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Abstract 

Optimization plays an important role in many areas of science, management, 

economics and engineering. Many techniques in mathematics and operation research are 

available to solve such problems. However these techniques have many shortcomings to 

provide fast and accurate solution particularly when the optimization problem involves 

many variables and constraints. Investment portfolio optimization is one such important but 

complex problem in computational finance which needs effective and efficient solutions. In 

this problem each available asset is judiciously selected in such a way that the total profit is 

maximized while simultaneously minimizing the total risk. The literature survey reveals that 

due to non availability of suitable multiobjective optimization tools, this problem is mostly 

being solved by viewing it as a single objective optimization problem.   

                    Multiobjective solution techniques have been introduced in literature to solve 

portfolio optimization problem. In recent past many evolutionary/ swarm computing 

techniques have been proposed and have successfully been applied to many engineering, 

science and finance problems. Further, multiobjective versions of these algorithms have also 

been reported in the literature to efficiently solve the multiobjective problems. 

 When number of constraints are present, the portfolio optimization problem 

becomes complex and needs effective solution. Further, the existing multiobjective 

computing methods also require suitable modification to suit to portfolio optimization 

problem. The existing methods cannot be applied to plan future portfolio optimization 

strategy, as required future data is not available. New multiobjective algorithms are also 

needed to efficiently solve the portfolio optimization problems. The portfolio optimization 

problem becomes more challenging when some data become uncertain and contaminated 

with outliers. These issues have been addressed in this thesis and satisfactory solution of 

each of these problems has been provided. In all cases multiobjective evolutionary 

algorithms (MOEAs) have been successfully applied. 

This thesis has proposed and suitably applied four MOEAs for solving the 

multiobjective optimization problem associated with constraints. The performance of these 

algorithms has been evaluated and compared using three error measures, six performance 

metrics, Pareto front, computational time and nonparametric statistical testing. For 
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comparison, the results have also been obtained by formulating the problem as a single 

objective problem. The results demonstrate that the proposed algorithms are capable of 

identifying good Pareto solutions maintaining adequate diversity for different market 

indices. 

   The Markowitz mean-variance portfolio optimization and many other models use the 

mean of the past return as expected return. They also assume that the time series of returns 

of each stock follows a normal distribution. However these time series often depart from 

normality and exhibits kurtosis and skewness and thus make the variance of returns an 

inappropriate measure of risk. Hence there is a need to develop an efficient approach which 

will free from this assumption and is capable to predict the future expected return. In the 

thesis a new mean-variance model has been proposed in which, the expected return and risk 

are predicted using a low complexity functional link artificial neural network (FLANN) 

structure. Four multiobjective swarm intelligence technique has been applied to solve the 

portfolio optimization problem considering various constraints and their performance has 

been compared. The results demonstrate that the proposed model provides improved 

performances in terms of diversity and coverage of Pareto solutions. 

Actually the stock values are highly uncertain due to political crises or turmoil in 

global markets. As a result the stock parameters deviate heavily from its actual value. Under 

such condition, the estimation of the expected return and risk becomes poor and hence leads 

to inferior optimization performance. To alleviate this shortcoming, a minimum volume 

ellipsoid (MVE) methodology using core set and Lagrange multipliers is proposed to handle 

outliers present in the stock market data. Simulation results show that the proposed method 

exhibits good portfolio strategy in the presence of market uncertainties. 

In many situations portfolio optimization is needed for future data. Further, the 

present data may be contaminated with outliers. This difficult problem has been addressed 

and satisfactory solution has been provided using robust prediction, mean variance model, 

MVE and MOEA based method. 

 

Keywords: Portfolio Optimization, Multiobjective Optimization, Efficient Frontier, 

Non-dominated Sorting, Cardinality Constraint, Outliers, Minimum Volume Ellipsoid. 
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1.1 Introduction                                                                               

In recent past, applications of different swarm and evolutionary computation 

techniques in diversified domains have gained popularity in wide area ranging from 

engineering and computer science to the field of finance, ecology, sociology and medicine. 

Chen and Kuo [1.1] have reported several popular articles in the area of evolutionary 

computing application to economics and finance.  

The taxonomy of applications of swarm and evolutionary computation in economics 

and finance has been provided by Chen [1.2], which includes (1) investment portfolio 

optimization (2) financial time series (3) stock ranking (4) risk-return analysis and (5) 

economic modeling. In fact, all these applications are inherently multiobjective in nature. 

The use of swarm and evolutionary algorithms for solving multi-objective optimization 

problem has emerged as a potential field of research in recent years.  

In this thesis, different multiobjective evolutionary algorithms (MOEAs) have been 

studied and successfully employed to solve problems related to portfolio optimization with 

special emphasis on portfolio constraints. The optimization problem varies from simple 

portfolios held by individuals to huge portfolios managed by professional investors. The 

portfolio consists of stocks, bank investments, real estate holdings, bonds, treasury bills etc.  

 

Chapter 

1 



  Chapter: 1                                                                                                                                        Introduction  

  
 

3 

 

The objective is to find an optimal set of assets to invest on, as well as the optimal amount 

of investment for each asset. This optimal selection of assets and weighting of each asset is a 

multi-objective problem where the total profit of investment has to be maximized and total 

risk has to be minimized. There are also different constraints under which the optimization 

task is to be carried out depending on the type of problem to be solved. For example, the 

weights normally have lower and upper bounds as well as many other practical constraints. 

This is the so-called optimal investment portfolio that one wishes to obtain by using 

optimization techniques. The recently developed swarm and evolutionary computation 

algorithms have been effectively used for solving many multiobjective problems in a single 

run giving a set of desired solutions. Hence suitable choice and applications of 

multiobjective evolutionary algorithms (MOEAs) have potential future to handle different 

challenges in constraint portfolio optimization problem which is inherently a multiobjective 

problem. 

1.2 Background and scope of the thesis 

    The problem of portfolio optimization has always been a challenging task for 

researchers, investors and fund managers. Markowitz has devised a quantitative framework 

for the selection of a portfolio [1.3],[1.4].  In this framework, the percentage of each 

available asset is selected in such a way that the total profit of the portfolio is maximized 

while total risk is minimized simultaneously. The sets of portfolios of assets that yield 

minimum risk for a given level of return form the efficient frontier. The optimal solution for 

the standard form of the Markowitz portfolio asset selection problem, which is classified as 

a quadratic programming model, can be solved through exact methods such as active set 

methods, interior point techniques etc. 
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However, portfolio optimization is very complicated as it depends on many factors 

such as preferences of the decision makers, resource allocation and growth in sales, liquidity, 

total turnover, dividend and several other factors. Some authors have also added some 

practical constraints such as floor, ceiling, cardinality etc. to Markowitz model that makes it 

more realistic. Inclusion of these constraints to the portfolio optimization problem makes it 

intractable even for small instances. With these constraints it is a mixed integer 

programming problem with quadratic objective functions. The traditional optimization 

methods used to solve this problem are trapped in local minima solutions. To overcome this 

problem different efficient heuristic methods have been developed.  

An overview of the literature on the application of evolutionary computation to the 

portfolio selection problem has been discussed in [1.5]. These methods consist of simulated 

annealing (SA) [1.6], Tabu search (TS) and genetic algorithm (GA) [1.7]. The PSO (particle 

swarm optimization) technique has been applied in [1.8] to solve cardinality constrained 

portfolio and the results have been compared with those obtained by using GA, TS and SA. 

Improved PSO (particle swarm optimization) algorithms have also been proposed in [1.9] 

for portfolio problem with transaction costs. The PSO algorithm has been applied to solve 

constrained portfolio selection problem with bounds on holdings (minimum buy in threshold 

and maximum limit in combination), cardinality, minimum transaction lots and sector 

capitalization constraint [1.10]. Hanhong et al. [1.11] has applied the PSO technique to solve 

different restricted and unrestricted risky investment portfolios and compared it with GA. 

Portfolio optimization problem is intrinsically a multiobjective problem having 

conflicting objectives i.e. risk and return. But in the aforementioned studies, the problem has 

been viewed as a single objective optimization problem by considering the overall objective 
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as a weighted sum of objectives. Such a formulation yields multiple solutions by suitably 

varying the associated weights. The main advantage of these approaches is that it reduces 

the multiobjective problem to a scalar optimization problem and any single objective 

metaheuristics algorithm can then be applied. However, solving this multiobjective problem 

with these SOEAs (single objective evolutionary algorithms) methods require the repeated 

use of an optimization technique to find one single solution on the efficient frontier per run. 

Hence it is a time consuming process to get the entire Pareto front. Furthermore, a uniform 

set of weight does not guarantee a uniformly distributed set of efficient points [1.12]. To 

achieve a diversity of solutions along the efficient frontier is of immense importance since 

certain trade-off portfolios of interest may be missed if they are concentrated in a small area 

of the efficient frontier. One more shortfall of this approach is that it cannot find all efficient 

points as shown in [1.7]. In addition, if practical constraints are considered the problem 

becomes extremely difficult to solve by using such method.  

   To overcome these shortcomings many researchers have applied multiobjective 

evolutionary algorithms (MOEAs) to solve the problem. One of the main advantages of 

MOEAs is that it gives a set of possible solutions in a single run called as Pareto optimal 

solution in a reasonable amount of time [1.12, 1.13]. Pareto ant colony optimization (PACO) 

has been introduced for solving the portfolio selection problem [1.13] and the performance 

has been compared with other heuristic approaches (i.e., Pareto simulated annealing and the 

nondominated sorting genetic algorithm) by means of computational experiments with 

random instances. Some authors have also used few MOEAs to solve the portfolio 

optimization problem with many practical constraints [1.14, 1.15]. 
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Since the introduction of the mean-variance portfolio optimization model by Harry 

Markowitz, considerable research attention has been paid on model simplifications and the 

development of different risk measures such as semi-variance, mean absolute deviation and 

variance with skewness model. All these techniques use the mean of the past return as 

expected return. These models are built upon some fundamental assumptions which are 

based on a distortion-free normally distributed series of returns [1.16]. However, these 

assumptions fails as the distribution of series of return deviates from normalcy due to 

kurtosis and skewness [1.17],[1.18]. Hence the development of a model free from such 

assumptions is still a challenging field of research. 

Markowitz theory helps to diversify the asset allocation. But there are some 

evidences which indicate that diversification does not help in reducing the total risk when 

the global markets face with some crises such as the incident of September, 11 or the recent 

turmoil in global markets which started from the financial sector. The value of stock in these 

conditions may be considered as outliers. During the last two decades, the idea of quality 

estimation, making the optimization robust under such conditions has become an interesting 

area of research. Hence robust optimization aims to find solutions to a given optimization 

problems with uncertain data. Different researchers have applied different robust 

optimization techniques to solve portfolio selection problem in this uncertain condition 

[1.19, 1.20]. However in these optimization techniques, the program dimension increases 

exponentially as the size of the problem i.e. number of assets present in the portfolio 

optimization increases. The difficulties become more pronounced when the numbers of 

constraints become more. In addition, if heavy turmoil on the input data occurs i.e. input 

data is contaminated with outliers, the optimization problem become more complex to get 
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the final solution. Therefore, there is a need to develop robust portfolio optimization 

techniques which can efficiently handle the outliers present in the financial data. 

In many situations it is required to invest the fund in future where the future data are 

not available and the present data are uncertain due to the presence of outliers. In such 

scenario future stock has to be predicted and the expected return and variance is to be 

calculated accordingly. Such complex problem needs a solution by involving robust 

prediction followed by efficient optimization. 

         The above cited burning issues need attention and appropriate solutions. Hence the 

scope of the present thesis is to address these issues and suggest appropriate methodologies 

based on multiobjective optimization techniques to provide satisfactory solutions. 

1.3 Multiobjective optimization: basic concepts and brief 

overview   

Multiobjective optimization deals with simultaneous optimization of multiple 

objective functions which are conflicting in nature.  A multiobjective optimization problem 

(MOP) is defined as the problem of computing a vector of decision variables that satisfies 

the constraints and optimize a vector function whose elements represent the objective 

functions. The generalized multiobjective minimization problem [1.21, 1.22] is formulated 

as  

        ( ) )1.1()(),...,(),()( 21 xfxfxfxfMinimize M

rrrr =
                                         

subject to constraints:   

( ) 0, 1, 2, 3....., (1.2)jg x j J≥ =r
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( ) 0, 1,2,3........, (1.3)h x k Kk = =  

where x
r
 represents a vector of decision variables                 

                                                                   { }1 2, ..., (1.4)
T

Nx x x x=r  

The search space is limited by  

, 1,2,3......., (1.5)L U
i i ix x x i N≤ ≤ =

          

The notations L
ix   and U

ix represent the lower and upper acceptable values respectively for 

the variable ix . N  and M  represent the number of decision variables and number of 

objective functions.  

Pareto Dominance: Any solution vector 1 2{ , ,....... }T
Ku u u u=r  is said to dominate over 

1 2{ , ,......, }T
kv v v v=r  if and only if  

( ) ( ) { }1,2,.....,i if u f v i M≤ ∀ ∈r r

 

( ) ( ) { }1,2,......., (1.6)i if u f v i M< ∃ ∈r r

 
Those solutions which are not dominated by other solutions for a given set are 

considered as non-dominated solutions.  

Pareto-optimal front (POF): The front obtained by mapping these non-dominated 

solutions is called Pareto-optimal front (POF). 

