms are based on enhancing the HF contents of an interpolated image, the 

interpolation artifacts will be further enhanced resulting in degradation in image quality. 

Therefore, it is preferable to use Lanczos-3 interpolation for further improvement. 

Furthermore, both the DCT and Lanczos-3 interpolation schemes generate blurring 

effects at the edge and fast changing regions in the up-scaled images. Therefore, there is 

sufficient scope for further improvement of these existing algorithms. Hence, efforts are made to 

improve the performance of existing interpolation algorithms so that blurring can be significantly 

reduced with a better visual quality. Therefore, Lanczos-3 interpolation scheme is taken as the 

basic interpolation paradigm, which is further improvised in various pre-processing and post-

processing algorithms developed and presented in this research work. 

The most commonly found interpolation artifacts in the existing schemes are blurring, 

ringing and aliasing. The polynomial based interpolation schemes such as bilinear, bicubic and 

Lanczos suffers from blurring artifacts. These interpolation schemes are based on convolution in 

which the pixel intensity at a given location is estimated as a linear combination of the 

neighboring pixels with weights inversely proportional to their distance from the estimating 

location. The weighted combination of neighboring pixels simply represents a low- pass filtering 

operation which blurs the fine details and edges of an image due to high frequency attenuation as 

shown in Fig. 2.5, Fig. 2.6 and Fig. 2.7. In addition, the transform-domain up-sampling schemes 

such as DCT and wavelet also show blurring due to high frequency degradation.   

Table 2.1 Execution time of the existing algorithms at 4:1 CR 
 

Images of 
different size 

(M×N) 

Execution time in Seconds for different interpolation schemes 

 
Nearest 

[3] 

 
Bilinear 

[5] 

 
Bicubic 

[4] 

 
Lanczos-2 

[12] 

 
Lanczos3 

[12] 

 
DCT 
[74] 

 

 
DASR 
[116] 

 
DSWD 

[82] 

Clock 
(200×200) 

 
0.0161 

 
0.0141 

 
0.0150 

 
0.0054 

 
0.0151 

 
0.0518 

 
0.2532 

 
1.0770 

Lena 
(256×256) 

 
0.0163 

 
0.0147 

 
0.0152 

 
0.0062 

 
0.0157 

 
0.0633 

 
0.2655 

 
1.1235 

Fruit 
(377×321) 

 
0.0164 

 
0.0153 

 
0.0163 

 
0.0063 

 
0.0168 

 
0.1729 

 
0.2758 

 
1.1628 

Lena 
(512×512) 

 
0.0174 

 
0.0201 

 
0.0215 

 
0.0114 

 
0.0222 

 
0.1673 

 
0.3019 

 
1.2627 

Pentagon 
(1024×1024) 

 
0.0208 

 
0.0354 

 
0.0409 

 
0.0295 

 
0.0442 

 
0.6372 

 
0.4953 

 
1.7218 
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Table 2.2 PSNR (dB) comparison of different existing interpolation schemes at 4:1 compression 

ratio for various (512×512) images  
 
Image 

Nearest 
[3] 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos2 
[12] 

Lanczos3 
[12] 

DCT 
[ 74] 

 

DASR 
[116] 

DSWD 
[82 ] 

Lena 31.424 32.704 34.148 34.207 34.813 35.022 31.220 31.345 
Boat 28.388 28.940 29.951 29.995 30.375 30.466 27.865 28.446 
Livingroom 28.132 28.617 29.557 29.608 29.977 30.128 27.459 28.174 
Fingerprint 25.374 28.045 30.632 30.753 31.722 32.133 26.378 26.411 
Goldhill 30.114 30.574 31.405 31.440 31.725 31.716 29.609 29.829 
Pirate 29.398 30.027 31.058 31.101 31.490 31.607 28.955 29.391 
Baboon 32.315 33.588 35.014 35.075 35.662 35.889 32.145 32.373 
Barbara 25.096 24.925 25.352 25.367 25.428 25.183 24.764 24.837 
Bridge 25.473 25.728 26.504 26.541 26.826 26.918 24.910 25.348 
Cat 30.441 30.949 31.982 32.024 32.427 32.562 29.992 30.464 
Crowd 29.522 30.984 32.667 32.732 33.451 33.768 29.277 29.582 
Cycle 21.227 21.208 21.895 21.926 22.154 22.129 20.693 21.173 
F16 29.035 30.379 31.543 31.633 32.104 32.722 29.689 29.830 
House 28.816 29.248 30.314 30.371 30.807 30.862 28.049 28.790 
Lake 27.881 28.945 30.022 30.080 30.495 30.793 27.997 28.549 
Cameraman 31.044 33.214 35.757 35.884 37.216 37.832 30.972 31.854 
Elaine 31.627 32.534 33.117 33.131 33.309 33.284 31.617 31.519 
Mandrill 23.122 23.045 23.630 23.663 23.859 23.925 22.726 23.025 
Peppers 29.876 31.180 31.991 32.045 32.329 32.747 30.451 30.795 
Ruler 12.573 12.335 12.613 12.626 12.673 12.600 14.458 15.638 

 

Table 2.3 PSNR (dB) comparison of different existing interpolation schemes at 8:1 compression 

ratio for various (512×512) images  
 
Image 

Nearest 
[3] 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos2 
[12] 

Lanczos3 
[12] 

DCT 
[ 74] 

 

DASR 
[116] 

DSWD 
[82 ] 

Lena 28.582 30.288 31.267 31.289 31.716 31.876 28.408 28.521 
Boat 25.981 26.899 27.566 27.585 27.851 27.905 25.517 26.049 
Livingroom 25.822 26.634 27.202 27.216 27.429 27.438 25.215 25.871 
Fingerprint 21.948 24.528 26.641 26.707 27.573 27.757 22.818 22.847 
Goldhill 27.857 28.801 29.368 29.382 29.621 29.694 27.390 27.593 
Pirate 26.921 28.062 28.745 28.764 29.043 29.118 26.515 26.915 
Baboon 29.485 31.109 32.122 32.150 32.606 32.751 29.329 29.537 
Barbara 23.534 24.033 24.261 24.265 24.345 24.365 23.231 23.299 
Bridge 23.449 24.112 24.593 24.606 24.790 24.823 22.937 23.341 
Cat 28.103 29.011 29.681 29.696 29.972 30.035 27.693 28.129 
Crowd 26.406 28.251 29.348 29.376 29.861 30.002 26.187 26.460 
Cycle 19.338 19.772 20.155 20.165 20.324 20.369 18.863 19.301 
F16 26.414 27.875 28.708 28.744 29.102 29.407 27.014 27.143 
House 26.379 27.188 27.778 27.795 27.989 27.961 25.686 26.364 
Lake 25.380 26.779 27.576 27.598 27.940 28.097 25.498 26.001 
Cameraman 27.554 29.587 30.999 31.042 31.796 32.236 27.506 28.289 
Elaine 29.633 31.315 31.908 31.918 32.128 32.212 29.632 29.540 
Mandrill 21.534 21.786 22.083 22.093 22.198 22.221 21.160 21.438 
Peppers 27.431 29.203 29.892 29.919 30.184 30.453 27.962 28.278 
Ruler 11.409 11.484 11.595 11.599 11.624 11.393 13.120 14.191 
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Table 2.4 Computational complexity of existing algorithms for an NN ×  image 
Algorithm Number of multiplications Number of additions 

Nearest-neighbor 0 22N  

Bilinear 24N  23N  

Bicubic 216N  215N  

Lanczos-3 236N  235N  

DCT 2
2

2 4log5 NNN +  NNNN 62log15 2
2

2 ++  

DASR 2106N  2105N  

DSWD 2124N  2126N  

 

 

 

 

 

Table 2.5 Operation counts of the existing algorithms 
Image size 

NN ×  
Number of 

Operations 

Nearest 

[3] 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos-3 

[12] 

DCT 

[74] 

DASR 

[116] 

DSWD 

[82] 

128×128 Multiplications 

Additions 
0 

32768 

65356 

49152 

262144 

245760 

589824 

573440 

638976 

1753856 

1736704 

1720320 

2031616 

2064384 

256×256 Multiplications 

Additions 
0 

131072 

262144 

196608 

1048576 

983040 

2359296 

2293760 

2883584 

7996928 

6946816 

6881280 

8126464 

8257536 

512×512 Multiplications 

Additions 
0 

524288 

1048576 

786432 

4194304 

3932160 

9437184 

9175040 

12845056 

35916800 

27787264 

27525120 

32505856 

33030144 
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 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i) 
 

Fig. 2.5 Subjective evaluation of Lena (256×256) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Nearest; (c) Bilinear; (d) Bicubic; (e) Lanczos-2; (f) 

Lanczos-3; (g) DCT ; (h) DASR; (i) DSWD 
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 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i) 
 

Fig. 2.6 Subjective evaluation of Barbara (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Nearest; (c) Bilinear; (d) Bicubic; (e) Lanczos-2; (f) 

Lanczos-3; (g) DCT ; (h) DASR; (i) DSWD 
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 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i) 
 

Fig. 2.7 Subjective evaluation of the selected green rectangular region (237×222) of Barbara 

(512×512) image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) 

Nearest; (c) Bilinear; (d) Bicubic; (e) Lanczos-2; (f) Lanczos-3; (g) DCT ; (h) DASR; (i) DSWD 
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 Ringing artifacts appear as spurious signals near sharp transitions in an image. Ringing 

artifacts are more prominent in DCT interpolation and may be observed in Fig 2.7. The main 

cause of ringing is due to the band limiting of an image in frequency domain by padding zero 

coefficients to the high frequency side or truncating image coefficients in frequency domain. The 

DCT domain image resizing methods make use of a truncation that discards high frequency 

coefficients to down-scale and zero padding to up-scale an image. However, these truncation and 

zero padding in frequency domain generate ringing artifacts near object boundaries in spatial 

domain. 

 Aliasing is a very common phenomenon in various interpolation schemes. The main 

problem with spatial aliasing in images is the introduction of artifacts such as jaggedness in line 

features, spurious highlights and the appearance of frequency patterns not present in the original 

image which is otherwise known as Moiré pattern. The deformation in the original frequency 

pattern due to aliasing may be observed in Barbara image as depicted in Fig. 2.7. Spatial aliasing 

is due to under-sampling. For instance, a continuous 2-D function of two continuous variables 

can be band limited only if it extends infinitely in both coordinate directions. The very act of 

spatially limiting the 2-D function introduces frequency components extending to infinity in 

frequency domain. Since we cannot sample a function infinitely, aliasing is present in various 

up-sampled images as shown in Fig. 2.7.  The effect of aliasing can be reduced by band limiting 

or slightly blurring an image to be up-sampled so that high frequencies are attenuated. 

 It may be observed from Table 2.2 and Table 2.3 that the PSNR is low for some images 

such as Barbara, Cycle, Mandrill and Ruler which are rich in HF pattern. The reduction in PSNR 

is because of the deformation of HF pattern due to aliasing or under-sampling. The deformation 

of this high frequency pattern generates a new pattern which was absent in the original image 

and is the cause of reduction in PSNR. The subjective quality degradation of Barbara (512×512) 

image may also be observed in Fig. 2.7 due to aliasing. 

Computational complexity is an important parameter to evaluate an algorithm in terms of 

its applicability for real-time applications. Complexity of an algorithm is related to the number of 

multiplications and additions involved to obtain the final output. The number of operations 

required for a pixel interpolation is a widely accepted method. This number includes the 

operations required for convolution of the basis function. All the polynomial interpolation 
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schemes are based on convolution. The differences in execution time are due to the difference in 

size of the convolution kernel. The convolution of PP×  kernel needs 2P multiplications and 

12 −P  additions [129]. In case of nearest-neighbor interpolation, the number of additions and 

multiplication required for a pixel estimation is 2 and zero. Therefore, it is the fastest among all 

the interpolation schemes. Bilinear interpolation operates on 22×  neighborhood and so requires 

4 multiplications and 3 additions per pixel. Likewise, bicubic interpolation requires more number 

of operations than bilinear interpolation because the pixel estimation is performed on a larger 

(4×4) neighborhood which requires 16 multiplications and 15 additions. Therefore, bicubic 

interpolation takes more computation time than bilinear interpolation as shown in Table 2.1. In 

addition, Lanczos-3 interpolation has a kernel size of 66× and hence requires 36 multiplications 

and 35 additions and takes more computational time than bicubic interpolation.  

In case of DCT, there are NN 2
2 log  multiplications and NNNN 22log3 2

2
2 +−  

additions for N points [130]. Inverse DCT has same number of operations as that of the forward 

DCT. For the purpose of up-sampling, the number of points becomes N2 because of zero padding 

in frequency domain. The up-sampled image in spatial domain is obtained by taking the IDCT of 

the zero padded coefficients. Therefore, the total number of multiplications and additions 

required for DCT up-sampling scheme become 2
2

2 4log5 NNN +  and NNNN 62log15 2
2

2 ++

as shown in Table 2.4. Thus, DCT takes more execution time than Lanczos-3 interpolation for 

images of higher dimensions as depicted in Table 2.1. DCT is computationally more complex 

than polynomial based interpolation schemes because of the requirement of forward transform 

and inverse transform during the up-sampling process.  

In case of DWT, the number of multiplications and additions is 22KN for an NN × image 

where K is the number nonzero filter coefficients [131]. Considering the number of nonzero 

filter coefficients to be 9 for a 3×3 filter mask, number of multiplications and additions becomes 
218N for forward DWT. During up-sampling, N becomes N2 and therefore, the number of 

additions and multiplications becomes 272N  during inverse DWT. Up-sampling N samples to 

N2 employs bicubic interpolation which requires 216N multiplications and 215N additions. 

Hence, in case of DASR algorithm proposed by G. Anwarjafari et al. [116] the total number of 
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multiplications and additions becomes 2106N and 2105N due to the employment of DWT. 

Likewise, the number of multiplications and additions in DSWD algorithm proposed by H. 

Damirel et al. [82] become 2124N and 2126N . Since wavelet is a transform domain 

interpolation scheme, it consumes more computation time than polynomial based interpolation 

schemes. The forward discrete wavelet transform decomposes an image to LL, LH, HL and HH 

components. These components are individually up-scaled to higher dimensions followed by 

inverse discrete wavelet transform to obtain the up-scaled image in spatial domain. Therefore, 

wavelet requires more number of operations and high computation time than polynomial 

interpolation schemes and DCT as depicted in Table 2.1and Table 2.5. 

  

2.7 Conclusion 
An elaborate study of different interpolation schemes has been carried out. The existing 

interpolation schemes are classified into polynomial-based, edge-directed and transform-domain 

interpolation schemes. The advantages and limitations of these existing schemes in perspective 

of online and offline applications are discussed. The techniques used for experimental results are 

lucidly explained. A comparative study of various state-of-the-art interpolation schemes has been 

presented. The quantitative analysis of various state-of-the-art interpolation schemes is 

accomplished using accuracy metrics over different publicly available images. 

 It is observed that Lanczos-3 interpolation scheme is quite an efficient algorithm and 

hence is taken as the basic interpolation paradigm, on which further improvements are proposed. 

The developed algorithms are presented in next four contributing chapters. 

 In the next chapter, various spatial-domain pre-processing techniques based on higher 

order derivatives are presented for better 2-D up-scaling. 
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Chapter 3 

 

Spatial-domain Pre-processing Algorithms 
using Higher Order Derivatives 

 

Preview 
Interpolation plays an important role in many 2-D up-sampling applications. Most of the existing 

interpolation techniques such as nearest-neighbour, bilinear, bicubic, lanczos-3 and DCT 

produce non-uniform blurring while producing an up-scaled image from a low-resolution image 

data. The blurring is significant at the edges and fast changing regions and remains low in the 

slowly varying, flat regions as illustrated in Fig. 2.5, Fig. 2.6 and Fig. 2.7 of the previous chapter. 

This chapter presents three spatial domain pre-processing algorithms which are based on 4th, 6th 

and 8th order derivatives to tackle the non-uniform blurring. These algorithms are used to obtain 

the high frequency (HF) extracts from an image and perform precise sharpening on a low 

resolution image to alleviate the blurring in its 2-D up-sampled counterpart. So, they are based 

on inverse modeling approach of high frequency degradation. In this chapter, the term pre-

processing refers to processing of the low-resolution input image prior to image up-scaling. An 

attempt has been made here to develop three novel pre-processing schemes for this purpose. This 

chapter critically compares the capabilities and limitations of these pre-processing algorithms 

and their relevance in the perspective of adaptability to the varying conditions, computational 

complexities and visual quality. The simulation results, presented at the end of the chapter, are 

quite encouraging. The organisation of this chapter is given below. 

• Laplacian of Laplacian based Global Pre-processing (LLGP) Scheme  

• Hybrid Global Pre-processing (HGP) Scheme 

• Iterative Laplacian of Laplacian based Global Pre-processing (ILLGP) Scheme 

• Experiment and Simulation 

• Results and Discussion 

• Conclusion 
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3.1 Laplacian of Laplacian based Global Pre-processing 

(LLGP) Scheme [P1] 
 

 

 

 

 

 

Fig. 3.1a Block Diagram of Laplacian of Laplacian based Global Pre-processing Scheme 

 

The proposed LLGP algorithm is a global pre-processing scheme, used for precise sharpening of 

a low resolution image to alleviate the blurring in its up-scaled counterpart. In this case, the low 

resolution image is sharpened using a newly developed 5×5 Laplacian of Laplacian (LOL) kernel 

which is based on 4th order derivative. This kernel operates on a larger neighborhood (5×5) to 

extract very high frequency information and works much better than Laplacian kernel to counter 

blurring more effectively.  

The proposed LLGP scheme is typically a no reference, high frequency predictive 

scheme that predicts and superimposes the HF extracts upon the low resolution image. Since the 

up-sampling process gives an effect of a low pass filtering (LPF) operation, the high frequency 

degradation is much more than the medium and low frequency. Hence, the superimposition of 

the predicted high frequency components prior to Lanczos-3 up-sampling would reduce the 

extent of blurring more effectively than Laplacian operator. The proposed LLGP scheme is 

illustrated in Fig. 3.1. The proposed scheme is a global pre-processing scheme and operates on a 

low resolution image and hence is faster and efficient scheme. 

 In case of an image, slowly varying and flat regions correspond to low frequencies 

whereas the fast varying regions with more variations and details correspond to high frequencies. 

However, the high frequency can be further classified into high frequency (HF) and very high 

frequency (VHF) sub-bands as illustrated in Fig. 3.1b. Typically, the very high frequency 

corresponds to the very fine or subtler details of an image and can be considered as VHF sub-

band. Generally, the degradation of VHF sub-band is more than the HF sub-band during the up-s 
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Fig. 3.1b Quantitative explanation to high frequency and very high frequency components 

 

-ampling process which is analogous to an LPF operation. Hence, HF restoration would be more 

effective if very high frequency details of an image can be restored by making use of higher 

order derivative operators. The design of one of the higher order derivative operator, Laplacian 

of Laplacian which is based on 4th order derivative operator is given in the next section.   

 

3.1.1 Development of 5×5 LOL filter kernel 
In LLGP scheme, a 5×5 Laplacian of Laplacian (LOL) kernel is developed using 2-D 4th order 

derivative meant for image sharpening. This approach primarily consists of defining a discrete 

formulation of the 4th order derivative and then developing a 5×5 filter kernel based on that 

formulation. In our method, the partial 4th order derivative is taken in x or y direction in view of 

the fact that it generates five coefficients which perfectly match to the size of a 5×5 filter kernel.  

             It would be preferable to go for 2nd or 4th order derivatives rather than 3rd or 5th order 

derivatives. It is because, the even order derivatives such as 2nd or 4th order produce an odd 

number of coefficients such as 3 or 5 respectively. These odd numbers of coefficients would be 

suitable for developing an isotropic filter kernel of size 3×3 or 5×5, respectively for spatial 

domain filtering.   In our application, the 5×5 filter kernel is taken since it provides adequate 

amount of sharpening with moderate computational complexity to alleviate the blurring more 

effectively than the 3×3 Laplacian kernel while up-sampling an image. The development of 5×5 

LOL kernel is based on the 4th order derivative in −x , and −y directions. The 4th order derivative 

operator for a 2-D signal such as a low resolution image ),( yxg is given by, 

   

maxf
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As per the basic definition, the 1st order derivative of a 1-D function )(xg  is given by, 
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Similarly, the 2nd order derivative of the 1-D function )(xg is given by, 
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Now, the 4th order derivative of )(xg is obtained by, 
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Similarly, we have the 4th order derivative in −y direction: 

                                )2()1(4)(6)1(4)2(4
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y
g                      (3.5) 

In order to represent (3.1) in 2-D discrete form, (3.4) and (3.5) can be extended to 2-D as 

follows, 

                        ),2(),1(4),(6),1(4),2(4
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Now, substituting (3.6) and (3.7) into (3.1), we have 
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The above equation can be implemented using a 5×5 filter mask by assigning the coefficients of
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x , y  into the corresponding location of the Laplacian of Laplacian (LOL) filter kernel. The 

remaining locations of the filter kernel are assigned zero. Thus, the 5×5 LOL filter kernel, 

),( yxh LOL  is given by, 
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00400
00100

),( yxhLOL                                                (3.9) 

The above equation represents the 5×5 filter kernel based on 4th order derivative for image 

sharpening. Since the derivatives of any order are linear operation, the designed filter mask is a 

linear operator. The proposed filter mask is rotation invariant and hence gives isotropic result for 

rotations in increments of °90 . In addition, the sum of all the weights of the filter kernel is zero 

like Laplacian and hence is intended for sharpening operation. 

 To evaluate the HF restoration performance of the proposed algorithm, different images 

or video sequences are purposefully down-sampled at 4:1 compression ratio (CR) to generate the 

sub-sampled image or a video sequence. Later on, the down-sampled images are sharpened and 

re-scaled to their original size using the proposed algorithm for comparison with the original 

images. 

 The compression ratio mentioned in this algorithm refers to spatial sub-sampling of the 

original image, a degradation process through which the original signal undergoes typically just 

before transmission/storage applications prior to the restoration process presented by our 

algorithm. For example, if the signal has been down-sampled by a compression ratio of 4:1, then 

it is up-sampled in the second phase of our algorithm, by a factor of 1:4 employing Lanczos-3 

interpolation scheme, preceded by sharpening using Laplacian of Laplacian operator to 

counteract the blurring effect of the interpolation. In general, up-sampling by a factor of 1:N is 

required here for an image that has spatially been down-sampled by a factor N:1. 

 The proposed algorithm: LLGP is presented in the next section. 

 

3.1.2 LLGP algorithm  

Let ),( yxg denote a sub-sampled image or video frame. Let ),(4 yxg∇ be the filtered version of 

the sub-sampled image using LOL filter kernel. The sharpened version of the sub-sampled image 
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or video frame is denoted by ),( yxgs . Let them be of size )( QP× . The original image is of size 

).22( QP ×  The LLGP algorithm is given below.  

Step-1.  Select a 5×5 window, w  in the sub-sampled image ).,( yxg  

             2,2,),(, ≤≤− tsyxw ts  

Step-2.  Obtain ),(4 yxg∇  by linearly convolving ),( yxhLOL with ).,( yxg  

             ∑∑
−= −=

++=∇
2

2

2

2

4 ),(),(),(
s t

LOL tysxgtshyxg                                                           (3.10) 

Step-3.  Repeat Step-1 and Step-2 for all the ),( yx locations of ),( yxg to obtain the filtered 

              image, ).,(4 yxg∇  

Step-4.  The weighted version of the filtered output ),(4 yxg∇ is added to the original sub- 

             sampled image to generate the sharpened image, ).,( yxgs  

             )],([),(),( 4 yxgKyxgyxgs ∇+=                                                                         (3.11) 

              where, 0312.0=K for 4:1 compression ratio 

Step-5   The sharpened image, ),( yxgs  is finally up-sampled by Lanczos-3 interpolation 

              using (2.3) to obtain the up-scaled image, ).,(ˆ yxf  

Step-6.  For a video sequence, repeat Step-1 to Step-5 for all the frames to obtain the up- 

              sampled, restored  sequence, ),,(ˆ nyxf . The term n  is the frame number that represents 

             discrete time. 

The expression for Lanczos-3 interpolation is given in (2.3). The estimation of the weight factor, 

K  for LLGP algorithm is illustrated in Section 3.4.1.  

 

3.2 Hybrid Global Pre-processing (HGP-I) Scheme [P2] 
The proposed HGP-I algorithm is a novel hybrid, global pre-processing scheme which sharpens 

the sub-sampled image more effectively by performing two global pre-processing operations in 

succession. The former is the high frequency (HF) enhancement using 5×5 Laplacian of 

Laplacian (LOL) kernel. The later is HF enhancement using 3×3 Laplacian kernel and so the 

algorithm is based on 6th order derivative. Furthermore, it is by using the kernels of different size 
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in succession, the high frequency information corresponding to 5×5 and 3×3 neighborhood are 

enhanced simultaneously. The hybridization of both the schemes results in more accurate 

prediction of high frequency contents that result in much improved performance at the cost of a 

little additional computational complexity. 

 Since the degradation of high frequency information is much more in comparison to the 

medium and low frequency, superimposing the weighted version of HF extracts with the sub-

sampled image alleviates the blurring considerably in the up-sampled image or in a video frame. 

The proposed scheme is computationally less complex since it makes use of two global 

processing schemes that operates on sub-sampled images. The HGP algorithm using LOL and 

Laplacian operator is illustrated in Fig. 3.2.  

 

 

 

 

 

 

Fig. 3.2 Block Diagram of Hybrid Global Pre-processing (HGP-I) Scheme 

 

 Furthermore, since very fine details of an image that are much prone to degradation 

during an up-scaling process, can be better enhanced using higher order derivatives than the 1st 

and 2nd order derivative operators. As per the experimental evidences given in Fig. 3.4, higher 

order derivative operators are better in HF restoration than the lower order counterpart. 

Therefore, by using 4th order and 2nd order derivative operators in succession, 6th order derivative 

operator can be realized which is meant for better HF enhancement. In addition, the objective of 

this HGP-I scheme to show its performance improvement over standalone schemes (LOL and 

Laplacian) through their hybridization. 

 

3.2.1 HGP-I algorithm 
The HGP-I algorithm is almost same as LLGP algorithm with the following modifications. Let 

),( yxg be the original sub-sampled intra-frame. Let ),(4 yxg∇  be the output using Laplacian of 
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Laplacian (LOL) as per LLGP algorithm. ),(6 yxg∇ denotes the output which is obtained by 

linearly convolving ),(4 yxg∇  with Laplacian kernel, ),( yxhLa  and is given by, 

                               ),(),(),(
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1

1

46 tysxgtshyxg
s t

La ++∇=∇ ∑ ∑
−= −=

                                           (3.12) 

where,   
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),( yxhLa                                                           (3.13) 

and s and t  are dummy variables. ),( yxgs denotes the sharpened intra-frame using HGP 

algorithm and is obtained by adding the weighted version of ),(6 yxg∇ with the original sub-

sampled intra-frame and is given by, 

                                       )],([),(),( 6 yxgKyxgyxgs ∇+=                                                     (3.14) 

and the weight factor, 0072.0=K  for 4:1 compression ratio.  

  The remaining part of the algorithm is same as that of LLGP algorithm. The estimation of 

the weight factor, K  for HGP-I algorithm is illustrated in Section 3.4.1. 

 Furthermore, the Laplacian mask and Laplacian of Laplacian mask can be combined into 

a single 7×7 mask which is based on 6th order derivative operator. The design of such a mask is 

given in Section 3.2.2.  

 

3.2.2 Development of High Pass Filter Kernel based on 6th Order Derivative 

(HGP-II) 
In case of HGP-I scheme, there is a requirement of two end-to-end filtering operations to obtain 

6th order derivative using 5×5 Laplacian of Laplacian and 3×3 Laplacian operator. However, 

these two successive operations can be replaced by one single filtering operation by developing a 

single 7×7 filter kernel which is based on 6th order derivative.  The development of 7×7 filter 

kernel is based on the 6th order derivative in −x , and −y directions. The 6th order derivative 

operator for a 2-D signal ),( yxg is given by: 
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As per the basic definition, the 2nd order derivative of a 1-D function )(xg  is given by, 
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x
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Similarly, the 4nd order derivative of the 1-D function )(xg according to (3.4) is given by, 
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Similarly, we have the 6th order derivative in −y direction: 

)3()2(6)1(15)(20)1(15)2(6)3(6

6

−+−−−+−+++−+=
∂
∂ ygygygygygygyg

y
g  

In order to represent (3.15) in 2-D discrete form, the above two equations can be extended to 2-D 

as follows, 
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Substituting (3.16) and (3.17) into (3.15), we have 

)3,()2,(6)1,(15)1,(15)2,(6)3,(),3(
),2(6),1(15),(40),1(15),2(6),3(),(6

−+−−−++++−++−
+−−−+−+++−+=∇
yxgyxgyxgyxgyxgyxgyxg

yxgyxgyxgyxgyxgyxgyxg
                                                                                                                                                                                                                                                                                                              

                                                                                                                                      ….. (3.18) 



Chapter 3                                          Pre-processing Algorithms using Higher Order Derivatives 

61 

 

The above equation can be implemented using a 7×7 filter mask by assigning the coefficients of

x , y  into the corresponding location of the filter kernel. The remaining locations of the filter 

kernel are assigned zero. Thus, the 7×7 filter kernel, ),( yxhLLL , which is based on 6th order 

derivative, is given by: 
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),( yxhLLL                                (3.19) 

The above equation represents the 7×7 filter kernel based on 6th order derivative meant for image 

sharpening. Since the derivatives of any order are linear operation, the designed filter mask is a 

linear operator. The sum of all the weights of the filter kernel is zero like Laplacian and hence is 

a necessity for a derivative operation. 

 The HF extract ),(6 yxg∇ employing 6th order derivative operator, ),( yxhLLL  is given by, 

                                            ),(),(),(
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s t

LLL ++=∇ ∑∑
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                              (3.20) 

where, the terms have their usual meaning. The sharpened low resolution image, ),( yxgs is 

obtained by superimposing the HF extract to original low resolution image, ),( yxg and is given 

by: 

                                             ),(),(),( 6 yxgKyxgyxgs ∇−=                                             (3.21) 

The sharpened image is finally up-sampled using Lanczos-3 interpolation to generate HR image

),(ˆ yxf . 

An iterative LLGP algorithm is presented in the next section for further improvement. 
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3.3 Iterative Laplacian of Laplacian based Global Pre-

processing (ILLGP) Scheme [P3] 
 

  

       

 

 

 

 

Fig. 3.3 Block Diagram of Iterative Laplacian of Laplacian based Global Pre-processing 

(ILLGP) Scheme 

 

To incorporate much high frequency contents into the up-sampled and thus blurred image, the 

LLGP algorithm may be operated iteratively. Such a new scheme is suggested in this section. 

