393 research outputs found

    Resampled efficient frontier integration for MOEAs

    Get PDF
    This article belongs to the Section Multidisciplinary Applications.Mean-variance portfolio optimization is subject to estimation errors for asset returns and covariances. The search for robust solutions has been traditionally tackled using resampling strategies that offer alternatives to reference sets of returns or risk aversion parameters, which are subsequently combined. The issue with the standard method of averaging the composition of the portfolios for the same risk aversion is that, under real-world conditions, the approach might result in unfeasible solutions. In case the efficient frontiers for the different scenarios are identified using multiobjective evolutionary algorithms, it is often the case that the approach to averaging the portfolio composition cannot be used, due to differences in the number of portfolios or their spacing along the Pareto front. In this study, we introduce three alternatives to solving this problem, making resampling with standard multiobjective evolutionary algorithms under real-world constraints possible. The robustness of these approaches is experimentally tested on 15 years of market data.This research was funded by Spanish Ministry of Education under grant number CAS15/0025

    A superior active portfolio optimization model for stock exchange

    Get PDF
    Due to the vast number of stocks and the multiple appearances of developing investment portfolios, investors in the financial market face multiple investment opportunities. In this regard, the investor task becomes extremely difficult as investors define their preferences for expected return and the amount to which they want to avoid potential investment risks. This research attempts to design active portfolios that outperform the performance of the appropriate market index. To achieve this aim, technical analysis and optimization procedures were used based on a hybrid model. It combines the strong features of the Markowitz model with the General Reduced Gradient (GRG) algorithm to maintain a good compromise between diversification and exploitation. The proposed model is used to construct an active portfolio optimization model for the Iraq Stock Exchange (ISX) for the period from January 2010 to February 2020. This is applied to all 132 companies registered on the exchange. In addition to the market portfolio, two methods, namely, Equal Weight (EW) and Markowitz were used to generate active portfolios to compare the research findings. After a thorough review based on the Sharpe ratio criterion, the suggested model demonstrated its robustness, resulting in maximizing earnings with low risks

    CONSTRAINT ROBUST PORTFOLIO SELECTION BY MULTIOBJECTIVE EVOLUTIONARY GENETIC ALGORITHM

    Get PDF
    The problem of portfolio selection is a very challenging problem in computational finance and has received a lot of attention in last few decades. Selecting an asset and optimal weighting of it from a set of available assets is a critical issue for which the decision maker takes several aspects into consideration. Different constraints like cardinality constraints, minimum buy in thresholds and maximum limit constraint are associated with assets selection. Financial returns associated are often strongly non-Gaussian in character, and exhibit multivariate outliers. Taking these constraints into consideration and with the presence of these outliers we consider a multi-objective problem where the percentage of each available asset is so selected that the total profit of the portfolio is maximized while total risk is minimized. Nondominated Sorting Genetic Algorithm-II is used for solving this multiobjective portfolio selection problem. Performance of the proposed algorithm is carried out by performing different numerical experiments using real-world data

    Portfolio Optimization Using Evolutionary Algorithms

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsPortfolio optimization is a widely studied field in modern finance. It involves finding the optimal balance between two contradictory objectives, the risk and the return. As the number of assets rises, the complexity in portfolios increases considerably, making it a computational challenge. This report explores the application of the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and Genetic Algorithm (GA) in the field of portfolio optimization. MOEA/D and GA have proven to be effective at finding portfolios. However, it remains unclear how they perform when compared to traditional approaches used in finance. To achieve this, a framework for portfolio optimization is proposed, using MOEA/D, and GA separately as optimization algorithms and Capital Asset Pricing Model (CAPM) and Mean-Variance Model as methods to evaluate portfolios. The proposed framework is able to produce weighted portfolios successfully. These generated portfolios were evaluated using a simulation with subsequent (unseen) prices of the assets included in the portfolio. The simulation was compared with well known portfolios in the same market and other market benchmarks (Security Market Line and Market Portfolio). The results obtained in this investigation exceeded expectation by creating portfolios that perform better than the market. CAPM and Mean-Variance Model, although they fail to model all the variables that affect the stock market, provide a simple valuation for assets and portfolios. MOEA/D using Differential Evolution operators and the CAPM model produced the best portfolios in this research. Work can still be done to accommodate more variables that can affect markets and portfolios, such as taxes, investment horizon and costs for transactions