1 2( ) ( ), ( ),........., ( ) | (1.7)kPOF f x f x f x f x x p
  = = ∈  
  

r r r r r

 

where p  is the set of non-dominated solutions.  

The generalized concept of Pareto front was introduced by Pareto in 1986 [1.23].  
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Pareto Optimality: A point Ω∈*x
r

 is Pareto optimal if for every Ω∈x
r

 and 

},....,3,2,1{ kI = either ( )*( ) ( )i I i if x f x∈∀ =r r

 or, there is at least one Ii ∈ such 

that )()( *xfxf ii

rr > . The symbols f andΩ  represent the objective function and the feasible 

region )( S∈Ω of the whole search spaceS  respectively. In other words, *x
r

is Pareto optimal 

if there exists no feasible vectorx
r

 which would decrease some criteria without causing a 

simultaneous increase in at least one other criterion. 

Pareto optimal set: For a given MOP ),(xf
r

the Pareto optimal set *p is defined 

as,

* ': { | , ( ') ( )} (1.8)p x x f x f x= ∈Ω ¬∃ ∈ Ω ≤
r r

                                                                              

The solution of a MOP is a set of vectors which are not dominated by any other 

vector, and which are Pareto-equivalent to each other. This set is known as the Pareto-

optimal set. 

1.4 Portfolio optimization problem 

   Two main objective of portfolio optimization is the maximization of return and 

minimization of risk. In Markowitz model [2] for portfolio selection, variance is used as a 

measure of risk which is mathematically expressed as  

)9.1(
1 1

2 ∑∑
= =

=
N

i

N

j
ijjip ww σσ

where, ijσ
 
is the covariance between assets i  and j , 2

pσ is the variance of portfolio 

andN denotes the number of  assets available. iw  and jw (weighting of asset) is the 

proportion of the portfolio held in asset i  and j respectively. 

The portfolio return is represented as  
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)10.1(
1
∑

=

=
N

i
iip rwr

     
 

where ir  is the expected return of the asset i  and pr is the expected return of the portfolio. 

In addition, constraints like budget, cardinality, ceiling and may be considered for 

effective PO. Hence, with the presence of two objectives as shown in (1.9) and (1.10), the 

problem of portfolio optimization is transformed to multiobjective optimization problem.  

1.5 Motivation behind the research work 

  A lot of research ideas have gone into the development of heuristic algorithms based 

on a range of swarm intelligence techniques over the past few decades to analyze various 

problems in portfolio optimization. There are some significant issues in the portfolio 

optimization problem which needs to be addressed and resolved. 

•    The Portfolio optimization problem satisfying a set of constraints such as budget, 

floor, ceiling and cardinality is a challenging problem. These constraints have been 

handled by the conventional statistical and heuristic techniques using both single and 

multiobjective optimization. However, these techniques fail to get efficient solutions 

when the number of constraint increases. Hence it is required to use suitable 

multiobjective swarm intelligence algorithms to solve the portfolio optimization 

problem with more number of constraints.  

•    Since the introduction of the mean-variance portfolio optimization model by Harry 

Markowitz, considerable research attention has been made on model simplifications 

and the development of different risk measures. All these techniques use the mean of 

the past return as expected return. Hence there is a need to develop efficient ways of 

approach which would directly predict the future return and would be considered as 
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expected return. 

• There is a need to develop robust portfolio optimization techniques which can 

efficiently handle the outliers present in the financial data. 

• In many situations it is required to invest the fund in future where the future data are 

not available and the present data are uncertain due to the presence of outliers. In 

such scenario future stock has to be predicted and the expected return and variance 

are to be estimated. Such complex problem needs potential solution by devising 

robust prediction method followed by efficient optimization. 

Based on the aforementioned motivations, the concept of the research work of this thesis 

was born. These above cited problems have been addressed in the thesis and some 

satisfactory solutions to each of them have been provided using multiobjective evolutionary 

computational techniques.  

 1.6 Objective of the thesis 

  The objective of the present research work is to propose few MOEAs for solving 

Portfolio optimization problem. In essence the objectives of the research work carried in the 

present thesis are: 

•   To formulate the portfolio optimization problem as a multiobjective optimization 

problem and to successfully apply the multiobjective PSO and bacteria foraging 

optimization (BFO) algorithms to solve the investment portfolio problem.   

•     To employ multiobjective swarm intelligence based strategies for portfolio 

optimization when practical constraints are present.. 

•     To develop a methodology for future portfolio management, by generating future 

stock data, through prediction using artificial neural network. 



  Chapter: 1                                                                                                                                        Introduction  

  
 

12 

 

•    To develop multiobjective swarm intelligence based robust portfolio management 

technique to handle the outliers present the stock data. 

•     To develop improved and robust swarm intelligence techniques for portfolio 

management for future investment when outliers are present in input data. 

1.7 Structure and Chapter Wise Contribution of the Thesis 
Chapter 1: Introduction  

This chapter contains an introduction to the portfolio optimization problem, its 

importance, the motivation behind the proposed research work and a condensed version of 

chapter wise contribution made in the thesis. Finally, the overall conclusion of the 

investigation and scope for further research work have also been outlined. 

Chapter 2: Multiobjective Evolutionary Algorithms and Performance 
Metrics for Portfolio Optimization 

 

The classical statistical and heuristic optimization techniques are ineffective for 

solving constrained portfolio optimization problem. This shortcoming has motivated the 

researchers to develop multiobjective evolutionary techniques to solve the problem 

effectively. Some well known MOEAs which have been reported in the literature are Pareto 

envelope based selection algorithm (PESA), Pareto-archived evolution strategy (PAES), 

PESA-II, strength Pareto evolutionary algorithm (SPEA), SPEA2, Micro Genetic Algorithm 

(Micro-GA). This chapter also outlines adaptive Pareto-archived evolution strategy 

(APAES) and nondominated sorting genetic algorithm-II (NSGA-II) . Two novel MOEAs, 

based on non-dominated sorting such as nondominated sorting multiobjective particle 

swarm optimization (NS-MOPSO) algorithm and multiobjective bacteria foraging 
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optimization (MOBFO) have been proposed in the thesis for portfolio optimization purpose. 

Two algorithms based on decomposition such as decomposition based particle swarm 

multiobjective evolutionary algorithm (P-MOEA/D) and decomposition based bacteria 

foraging multiobjective evolutionary algorithm (B-MOEA/D) have been proposed and 

suitably used for effectively solving constrained portfolio optimization problem.    

Chapter 3: Constrained Portfolio Optimization using Multiobjective   
Evolutionary Algorithm 

 

This chapter addresses a realistic portfolio optimization problem with budget, floor, 

ceiling and cardinality constraints by formulating it as a multiobjective multiconstrained 

optimization problem. This problem has been solved by using proposed NS-MOPSO, 

MOBFO, P-MOEA/D and B-MOEA/D algorithms. Other MOEAs such as PESA-II, SPEA-

II, Micro-GA, APAES, NSGA-II and 2LB-MOPSO have also been applied to the same 

problem for comparison purpose. The performance of these MOEAs has been evaluated and 

has been compared with that obtained by the single objective genetic algorithm (GA), Tabu 

search (TS), Simulated annealing (SA) and particle swarm optimization (PSO). The mean 

Euclidean distance, variance of return error and mean return error are used as performance 

measure. The performance of the MOEAs is also evaluated using six statistical metrics such 

as generation distance, inverted generation distance, spacing, diversity and convergence 

metrics and error ratio. The comparison is also made using Pareto front and computational 

time. Nonparametric statistical analysis using the Sign test and Wilcoxon signed rank test 

are also performed to demonstrate the pairwise comparison of MOEAs. The simulation 

studies are carried out for four different constrained conditions. From the simulation results 

it is clear that the investor does not have to invest money on all available assets rather to 
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invest in fewer assets (around 10 percent) to explore wide risk- return areas. The portfolio 

manager has the option to make a tradeoff between risks, return and number assets to decide 

the portfolio according to the requirement. 

Chapter 4: Prediction based mean-variance Model for Multiobjective 
Portfolio Optimization 
 

This chapter consists of two parts. The first part deals with a novel prediction based 

portfolio optimization model. In the second part, the performance of proposed prediction 

based portfolio optimization model is evaluated and compared with the mean-variance 

model.  

The novel prediction based portfolio optimization model has been proposed in this 

chapter which differs from the mean-variance model, (i) In prediction based mean variance 

(PBMV) model, the expected return of each stock is its predicted return unlike that in mean-

variance model, where the expected return is the mean of past returns. (ii) The individual 

risk of each stock and the risk between each pair of stocks are obtained from the variance 

and covariance of the time series of the errors of prediction, instead of from the variance and 

covariance of the time series of return. (iii) In PBMV model the normal variable of interest 

is the error of prediction of the return of stocks, while in the mean-variance model the 

normal variable of interest is the return of the stocks.  

An efficient single layer neural network called as functional link artificial neural 

network (FLANN) is used for prediction which is trained with evolutionary computing. The 

inputs to the network are some financial and economic variables which are judiciously 

selected by using evolutionary algorithms. The FLANN structure is used for predicting the 

expected return and corresponding risk using the proposed model.   
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 The new risk and return is calculated for each of the stock present in the market 

which is the predicted output of the FLANN. These are taken as two objectives to be 

optimized using efficient MOEAs. The results are obtained with real life data from the 

Hang-Seng, DAX 100, FTSE 100, S&P 100 and Nikkei 225 stock indices. Experimental 

results show that the prediction based portfolio optimization model outperforms the 

conventional Markowitz model.  

Chapter 5: Novel Robust Multiobjective Portfolio Optimization Schemes 

In this chapter, the minimum volume ellipsoid (MVE) methodology is adapted to 

handle uncertainty of the stock market data. The source of uncertainty is the outliers present 

in the stock data which occurs due to unexpected situations. We can easily differentiate the 

data without outliers from unexpected data by clustering the good data using MVE method. 

The MVE is formed covering approximately 90 percent of the data (assuming 10 percent of 

the data are corrupted by outliers). In order to make the method computationally efficient, 

the MVE is formed by using core set and Lagrange multipliers. Thereafter, the weight factor 

is calculated by taking the parameters associated with the ellipsoid. Then the data are 

modified by multiplying with the weight factor. The weight factor is designed in such a way 

that it does not change the data those are present inside the ellipsoid, but those are present 

outside are diminished according to the weight factors. Then the desired parameters such as 

risk and return are calculated from the weighted data. The performance is obtained using 

real life data from the Hang Seng, DAX 100, FTSE 100, S&P 100, Nikkei 225 and BSE 

stock indices. Simulation results reveal that the proposed method exhibits good portfolio 

strategy in the presence of market uncertainties. 
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Chapter 6: Prediction Based Robust mean-variance Model for Constraint 
Portfolio Optimization 

 

This chapter deals with future investment of the fund where the future data are not 

available and the present data are uncertain due to the presence of outliers. In order to 

predict the future data, the FLANN is used as prediction model. The inputs to the FLANN 

are technical indicators which are judiciously selected after modifying the real data by 

multiplying with suitable weighted factors. This FLANN structure is used for prediction of 

future data, which is further used for portfolio selection using the Markowitz model. The 

same model is again used for prediction of future return, which is subsequently used for 

portfolio selection using the proposed PBMV model. This approach helps in mitigating the 

effect of outliers in the stock data as well as provides very good portfolio strategy for future 

investment. A subset of 20 stocks from Hang-Seng, DAX 100, FTSE 100, S&P 100, Nikkei 

225 and BSE-500 index between December 2008 to January 2012 have been selected for the 

present study.  

Chapter 7: Conclusion and Future Work 

In this chapter the overall contribution of the thesis is reported. Two novel 

multiobjective optimization algorithms approach based on bacteria foraging optimization 

and particle swarm optimization have been proposed and applied to the portfolio asset 

selection problem by formulating it as a multiobjective problem with many practical 

constraints. From the simulation results it is found that the portfolio manager has the option 

to make a trade-off between risk, return and number assets, to decide the portfolio according 

to the requirement. A new methodology is introduced for improved portfolio optimization 
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using predicted values obtained by artificial neural network. Improved and robust swarm 

intelligence techniques for portfolio management have been introduced. 

The future research problems are outlined in this chapter for further investigation on 

the same/related topics. Incorporation of advanced local search operators into the proposed 

algorithm can been done which is expected to allow better exploration and exploitation of 

the search space. The proposed algorithm can also be tested using other real world 

constraints like round-lot, turnover and trading. The proposed multiobjective optimization 

algorithm may be applied in many other financial applications such as asset allocation, risk 

management and option pricing.  
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A multiobjective optimization problem involves several conflicting objectives and 

has a set of Pareto optimal solutions. By initializing a population of solutions, multiobjective 

evolutionary algorithms (MOEAs) are able to approximate the Pareto optimal set in a single 

run. The MOEAs have attracted a lot of research effort in last few decades and are still one 

of the hottest research areas in the field of evolutionary computing. In this chapter, a brief 

and update overview of several MOEAs have been presented. Few application areas of 

MOEAs have also been dealt. Four novel MOEAs have been proposed and suitably oriented 

for solving portfolio optimization problem.  
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2.1 Introduction 

Many real world optimization problems involve multiple objectives. Evolutionary 

algorithms (EAs) are able to approximate the whole Pareto front (PF) of a multiobjective 

optimization problem (MOP) in a single run due to their population based nature. 