The proposed ILLGP scheme, illustrated in Fig. 3.3, employs Laplacian of Laplacian (LOL) 

kernel iteratively on the sub-sampled image to effectively enhance its very high frequency 

components. The ILLGP scheme enhances the very high frequency information by iteratively 

convolving the sub-sampled image with LOL kernel. However, the number of iteration plays a 

major role in determining the restoration performance of the algorithm. 

To determine the number of iterations, performance characteristics between PSNR (dB) 

and weight factor are plotted for different iterations corresponding to various images as depicted 

in Fig. 3.5. The high frequency restoration performance of the algorithm is found to be maximum 

during the second iteration and then gradually reduces towards the higher order iterations. 

Although the high frequency extracts are more enhanced using higher order derivative, they 

undergo more deformation toward higher order derivatives. Consequently, the restoration 

performance declines towards higher order iterations. Hence, the number of iteration is kept two 

to have a better restored image quality. Therefore, ILLGP algorithm which is based on 8th order 

derivative, employs LOL operator twice as a 4th order derivative operator. Consequently, the 

weighted version of very high frequency extract is used to sharpen the sub-sampled image so as 

to reduce the degree of blurring in the subsequent Lanczos-3 based up-sampling process. 
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3.3.1 ILLGP Algorithm 
The ILLGP algorithm is almost same as LLGP algorithm with the following modifications. Let 

),(4 yxg∇  be the output using Laplacian of Laplacian (LOL) operator as per LLGP algorithm. 

),(8 yxg∇ denotes the high frequency extracts which is obtained after two iterations by further 

convolving ),(4 yxg∇  with Laplacian of Laplacian kernel, ),( yxhLOL and is given by, 

                                  ∑∑
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2

2
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s t

LOL tysxgtshyxg                                       (3.15) 

The weighted version of ),(8 yxg∇ is superimposed on the sub-sampled intra-frame to generate 

the sharpened image ),( yxgs and is given by, 

                                      )],([),(),( 8 yxgKyxgyxgs ∇+=                                                     (3.16) 

where, K  is the weight factor. 

 

3.4 Experiment and Simulation  
To evaluate the HF restoration performance of the proposed algorithms, different images are 

down-sampled at 4:1 compression ratio (CR). Afterward, the down-sampled images are re-scaled 

to their original size using the proposed algorithms for comparison with the original images. The 

computational complexities, in terms of CPU execution time of the proposed algorithms, are 

computed and are compared with the existing algorithms to determine their feasibility for real-

time applications. In addition, peak-signal-to-noise-ratio (PSNR) in dB and universal quality 

index (UQI) are measured to determine the objective performance of the proposed algorithms. 

The figures and tables showing the performance of the existing and proposed algorithms are 

explained below. 

 Fig. 3.4 shows the PSNR variations of the proposed schemes with respect to weight 

factor for different types of images, meant for overall weight factor estimation. Fig. 3.5 shows 

the variations of PSNR with respect to weight factor for different iterations which are meant for 

determining the number of iterations in ILLGP algorithm for maximum objective performance 

irrespective of image types. Fig. 3.6 reveals the PSNR comparisons of various existing and 

proposed schemes for various video sequences at 4:1 compression ratio. Fig. 3.7, Fig. 3.12 and 

Fig. 3.13 show the subjective performance of Lena (512×512), Boat (512×512) and Goldhill 
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(512×512) images, respectively using various up-sampling schemes at 4:1 compression ratio. In 

case of Fig. 3.7, four distinct regions with different features and thus different signal 

characteristics such as low, medium, high and their combinations are marked. Performance at 

these regions are analyzed. For this purpose, the output images at these regions are enlarged and 

shown in Fig. 3.8, Fig. 3.9, Fig. 3.10 and Fig. 3.11.  The error images of Lena (512×512) 

corresponding to various schemes are given in Fig. 3.14. Table 3.1 shows the average weight 

factor estimation of the proposed algorithms. Table 3.2 and Table 3.3 show the PSNR and UQI 

comparison of different existing and proposed schemes at 4:1 and 16:1 compression ratio 

respectively. Table 3.5 shows the execution time of various existing and proposed schemes at 4:1 

compression ratio.  

 

3.4.1 Estimation of Weight Factor, K 
The HF restoration performance in terms of PSNR (dB) of the proposed algorithms is a function 

of weight factor and hence, the performance depends on the precise estimation of weight factor. 

Simulation studies are carried out to observe the variation of PSNR (dB) with respect to the 

weight factor, K  for different images to determine a general, optimized weight factor as shown 

in Fig. 3.4. The gradients of PSNR vs. K  plots vary directly according the order of the 

derivative operator used in the algorithms as depicted in Fig. 3.4. The ILLGP algorithm which 

makes use of 8th order derivative has the highest gradient of the plot whereas in case of Laplacian 

it is found to be the least because the Laplacian uses 2nd order derivative. Higher the gradient, the 

more localized are the peak PSNR variations for different images and hence is helpful in precise 

estimation of a generalized weight factor. The ILLGP, HGP and LLGP algorithms, which are 

capable of extracting HF extracts, have more localized peak PSNR variations as compared to 

Laplacian. In addition, their weight factor deviations are much less with respect to different 

images as compared to the Laplacian as shown in Table 3.1. In general, the overall weight 

factors are estimated by averaging the weight factors corresponding to different image types for 

better performance as illustrated in Table 3.1. 

 In case of ILLGP algorithm, the determination of number of iterations is the determining 

factor for the performance of the algorithm. Hence, simulation studies are carried out to observe 

the variations of PSNR with respect to weight factor for three iterations as shown in Fig. 3.5. It is 

well observed from the plot that the global maximum is achieved at 2nd iteration irrespective of 
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the image types. Hence, the optimum HF restoration performance is achieved using 8th order 

derivative operator. However, the performance declines towards higher order derivatives. The 

final weight factors for the various proposed algorithms are given below. 

 

                                    













−
−=

ILLGP
IIHGP

IHGP
LLGP
Laplacian

K

,0025.0
,0072.0
,0072.0
,0235.0
,0487.0

                                                (3.17) 

 

 

 

 

Table 3.1   Weight factor, K  estimation of the proposed pre-processing schemes 

Algorithm 

Weight factors corresponding to the maximum PSNR 

for different images Average 

Weight Factor Lena Boat Barbara Goldhill 

Laplacian 0.04 0.04 0.07 0.045 0.0487 

LLGP 0.019 0.024 0.0315 0.0195 0.0235 

HGP 0.0065 0.008 0.0075 0.007 0.0072 

ILLGP 0.0024 0.0026 0.0025 0.0025 0.0025 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.4 PSNR vs. weight factor plots of different images using the proposed algorithms at 4:1 

compression ratio: (a) Lena; (b) Barbara; (c) Boat; (d) Goldhill 
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(a) 

 
(b) 

 
(c) 

 

Fig. 3.5 PSNR (dB) vs. weight factor characteristic plot of different images for different 

iterations using ILLGP: (a) Lena; (b) Boat; (c) Goldhill 
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(a) 

 
(b) 

 
(c) 

 

Fig. 3.6 PSNR (dB) comparisons of various up-sampling schemes at 4:1 CR meant for different 

sequences: (a) Container; (b) Mobile; (c) Salesman 

 

 



Chapter 3                                          Pre-processing Algorithms using Higher Order Derivatives 

69 

 

Table 3.2   PSNR (dB) and UQI comparison of different schemes at 4:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

Laplacian 

 

LLGP 

[P1] 

HGP-I 

[P2] 

HGP-II ILLGP 

[P3] 

Mandril PSNR 

UQI 

23.045 

0.8957 

23.630 

0.9114 

 

23.859 

0.9170 

23.925 

0.9187 

24.078 

0.9229 

24.174 

0.9247 

 

24.263 

0.9267 

24.205 

0.9250 

24.288 

0.9271 

Lena PSNR 

UQI 

32.704 

0.9922 

34.148 

0.9945 

34.813 

0.9953 

35.023 

0.9955 

35.101 

0.9956 

35.200 

0.9957 

35.440 

0.9959 

35.204 

0.9957 

35.439 

0.9959 

Barbara 
PSNR 

UQI 

24.925 

0.9631 

25.352 

0.9669 

 

25.428 

0.9675 

25.183 

0.9657 

25.569 

0.9688 

25.637 

0.9693 

25.729 

0.9700 

25.661 

0.9694 

25.744 

0.9701 

Boat 
PSNR 

UQI 

28.940 

0.9801 

29.952 

0.9845 

30.375 

0.9860 

30.466 

0.9863 

30.631 

0.9870 

30.735 

0.9872 

30.854 

0.9876 

30.762 

0.9873 

30.879 

0.9876 

Goldhill 
PSNR 

UQI 

30.574 

0.9880 

31.405 

0.9901 

 

31.725 

0.9909 

31.716 

0.9909 

31.901 

0.9913 

31.946 

0.9914 

32.076 

0.9916 

31.951 

0.9914 

32.080 

0.9916 

Pirate 
PSNR 

UQI 

30.027 

0.9853 

31.058 

0.9885 

31.490 

0.9897 

31.606 

0.9899 

31.761 

0.9904 

31.874 

0.9906 

32.027 

0.9909 

31.900 

0.9906 

32.047 

0.9910 

Livingroom 
PSNR 

UQI 

28.617 

0.9761 

29.557 

0.9811 

 

29.977 

0.9829 

30.128 

0.9835 

30.250 

0.9842 

30.366 

0.9846 

30.488 

0.9850 

30.398 

0.9847 

30.524 

0.9851 

Fingerprint PSNR 

UQI 

28.045 

0.9785 

30.632 

0.9889 

31.722 

0.9915 

32.133 

0.9922 

31.910 

0.9922 

32.423 

0.9929 

32.758 

0.9934 

32.518 

0.9930 

32.798 

0.9934 

Baboon PSNR 

UQI 

33.588 

0.9924 

35.014 

0.9946 

35.662 

0.9954 

35.890 

0.9956 

35.884 

0.9956 

35.929 

0.9957 

36.161 

0.9959 

35.916 

0.9956 

36.142 

0.9959 

Bridge 
PSNR 

UQI 

25.728 

0.9693 

26.504 

0.9748 

26.826 

0.9767 

26.919 

0.9772 

27.078 

0.9783 

27.197 

0.9789 

27.301 

0.9794 

27.233 

0.9790 

27.333 

0.9795 

Cameraman 
PSNR 

UQI 

33.214 

0.9959 

35.757 

0.9977 

37.216 

0.9984 

37.832 

0.9986 

37.723 

0.9986 

37.909 

0.9986 

38.362 

0.9988 

37.917 

0.9986 

38.349 

0.9988 

Cat 
PSNR 

UQI 

30.949 

0.9920 

31.982 

0.9937 

32.427 

0.9943 

32.563 

0.9945 

32.730 

0.9948 

32.881 

0.9949 

33.007 

0.9951 

32.925 

0.9950 

33.046 

0.9951 

Crowd 
PSNR 

UQI 

30.984 

0.9894 

32.666 

0.9930 

33.451 

0.9942 

33.768 

0.9946 

33.886 

0.9948 

34.148 

0.9951 

34.357 

0.9953 

34.218 

0.9951 

34.415 

0.9953 

Cycle 
PSNR 

UQI 

21.208 

0.9323 

21.895 

0.9437 

22.154 

0.9475 

22.129 

0.9474 

22.387 

0.9514 

22.491 

0.9524 

22.610 

0.9539 

22.521 

0.9526 

22.633 

0.9541 

F16 
PSNR 

UQI 

30.379 

0.9848 

31.543 

0.9885 

32.104 

0.9900 

32.722 

0.9913 

32.260 

0.9905 

32.299 

0.9905 

32.484 

0.9909 

32.287 

0.9905 

32.484 

0.9909 

House PSNR 

UQI 

29.248 

0.9719 

30.314 

0.9785 

 

30.807 

0.9809 

30.862 

0.9812 

31.202 

0.9829 

31.405 

0.9836 

31.530 

0.9841 

31.469 

0.9838 

31.596 

0.9843 

Lake PSNR 

UQI 

28.945 

0.9895 

30.022 

0.9919 

30.495 

0.9928 

30.793 

0.9933 

30.735 

0.9932 

30.867 

0.9934 

30.988 

0.9936 

30.901 

0.9934 

31.021 

0.9936 

Peppers 
PSNR 

UQI 

31.180 

0.9923 

31.991 

0.9937 

 

32.328 

0.9942 

32.747 

0.9947 

32.459 

0.9944 

32.525 

0.9945 

32.637 

0.9946 

32.532 

0.9945 

32.652 

0.9946 

Elaine 
PSNR 

UQI 

32.534 

0.9913 

33.117 

0.9924 

33.309 

0.9928 

33.284 

0.9927 

33.322 

0.9928 

33.280 

0.9928 

33.406 

0.9930 

33.249 

0.9927 

33.371 

0.9929 

Ruler 
PSNR 

UQI 

12.335 

0.5188 

12.613 

0.5735 

12.673 

0.5898 

12.600 

0.5920 

12.778 

0.6176 

12.837 

0.6273 

12.861 

0.6293 

12.859 

0.6288 

12.890 

0.6351 
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Table 3.3   PSNR (dB) and UQI comparison of different schemes at 16:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

Laplacian 

 

LLGP 

[P1] 

HGP 

[P2] 

ILLGP 

[P3] 

Mandril PSNR(dB) 

UQI 

20.883 

0.8191 

21.085 

0.8309 

21.156 

0.8351 

21.167 

0.8362 

21.226 

0.8408 

21.252 

0.8417 

21.287 

0.8438 

21.292 

0.8440 

Lena PSNR(dB) 

UQI 

28.053 

0.9767 

28.848 

0.9810 

29.183 

0.9825 

 

29.296 

0.9829 

29.361 

0.9835 

29.419 

0.9836 

29.557 

0.9841 

29.556 

0.9841 

Barbara 
PSNR(dB) 

UQI 

23.351 

0.9457 

23.607 

0.9496 

23.708 

0.9510 

23.747 

0.9515 

23.764 

0.9523 

23.788 

0.9524 

23.831 

0.9528 

23.829 

0.9528 

Boat 
PSNR(dB) 

UQI 

25.041 

0.9493 

25.538 

0.9557 

25.739 

0.9580 

25.773 

0.9584 

25.888 

0.9601 

25.939 

0.9605 

26.015 

0.9612 

26.024 

0.9612 

Goldhill 
PSNR(dB) 

UQI 

27.166 

0.9731 

27.628 

0.9761 

27.798 

0.9771 

27.776 

0.9770 

27.882 

0.9778 

27.893 

0.9778 

27.979 

0.9782 

 

27.973 

0.9782 

Pirate 
PSNR(dB) 

UQI 

26.286 

0.9641 

26.861 

0.9691 

27.083 

0.9708 

27.127 

0.9712 

27.228 

0.9723 

27.283 

0.9725 

27.372 

0.9731 

27.379 

0.9731 

Livingroom 
PSNR(dB) 

UQI 

24.932 

0.9420 

25.385 

0.9488 

25.560 

0.9511 

25.563 

0.9513 

25.691 

0.9535 

25.736 

0.9539 

25.806 

0.9546 

25.815 

0.9547 

Fingerprint PSNR(dB) 

UQI 

20.920 

0.8791 

22.633 

0.9192 

23.779 

0.9407 

24.202 

0.9467 

24.537 

0.9540 

24.745 

0.9566 

24.834 

0.9583 

24.948 

0.9589 

Baboon PSNR(dB) 

UQI 

28.812 

0.9766 

29.604 

0.9808 

29.931 

0.9823 

30.007 

0.9826 

30.123 

0.9834 

30.173 

0.9835 

30.321 

0.9840 

30.318 

0.9840 

Bridge 
PSNR(dB) 

UQI 

22.676 

0.9357 

23.066 

0.9423 

23.230 

0.9449 

23.263 

0.9454 

23.353 

0.9473 

23.407 

0.9479 

23.460 

0.9485 

23.473 

0.9487 

Cameraman 
PSNR(dB) 

UQI 

26.633 

0.9809 

27.546 

0.9847 

27.946 

0.9861 

28.094 

0.9866 

28.233 

0.9872 

28.344 

0.9875 

28.509 

0.9879 

28.532 

0.9880 

Cat 
PSNR(dB) 

UQI 

27.295 

0.9812 

27.838 

0.9835 

28.059 

0.9844 

28.105 

0.9845 

28.237 

0.9851 

28.318 

0.9854 

28.399 

0.9856 

28.417 

0.9857 

Crowd 
PSNR(dB) 

UQI 

25.759 

0.9634 

26.601 

0.9706 

26.974 

0.9733 

27.066 

0.9739 

 

27.227 

0.9754 

27.358 

0.9760 

27.470 

0.9766 

27.497 

0.9767 

Cycle 
PSNR(dB) 

UQI 

18.693 

0.8727 

18.996 

0.8842 

 

19.109 

0.8883 

19.135 

0.8893 

19.205 

0.8935 

19.241 

0.8943 

19.295 

0.8957 

19.302 

0.8959 

F16 
PSNR(dB) 

UQI 

25.767 

0.9540 

26.457 

0.9617 

26.773 

0.9647 

26.939 

0.9661 

26.909 

0.9666 

26.932 

0.9666 

27.058 

0.9675 

27.055 

0.9675 

House PSNR(dB) 

UQI 

25.401 

0.9285 

25.863 

0.9373 

26.050 

0.9406 

26.063 

0.9409 

26.193 

0.9437 

26.258 

0.9444 

26.305 

0.9450 

26.322 

0.9452 

Lake PSNR(dB) 

UQI 

24.783 

0.9720 

25.466 

0.9764 

25.746 

0.9780 

25.834 

0.9785 

25.937 

0.9793 

26.026 

0.9796 

26.119 

0.9801 

26.139 

0.9801 

Peppers 
PSNR(dB) 

UQI 

27.359 

0.9811 

28.045 

0.9841 

28.330 

0.9852 

28.524 

0.9859 

28.432 

0.9859 

28.480 

0.9858 

28.574 

0.9861 

28.578 

0.9861 

Elaine 
PSNR(dB) 

UQI 

29.771 

0.9832 

30.496 

0.9860 

30.785 

0.9870 

30.884 

0.9878 

30.818 

0.9873 

30.792 

0.9871 

30.935 

0.9875 

30.902 

0.9874 

Ruler 
PSNR(dB) 

UQI 

10.707 

0.2036 

10.804 

0.2394 

10.873 

0.2608 

10.876 

0.2636 

10.889 

0.2788 

10.895 

0.2804 

10.899 

0.2785 

10.902 

0.2788 
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Table 3.4 Average PSNR (dB) and UQI comparison of different interpolation techniques at 4:1 

compression ratio for various sequences over 50 frames  
Sequence Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

Laplacian 

 

LLGP 

(P1) 

HGP 

(P2) 

ILLGP 

(P3) 
 

Salesman 

PSNR(dB) 

UQI 

28.107 

0.9649 

28.979 

0.9719 

29.327 

   0.9742 

29.440 

0.9750 

29.628 

0.9763 

29.788 

0.9772 

29.877 

0.9776 

29.934 

0.9779 
 

Bus 

PSNR(dB) 

UQI 

24.243 

0.9491 

25.262 

0.9610 

25.716 

0.9652 

25.794 

0.9660 

26.130 

0.9691 

26.342 

0.9706 

26.480 

0.9715 

26.557 

0.9720 
 

Akiyo 

PSNR(dB) 

UQI 

31.686 

0.9927 

32.911 

0.9945 

33.450 

0.9952 

33.647 

0.9954 

33.820 

0.9956 

33.963 

0.9957 

34.179 

0.9959 

34.206 

0.9959 
 

City 

PSNR(dB) 

UQI 

26.827 

0.9104 

27.592 

0.9277 

27.879 

0.9333 

27.852 

0.9333 

28.144 

0.9392 

28.257 

0.9408 

28.258 

0.9425 

28.419 

0.9431 
 

Container 

PSNR(dB) 

UQI 

24.663 

0.9592 

25.567 

0.9676 

26.008 

0.9709 

26.256 

0.9727 

26.355 

0.9737 

26.503 

0.9746 

26.647 

0.9754 

26.705 

0.9757 
 

Football 

PSNR(dB) 

UQI 

27.106 

0.9668 

28.568 

0.9769 

29.366 

0.9810 

29.687 

0.9824 

29.978 

0.9839 

30.273 

0.9849 

30.521 

0.9858 

30.604 

0.9860 
 

Mobile 

PSNR(dB) 

UQI 

20.310 

0.9373 

21.197 

0.9502 

21.596 

0.9550 

21.758 

0.9569 

21.995 

0.9599 

22.192 

0.9617 

22.370 

0.9634 

22.427 

0.9639 
 

Soccer 

PSNR(dB) 

UQI 

29.271 

0.9828 

30.254 

0.9863 

30.664 

0.9876 

30.748 

0.9878 

30.927 

0.9884 

31.009 

0.9887 

31.201 

0.9891 

31.217 

0.9892 
 

Coast 

PSNR(dB) 

UQI 

25.585 

0.9692 

26.500 

0.9754 

26.939 

0.9779 

27.080 

0.9787 

27.328 

0.9801 

27.521 

0.9810 

27.655 

0.9815 

27.733 

0.9819 

 

 

Table 3.5 Execution time of the proposed and existing algorithms at 4:1 CR 
 

Images of 
different size 

(M×N) 

Execution time in Seconds for different interpolation schemes 

 
Bilinear 

[5] 

 
Bicubic 

[4] 

 
Lanczos3 

[12] 

 
DCT 
[74] 

 
Laplacian 

 
LLGP 
[P1] 

 
HGP 
[P2] 

 
ILLGP 

[P3] 
Clock 

(200×200) 
 
0.0141 

 
0.0150 

 
0.0151 

 
0.0518 

 
0.0933 

 
0.0946 

 
0.1291 

 
0.1300 

Lena 
(256×256) 

 
0.0147 

 
0.0152 

 
0.0157 

 
0.0633 

 
0.0942 

 
0.0987 

 
0.1315 

 
0.1328 

Fruit 
(377×321) 

 
0.0153 

 
0.0163 

 
0.0168 

 
0.1629 

 
0.0997 

 
0.1027 

 
0.1332 

 
0.1395 

Lena 
(512×512) 

 
0.0201 

 
0.0215 

 
0.0222 

 
0.1773 

 
0.1023 

 
0.1137 

 
0.1388 

 
0.1420 

Pentagon 
(1024×1024) 

 
0.0354 

 
0.0409 

 
0.0442 

 
0.6372 

 
0.1175 

 
0.1281 

 
0.1680 

 
0.1767 
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 (a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
 

Fig. 3.7 Subjective evaluation of Lena (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) 

Laplacian; (g) LLGP (P1) ; (h) HGP (P2); (i) ILLGP (P3) 
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(a) (b) (c) 

(d) (e) 
 

(f) 

(g) (h) 
 

(i) 
 

Fig. 3.8 Subjective evaluation of the selected low frequency green rectangular region (127×164) 

of Lena (512×512) image using various up-sampling scheme at 4:1 compression ratio: (a) 

Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) Laplacian; (g) LLGP(P1); (h) 

HGP (P2); (i) ILLGP (P3) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 3.9  Subjective evaluation of the selected medium frequency orange rectangular region 

(164×125) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) Laplacian; (g) 

LLGP(P1); (h) HGP (P2); (i) ILLGP (P3) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 3.10  Subjective evaluation of the selected high frequency yellow rectangular region 

(123×174) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) Laplacian; (g) 

LLGP(P1); (h) HGP (P2); (i) ILLGP (P3) 



Chapter 3                                          Pre-processing Algorithms using Higher Order Derivatives 

76 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 3.11  Subjective evaluation of the selected blue rectangular (76×76) of Lena (512×512) 

image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) 

Bicubic; (d) Lanczos-3; (e) DCT; (f) Laplacian; (g) LLGP(P1); (h) HGP (P2); (i) ILLGP (P3) 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
 

Fig. 3.12 Subjective evaluation of Boat (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) 

Laplacian; (g) LLGP (P1) ; (h) HGP (P2); (i) ILLGP (P3) 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
 

Fig. 3.13 Subjective evaluation of Goldhill (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) 

Laplacian; (g) LLGP (P1) ; (h) HGP (P2); (i) ILLGP (P3) 
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 (a)  (b) 

 (c)  (d)  (e) 

 (f)  (g) (h) 
 

Fig. 3.14 Error image of Lena (512×512) using various up-sampling schemes at 4:1 compression 

ratio: (a) Bilinear; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) Laplacian; (f) LLGP (P1) ; (g) HGP 

(P2); (h) ILLGP (P3) 
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3.5 Results and Discussion 
The proposed algorithms show better results than many of the existing algorithms in terms of 

subjective and objective measures.  

 For most of the images, the proposed algorithms achieve better objective performances 

than many of the existing algorithms available in the literature as illustrated in Table 3.2, Table 

3.3 and Table 3.4. In case of House (512×512) image, the ILLGP algorithm achieves a maximum 

PSNR improvement of 0.734 dB than DCT at 4:1 compression ratio. In addition, it attains a 

better PSNR gain of 0.561 dB, 0.665 dB and 0.647 dB in case of Barbara, Fingerprint and Crowd 

respectively. Since LLGP, HGP and ILLGP algorithms are based on the HF enhancement of an 

image, they exhibit better performance in case of images rich in HF patterns like Barbara, 

Fingerprint and crowd. However, the performance of these algorithms is moderate for all other 

images.  

Besides this, the proposed algorithms show better performance for various common 

intermediate format (CIF) video sequences as depicted in Table 3.4. In case of Football 

(352×288) sequence, the ILLGP algorithm achieves an improved average PSNR gain of 0.917 

dB over DCT at 4:1 compression ratio. So, these algorithms achieve better objective 

performance for video signals of different resolutions. 

 Furthermore, these algorithms provide considerable performance improvement 

irrespective of the variation in compression ratio. Table 3.2 and Table 3.3 show the PSNR and 

UQI improvements at 4:1 and 16:1 compression ratio respectively. 

 The proposed algorithms are computationally less complex than DCT because they are 

the pre-processing schemes and operate on the low resolution images as illustrated in Table 3.5. 

The DCT, being a frequency domain interpolation technique, has more computational time 

requirement than the proposed algorithms because of the need for conversion from spatial to 

frequency domain and back.  It may be observed from the table that the execution time of LLGP 

algorithm is less than HGP and ILLGP algorithm. The HGP algorithm makes use of LOL and 

Laplacian operator in succession and hence it is computationally more complex than LLGP. 

Likewise, the ILLGP algorithm utilizes LOL operator twice and therefore consumes more time 

than HGP. However, the image quality in case of HGP and ILLGP is found to be better than 

LLGP at the cost of computational complexity. In addition, it is also found that the difference of 
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execution time between LLGP and ILLGP the algorithms is very less i.e. of the order of one 

tenth of a second for a 512×512 image and hence both of the algorithms are suitable candidate 

for real-time applications. 

 Error image is a quality metric which is used to measure the restoration performance of 

various algorithms. Let ),( yxf and ),(ˆ yxf represent the original and restored image respectively. 

Then, the expression for error image, in terms of absolute error, is given by, 

                                        ),(),(ˆ),( yxfyxfyxe −=                                                              (3.18) 

The error images are shown in Fig. 3.14. For better visibility, a scale factor of 5 is employed.  It 

may be observed from this figure that the absolute error is reduced in case of the proposed 

algorithms as compared to DCT and other existing algorithms which indicate a better HF 

restoration performance.                                                                                                                                                                   

 Lena (512×512) image, which has different regions of low, medium and high 

frequencies, is a suitable candidate for subjective evaluation of the proposed algorithms. The 

low, medium, high frequency patterns of Lena image are considered for performance evaluation 

of the algorithms. The region rich in combination of different patterns is also considered for 

performance evaluation. Four distinct regions with different features and thus different signal 

characteristics are marked as shown in Fig. 3.7. Performance at these regions are distinctly 

analyzed. For this purpose, the output images at these regions are enlarged and shown in Fig. 3.8, 

Fig.3.9, Fig. 3.10 and Fig. 3.11 

 The green rectangular region (127×164) containing the shoulder portion of Lena image is 

considered as a low frequency region. The enlarged version of it using various algorithms is 

given in Fig. 3.8. Similarly, the enlarged versions of medium and high frequency regions are 

given in Fig. 3.9 and 3.10, respectively. The face and hair regions represent the medium and high 

frequencies, respectively. Fig 3.11 shows the eye and its surrounding region comprising low, 

medium and high frequencies. In all these cases, it may be perceived that low frequency regions 

are well preserved, the mid frequency regions are moderately enhanced and the HF regions are 

highly emphasized so as to compensate the HF loss during the up-sampling process. In case of 

the proposed algorithms, the fine details and edge information, which represent the high 

frequency contents, are effectively enhanced resulting in a better visual quality. However, the 

degrees of HF enhancement of the proposed algorithms are different depending on the order of 
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derivative operator employed. The degree of HF enhancement is maximum in case of ILLGP 

which uses 8th order derivative as shown in Fig. 3.10. Likewise, it may be observed from the 

figures that the HF enhancement is high and moderate in case of HGP and LLGP algorithm, 

which makes use of 6th order and 4th order derivatives, respectively. Furthermore, the blue 

rectangular region of Lena which embodies the eye region contains various frequencies. Under 

this condition, the proposed algorithms work much better than the existing algorithms in 

restoring the HF contents of an image as illustrated in Fig. 3.11. So, the overall subjective 

performance of the proposed schemes is more satisfactory than the existing schemes. 

From Table 3.2 and Table 3.4, it may be observed that for most of the images and videos, 

LLGP, HGP and ILLGP algorithms achieve better PSNR gain than DCT at 4:1 compression 

ratio. In case of Barbara and Fingerprint (512×512) images, ILLGP attains the maximum PSNR 

gain of 0.561dB and 0.665 dB, respectively and HGP shows similar PSNR hike of 0.546 dB and 

0.625dB over DCT, respectively. Likewise, in case of Football sequence, ILLGP gives an 

average PSNR gain of 0.917 dB whereas HGP attains the average PSNR gain of 0.834. Hence, 

the performance of ILLGP is slightly better than HGP in most of the images because it employs 

higher order derivative operator than HGP. The LLGP algorithm achieves the PSNR 

improvement of 0.454 dB and 0.29 dB than DCT in case of Barbara and Fingerprint images, 

respectively. It also attains the average PSNR gain of 0.586 dB than DCT in case of Football 

sequence at 4:1 compression ratio. So, the performance of LLGP is less than HGP and ILLGP 

algorithm but much better than that of DCT. In such type of images, which are rich in HF 

pattern, the proposed algorithms work much efficiently for better objective performance. 