    An Evolutionary Approach to Multistage Portfolio Optimization

    No full text
    Portfolio optimization is an important problem in quantitative finance due to its application in asset management and corporate financial decision making. This involves quantitatively selecting the optimal portfolio for an investor given their asset return distribution assumptions, investment objectives and constraints. Analytical portfolio optimization methods suffer from limitations in terms of the problem specification and modelling assumptions that can be used. Therefore, a heuristic approach is taken where Monte Carlo simulations generate the investment scenarios and' a problem specific evolutionary algorithm is used to find the optimal portfolio asset allocations. Asset allocation is known to be the most important determinant of a portfolio's investment performance and also affects its risk/return characteristics. The inclusion of equity options in an equity portfolio should enable an investor to improve their efficient frontier due to options having a nonlinear payoff. Therefore, a research area of significant importance to equity investors, in which little research has been carried out, is the optimal asset allocation in equity options for an equity investor. A purpose of my thesis is to carry out an original analysis of the impact of allowing the purchase of put options and/or sale of call options for an equity investor. An investigation is also carried out into the effect ofchanging the investor's risk measure on the optimal asset allocation. A dynamic investment strategy obtained through multistage portfolio optimization has the potential to result in a superior investment strategy to that obtained from a single period portfolio optimization. Therefore, a novel analysis of the degree of the benefits of a dynamic investment strategy for an equity portfolio is performed. In particular, the ability of a dynamic investment strategy to mimic the effects ofthe inclusion ofequity options in an equity portfolio is investigated. The portfolio optimization problem is solved using evolutionary algorithms, due to their ability incorporate methods from a wide range of heuristic algorithms. Initially, it is shown how the problem specific parts ofmy evolutionary algorithm have been designed to solve my original portfolio optimization problem. Due to developments in evolutionary algorithms and the variety of design structures possible, a purpose of my thesis is to investigate the suitability of alternative algorithm design structures. A comparison is made of the performance of two existing algorithms, firstly the single objective stepping stone island model, where each island represents a different risk aversion parameter, and secondly the multi-objective Non-Dominated Sorting Genetic Algorithm2. Innovative hybrids of these algorithms which also incorporate features from multi-objective evolutionary algorithms, multiple population models and local search heuristics are then proposed. . A novel way is developed for solving the portfolio optimization by dividing my problem solution into two parts and then applying a multi-objective cooperative coevolution evolutionary algorithm. The first solution part consists of the asset allocation weights within the equity portfolio while the second solution part consists 'ofthe asset allocation weights within the equity options and the asset allocation weights between the different asset classes. An original portfolio optimization multiobjective evolutionary algorithm that uses an island model to represent different risk measures is also proposed.Imperial Users onl

    Robust and Constrained Portfolio Optimization using Multiobjective Evolutionary Algorithms

    Get PDF
    Optimization plays an important role in many areas of science, management,economics and engineering. Many techniques in mathematics and operation research are available to solve such problems. However these techniques have many shortcomings to provide fast and accurate solution particularly when the optimization problem involves many variables and constraints. Investment portfolio optimization is one such important but complex problem in computational finance which needs effective and efficient solutions. In this problem each available asset is judiciously selected in such a way that the total profit is maximized while simultaneously minimizing the total risk. The literature survey reveals that due to non availability of suitable multi objective optimization tools, this problem is mostly being solved by viewing it as a single objective optimization problem

    Optimization of Index-Based Portfolios

    Get PDF

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing
    corecore