Schaffer [2.1] in 1985 introduced a multiobjective evolutionary algorithm called as 

vector evaluated genetic algorithms (VEGA). After his work, a lot of research effort has been 

made to apply EAs for solving multiobjective optimization problem. The research work on 

MOEAs in different aspect has been surveyed by many researchers. The survey based on  

generic methodologies are discussed in [2.2]-[2.5]. Similarly, some survey is based on 

different fields of application of MOEAs, such as engineering problems [2.6],[2.7], 

scheduling problems [2.8], economic and financial problems [2.9], automatic cell planning 

problems [2.10] and traveling salesman problems [2.11] etc. Comprehensive survey has 

been done by Aimin Zhou et al. on the development of MOEAs in 2011 [2.12]. According 

to algorithmic frameworks the MOEAs may be categorized as MOEAs based on non-

dominated sorting, decomposition-based, memetic type and indicator based MOEAs etc. 

[2.12].   

Different non-dominated sorting based approach includes nondominated sorting 

genetic algorithm (NSGA) [2.13], strength Pareto evolutionary algorithm (SPEA) [2.14], 

Pareto-archived evolution strategy (PAES) [2.15], Pareto envelope based selection algorithm 

(PESA) [2.16] etc. In this approach, the reproduction and selection operators of the MOEA 

guide the population iteratively towards non-dominated regions by preserving the diversity 

to get the Pareto optimal set. Decomposition based multiobjective evolutionary algorithm 
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(MOEA/D) [2.17] is based on conventional aggregation where an MOP is decomposed into 

a number of scalar objective optimization problems (SOPs).  

              The MOEAs based on the decision maker (DM’s) preference was introduced by 

Fonseca and Fleming [2.18] in 1993. Due to the conflicts of the objectives in MOPs, the 

total number of Pareto optimal solutions might be very large. However, the investor may be   

interested in some of the preferred solutions instead of all the Pareto optimal solutions. DM 

provides the preference information in order to guide the search towards the preferred 

solution in the Pareto front (PF). Based on the role of the DM in the solution process, 

multiobjective optimization can be classified into a priori, a posteriori and interactive 

methods [2.19]. If the preference information is given before the search process, it is  called 

as a priori method. Similarly, a posteriori method uses the preference information of DM 

after the search process. In an interactive method, the intermediate search results are 

presented to the DM so that one can provide the preference information for guiding the 

search process. Greenwood et al. have combined preference information in the survival 

criteria with Pareto ranking to solve MOPs [2.20]. Branke and Deb have incorporated the 

preference information into NSGA-II by modifying the definition of dominance and using a 

biased crowding distance based on weights [2.21]. Deb et al. have proposed a progressively 

interactive MOEA where an approximate value function is progressively generated after 

every generation [2.22]. Thiele et al. have used the DM’s preferences expressed 

interactively in the form of reference points [2.23].  

Zitzler and Künzli have suggested a general indicator based evolutionary algorithm 

(IBEA) to solve MOPs [2.24, 2.25]. Such MOEAs use indicators such as generational 

distance and hypervolume to guide the search for getting Pareto solution. The quality of an 
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approximated Pareto front could be measured by these scalar indicators.  Basseur and Zitzler 

proposed an indicator-based model for handling uncertainty, in which each solution is 

assigned a probability in the objective space [2.25].  

The MOEAs can also be categorized as memetic MOEAs where hybridization of 

global search and local search occur. Ishibuchi and Murata have proposed one of the first 

memetic MOEAs [2.26] in 1998 where the algorithm uses a local search method after 

applying the classical variation operators. In [2.27], Knowles and Corne have proposed a 

memetic Pareto archived evolution strategy to solve MOPs. The algorithm introduces a 

Pareto ranking based selection method and couples it with a partition scheme in objective 

space. Jaszkiewicz [2.28] has suggested a multiobjective genetic local search (MOGLS) 

algorithm for the multiobjective 0/1 knapsack problem. 

The MOEAs can also be categorized in terms of generic methodologies such as 

genetic algorithm, particle swarm optimization, bacteria foraging optimization etc. The 

pioneering work in the practical application of genetic algorithm to MOP is the vector 

evaluated genetic algorithm (VEGA) [2.1]. For similar applications, a number of algorithms 

based on genetic algorithm such as non-dominated sorting genetic algorithm (NSGA) [2.13], 

niched Pareto genetic algorithm (NPGA) [2.29], genetic algorithms for multiobjetive 

optimization (MOGA) [2.18], SPEA [2.14], SPEA2 [2.30], PAES [2.15], PESA [2.16], 

PESA-II [2.31], NSGA-II [2.32], DMOEA [2.33], PAES [2.15], APAES [2.34] and Micro-

GA [2.35] have been proposed in the literature. In the recent past, multiobjective bacteria 

foraging technique have been reported in [2.36]-[2.39] with different variations. Another bio-

inspired technique based on particle swarm optimization to solve multiobjctive problem 

(MOP) known as muliobjective particle swarm optimization (MOPSO) has been proposed by 
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Coello et al. [2.40]-[2.41]. Non-dominated sorting particle swarm optimization (NSPSO) is 

reported in [2.42]. Some other variants of multiobjective particle swarm optimization 

techniques such as TV-MOPSO [2.43], FMOPSO [2.44], FCPSO [2.45], MOCPSO [2.46] 

and QPSO [2.47] have been proposed to solve the MOP. In [2.48], a multiobjective 

comprehensive learning particle swarm optimizer (MOCLPSO) has been  presented. In 

[2.49], a two-lbests based multiobjective particle swarm optimizer (2LB-MOPSO) technique 

has been reported. A Pareto-frontier differential evolution (PDE) algorithm is dealt in [2.50]. 

A multiobjective differential evolution algorithm with diversity enhancement strategies is 

available in [2.51]. In [2.52], [2.53], a multiobjective immune system has been employed to 

deal with dynamic multiobjective problems with constraints. In [2.54], a multiobjective 

immune system has been proposed to find Pareto optimal robust solutions for bi-objective 

scheduling problems. 

In the present study, the main objective is to solve different challenges of portfolio 

optimization problem which are inherently a multiobjective in nature. In this chapter two 

non-dominated sorting based MOEAs such as non-dominated sorting multiobjective particle 

swarm optimization (NS-MOPSO) and multiobjective bacteria foraging optimization has 

been proposed and suitably oriented for solving portfolio optimization problem. Two 

MOEAs algorithm based on decomposition such as decomposition based particle swarm 

multiobjective evolutionary algorithm (P-MOEA/D) and decomposition based 

multiobjective bacteria foraging optimization (B-MOEA/D) have also been proposed to 

solve the same problem. In this chapter, these four algorithms have been explained in 

details. Six other peer non-dominated sorting based algorithms such as PESA-II, SPEA-II, 

Micro-GA, APAES, NSGA-II and 2LB-MOPSO have also been applied to same problems, 
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are dealt in brief. Different performance metrics such as generation distance( )GD , inverted 

generation distance( )IGD , spacing (S ), diversity metric (∆ ), convergence metric (C ) and 

error ratio (ER ), which have been used to compare the performance of different algorithms 

are discussed in the chapter. 

2.2 Overview of existing MOEAs 

A majority of MOEAs in both the research and the application areas are Pareto-

dominance based which are mostly the same frameworks as that of NSGA-II [2.32]. 

However, decomposition based multiobjective evolutionary algorithm (MOEA/D) is a 

recent multiobjective evolutionary algorithmic framework which is successfully applied to 

different fields [2.17]. Some of the peer MOEAs of both of these categories, which have 

been successfully applied to other fields and suitably tuned to suit for portfolio optimization 

problem are briefly explained in this section.  

2.2.1 Non-dominated sorting based MOEAs 

 The non-dominated sorting based MOEAs involve two populations of individuals. 

The first population, or archive/external population, used to retain the ‘‘best’’ solutions are 

found during the search. The second population is the normal population of individuals, 

sometimes used to store the offspring population and in some other times it takes part in the 

reproduction process. The archive is updated by the “best” individuals based on information 

from both the population and hence elitism is ensured.  

  In these algorithms, a selection operator based on Pareto domination and a 

reproduction operator are used. The operator of the MOEAs guides the population iteratively 

towards non-dominated regions by preserving the diversity to get the Pareto optimal set. The 
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evaluation operator leads to population convergence towards the efficient frontier and helps 

to preserve the diversity of solutions along the efficient frontier. However, the method by 

which they achieve these two fundamental goals differs. Both goals are achieved by 

assigning a rank and a density value to every solution. The MOEAs provide first  priority to 

non-dominance and second priority to diversity. The main difference between the algorithms 

lies in their fitness assignment techniques. The popular fitness assignment strategies are 

alternating objectives-based fitness assignment such as the VEGA [2.1] and domination-

based fitness assignment such as SPEA 2 [2.30], NSGA-II [2.32] etc. The MOEAs which 

are based on nondominated sorting such as PESA-II, SPEA 2, Micro-GA, APAES, NSGA II 

and 2LB-MOPSO have been explained in brief. 

(a) The PESA-II Algorithm 

Corne et al. have proposed [2.16] Pareto envelope-based selection algorithm for 

solving multiobjective optimization problem. In this algorithm, the newly generated 

solutions tB  are incorporated into the archive one by one. A candidate child from newly 

generated solutions enters the archive when it is non-dominated within tB , or it is not 

dominated by any current member of the archive. If the addition of a solution renders the 

archive over-full, then a mating selection is carried out by employing crowding measure. 

The crowding distance measurement is done over the archive members. Each individual in 

the archive is associated with a particular hyper-box. It has a squeeze factor which is equal 

to the number of other individuals from the archive which present in the same hyper box. 

The environmental selection criteria is based on this crowding measure and used for each 
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individual from the archive. The PESA-II algorithm proposed in [2.31] by incorporating 

region based selection and shows improved performance over PESA. 

(b) The SPEA 2 Algorithm 

In SPEA 2 mating selection is used which is based on fitness measure and it uses binary 

tournament operator [2.30]. It emphasizes non-dominated individuals by using a technique, 

which combines the dominance count and dominance rank method. Each individual is 

assigned a raw fitness value that specifies the number of individuals it dominates and also 

the number of individuals by which it is dominated. The density information is incorporated 

to the raw fitness by adding a value which is equal to the inverse of the thk  smallest 

Euclidean distance to the thk  nearest neighbor plus two. The archive updation is performed 

according to the fitness values associated with each of the individuals in the archive. Then, 

the updated operator returns all non-dominated individuals from the combined set of archive 

and the current pool. There are two possibilities, if the archive size is less than the pre-

established size, the archive is completed with dominated individuals from the current pool 

otherwise some individuals are removed from the archive using the truncation operator.  

This operator is based on the distance of an individual to its nearest neighbor.  

(c) The Micro-GA Algorithm 

     The micro-GA algorithm employs a small population and involves a reinitialization 

process [2.35]. Initially the random population is generated which is fed to the population 

memory. It is divided in two parts, replaceable and non replaceable portion. The non 

replaceable portion of the population memory remains unchanged during the entire run and 

provides the required diversity. But the other portion undergoes changes after each cycle. 
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The micro-GA uses three forms of elitism such as (i) it retains non-dominated solutions 

found within the internal cycle (ii) it uses a replaceable memory whose contents is partially 

refreshed at certain intervals and (iii) it replaces the population by the best solutions found 

after a full internal cycle of the micro-GA.  

 (d ) The APAES Algorithm 

Knowles and Corne [2.15] have suggested a simple evolutionary algorithm called 

Pareto Archived Evolution Strategy (PAES). In this algorithm one parent generates one 

offspring by mutation. The offspring is compared with the parent. If the offspring dominates 

the parent, the offspring is accepted as the next parent and the iteration continues. If the 

parent dominates the offspring, the offspring is discarded and the new mutated solution is 

generated which becomes the new offspring. If the offspring and the parent do not dominate 

each other, a comparison set of previously non-dominated individuals is used. For 

maintaining population diversity along the Pareto front, an archive of non-dominated 

solutions is considered. Newly generated offspring is compared with the members of archive 

to verify whether it dominates any of them. If it dominates, then the offspring enters the 

archive and is accepted as a new parent. The dominated solutions are eliminated from the 

archive. If the offspring does not dominate any member of the archive, both parent and 

offspring are checked for their nearness with the solution of the archive. If the offspring 

resides in the least crowded region in the parameter space among the members of the archive, 

it is accepted as a parent and a copy is added to the archive.  The APAES proposed by M 

Oltean et al. [2.34] can be considered as an adaptive representation of the standard PAES. 

When the current solution dominates the mutated solution for a consecutive fixed number of 

times, it indicates that the representation of current solution has no potential for exploring 
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the search space from the place where it belongs. Therefore, the representation of the current 

solution must be changed in order to ensure a better exploration.  

(e) NSGA-II algorithm 

Dev and Pratab [2.32] have proposed NSGA-II for solving MOPs. The NSGA-II 

algorithm starts from a random population and utilizes some operators for uniform covering 

of Pareto set. The NSGA-II algorithm for multi-criteria optimization contains three main 

operators (i) a non-dominated sorting (ii) density estimation and (iii) a crowded comparison. 

To guide the individuals towards the efficient frontier, dominance depth method is adopted 

by NSGA-II. It classifies the solutions in several layers, based on the position of fronts 

containing the individuals. The crowding distance mechanism is employed to preserve the 

diversity of solutions which calculates the volume of the hyper-rectangle defined by the two 

nearest neighbors. Based on these values, the update operator returns the best individuals 

from the combination of archive and the population. Individuals with the lower rank and 

higher crowding distance would fill the archive. The three main characteristics of NSGA-II 

are (i) Non-dominated sorting algorithm is having the lower computational complexity than 

that of its predecessor NSGA. The maximum number of computational complexity of 

NSGA-II algorithm is )( 2mNO , where N  is the population size and m  is the number of 

objectives (ii)  Elitism is maintained and (iii) No sharing parameter needs to be chosen 

because sharing is replaced by crowded-comparison to reduce computations. 