From Table 3.3, it may be perceived that, ILLGP shows a PSNR gain of 0.26 dB and 

0.251 dB than DCT for Lena and Boat images at 4:1 compression ratio. Similar improvement 

may be seen in case of HGP algorithm. In case of images like Lena and Boat which are rich in 

low, medium, high frequency regions, the proposed algorithms show moderate performance. 

Therefore, we feel that the proposed algorithms show much better performances for images rich 

with HF contents such as Barbara and Fingerprint. However, their performance become 

moderate in the images such as Lena and Boat that comprise regions with low, medium and high 

frequencies. 

Furthermore, the proposed schemes achieve better performance than the existing schemes 

at 16:1 compression ratio as depicted in Table 3.3. Hence, these schemes demonstrate better 
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objective performance in terms of PSNR and UQI irrespective of variation in compression ratio, 

image resolution and image types and so are more versatile. 

 

3.6 Conclusion 
The proposed algorithms: LLGP, HGP and ILLGP, which are based on higher order derivatives, 

perform better in terms of PSNR and UQI than various existing algorithms for various images 

and video types with a more pronounced edge and fine details preservation. Since the ILLGP 

algorithm is based on 8th order derivative, it is capable of extracting much finer and subtler 

details of an image and hence produces the maximum improved performance amongst all the 

proposed algorithms. The HGP and LLGP algorithms are based on 6th order and 4th order 

derivatives, respectively and hence HGP performance is better than LLGP and less as compared 

to that of ILLGP. Down the order, the Laplacian which is based on 2nd order derivative shows 

the least performance compared to the above mentioned algorithms.  

The HGP and ILLGP algorithm attain the noticeable PSNR gains in case of Barbara, 

Fingerprint and Crowd respectively which are rich in various HF patterns at 4:1 compression 

ratio. In contrast, these algorithms work moderately with the images equally rich in low, medium 

and high frequency contents such as Lena and Boat. This is because the proposed algorithms are 

based on emphasizing the high frequency details of an image prior to up-sampling. Furthermore, 

in case of LLGP algorithm, the objective performance gain is similar to that of HGP and ILLGP 

for these images. However, its performance is less in comparison to those algorithms because of 

the employment of 4th order derivative operator. 

  The proposed pre-processing schemes are basically based on inverse operation 

performed on the down-scaled images through the enhancement of HF contents so as to 

effectively reduce the blurring in its up-sampled counterpart. The degradation of high frequency 

details is much higher compared to that of the medium and low frequency details during the up-

sampling process. Hence, the algorithms such as LLGP, HGP and ILLGP which are more 

capable of restoring high frequency information shows better objective and subjective 

performance than other widely used up-sampling schemes.  

           Since these algorithms are global pre-processing techniques and operate on low-resolution 

images, have much reduced computational complexities than DCT. So the proposed pre-
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processing techniques impart very less computational burden on the various displaying devices 

and hence are suitable for real-time applications. In addition, the proposed algorithms work 

efficiently under variation in compression ratio and image resolution and hence can be 

considered to be more versatile. 
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Chapter 4 

 

    Pre-processing Algorithms using 
Unsharp Masking  

 
Preview 
Unsharp masking is one of the schemes, used for the HF enhancement of an image and is 

employed extensively in printing and publishing industries. In this chapter, the unsharp 

masking and its variants are exploited for enhancing the HF contents of a low resolution 

image so as to lessen the blurring effect in its up-scaled counterpart. In case of unsharp 

masking based pre-processing (UMP) scheme, the blurred version of a low resolution image 

is used for HF extraction from the original version through image subtraction. The weighted 

version of the HF extracts are superimposed with the original image to produce a sharpened 

image prior to image up-scaling to counter blurring effectively. Some variants of unsharp 

masking are also proposed in this chapter for HF restoration in the up-scaled images. In case 

of the second proposed scheme, namely iterative unsharp masking (IUM), an unsharp mask is 

generated using many iterations which contains very high frequency (VHF) components. The 

very high frequency extracts is the result of signal decomposition in terms of sub-bands using 

the concept of analysis filter bank. Since the degradation of VHF components is maximum, 

restoration of such components would produce much better restoration performance.   
In another approach, error based sharpening (ES) scheme, the HF degradation due to 

image up-scaling is extracted and is called prediction error. The prediction error contains the 

lost high frequency components. When this error is superimposed on the low resolution 

image prior to image up-sampling, blurring is considerably reduced in the up-scaled images. 

The HF degradation due to up-sampling is determined by purposely down-scaling an LR 

image and restoring it back to its original dimension using Lanczos-3 interpolation. 

Therefore, the HF degradation is determined by the error between the restored image and the 

original. Since the lanczos-3 interpolation scheme is employed for the determining the error 

component, superimposition of the error with the LR image reduces the HF degradation in 

the subsequent up-sampling process which makes use of the same lanczos-3 interpolation. 
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This results in the preservation of HF details and improvement of the quality of the up-scaled 

image.  

This chapter critically compares the capabilities and limitations of these proposed pre-

processing algorithms and their relevance in the perspective of adaptability to the varying 

conditions, computational complexities and visual quality. The simulation results, presented 

at the end of the chapter, are quite encouraging. 

The organisation of this chapter is given below. 

 

• Unsharp Masking based Pre-processing (UMP)  

• Iterative Unsharp Masking (IUM)  

• Error based Up-sampling (EU) Scheme 

• Experiment and Simulation 

• Results and Discussion 

• Conclusion 
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4.1 Unsharp Masking based Pre-processing (UMP) 

Scheme [P4] 
 

 

 

 

 

 

 

 

Fig. 4.1 Block Diagram of Unsharp Masking based Pre-processing Scheme 

 

Unsharp masking is a global scheme which is used for image sharpening and is employed 

here for HF enhancement so that blurring can be reduced in an up-scaled image. In this 

proposed scheme, the smoothed version of an image is used for extracting the image HF 

details. The HF details are used for enhancing the fine details and edge regions of an image 

so as to minimize the HF degradation during the up-sampling process. 

 The smooth or the blurred version of an image is obtained by low pass filtering using 

an averaging filter. The blurring occurs due to the loss of HF details of an image. Hence, the 

lost HF details can be extracted by subtracting the blurred version of an image from its 

original version which is also called an unsharp mask. The degree of HF enhancement must 

match with the level of HF degradation for efficient HF restoration. Therefore, the weighted 

version of the unsharp mask is superimposed upon the original image prior to image up-

sampling for effectual HF restoration.  

The weight factor, K determines the degree of HF enhancement. In this case, the 

weight factor is taken as fraction because it deemphasizes the contribution by the unsharp 

mask so as to provide adequate amount of sharpening to counter the level of blurring 

effectively. The weight factor is not same for all images but slightly varies from image to 

image depending on its characteristics and type. Hence, a generalized weight factor is 

estimated by averaging the weight factors corresponding to four different image types as 

illustrated in Table 4.1.  

•
 Restored 

image, ),(ˆ yxf  

Up-sampling 
using Lanczos-3 

Interpolation 
∑  

Intensity 
Scaling +  

∑  −   
 (3×3) Averaging 
Low Pass Filter 

Low-resolution 
image, ),( yxg  •
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(a) 

 
(b) 

 
(c) 

Fig. 4.2 PSNR (dB) vs. weight factor plots of different images using the proposed UMP 

algorithm at 4:1 compression ratio: (a) Lena; (b) Barbara; (c) Boat;  

Table 4.1   Weight factor, K estimation of the proposed UMP scheme 

Algorithm 

Weight factors corresponding to the maximum PSNR 
for different images Average 

Weight Factor Lena Boat Barbara Goldhill 
UMP 0.125 0.170 0.225 0.140 0.165 16.0≈  

 
 To determine a generalized, optimum weight factor, simulation studies are carried out 

to observe the variation of PSNR (dB) with respect to the weight factor, K for different 

images as shown in Fig. 4.2. The weight factor corresponding to maximum PSNR is taken for 

each image for overall estimation. The generalized weight factor is computed by averaging 

the weight factors corresponding to four different images and finally, approximated to 0.16 as 

shown in Table 4.1. 

 The proposed algorithm: UMP is presented in the next section. 
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4.1.1 UMP Algorithm 

Let ),( yxg and ),( yxgLav denote a sub-sampled image and the blurred version of it, 

respectively. The unsharp mask and sharpened image are denoted by ),( yxgUM and ),,( yxgS

respectively. Let them of size ).( QP×  The original image is of size ).22( QP×  The UMP 

algorithm is given below. 

Step-1. Select the )33( ×  averaging LPF as the blurring kernel, ).,( yxhLav  

              















×=

111
111
111

9
1),( yxhLav                                                                                    (4.1) 

Step-2. Select a )33( × window, w in the sub-sampled image ).,( yxg  

            1,1,),(, ≤≤− tsyxw ts   

Step-3. Obtain ),( yxgLav by linearly convolving ),( yxhLav with ).,( yxg  

              ∑∑
−=−=

++=
1

1

1

1
),(),(),(

t
Lav

s
Lav tysxgtshyxg                                                         (4.2) 

Step-4. Repeat Step-2 and Step-3 for all ),( yx locations to generate the low pass filtered 

             image, ).,( yxgLav  

Step-5. Obtain the unsharp mask by subtracting ),( yxgLav from ).,( yxg  

              ),(),(),( yxgyxgyxg LavUM −=                                                                           (4.3) 

Step-6. Generate the sharpened image by superimposing the weighted version of the unsharp 

            mask with the original sub-sampled image. 

              ),(),(),( yxgKyxgyxg UMS +=                                                                          (4.4) 

            where, 16.0=K   

Step-7. The sharpened image, ),( yxgS  is finally up-scaled by Lanczos-3 interpolation using 

            (2.3) to obtain the up-scaled, restored image, ).,(ˆ yxf  
The expression for Lanczos-3 interpolation is given in (2.3) of Chapter 2. 

 Simulation experiments on this algorithm and results obtained are presented in 

Section 4.4 and Section 4.5, respectively. An iterative unsharp masking (IUM) algorithm is 

presented in the next section for further improvement. 
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4.2 Iterative Unsharp Masking (IUM) Scheme [P5] 
       

 

 

 

 

Fig. 4.3 HF Restoration using Iterative Unsharp Masking 

 

The process of image up-scaling results in degradation of fine and edge details in an up-

scaled image. The degradation is more significant in the fast changing HF regions as 

compared to the slowly varying and flat regions resulting in blurring artifacts. This means, 

the very high frequency (VHF) and high frequency (HF) components of an image are more 

degraded as compared to low and medium frequency components which are relatively well 

preserved. Hence, the loss of VHF and HF components contribute more towards the total 

degradation than the medium and low frequencies. Therefore, the restoration would be much 

effective, if it would be possible to restore the most degraded frequency components. So, the 

objective of iterative unsharp masking (IUM) is to extract the most degraded VHF sub-band 

of an image. As a result it can be used for efficient VHF restoration of the degraded image. 

The basic block diagram of HF restoration using IUM is illustrated in Fig. 4.3. Iterative 

unsharp masking (IUM) exploits the concept of signal decomposition through analysis filter 

bank so as to obtain the VHF sub-band of an image. The VHF component is superimposed on 

the sub-sampled image prior to up-sampling to reduce blurring in its up-scaled counterpart. 

 The Fig. 4.4 may be considered for illustrating how VHF can be extracted in a 

different manner to HF. Generally, HF corresponds to all the high frequency components. HF 

further consists of several high frequency sub-bands. VHF is actually a sub-band of HF 

which contains very high frequency contents. Initially, the input image is passed through an 

LPF to generate the blurred version of the input image which represents low frequency. The 

HF component is obtained by subtracting the blurred version of the image from its original. 

In the next iteration, the HF component is further passed through the LPF filter so that HL 

component or HL sub-band is obtained. Subsequently, it is by subtracting the HL sub-band 

from the high frequency, HH sub-band or very high frequency sub-band is obtained. This 

method can be further continued to the next level of signal decomposition to obtain still 

higher level of HF sub-band as explained in Fig. 4.5a.  

Restored 
image, ),(ˆ yxf   

Up-sampling 
using Lanczos-3 

Interpolation 

Iteration 

Pre-processing 
using Iterative 

Unsharp Masking 

Low-resolution 
image, ),( yxg  

Intensity 
Scaling •  
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In this algorithm, unsharp masking is used for signal decomposition which is similar 

to analysis filter bank. In wavelet domain signal decomposition, the analysis filter bank is 

used which employs low pass and high pass filters along with the down-samplers to obtain 

the image sub-bands at lower resolutions. However, in our proposed scheme, 2-D low pass 

filters along with 2-D subtractors are used to generate the sub-bands of same resolution as 

that of the input image. This criterion remains the same for all the levels of signal 

decomposition. Here, we aim to obtain the VHF extract of the original image without 

changing its resolution so that it can be superimposed on the original image prior to image 

up-sampling. Therefore, the down-samplers are not included in our signal decomposition 

scheme. Signal decomposition in the first and second stage using unsharp masking is depicted 

in the Fig. 4.4. 

Since our intension is to extract only the VHF components, the HF components are 

only decomposed in the subsequent stages and at the same time LF components are 

discarded. This process continues for all the remaining stages of signal decomposition as 

illustrated in Fig. 4.5a.  

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

Fig. 4.4 Signal Decomposition using Unsharp Masking based Analysis Filter Bank 
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In the first stage of signal decomposition or at the first iteration, the low pass filtered 

output, ),( yxgL is subtracted from the original sub-sampled image, ),( yxg to obtain the high 

pass filtered image output, ).,( yxgH  In our algorithm, we have used the weighted average 

LPF having point spread function, ),( yxhLwa instead of averaging filter for low pass filtering 

operation. It is given by: 
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Fig. 4.5a Generation of Iterative Unsharp Mask after nth Iterations 
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We obtain ),( yxgL  and ),( yxgH by the following operations. 

                                              ),(),(),( yxhyxgyxg LwaL ∗=                                                (4.6) 

                                                 ),(),(),( yxgyxgyxg LH −=                                               (4.7) 

where ∗ represents 2-D convolution. 

After the first stage, the low frequency sub-band, ),( yxgL is discarded and only the 

high frequency sub-band, ),( yxgH  is forwarded to the next level of signal decomposition. 

),( yxgH is also called as the unshap mask after first iteration. In the second level of signal 

decomposition, the corresponding sub-bands of ),( yxgH are generated and are given by: 

                                          ),(),(),( yxhyxgyxg LwaHHL ∗=                                                 (4.8) 

                                           ),(),(),( yxgyxgyxg HLHHH −=                                                (4.9) 

The low frequency sub-band, ),( yxgHL is discarded and the HF sub-band, ),( yxgHH which is 

the unsharp mask after second iteration is forwarded to the next level of signal 

decomposition. This process continues for several stages of signal decomposition to arrive at 

the final unsharp mask, ),( yxgnH of desired VHF sub-band.  

The number of iterations represent the number of stages of signal decomposition is 

kept seven for arriving at the desired VHF sub-band for optimum performance. The number 

of iteration of IUM algorithm and is determined experimentally and is discussed in the next 

section. The final unsharp mask is then superimposed on the original image to obtain the 

sharpened image prior to up-scaling and is given by, 

                                        ),(),(),( yxgKyxgyxg nHS +=                                                (4.10) 

where, 7=n and 1=K are taken for optimum performance of the algorithm. The sharpen 

image, ),( yxgS  is finally up-scaled using Lanczos-3 interpolation to obtain the HF restored 

image, ),(ˆ yxf using (2.3). 

 The spectrum of the HF extract for different images after 7 iterations is shown in Fig. 

4.5b. The figure reveals that there is a considerable attenuation of low frequency spectral 

components and preservation of high frequency spectral components. This shows that the HF 

extract is a result of high-pass filtering operation through the employment of IUM. Fig 4.5c 

shows the spectral comparison of original, low-resolution, Lanczos-3 and IUM up-scaled 

image of Lena. In addition, Fig 4.5d shows the comparison of amplitude spectra of various 

Lanczos-3 and IUM up-scaled images. A scaling factor of 5 and logarithm transformation are 
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employed for proper visibility of the spectrums. The left column of Fig 4.5d represents the 

spectra of Lanczos-3 up-scaled images and the middle column represents the IUM output 

spectra of the corresponding images. The right column represents their spectral difference. 

The IUM spectra of different images show an enhancement in HF spectral components over 

Lanczos-3. The more pronounced HF spectrum is due to the superimposition of very high 

frequency extract obtained through the iterative scheme.  

The number of iterations, n and the weight factor, K play a major role in the 

performance of the algorithm. Precise estimation of the number of iterations and weight 

factor is very essential for overall better performance of the algorithm and is done on 

experimental basis. The estimation of the number of iterations and weight factor are 

explained in the subsequent section. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4.5b Spectrum of HF extract obtained after 7th iteration corresponding to different 

(512×512) images: (a) Lena; (b) Barbara; (c) Boat; (d) Goldhill 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 

Fig. 4.5c Spectrum of Lena (512×512) image: (a) Original; (b) Low-resolution; (c) Lanczos-3 

upscaled; (d) IUM up-scaled; (e) Spectral difference between Lanczos-3 and IUM up-scaled 

images 

 

4.2.1 Estimation of Number of Iterations and Weight Factor 
The number of iterations determines the level of signal decomposition. The bandwidth of the 

sub-bands reduces towards higher order iterations and consequently more sub-bands are 

generated. To determine the appropriate HF sub-band that achieves maximum restoration 

performance, simulation studies are carried out for different images to observe the variation 



Chapter 4 Pre-processing Algorithms using Unsharp Masking 

96 
 

of PSNR (dB) gain with respect to the weight factor, K  for different iterations as shown in 

Fig. 4.6 and Fig 4.7 respectively. It may be observed from the figures that the PSNR gain 

gradually increases towards higher order iterations and beyond certain iterations it declines. 

In case of most of the images, the performance of the IUM algorithm declines beyond 7th 

iteration. The number of iterations and the weight factor corresponding to global maximum of 

the characteristic plot are determined for six different images as illustrated in Table 4.2. The 

generalized weight factor and the number of iterations are determined by taking the mean of 

the weight factors and iterations corresponding to the global maximum PSNR for six 

different images as shown in Table 4.2. The weight factor, K  and number of iterations, n  are 

estimated as one and seven, respectively for improved performance.   
  

 
(a) 

 
(b)  

(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4.5d Spectra of different Lanczos-3, IUM up-scaled images and their spectral difference: 

(a) Barbara_Lanczos-3; (b) Barbara_IUM; (c) Spectral difference for Barbara image; (d) 

Boat_Lanczos-3; (e) Boat_IUM; (f) Spectral difference for Boat image 

 

Table 4.2   Estimation of weight factor, K  and the number of iterations for the IUM scheme 

Parameter 

Weight factor and iteration  corresponding to the maximum PSNR for different images 

Average  Lena Boat Barbara Goldhill Living room Cameraman 

Weight Factor 1.1 0.98 1.1 0.98 1 0.9 101.1 ≈  

Iterations 8 6 8 7 6 6 783.6 ≈  
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Table 4.3 Weight factor deviation, K∆  among various images corresponding to different 

iterations of the proposed IUM scheme 
 

Image 

Weight factors corresponding to maximum PSNR for different iteration 

Iteration 

1 

Iteration 

2 

Iteration 

3 

Iteration 

4 

Iteration 

5 

Iteration 

6 

Iteration 

7 

Iteration 

8 

Lena 0.16 0.37 0.55 0.62 0.76 0.9 1 1.1 

Barbara 0.3 0.6 0.75 0.8 0.9 1 1.1 1.1 

Boat 0.23 0.42 0.61 0.75 0.88 0.98 1.05 1.1 

Goldhill 0.19 0.35 0.6 0.7 0.8 0.9 0.98 1.04 

Room 0.24 0.45 0.65 0.78 0.9 1 1.06 1.15 

Cameraman 0.15 0.3 0.5 0.65 0.76 0.87 0.98 1.05 

K∆  0.15 0.3 0.25 0.18 0.14 0.13 0.12 0.11 

 

The weight factor deviation, K∆  in a particular iteration is the difference between its 

maximum and minimum value of weight factor amongst different images. Mathematically, it 

is given by, 

                                                       minmax KKK −=∆                                                         (4.11) 

It may be well observed from Table 4.3 that the weight factor deviation, K∆  is more toward 

the lower order iterations.  Since there is much deviation in weight factors at the lower order 

iterations, the performance of the algorithm deteriorates by using a single average weight 

factor for various images. However, the weight factor deviation, K∆  converges more towards 

the higher order iterations. Hence, the estimated weight factor becomes more precise and 

versatile to provide more improved performance.  

 

(a) (b) 

 

Fig. 4.6 PSNR vs. weight factor plots of various images at different iterations using IUM 

algorithms at 4:1 compression ratio: (a) Cameraman; (b) Living room 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4.7 PSNR vs. weight factor plots of various images at different iterations using IUM 

algorithms at 4:1 compression ratio: (a) Lena; (b) Barbara; (c) Boat; (d) Goldhill 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4.8 Enlarged version of PSNR vs. weight factor plots at different iterations using IUM 

algorithm for different images at 4:1 compression ratio: (a) Boat; (b) Goldhill; (c) Living 

room; (d) Cameraman 
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4.2.2 IUM Algorithm 

Let ),( yxg be the sub-sampled, low resolution input image. Let ),(7 yxg H be the iterative 

unsharp mask after 7  iterations and ),( yxgS be the corresponding sharpened image. Let 

them of size )( QP× . The original image is of size ).22( QP×  ),( yxhLwa  denotes the 

weighted average blurring kernel, used in iterative unsharp masking. The iterative unsharp 

masking (IUM) algorithm is given below. 

Step-1. Select a )33( × window, w in a sub-sampled image, ).,( yxg  

                                                1,1),,(, ≤≤− tsyxw ts  

Step-2. Obtain the blurred, low pass filtered image ),( yxgL by linearly convolving ),( yxhLwa  

             with ).,( yxg  

                                 ∑∑
−= −=

++=
1

1

1

1
),(),(),(

s i
LwaL tysxgtshyxg                                         (4.12) 

Step-3.  Repeat step-1 and step-2 for all ),( yx locations of ),( yxg to obtain the filtered  

             image, ).,( yxgL  

Step-4.  Subtract the low pass filtered image ),( yxgL  from the original image, ),( yxg to 

              generate the unsharp mask, ),( yxgH  for the first iteration. 

                                      ),(),(),( yxgyxgyxg LH −=                                                        (4.13) 

Step-5.  Assign ),( yxg as ).,( yxgH  

                                        ),(),( yxgyxg H=                                                                       (4.14) 

Step-6.  Repeat step-1 to step-5 for six times to obtain the iterative unsharp mask, 

             ).,(7 yxg H  

Step-7. Add the iterative unsharp mask ),(7 yxg H  with the original sub-sampled image, 

            ),( yxg to obtain the sharpened image, ).,( yxgS  

                                    ),(),(),( 7 yxgKyxgyxg HS +=                                                    (4.15) 

             where, 1=K  

Step-8. The sharpened image, ),( yxgS is finally up-sampled by Lanczos-3 interpolation  

             using (2.3) to obtain the up-scaled image, ).,(ˆ yxf  
 An error based up-sampling (EU) scheme is presented in the next section which is 

based on inverse modeling approach of image degradation. 
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4.3 Error based Up-sampling (EU) Scheme [P6] 
 

 

 

 

 

 

 

 

 

 

Fig. 4.9 Block diagram of the proposed error based up-sampling scheme 

 

The proposed error based up-sampling scheme estimates the high frequency degradation due 

to Lanczos-3 up-sampling scheme and performs the inverse operation on the sub-sampled 

image so that the high frequency contents will be restored in its up-sampled counterpart. The 

proposed scheme extracts the degraded high frequency information and superimposes it on 

the original sub-sampled image to lessen the blurring in its up-scaled image. The degraded 

high frequency information is obtained by purposefully down-sampling the given low 

resolution image at 4:1 compression ratio and then rescaling back to its original size using 

Lanczos-3 interpolation. The lost high frequency information or the prediction error is 

obtained by subtracting the restored image from the original. The prediction error contains all 

the high frequency details that are lost during the up-sampling process. Hence, by the 

weighted superimposition of those lost high frequency details with the original image, the 

degree of blurring can be considerably reduced. The error based up-sampling scheme is 

illustrated in Fig. 4.9. 

 The precise estimation of weight factor is very essential for overall performance of 

the algorithm. To determine the overall weight factor, the performance characteristics of 

PSNR (dB) vs. weight factor for different images are obtained as illustrated in Fig. 4.10. The 

weight factor corresponding to maximum PSNR is determined for various images. The 

overall weight factor is obtained by averaging those weight factors as illustrated in Table 4.4. 

 

 

−  

),( yxgd  

•  •  

Up-scaled, restored 
image, ),(ˆ yxf  Up-sampling 

using Lanczos-3 
interpolation 

 

∑  

Intensity 
Scaling + 

 

∑  

),(ˆ yxg  

Up-sampling 
using Lanczos-3 

interpolation 

Down-
sampling 

 Low-resolution 
image, ),( yxg  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4.10 PSNR (dB) vs. weight factor plots of different images using the proposed EU 

algorithm at 4:1 compression ratio: (a) Lena; (b) Barbara; (c) Boat; (d) Goldhill 
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Table 4.4   Weight factor, K  estimation of the proposed pre-processing schemes 

Algorithm 

Weight factors corresponding to the maximum PSNR 

for different images Average 

Weight Factor Lena Boat Barbara Goldhill 

EU 0.220 0.225 0.330 0.225 0.25 

 

4.3.1 EU Algorithm 

Let ),( yxg be the sub-sampled image of size )( QP× . ),( yxgd  denotes the down-sampled 

version of ),( yxg  at 4:1 compression ratio. The down-sampled image, ),( yxgd is rescaled 

back to the original size )( QP×  using Lanczos-3 interpolation and is denoted by ).,(ˆ yxg  
The EU algorithm is given below. 

Step-1. Obtain the down-sampled image, ),( yxgd by sub-sampling ),( yxg at 4:1 

             compression ratio. 

Step-2. Generate the up-scaled image, ),(ˆ yxg  from ),( yxgd by Lanczos-3 interpolation 

             using (2.3). 

Step-3. Generate the HF extract, ),( yxge  by subtracting ),(ˆ yxg from ).,( yxg  

                                                  ),(ˆ),(),( yxgyxgyxge −=                                          (4.16) 

Step-4. Generate the sharpened image, ),( yxgS by weighted superimposition of ),( yxgH  

             with ).,( yxg  

                                             ),(),(),( yxgKyxgyxg eS +=                                             (4.17) 

            where 25.0=K  

Step-5. The sharpened image, ),( yxgS  is finally up-sampled by Lanczos-3 interpolation to  

             generate the up-scaled, restored image, ),(ˆ yxf  of size using (2.3). 

 

4.4 Experiment and Simulation  
To evaluate the HF restoration performance of the proposed algorithms, different images are 

down-sampled at 4:1 compression ratio (CR). Afterward, the down-sampled images are re-

scaled to their original size using the proposed algorithms for comparison with the original 

images. Peak-signal-to-noise-ratio (PSNR) in dB and universal quality index (UQI) are 
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measured to determine the objective performance of the proposed algorithms. PSNR and UQI 

are also measured at 16:1 compression ratio to examine their performance under varying 

conditions. The algorithms are also tested for various video sequences.  

Lena (512×512) image, which has different regions of low, medium and high 

frequencies, is a suitable candidate for subjective evaluation of the proposed algorithms. The 

low, medium, high frequency regions of Lena image are examined separately for 

performance evaluation of the algorithms. The region rich in combination of different 

patterns is also considered for performance evaluation. Four distinct regions with different 

features and thus different signal characteristics are marked and performance at these regions 

is distinctly analyzed. For this purpose, the output images at these regions are enlarged for 

human interpretation.  

Error image is a quality metric which is used to measure the restoration performance 

of various algorithms. Reduced error indicates better restoration performance of the 

algorithms. In addition, the computational complexities in terms of CPU execution time of 

the proposed algorithms are computed and are compared with those for the existing 

algorithms to determine their feasibility for real-time applications.  

The figures and tables showing the performance of the existing and proposed 

algorithms are explained below. 

 Fig. 4.11 shows the PSNR comparisons of various existing and proposed schemes for 

various video sequences over 50 frames at 4:1 compression ratio. Fig. 4.12, Fig. 4.17 and Fig. 

4.18 show the subjective performance of Lena (512×512), Boat (512×512) and Goldhill 

(512×512) images, respectively using various up-sampling schemes at 4:1 compression ratio. 

In case of Fig. 4.12, four distinct regions with different features and thus different signal 

characteristics such as low, medium, high and their combinations are marked. Performance at 

these regions is analyzed. For this purpose, the output images at these regions are enlarged 

and shown in Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16.  The error images of Lena 

(512×512) corresponding to various schemes are given in Fig. 4.19.  