(f) 2 LB-MOPSO Algorithms 

In the next chapter, we have employed another most recently proposed evolutionary 

MO algorithm called the Two-lbests based multi-objective particle swarm optimizer (2LB-
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MOPSO) [2.49] for solving portfolio optimization problem. This algorithm uses two local 

bests instead of one personal best and one global best to lead each particle. In order to select 

the first lbest for a particle, an objective is first randomly selected followed by a random 

selection of a bin of the chosen objective. Within this bin, the archived member with the 

lowest front number and among these with the highest crowding distance is selected as the 

first lbest. The second lbest is selected from a neighboring non empty bin with the lower 

front number and the smallest Euclidean distance in the parameter space to the first lbest. As 

each particle’s velocity is adjusted by the two lbests from two neighboring bins, the flight of 

each particle will be in the direction of the positions of two lbests and orientated to improve 

upon the current solutions. A pair of lbests is assigned to a particle and the number of 

iterations the particle fails to contribute a solution to the archive is counted. If the count 

exceeds a predefined threshold, the particle is re-assigned to another pair of lbest. The two 

local bests are close to each other and help to enhance the local search ability of the 

algorithm.  

2.2.2 The decomposition based MOEAs 

The decomposition based multiobjective evolutionary algorithm (MOEA/D) [2.17] is 

another way of approach for solving the multiobjective problem which differs from non-

dominated sorting algorithm. In this approach the multiobjective optimization problem is 

decomposed into a number of scalar objective optimization problems (SOPs). The objective 

of each SOP, called subproblem, is a weighted aggregation of the individual objectives.  
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2.2.3 The constraint handling in MOEAs 

Although MOEAs have more extensively been investigated within the context of 

unconstrained and bound constrained MOPs, various general constraints are involved when 

solving real-world problems. Typically, the search space Ω of a constrained MOP can be 

formulated as follows [2.12]   
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where )(xg j  and )(xhk are inequality and equality constraint functions, respectively. 

Generally, equality constraints are transformed into inequality forms, and then combined 

with inequality constraints using  
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where δ  is a tolerance parameter for the equality constraints. Due to the presence of 

constraints, the search space is partitioned into feasible and infeasible regions.  

Coello [2.40] classifies the constraints handling methods into five categories: (1) 

penalty functions (2) special representations and operators (3) repair algorithms (4) separate 

objective and constraints (5) hybrid methods. A constrained dominance concept has been 

introduced by Deb et al. [2.23] to handle constraints in multiobjective problems. A solution 

x  dominates a solution y  if (i) x  is feasible, while y  is infeasible (ii) both are infeasible 

and x  has less constraint violation than y  or (iii) both are feasible and x  dominatesy . The 

solutions are ranked using the non-constrain-dominated method while the superiors are 
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selected to evolve. The handling of different practical constraints in portfolio optimization 

problem is explained in the next chapter. In the simulation the inequality constraint is 

considered as a soft constraint and repair operator is used to adjust the weight so as to meet 

it instead of transforming it in to inequality form.  

2.3 The particle swarm optimization for the design of MOEAs 

Kennedy and Eberhart [2.58] realized that an optimization problem can be 

formulated by mimicking the social behavior of a flock of birds flying across an area 

looking for food.  This observation and inspiration by the social behavior exhibited by flocks 

of birds and schools of fish resulted the invention of a novel optimization technique called 

particle swarm optimization (PSO). Particle swarm optimization algorithms optimize an 

objective function by conducting a population based stochastic search. The population 

comprises potential solutions, called particles. These particles are randomly initialized and 

freely fly across the multi-dimensional search space. During flight, each particle updates its 

velocity and position based on the best experience of its own and the best experience of the 

entire population. The updating rule enables particles to move toward the desired region 

with a higher objective value. 

In PSO [2.58] each solution is represented by a particle and the thi particle is given 

by ( ),,...,,, 321 idiiii xxxxX =  where d   is the dimension of the search space. The thi  particle 

of the swarm population has its best position ( ),,...,, 21 idiii pppP =  that yields the highest 

fitness value. The global best position ( ),,...,, 21 gdggg pppP =  is the position of the best 

particle that gives the best fitness value in the entire population. ( )1 2, ,...,i i i idV v v v=  be the 
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current velocity of thi the particle. Particles communicate with each other and for a fully 

connected topology the position and velocity of each particle in next iteration are 

mathematically expressed as: 

                                  1 1 2 2( ) ( 1) ( )( 1) ( )( 1) (2.3)id id id id gd idV t wv t C r p x t C r p x t= − + − − + − −                                      

                                                          ( ) ( 1) ( ) (2.4)id id idx t x t v tχ= − +                                                                         

where Dd ,...,2,1=  and .,...,2,1 Ni =  The size of swarm population is N . χ  is a 

constriction factor which controls and constricts the magnitude of velocity. w is the inertia 

weight parameter to control exploration or exploitation in the search space. It can be a linear 

or nonlinear function of time or a positive constant [2.58]. 1r  and 2r are two random values 

called as acceleration constants within range [0, 1]. 

2.3.1 Decomposition based particle swarm MOEAs 

The MOEA/D decomposes the multiobjective optimization problem into N  scalar 

optimization subproblems. It solves these subproblems simultaneously by evolving a 

population of solutions. At each generation, the population is composed of the best solution 

found so far for each subproblem. The neighborhood relations among these subproblems are 

defined basing on the distances between their aggregation weight vectors. A subproblem is a 

neighbor of another subproblem if its weight falls close to that of the other. Each 

subproblem is optimized in the MOEA/D by using information mainly from its neighboring 

subproblems. In this case each individual subproblem keeps one solution in its memory, 

which could be the best solution found so far for the subproblem. 

  The MOEA/D optimizes N scalar optimization problems rather than directly solving 

MOP as a whole. Therefore, it employs scalar optimization methods as each solution is 
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associated with a scalar optimization problem. The issues of fitness assignment and diversity 

maintenance are easier to handle in the framework of MOEA/D. Several improvements on 

MOEA/D have been reported in [2.55] and has been applied to a number of application 

areas [2.56, 1.57].  

The MOEA/D provides flexibility of using any decomposition approach, into its 

framework for solving the MOPs. These approaches include the weighted sum approach, 

Tchebycheff approach and the Boundary intersection approach [2.17]. If weighted sum 

approach is applied to MOEA/D algorithm, it considers a convex combination of different 

objectives. Mathematically it is expressed as 

                                             Maximize ( )
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λ  is a coefficient vector in the objective function and x  is the variable to be optimized. 

Different weight vectors λ  is used in the above scalar optimization problem to generate a set 

of different Pareto optimal vectors. 

Hence, the multiobjective optimization problem is decomposed into a number of 

scalar objective optimization problems, called subproblem, is a weighted aggregation of the 

individual objectives. In the proposed method the individual objective is optimized using 

particle swarm optimization for designing decomposition based particle swarm 

multiobjective evolutionary algorithm (P-MOEA/D). 
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2.3.2 Non-dominated sorting multiobjective particle swarm (NS-MOPSO) 

In classical PSO, each particle tries to maximize its food substance obtained by 

moving across the multi-dimensional search space by updating its velocity and position. It is 

the only objective that governs the search process. But in the course of moving, it may face 

constraint like favorable temperature condition and it is expected that swarm should not 

move to a region of unfavorable temperature. If the temperature constraint is incorporated 

by adding a penalty function to the actual nutrient concentration then the approach leads to 

single objective constraint optimization. The food concentration and favorable temperature 

can also be considered as two separate objectives. Individual particle tries to optimize these 

two objectives simultaneously and can be applied to multiobjective optimization problem.  

PSO is extended to MOPSO in order to deal with the multiobjective problem in [2.40]. In 

our proposed NS-MOPSO the concept of non-dominated sorting is incorporated in MOPSO 

satisfying both the objectives and constraints. Those swarms whose locations represent non-

dominated solutions are classified as the optimal Pareto front 1 (OPF1) and the remaining 

swarms are classified into higher OPFs. In this way the complete population is ranked based 

on Pareto dominance criteria. The locations in lower OPF1 are rich in food and the locations 

of higher OPFs are poor in food content. Each particle updates its velocity and position 

based on the best experience of its own and the best experience of the particles with lower 

OPF. The updating rule enables particles to move toward the lower optimal Pareto front. 

The constraint handling is carried out based on the approach given by Deb et al. 

[2.32]. In this approach the normalized sum of constraint violations for all individuals are 

calculated. Then the individuals are classified according to the overall constraint violation. 

In between any two individuals if the overall violation of both of them is zero then the 
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ordinary ranking assignment is applied. Otherwise the individual with the lowest (or null) 

overall violation dominates the other one. In this proposed study of NS-MOPSO based 

portfolio optimization, the position of each particle represents a weight vector associated 

with different assets. The two fitness functions (risk and return) evaluate the fitness value for 

each particle.  

Pseudo-code of NS-MOPSO algorithm 

Step 1: Initialization of parameters 

N : Population size and store the population in a list PSOList: 

iX : The current position of the thi  particle within specified variable range 

iV  : The current velocity of the thi  particle within specified variable range and it has 

probability of 0.5 being specified in a different direction.  

The personal best positioniP  is set to .X  

UPPV  and LOWV : Upper and lower bounds of the decision variable range. 

MaxIterations: Maximum number of iterations. 

Step 2: Evaluate each particle in the population. 

Step 3: Iteration count loop: 1+= tt  

Step 4: Identify particles that give non-dominated solutions in the population and store them 

in a list NonDomPSOList. 

Step5: Calculate crowding distance value for each particle. 

Step6: Resort the NonDomPSOList according to crowding distance values. 

Step7: Number of particles: 1+= ii (step through PSOList). 
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• Select randomly a global best gP  for the thi  particle from a specified top part (e.g. 

top 5 %) of the sorted  NonDomPSOList. 

• Calculate the new velocity iV   and the new iX  based on (7) and (8) respectively. 

• Add the thi particles iP  and the new iX  to a temporary population, stored in 

NextPopList.   

At this stage the iP  and iX  coexist and the size of NextPopList is N2 . 

Step 8: If  Ni < , go to the next particle )1( +i (step 7). 

Step 9: Identify particles that give non-dominated solutions from NextPopList and store 

them in NonDomPSOList. Particles other than non-dominated ones from NextPopList are 

stored in a list NextPopListRest. 

Step10: Empty PSOList for next iteration step. 

Step11: Select random members of NonDomPSOList and add them to PSOList (not to 

exceed the number of particles (N ). Assign rest of NonDomPSOList  as 

NonDomPSOListRest. 

Step 12: If PSOList size < Number of particles (N ) 

• Identify non-dominated particles from NonDomPSOListRest and store them in 

NextNonDomList. 

• Add member of NextNonDomList to PSOList.  

•  If  still the PSOList size < N , copy NextPopListRest to NextPopListRestCopy, then 

vacant NextPopListRest. 

• Assign the vacant NextPOPListRest with the remaining particles other than non-

dominated ones from NextPopListRestCopy.  
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Step 13: If  PSOlist size < Number of particles (N ), go to (step 12). 

Step 14: If t  < MaxIterations, go to the next iteration (step 3) 

2.4 Bacteria foraging optimization algorithm for the design of 

multiobjective evolutionary algorithms 

          The evolutionary algorithms rely on the cooperative behavior of insects, birds etc. It 

is a fact that animals with poor foraging strategies are extinguished and those who have 

successfully foraging strategies survive from generation to generation and are reshaped into 

good ones. This idea was used by Bremermann [2.59] and subsequently by Passion [2.36] to 

develop bacteria foraging optimization algorithm. The way bacteria search for high gradient 

nutrient regions may be viewed as an optimization process. Each bacterium tries to 

maximize its obtained energy per each unit of time of the foraging process and avoid 

noxious substances. In addition the swarms communicate among individuals. The swarm 

behavior dealt in [2.36] is summarized as: 

1. At first the bacteria are randomly placed in the region of nutrients. Subsequently they 

move towards high nutrient regions. 

2 Those bacteria that are located in the region with noxious substances die and those at low-

nutrient region disperse.  

3. Bacteria with convenient region split and reproduce and tend to move towards high 

nutrient region. 

4. The bacteria disperse to look for new nutrient region. 

The E-coli bacteria of our intestine have a foraging strategy with four processes such 

as chemotaxis, swarming, reproduction, and elimination and dispersal. The detailed analysis 

of this concept is presented in [2.36],[2.37].        
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Let the parameters used are: 

N : Number of bacteria used in the search space. 

p : Dimension of the search space. 

sN : Swimming length. 

cN :  Number of iterations in a chemotactic loop.( sc NN > ) 

reN :  Number of reproduction. 

edN : Number of elimination and dispersal events. 

edp : The probability of elimination and dispersal. 

1. Chemotaxis: This process comprises of swimming and tumbling. Depending upon the 

rotation of flagella it decides whether to move in a predefined direction called swimming or 

in a different direction called tumbling. The direction of movement after a tumble can be 

expressed as  

)().(),,,(),,1,( jiclkjilkji φθθ +=+                                                                                  (2.7) 

Where ),,,( lkjiθ represents the position of thi bacterium at thj  chemotactic, thk reproduction 

and thl  elimination and dispersal step.)(ic and )( jφ  denote the step size taken in random 

direction specified by the tumble and an unit length in random direction. 