Table 4.5 and Table 4.6 show the PSNR and UQI comparison of different existing and 

proposed schemes at 4:1 and 16:1 compression ratio, respectively. Likewise, Table 4.7 

represents the average PSNR and UQI comparison of different schemes at 4:1 compression 

ratio, meant for various video sequences. PSNR and UQI values in bold letter represent the 

peak performance. Table 4.8 shows the execution time of various existing and proposed 

schemes at 4:1 compression ratio corresponding to images of different sizes.  
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Table 4.5   PSNR (dB) and UQI comparison of different schemes at 4:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

DASR 

[116] 

DSWD 

[82] 

UMP 

[P4] 

IUM 

[P5] 

EU 

[P6] 

Mandril PSNR 

UQI 

23.045 

0.8957 

23.630 

0.9114 

 

23.859 

0.9170 

23.925 

0.9187 

22.726 

0.8968 

23.025 

0.9031 

24.030 

0.9219 

24.296 

0.9271 

24.073 

0.9232 

Lena PSNR 

UQI 

32.704 

0.9922 

34.148 

0.9945 

34.813 

0.9953 

35.023 

0.9955 

31.220 

0.9894 

31.345 

0.9897 

34.993 

0.9955 

35.569 

0.9961 

35.151 

0.9957 

Barbara 
PSNR 

UQI 

24.925 

0.9631 

25.352 

0.9669 

 

25.428 

0.9675 

25.183 

0.9657 

24.764 

0.9627 

24.837 

0.9633 

25.517 

0.9685 

25.731 

0.9700 

25.559 

0.9687 

Boat 
PSNR 

UQI 

28.940 

0.9801 

29.952 

0.9845 

30.375 

0.9860 

30.466 

0.9863 

27.865 

0.9756 

28.446 

0.9786 

30.591 

0.9868 

30.946 

0.9878 

30.642 

0.9870 

Goldhill 
PSNR 

UQI 

30.574 

0.9880 

31.405 

0.9901 

 

31.725 

0.9909 

31.716 

0.9909 

29.609 

0.9853 

29.829 

0.9860 

31.855 

0.9912 

32.166 

0.9918 

31.939 

0.9914 

Pirate 
PSNR 

UQI 

30.027 

0.9853 

31.058 

0.9885 

31.490 

0.9897 

31.606 

0.9899 

28.955 

0.9818 

29.391 

0.9835 

31.690 

0.9902 

32.103 

0.9911 

31.765 

0.9904 

Livingroom 
PSNR 

UQI 

28.617 

0.9761 

29.557 

0.9811 

 

29.977 

0.9829 

30.128 

0.9835 

27.459 

0.9702 

28.174 

0.9747 

30.216 

0.9841 

30.595 

0.9853 

30.277 

0.9843 

Fingerprint PSNR 

UQI 

28.045 

0.9785 

30.632 

0.9889 

31.722 

0.9915 

32.133 

0.9922 

26.378 

0.9724 

26.411 

0.9727 

31.787 

0.9919 

32.903 

0.9936 

31.932 

0.9922 

Baboon PSNR 

UQI 

33.588 

0.9924 

35.014 

0.9946 

35.662 

0.9954 

35.890 

0.9956 

32.145 

0.9897 

32.373 

0.9902 

35.794 

0.9955 

36.315 

0.9960 

35.961 

0.9957 

Bridge 
PSNR 

UQI 

25.728 

0.9693 

26.504 

0.9748 

26.826 

0.9767 

26.919 

0.9772 

24.910 

0.9646 

25.348 

0.9680 

27.029 

0.9781 

27.348 

0.9795 

27.065 

0.9783 

Cameraman 
PSNR 

UQI 

33.214 

0.9959 

35.757 

0.9977 

37.216 

0.9984 

37.832 

0.9986 

30.972 

0.9933 

31.854 

0.9945 

37.573 

0.9985 

38.700 

0.9989 

37.720 

0.9986 

Cat 
PSNR 

UQI 

30.949 

0.9920 

31.982 

0.9937 

32.427 

0.9943 

32.563 

0.9945 

29.992 

0.9902 

30.464 

0.9912 

32.668 

0.9947 

33.073 

0.9951 

32.709 

0.9947 

Crowd 
PSNR 

UQI 

30.984 

0.9894 

32.666 

0.9930 

33.451 

0.9942 

33.768 

0.9946 

29.277 

0.9850 

29.582 

0.9860 

33.792 

0.9947 

34.467 

0.9954 

33.833 

0.9947 

Cycle 
PSNR 

UQI 

21.208 

0.9323 

21.895 

0.9437 

22.154 

0.9475 

22.129 

0.9474 

20.693 

0.9290 

21.173 

0.9363 

22.325 

0.9506 

22.631 

0.9539 

22.372 

0.9512 

F16 
PSNR 

UQI 

30.379 

0.9848 

31.543 

0.9885 

32.104 

0.9900 

32.722 

0.9913 

29.689 

0.9829 

29.830 

0.9835 

32.199 

0.9903 

32.653 

0.9912 

32.425 

0.9908 

House PSNR 

UQI 

29.248 

0.9719 

30.314 

0.9785 

 

30.807 

0.9809 

30.862 

0.9812 

28.049 

0.9651 

28.790 

0.9705 

31.157 

0.9827 

31.628 

0.9844 

31.197 

0.9829 

Lake PSNR 

UQI 

28.945 

0.9895 

30.022 

0.9919 

30.495 

0.9928 

30.793 

0.9933 

27.997 

0.9873 

28.549 

0.9888 

30.685 

0.9931 

31.069 

0.9937 

30.751 

0.9932 

Peppers 
PSNR 

UQI 

31.180 

0.9923 

31.991 

0.9937 

 

32.328 

0.9942 

32.747 

0.9947 

30.451 

0.9911 

30.795 

0.9918 

32.419 

0.9943 

32.727 

0.9947 

32.545 

0.9945 

Elaine 
PSNR 

UQI 

32.534 

0.9913 

33.117 

0.9924 

33.309 

0.9928 

33.284 

0.9927 

31.617 

0.9894 

31.519 

0.9892 

33.268 

0.9928 

33.478 

0.9931 

33.406 

0.9930 

Ruler 
PSNR 

UQI 

12.335 

0.5188 

12.613 

0.5735 

12.673 

0.5898 

12.600 

0.5920 

14.458 

0.7650 

15.638 

0.8156 

12.781 

0.6189 

12.911 

0.6395 

12.789 

0.6307 
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Table 4.6   PSNR (dB) and UQI comparison of different schemes at 16:1 compression ratio 

for various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

UMP 

[P4] 

IUM 

[P5] 

EU 

[P6] 

Mandril PSNR(dB) 

UQI 

20.883 

0.8191 

21.085 

0.8309 

21.156 

0.8351 

21.167 

0.8362 

21.205 

0.8398 

21.301 

0.8439 

21.228 

0.8413 

Lena PSNR(dB) 

UQI 

28.053 

0.9767 

28.848 

0.9810 

29.183 

0.9825 

 

29.296 

0.9829 

29.291 

0.9832 

29.622 

0.9843 

29.383 

0.9835 

Barbara 
PSNR(dB) 

UQI 

23.351 

0.9457 

23.607 

0.9496 

23.708 

0.9510 

23.747 

0.9515 

23.741 

0.9520 

23.844 

0.9528 

23.765 

0.9522 

Boat 
PSNR(dB) 

UQI 

25.041 

0.9493 

25.538 

0.9557 

25.739 

0.9580 

25.773 

0.9584 

25.857 

0.9598 

26.069 

0.9616 

25.911 

0.9603 

Goldhill 
PSNR(dB) 

UQI 

27.166 

0.9731 

27.628 

0.9761 

27.798 

0.9771 

27.776 

0.9770 

27.851 

0.9777 

28.041 

0.9785 

27.920 

0.9779 

Pirate 
PSNR(dB) 

UQI 

26.286 

0.9641 

26.861 

0.9691 

27.083 

0.9708 

27.127 

0.9712 

27.186 

0.9720 

27.418 

0.9733 

27.236 

0.9723 

Livingroom 
PSNR(dB) 

UQI 

24.932 

0.9420 

25.385 

0.9488 

25.560 

0.9511 

25.563 

0.9513 

25.667 

0.9533 

25.857 

0.9550 

25.712 

0.9538 

Fingerprint PSNR(dB) 

UQI 

20.920 

0.8791 

22.633 

0.9192 

23.779 

0.9407 

24.202 

0.9467 

24.435 

0.9523 

25.018 

0.9591 

24.484 

0.9544 

Baboon PSNR(dB) 

UQI 

28.812 

0.9766 

29.604 

0.9808 

29.931 

0.9823 

30.007 

0.9826 

30.056 

0.9831 

30.412 

0.9843 

30.155 

0.9834 

Bridge 
PSNR(dB) 

UQI 

22.676 

0.9357 

23.066 

0.9423 

23.230 

0.9449 

23.263 

0.9454 

23.328 

0.9470 

23.486 

0.9487 

23.353 

0.9474 

 Cameraman 
PSNR(dB) 

UQI 

26.633 

0.9809 

27.546 

0.9847 

27.946 

0.9861 

28.094 

0.9866 

28.168 

0.9870 

28.604 

0.9882 

28.264 

0.9873 

Cat 
PSNR(dB) 

UQI 

27.295 

0.9812 

27.838 

0.9835 

28.059 

0.9844 

28.105 

0.9845 

28.193 

0.9849 

28.429 

0.9857 

28.229 

0.9851 

Crowd 
PSNR(dB) 

UQI 

25.759 

0.9634 

26.601 

0.9706 

26.974 

0.9733 

27.066 

0.9739 

 

27.168 

0.9750 

27.514 

0.9767 

27.207 

0.9752 

Cycle 
PSNR(dB) 

UQI 

18.693 

0.8727 

18.996 

0.8842 

 

19.109 

0.8883 

19.135 

0.8893 

19.177 

0.8927 

19.317 

0.8958 

19.205 

0.8934 

F16 
PSNR(dB) 

UQI 

25.767 

0.9540 

26.457 

0.9617 

26.773 

0.9647 

26.939 

0.9661 

26.858 

0.9662 

27.146 

0.9681 

26.972 

0.9671 

House PSNR(dB) 

UQI 

25.401 

0.9285 

25.863 

0.9373 

26.050 

0.9406 

26.063 

0.9409 

26.172 

0.9435 

26.331 

0.9452 

26.173 

0.9438 

Lake PSNR(dB) 

UQI 

24.783 

0.9720 

25.466 

0.9764 

25.746 

0.9780 

25.834 

0.9785 

25.893 

0.9791 

26.166 

0.9802 

25.932 

0.9793 

Peppers 
PSNR(dB) 

UQI 

27.359 

0.9811 

28.045 

0.9841 

28.330 

0.9852 

28.524 

0.9859 

28.395 

0.9856 

28.641 

0.9863 

28.470 

0.9858 

Elaine 
PSNR(dB) 

UQI 

29.771 

0.9832 

30.496 

0.9860 

30.785 

0.9870 

30.884 

0.9878 

30.758 

0.9871 

31.024 

0.9877 

30.903 

0.9875 

Ruler 
PSNR(dB) 

UQI 

10.707 

0.2036 

10.804 

0.2394 

10.873 

0.2608 

10.876 

0.2636 

10.888 

0.2796 

10.906 

0.2789 

10.887 

0.2986 
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Table 4.7  Average PSNR (dB) and UQI comparison of different interpolation techniques at 

4:1 compression ratio for various sequences over 50 frames  
Sequence Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

UMP 

[P4] 

IUM 

[P5] 

EU 

[P6] 
 

Salesman 

PSNR(dB) 

UQI 

28.107 

0.9649 

28.979 

0.9719 

29.327 

0.9742 

29.440 

0.9750 

29.606 

0.9762 

29.972 

0.9781 

29.631 

0.9764 
 

Bus 

PSNR(dB) 

UQI 

24.243 

0.9491 

25.262 

0.9610 

25.716 

0.9652 

25.794 

0.9660 

26.085 

0.9688 

26.588 

0.9722 

26.124 

0.9693 
 

Akiyo 

PSNR(dB) 

UQI 

31.686 

0.9927 

32.911 

0.9945 

33.450 

0.9952 

33.647 

0.9954 

33.734 

0.9955 

34.298 

0.9960 

33.843 

0.9956 
 

City 

PSNR(dB) 

UQI 

26.827 

0.9104 

27.592 

0.9277 

27.879 

0.9333 

27.852 

0.9333 

28.101 

0.9386 

28.475 

0.9437 

28.173 

0.9399 
 

Container 

PSNR(dB) 

UQI 

24.663 

0.9592 

25.567 

0.9676 

26.008 

0.9709 

26.256 

0.9727 

26.316 

0.9735 

26.782 

0.9761 

26.423 

0.9742 
 

Football 

PSNR(dB) 

UQI 

27.106 

0.9668 

28.568 

0.9769 

29.366 

0.9810 

29.687 

0.9824 

29.855 

0.9834 

30.642 

0.9861 

29.932 

0.9837 
 

Mobile 

PSNR(dB) 

UQI 

20.310 

0.9373 

21.197 

0.9502 

21.596 

0.9550 

21.758 

0.9569 

21.907 

0.9590 

22.428 

0.9638 

21.972 

0.9598 
 

Soccer 

PSNR(dB) 

UQI 

29.271 

0.9828 

30.254 

0.9863 

30.664 

0.9876 

30.748 

0.9878 

30.857 

0.9883 

31.323 

0.9894 

30.992 

0.9886 
 

Coast 

PSNR(dB) 

UQI 

25.585 

0.9692 

26.500 

0.9754 

26.939 

0.9779 

27.080 

0.9787 

27.297 

0.9800 

27.800 

0.9822 

27.368 

0.9803 

 

 

 

 

Table 4.8 Execution time of the proposed and existing algorithms at 4:1 CR 
 

Images of different size 
M×N 

Execution time in seconds for different interpolation schemes 

 
Bilinear 

[5] 

 
Bicubic 

[4] 

 
Lanczos-3 

[12] 

 
DCT 
[74] 

 
UMP 
[P4] 

 
IUM 
[P5] 

 
EU 
[P6] 

Clock 
(200×200) 

 
0.0141 

 
0.0150 

 
0.0151 

 
0.0518 

 
0.1261 

 
0.1445 

 
0.0732 

Lena 
(256×256) 

 
0.0147 

 
0.0152 

 
0.0157 

 
0.0633 

 
0.1282 

 
0.1471 

 
0.0761 

Fruit 
(377×321) 

 
0.0153 

 
0.0163 

 
0.0168 

 
0.1629 

 
0.1335 

 
0.1506 

 
0.0797 

Lena 
(512×512) 

 
0.0201 

 
0.0215 

 
0.0222 

 
0.1773 

 
0.1457 

 
0.1564 

 
0.0882 

Pentagon 
(1024×1024) 

 
0.0354 

 
0.0409 

 
0.0442 

 
0.6372 

 
0.1754 

 
0.1905 

 
0.1349 

 

 

 

 
  

−  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 4.11 PSNR (dB) comparisons of various up-sampling schemes at 4:1 CR, meant for 

different sequences: (a) Container; (b) Football; (c) Mobile; (d) Salesman 
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 (a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 4.12 Subjective evaluation of Lena (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) 

UMP (P4); (g) IUM (P5) ; (h) EU (P6) 
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(a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 4.13 Subjective evaluation of the selected low frequency green rectangular region 

(127×164) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) UMP (P4); (g) IUM 

(P5); (h) EU (P6) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

  
(g) 

  
(h) 

 
 

 

Fig. 4.14  Subjective evaluation of the selected medium frequency orange rectangular region 

(164×125) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) UMP (P4); (g) IUM 

(P5); (h) EU (P6) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
 

 

Fig. 4.15  Subjective evaluation of the selected high frequency yellow rectangular region 

(123×174) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) UMP (P4); (g) IUM 

(P5); (h) EU (P6) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
 

 

Fig. 4.16  Subjective evaluation of the selected blue rectangular (76×76) of Lena (512×512) 

image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) Bilinear; 

(c) Bicubic; (d) Lanczos-3; (e) DCT; (f) UMP (P4); (g) IUM (P5); (h) EU (P6) 
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(a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 4.17 Subjective evaluation of Boat (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) 

UMP (P4); (g) IUM (P5); (h) EU (P6) 
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(a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 4.18 Subjective evaluation of Goldhill (512×512) image using various up-sampling 

schemes at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) 

DCT; (f) UMP (P4); (g) IUM (P5); (h) EU (P6) 
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 (a)  (b) 

 (c)  (d)  (e) 

 (f)  (g) 

  

 

Fig. 4.19 Error image of Lena (512×512) using various up-sampling schemes at 4:1 

compression ratio: (a) Bilinear; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) UMP (P4); (f) IUM 

(P5); (g) EU (P6) 

 

4.5 Results and Discussion  
The proposed schemes show overall better performance than the most of the existing schemes 

available in the literature in terms of objective and subjective measures. The IUM shows 

better performance amongst all the proposed and existing algorithms. Although UMP and EU 
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algorithms exhibit better objective performance than the existing algorithms, perform 

considerably less than IUM as depicted in Table 4.5, Table 4.6 and Table 4.7. It may be well 

observed from the tables that, for almost all types of images, IUM algorithm performs much 

better than the other proposed and existing schemes. 

 In case of Cameraman (512×512) image, IUM shows a maximum PSNR 

improvement of 0.868 dB than DCT at 4:1 compression ratio. Similarly, in case of 

Fingerprint, Crowd and Lena images, IUM algorithm achieves a significant improvement of 

0.77 dB, 0.7 dB and 0.546 dB over DCT respectively as shown in Table 4.5. Likewise, the 

algorithm shows significant PSNR gain than Lanczos-3 interpolation. In case of images like 

Lena, Fingerprint, Crowd and Cameraman, IUM shows significant PSNR gain of 0.756 dB, 

1.181 dB, 1.016 dB and 1.484 dB. In the same way, the algorithm shows better performance 

in terms of PSNR and UQI than DCT and Lanczos-3 interpolation at 16:1 compression ratio 

as depicted in Table 4.6. Thus, the proposed schemes show better objective performance 

irrespective of change in compression ratio.  

 Besides this, the proposed algorithms show better performance than DCT for various 

CIF video sequences as depicted in Table 4.7 and Fig. 4.11, respectively. In case of Football 

(352×288) sequence, the IUM algorithm achieves an improved average PSNR gain of 0.955 

dB over DCT at 4:1 compression ratio. Likewise, the IUM algorithm gives average PSNR 

improvement of 0.794 dB, 0.72 dB and 0.67 dB corresponding to Bus, Coastguard and 

Mobile sequence respectively as illustrated in Table 4.7. 

 In case of Barbara, IUM shows an improvement of 0.548 dB than DCT whereas UMP 

and EU algorithms show PSNR improvement of 0.334 dB and 0.376 dB, respectively over 

DCT at 4:1 compression ratio as depicted in Table 4.5. Likewise, in case of Goldhill image, 

IUM gives a PSNR gain of 0.45 dB than DCT whereas UMP and EU give PSNR gain of 

0.139 dB and 0.223 dB respectively. Therefore, it is clear from the results that the 

performance of IUM is significantly better than UMP and EU algorithms whereas the 

performance of EU scheme is better than UMP. 

 This is so because the IUM algorithm extracts the VHF component through signal 

decomposition using unsharp masking operation iteratively and restores the VHF component 

of an image which is highly degraded during the up-sampling process. On the other hand, the 

unsharp masking pre-processing (UMP) scheme extracts the HF component which is 

moderately degraded during the up-sampling process. Hence, restoration of such HF 

component would give less degree of PSNR gain as compared to IUM. Furthermore, the 

performance of error based up-sampling scheme (EU) is better than UMP because of the 
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employment of inverse model of HF degradation due to Lanczos-3 interpolation. Since the 

error due to Lanczos-3 interpolation is used to enhance the lost HF components, the HF 

components in the up-scaled image are well restored employing Lanczos-3 interpolation.  

 Computational time is one of the parameters to evaluate the suitability of the 

algorithms for real-time applications. It may be observed from Table 4.8 that the proposed 

algorithms consume more computational time than DCT for images of small dimensions such 

as Clock (200×200) and Lena (256×256). However, DCT takes more computational time 

than the proposed algorithms for the images of larger dimensions such as Lena (512×512) 

and Pentagon (1024×1024). Therefore, for high resolution images, the proposed algorithms 

are faster as compared to DCT. Moreover, the proposed algorithms are computationally less 

complex because they are global pre-processing schemes and operate on low resolution 

images prior to image up-scaling. In contrast, the DCT scheme, being a frequency domain 

interpolation technique, has more computational time requirement than the proposed 

algorithms because of the need for conversion from spatial to frequency domain and back. 

 It may be well observed from the Table 4.8 that the computation time of IUM 

algorithm is more than UMP because of the employment of unsharp masking for seven 

iterations. In contrast, the computational time of UMP is less than IUM because, it employs 

unsharp masking for only once. The EU algorithm has the least computation time amongst all 

the proposed algorithms. Furthermore, it is also found that the difference of execution time 

between UMP, IUM and EU algorithms is very less i.e. of the order of one hundredth of a 

second for images such as Lena (512×512) and Pentagon (1024×1024). Hence, all the 

proposed algorithms are suitable candidate for real-time applications. However, for a better 

objective and subjective performance, IUM must be preferred over UMP and EU algorithms. 

 Error image is a quality metric which is used to measure the restoration performance 

of various algorithms. The error images are shown in Fig. 4.19. It may be observed from this 

figure that the absolute error is reduced in case of the IUM and EU as compared to DCT and 

other existing algorithms which indicate a better HF restoration performance. In case of IUM 

algorithm, the absolute error is found to be least amongst all the algorithms and thus must be 

preferred for image up-scaling applications.  

 Lena (512×512) image, which has different regions of low, medium and high 

frequencies, is a suitable candidate for subjective evaluation of the proposed algorithms. The 

low, medium, high frequency regions of Lena image are considered for performance 

evaluation of the algorithms. The region rich in combination of different patterns is also 

considered for performance evaluation. Four distinct regions with different features and thus 
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different signal characteristics are marked as shown in Fig. 4.12. Performance at these 

regions is distinctly analyzed. For this purpose, the output images at these regions are 

enlarged and shown in Fig. 4.13, Fig.4.14, Fig. 4.15 and Fig. 4.16. 

 The green rectangular region (127×164) containing the shoulder portion of Lena 

image is considered as a low frequency region. The enlarged version of it using various 

algorithms is given in Fig. 4.13. Similarly, the enlarged versions of medium and high 

frequency regions are given in Fig. 4.14 and 4.15, respectively. The face and hair regions 

represent the medium and high frequencies, respectively. Fig 4.16 shows the eye and its 

surrounding region comprising low, medium and high frequencies. In all these cases, it may 

be perceived that low frequency regions are well preserved, the mid frequency regions are 

moderately enhanced and the HF regions are highly emphasized so as to compensate the HF 

loss during the up-sampling process. In case of the proposed algorithms, the fine details and 

edge information, which represent the high frequency contents, are effectively enhanced 

resulting in a better visual quality. However, HF restoration performance of the proposed 

algorithms depends on the enhancement of frequency components that has been degraded the 

most. IUM algorithm achieves the best subjective performance amongst all the proposed 

algorithms because it restores the most degraded, VHF component.   

Furthermore, the blue rectangular region of Lena which embodies the eye region 

contains various frequencies. Under this condition, the proposed algorithms work much better 

than the existing algorithms in restoring the HF contents of an image as illustrated in Fig. 

4.16. So, the overall subjective performance of the proposed schemes is more satisfactory 

than the existing schemes. 

Besides, the proposed schemes achieve better performance than the existing schemes 

at 16:1 compression ratio as depicted in Table 3.3. These schemes demonstrate better 

objective performance in terms of PSNR and UQI irrespective of variation in compression 

ratio, image resolution and image types and so are more versatile. 

 

4.6 Conclusion 
From the result analysis, it is apparent that the IUM shows much better subjective and 

objective performance over DCT, EU, UMP and most of the other existing algorithms 

available in the literature irrespective of image and video types. The EU performs less as 

compared to IUM but shows better performance than UMP algorithm for different image and 

video signals. UMP performs least amongst the proposed algorithms. 
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IUM shows its peak performance in case of images like Fingerprint, Crowd and 

Cameraman which are rich in HF contents. For rest of the images, it performs much better 

than other algorithms. It is so because the algorithm is based on enhancement of HF contents 

to counter blurring in the up-scaled images. It shows better performance because of its ability 

to restore the most degraded VHF component through signal decomposition using the filter 

bank which employs unsharp masking iteratively. 

 Although the EU algorithm shows inferior performance than IUM, it performs better 

than UMP, DCT and most of the other existing algorithms for majority of images and videos. 

It shows low-grade performance than DCT in case of images like Fingerprint, Cameraman 

and Lake. But for most of the images, it shows comparatively better performance than DCT 

and UMP because it employs the inverse model of HF degradation due to Lanczos-3 

interpolation prior to image up-scaling. Since the same Lanczos-3 interpolation is used to 

determine the HF degradation through error calculation and also used in the up-scaling 

process, it ensures better HF restoration performance.  

The UMP algorithm shows inferior performance than EU and IUM but for majority of 

images, it shows better performance than DCT and other existing algorithms. Since the UMP 

restores the HF component which is less degraded than VHF component, contribute lesser 

PSNR hike than IUM. The UMP shows better PSNR gain than DCT in some images but 

performs less than DCT in case of images such as Fingerprint, Baboon, Cameraman, Lake 

and Elaine. This is due to more weight factor deviation, K∆  with respect to the average 

weight factor. This problem is resolved in case of IUM because of the convergence of K∆ at 

higher order iterations.  

Since these proposed algorithms are global pre-processing techniques and operate on 

low-resolution images, have much reduced computational complexities than DCT. Therefore, 

these proposed schemes impart very less computational burden on the various displaying 

devices and hence are suitable for real-time applications. In addition, the proposed algorithms 

work efficiently under variation in compression ratio and image resolution irrespective of 

images and video types and hence are more versatile and suitable for various multimedia 

applications. 
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Chapter 5 

 

Post-processing Algorithms using Soft-
computing Techniques 

 

Preview 
 

This chapter presents three spatial domain post-processing algorithms to tackle non-uniform 

blurring in an up-scaled image. The degree of blurring depends on the level of local high 

frequency (HF) information. The blurring is more significant in the local regions with more HF 

contents than the medium and low frequency regions. To tackle such non-uniform blurring, three 

post-processing schemes are proposed in this chapter. The term post-processing refers to 

processing an image which is previously up-scaled using a suitable interpolation technique. 

 Local adaptive Laplacian (LAL) scheme is a non-fuzzy, local based scheme. The local 

regions of an up-scaled image with high variance are sharpened more than the region with 

moderate or low variance by employing a local adaptive Laplacian kernel. The weights of the 

LAL kernel are varied as per the normalized local variance so as to provide more degree of HF 

enhancement to high variance regions than the low variance counterpart so as to effectively 

counter the non-uniform blurring.  

 Soft-computing techniques like fuzzy systems, adaptive neural based fuzzy inference 

system (ANFIS), artificial neural network (ANN) etc. have been tested for various non-stationary 

time series prediction over the last few decades. Hence, there is a scope of applying different soft 

computing techniques for HF prediction in the up-scaled images. In this chapter, fuzzy logic and 

Legendre functional link artificial neural network (LFLANN) are applied to alleviate blurring in 

up-scaled images and are compared with non-fuzzy approach such as LAL. 

 A fuzzy weighted Laplacian (FWL) post-processing scheme with a higher degree of non-

linearity is proposed in this chapter to overcome the non-uniform blurring problem. FWL, being 

a fuzzy based mapping scheme, is highly nonlinear to resolve the blurring problem more 
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effectively than a non-fuzzy approach such as LAL which employs a linear mapping. FWL is a 

local sharpening scheme that sharpens the up-sampled images as per the local statistics by 

employing fuzzy based mapping so as to alleviate the blurring caused by Lanczos-3 

interpolation.  

 Furthermore, a Legendre functional link artificial neural network (LFLANN) based post-

processing scheme is proposed here to minimize the cost function so as to reduce the blurring in 

a 2-D up-scaled image. Legendre polynomials are used for functional expansion of the input 

pattern-vector and provide high degree of nonlinearity to the system. So, the requirement of 

multiple layers can be replaced by single layer LFLANN architecture to reduce the cost function 

effectively for better restoration performance. The presence of a single layer reduces the 

computational complexity and may be suitable for various real-time applications. Simulation 

results, presented at the end of the chapter, are quite encouraging. 

The organisation of this chapter is given below. 

• Local Adaptive Laplacian (LAL) based Post-processing Algorithm  

• Fuzzy Weighted Laplacian (FWL)based Post-processing Algorithm 

• Legendre Functional Link Artificial Neural Network (LFLANN) based Post-

processing Algorithm 

• Results and Discussion 

• Conclusion 
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5.1 Local Adaptive Laplacian (LAL) based Post-

processing Scheme [P7] 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Block Diagram of Local Adaptive Laplacian based Post-processing Scheme 

 

The local adaptive Laplacian (LAL) is a local post-processing scheme, used for the HF 

enhancement of an up-scaled image so as to reduce its blurring effectively. The blurring is 

significant at the edges and fast changing regions with high variance as compared to the slowly 

varying, flat regions with low variance. Therefore, the blurring can be countered effectively by 

locally enhancing HF regions more than the medium and low frequency regions through local 

post-processing. To meet the requirement, a 2-D local adaptive Laplacian kernel is employed 

whose weights are updated as per the normalized local variance of a 3×3 neighbourhood. 

Therefore, if the local variance is more, the central kernel weight becomes proportionately high 

and vice versa based on the direct mapping basis. The remaining coefficients of the kernel are 

attuned as per the central weight so that the sum of all coefficients in the adaptive Laplacian 

kernel becomes zero. 

 In case of a slowly varying or a flat region, the slope of the kernel is low resulting in less 

degree of HF enhancement. In contrast, for a high variance region, the slope of the kernel 

 

 

 

 

 

 

 

 
Post-processing 

Restored 
image, 

),(ˆ yxf  
∑ 

Intensity 
Scaling 

HF Enhancement 
using Local Adaptive 

Laplacian (LAL) 
 

 
Normalization 

(3×3) Local 
Variance 

Estimation 

•  
Up-sampling 

using Lanczos-3 
Interpolation 

Low-resolution  
image, ),( yxg  



Chapter 5               Post-processing Algorithms using Soft-computing Techniques 

   

124 

 

becomes stiffer resulting in more degree of HF enhancement or sharpening. Hence, with the 

adaptability of the local adaptive Laplacian (LAL) kernel with respect to the local statistical 

parameter, the post-processing algorithm efficiently enhances the fast changing and edge regions 

and at the same time retains the smoothness of flat and slowly varying regions.  

 HF enhancement using Local adaptive Laplacian is a two-pass scheme. Initially, the 

maximum local variance of an image is computed during the first pass and the same is used to 

determine the normalized local variance during the second pass. The normalized local variance 

of a neighborhood updates the center co-efficient of the Laplacian kernel. The remaining filter 

co-efficients are attuned according to the central weight so that the sum of all the filter 

coefficients becomes zero. The local HF extract, is obtained by linearly convolving the up-

sampled image with LAL kernel. Finally, the weighted version of the local HF extract is 

superimposed on the up-sampled image to obtain the restored image with significantly less 

degree of blurring. The details of HF restoration using LAL is given in the following algorithm. 

 

5.1.1 LAL algorithm  

Let ),( yxg and ),( yxgu denote a low resolution image and its corresponding up-scaled image 

using Lanczos-3 interpolation. Let them be of size )( QP× and 2 2P Q×( ), respectively. Let

),(2 yxσ  and 2
maxσ denote 3×3 local variance and maximum local variance (global maximum) of 

an image respectively. The two pass local adaptive Laplacian (LAL) algorithm is given below. 

 

First Pass (Determination of maximum local variance): 

Step-1. Select a 3×3 window, w in an up-scaled image, ).,( yxgu  

                                1,1),,(, ≤≤− tsyxw ts  

Step-2.  Determine the local variance, ),(2 yxσ in a 3×3 neighborhood as: 

                             ∑∑
−=−=
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             and 1=p  for a 3×3 neighbourhood. 

Step-3. Store the local variance in a null vector. 

Step-4. Repeat step-1 to step-3 for all ),( yx locations of the up-scaled image, ).,( yxgu  

Step-5. Determine the maximum local variance within the up-scaled image ),( yxgu of size 

           )22( QP×  using the following expression. 

                                            
( { } )

}12,,4,3,2{
}12,,4,3,2{

),(max 22
max

−∈∀
−∈∀

=

Qy
Px

yx





σσ
                                                        (5.3) 

 

Second Pass (HF enhancement using local adaptive Laplacian): 

Step-6. Determine the 3×3 local variance of the up-scaled image, ),( yxgu using step-2.  

Step-7. Determine the normalize local variance, ),(2 yxNσ  to a scale of 10 using the following 

           expression. 

                                           2
max

2
2 ),(10),(

σ
σσ yxyxN ×=                                                                 (5.4) 

Step-8. Update the filter coefficients of LAL kernel locally using normalized local variance, 

           ),(2 yxNσ  as per the following so that the sum of all filter coefficients becomes zero.  
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                                                         0
9

1
=∑

=Z
Zα                                                                       (5.6)  

              where, Zα denotes the filter coefficients of LAL kernel. 

Step-9.   Obtain the HF extracts, ),( yxLALψ  of the up-scaled image, ),( yxgu by linearly 

              convolving ),( yxgu  with LAL kernel, ),( yxhLAL . 
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s
LAL tysxgtshyxψ                                    (5.7) 

Step-10.  Superimpose the weighted version of the HF extract, ),( yxLALψ on the up-scaled 

               image, ),( yxgu  to obtain the restored, de-blurred image, ).,(ˆ yxf  

                                           ),(),(),(ˆ yxKyxgyxf LALu ψ+=                                                  (5.8) 

Step-11.  Repeat step-6 to step-10 for all ),( yx  locations to obtain the HF restored up-scaled 

              image ).,(ˆ yxf  

The details of weight factor, K  estimation is given in Section 5.2.3.  

 

5.2 Fuzzy Weighted Laplacian (FWL) based Post-

processing Scheme [P8] 
In this scheme, an attempt has been made to enhance the nonlinearity of a direct normalized 

mapping approach, LAL by incorporating a fuzzy rule base to improve its HF restoration 

performance. A fuzzy-based post-processing algorithm with a higher level of nonlinearity is 

proposed here to alleviate non-uniform blurring effectively in an up-scaled image.  

The proposed fuzzy weighted Laplacian (FWL) algorithm is evaluated and compared 

with a non-fuzzy, direct mapping based LAL scheme to show its performance improvement as a 

function of nonlinearity.  

The FWL is almost similar to LAL algorithm with a difference in the mapping scheme 

between input and output variables. In case of LAL, normalized mapping technique is used 

between the input and output variables; whereas, in case of FWL algorithm, fuzzy based 

mapping technique is used, which is more nonlinear. The remaining parts of both of the 

algorithms are same.   

 

5.2.1 Fuzzy based Mapping 
FWL scheme is a single-input-single-output (SISO) fuzzy inference system (FIS) as shown in 

Fig. 5.2. In this case, a normalized local variance, ),(2 yxNσ  in a 3×3 neighborhood is taken as 

the input variable whereas the central weight of the local adaptive Laplacian kernel, tOw  is taken   
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Fig. 5.2 Fuzzy Weighted Laplacian (FWL) based Post-processing Scheme 

 

as the output variable. Triangular input and output membership functions are taken for our 

suitability. The number of input and output membership functions is taken as 3 and are shown in 

Fig. 5.3. The range of both the input and output variables is kept within (0-10) scale for our 

suitability.  

Let iCiBiA and µµµ , denote the low, medium and high membership function of input 

variable, 2
Nσ . Similarly, OCOBOA and µµµ , denote the low, medium and high membership 

function of the output variable, respectively. The expressions for input membership functions are 

given by, 
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Similarly, the expressions for output membership functions are given by, 
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Fig. 5.3 Graphical representation of membership functions employed in FWL algorithm:  (a) 
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The input and output membership functions of FWL algorithm are shown in Fig. 5.3. Fuzzy logic 

controllers are governed by a set of if-then rules known as a knowledge base or rule base. The 

fuzzy rule base drives the inference engine to produce the output in response to one or a set of 

inputs. The fuzzy based mapping is based on fuzzy rule base. According to the knowledge base 

of FWL, if the 3×3 normalized local variance is more, the central weight of the adaptive 

Laplacian kernel increases and vice versa so as to perform more sharpening in the high variance 

regions than the slowly varying flat regions for effective high frequency restoration. The 

knowledge base for FWL, which is established on a heuristic approach, is given as per the 

following. 

Fuzzy If-then Rules: 

Rule I: If the normalized local variance, ),(2 yxNσ is low then the central kernel weight, tw is low 

                                                      OR 

Rule II: If ),(2 yxNσ is medium then tw is medium 

                                                     OR 

Rule III: If ),(2 yxNσ is high then tw is high 

The rule base contains all the information required to relate the inputs and outputs. The minimum 

of the input and the output membership function is performed as per the fuzzy if-then rules. 

Subsequently, the inference engine operates with the min - max operator to generate the output 

responses. The output responses are then de-fuzzified to produce a crisp output employing the 

center of gravity de-fuzzification method. The central weight, tOw of the FWL kernel is updated 

as per the defuzzified output of FIS.  

So, the minimum of the two membership functions as per the fuzzy if-then rule 1, 2 and 3 

are given by, 

                                      { })(),(min),( 22
tAONAitNAOAi ww µσµσµ =



                                    (5.11a)  

                                       { })(),(min),( 22
tBONBitNBOBi ww µσµσµ =



                                   (5.11b) 

                                       { })(),(min),( 22
tCONCitNCOCi ww µσµσµ =



                                   (5.11c)   

To obtain an individual response, )( tA wR corresponding to an arbitrary input 2
Nσ , AND operation 

is performed in between )( 2
NiA σµ and the general result ),( 2

tNOAiA wσµ


evaluated at 2
Nσ according 
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to fuzzy if-then rule-1. Similarly, )( tB wR and )( tC wR are determined for rule-2 and rule-3 

respectively. The general expressions for the individual responses are given by, 

                                       { }),(),(min)( 22
tNAOAiNAitA wwR σµσµ



=                                       (5.12a) 

                                       { }),(),(min)( 22
tNBOBiNBitB wwR σµσµ



=                                       (5.12b) 

                                       { }),(),(min)( 22
tNCOCiNCitC wwR σµσµ



=                                       (5.12c) 

The overall response is obtained by aggregating the individual responses using OR  operator. The 

overall response )( twR  is given by, 

                                           )()()()( tCtBtAt wRwRwRwR =                                             (5.13) 

The crisp output, tOw  from the fuzzy set, R is obtained through centre of gravity de-fuzzification 

method. Since )( twR can have k  possible values, the centre of gravity of )( twR  is given by, 
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The de-fuzzified output, tOw  updates the central weight of the local adaptive Laplacian kernel 

),( yxhFWL for enhancing local high frequency information and is given by, 
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The remaining filter coefficients of the FWL kernel are attuned so that the sum of all the filter 

coefficients becomes zero. Let the filter coefficients of FWL kernel are 921 ,,, ααα 

respectively. The sum of all filter coefficients is given by, 

                                                              0
9

1
=∑

=Z
Zα                                                                   (5.16) 
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 The HF extracts, ),( yxFWLψ  of the up-scaled image, ),( yxgu is obtained by linearly convolving 

),( yxgu  with adaptive FWL kernel, ),( yxhFWL . 

                                    ∑∑
−=−=

++=
1

1

1

1
),(),(),(

t
uFWL

s
FWL tysxgtshyxψ                                       (5.17)                            

Intensity scaling is performed on the high frequency extracts according to the estimated weight 

factor so as to perform precise sharpening to counter the blurring effectively in the up-sampled 

image. So, the weighted version of the HF extract, ),( yxFWLψ is superimposed on the up-scaled 

image, ),( yxgu  to obtain the restore, de-blurred image, ),(ˆ yxf and is given by, 

                                        ),(),(),(ˆ yxKyxgyxf FWLu ψ+=                                                      (5.18)                                  

Precise estimation of weight factor is very essential for the optimum performance of the 

algorithm. Estimation of weight factor, K  for FWL algorithm is illustrated in Section 5.2.3.  

           The overall input output mapping of FWL scheme is obtained by plotting the de-fuzzified 

output, Otw  with respect to the normalized local variance, 2
Nσ . The plot is obtained using Lena 

(512×512) image. The overall input output curve give an idea about the characteristics of fuzzy 

based mapping techniques and is shown below. It is quite apparent from the figure that the FWL 

performs nonlinear mapping between input and output variable. However, the mapping in case of 

LAL scheme is linear as per (5.4). Hence, because of the nonlinearity, FWL scheme provides 

much better performance than LAL in terms of HF restoration.  

 
Fig. 5.4 Overall input output curve of Lena (512×512) image using FWL algorithm 
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(a) 

(b) 

(c) 

(d) 

Fig. 5.5 PSNR (dB) vs. weight factor characteristics of the proposed LAL and FWL algorithms 

at 4:1 compression ratio for various test images: (a) Lena; (b) Barbara; (c) Boat; (d) Goldhill. 



Chapter 5               Post-processing Algorithms using Soft-computing Techniques 

   

133 

 

Table 5.1   Weight factor, K  estimation of the proposed LAL and FWL schemes 

Algorithm 

Weight factors corresponding to the maximum PSNR 

for different images Average  

Weight Factor Lena Boat Barbara Goldhill Livingroom 

LAL 0.5 0.75 0.75 0.7 0.8 0.70 

FWL 0.43 0.55 0.7 0.55 0.57 0.56 

 

5.2.2 FWL algorithm 
The FWL algorithm is also a two-pass scheme and is almost same as LAL algorithm. The only 

difference is that the direct mapping in between the input and output variables is replaced by 

fuzzy based mapping scheme in case of FWL algorithm using (5.14) and (5.15) respectively. The 

remaining part of the FWL algorithm is same as LAL algorithm. 

 

5.2.3 Weight Factor Estimation 
The precise estimation of weight factor is very essential for overall performance of the 

algorithm. To determine the overall weight factor, the performance characteristics of PSNR (dB) 

vs. weight factor for different test images are obtained as illustrated in Fig. 5.5. The weight factor 

corresponding to maximum PSNR is determined for various images. The overall weight factor is 

obtained by averaging those weight factors as illustrated in Table 5.1. 
 

5.3 Legendre Functional Link Artificial Neural 

Network (LFLANN) based Post-processing [P9] 
The blurring in up-sampled images is non-uniform and depends on the local statistical properties 

of an image. The blurring is more in high variance regions in comparison to the regions with low 

variance. Since the artificial neural networks (ANN) are specifically developed to handle various 

nonlinear problems [118], Legendre functional link artificial neural network (LFLANN) [119] 

based image restoration scheme is exploited here to resolve the non-uniform blurring issues in an 

up-sampled image. LFLANN is used here for such de-blurring operation because of its faster rate 

of convergence and lesser computational complexity due to its single layer architecture. The 



Chapter 5               Post-processing Algorithms using Soft-computing Techniques 

   

134 

 

need for multilayer structure is resolved by enhancing the input pattern using Legendre 

polynomials based nonlinear function expansion.  

In case of multi layer perceptron (MLP), the inclusion of hidden layer increases its 

nonlinearity. However, it also increases the computational complexities of the system. So, an 

MLP takes longer time to optimize the weight vector and is not suitable for any real-time 

applications. In contrast, the requirement of hidden layer is eliminated using a single layer 

LFLANN structure. A great deal of nonlinearity is introduced in the algorithm by incorporating 

Legendre polynomials based nonlinear function expansion of input pattern vector. Since the 

proposed method operates on an up-scaled image, it is considered as a post-processing operation. 

 In this proposed algorithm, the input pattern vector is a 3×3 neighbourhood of an up-

scaled, blurred image which is introduced to the input node of the LFLANN structure. The 

associated desired value is the corresponding pixel value of the original reference image. The 

enhanced input pattern vector is obtained using Legendre polynomials based functional 

expansion. The structure of the LFLANN is {9-1} and each pixel value of a 3×3 neighbourhood 

is expanded N times using Legendre function expansion schemes where, N denotes the degree of 

expansion. The degree of expansion may vary for improved HF restoration performance. If the 

degree of expansion increases, the nonlinearity of the input pattern is also increased so as to 

provide better HF restoration performance. However, there is a limit to the rise in the degree of 

expansion because, beyond a certain value, the performance of the algorithm starts declining as 

shown in Table 5.2. The values in bold letter in Table 5.2 signify maximum objective 

performance. So, in case of the proposed LFLANN algorithm, the degree of expansion is kept 

four to obtain the optimum performance.  

 

Table 5.2   PSNR and UQI variations with respect to the degree of expansion, N for LFLANN 
 

Images Metric 
PSNR (dB) and UQI corresponding to different degree of expansion Estimation  

of N  1=N  2=N  3=N  4=N  5=N  
Boat PSNR (dB) 

UQI 
28.141 
0.9782 

29.896 
0.9853 

30.792 
0.9875 

30.848 
0.9878 

27.303 
0.9700 4 

Barbara PSNR(dB) 
UQI 

24.421 
0.9607 

25.401 
0.9673 

25.620 
0.9690 

25.630 
0.9692 

24.889 
0.9612 4 

Goldhill PSNR (dB) 
UQI 

28.174 
0.9791 

31.234 
0.9896 

31.895 
0.9911 

32.027 
0.9914 

30.422 
0.9876 4 
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Fig. 5.6a Training phase of LFLANN 

 

 

 

 

 

 

Fig. 5.6b Testing Phase of LFLANN 

 

Since the degree of expansion is taken as four, the total number of expanded input pattern 

corresponding to a 3×3 neighbourhood becomes 36. Accordingly, there will be 36 number of 

weights that are to be updated using an adaptive algorithm. The weighted sum of all the inputs is 

passed through the nonlinear tanh( ⋅ ) function to produce the output. The output is compared 

with the corresponding pixel value of the target reference image and hence, the network is 

learned through supervised learning. The error between the target value and the output value is 

used to update the weights of the network. The training input and the corresponding target pixel 

value are normalized to fall within the interval (0-1). The mean square error (MSE) is taken as 

the cost function. Least mean square (LMS) algorithm is used to minimize the cost function by 

updating all the weights of the network.  
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Fig. 5.6c Detail Structure of LFLANN 

 

The learning rate,µ  for LFLANN is set at 0.02. The number of iterations is kept low i.e. 10 due 

to a faster rate of convergence because of the single layer architecture. The LFLANN algorithm 

almost converges after 10 iterations as illustrated in Fig. 5.7. The number of iterations is 

considerably less than MLP which is in the order of 1000. Therefore, the proposed algorithm 

requires much less computational time for training than MLP and other ANN structures. 
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Fig. 5.7 Convergence characteristics of LFLANN algorithm 

         For proper training of the neural network, an image which is rich in different patterns is 

taken. Therefore, Lena image is used for training purpose which is rich in different low, medium 

and high frequency patterns. But in general, this neural network can be trained with any image 

and can be tested with any image. The functional expansion of the input pattern vector using 

Legendre polynomials is explained below. 

 In this proposed scheme, LFLANN is used for predicting the HF information in an up-

sampled, blurred image. A 33× neighbourhood of an up-scaled image is taken as input. So, there 

will be nine pixel values in the input pattern. So, the nine dimensional input pattern vector is 

given by, 

                                                     ][ 921 xxxX i =                                                       (5.19)                                                                                                                              

The input vector is expanded using Legendre polynomial based nonlinear function expansion. It 

may be observed from the Table 5.2 that, for different images, peak performance are attained at 

the four degree of expansion. Hence, the overall degree of expansion is kept four. The Legendre 

polynomials are denoted by )(XLn , where n  is the order and 11 <<− x  is the argument of the 

polynomial. The generalized mathematical expression of the Legendre polynomial expansion is 

given by, 

                              ])()()12([
1

1)( 11 xLnxLxn
n

xL nnn −+ −+
+

=                                              (5.20) 

The zero and first-order Legendre polynomials are: 

                                                         1)(0 =xL                                                                         (5.21a) 
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                                                         xxL =)(1                                                                        (5.21b) 

The higher order Legendre polynomials are given by, 

                                                        )13(
2
1)( 2

2 −= xxL                                                           (5.22a) 

                                                     )35(
2
1)( 3

3 xxxL −=                                                           (5.22b) 

                                                     )33035(
8
1)( 24

4 +−= xxxL                                                (5.22c) 

                                                     xxxxL 875.1312.15875.7)( 35
5 +−=                                (5.22d) 

In this case, the degree of expansion is taken as four for optimum performance. The functional 

expansion of the nine dimensional input pattern using Legendre polynomial is shown in Figure 

5.6 and is given by,  

   ])()()()()()()()()(1[ 949392924232221413121 xLxLxLxxLxLxLxxLxLxLxX iL =          (5.23) 

 

5.3.1 LFLANN Algorithm 

Let ),( yxgu denote an up-scaled image using Lanczos-3 interpolation. Let ),(ˆ yxf  denote the de-

blurred, restored image using LFLANN algorithm. Let them of size )22( QP× . iX  denotes the 

nine-dimensional input pattern vector which represents nine pixels of a 3×3 neighbourhood of a 

blurred up-scaled image. The enhanced pattern with Legendre expansion is denoted by iLX . The 

degree of expansion, N  for LFLANN is taken as four so as to provide optimum performance. 

The LFLANN algorithm consists of two phases namely training and testing phase which are 

given below. 

  

Training Phase: 

Step-1. Initialize the number of iterations to ten. 

            10=iteration    
Step-2. Initialize the learning rate parameter,µ . 

            02.0=µ   

Step-3.  Select a 3×3 window, w in an up-scaled image, ).,( yxgu  
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                                                    1,1,),(, ≤≤− tsyxw ts  

Step-4.  All the elements of the weight vector, iw  are initialized to 1.  

Step-5. Generate the enhanced input pattern vector, iLX from the nine-dimensional input 

             pattern vector, iX using (5.20) and (5.23).  

Step-6.  Calculate the output of the LFLANN structure by: 

                                                     )(tanh
37

1
iL

i
ii XwO ∑

=

=                                                         (5.24) 

Step-7.  Calculate the output error by:  

                                                           iii ODe −=                                                                     (5.25) 

             where, iD is the desired output (pixel value). 

Step-8.   Update the weight vector using the least mean square (LMS) algorithm given by:  

                                               )()()()1( lXlelwlw iiii µ+=+                                                  (5.26) 

              where, l  is the time index or iteration. 

Step-9.   Repeat Step-3 to Step-8 for all the ),( yx locations of the up-scaled image, ).,( yxgu  

Step-10. After the completion of the learning phase, the final updated weights are kept fixed 

              and are subsequently used in the testing phase for image de-blurring operation. 

Testing Phase: 

Step-11. Select a 3×3 window, w in another up-scaled image, ).,(1 yxgu  

Step-12. Generate the enhanced input pattern vector, iLX from the nine-dimensional input 

               pattern vector, iX using (5.20) and (5.23).  

Step-13.  Calculate the output of the LFLANN structure using (5.24). 

Step-14.  Repeat Step-11 to Step-13 for all the ),( yx locations of the up-scaled image, ),(1 yxgu  

               to obtain the restored, de-blurred image, ).,(ˆ yxf  
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Table 5.3   PSNR (dB) and UQI comparison of different schemes at 4:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

LFLANN 

[P9] 

Mandril PSNR(dB) 

UQI 

23.045 

0.8957 

23.630 

0.9114 

 

23.859 

0.9170 

23.925 

0.9187 

24.066 

0.9228 

24.178 

0.9260 

24.180 

0.9250 

Lena PSNR(dB) 

UQI 

32.704 

0.9922 

34.148 

0.9945 

34.813 

0.9953 

35.023 

0.9955 

35.080 

0.9956 

35.250 

0.9958 

35.454 

0.9960 

Barbara 
PSNR(dB) 

UQI 

24.925 

0.9631 

25.352 

0.9669 

 

25.428 

0.9675 

25.183 

0.9657 

25.562 

0.9687 

25.692 

0.9698 

25.630 

0.9692 

Boat 
PSNR(dB) 

UQI 

28.940 

0.9801 

29.952 

0.9845 

30.375 

0.9860 

30.466 

0.9863 

30.841 

0.9876 

30.870 

0.9877 

30.848 

0.9878 

Goldhill 
PSNR(dB) 

UQI 

30.574 

0.9880 

31.405 

0.9901 

 

31.725 

0.9909 

31.716 

0.9909 

31.993 

0.9915 

32.092 

0.9917 

32.027 

0.9914 

Pirate 
PSNR(dB) 

UQI 

30.027 

0.9853 

31.058 

0.9885 

31.490 

0.9897 

31.606 

0.9899 

31.952 

0.9908 

31.986 

0.9909 

32.039 

0.9909 

Livingroom 
PSNR(dB) 

UQI 

28.617 

0.9761 

29.557 

0.9811 

 

29.977 

0.9829 

30.128 

0.9835 

30.311 

0.9843 

30.439 

0.9850 

30.308 

0.9845 

Fingerprint PSNR(dB) 

UQI 

28.045 

0.9785 

30.632 

0.9889 

31.722 

0.9915 

32.133 

0.9922 

31.138 

0.9908 

31.345 

0.9913 

31.966 

0.9924 

Baboon PSNR(dB) 

UQI 

33.588 

0.9924 

35.014 

0.9946 

35.662 

0.9954 

35.890 

0.9956 

35.850 

0.9956 

36.042 

0.9958 

35.737 

0.9955 

Bridge PSNR(dB) 

UQI 

25.728 

0.9693 

26.504 

0.9748 

26.826 

0.9767 

26.919 

0.9772 

27.160 

0.9787 

27.255 

0.9793 

27.102 

0.9782 

Cameraman 
PSNR(dB) 

UQI 

33.214 

0.9959 

35.757 

0.9977 

37.216 

0.9984 

37.832 

0.9986 

36.963 

0.9983 

37.381 

0.9985 

35.979 

0.9982 

Cat 
PSNR(dB) 

UQI 

30.949 

0.9920 

31.982 

0.9937 

32.427 

0.9943 

32.563 

0.9945 

32.584 

0.9946 

32.826 

0.9949 

31.842 

0.9938 

Crowd 
PSNR(dB) 

UQI 

30.984 

0.9894 

32.666 

0.9930 

33.451 

0.9942 

33.768 

0.9946 

34.035 

0.9949 

34.026 

0.9950 

33.664 

0.9944 

Cycle 
PSNR(dB) 

UQI 

21.208 

0.9323 

21.895 

0.9437 

22.154 

0.9475 

22.129 

0.9474 

22.452 

0.9526 

22.543 

0.9538 

22.960 

0.9567 

F16 
PSNR(dB) 

UQI 

30.379 

0.9848 

31.543 

0.9885 

32.104 

0.9900 

32.722 

0.9913 

32.353 

0.9907 

32.319 

0.9907 

32.790 

0.9916 

House PSNR(dB) 

UQI 

29.248 

0.9719 

30.314 

0.9785 

 

30.807 

0.9809 

30.862 

0.9812 

30.980 

0.9820 

31.304 

0.9835 

30.855 

0.9817 

Lake PSNR(dB) 

UQI 

28.945 

0.9895 

30.022 

0.9919 

30.495 

0.9928 

30.793 

0.9933 

30.617 

0.9930 

30.700 

0.9932 

30.930 

0.9935 

Peppers PSNR(dB) 

UQI 

31.180 

0.9923 

31.991 

0.9937 

 

32.328 

0.9942 

32.747 

0.9947 

32.509 

0.9944 

32.407 

0.9943 

32.157 

0.9941 

Elaine 
PSNR(dB) 

UQI 

32.534 

0.9913 

33.117 

0.9924 

33.309 

0.9928 

33.284 

0.9927 

33.315 

0.9928 

33.413 

0.9930 

33.244 

0.9927 

Ruler 
PSNR(dB) 

UQI 

12.335 

0.5188 

12.613 

0.5735 

12.673 

0.5898 

12.600 

0.5920 

12.584 

0.6088 

12.823 

0.6371 

13.415 

0.6484 
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Table 5.4   PSNR (dB) and UQI comparison of different schemes at 16:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

LFLANN 

[P9] 

Mandril PSNR(dB) 

UQI 

20.883 

0.8191 

21.085 

0.8309 

21.156 

0.8351 

21.167 

0.8362 

21.181 

0.8365 

21.210 

0.8383 

21.282 

0.8424 

Lena PSNR(dB) 

UQI 

28.053 

0.9767 

28.848 

0.9810 

29.183 

0.9825 

 

29.296 

0.9829 

29.389 

0.9833 

29.407 

0.9835 

29.794 

0.9848 

Barbara 
PSNR(dB) 

UQI 

23.351 

0.9457 

23.607 

0.9496 

23.708 

0.9510 

23.747 

0.9515 

23.755 

0.9516 

23.765 

0.9519 

23.834 

0.9526 

Boat 
PSNR(dB) 

UQI 

25.041 

0.9493 

25.538 

0.9557 

25.739 

0.9580 

25.773 

0.9584 

25.849 

0.9592 

25.880 

0.9596 

26.137 

0.9624 

Goldhill 
PSNR(dB) 

UQI 

27.166 

0.9731 

27.628 

0.9761 

27.798 

0.9771 

27.776 

0.9770 

27.878 

0.9775 

27.913 

0.9778 

28.002 

0.9779 

Pirate 
PSNR(dB) 

UQI 

26.286 

0.9641 

26.861 

0.9691 

27.083 

0.9708 

27.127 

0.9712 

27.228 

0.9719 

27.243 

0.9721 

27.503 

0.9737 

Livingroom 
PSNR(dB) 

UQI 

24.932 

0.9420 

25.385 

0.9488 

25.560 

0.9511 

25.563 

0.9513 

25.634 

0.9521 

25.674 

0.9527 

25.800 

0.9544 

Fingerprint PSNR(dB) 

UQI 

20.920 

0.8791 

22.633 

0.9192 

23.779 

0.9407 

24.202 

0.9467 

24.218 

0.9478 

24.329 

0.9496 

24.468 

0.9542 

Baboon PSNR(dB) 

UQI 

28.812 

0.9766 

29.604 

0.9808 

29.931 

0.9823 

30.007 

0.9826 

30.018 

0.9827 

30.118 

0.9831 

30.207 

0.9835 

Bridge PSNR(dB) 

UQI 

22.676 

0.9357 

23.066 

0.9423 

23.230 

0.9449 

23.263 

0.9454 

23.297 

0.9459 

23.331 

0.9465 

23.371 

0.9466 

Cameraman 
PSNR(dB) 

UQI 

26.633 

0.9809 

27.546 

0.9847 

27.946 

0.9861 

28.094 

0.9866 

28.264 

0.9871 

28.261 

0.9872 

28.681 

0.9887 

Cat 
PSNR(dB) 

UQI 

27.295 

0.9812 

27.838 

0.9835 

28.059 

0.9844 

28.105 

0.9845 

28.141 

0.9847 

28.201 

0.9849 

28.191 

0.9852 

Crowd 
PSNR(dB) 

UQI 

25.759 

0.9634 

26.601 

0.9706 

26.974 

0.9733 

27.066 

0.9739 

 

27.205 

0.9748 

27.217 

0.9750 

27.359 

0.9756 

Cycle 
PSNR(dB) 

UQI 

18.693 

0.8727 

18.996 

0.8842 

 

19.109 

0.8883 

19.135 

0.8893 

19.167 

0.8903 

19.198 

0.8915 

19.330 

0.8935 

F16 
PSNR(dB) 

UQI 

25.767 

0.9540 

26.457 

0.9617 

26.773 

0.9647 

26.939 

0.9661 

26.965 

0.9664 

26.963 

0.9665 

27.150 

0.9684 

House PSNR(dB) 

UQI 

25.401 

0.9285 

25.863 

0.9373 

26.050 

0.9406 

26.063 

0.9409 

26.155 

0.9423 

26.183 

0.9429 

26.345 

0.9463 

Lake PSNR(dB) 

UQI 

24.783 

0.9720 

25.466 

0.9764 

25.746 

0.9780 

25.834 

0.9785 

25.911 

0.9789 

25.924 

0.9790 

26.207 

0.9803 

Peppers PSNR(dB) 

UQI 

27.359 

0.9811 

28.045 

0.9841 

28.330 

0.9852 

28.524 

0.9859 

28.547 

0.9860 

28.496 

0.9858 

28.604 

0.9863 

Elaine 
PSNR(dB) 

UQI 

29.771 

0.9832 

30.496 

0.9860 

30.785 

0.9870 

30.884 

0.9878 

30.984 

0.9876 

30.959 

0.9857 

30.883 

0.9872 

Ruler 
PSNR(dB) 

UQI 

10.707 

0.2036 

10.804 

0.2394 

10.873 

0.2608 

10.876 

0.2636 

10.873 

0.2638 

10.884 

0.2691 

10.843 

0.2252 
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Table 5.5 Average PSNR (dB) and UQI comparison of different interpolation techniques at 4:1 

compression ratio for various sequences over 50 frames  
Sequence Image 

Metric 

Bilinear 

[5] 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

LFLANN 

[P9] 
 

Salesman 

PSNR(dB) 

UQI 

28.107 

0.9649 

28.979 

0.9719 

29.327 

0.9742 

29.440 

0.9750 

29.744 

0.9770 

29.804 

0.9776 

29.723 

0.9771 
 

Bus 

PSNR(dB) 

UQI 

24.243 

0.9491 

25.262 

0.9610 

25.716 

0.9652 

25.794 

0.9660 

26.177 

0.9698 

26.362 

0.9713 

26.393 

0.9706 
 

Akiyo 

PSNR(dB) 

UQI 

31.686 

0.9927 

32.911 

0.9945 

33.450 

0.9952 

33.647 

0.9954 

34.187 

0.9959 

34.110 

0.9959 

33.963 

0.9957 
 

City 

PSNR(dB) 

UQI 

26.827 

0.9104 

27.592 

0.9277 

27.879 

0.9333 

27.852 

0.9333 

28.248 

0.9407 

28.358 

0.9433 

28.380 

0.9421 
 

Container 

PSNR(dB) 

UQI 

24.663 

0.9592 

25.567 

0.9676 

26.008 

0.9709 

26.256 

0.9727 

26.376 

0.9739 

26.448 

0.9746 

26.261 

0.9729 
 

Football 

PSNR(dB) 

UQI 

27.106 

0.9668 

28.568 

0.9769 

29.366 

0.9810 

29.687 

0.9824 

29.983 

0.9840 

30.178 

0.9849 

30.164 

0.9846 

  

Mobile 

PSNR(dB) 

UQI 

20.310 

0.9373 

21.197 

0.9502 

21.596 

0.9550 

21.758 

0.9569 

22.199 

0.9622 

22.239 

0.9628 

22.400 

0.9635 
 

Soccer 

PSNR(dB) 

UQI 

29.271 

0.9828 

30.254 

0.9863 

30.664 

0.9876 

30.748 

0.9878 

31.020 

0.9887 

31.166 

0.9891 

30.943 

0.9884 

 

 

 

Coast 

PSNR(dB) 

UQI 

25.585 

0.9692 

26.500 

0.9754 

26.939 

0.9779 

27.080 

0.9787 

27.255 

0.9797 

27.575 

0.9814 

27.389 

0.9804 

 

 

Table 5.6 Execution time of the proposed and existing algorithms at 4:1 CR 
 

Images of 
different size 

(M×N) 

Execution time in Seconds 

 
Bilinear 

[5] 

 
Bicubic 

[4] 

 
Lanczos3 

[12] 

 
DCT 
[74] 

 

 
LAL 
[P7] 

 
FWL 
[P8] 

 
LFLANN 

[P9] 

Clock 
(200×200) 

 
0.0141 

 
0.0150 

 
0.0151 

 
0.0518 

 
3.1982 

 
8.6076 

 
0.8933 

Lena 
(256×256) 

 
0.0147 

 
0.0152 

 
0.0157 

 
0.0633 

 
7.7949 

 
21.5439 

 
1.4455 

Fruit 
(377×321) 

 
0.0153 

 
0.0163 

 
0.0168 

 
0.1629 

 
56.9265 

 
82.9838 

 
2.6542 

Lena 
(512×512) 

 
0.0201 

 
0.0215 

 
0.0222 

 
0.1773 

 
335.1430 

 
384.0769 

 
5.6765 

Pentagon 
(1024×1024) 

 
0.0354 

 
0.0409 

 
0.0442 

 
0.6372 

 
6140.0514 

 
6399.0850 

 
22.7194 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.8 PSNR (dB) comparisons of various up-sampling schemes at 4:1 CR, meant for different 

sequences: (a) Container; (b) Football; (c) Mobile; (d) Salesman 
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 (a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 5.9 Subjective evaluation of Lena (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL 

(P7); (g) FWL (P8) ; (h) LFLANN (P9) 
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(a) (b) (c) 

(d) (e) 
 

(f) 

 (g)  (h) 

 
 

 

Fig. 5.10 Subjective evaluation of the selected low frequency green rectangular region (127×164) 

of Lena (512×512) image using various up-sampling scheme at 4:1 compression ratio: (a) 

Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL (P7); (g) FWL (P8); (h) 

LFLANN (P9) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 (f) 

 
(g) 

 
(h) 

 
 

 

Fig. 5.11  Subjective evaluation of the selected medium frequency orange rectangular region 

(164×125) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL (P7); (g) FWL 

(P8); (h) LFLANN (P9) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
 

 

Fig. 5.12  Subjective evaluation of the selected high frequency yellow rectangular region 

(123×174) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL (P7); (g) FWL 

(P8); (h) LFLANN (P9) 
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(a) 

 
(b)  

(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
 

 

Fig. 5.13  Subjective evaluation of the selected blue rectangular (76×76) of Lena (512×512) 

image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) 

Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL (P7); (g) FWL (P8); (h) LFLANN (P9) 
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(a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 5.14 Subjective evaluation of Boat (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL 

(P7); (g) FWL (P8); (h) LFLANN (P9) 
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(a) (b) (c) 

(d) (e)  (f) 

 (g)  (h) 

  

 

Fig. 5.15 Subjective evaluation of Goldhill (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) Bicubic; (d) Lanczos-3; (e) DCT; (f) LAL 

(P7); (g) FWL (P8); (h) LFLANN (P9) 
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 (a)  (b) 

 (c)  (d)  (e) 

 (f)  (g) 

 

 

Fig. 5.16 Error image of Lena (512×512) using various up-sampling schemes at 4:1 compression 

ratio: (a) Bilinear; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL (P8); (g) 

LFLANN (P9) 
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5.4 Results and Discussion  
The performance of the proposed algorithms is analyzed in terms of objective and subjective 

measures. The computational complexities of the algorithms are evaluated in terms of CPU 

execution time for images of different dimensions. The error images corresponding to different 

algorithms are generated to show the degree of HF restoration. The figures and tables showing 

the performance of the existing and proposed algorithms are explained below. 