2. Swarming: The bacterium that has discovered the optimum path for the food tries to 

attract other bacteria. This process makes the bacteria bundle into groups and hence move as 

concentric patterns of groups with high bacterial density.   

3. Reproduction: Half of the least healthy bacteria die and each of the healthy ones splits 

into two bacteria and are placed in the same location. This process makes the population of 

bacteria constant. 

4. Elimination and dispersal: The life of population of bacteria changes either by 

consumption of nutrients or due to other environmental influence. This in turn destroys the 

chemotactic progress and at time it helps to place bacteria near good food source. This 

process facilitates in reducing the behavior of stagnation. 
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Flowchart of the BFO 
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2.4.1 Decomposition based bacteria foraging MOEA 

The multiobjective optimization problem is decomposed into a number of 

subproblem which is a weighted aggregation of the individual objectives. The individual 

objective can be optimized using bacteria foraging optimization. The proposed 

multiobjective optimization algorithm is named as decomposition based bacteria foraging 

multiobjective evolutionary algorithm (B-MOEA/D).  

2.4.2 Multiobjective bacteria foraging optimization (MOBFO) algorithm 

In BFO, each bacterium tries to maximize its nutrient substance obtained and 

attempts to avoid noxious substances. In addition to this objective if it faces constraint like 

favorable temperature condition, then it is expected that bacterium should not move to a 

region of unfavorable temperature. The nutrient concentration and favorable temperature can 

be considered as two separate objectives. Individual bacterium tries to optimize these two 

objectives simultaneously and can be applied to multiobjective problem.  

The BFO is extended to MOBFO in order to deal with the multiobjective problem 

[2.39]. In the proposed (MOBFO) the bacterial location represents the value of decision 

variables within the range of search space. The fitness values of all the variables which 

represent the amount of nutrients present in the environment are computed. All bacteria 

form a colony and are located at random positions. Applying a fast non-dominated sorting 

procedure [2.32] the current positions are grouped in different Pareto fronts. Those bacteria 

whose locations represent non-dominated solutions, are classified within the first set of 

optimal Pareto front 1 (OPF1) and the remaining bacteria are classified into higher OPFs. In 

this way the whole of the population is ranked according to Pareto dominance criteria. The 
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locations in OPF1 are rich in nutrients and therefore the bacteria present there have enough 

nutrients to eat. The locations of higher OPFs are poor in nutrient content.  

      During chemotaxis the bacteria in OPF1 compare the non-dominated classification 

of their current location with the previous ones. Hence these bacteria reach with any of the 

two possible movements. If both the previous and current locations are rich in nutrients 

(OPF1), the bacteria take a very small step in a random direction (tumble). However if the 

present location is rich in nutrient the bacteria take a swim. The bacteria present at higher 

OPF get a signal from bacteria present at OPF1 that at their location the nutrient is high. 

Each bacterium present at higher OPF selects randomly a strong bacterium from lower rank 

and moves towards its rich location, by taking a swimming step. The reproduction step 

consists of sorting bacteria based on their fitness function values and discarding half of them 

with the worst values with a higher front and lower crowding distance and duplicating the 

other half. Elimination and dispersal operations are carried out on  bacterium with some 

probability and disperse it to a random location keeping the swarm size constant.  

In MOBFO based portfolio optimization, the position of each bacterium represents a 

weight vector associated with different assets. The two fitness functions (risk and return) are 

evaluated for each bacterium. The constraint handling is based on the approach given by 

Deb et al. [2.32].  

Pseudo-code of MOBFO algorithm 

Step 1: initialization of parameters 

N : Population size. 

p : Dimension of the search space. 
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cN : Number of chemotactic loop ( sc NN > ). 

sN : Number of swimming loops. 

The chemotaxis loop consists of swimming and tumble for which ( sc NN > ).  

The number of swimming loop depends on the situation which a bacterium faces at the time 

of chemotaxis. 

reN : Number of reproductions. 

edN : Number of elimination and dispersal events. 

edp : Probability of elimination and dispersal. 

:)(iC  Size of the step taken in the random direction specified by the tumble. 

:M Number of objective functions. 

Initialize the parameters: Ranks of all the bacterium to 1, ,1=m 0=== lkj  

Step 2: Elimination and dispersal loop: 1+= ll  

Step 3: Reproduction loop: 1+= kk  

Step 4: Chemotactic loop: 1+= jj  

Step 5: Objective functions: 1+= mm  

Step 6: Number of bacteria 1+= ii  

Compute the fitness function )),,,(( lkjif m θ . 

Tumbling /swimming decision: 

• Tumble:  Generate )(i∆  which is an unit vector towards another bacterium 

belonging to a front whose rank is lower. The index of the new bacterium is 
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chosen at random. Suppose thn   bacterium is chosen at random and it belongs 

to a lower rank front compared to thi  bacterium.  

Then, 

                                                               
( ) ( , , , ) ( , , , ) (2.8)i n j k l i j k lθ θ∆ = −                                                                      

Else, 

Generate a random vector )(i∆ with each element )(ir∆  where pr ,.....,2,1= , a random 

number on ]1,0[ . 

•           Move: let 
( )

( , 1, , ) ( , , , ) ( ) (2.9)
( ). ( )T

i
i j k l i j k l C i

i i
θ θ ∆+ = +

∆ ∆
                            

                                 Compute ),,1,( lkjif m +  

                                                           

                       ( , 1, , ) ( , 1, , ) ( ( , 1, , ), ( 1, , )) (2.10)m m m
new oldf i j k l f i j k l f i j k l P j k lθ+ = + + ∆ + +                               

Where )),,(,( lkjpf m θ∆ are the cost function values of objectives to be added to the actual 

cost function. 

• Swim: 

o Let 0=q  (counter for swim length) 

o While sNq <  (If  climbed down is incomplete) 

Let 1+= qq  

� If lastnew flkjif <+ ),,1,( (if performance is 

improving) 

Now let ),,1,( lkjiff newlast += and 

                                                                       )().(

)(
)(),,,(),,1,(

ii

i
iclkjilkji

T ∆∆

∆+=+ θθ  
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Use ),,1,( lkji +θ  to compute the 

new ),,1,( lkjif m + . 

� Else, let sNm =  

o End of while statement. 

Step 7: If Ni < , go to the next bacterium )1( +i (step 6). 

Step 8: Store these new as well as the old positions in the memory which are ordered on the 

basis of non-dominated sorting. Only numbers of better ranked positions are retained from 

the sorted pool to be used in the next iteration )1( +j . If cNj < , go to step 4 which indicates 

chemotactic operation to continue since the life of the bacteria is not over. 

Step 9: Reproduction: Reproduction step consists of selecting half of the bacteria with a 

higher front and lower crowding distance and then eliminating the lower half. The remaining 

half is duplicated to maintain a fixed population size. For the given l  and for each 

Ni ,....,2,1= , ),,,({min
},..2,1{

lkjiff m
nw

Nj

m
final

c∈
= represents the health of bacterium i .  

If reNk < , go to step 3 which means that the process has not reached the number of 

specified reproduction steps.   

Step 10: Elimination-dispersal: Eliminate and disperse bacteria chosen with probability 

edP to a random location on the optimization space but retaining the bacteria population 

space. 

If  edNl < , then go to step 2.  

Else stop 

The bacteria foraging optimization steps during non-dominated sorting are outlined as 
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2.5 Performance measure metrics   

The main objective of MOEAs is to provide solutions satisfying three objectives: (i) 

minimal distance to the standard efficient front or global optimal Pareto front (GOPF) (ii) 

good distribution (iii) maximum spread. The final Pareto optimal front obtained from 

different MOEAs is compared using performance metrics proposed by many researches 

[2.2], [2.13], [2.14]. Six different metrics defined in the sequel are used during the 

investigation for measuring the performance quality is given as: 

 

Begin  
Initialize input parameters  
Create a random initial swarm of bacteria ),,,( lkjiθ  , Nii ,....,2,1, =∀  

Evaluate )),,,(( lkjif m θ , Nii ,....,2,1, =∀  

For  1=l  to edN Do 

          For 1=k  to reN Do 

          For 1=j  to cN Do 

               For 1=i  to N Do 
              For 1=m  to M Do 

                         Perform the chemotactic step tumble-swim or tumble-tumble  
                         operations for  all bacteria and for all objectives ),,,( lkjiθ .Evaluate  
                         the cost functions of all the bacteria and for all the objectives. 
                    end for 

     end for 
       end for 
Perform the reproduction step by eliminating the half worst bacteria with higher front  
and with lower crowding distance and duplicating the other half. 
   end for 
Perform the elimination-dispersal step for all bacteria with probability 10 ≤≤ edP .  

     end for 
end 
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(a) Generation distance ( )GD          

It estimates the distance of elements of non-dominated vectors found, from those 

standard efficient frontier [2.2] and is mathematically expressed as 

2

1 (2.11)

n

i
i

d

GD
n

==
∑

wheren is the number of vectors in the set of obtained non-dominated solutions. id is the 

Euclidean distance between each of these and the nearest member of the standard efficient 

frontier. If 0=GD , all the candidate solutions are in standard efficient frontier. The smaller 

the value of GD  the closer is the solution to the standard efficient frontier. 

(b) Inverted generation distance ( )IGD  

 This indicator [2.2] is used to measure how far the elements of the standard efficient 

fronts are from the non-dominated vectors found by the proposed algorithm. If 0=IGD , all 

the candidate solutions are in the global optimal Pareto front covering all its extensions. 

(c) Spacing ( S ) 

It measures the spread of candidate solution throughout the non-dominated vectors 

found. This metric [2.30] is mathematically expressed as 

2

1

1
(2.12)

1

n

i
i

S d d
n

∆ −

=

 = − −  
∑

where    














−






+






−






=
→→→→
xfxfxfxfd jiji

ji 2211min    and   nji ,...,2,1, =     

=
−
d mean of all id  andn  is the number of non-dominated vectors found so far. A value of 
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zero for this metric indicates all members of the Pareto front currently available are 

equidistantly spaced.  

(d) Diversity metric (∆ ) 

This metric (∆ ) measures the extent of spread i.e. how evenly the points are 

distributed among the approximation set in the objective space [2.13]. This metric does not 

require any standard efficient frontier and has a relation with Euclidean distance between 

solutions. It is defined as  

( )
)12.2(

1

1

1
−

−

=

−

−++

−++
=∆

∑

dNdd

dddd

lf

N

i
ilf

                                                                                         

where id  is the Euclidean distance between consecutive solutions in the obtained non-

dominated set of solutions. 
−
d  is the average of these distances id . fd and ld  are the 

Euclidean distance between the extreme solutions and the boundary solutions of the 

obtained non-dominated set. N  is the number of solutions on the best non-dominated front. 

If there are N  solutions then there are  1−N  consecutive distances. The low value  

indicates better diversity of the non-dominated solution. Its value for most widely and 

uniformly spread out set of non-dominated solutions is zero.  

(e) Convergence metric (C ) 

This metric compares the quality of two non-dominated set. This matrix is computed 

without taking standard efficient frontier into consideration. LetA  and B  be two different 

sets of non-dominated solutions then the C metric [2.14] is mathematically expressed as 
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( ) { }| :
, (2.14)

b B a A a b
C A B

B

∈ ∃ ∈
=

p

where a  and b  are candidate solutions of set A  and B  respectively. The function C  maps 

the order pair ),( BA  to the interval [0, 1]. If 1),( =BAC , all the candidate solutions in B are 

dominated by at least one solution inA . Similarly, if 0),( =BAC , no candidate solutions in 

B  is dominated by any solution inA .  

(f) Error ratio ( ER ) 

   This metric is introduced by Veldhuizen and Lamont [2.2] to indicate the percentage 

of candidate solutions those are not the member of the global optimal Pareto front. 

1 (2.15)

n

i
i

e
ER

n
==
∑

                                                                                                                           

wheren  is the number of vectors in the current set of non-dominated vectors available. 

If 0=ie , vector i  is a member of the global optimal Pareto front and if , the reverse is true 

which indicates that the candidate solutions vectors generated by the algorithm belong to the 

GOPF of the problem.  
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2.6 Conclusion 

In this Chapter, six MOEAs which have earlier been applied in PO problem are 

discussed in brief. Two non-dominated sorting based MOEAs such as NS-MOPSO and 

MOBFO have been discussed in details. Two decomposition based MOEA algorithm such 

as decomposition based particle swarm MOEA (P-MOEA/D) and decomposition based 

bacteria foraging MOEA (B-MOEA/D) have also been discussed. In P-MOEA/D and B-

MOEA/D the objective of each subproblem has been optimized using PSO and BFO 

respectively. These four proposed MOEAs have been successfully applied to solve portfolio 

optimization problems in subsequent chapters. 
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This chapter addresses a realistic portfolio optimization problem as a multiobjective 

optimization problem by considering budget, floor, ceiling and cardinality as constraints. 