 Table 5.3 and Table 5.4 show the objective performance in terms of PSNR (dB) and UQI 

of the proposed and existing algorithms at 4:1 and 16:1 compression ratio, respectively. Table 

5.5 reveals the average PSNR and UQI comparison of different algorithms for various video 

sequences at 4:1 compression ratio. PSNR (dB) vs. frame index plot corresponding to different 

sequences is given in Fig. 5.8. The execution time of different algorithms is shown in Table 5.6.  

The subjective performance of Lena (512×512), Boat (512×512) and Goldhill (512×512) 

images at 4:1 compression ratio is shown in Fig. 5.9, Fig. 5.14 and Fig. 5.15 using various up-

sampling schemes. In case of Fig. 5.9, four distinct regions with different features and thus 

different signal characteristics such as low, medium, high and their combinations are marked. 

Performance at these regions is analyzed. For this purpose, the output images at these regions are 

enlarged and shown in Fig. 5.10, Fig. 5.11, Fig. 5.12 and Fig. 5.13.  The error images of Lena 

(512×512) corresponding to various schemes are given in Fig. 5.16. 

The proposed algorithms show noticeable PSNR gain over the existing algorithms at 4:1 

compression ratio. The LAL scheme achieves better objective performance than DCT and 

Lanczos-3 for most of the images. It achieves the maximum PSNR gain of 0.584 dB and 0.267 

dB than Lanczos-3 and DCT in case of crowd image. Similarly for other images, LAL shows 

improved PSNR gain because of the employment a local adaptive post-processing algorithm 

whose performance varies as per the local statistics of an image. It shows PSNR improvement 

irrespective of variation in compression ratio because of its adaptability to varying constraints. 

The performance of FWL scheme is better than LAL because of the deployment of fuzzy 

based mapping scheme as illustrated in Table 5.3 and Table 5.4. The FWL scheme shows peak 

performance amongst various existing and proposed techniques for most of the images. In case 

of Boat, Living-room, House and Lena, FWL shows PSNR improvement of 0.404 dB, 0.311dB, 

0.442 dB and 0.23 dB, respectively than DCT at 4:1 compression ratio. It also shows better 
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performance than LAL for rest of the images except the Crowd image. FWL achieves further 

improvement is due to its fuzzy based nonlinear mapping instead of the linear mapping. LAL 

algorithm makes use of normalized mapping which is linear. In contrast, FWL uses fuzzy based 

mapping, which is nonlinear and predicts the HF components more accurately than LAL. 

In addition, the LFLANN scheme shows better performance than FWL at 4:1 

compression ratio for images like Mandril, Lena, Pirate, Cycle, F16, Lake and Ruler which are 

rich in HF components. It achieves better PSNR improvement over Lanczos-3 and DCT for 

almost all images. In case of images like Lena, Pirate, Cycle and Ruler, the LFLANN scheme 

achieves PSNR gain of 0.431dB, 0.433 dB, 0.831dB and 0.815 dB, respectively over DCT at 4:1 

compression ratio. At 16:1 compression ratio, LFLANN outperforms almost all existing and 

proposed algorithms in terms of PSNR and UQI as depicted in Table 5.4. So, the performance of 

LFLANN algorithm is better than FWL and LAL at higher compression ratio. The performance 

improvement is due to the nonlinearity introduced in the single layer LFLANN structure because 

of the functional expansion of input vector using Legendre polynomials. In case of various 

sequences, the proposed algorithms show better performance than the existing schemes in terms 

of average PSNR and UQI as illustrated in Table 5.5. 

The computational complexity of the proposed and existing algorithms in terms of 

execution time is illustrated in Table 5.6. It may be well observed from the table that, all the 

proposed algorithms are computationally more complex than the existing algorithms. It is 

because these algorithms are two-pass post-processing schemes and operate on up-scaled images 

of larger dimensions. Since LAL and FWL are local based two-pass schemes, are 

computationally more complex than LFLANN. The FWL algorithm is computationally more 

complex than LAL because of deploying fuzzy based mapping. The LFLANN is 

computationally less complex amongst the proposed algorithms because of its single layer 

structure. The requirement of multiple layer is resolved by using nonlinear function expansion of 

the input vector. So, LFLANN is preferred because of its reduced computational complexity. 

Furthermore, in case of LAL and FWL, there is a significant rise in execution time with respect 

to image dimension as shown in Table 5.6. At lower dimension, the execution time of LAL and 

FWL is less and even comparable to LFLANN. However, at a higher image dimension, the 

execution time increases exponentially and far exceeds the execution time of LFLANN. 
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Fig. 5.16 shows the absolute error image of various existing and proposed algorithms. 

The absolute error shows about the degree of HF restoration performance of the algorithms. 

Reduced error employs better restoration performance and vice versa. It is apparent from the 

figure that the absolute error is much reduced in case of the proposed algorithms which indicate 

better restoration performance. The absolute error in case of FWL is less than LAL showing 

better restoration performance. Likewise, the absolute error is least in case of LFLANN 

indicating the best HF restoration performance amongst all the algorithms. 

Lena (512×512) image, which has different regions of low, medium and high 

frequencies, is a suitable candidate for subjective evaluation of the proposed algorithms. The 

low, medium, high frequency regions of Lena image are considered for performance evaluation 

of the algorithms. The region rich in combination of different patterns is also considered for 

performance evaluation. 

 The green rectangular region (127×164) containing the shoulder portion of Lena image is 

considered as a low frequency region. The enlarged version of it using various algorithms is 

given in Fig. 5.10. Similarly, the enlarged versions of medium and high frequency regions are 

given in Fig. 5.11 and 5.12, respectively. The face and hair regions represent the medium and 

high frequencies, respectively. Fig 5.13 shows the eye and its surrounding region comprising 

low, medium and high frequencies.  

In all these cases, it may be perceived that low frequency regions are well preserved, the 

mid frequency regions are moderately enhanced and the HF regions are highly emphasized so as 

to compensate the HF loss during the up-sampling process. The low frequency regions are well 

preserved because these regions are not degraded during the up-sampling process. In addition, 

the central kernel weight and hence the slope of LAL and FWL kernel becomes automatically 

low for low variance regions due to the employed mapping scheme, resulting in less degree of 

enhancement. However, in case of medium and high frequency regions, the central kernel weight 

and slope of LAL and FWL kernel becomes moderate and high using the mapping schemes so as 

to provide medium and high degree of HF enhancement, respectively. The performance of FWL 

is found to be better than LAL in terms of HF restoration and visual quality because of the 

improved nonlinearity. Nevertheless, LAL and FWL schemes show some blocking artifacts in 

the HF regions because of the adaptive kernels employed. These artifacts are removed in case of 

LFLANN algorithm. Though LFLANN scheme gives less PSNR gain than FWL in majority of 
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images at 4:1 compression ratio, it has better subjective quality because of reduced blocking 

artifacts as demonstrated in Fig. 5.12 and Fig. 5.13.  

 In case of the proposed algorithms, the fine details and edge information, which 

represent the high frequency, are effectively enhanced resulting in a better visual quality. So, the 

overall subjective performance of the proposed schemes is more satisfactory than the existing 

schemes. 

 

5.5 Conclusion 
The proposed algorithms: LAL, FWL and LFLANN are local post-processing schemes which are 

employed for local HF enhancement of up-scaled images so as to lessen blurring at the edges and 

fast changing regions. Being the local based schemes, these algorithms tackle the local HF 

degradation more effectively than the existing schemes. The image degradation due to up-scaling 

is non-uniform and depends on the degree of local HF content. So, to deal with such situations, 

the feature of the LAL and FWL kernels are varied as per the local statistics to provide a more 

improved local HF restoration performance. 

 LAL being a local post-processing scheme, adaptively enhances high variance regions 

more than the low variance regions resulting in improved objective and subjective performance 

than DCT and other existing schemes as per the experimental results. However, the mapping 

technique introduced in this scheme is linear and therefore, the performance is further improved 

in FWL by employing a nonlinear fuzzy mapping. The incorporation of fuzzy rules into FWL 

makes the HF prediction more accurate than LAL resulting in better objective and subjective 

performance. 

 LFLANN, being a soft-computing technique, is exploited here for HF restoration in 

Lanczos-3 interpolated, up-scaled images. In case of almost all the images, it shows better 

objective performance than Lanczos-3 and DCT. It shows improved PSNR gain of 0.831dB and 

0.815 dB over DCT in case of Cycle and Ruler images at 4:1 compression ratio. The PSNR gain 

is due to the nonlinearity introduced into the system because of nonlinear function expansion 

using Legendre polynomials. 

 All the proposed algorithms show better performance than the existing schemes as per the 

experimental results. Amongst the proposed algorithms, the overall objective and subjective 
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performance of FWL is found to be superior than LAL and LFLANN in most of the images. In 

case of certain images which are rich in HF pattern like Lena, Pirate, Cycle and Ruler, LFLANN 

outperforms FWL at 4:1 compression ratio. Besides, at 16:1 compression ratio, LFLANN 

outperforms almost all the existing and proposed algorithms in terms of PSNR and UQI because 

of its high degree of nonlinearity and adaptability.  

 The proposed algorithms are computationally more complex than the given existing 

schemes. The proposed FWL and LAL are two-pass, local post-processing schemes and operate 

on up-scaled images of larger dimensions and hence are computationally more complex than 

various existing schemes like DCT and Lanczos-3. FWL consumes more computation time than 

LAL because of incorporating a fuzzy based mapping scheme. Hence, these post-processing 

schemes are not suitable for real-time applications. However, these are suitable for various off-

line applications.  

In contrast, LFLANN is computationally quite less complex than LAL and FWL because 

of its single layer architecture. It takes very less time for training due to its high convergence 

characteristics. It is due to its single layer LFLANN structure and LMS algorithm. The training 

time is reduced considerably by the substituting the requirement of multiple layers by a single 

layer structure by employing function expansion using Legendre polynomials. Likewise, the 

testing time of LFLANN is considerably reduced than FWL and LAL because of the single layer 

LFLANN structure and hence is suitable for real-time applications.  

In addition, the proposed adaptive algorithms work efficiently for different types of 

images under variation in compression ratio and image resolution and hence are considered to be 

more versatile. 
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Chapter 6 

 

Development of Some Spatial-domain 
Composite Algorithms 

 

Preview 
 

This chapter presents two spatial domain composite algorithms to tackle non-uniform blurring in 

an up-scaled image. Various pre-processing and post-processing algorithms, proposed in the 

previous chapters, show considerably high de-blurring performance under different conditions. 

However, there is a scope for further improvement by combining the pre-processing and post-

processing algorithms. The pre-processing algorithms are basically based on boosting of HF 

details using various global HF enhancement schemes. On the other hand, the post-processing 

algorithms are primarily based on HF prediction using various local adaptive schemes. Hence, it 

is presumed that the fusion of both the processes would give better HF restoration performance 

than the proposed preceding algorithms.  

 One of the proposed composite schemes (CS-I) is developed by combining global 

iterative Laplacian (GIL) based pre-processing scheme with the local adaptive Laplacian (LAL) 

post-processing scheme. In this method, the HF detail of an input image is boosted up iteratively 

using Laplacian operator to counter blurring in the corresponding up-scaled image. Furthermore, 

local adaptive Laplacian operator locally predicts the HF details as per the local statistics to 

effectively restore the HF contents in the up-scaled image. 

 Another composite scheme (CS-II) is proposed which combines iterative Laplacian of 

Laplacian based global pre-processing (ILLGP) scheme with a newly proposed local fuzzy 

weighted Laplacian, CFWL post-processing scheme for more improved performance. The 

incorporation of fuzzy rules makes the composite scheme, CS-II more nonlinear than the former 

composite scheme, CS-I for better performance. The fuzzy based post-processing scheme is 

made more nonlinear through the variations of various parameters of the fuzzy inference system 
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(FIS) such as slope, width and the number of input-, and output membership functions. The 

effective fusion of pre-processing and post-processing operations makes the proposed scheme 

much effective to tackle the non-uniform blurring than the standalone pre-processing and post-

processing algorithms.   

 Simulation results, presented at the end of the chapter, are quite encouraging. 

The organisation of this chapter is given below. 

• Composite Scheme (CS-I) using Iterative Laplacian and Local Adaptive Laplacian 

• Composite Scheme (CS-II) using Iterative Laplacian of Laplacian and Fuzzy 

Weighted Laplacian 

• Results and Discussion 

• Conclusion 
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6.1 Composite Scheme (CS-I) using Iterative Laplacian and 

Local Adaptive Laplacian [P10] 
 

 

 

  

       

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 Composite Scheme (CS-I) using Iterative Laplacian and Local Adaptive Laplacian 

 

The proposed composite scheme (CS-I) is developed by combining a pre-processing and a post-

processing operation to effectively restore HF and VHF information in an up-scaled image. CS-I 

exploits the advantages of either of the techniques for more improved restoration performance. 

The pre-processing operation makes use of global iterative Laplacian sharpening scheme prior to 

image up-scaling to boost up the high frequency information so as to alleviate the extent of 

blurring in the up-scaled images. The post-processing scheme is operated on the up-scaled 
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images to enhance and predict the HF information using a local statistics based local adaptive 

Laplacian filter. The appropriate fusion of pre-processing and post-processing operations results 

in more accurate prediction and enhancement of high frequency to counter blurring in the up-

scaled images. It is presumed that the effective fusion of both the schemes gives better HF and 

VHF restoration performance than the standalone schemes. The composite scheme CS-I 

comprises the following three steps. 

1. HF enhancement using global iterative Laplacian (GIL) 

2. Image up-scaling using Lanczos-3 interpolation 

3. HF prediction using local adaptive Laplacian (LAL)   

HF enhancement using global iterative Laplacian (GIL) is explained in the subsequent section. 

The Lanczos-3 interpolation and the Local adaptive Laplacian based post-processing are 

explained in Section 2.5.1 and Section 5.1. 

  

6.1.1 HF Enhancement using Global Iterative Laplacian (GIL) 
The composite scheme performs HF enhancement in the pre-processing step by boosting the 

VHF and HF details which are much more degraded than the medium and low frequency details 

during the up-sampling process. To reduce such HF degradation, the sub-sampled image is 

superimposed with HF extracts which are obtained using global iterative Laplacian operation 

prior to image up-scaling. The Laplacian operator being based on 2nd order derivative is a high 

pass filter and is used to obtain the HF extract of an image. Higher the order of the derivative 

operator, better will be its capability to extract the finer and subtler details of an image that 

corresponds to VHF. The iterative Laplacian uses the Laplacian for three iterations and hence is 

based on 6th order derivative. So, it is more capable of extracting the very fine and subtler details 

of an image as compare to Laplacian. 

 The number of iterations of the pre-processing algorithm plays a major role in 

determining the restoration performance of the algorithm. The high frequency restoration 

performance of the algorithm is found to be maximum during the third iteration and then 

gradually reduces towards the higher order iterations as shown in Fig. 6.2. Since the VHF and 

HF extracts too undergo deformation towards further higher order derivatives, the restoration 

performance declines after third iteration. Hence, the number of iterations is limited to three to 
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have a better restored image quality with less high frequency deformation as illustrated in Fig. 

6.2. The details of global iterative Laplacian pre-processing scheme is discussed as follows. 

Let ),( yxg be a sub-sampled low resolution input image. During the pre-processing 

operation, the sub-sampled image is linearly convolved with the Laplacian operator for three 

iterations to generate the VHF extracts. Let ),(2 yxg∇ be the output obtained after convolving the 

sub-sampled image ),( yxg with the Laplacian operator ),( yxhLa after the first iteration, which is 

expressed as 
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where, the 3×3 Laplacian operator, ),( yxhLa is given by, 
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Similarly, ),(4 yxg∇ and ),(6 yxg∇ are the outputs after two and three iterations, respectively. So, 

the HF extracts after two and three iterations are given by, 
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Let ),( yxgs  be the sharpened sub-sampled image which is obtained by the weighted 

superimposition of HF extract after three iterations with the sub-sampled image ),( yxg and is 

given by, 

                                         ),(),(),( 6
1 yxgKyxgyxgs ∇+=                                                      (6.5) 

where, 0028.01 =K . The term 1K is the intensity scaling factor or the weight factor that 

determines the degree of sharpening in the pre-processing phase of the composite algorithm. 

However, the weight factor, 1K in the standalone GIL pre-processing scheme is different from 

the 1K in the composite scheme. The detail estimation of weight factor is given in Section 6.1.3. 

 Subsequent to image sharpening, the sharpened image, ),( yxgs is up-scaled using 

Lanczos-3 interpolation. The HF detail in the up-scaled image is further enhanced using local 
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adaptive Laplacian (LAL) scheme which is illustrated in Section 5.1. However, the weight 

factor, 2K  of LAL post-processing scheme which is employed in the composite algorithm, is 

different and generally less than that of the standalone LAL scheme for effective HF prediction. 

It is because the desired amount of sharpening in composite scheme is shared by both of its 

constituent pre-processing and post-processing algorithms. The detailed estimation of weight 

factors 1K and 2K is given in Section 6.1.3. 

 

6.1.2 CS-I Algorithm 
The proposed CS-I composite algorithm comprises a pre-processing and a post-processing 

algorithm which are given below. 

Pre-processing Algorithm: 

Let ),( yxg and ),(6 yxg∇ denote the sub-sampled image and its filtered version using Laplacian 

after three iterations. Let them be of size QP× . The sharpened version of the sub-sampled image 

is denoted by ),( yxgs . The Laplacian kernel used for the iterative operation is denoted by

),( yxhL . The pre-processing algorithm is given below. 1K and 2K denote the weight factors of 

the pre-processing and post-processing algorithms, respectively. 

Step 1. Apply the Laplacian operation, given by (6.1), on the sub-sampled image ),( yxg and 

             iterate it 3 times to obtain ),(6 yxg∇ . 

Step 2.  Add the weighted version of the filtered output ),(6 yxg∇  to the original sub- 

              sampled image ),( yxg to generate a sharpened sub-sampled image, ),( yxgs using (6.5). 

            where, =1K 0.0028 

Step 3.  Interpolate sub-sampled image ),( yxgs  by Lanczos-3 interpolation to obtain the up- 

            scaled image, ),( yxgu of size )22( QP×  using (2.3). 

Post-processing Algorithm: 

The post-processing algorithm is same as local adaptive Laplacian (LAL) algorithm which is 

given in Section 5.1.1. However, the weight factor, 2K is different from the standalone LAL 

scheme and its estimation is illustrated in Section 6.1.3. The estimated value of weight factor, 2K  

for the composite scheme, CS-I is given by, 2866.02 =K .  
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(a) 

 
(b) 

 
(c) 

 

Fig. 6.2  PSNR (dB) vs. 1K  characteristic plot for 1st frame of different sequences for different 

iterations at 4:1 compression ratio: (a) Akiyo; (b) Soccer; (c) Mobile 

 

6.1.3 Estimation of Weight Factors 1K and 2K for CS-I 

In case of the composite scheme, the PSNR (dB) gain is a function of weight factors 1K  and 2K . 

Therefore, the precise estimation of weight factors is imperative for optimum performance of the 

composite algorithm. In order to obtain the optimized weight factors, simulation studies are 

carried to observe the variation in PSNR (dB) with respect to the variations in the weight factors 

1K  and 2K , respectively. Hence, PSNR (dB) vs. 1K  and 2K  surface plots are generated for three 
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different types of images as illustrated in Fig. 6.3.  The weight factors 1K  and 2K corresponding 

to maximum PSNR are determined from the 3-D characteristic plots for each image type. The 

contours corresponding to high PSNR region in the 3-D plots don’t vary much in all the three 

different cases. Hence, the optimized weight factors 1K and 2K  are calculated by averaging the 

corresponding weight factors in all the three different cases as illustrated in Table 6.1. In case of 

the composite scheme, the weight factors are found to be less i.e. almost half the value of the 

standalone schemes. It is because, the HF enhancement is performed in two phases unlike the 

standalone schemes where the HF enhancement is done in a single phase. In addition, the weight 

factors corresponding to maximum PSNR doesn’t vary much for different images because of the 

improved nonlinearity and adaptability of the composite algorithm. 

 The estimated weight factors 1K and 2K are different for different images but their 

variations for the optimum performance is confined to a narrow range because of adopting higher 

order derivative operator in the pre-processing operation and by opting a highly adaptive, local 

statistics based Laplacian filter for the post-processing operation. Hence, their estimation become 

more precise for better HF restoration performance. 

 Moreover, the weight factors are different in the standalone pre-processing and post-

processing schemes. The standalone pre-processing weight factor, 1K is determined from the 

PSNR vs. 1K characteristics plots of 1st frame of different sequences which are given in Fig. 6.2. 

The weight factor, 1K  corresponding to maximum PSNR is taken for three different frames. The 

overall weight factor is estimated by averaging these weight factors and is taken as 0.005. 

Likewise, the estimation standalone post-processing weight factor, 2K is given in Section 5.2.3. 

   

 Table 6.1 Weight factors, 1K  and 2K estimation for the proposed composite scheme, CS-I 

Weight Factors 

1st frame of different Sequences 

Average Weight Factors Akiyo Bus Mobile 

1K  0.0025 0.0035 0.0025 0.0028 

2K  0.32 0.3 0.24 0.2866 
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Fig. 6.3 3-D characteristic plot of PSNR (dB) vs. 1K and 2K  for the 1st frame of different 

sequences using the proposed composite scheme CS-I: (a) Bus; (b) Akiyo; (c) Mobile        
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6.2 Composite Scheme (CS-II) using Iterative 

Laplacian of Laplacian and Fuzzy Weighted 

Laplacian [P11] 
 

 

  

       

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 6.4 Composite Scheme (CS-II) using Iterative Laplacian of Laplacian and Fuzzy weighted 

Laplacian 
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There is a scope to improve the performance of the previous composite algorithm, CS-I through 

incorporation of fuzzy rule base. Here, a highly nonlinear, fuzzy logic based, composite scheme, 

CS-II is proposed by combining a pre-processing and a post-processing operation to efficiently 

restore high frequency (HF) and very high frequency (VHF) details in an up-scaled image. The 

fuzzy composite scheme is developed on the basis of inverse process of HF degradation to 

resolve the blurring problem effectively.  

During the pre-processing operation, the HF and VHF components of an image are 

boosted up using recursive Laplacian of Laplacian (LOL) operator prior to image up-scaling. 

Subsequent to the image up-scaling, a local adaptive, composite fuzzy weighted Laplacian post-

processing scheme is used for further quality improvement of the up-scaled image. The post-

processing operation is a local statistics based fuzzy weighted Laplacian scheme which enhances 

the high variance regions more than the low variance regions based on fuzzy rule base so as to 

effectively restore the HF and VHF components. 

The HF restoration performance of the fuzzy based composite scheme is enhanced by 

improving its nonlinearity through the variations of different parameters of the fuzzy inference 

system (FIS) such as slope, width and the number of input-, and output membership functions. 

The effective fusion of pre-processing and post-processing operations makes the proposed 

scheme much effective to tackle the non-uniform blurring than the standalone pre-processing and 

post-processing techniques.  

The proposed composite scheme, CS-II comprises the following three steps. 

1. HF enhancement using iterative Laplacian of  Laplacian global pre-processing (ILLGP) 

2. Image up-scaling using Lanczos-3 interpolation 

3. HF prediction using composite fuzzy weighted Laplacian (CFWL) post-processing 

The pre-processing scheme (ILLGP) is discussed in Section 3.3 of Chapter-3. The CFWL 

scheme is same as FWL post-processing scheme discussed in Section 5.2 of Chapter-5. 

However, the fuzzy mapping technique, employed in CFWL is different from the fuzzy mapping 

technique used in standalone FWL post-processing scheme discussed in Section 5.2. The 

remaining part of both of the algorithms is same. A different fuzzy mapping technique is 

employed in CFWL scheme to further raise the nonlinearity of FWL for better restoration 

performance. The fuzzy mapping technique employed in CFWL scheme is discussed in the 

subsequent section.  
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6.2.1 Fuzzy Mapping Technique Employed in CFWL 
In case of CFWL post-processing scheme, the algorithm is optimized by making its mapping 

more nonlinear. The nonlinearity of the algorithm is enhanced by varying the parameters such as 

slope, width of each membership function and by keeping the number of input and output 

membership functions uneven. The CFWL post-processing scheme is a single-input-single-

output (SISO) fuzzy inference system (FIS) that improves the nonlinearity of the process for 

better restoration performance.  

Selection of the number and type of membership functions plays a major role in deciding 

the degree of nonlinearity of a fuzzy system. As per our convenience, triangular membership 

functions are taken for fuzzyfication of input-, and output-variables. In this algorithm, the 

numbers of input and output membership functions are kept uneven i.e. three and two 

respectively to raise the nonlinearity of FIS for better restoration performance. Moreover, the 

slope and width of each input and output triangular membership functions are kept different in 

order to make the system more nonlinear. The input and output variables are normalized to a 

scale of 10. 

         In this CFWL algorithm, 3×3 normalized local variance, 2
Nσ is taken as the input variable 

and the central weight, tOw  of the fuzzy weighted Laplacian kernel is taken as the output variable 

of FIS. The central weight, tOw  is updated as per the de-fuzzyfied output of the FIS which maps 

the output according to the normalized 3×3 local variance based on the rule base. Centroid 

method of de-fuzzification is used to produce a crisp defuzzified output which updates the 

coefficients of fuzzy weighted Laplacian kernel for enhancement of local HF information. The 

graphical representation of input and output membership functions is depicted in Fig. 6.5. A sum 

total of five fuzzy if-then rules are formed for inclusion into the rule base. 