Four novel multiobjective evolutionary optimization algorithms, two based on non-

dominated sorting and two based on decomposition have been employed to solve the 

problem efficiently. The performance of the proposed algorithms is compared with four 

single objective evolutionary algorithms such as genetic algorithm (GA), tabu search (TS), 

simulated annealing (SA) and particle swarm optimization (PSO) as well as a set of 

competitive multiobjective algorithms. The comparisons are based on three performance 

measures, six performance metrics, Pareto front and computational time. Nonparametric 

statistical analysis using the Sign test and Wilcoxon signed rank test has also carried out to 

demonstrate the pairwise comparison. On examining the performance metrics it is observed 

that the proposed MOEAs are capable of identifying good Pareto solutions maintaining 

adequate diversity in the presence of cardinality.  

 

 

 

Chapter 
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3.1. Introduction 

The task of portfolio optimization is a very challenging and interesting problem in 

computational finance and has received attention of many researchers in the last few 

decades. The portfolio contains stocks, bank investments, real estate holdings, bonds, 

treasury bills etc.  Markowitz has set up a quantitative framework for the selection of a 

portfolio [3.1], [3.2].  In this framework, the percentage of each available asset is selected in 

such a way that the total profit of the portfolio is maximized while total risk is minimized 

simultaneously. Hence the portfolio optimization problem is inherently a multiobjective 

problem. The portfolio optimization is very complicated as it depends on many factors such 

as preferences of the decision makers, resource allocation, growth in sales, liquidity, total 

turnover, dividend and several other factors. Some authors have also added some practical 

constraints such as floor, ceiling, cardinality etc. to Markowitz model that makes it more 

realistic. Inclusion of these constraints to the portfolio optimization problem makes it 

intractable even for small instances. With these constraints, it becomes a mixed integer 

programming problem with quadratic objective functions. Researchers have tried to solve 

the constrained portfolio optimization problem using (a) classical/exact method such as 

active set methods, interior point techniques (b) heuristics approach such as single objective 

heuristic approach and multiobjective heuristic approach.  

(a) Classical method 

 Bienstock [3.3] in 1996 have presented a ‘branch and cut algorithm’ for the exact 

solution of the cardinality constrained portfolio optimization problem. Shaw et al. [3.4] have  
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used a ‘lagrangean relaxation based procedure’ for solving the cardinality constrained 

portfolio optimization problem using the exact/classical method. Recently Vielma et al. 

[3.5] have proposed a “branch-and-bound algorithm” by using classical method for solving 

cardinality constrained portfolio optimization problem based on a lifted polyhedral 

relaxation of conic quadratic constraints. Bertsimas and Shioda [3.6] have introduced an 

approach for the cardinality constrained portfolio optimization problem using “Lemkes 

pivoting algorithm”. In 2010 Gulpinar et al. [3.7] have applied “difference of convex 

functions programming” for getting the exact solution of the cardinality constrained 

portfolio optimization problem. Considering the floor and cardinality constraint, Li et al. 

[3.8] have solved the portfolio optimization problem. However, these classical/traditional 

optimization methods meant for solving this cardinality constrained portfolio optimization 

problem are likely to be trapped to local minima solutions. Hence there is a need to propose 

new approach which avoids this limitation to the extent possible.  

(b) Heuristic approach 

 To overcome the shortcomings of the classical methods, different efficient heuristic 

methods are developed. Chang et al. [3.9] in 2000 have presented three heuristic algorithms 

based on genetic algorithm, Tabu search and simulated annealing for finding the cardinality 

constrained efficient frontier. This may be considered to be the first heuristic approach to 

solve cardinality constrainted portfolio optimization problem. Computational results are 

presented for five test problems of five different stock indices such as Hang-Seng, DAX 

100, FTSE 100, S&P 100 and Nikkei 225 having 31, 85, 89, 98 and 225 assets respectively. 

These data are publicly available from OR-Library maintained by Prof. Beasley [3.33].  In 

our study also we have used these data. Many researchers have followed the work of Chang 
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et al. [3.9] for solving the same problem using different metaheuristics. This approach can 

be divided into two categories such as single objective or multiobjective metaheuristic. 

(i) Single objective heuristic approach. 

 Fernandez and Gomez have applied a Hopfield neural network along with  three 

heuristics GA, SA and Tabu Search to the portfolio optimization problem [3.10]. Pai and 

Michel (2009) have applied a clustering approach for choosing the assets in the portfolio, 

thereby eliminating the cardinality constraint [3.11]. Crama and Schyns have proposed a 

simulated annealing approach to the constrained portfolio optimization problem, (that 

includes cardinality, turnover and trading as parameters) [3.12]. Derigs and Nickel have also 

used simulated annealing based metaheuristic to solve the portfolio management problem 

[3.13]. Particle swarm optimization has been applied to solve portfolio optimization problem 

in [3.14]. Genetic algorithm [3.15] has been applied to solve the portfolio optimization 

problem considering different constraints such as minimum transaction lots and cardinality.  

Chang et al. [3.16] in 2009 have used three other measures of risk such as semi-variance, 

mean absolute deviation and variance with skewness for modeling of MOEA using GA.    

  The aforementioned models are most popular approach to solve portfolio 

optimization problem considering the overall objectives as a weighted sum of the two 

objectives. However, solving this multiobjective problem with these single objective 

evolutionary algorithms (SOEAs) require the repeated use of an optimization technique to 

find one single solution on the efficient frontier per run. Hence it is a time consuming 

process to get the entire Pareto front. Furthermore, a uniform set of weight does not 

guarantee a uniformly distributed set of efficient points [3.17]. The diversity of solutions 

along the efficient frontier is of much importance as certain trade-off portfolios of interest 
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may be missed if they are concentrated in a small area of the efficient frontier. One more 

shortfall of this approach is that, it cannot find all efficient points [3.14].  

(ii) Multiobjective heuristic approach 

 To overcome the shortcomings of single objective optimization approach, many 

researchers have applied multiobjective evolutionary algorithms (MOEAs) to solve the 

problem that does not require any weight parameter. One of the main advantages of MOEAs 

is that it gives a set of possible solutions called as a Pareto optimal solution in a single run 

and in a reasonable amount of time [3.17]. Pareto ant colony optimization (PACO) has been 

introduced in [3.18] for solving the portfolio selection problem and compared its performance 

has been compared with other heuristic approaches such as Pareto simulated annealing and 

the non-dominated sorting genetic algorithm. Mishra et al. [3.19], [3.20] have applied 

different MOEAs to solve portfolio optimization problem considering only budget constraint. 

The literature survey reveals that the cardinality constraint has been addressed in [3.21],    

and [3.22]. The floor, ceiling and cardinality constraints have been dealt with in [3.23]. 

However, all these aforementioned studies lack of generality and in depth analysis in 

examining how the presence of these constraints affects the decision of the portfolio 

manager. Hence the portfolio optimization problem satisfying a set of constraint is a 

challenging problem for researchers. In the proposed work the combined presence of 

practical constraints such as budget, floor, ceiling and cardinality is considered to make the 

portfolio optimization problem more realistic. Anagnostopoulos and Mamanis [3.24]  have 

adopted a tri-objective view of the problem and have applied three multiobjective 

evolutionary optimization algorithms such as NSGA-II, SPEA2 and the PESA. In 2011 the 

same authors compare the effectiveness of five state-of-the-art multiobjective evolutionary 
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algorithms (MOEAs) together with a steady state evolutionary algorithm on the mean–

variance cardinality constrained portfolio optimization problem (MVCCPO) [3.25]. Burbank 

et al. [3.26] have used a multiobjective evolutionary algorithm in conjunction with the 

critical line algorithm of Markowitz. They have included a constraint (involving additional 

zero-one variables) based on the German investment law. 

In the aforementioned studies a particular case of constraint condition has been 

analyzed but in-depth analysis of different combination of constraints is not considered and 

hence it lacks generality. In most cases the inequality in the cardinality restriction has been 

replaced by an equality restriction. Hence handling of these constraints is very challenging 

and there is a need to apply efficient MOEAs algorithm for achieving efficient solution. 

 This chapter addresses the portfolio optimization problem considering budget, floor, 

ceiling and cardinality constraints. Two multiobjective evolutionary algorithms (MOEAs) 

based on non-dominated sorting such as NS-MOPSO and MOBFO as discussed in previous 

chapter have been applied to the portfolio optimization problem. Two MOEA algorithms 

based on decomposition (MOEA/D) such as decomposition based particle swarm 

evolutionary algorithm (P-MOEA/D) and decomposition based bacteria foraging 

evolutionary algorithm (B-MOEA/D) have also been proposed for solving the same 

problem. The performance of these algorithms is compared with some peer MOEAs 

algorithms such as PESA-II [3.27], SPEA-II [3.28], Micro-GA [3.29], APAES [3.30], 

NSGA-II [3.31], and 2LB-MOPSO [3.32]. The performance obtained from the study is also 

compared with those of single objective evolutionary algorithms such as genetic algorithm 

(GA), tabu search (TS), simulated annealing (SA) and particle swarm optimization (PSO) 

identical to [3.9]. The comparisons of the performance include, three error measures, six 
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performance metrics, Pareto front and computational time. Nonparametric statistical test 

such as the Sign test and Wilcoxon signed rank test are also performed to demonstrate the 

performance of proposed algorithms.  

3.2. Portfolio optimization problem with different practical 
constraints  

As discussed in Chapter-1 the variance of  Markowitz model [3.2] are 

mathematically expressed as:   

)1.3(                 
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where, ijσ
 
is the covariance between assets i  and j , 2

pσ
 
is the variance of portfolio and 

N denotes the number of  assets available, iw  and jw (weighting of asset) is the proportion 

of the portfolio held in asset i  and j  respectively. The portfolio return is represented as:                                     
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where, ir  is the expected return of the asseti , pr is the expected return of the portfolio, 

subjected to constraints. These constraints are: 

(a) Budget constraint 
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Eq. (3.3) shows the budget constraint which ensures that the sum of the weights 

associated with each asset is equal to one i.e. all the available money is invested in the 

portfolio. The budget constraint is an equality linear constraint.  This constraint makes the 
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portfolio optimization problem a convex problem and hence is referred to as convex 

constraint.  

(b) Floor constraint 

It is expressed as:  

)4.3(10, ≤≤≤ iiii awza
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The decision variable iz  is 1 or 0 depending upon an asset ),....,2,1( Nii = is held or 

not respectively. ia  is the lowest limit on the proportion of any asset that can be held in a 

single portfolio if it selected. It is the lower limit on the proportion of each asset that can be 

held in a single portfolio. It prevents excessive administrative cost for very small holdings 

which have insignificant influence on the performance of the portfolio. It is called as 

minimum proportion constraint or floor constraint.  

(c) Ceiling constraint 

It is expressed as: 
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The decision variable iz is 1 or 0 depending upon an asset ),....,2,1( Nii = is held or 

not respectively. ib  is the  maximum limit on the proportion of any asset that can be held in 

a single portfolio if it will be selected. It is the highest limit on the proportion of each asset 
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that can be held in a single portfolio. It prevents the excessive exposure to any portfolio 

which is a part of the institutional diversification policy. It is called as ceiling constraint.  

(d) Cardinality constraint 

This constraint specifies the number of assets that a portfolio can hold. The 

cardinality constraint K  denotes the number of assets a portfolio manager can invest money 

out of N available assets. The decision variable iz is 1 or 0 depending upon an asset 

),....,2,1( Nii = is held or not respectively. 

)7.3(
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i
i =∑

=

This equation ensures that exactly K  assets of N  available assets are held.  

             It also specifies the maximum and minimum number of assets that a portfolio can 

hold and is expressed as: 
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It implies that the number of assets in the portfolio lies between LK and UK )( UL KK ≠ . 

         In this model the risk is formulated using covariance. An equivalent formulation can 

be obtained using correlations because the covariance between the returns of assets i  and j  

is equal to the product of the standard deviations in return for assets i  and j  multiplied by 

the correlation between returns for assets i  and j . 

The Markowitz unconstrained model is shown in (3.1) to (3.3) with 

Niwi ...,3,2,1,10 =≤≤ . Considering all constraints from (3.1) to (3.7) the problem 

becomes a quadratic mixed-integer program (QMIP) which has been solved by Chang et al. 

in [3.9]. Most of the research works on MOEAs solve the QIPM by relaxing the equality 
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constraint of (3.7) to inequality constraint i.e. .
1

Kz
N

i
i ≤∑

=

But the portfolio problem is 

solved for a fixed K  asset or for a range of K  assets as shown in (3.7) and (3.8) 

respectively. Hence with the presence of two objectives as shown in (3.1) and (3.2) and 

constrains shown in (3.3) to (3.8) the problem of portfolio optimization becomes a 

multiobjective one and the aim is to find all non-dominated set of solutions.  

3.2.1 Single objective formulation of portfolio optimization  

This multiobjective optimization problem is usually solved with single objective 

solution techniques. The most popular approach considers the overall objectives as a 

weighted sum of these two objectives [3.9] and can be expressed mathematically as: 
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Now the only objective to be minimized is''V . The efficient portfolios from the 

minimum variance portfolio (λ  = 1) to the maximum return portfolio (λ  = 0) can be found 

out by repeatedly varying the parameter value λ  and solving a sequence of optimization 

problems (for eachλ ). Hence such a formulation yields non-dominated solutions by suitably 

varying the λ  factor from 0 to 1 with a small increment of 0.02. The main advantage of 

these approaches is that it reduces the multiobjective problem to a scalar optimization 

problem and any single objective metaheuristics algorithm can then be applied. In this 

chapter four single objective evolutionary algorithms (SOEAs) such as the PSO, GA, TS and 

SA have been applied for solving the multiobjective portfolio optimization problem identical 

to those dealt in [3.9]. 
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However, solving the portfolio optimization problem is a time consuming process to 

get the entire Pareto front. A uniform set of λ  does not guarantee a uniformly distributed set 

of efficient points [3.17]. 