             Let )(),( 22
NYiNXi σµσµ and )( 2

NZi σµ  denote the low, medium and high input 

membership functions of the input-variable, 2
Nσ . Let )( tOX wµ and )( tOY wµ be the low and high 

membership functions of the output variable respectively. The expressions for the three input 

membership functions are given by, 

 

 

 



Chapter 6                 Development of Some Spatial-domain Composite Algorithms 
 

169 

 

 

 
(a) 

 
(b) 

 

Fig. 6.5  Graphical representation of membership functions of CFWL post-processing algorithm:  

(a) Input; (b) output 
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Similarly, the expressions for output membership functions are given by, 
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As per the rule base, the minimum of any two membership functions are given by,  

                                  ( { } )2 2
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To obtain an individual response, )(1 twR corresponding to an arbitrary input 2
Nσ , AND operation 

is performed in between )( 2
NiX σµ and the general result ),( 2

tNOXiX wσµ


evaluated at 2
Nσ

according to fuzzy if-then rule-1. Similarly, )(),(,)( 432 ttt wRwRwR and )(5 twR  are obtained as 

per the knowledge base. The expressions for all the individual responses according to the rule 

base are given by, 
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The overall response is obtained by aggregating all the individual responses using OR operator 

and is given by, 
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The crisp output, tOw  from the fuzzy set, )( twR is obtained through centre of gravity de-

fuzzification method. Since )( twR can have k  possible values, the centre of gravity of )( twR  is 

given by, 
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The de-fuzzified output, tOw  updates the central weight of the fuzzy weighted Laplacian kernel 

),( yxhFWL for enhancing local high frequency information and is given by, 
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The remaining filter coefficients of the FWL kernel are attuned so that the sum of all the filter 

coefficients becomes zero. The expression of central weight, tOw  shows nonlinear mapping 

between input and output variables.  

 The overall input-output curve of FIS is obtained by plotting the de-fuzzified output, Otw  

with respect to the normalized local variance, 2
Nσ . The plot is obtained using the 1st frame of 

salesman sequence and is shown in Fig. 6.6. The overall input-output characteristic gives an idea 

about the characteristics of composite fuzzy mapping technique. It is quite apparent from the 

figure that the characteristic is nonlinear and hence is responsible for nonlinear mapping between 

input and output variables for better HF restoration performance. 
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Fig. 6.6 Overall input output curve of 1st frame of salesman sequence using CFWL algorithm 

 

 HF extracts from the up-scaled image is obtained using local adaptive FWL filter. Let 

),( yxgu and ),( yxψ be the up-scaled image and the HF extracts respectively. The HF extract 

obtained by FWL filter is given by, 

                                   ),(),(),(
1

1

1

1
tysxgtshyx u

s t
FWL ++= ∑∑

−= −=

ψ                                               (6.13) 

Intensity scaling is performed on the HF extracts according to the estimated weight 

factor, 2K  so as to perform precise sharpening to counter blurring effectively in an up-sampled 

image. Precise estimation of weight factor plays a major role for the improved performance of 

the proposed composite algorithm. The weight factor, 2K  at 4:1 compression ratio is different 

for composite and standalone scheme and is illustrated in Section 6.2.3. The weighted version of 

the HF extracts is then superimposed on the up-sampled image to obtain the restored image and 

is given by, 

                                             ),(),(),(ˆ
2 yxKyxgyxf u ψ+=                                                 (6.14) 

where, 186.02 =K . The detail estimation of 2K is illustrated in Section 6.2.3.                               
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6.2.2 CS-II Algorithm 
The proposed CS-II composite algorithm comprises a pre-processing and a post-processing 

phase. The pre-processing phase completely utilizes ILLGP algorithm to enhance the HF details 

in an input image. However, the weight factor, 1K used in this pre-processing phase of the 

composite scheme is different from the weight factor used in standalone ILLGP algorithm. The 

weight factor used in the pre-processing phase is estimated as 0012.01 =K . The ILLGP 

algorithm is illustrated in Section 3.3.1. The estimation of weight factor, 1K  is given in Section 

6.2.3. 

The post-processing phase utilizes FWL algorithm to enhance and predict HF 

information in the up-scaled image. The FWL post-processing algorithm is illustrated in Section 

5.2.2. But the fuzzy mapping technique employed in this composite scheme is different from the 

fuzzy mapping technique employed in FWL standalone post-processing scheme. The fuzzy 

mapping technique employed in CS-II algorithm is illustrated in Section 6.2.1. The weight 

factor, 2K used in the post-processing phase of the composite algorithm is different from the 

standalone FWL algorithm. The weight factor, corresponding to post-processing phase of the 

composite algorithm is given by, 186.02 =K . The detail estimation of weight factor, 2K is given 

in Section 6.2.3.  

 

6.2.3 Estimation of Weight Factors 1K and 2K for CS-II 

The proposed CS-II composite algorithm comprises a pre-processing and post-processing phase 

and hence has two weight factors to perform intensity scaling in both of the phases. In case of the 

composite scheme, the PSNR (dB) gain is a function of weight factors 1K  and 2K . Therefore, the 

precise estimation of weight factors is imperative for optimum performance of the composite 

algorithm. In order to obtain the optimized weight factors, simulation studies are carried to 

observe the variation in PSNR (dB) with respect to the variations in the weight factors 1K  and

2K respectively. Hence, PSNR (dB) vs. 1K  and 2K  surface plots are generated for three different 

types of images as illustrated in Fig. 6.7.  The weight factors 1K  and 2K corresponding to 

maximum PSNR are determined from the 3-D characteristic plots for each image. The contours 

corresponding  to  high  PSNR  region  in   the  3-D   plots  don’t  vary  much  in all  the  three  
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(a) 

 
(b) 

 
(c) 

 

Fig. 6.7 3-D characteristic plot of PSNR (dB) vs. 1K and 2K  for the 1st frame of different 

sequences using the proposed composite scheme, CS-II: (a) Akiyo; (b) City; (c) Soccer        
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Table 6.2 Weight factor, 1K   and 2K estimation for the proposed composite scheme, CS-II 

Weight Factors 
1st frame of different Sequences 

Average Weight Factors Akiyo City Soccer 
1K  0.001 0.0014 0.0012 0.0012 
2K  0.2 0.16 0.2 0.186 

 

different cases. Hence, the optimized weight factors 1K and 2K  are calculated by averaging the 

corresponding weight factors in all the three different cases as illustrated in Table 6.2. 1K is 

estimated to be 0.0012 and the weight factor 2K is estimated as 0.186 for the composite scheme, 

CS-II for better HF restoration performance.  

             

 

 

Fig. 6.8 PSNR (dB) comparison of composite scheme, CS-I with pre-processing scheme, GIL 

and post-processing scheme, LAL for different video sequences at 4:1 compression ratio: (a) 

Salesman; (b) Bus 

 
(a) 

 
(b) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 6.9 PSNR (dB) comparison of composite scheme, CS-II with pre-processing scheme, ILLGP 

and fuzzy post-processing scheme, CFWL for different video sequences at 4:1 compression 

ratio: (a) Container; (b) City; (c) Stefan; (d) Bus 



Chapter 6                 Development of Some Spatial-domain Composite Algorithms 
 

177 

 

Table 6.3   PSNR (dB) and UQI comparison of different schemes at 4:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

 

ILLGP 

[P3] 

GIL 

 

 

CS-I 

[P10] 

CS-II 

[P11] 

Mandril PSNR(dB) 

UQI 

23.630 

0.9114 

 

23.859 

0.9170 

23.925 

0.9187 

24.066 

0.9228 

24.178 

0.9260 

24.288 

0.9271 

24.218 

0.9263 

24.232 

0.9263 

24.282 

0.9278 

Lena PSNR(dB) 

UQI 

34.148 

0.9945 

34.813 

0.9953 

35.023 

0.9955 

35.080 

0.9956 

35.250 

0.9958 

35.439 

0.9959 

35.444 

0.9959 

35.531 

0.9960 

35.562 

0.9961 

Barbara 
PSNR(dB) 

UQI 

25.352 

0.9669 

 

25.428 

0.9675 

25.183 

0.9657 

25.562 

0.9687 

25.692 

0.9698 

25.744 

0.9701 

25.706 

0.9699 

25.748 

0.9701 

25.781 

0.9705 

Boat 
PSNR(dB) 

UQI 

29.952 

0.9845 

30.375 

0.9860 

30.466 

0.9863 

30.841 

0.9876 

30.870 

0.9877 

30.879 

0.9876 

30.825 

0.9875 

30.958 

0.9879 

30.983 

0.9880 

Goldhill 
PSNR(dB) 

UQI 

31.405 

0.9901 

 

31.725 

0.9909 

31.716 

0.9909 

31.993 

0.9915 

32.092 

0.9917 

32.080 

0.9916 

32.087 

0.9916 

32.157 

0.9918 

32.197 

0.9919 

Pirate 
PSNR(dB) 

UQI 

31.058 

0.9885 

31.490 

0.9897 

31.606 

0.9899 

31.952 

0.9908 

31.986 

0.9909 

32.047 

0.9910 

31.997 

0.9909 

32.140 

0.9912 

32.161 

0.9912 

Livingroom 
PSNR(dB) 

UQI 

29.557 

0.9811 

 

29.977 

0.9829 

30.128 

0.9835 

30.311 

0.9843 

30.439 

0.9850 

30.524 

0.9851 

30.446 

0.9848 

30.480 

0.9849 

30.594 

0.9854 

Fingerprint PSNR(dB) 

UQI 

30.632 

0.9889 

31.722 

0.9915 

32.133 

0.9922 

31.138 

0.9908 

31.345 

0.9913 

32.798 

0.9934 

32.668 

0.9933 

32.457 

0.9930 

32.458 

0.9931 

Baboon PSNR(dB) 

UQI 

35.014 

0.9946 

35.662 

0.9954 

35.890 

0.9956 

35.850 

0.9956 

36.042 

0.9958 

36.142 

0.9959 

36.214 

0.9959 

36.240 

0.9960 

36.271 

0.9960 

Bridge 
PSNR(dB) 

UQI 

26.504 

0.9748 

26.826 

0.9767 

26.919 

0.9772 

27.160 

0.9787 

27.255 

0.9793 

27.333 

0.9795 

27.245 

0.9791 

27.343 

0.9796 

27.367 

0.9798 

Cameraman 
PSNR(dB) 

UQI 

35.757 

0.9977 

37.216 

0.9984 

37.832 

0.9986 

36.963 

0.9983 

37.381 

0.9985 

38.349 

0.9988 

38.385 

0.9988 

38.243 

0.9987 

38.463 

0.9988 

Cat 
PSNR(dB) 

UQI 

31.982 

0.9937 

32.427 

0.9943 

32.563 

0.9945 

32.584 

0.9946 

32.826 

0.9949 

33.046 

0.9951 

32.937 

0.9950 

 

32.941 

0.9950 

33.037 

0.9951 

Crowd 
PSNR(dB) 

UQI 

32.666 

0.9930 

33.451 

0.9942 

33.768 

0.9946 

34.035 

0.9949 

34.026 

0.9950 

34.415 

0.9953 

34.246 

0.9952 

34.405 

0.9954 

34.430 

0.9954 

Cycle 
PSNR(dB) 

UQI 

21.895 

0.9437 

22.154 

0.9475 

22.129 

0.9474 

22.452 

0.9526 

22.543 

0.9538 

22.633 

0.9541 

22.570 

0.9536 

22.597 

0.9541 

22.661 

0.9551 

F16 
PSNR(dB) 

UQI 

31.543 

0.9885 

32.104 

0.9900 

32.722 

0.9913 

32.353 

0.9907 

32.319 

0.9907 

32.484 

0.9909 

32.536 

0.9910 

32.638 

0.9912 

32.576 

0.9912 

House PSNR(dB) 

UQI 

30.314 

0.9785 

 

30.807 

0.9809 

30.862 

0.9812 

30.980 

0.9820 

31.304 

0.9835 

31.596 

0.9843 

31.423 

0.9837 

31.412 

0.9837 

31.585 

0.9844 

Lake PSNR(dB) 

UQI 

30.022 

0.9919 

30.495 

0.9928 

30.793 

0.9933 

30.617 

0.9930 

30.700 

0.9932 

31.021 

0.9936 

30.942 

0.9935 

30.960 

0.9936 

30.965 

0.9936 

Peppers 
PSNR(dB) 

UQI 

31.991 

0.9937 

 

32.328 

0.9942 

32.747 

0.9947 

32.509 

0.9944 

32.407 

0.9943 

32.652 

0.9946 

32.644 

0.9946 

32.713 

0.9947 

32.625 

0.9946 

Elaine 
PSNR(dB) 

UQI 

33.117 

0.9924 

33.309 

0.9928 

33.284 

0.9927 

33.315 

0.9928 

33.413 

0.9930 

33.371 

0.9929 

33.479 

0.9931 

33.523 

0.9932 

33.502 

0.9931 

Ruler 
PSNR(dB) 

UQI 

12.613 

0.5735 

12.673 

0.5898 

12.600 

0.5920 

12.584 

0.6088 

12.823 

0.6371 

12.890 

0.6351 

12.823 

0.6211 

12.749 

0.6165 

12.765 

0.6337 
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Table 6.4   PSNR (dB) and UQI comparison of different schemes at 16:1 compression ratio for 

various (512×512) images  

Image Image 

Metric 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

ILLGP 

[P3] 

CS-I 

[P10] 

CS-II 

[P11] 

Mandril PSNR(dB) 

UQI 

21.085 

0.8309 

21.156 

0.8351 

21.167 

0.8362 

21.181 

0.8365 

21.210 

0.8383 

21.292 

0.8440 

21.280 

0.8423 

21.286 

0.8424 

Lena PSNR(dB) 

UQI 

28.848 

0.9810 

29.183 

0.9825 

 

29.296 

0.9829 

29.389 

0.9833 

29.407 

0.9835 

29.556 

0.9841 

29.635 

0.9843 

29.612 

0.9843 

Barbara 
PSNR(dB) 

UQI 

23.607 

0.9496 

23.708 

0.9510 

23.747 

0.9515 

23.755 

0.9516 

23.765 

0.9519 

23.829 

0.9528 

23.843 

0.9528 

23.842 

0.9528 

Boat 
PSNR(dB) 

UQI 

25.538 

0.9557 

25.739 

0.9580 

25.773 

0.9584 

25.849 

0.9592 

25.880 

0.9596 

26.024 

0.9612 

26.000 

0.9608 

26.020 

0.9610 

Goldhill 
PSNR(dB) 

UQI 

27.628 

0.9761 

27.798 

0.9771 

27.776 

0.9770 

27.878 

0.9775 

27.913 

0.9778 

27.973 

0.9782 

28.009 

0.9783 

28.020 

0.9784 

Pirate 
PSNR(dB) 

UQI 

26.861 

0.9691 

27.083 

0.9708 

27.127 

0.9712 

27.228 

0.9719 

27.243 

0.9721 

27.379 

0.9731 

27.395 

0.9731 

27.397 

0.9731 

Livingroom 
PSNR(dB) 

UQI 

25.385 

0.9488 

25.560 

0.9511 

25.563 

0.9513 

25.634 

0.9521 

25.674 

0.9527 

25.815 

0.9547 

25.781 

0.9540 

25.812 

0.9544 

Fingerprint PSNR(dB) 

UQI 

22.633 

0.9192 

23.779 

0.9407 

24.202 

0.9467 

24.218 

0.9478 

24.329 

0.9496 

24.948 

0.9589 

24.773 

0.9567 

24.875 

0.9570 

Baboon PSNR(dB) 

UQI 

29.604 

0.9808 

29.931 

0.9823 

30.007 

0.9826 

30.018 

0.9827 

30.118 

0.9831 

30.318 

0.9840 

30.341 

0.9840 

30.353 

0.9841 

Bridge 
PSNR(dB) 

UQI 

23.066 

0.9423 

23.230 

0.9449 

23.263 

0.9454 

23.297 

0.9459 

23.331 

0.9465 

23.473 

0.9487 

23.433 

0.9479 

23.453 

0.9482 

Cameraman 
PSNR(dB) 

UQI 

27.546 

0.9847 

27.946 

0.9861 

28.094 

0.9866 

28.264 

0.9871 

28.261 

0.9872 

28.532 

0.9880 

28.513 

0.9879 

28.540 

0.9880 

Cat 
PSNR(dB) 

UQI 

27.838 

0.9835 

28.059 

0.9844 

28.105 

0.9845 

28.141 

0.9847 

28.201 

0.9849 

28.417 

0.9857 

28.371 

0.9855 

28.390 

0.9856 

Crowd 
PSNR(dB) 

UQI 

26.601 

0.9706 

26.974 

0.9733 

27.066 

0.9739 

 

27.205 

0.9748 

27.217 

0.9750 

27.497 

0.9767 

27.451 

0.9764 

 

27.470 

0.9764 

Cycle 
PSNR(dB) 

UQI 

18.996 

0.8842 

 

19.109 

0.8883 

19.135 

0.8893 

19.167 

0.8903 

19.198 

0.8915 

19.302 

0.8959 

19.286 

0.8945 

19.296 

0.8948 

F16 
PSNR(dB) 

UQI 

26.457 

0.9617 

26.773 

0.9647 

26.939 

0.9661 

26.965 

0.9664 

26.963 

0.9665 

27.055 

0.9675 

27.124 

0.9678 

27.116 

0.9678 

House PSNR(dB) 

UQI 

25.863 

0.9373 

26.050 

0.9406 

26.063 

0.9409 

26.155 

0.9423 

26.183 

0.9429 

26.322 

0.9452 

26.268 

0.9442 

26.291 

0.9445 

Lake PSNR(dB) 

UQI 

25.466 

0.9764 

25.746 

0.9780 

25.834 

0.9785 

25.911 

0.9789 

25.924 

0.9790 

26.139 

0.9801 

26.105 

0.9799 

26.124 

0.9800 

Peppers 
PSNR(dB) 

UQI 

28.045 

0.9841 

28.330 

0.9852 

28.524 

0.9859 

28.547 

0.9860 

28.496 

0.9858 

28.578 

0.9861 

28.630 

0.9863 

28.617 

0.9862 

Elaine 
PSNR(dB) 

UQI 

30.496 

0.9860 

30.785 

0.9870 

30.884 

0.9878 

30.984 

0.9876 

30.959 

0.9857 

30.902 

0.9874 

31.111 

0.9880 

31.058 

0.9878 

Ruler 
PSNR(dB) 

UQI 

10.804 

0.2394 

10.873 

0.2608 

10.876 

0.2636 

10.873 

0.2638 

10.884 

0.2691 

10.902 

0.2788 

10.890 

0.2705 

10.898 

0.2740 
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Table 6.5 Average PSNR (dB) and UQI comparison of different interpolation techniques at 4:1 

compression ratio for various sequences over 50 frames  
Sequence Image 

Metric 

Bicubic 

[4] 

Lanczos3 

[12] 

DCT 

[74] 

 

LAL 

[P7] 

FWL 

[P8] 

ILLGP 

[P3] 

CS-I 

[P10] 

CS-II 

[P11] 
 

Salesman 

PSNR(dB) 

UQI 

28.979 

0.9719 

29.327 

0.9742 

29.440 

0.9750 

29.744 

0.9770 

29.804 

0.9776 

29.934 

0.9779 

29.871 

0.9777 

30.003 

0.9287 
 

Bus 

PSNR(dB) 

UQI 

25.262 

0.9610 

25.716 

0.9652 

25.794 

0.9660 

26.177 

0.9698 

26.362 

0.9713 

26.557 

0.9720 

26.579 

0.9716 

26.820 

0.9733 
 

Akiyo 

PSNR(dB) 

UQI 

32.911 

0.9945 

33.450 

0.9952 

33.647 

0.9954 

34.187 

0.9959 

34.110 

0.9959 

34.206 

0.9959 

34.413 

0.9961 

34.402 

0.9961 
 

City 

PSNR(dB) 

UQI 

27.592 

0.9277 

27.879 

0.9333 

27.852 

0.9333 

28.248 

0.9407 

28.358 

0.9433 

28.419 

0.9431 

28.402 

0.9426 

28.479 

0.9449 
 

Container 

PSNR(dB) 

UQI 

25.567 

0.9676 

26.008 

0.9709 

26.256 

0.9727 

26.376 

0.9739 

26.448 

0.9746 

26.705 

0.9757 

26.622 

0.9752 

26.768 

0.9763 
 

Football 

PSNR(dB) 

UQI 

28.568 

0.9769 

29.366 

0.9810 

29.687 

0.9824 

29.983 

0.9840 

30.178 

0.9849 

30.604 

0.9860 

29.950 

0.9843 

30.123 

0.9849 
 

Mobile 

PSNR(dB) 

UQI 

21.197 

0.9502 

21.596 

0.9550 

21.758 

0.9569 

22.199 

0.9622 

22.239 

0.9628 

22.427 

0.9639 

22.397 

0.9636 

22.484 

0.9646 
 

Soccer 

PSNR(dB) 

UQI 

30.254 

0.9863 

30.664 

0.9876 

30.748 

0.9878 

31.020 

0.9887 

31.166 

0.9891 

31.217 

0.9892 

31.330 

0.9895 

31.265 

0.9900 
 

Coast 

PSNR(dB) 

UQI 

26.500 

0.9754 

26.939 

0.9779 

27.080 

0.9787 

27.255 

0.9797 

27.575 

0.9814 

27.733 

0.9819 

27.621 

0.9813 

27.952 

0.9828 

 

 

                 Table 6.6 Execution time of the proposed and existing algorithms at 4:1 CR 
 

Images  
M×N 

Execution time in Seconds 

 
Bicubic 

[4] 

 
Lanczos3 

[12] 

 
DCT 
[74] 

 
LAL 
[P7] 

 
FWL 
[P8] 

 
ILLGP 

[P3] 

 

GIL 

 

 

 
CS-I 
[P10] 

 
CS-II 
[P11] 

Clock 
(200×200) 

0.0150 0.0151 0.0518 3.1982 8.6076 0.1300 0.0907 3.4249 11.7605 

Lena 
(256×256) 

0.0152 0.0157 0.0633 7.7949 21.5439 0.1328 0.0925 9.8969 27.5542 

Fruit 
(377×321) 

0.0163 0.0168 0.1629 56.9265 82.9838 0.1295 0.0986 61.5708 97.2611 

Lena 
(512×512) 

0.0215 0.0222 0.1773 335.1430 384.0769 0.1420 0.1041 343.3647 415.4207 

Pentagon 
(1024×1024) 

0.0409 0.0442 0.6372 6140.0514 6399.0850 0.1767 0.1260 6158.1726 6462.9129 
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 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i)  
 

Fig. 6.10 Subjective evaluation of Lena (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL 

(P8); (g) ILLGP (P3); (h) CS-I (P10); (i) CS-II (P11) 
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(a)  (b)  (c) 

 (d) 
 

(e)  (f) 

 (g)  (h)  (i) 

 

Fig. 6.11 Subjective evaluation of the selected low frequency green rectangular region (127×164) 

of Lena (512×512) image using various up-sampling scheme at 4:1 compression ratio: (a) 

Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL (P8); (g) ILLGP (P3); (h) 

CS-I (P10); (i) CS-II (P11) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
 (f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 6.12  Subjective evaluation of the selected medium frequency orange rectangular region 

(164×125) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL (P8); (g) ILLGP 

(P3); (h) CS-I (P10); (i) CS-II (P11) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 6.13  Subjective evaluation of the selected high frequency yellow rectangular region 

(123×174) of Lena (512×512) image using various up-sampling scheme at 4:1 compression 

ratio: (a) Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL (P8); (g) ILLGP 

(P3); (h) CS-I (P10); (i) CS-II (P11) 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 6.14  Subjective evaluation of the selected blue rectangular (76×76) of Lena (512×512) 

image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) Bicubic; (c) 

Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL (P8); (g) ILLGP (P3); (h) CS-I (P10); (i) CS-II 

(P11) 
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(a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i)  
 

Fig. 6.15 Subjective evaluation of Boat (512×512) image using various up-sampling schemes at 

4:1 compression ratio: (a) Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) FWL 

(P8); (g) ILLGP (P3); (h) CS-I (P10); (i) CS-II (P11) 
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(a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i)  
 

Fig. 6.16 Subjective evaluation of Goldhill (512×512) image using various up-sampling schemes 

at 4:1 compression ratio: (a) Original; (b) Bicubic; (c) Lanczos-3; (d) DCT; (e) LAL (P7); (f) 

FWL (P8); (g) ILLGP (P3); (h) CS-I (P10); (i) CS-II (P11) 
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 (a)  (b) 

 (c)  (d)  (e) 

 (f)  (g)  (h) 
 

Fig. 6.17 Error image of Lena (512×512) using various up-sampling schemes at 4:1 compression 

ratio: (a) Bicubic; (b) Lanczos-3; (c) DCT; (d) LAL (P7); (e) FWL (P8); (f)  ILLGP (P3); (g) CS-

I (P10); (h) CS-II (P11) 
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6.3 Results and Discussion  
The proposed composite schemes in this chapter utilize the advantages of pre-processing and 

post-processing algorithms to provide better HF restoration performance. The performance of the 

composite schemes are compared with their constituent pre-processing and post-processing 

algorithms to reveal their performance improvements. The figures and tables showing the 

performance of the existing and proposed algorithms are explained below. 

Table 6.3 and 6.4 show the objective performance in terms of PSNR (dB) and UQI of the 

proposed and existing algorithms at 4:1 and 16:1 compression ratios respectively. Table 6.5 

reveals the average PSNR and UQI comparison of different algorithms for various video 

sequences at 4:1 compression ratio. PSNR (dB) vs. frame index plot corresponding to different 

sequences is given in Fig. 6.8 and Fig 6.9. The performance of the composite scheme CS-I in 

terms of PSNR is compared with its constituent pre-processing and post-processing algorithms, 

GIL and LAL, is shown in Fig. 6.8. Likewise, in Fig. 6.9, the performance of the composite 

scheme CS-II is compared with its constituent pre-processing and post-processing algorithms, 

ILLGP and CFWL respectively. The computational complexity in terms of CPU execution time 

of various algorithms is shown in Table 6.6. 

For subjective evaluation, results of Lena (512×512), Boat (512×512) and Goldhill 

(512×512) images at 4:1 compression ratio are shown in Fig. 6.10, Fig. 6.15 and Fig. 6.16 using 

various up-sampling schemes. In case of Fig. 6.10, four distinct regions with different features 

and thus different signal characteristics such as low, medium, high and their combinations are 

marked. Performance at these regions is analyzed. For this purpose, the output images at these 

regions are enlarged and shown in Fig. 6.11, Fig. 6.12, Fig. 6.13 and Fig. 6.14.  The error images 

of Lena (512×512) corresponding to various schemes are given in Fig. 6.17. 

It may be observed from the Table 6.3 that the composite scheme, CS-I achieves a better 

PSNR and UQI gain over LAL for most of the images and video sequences. In case of images 

like Lena, Baboon and Crowd, CS-I gives a PSNR hike of 0.45 dB, 0.39dB and 0.37 dB over 

LAL at 4:1 compression ratio. Likewise, it shows noticeable PSNR gain of 0.507 dB and 0.565 

dB over DCT in case of Lena and Barbara. 

The composite scheme, CS-II is developed by combining ILLGP and CFWL. 

Experimental results show that, for most of the images and video sequences, CS-II gives better 
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performance than ILLGP and CFWL schemes at 4:1 compression ratio as depicted in Table 6.3, 

Table 6.5 and Fig. 6.9. In case of sequences like Bus, Akiyo, Mobile and Coastguard, CS-II 

attains the considerable PSNR gain of 1.026 dB, 0.755 dB, 0.726 dB and 0.872 dB over DCT. 

Similarly, in case of images like Lena, Barbara, Cameraman and Living room, CS-II shows the 

PSNR improvement of 0.539 dB, 0.598 dB, 0.631 dB and 0.466 dB over DCT. In addition, it 

also shows better PSNR gain over CS-I algorithm because of improved nonlinearity due to 

incorporation of fuzzy rule base. Unlike CS-I, CS-II algorithm makes use of 5×5 kernel and 3×3 

kernel at the pre-processing and post-processing phase, respectively. These global and local 

kernels enhance the HF information corresponding to 5×5 and 3×3 neighborhood resulting in 

improved performance over CS-I. 

Computational complexity in terms of CPU execution time of the proposed and existing 

algorithms is evaluated with respect to increase in image dimension and is presented in Table 

6.6. The execution time of the composite algorithms rises exponentially with respect to image 

dimension as it employs local, two-pass post-processing scheme. Hence, the composite schemes 

are more suitable for the images of small dimensions. The execution time of composite 

algorithms is found to be more than its constituent pre-processing and post-processing 

algorithms. The ILLGP pre-processing scheme is computationally less complex than CFWL 

post-processing scheme because it is a global processing scheme and operates on images of 

smaller dimension prior to image up-scaling. On the other hand, CFWL is a local fuzzy based 

two-pass post-processing scheme and operates on up-scaled images of larger dimension and 

hence consumes much more computational time than ILLGP. The composite scheme, CS-II 

which is developed by combining the ILLGP and CFWL schemes, has more computation time 

than either of the standalone schemes as illustrated in Table 6.6.  

The execution time of CS-II is more than CS-I scheme because of employing fuzzy based 

mapping scheme in its post-processing phase. The rise in computation time of CS-II is also 

because of the employment of 5×5 convolution kernel in the pre-processing phase. CS-I, being a 

non-fuzzy composite scheme employs direct normalized mapping at the post-processing phase 

and 3×3 convolution kernel at the pre-processing phase and hence is computationally less 

complex than CS-II. So, in the perspective of real-time applications, pre-processing schemes like 

ILLGP and GIL are preferred because of their reduced computational complexity. In contrast, if 

quality is of the prime importance, then the composite scheme must be preferred because of its 
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improved nonlinearity to reduce the non-uniform blurring effectively in the up-scaled images. 

Hence, the composite schemes are preferred for various off-line applications. 

Lena image has various regions of different signal characteristics such as low, medium, 

high frequencies and their combinations.  Four distinct regions corresponding to these signal 

patterns are enlarged and shown in Fig. 6.11, Fig. 6.12, Fig. 6.13 and Fig. 6.14. It may be 

observed from these figures that the composite schemes restore the HF details much effectively 

and give less blurring particularly at the fast changing and edge regions. In case of CS-I and CS-

II, the edges are more pronounced and fine details are well restored than the standalone pre-

processing and post-processing schemes. In addition, the low and medium frequency regions are 

well preserved in the up-sampled images without much deviation. Therefore, it is presumed that 

the proposed algorithms enhance the high variance regions much more than flat and slowly 

varying regions. Hence, the lost HF information is more enhanced which was degraded the most 

during the up-sampling process resulting in a better visual quality.  

The absolute error image of various existing and proposed algorithms is shown in Fig. 

6.17. The absolute error is an indicator for the degree of HF restoration performance of the 

algorithms. Less the error, better is the restoration performance and vice versa. It is apparent 

from the figure that the absolute error is much reduced in case of the proposed composite 

algorithms, CS-I and CS-II which indicate better HF restoration performance than the standalone 

schemes.  