3.2.2. Multiobjective formulation of portfolio optimization  

The portfolio optimization problem which is inherently a multiobjective problem can 

be efficiently solved by using the MOEAs.  

(a) Formulation for non-dominated sorting based MOEAs 

The multiobjective portfolio optimization problem can be solved by MOEAs based 

on non-dominated sorting which do not combine the two objectives to obtain the Pareto 

optimal solution set. Here the two objectives are taken individually and try to optimize both 

simultaneously. 

The main objective is to maximize return pr  and minimize risk 2
pσ . The proposed 

NS-MOPSO and MOBFO are suitably oriented in such as to minimize the two objectives. 

To express both the objectives in minimization form, the second objective  pr
 
is expressed 

as pr− . In addition to these objectives, different practical constraints mentioned in (3.3) to 

(3.8) are also considered. Accordingly portfolio problem is expressed as 

        Minimize 2
pσ  and pr−  simultaneously considering all constraint                           (3.10)                              

Hence with the presence of this multiple objectives and constraints, the problem 

becomes a multiobjective minimization problem. By solving this, a set of efficient solutions 

called the efficient frontier is obtained. This is a curve lies between the global minimum risk 
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portfolio and the maximum return portfolio. In this study, this efficient frontier is termed as 

Pareto front. 

(b) Formulation for decomposition based MOEAs (MOEA/D)  

As discussed in Chapter-2 in the decomposition based MOEA (MOEA/D) [3.33] 

approach the multiobjective optimization problem is decomposed into a number of scalar 

objective optimization problems (SOPs). The optimal solution to the scalar optimization 

problem is expressed as: 

                                           Maximize ( ) ∑
=

λ=λ
m

i
ii

ws xfxg
1

)(                                             (3.11) 

                                                    Subjected to Ω∈x  

In portfolio optimization problem the number of objectives m  is two i.e. risk and 

return. For applying MOEA/D, the portfolio optimization problem can be expressed as:   

                                         Maximize ( ) ∑
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where 0≥λ i  for all 2,1=i  and  ∑
=
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2

1

1
i

iλ  , subjected to Ω∈x , λ  is a coefficient vector of 

the objective function andx is the variable to be optimized. The two functions )(1 xf  and 

)(2 xf  are to be maximized. To generate a set of different Pareto optimal vectors, one can 

use different weight vectors λ  in the above scalar optimization problem. In a single run, a 

set values of λ   is utilized and using the neighborhood concept the complete set of solutions 

on the Pareto front is obtained.  

Since the objective is to maximize return pr and minimize risk 2
pσ . The same may be 

expressed in maximization form as 2
pσ− . In addition to these objectives, different practical 
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constraints mentioned in (3.3) to (3.8) are also considered. Accordingly portfolio problem is 

expressed as: 

           Maximize 2
pσ−
 
 and pr  considering all constraints together                               (3.13)            

  Hence in the presence of this multiple objectives and constraints, the problem 

becomes a multiobjective maximization problem. Individual objectives are optimized using 

any single objective heuristic optimization technique. In the thesis work we have applied 

PSO and BFO to optimize it. The constraints are handled in the same way in case of 

conventional PSO or BFO algorithm. A set of Pareto solution is obtained by solving (3.13) 

in a single run. 

3.3. Simulation study 

The algorithms are coded in MATLAB and were run on a PC with Intel Core2 Duo 

3.0 GHz with 4 GB RAM. 

3.3.1. Data Collection 

 The test data, which have been used in [3.9], were obtained from OR-Library 

(Beasley, 1996) available in [3.34]. The data corresponds to weekly prices between March 

1992 and September 1997 from different well known indices of Hang Seng in Hong Kong, 

DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The 

numbers of different assets for the above benchmark indices are 31, 85, 89, 98 and 225 

respectively. In each data set the return of individual assets and the correlation between 

assets are given. The covariance between the assets, evaluated from the correlation matrix, is 

used for calculating the risk of portfolio. The standard efficient frontiers (Global optima 
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Pareto front) for each of these data sets are available in files PORTEF-1 to PORTEF-5 

[3.34].  

 At first, four assets from Hang-Seng stock indices are considered. The mean 

return, standard deviation and the correlation matrix among these four assets are shown in 

Table-3.1. 

 Table-3.1. The mean return, standard deviation and correlation matrix for first four  
                                                   assets of Hang-Seng stock indices  

Asset Mean return Standard 
deviation 

Correlation Matrix 

1 2 3 4 

1 .001309 .043208 1 .562289 .746125 .707857 

2 .004177 .040258  1 .625215 
.570407 

3 .001487 .041342   1 .757165 

4 .004515 .044896    1 

 
3.3.2. Solution representation and encoding   

In order to allow for a fair comparison, we have chosen all algorithms to have the 

same solution representation. We have implemented the hybrid representation proposed by 

Streichert et al. [3.35] which seems to be more appropriate for portfolio optimization. In 

hybrid representation, two vectors are used for defining a portfolio: a binary vector that 

specifies whether a particular asset participates in the portfolio, and a real-valued vector 

used to compute the proportions of the budget invested in the assets: 
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3.3.3. Constraints satisfaction 

To meet the budget constraint, the simplest strategy is to normalize the weights so 

that the total sum of weights will be equal to one. This can be mathematically shown as: 
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To satisfy the cardinality constraint, the following repair condition for W  is applied. 

If the number of assets in the portfolio i.e., the number of 1’s in ∆  of (3.8), exceeds the 

maximum allowed, those assets that have the minimum weight in W  is deleted (by changing 

its value from 1 to 0 in ∆ ).  

If the floor and ceiling constraint are included, then the weight values are to be 

within a specific range. For this case, the simple strategy of normalizing the total weights to 

one so as to meet the budget constraint is no longer applicable, since the normalized weights 

might not be within the limits.  

Hence the fitness evaluation for the proposed representation needs to be modified. 

The modified fitness evaluation has to be initialized with an empty portfolio where assets 

are to be added iteratively. However, the various values in the weight vector will have to be 

adjusted to the floor and ceiling constraint. This can be represented as: 
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 If weight has to adjust for budget and floor constraint and there being no restriction 

on the upper limit (ceiling constraint) then the adjusted portfolio weight can be computed 

using the following equation: 
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Similarly, if weight has to adjust for budget and ceiling constraint and there being no 

restriction on lower limit (floor costraint) then the adjusted portfolio weight can be 

computed using the following equation: 
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3.3.4. Parameters used in the simulation of MOEAs 

Identical schemes for all tested algorithms are used in order to ensure a fair 

comparison. For selecting the parents, binary tournament selection is used for all genetic 

algorithms based MOEAs. For reproducing the offspring population, the uniform crossover 

operator is applied in each string of the chromosome. In uniform crossover two selected 

individuals generate a single child and its value for each array is selected with equal 

probability from one or another parent. The children were considered also for mutation 

having some probability which is mentioned in next section. 

The conceptual framework for parameter tuning of different evolutionary algorithm 

is presented in [3.37]. For all the six MOEAs the population size and number of generations 

are taken as 100 and 10000 respectively. For the MOEAs based on genetic algorithm such as 

PESA-II, APAES, Micro-GA, SPEA2 and NSGA-II one chromosome represents one set of 
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weights of assets and each gene represents weight of one asset. In NS-MOPSO, 2LB-

MOPSO and P-MOEA/D the position of each particle represents a weight vector associated 

with different assets. In MOBFO and B-MOEA/D the position of each bacterium represents 

the weight given to one asset. The dimensions of search space depend on the number of 

assets of the stock. After several experiments with different parameters, the final parameters 

of fine-tuned algorithms are mentioned below.  

PESA-II: The internal and external population size is taken as 50, uniform crossover is 

taken having rate of 0.8. It has a mutation rate of L/1  , where L  refers to the length of the 

chromosome string that encodes the decision variables. The grid size i.e. the number of 

division per dimension is set at 10. 

APAES:  The number of times the current solution dominates the mutated solutions is fixed 

at 20.The crossover is uniform and is fixed at 0.8. Mutation rate is taken as 0.05. 

SPEA 2: The crossover is taken as uniform. The crossover and mutation rate is taken as 0.8 

and 0.05 respectively. The archive size is fixed at 50. 

NSGA-II: The uniform crossover and mutation rates are taken 0.08 and 0.05 respectively. 

Micro-GA: An external memory of 100 individuals, 5 percent of non-replaceable memory 

and 25 subdivisions of the adaptive grid are used. The crossover rate of 0.9 and mutation 

rate of L
1  ( L = length of the chromosomic string) are chosen for this algorithm.  

NS-MOPSO: Velocity having probability of 0.5 being specified in a different direction. The 

upper and lower bounds of the decision variable range UPPV  and LOWV   are fixed at 0.06 and 

0.5 respectively. 
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MOBFO: Values of various parameters for the proposed MOBFO algorithm are provided in 

Table-3.2.  

Table-3.2. Parameters of MOBFO 

     N       p  
   cN     reN     edN    edp    )(iC     M  

    100 31   100     100     100   0.15     0.10       2 

 

2LB-MOPSO: The parameter ,862.0=w  1 2 2.05C C= =  . Each objective function range in 

the external archive is divided into a number of bins i.e. binn _ and it is set to 10.
  

P-MOEA/D: Each subproblem of P-MOEA/D has been optimized using particle swarm 

optimization. The parameter 862.0=w  and .05.221 == CC  

B-MOEA/D: Each subproblem of B-MOEA/D has been optimized using bacteria foraging 

optimization. The values of various parameters used are provided in Table-3.3. 

Table-3.3 Parameters of B-MOEA/D  

N  
sN  cN  reN  edN  edp  

100 50 100 100 100 0.15 

 

3.3.5. Nonparametric statistical tests for comparing algorithms 

The interest in nonparametric statistical analysis has grown recently for comparing 

evolutionary and swarm intelligence algorithms [3.37]. The pairwise comparisons are the 

simplest kind of statistical test which can be applied within the framework of an 

experimental study. Such tests compare the performance of two algorithms when applied to 

a common set of problems. In this Chapter the Sign test and Wilcoxon signed rank test 
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[3.37] are carried out to compare the performance pairwise. In simulation work the two tests 

are carried out by comparing all the MOEAs algorithms with the NS-MOPSO algorithms.  

The Sign test requires counting the number of wins achieved either by NS-MOPSO 

or by the comparison algorithm. The Wilcoxon signed rank test is analogous to the paired t-

test in nonparametric statistical procedure [3.37]. The aim of Wilcoxon signed rank test is to 

detect the difference between the behavior of two algorithms.   

3.3.6. Experimental results 

The standard efficient fronts for five stock indices such as Hang-Seng, DAX 100, 

FTSE 100, S&P 100 and Nikkei 225 are depicted in Figs 3.1-3.5. which show the tradeoff 

between risk (variance of return) and return (mean return).  
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               Fig.3.1.Global optimal Pareto front for Hang-Seng, stock indices 
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                                      Fig.3.2.Global Optimal Pareto front for DAX 100 stock indices 
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      Fig.3.3. Global Optimal Pareto front for  FTSE 100 stock indices 
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        Fig.3.4. Global Optimal Pareto front  for  S&P 100 stock indices 
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         Fig.3.5. Global Optimal Pareto frontier for and Nikkei 225 stock indices 
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The effects of four different practical constraints such as budget, floor, ceiling and 

cardinality on portfolio have been analyzed by examining the resultant Pareto front 

achieved. The theoretical implementation of the constraint is that it limits the portfolio size 

and hence influences the level of return and the possible risk. The experiments have been 

carried out to study four distinct cases of constraint conditions.  

Case 1: Budget constraint  

Case 2: Fixed cardinality with budget constraint 

Case3: Budget, floor, ceiling and cardinality constraint  

Case 4: Variable cardinality with budget, floor and ceiling constraint. 

Case 1: Budget constraint  

Hang-Seng, DAX 100, FTSE 100, S&P 100 and Nikkei 225 benchmark indices have 

31, 85, 89, 98 and 225 assets respectively. In our experiment for testing we have applied ten 

MOEAs to Nikkei 225 stock indices as it has the highest number of assets to test them. The 

frontiers obtained have been shown in Fig.3.6.  

It is evident that the MOBFO is capable of providing better solutions in comparison 

to other five algorithms, as its Pareto front is closer to the standard efficient frontier. The 

Pareto front obtained from NS-MOPSO, P-MOEA/D and B-MOEA/D algorithm are 

comparable with each other and better than other six competitive MOEAs. 
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Fig.3.6.Global optimal Pareto front and ten MOEAs efficient frontiers  

For Nikkei 225 stock indices 

 
Further, the performance of ten different MOEAs is evaluated using six different 

metrics such as ,S GD , IGD , ∆  , ER   and C  metrics.  Each algorithm is applied to Nikkei 

225 market for 25 independent runs. The maximum, minimum, average and standard 

deviation value of ,S GD , IGD , ∆  and ER   metrics for  25 independent runs are calculated 

and are  shown in Table-3.4.  