 

6.4 Conclusion 
The proposed composite schemes exploit the advantages of pre-processing and post-processing 

operations for efficient restoration of HF and VHF information in the up-scaled images. The 

standalone pre-processing algorithm such as ILLGP and GIL are developed to meet the real-time 

requirements because of their reduced computational complexity and hence are suitable for 

online applications. The composite schemes on the other hand are developed for the quality 

enhancement in the up-scaled image at the expense of higher computational complexity and may 

be employed for offline applications. 

As the nonlinearity of an algorithm increases, so does its adaptability to various image 

statistical characteristics. In the perspective of the HF and VHF restorations, CS-I and CS-II 
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show better objective and subjective performance than most of the widely used interpolation 

techniques. However, the later shows better performance than the former because it makes use of 

fuzzy weighted Laplacian based post-processing scheme whose nonlinearity is enhanced by 

varying the various parameters such as slope, width and number of input and output membership 

functions. The combination of global pre-processing and local fuzzy based post-processing raises 

the nonlinearity of CS-II for better HF restoration performance. 

 The proposed composite schemes achieve considerable improvement in image quality 

over existing schemes for different types of images because of its adaptability to different local 

signal characteristics. The performance improvement is gained by enhancing the HF and VHF 

regions that have been degraded the most while preserving the medium and low frequency 

regions that have been degraded the least during the up-sampling process. 

 The use of filter kernel of different sizes, i.e. 5×5 for pre-processing and 3×3 for post-

processing enables the composite scheme, CS-II to enhance the HF and VHF components 

corresponding to 3×3 and 5×5 neighbourhood resulting in an improved HF restoration 

performance than CS-I and other existing schemes. 

 The blocking pattern that arises in ILLGP pre-processing scheme is due to the use of a 

5×5 Laplacian of Laplacian kernel. The pattern is more significant in edge and fast changing 

region and remains insignificant in flat and slowly varying regions. However, this artifact is 

reduced in composite scheme, CS-II due to the incorporation of fuzzy rule base. The inclusion of 

FIS provides a very small amount of blurring that removes the fine blocking artifacts in the up-

scaled images resulting in improved image quality. 

             Both of the proposed composite schemes show better objective and subjective 

performance, irrespective of image types under varying conditions. In most of the up-sampled 

images, blurring is considerably reduced with a more pronounced edge and fine details as 

compared to standalone pre-processing, post-processing and existing schemes. 
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Chapter 7 

 

Conclusion 
 
Image up-scaling through interpolation is an area of great interest in recent years and is 

extensively used in many applications like video streaming, multimedia, internet technologies, 

HDTVs, display and printing industries. Various polynomial based interpolation schemes such as 

nearest-neighbor, bilinear, bicubic, cubic-spline and lanczos are used for such applications for 

their reduced computational complexity. It is apparent that the polynomial based interpolation 

schemes are computationally efficient but produce undesirable artifacts such as blurring at the 

edges. Though the edge-directed and transform domain interpolation schemes though preserve 

the edge information and fine details effectively than polynomial based interpolation schemes, 

they are computationally more complex. Hence, there are further scopes to develop efficient up-

scaling schemes which are not only computationally efficient but also produce a better visual 

quality by preserving the fine details and edge information. 

  Hence, in this current research work, efforts are made to improve the performance of the 

existing 2-D polynomial based interpolation schemes by incorporating various spatial domain 

pre-processing, post-processing and composite techniques so as to obtain a better up-scaled 

image quality along with reduced computational complexity. 

 In order to overcome the challenges posed by the existing interpolation schemes, the 

following pre-processing, post-processing and composite algorithms have been proposed in this 

dissertation. 

i. Laplacian of Laplacian (LLGP) based Global Pre-processing Scheme [P1]  

ii. Hybrid Global Pre-processing (HGP) Scheme [P2] 

iii. Iterative Laplacian of Laplacian based Global Pre-processing (ILLGP) Scheme 

[P3] 

iv. Unsharp Masking based Pre-processing (UMP) Scheme [P4] 

v. Iterative Unsharp Masking (IUM) Scheme [P5] 
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vi. Error based Up-sampling (EU) Scheme [P6] 

vii. Local Adaptive Laplacian (LAL) based Post-processing Algorithm [P7] 

viii. Fuzzy Weighted Laplacian (FWL)based Post-processing Algorithm [P8] 

ix. Legendre Functional Link Artificial Neural Network (LFLANN) based Post-

processing Algorithm [P9] 

x. Composite Scheme (CS-I) using Iterative Laplacian and Local Adaptive 

Laplacian [P10] 

xi. Composite Scheme (CS-II) using Iterative Laplacian of Laplacian and Fuzzy 

Weighted Laplacian [P11] 

 The comparative performance analysis of the best algorithms in their respective 

categories is presented in the next section. 

 

7.1 Comparative Analysis 
Comparative performance analysis of the algorithms developed in this thesis: LLGP [P1], ILLGP 

[P2], IUM [P5], LAL [P7], FWL [P8], LFLANN [P9], CS-II [P11] is presented here. The 20 

publicly available (512×512) images and the performance metric, which have been used 

throughout the thesis, have also been employed here. The best performance value obtained for 

each of the metric is highlighted in bold. 

  The execution time comparison of various existing and proposed scheme is given in 

Table 7.3. In addition, peak-signal-to-noise-ratio (PSNR) in dB and universal quality index 

(UQI) are measured to determine the objective performance of the proposed algorithms. The 

PSNR and UQI comparisons of different schemes are given in Table 7.1 and Table 7.2, 

respectively.  

 The overall performances of the proposed algorithms are determined through the average 

of quantitative results experimented over 20 different images. So, average PSNR and UQI of the 

proposed algorithms over 20 different images are given in Table 7.4. The histogram of overall 

PSNR of existing and proposed algorithms is given in Fig. 7.1. The overall ranking of the 

proposed algorithms is done based on overall PSNR and UQI performances in Table 7.5. The 

subjective performance of the proposed algorithms is shown in Fig. 7.2. 
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Table 7.1 PSNR (dB) comparison of different schemes at 4:1 compression ratio for various 
(512×512) images 
 
 

Image 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos3 
[12] 

DCT 
[74] 

LLGP 
[P1] 

ILLGP 
[P2] 

IUM 
[P5] 

LAL 
[P7] 

FWL 
[P8] 

LFLANN 
[P9] 

CS-II 
[P11] 

                  Existing Schemes                                   Proposed Schemes 

Lena 32.704 34.148 34.813 35.022 35.179 35.439 35.569 35.080 35.250 35.454 35.562 

Boat 28.940 29.951 30.375 30.466 30.734 30.879 30.946 30.841 30.870 30.848 30.983 

Livingroom 28.617 29.557 29.977 30.128 30.367 30.524 30.595 30.311 30.439 30.308 30.594 

Fingerprint 28.045 30.632 31.722 32.133 32.407 32.798 32.903 31.138 31.345 31.966 32.458 

Goldhill 30.574 31.405 31.725 31.716 31.935 32.080 32.166 31.993 32.092 32.027 32.197 

Pirate 30.027 31.058 31.490 31.607 31.872 32.047 32.103 31.952 31.986 32.039 32.161 

Baboon 33.588 35.014 35.662 35.889 35.897 36.142 36.315 35.850 36.042 35.737 36.271 

Barbara 24.925 25.352 25.428 25.183 25.642 25.744 25.731 25.562 25.692 25.630 25.781 

Bridge 25.728 26.504 26.826 26.918 27.205 27.333 27.348 27.160 27.255 27.102 27.367 

Cat 30.949 31.982 32.427 32.562 32.889 33.046 33.073 32.584 32.826 31.842 33.037 

Crowd 30.984 32.667 33.451 33.768 34.155 34.415 34.467 34.035 34.026 33.664 34.430 

Cycle 21.208 21.895 22.154 22.129 22.498 22.633 22.631 22.452 22.543 22.960 22.661 

F16 30.379 31.543 32.104 32.722 32.281 32.488 32.653 32.353 32.319 32.790 32.576 

House 29.248 30.314 30.807 30.862 31.422 31.596 31.628 30.980 31.304 30.855 31.585 

Lake 28.945 30.022 30.495 30.793 30.870 31.021 31.069 30.617 30.700 30.930 30.965 

Cameraman 33.214 35.757 37.216 37.832 37.846 38.349 38.700 36.963 37.381 35.979 38.463 

Elaine 32.534 33.117 33.309 33.284 33.255 33.371 33.478 33.315 33.413 33.244 33.502 

Mandrill 23.045 23.630 23.859 23.925 24.184 24.288 24.296 24.066 24.178 24.180 24.282 

Peppers 31.180 31.991 32.329 32.747 32.520 32.652 32.727 32.509 32.407 32.157 32.625 

Ruler 12.335 12.613 12.673 12.600 12.843 12.890 12.911 12.584 12.823 13.415 12.765 

 
 
 Experimental results show that the proposed algorithms yield better objective and 

subjective performance than the state-of-art schemes. Based on the overall performance, 

presented in Table 7.4, IUM demonstrates the best performance among the proposed algorithms 

and state-of-art algorithms as well. The second and third best performances are given by CS-II 

and ILLGP, respectively. Likewise, the subjective performance of these algorithms is found to be 

better than other proposed and existing schemes with much pronounced edges and better 

preserved fine details as illustrated in Fig. 7.2. 

 The ILLGP scheme exhibits better HF restoration performance than LLGP because of 

employing higher order derivative operator than LLGP as depicted in Table 7.1. Since LLGP and 

ILLGP are pre-processing techniques and operate on LR images, they consume less processing 

time than the local adaptive post-processing schemes such as LAL and FWL as depicted in Table 

7.3. 
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Table 7.2 UQI comparison of different schemes at 4:1 compression ratio for various (512×512) 
images 

 
 

Image 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos3 
[12] 

DCT 
[74] 

LLGP 
[P1] 

ILLGP 
[P2] 

IUM 
[P5] 

LAL 
[P7] 

FWL 
[P8] 

LFLANN 
[P9] 

CS-II 
[P11] 

Existing Schemes Proposed Schemes 

Lena 0.9922 0.9945 0.9953 0.9955 0.9957 0.9959 0.9961 0.9956 0.9958 0.9960 0.9961 

Boat 0.9801 0.9845 0.9860 0.9863 0.9872 0.9876 0.9878 0.9876 0.9877 0.9878 0.9880 

Livingroom 0.9761 0.9811 0.9829 0.9835 0.9846 0.9851 0.9853 0.9843 0.9850 0.9845 0.9854 

Fingerprint 0.9785 0.9888 0.9915 0.9922 0.9929 0.9934 0.9936 0.9908 0.9913 0.9924 0.9931 

Goldhill 0.9879 0.9901 0.9908 0.9908 0.9914 0.9916 0.9918 0.9915 0.9917 0.9914 0.9919 

Pirate 0.9853 0.9885 0.9896 0.9899 0.9906 0.9910 0.9911 0.9908 0.9909 0.9909 0.9912 

Baboon 0.9924 0.9946 0.9953 0.9956 0.9956 0.9959 0.9960 0.9956 0.9958 0.9955 0.9960 

Barbara 0.9631 0.9669 0.9675 0.9657 0.9693 0.9701 0.9700 0.9687 0.9698 0.9692 0.9705 

Bridge 0.9693 0.9747 0.9767 0.9772 0.9789 0.9795 0.9795 0.9787 0.9793 0.9782 0.9798 

Cat 0.9919 0.9937 0.9943 0.9945 0.9949 0.9951 0.9951 0.9946 0.9949 0.9938 0.9951 

Crowd 0.9894 0.9929 0.9941 0.9946 0.9951 0.9953 0.9954 0.9949 0.9950 0.9944 0.9954 

Cycle 0.9323 0.9437 0.9475 0.9473 0.9526 0.9540 0.9539 0.9526 0.9538 0.9567 0.9551 

F16 0.9847 0.9885 0.9900 0.9913 0.9905 0.9909 0.9912 0.9907 0.9907 0.9916 0.9912 

House 0.9719 0.9785 0.9809 0.9812 0.9837 0.9843 0.9844 0.9820 0.9835 0.9817 0.9844 

Lake 0.9895 0.9919 0.9928 0.9932 0.9934 0.9936 0.9937 0.9930 0.9932 0.9935 0.9936 

Cameraman 0.9959 0.9977 0.9984 0.9986 0.9986 0.9988 0.9989 0.9983 0.9985 0.9982 0.9988 

Elaine 0.9913 0.9924 0.9928 0.9927 0.9927 0.9929 0.9931 0.9928 0.9930 0.9927 0.9931 

Mandrill 0.8957 0.9114 0.9169 0.9187 0.9250 0.9271 0.9271 0.9228 0.9260 0.9250 0.9278 

Peppers 0.9923 0.9937 0.9942 0.9947 0.9944 0.9946 0.9947 0.9944 0.9943 0.9941 0.9946 

Ruler 0.5188 0.5735 0.5897 0.5920 0.6293 0.6351 0.6395 0.6088 0.6371 0.6484 0.6337 

       

 

                

Table 7.3 Execution time comparison of the proposed and existing algorithms at 4:1 CR 
 

Images of 
different 

size 

Execution time in Seconds for different interpolation schemes 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos3 
[12] 

DCT 
[74] 

LLGP 
[P1] 

ILLGP 
[P2] 

IUM 
[P5] 

LAL 
[P7] 

FWL 
[P8] 

LFLANN 
[P9] 

CS-II 
[P11] 

Clock 
(200×200) 

0.0141 0.0150 0.0151 0.0518 0.0946 0.1300 0.1445 3.1982 8.6076 0.8933 11.7605 

Lena 
(256×256) 

0.0147 0.0152 0.0157 0.0633 0.0987 0.1328 0.1471 7.7949 21.5439 1.4455 27.5542 

Fruit 
(377×321) 

0.0153 0.0163 0.0168 0.1729 0.1027 0.1395 0.1506 56.9265 82.9838 2.6542 97.2611 

Lena 
(512×512) 

0.0201 0.0215 0.0222 0.1673 0.1137 0.1420 0.1564 335.1430 384.076 5.6765 415.4207 

Pentagon 
(1024×1024) 

0.0354 0.0409 0.0442 0.6372 0.1281 0.1767 0.1905 6140.056 6399.084 22.7194 6462.9129 
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Table 7.4 Average PSNR and UQI comparison of different schemes over 20 different (512×512) 

images at 4:1 CR 
 

Average 

Metric 

Bilinear 
[5] 

Bicubic 
[4] 

Lanczos3 
[12] 

DCT 
[74] 

LLGP 
[P1] 

ILLGP 
[P2] 

IUM 
[P5] 

LAL 
[P7] 

FWL 
[P8] 

LFLANN 
[P9] 

CS-II 
[P11] 

Existing Schemes Proposed Schemes 

Average 

PSNR(dB) 28.358 29.457 29.942 30.114 30.300 30.486 

 

30.565 30.117 30.244 30.156 

 

30.513 

Average 

UQI 0.9539 0.9610 0.9634 0.9638 0.9668 0.9676 

 

0.9679 0.9654 0.9674 0.9678 

 

0.9677 

 

Table 7.5 Overall ranking of the proposed algorithms based on average PSNR and UQI 

images at 4:1 CR 
Proposed schemes LLGP 

[P1] 
ILLGP 

[P2] 
IUM 
 [P5] 

LAL 
 [P7] 

FWL 
 [P8] 

LFLANN  
[P9] 

CS-II  
[P11] 

Rank Score 

(based on PSNR) 4 3 

 

1 7 5 6 

 

2 

Rank Score  

(based on UQI) 6 4 

 

1 7 5 2 

 

3 

 

 
 

Fig 7.1 Average PSNR comparison of various existing and proposed schemes over 20 different 

(512×512) images at 4:1 compression ratio. 
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Fig. 7.2  Subjective evaluation of the selected rectangular region (164×125) of Lena (512×512) 

image using various up-sampling scheme at 4:1 compression ratio: (a) Original; (b) Bilinear; (c) 

Bicubic; (d) Lanczos-3; (e) DCT; (f) LLGP; (g) ILLGP; (h) IUM; (i) LAL; (j) FWL; (k) 

LFLANN; (l) CS-II  
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As per the experimental results shown in Table.7.1 and Table 7.2, The LAL post-processing 

scheme shows better objective performance in terms of PSNR and UQI than existing schemes 

because of locally enhancing the image regions as per the local variance. However, the 

performance of FWL is found to be better than LAL due to its fuzzy based mapping. The 

composite scheme (CS-II) developed by combining ILLGP and a fuzzy weighted Laplacian post-

processing scheme gives better performance than the standalone schemes because of improved 

nonlinearity as shown in Fig. 7.1, Fig. 7.2, Table 7.4 and Table 7.5.  

 Moreover, the IUM scheme provides overall better performance amongst the proposed 

pre-processing, post-processing and composite algorithms in terms of PSNR gain and 

computational complexity. In addition, its performance is comparable to various sparse based up-

scaling algorithms such as: Sparse representation based image interpolation with nonlocal 

autoregressive modeling (SR-NAM) [121] and Convolutional sparse coding for image super-

resolution (CSC) [123]. The PSNR (dB) comparison of the proposed IUM scheme with different 

sparse based super-resolution schemes is given in Table 7.6 and Table 7.7.  

 

Table 7.6 PSNR (dB) comparison of the proposed IUM scheme with sparse based SR-NAM 

scheme at 4:1 CR 
Image 

256×256 

PSNR (dB) 

SR-NAM [121] IUM 

House 33.520 33.502 

Cameraman 25.940 27.163 

Lena 35.010 32.441 

 

 

Table 7.7 PSNR (dB) comparison of the proposed IUM scheme with sparse based CSC scheme 

at 4:1 CR 
Image 

512×512 

PSNR (dB) 

CSC [123] IUM 

Pirate 30.970 32.103 

Bridge 27.840 27.348 

Lena 36.660 35.570 
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From Table 7.3 and Table 7.8, it may be observed that the pre-processing algorithms take 

less processing time than the post-processing and composite algorithms as a result of employing 

global-based techniques. In contrast, the post-processing and composite techniques have more 

computational complexity because of the employment local-based algorithms. Hence, the pre-

processing techniques such as LLGP, ILLGP and IUM are suitable candidates for online 

applications while LAL, FWL and CS-II are well suited for various off-line applications. The 

computational complexities of the proposed algorithms are discussed in the next section. 

 

7.2 Computational Complexities of the Proposed Algorithms 

Complexity of an algorithm is related to the number of multiplications and additions involved to 

obtain the final output. Since Lanczos-3 interpolation is employed as the basic interpolation 

paradigm for the various proposed pre-processing, post-processing and composite algorithms, its 

complexity is necessary for computing the complexity of all the proposed algorithms. Lanczos-3 

interpolation kernel makes use of 6×6 mask for interpolating a pixel in a 6×6 neighborhood and 

therefore requires 36 multiplications and 35 additions per pixel. In case of LLGP algorithm, a 

55×  Laplacian of Laplacian (LOL) mask is used for HF extraction. However, out of 25 filter 

coefficients, 16 coefficients are zero. Hence, the convolution is performed using the remaining 9 

nonzero coefficients. Therefore, there will be 9 multiplications and 8 additions per pixel. In 

addition, there will be one multiplication and one addition per pixel for intensity scaling and 

superimposition of HF extract with LR image. Furthermore, 36 multiplications and 35 additions 

are required for Lanczos-3 based up-scaling. So, there is a sum total of 46 multiplications and 44 

additions required per pixel for LLGP algorithm. 

 In case of HGP algorithm, HF extract is obtained by performing LOL and Laplacian 

operations in series. LOL operation requires 9 multiplications and 8 additions per pixel whereas 

Laplacian operation requires 5 multiplications and 4 additions per pixel. Furthermore, there will 

be one multiplication and one addition per pixel required for intensity scaling and 

superimposition of HF extract with LR image. Finally, the up-scaling operation using Lanczos-3 

interpolation requires 36 multiplications and 35 additions. Hence, there is a sum total of 51 

multiplications and 48 additions required per pixel in case of HGP algorithm. 
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 Similarly, in case of ILLGP algorithm, LLGP is operated twice for HF extraction and 

hence, requires 18 multiplications and 16 additions per pixel. The rest of the operation is same as 

LLGP algorithm. So, there is a sum total of 55 multiplications and 52 additions per pixel. 

Therefore, ILLGP is computationally more complex than LLGP and HGP as shown in Table 7.8. 

 Unsharp masking pre-processing (UMP) scheme makes use of an LPF of mask size 3×3 

for blurring an input image and therefore requires 9 multiplications and 8 additions per pixel. 

The blurred image is subtracted from the original to generate the HF extract and requires one 

subtraction per pixel. Superimposition and scaling of HF extract with the input image needs one 

multiplication and one addition per pixel. Finally, the Lanczos-3 up-scaling process requires 36 

multiplications and 35 additions per pixel. Hence, overall 46 multiplications and 45 additions are 

required per pixel for UMP pre-processing scheme. 

 Iterative unsharp masking (IUM) is an iterative scheme that makes use of an LPF filter 

mask of 3×3 dimension iteratively for HF extract. It requires 9 multiplications and 8 additions 

per pixel to obtain the blurred image. To obtain the unsharp mask, one subtraction is required per 

pixel. Hence, a sum total of 9 multiplications and 9 additions / subtractions are required for a 

single iteration. So, the total number of multiplications and additions / subtractions after 7 

iterations would be 63 and 63 respectively. Subsequently, one addition per pixel is required for 

superimposing the HF extract to an LR image. Finally, Lanczos-3 interpolation requires 36 

multiplications and 35 additions per pixel for up-scaling. Therefore, overall 99 multiplications 

and 99 additions are required per pixel for IUM scheme and so is computationally more complex 

than UMP scheme. 

 Error based up-sampling (EU) is a two-pass HF predictive scheme. During the first-pass a 

down-sampled image is up-scaled using Lanczos-3 interpolation which requires 36 

multiplications and 35 additions per pixel. To obtain the HF extract, the Lanczos-3 interpolated 

image is subtracted from LR input image which requires one subtraction per pixel. Furthermore, 

one multiplication and one addition are required per pixel for scaling and superimposing the HF 

extract with the LR input image. Subsequently, the image is further up-sampled using Lanczos-3 

interpolation which requires 36 multiplications and 35 additions per pixel. Hence a sum total of 

73 multiplications and 72 additions per pixel are required for EU scheme. Hence, it is 

computationally less complex than IUM as illustrated in Table 7.8. 
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   Local adaptive Laplacian (LAL) is a local based two-pass post-processing scheme. 

During the first pass, an up-scaled image using Lanczos-3 interpolation is generated which 

requires 36 multiplications and 35 additions per pixel. Furthermore, Local variance is calculated 

which requires 3 multiplications and 9 additions per pixel. During the second pass, 3×3 local 

variance is further computed followed by normalization and updation of the filter coefficients. 

The normalization and updation of the filter coefficients require 2 and 4 multiplications per pixel 

respectively. The extraction of HF contents using LAL operator requires 5 multiplications and 4 

additions per pixel. Scaling and superimposition of HF extracts require one multiplication and 

one addition per pixel. Finally, a sum total of 54 multiplications and 58 additions per pixel are 

required for LAL algorithm. Since this algorithm is a post-processing scheme and operates on 

up-scaled images of dimension NN 22 × , a sum total of 2216N multiplications and 2232N

additions are required for LAL algorithm.  

Fuzzy weighted Laplacian (FWL) algorithm is almost similar to LAL. However, it is 

computationally more complex than LAL because of fuzzy based mapping which consists of 

fuzzification, fuzzy if-then rules and defuzzification.  

LFLANN is a post-processing scheme and is applied on the Lanczos-3 up-scaled image 

for restoration of HF contents. The up-scaling using Lanczos-3 interpolation requires 36 

multiplications and 35 additions per pixel. The testing phase of LFLANN is taken for calculating 

the computational complexity. For a particular pixel, its 3×3 neighbourhood is taken for 

functional expansion using Legendre polynomial. The 9 dimensional pattern vector is expanded 

to 37 dimensional vector using Legendre expansion which requires 72 multiplications and 36 

additions per pixel. Furthermore, the enhanced pattern vector is multiplied with the updated 

weights and the output is obtained by computing sum of products which requires 37 

multiplications and 36 additions per pixel. Hence, a sum total of 145 multiplications and 107 

additions per pixel are needed for LFLANN algorithm. 

 Composite scheme-I is developed by combining global iterative Laplacian (GIL) as pre-

processing technique and LAL as post-processing technique. So, the composite scheme is 

computationally more complex than the standalone pre-processing and post-processing 

algorithms. The GIL pre-processing scheme makes use of Laplacian operator thrice for HF 

extraction and so requires 15 multiplications and 12 additions per pixel. Intensity scaling and 

superimposition of HF extracts require one multiplication and one addition per pixel. The pre-
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processing scheme is followed by up-scaling using Lanczos-3 interpolation and post-processing 

using LAL which requires 216 multiplications and 232 additions per pixel. Hence, a sum total of 

232 multiplications and 245 additions per pixel are required for CS-I scheme. The detail 

comparison of GIL, LAL and CS-I is given in Table 7.8.   

 

Table 7.8 Computational complexity comparison of various proposed pre-processing, post-

processing and composite algorithms for an NN ×  image 

Algorithm Number of multiplications Number of additions 
Lanczos-3 [12] 236N  235N  

DCT [74] 2
2

2 4log5 NNN +  NNNN 62log15 2
2

2 ++  

DASR [116] 2106N  2105N  

DSWD [82] 2124N  
2126N  

LLGP [P1] 246N  244N  
HGP [P2] 251N  248N  
ILLGP [P3] 255N  252N  
UMP [P4] 246N  245N  
IUM [P5] 299N  299N  
EU [P6] 273N  272N  
LFLANN [P9] 2145N  2107N  
LAL [P7]  2216N  2232N  
GIL  252N  248N  
CS-I [P10] 2232N  2245N  

   

Table 7.9 Operation counts of the existing and proposed algorithms 
Image size 

NN ×  

Number of 

Operations 

Lanczos-3 

[12] 

DCT 

[74] 

DASR 

[116] 

DSWD 

[82] 

LLGP 

[P1] 

HGP-I 

[P2] 

ILLGP 

[P3] 

IUM 

[P5] 

128×128 Multiplications 

Additions 

589824 

573440 

638976 

1753856 

1736704 

1720320 

2031616 

2064384 

753664 

720896 

835584 

786432 

901120 

851968 

1622016 

1622016 

256×256 Multiplications 

Additions 

2359296 

2293760 

2883584 

7996928 

6946816 

6881280 

8126464 

8257536 

3014656 

2883584 

3342336 

3145728 

3604480 

3407872 

6488064 

6488064 

512×512 Multiplications 

Additions 

9437184 

9175040 

12845056 

35916800 

27787264 

27525120 

32505856 

33030144 

12058624 

11534336 

13369344 

12582912 

14417920 

13631488 

25952256 

25952256 
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7.3 Conclusion 

According to experimental results, shown in Table 7.4 and Table 7.5, the performance of the 

proposed pre-processing, post-processing and composite schemes is found to be superior than the 

existing interpolation techniques in terms of objective and subjective measures.   

 The proposed algorithms: LLGP and ILLGP perform better in terms of PSNR than 

various existing algorithms for different image types with a more pronounced edge and fine 

details preservation. Since the ILLGP algorithm is based on 8th order derivative, it is capable of 

extracting much finer and subtler details of an image and hence yields better performance than 

LLGP. The LLGP algorithm is based on 4th order derivatives and hence performs less as 

compared to ILLGP. Since these algorithms are global pre-processing techniques and operate on 

low-resolution images, have reduced computational complexity and are comparable with DCT as 

shown in Table 7.3, Table 7.8 and Table 7.9. So, they are suitable for real-time applications. 

IUM exhibits best performance amongst the pre-processing algorithms for most of the images as 

evident from Fig 7.2 and Fig. 7.3. It shows better performance because of its ability to restore the 

most degraded VHF component through signal decomposition using the filter bank which 

employs unsharp masking iteratively. In addition, IUM is computationally comparable with DCT 

in case of high resolution images and hence is a preferred candidate for real-time applications. 

 The proposed algorithms: LAL, FWL and LFLANN are local post-processing schemes 

which are employed for local HF enhancement of up-scaled images so as to lessen blurring at the 

edges and fast changing regions. Being local schemes, these algorithms tackle the local HF 

degradation more effectively than the existing schemes. LAL being a local post-processing 

scheme, it adaptively enhances high-variance regions more than the low-variance regions 

resulting in improved objective and subjective performance than DCT and other existing 

schemes as per the experimental results. However, the mapping technique introduced in this 

scheme is linear and therefore, the performance is further improved in FWL by employing 

nonlinear fuzzy based mapping. The incorporation of fuzzy rules into FWL makes the HF 

prediction more accurate than LAL resulting in better objective and subjective performance.  

LFLANN, a soft-computing technique, is exploited here for HF restoration in Lanczos-3 

interpolated, up-scaled images. The improvement in PSNR gain is due to the nonlinearity 

introduced into the system because of nonlinear function expansion using Legendre polynomials. 
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The proposed LAL and FWL post-processing algorithms are computationally more complex 

since they are local schemes and operate on high resolution, up-scaled images. Therefore, they 

are not suitable for real-time applications. In contrast, LFLANN takes much reduced execution 

time than LAL and FWL because of its single layer architecture. In addition, it gives much better 

objective performance because of its improved nonlinearity due to nonlinear function expansion 

and hence must be preferred amongst the various post-processing algorithms. 

The proposed composite scheme, CS-II exploits the advantages of pre-processing and 

post-processing operations for efficient restoration of HF and VHF information in the up-scaled 

images and hence gives better performance than the standalone schemes. The stand-alone pre-

processing algorithm such as ILLGP is developed to meet the real-time requirements because of 

their reduced computational complexity. The composite scheme on the other hand is developed 

for the quality enhancement in the up-scaled image at the expense of higher computational 

complexity and may be employed for offline applications. It shows better performance because it 

makes use of fuzzy weighted Laplacian based post-processing scheme whose nonlinearity is 

enhanced by varying the various parameters such as slope, width and number of input and output 

membership functions.  

From the result analysis, IUM and CS-II show much better subjective and objective 

performance. However, IUM is the most preferred algorithm because of its reduced 

computational complexity and enhanced visual quality and hence proves its suitability for 

various real-time and offline applications. 

 

7.4 Scope for Future Work 

There is sufficient scope to carry further research work in developing better image up-scaling 

algorithms like: 

1. Temporal-domain up-sampling 

2. Up-sampling in intensity domain 

3. Fusion of spatial and intensity-domain up-sampling 

4. Sparse based image super-resolution 

5. Deep-learning based resolution enhancement 
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