The smallest value of standard deviation obtained by the 2LB-MOPSO algorithm 

indicates better consistency compared to other algorithms. The mean value of five 

metrics ,S GD , IGD , ∆  and ER  for different MOEAs in graphical form are shown in 

Figs.3.7 to 3.11. 
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   Table-3.4.Comparison of performance evaluation metrics obtained using different MOEAs 

 

 

 

Algorithm PESA-II SPEA 2 Micro- 

GA 

APAES NSGA-II 2LB- 

MOPSO 

 

P-

MOEA/D 

 

B-

MOEA/D 

NS-MOPSO MOBFO 

 

S  
Max. 3.21E-5 7.43E-6 7.12 E-6 6.86 E-6 6.54E-6 5.12E-6 5.93E-6 5.99 E-6 5.38 E-6 5.22E-6 

Min. 1.87E-5 5.23E-6  4.54 E-6 4.12 E-6 3.98E-6 1.88E-6 2.51E-6 2.38 E-6 2.32 E-6 2.33E-6 

Avg. 2.33E-5 6.36E-6 5.87 E-6 5.12 E-6 4.74E-6 3.53E-6 3.62E-6 3.93 E-6 3.48 E-6 3.45E-6 

Std. 0.58E-5 1.58E-6 1.21 E-6 1.01 E-6 1.53E-6 0.82E-6 0.87E-6 0.98 E-6 0.76 E-6 0.85E-6 

GD
 

Max. 2.54E-2 2.01E-3 7.20 E-3 6.21 E-4 7.23E-4 2.01E-4 2.63E-4 2.92 E-4 2.12 E-4 2.16E-4 

Min. 1.01E-2 0.89E-3 4.32 E-3 4.10 E-4 5.23E-4 1.02E-4 1.65E-4 1.36 E-4 1.02 E-4 1.10E-4 

Avg. 1.76E-2 1.02E-3 5.45 E-3 5.23 E-4 6.72E-4 1.36E-4 1.76E-4 1.73 E-4 1.58 E-4 1.45E-4 

Std. 0.42E-2 0.28E-3 1.36 E-3 1.31 E-4 1.48E-4 0.32E-4 0.57E-4 0.52 E-4 0.38 E-4 0.36E-4 

IGD
 

Max. 11.2 E-3 10.8 E-3 10.2 E-3 2.32 E-3 9.98 E-4 8.52 E-4 9.10 E-4 9.21 E-4 8.45 E-4 8.30 E-4 

Min. 7.32 E-3 7.02 E-3 6.98 E-3 0.98 E-3 7.02 E-4 6.80 E-4 7.67 E-4 7.76 E-4 6.35 E-4 6.45 E-4 

Avg. 9.83 E-3 9.37 E-3 8.32E-3 1.28E-3 8.72E-4 7.20 E-4 8.20 E-4 8.23 E-4 7.15E-4 7.10 E-4 

Std. 2.77 E-3 2.35 E-3 2.08E-3 3.20E-4 2.18E-4 1.64 E-4 2.02 E-4 2.07 E-4 1.81E-4 1.74 E-4 

∆  
Max. 6.78E-1 4.34E-1 4.12 E-1 3.99 E-1 3.34E-1 2.32E-1 2.34E-1 2.41 E-1 2.43 E-1 2.45E-1 

Min. 4.23E-1 2.89E-1 2.76 E-1 2.54 E-1 1.89E-1 1.02E-1 1.20E-1 1.22 E-1 1.20 E-1 0.99E-1 

Avg. 5.93E-1 3.86E-1 3.27 E-1 3.02 E-1 2.96E-1 1.42E-1 1.45E-1 1.49 E-1 1.34 E-1 1.33E-1 

Std. 1.48E-1 0.93E-1 0.86 E-1 0.78 E-1 0.78E-1 0.44E-1 0.46E-1 0.48 E-1 0.45 E-1 0.47E-1 

Er  
Max. 0.54 0.50 0.58 0.44 0.35 0.26 0.29 0.28 0.24 0.23 

Min. 0.35 0.40 0.34 0.27 0.20 0.16 0.14 0.15 0.15 0.16 

Avg. 0.44 0.42 0.41 0.37 0.26 0.20 0.21 0.22 0.19 0.18 

Std. 0.18 0.19 0.16 0.12 0.08 0.07 0.07 0.08 0.06 0.06 
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            Fig.3.7 Average value of  S  metric for MOEAs algorithms 

 

              Fig.3.8 Average value of  GD  metric for MOEAs algorithms 
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          Fig.3.9 Average value of  IGD  metric for MOEAs algorithms 

 

           Fig.3.10 Average value of  ∆  metric for MOEAs algorithms 
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    Fig.3.11 Average value of  ER  metric for MOEAs algorithms 

 The convergence ( )C  metrics for all the ten MOEAs are listed in Table-3.5. It 

clearly shows that most of the solutions obtained by NS-MOPSO and MOBFO dominate the 

solutions obtained by other MOEAs. The results of 2LB-MOPSO, P-MOEA/D and B-

MOEA/D are almost comparable with each other. 

The computational time is also evaluated for each algorithm based on the same 

hardware platform. The CPU times for Nikkei 225 data set of all algorithms are shown in 

Table-3.6 which indicates the decomposition based MOEAs (MOPEA/D) such as P-

MOEA/D and B-MOEA/D are comparable with each other and take much less time as 

compared to others. Among all the algorithms the SPEA 2 takes maximum time. The 

execution times of these algorithms are also calculated for other stock indices and are shown 

in Table-3.7. 
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Table.3.5 Comparison of ( )C  metrics obtained using different MOEAs 

 
 

    Table.3.6.Comparison of CPU time required among MOEAs for Nikkie-225  

 
 
 
 
 
 
 
 
 
 

 PESA-II   SPEA 2  Micro-

GA  

APAES  NSGA-II  2LB-

MOPSO 

P-

MOEA/D 

B-

MOEA/D 

NS-MOPSO MOBFO 

PESA-II  —  0.3810  0.3620  0.2600  0.2230  0.2111 0.2010 0.1905 0.1900  0.1880  

 SPEA-II  0.6280  —  0.4200  0.3400  0.3280  0.2821 0.2651 0.2621 0.2620  0.2480  

Micro-GA  0.6400  0.4400  -----  0.3610  0.3422  0.3012 0.2910 0.2821 0.2410  0.2300  

APAES  0.6988  0.6377  0.6100  -----  0.3888  0.3421 0.3328 0.3220 0.3164  0.3122  

  NSGA-II  0.8530  0.7620  0.7399  0.4600  —  0.3528 0.3432 0.3411 0.3400  0.3230  

2LB-

MOPSO 

0.8721 0.8432 0.8211 0.7021 0.5155 ----- 0.3533 0.3411 0.3213   0.2811 

P-

MOEA/D 

0.8810 0.8532 0.8221 0.7322 0.5411 0.4321 ---- 0.4231 0.3544   0.3012 

B-

MOEA/D 

0.8932 0.8621 0.8302 0.7412 0.5722 0.4822 0.3988 ------ 0.3744 0.3211 

NS-

MOPSO 

0.9090 0.8920 0.8600  0.7900  0.6800 0.4962 0.4522 0.4412 -----     0.3522 

MOBFO 0.9166  0.9012  0.8700  0.8012  0.7243  0.5101 0.4866 0.4711 0.3900  — 

Algorithms PESA-II SPEA 2 Micro-GA APAES NSGA-II 2LB-

MOPSO 

P-

MOEA/D 

B-

MOEA/D 

NS-

MOPSO 

MOBFO 

CPU Time 

inseconds 

4820 4960 4825 4905 4760 4720  3100 3050 4700 4650 
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Table-3.7.Comparison of CPU time in seconds among different markets using MOEAs 
 

 

  The nonparametric statistical test such as Sign test and Wilcoxon signed rank test 

are carried out for pairwise comparisons of MOBFO algorithms with other MOEAs. The 

critical number of wins needed to achieve both 05.0=α  and 1.0=α  levels of significance 

is shown in Table-3.8. An algorithm is significantly better than other if its performance is 

better on at least the cases presented in each row.  

                 Table-3.8. Critical values for the two-tailed signtest at 05.0=α and 1.0=α . 
 

Cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

05.0=α  5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18 

01.0=α  5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17 

 
The results of the Sign test for pairwise comparisons among proposed MOBFO and 

other algorithms while taking the S  metric as the wining parameter (i.e. lower value of S  

means win) are shown in Table-3.9. From the results it is clear that the MOBFO shows 

significant improvement over PESA-II, SPEA-II, Micro-GA, APAES, and NSGA-II 

algorithm with a level of significance 05.0=α and over NSGA-II, with a level of 

significance 1.0=α . Similarly for ∆  metric the result of Sign test is shown in Table-3.10. 

Algorithms PESA-II SPEA-

II 

Micro-

GA 

APAES NSGA-II 2LB-

MOPSO 

P-

MOEA/D 

B-

MOEA/D 

NS-

MOPSO 

MOBFO 

CPU  

Time 

Hang-Seng 685 708 689 700   675   673   443   436  671  664 

DAX-100 1606 1653 1608 1608  1586 1570 1033 1016 1566  1550 

FTSE-100 1621 1669 1623 1647  1601 1585 1048 1031 1582 1565 

S&P-100 1641 1680 1644 1668  1617 1600 1070 1052 1602 1586 
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This test can be conducted using other metrics as winning parameters. The Wilcoxon signed 

rank test is carried out by calculating +R  and −R  and then using well-known statistical 

software package SPSS. Table-3.11 shows the+R , −R , z , Asymp. sig (2-tailed), Exact sig. 

(2-tailed), Exact sig. (1-tailed) and point of probability computed for all the pairwise 

comparisons with MOBFO considering S  metric as winning parameter and applying to 

Nikkie 225 market indices. The result of the Wilcoxon signed rank test for another metric ∆  

is shown in Table-3.12. Win 

Table-3.9. Critical values for the two-tailed Sign test at 05.0=α and 1.0=α  using S   metric 
     as winning  parameter. 
 

 

Table-3.10.Critical values for the two-tailed Sign test at 05.0=α and 1.0=α  using∆  metric 
     as winning  parameter 

 

MOBFO PESA-II SPEA 2 Micro-GA APAES NSGA-II 2LB-

MOPSO 

P-

MOEA/D 

B-MOEA/D NS-MOPSO 

Wins(+) 22 21 19 18 17 16 15 14 13 

Losses(-) 3 4 6 7 8 9 10 11 12 

Detected 

differences 

05.0=α  05.0=α  05.0=α  05.0=α  01.0=α  __ __ __ __ 

MOBFO PESA-II SPEA 2 Micro-GA APAES NSGA-II 2LB-

MOPSO 

P-

MOEA/D 

B-MOEA/D NS-MOPSO 

Wins(+) 22 21 20 19 18 17     16 14       13 

Losses(-) 3 4 5 6 7 8      9 11       12 

Detected 

differences 

05.0=α  05.0=α  05.0=α  05.0=α  05.0=α  01.0=α       __ __       __ 
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Table-3.11.Wilcoxon Signed test using S   metric as winning parameter and applying    

                            different     MOEAs to Nikkie 225 market indices
 Comparison +R  −R  z  Asymp.sig(2-

tailed), 

Exact sig. 

(2-tailed), 

Exact sig. 

(1-tailed)  

pointof 

probability 

MOBFO  

with PESA-II 

252 73 -2.410 0.016 0.014 0.007 0.000 

MOBFO with 

SPEA-II 

231 94 -1.845 0.065 0.065 0.033 0.001 

MOBFO with 

Micro-GA 

222 103 -1.602 0.109 0.112 0.056 0.002 

MOBFO with 

APAES 

217 108 -1.468 0.142 0.146 0.073 0.002 

MOBFO with  

NSGA-II 

211.5 113.5 -1.319 0.187 0.193 0.096 0.002 

MOBFO with 

2LB-MOPSO 

208 117 -1.225 0.220 0.227 0.114 0.003 

MOBFO with 

P-MOEA/D 

186 139 -0.633 0.527 0.538 0.269 0.004 

MOBFO with 

B-MOEA/D 

160 165 -0.067 0.946 0.953 0.476 0.005 

MOBFO with  

MOPSO 

168 152 -0.148 0.882 0.810 0.445 0.005 
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               Table-3.12. Wilcoxon signed test using ∆   metric as winning parameter and  

                               applying different MOEAs to Nikkie 225 market indices 

Comparison +R  −R  z  Asymp.sig(2-
tailed), 

Exact sig. 
(2-tailed), 

Exact sig. 
(1-tailed) 

pointof 
probability 

MOBFO with 

PESA-II 

274.50 50.50 -3.018 0.003 0.006 0.005 0.000 

MOBFO with 

SPEA-II 

246.00 

 

79.00 -2.250 0.024 0.023 0.012 0.000 

MOBFO with 

Micro-GA 

234.00 91.00 -1.926 

 

0.054 0.054 0.027 0.001 

MOBFO with 

APAES 

214 111 -1.387 0.165 0.170 0.085 0.002 

MOBFO with 

NSGA-II 

196 129 -0.902 0.367 0.377 0.188 0.004 

MOBFO with 

2LB-MOPSO 

194 131 -0.848 0.396 0.407 0.203 0.004 

MOBFO with 

P-MOEA/D 

191.5 133.5 -0.781 0.435 0.445 0.223 0.004 

MOBFO with 

B-MOEA/D 

185 140 -0.542 0.632 0.642 0.342 0.005 

MOBFO with 

NS-MOPSO 

186.5 168.5 -0.162 0.872 0.879 0.440 0.005 

 

Case 2: Cardinality with budget constraint 

The effect of cardinality constraints K  is studied in this section. The Pareto fronts 

obtained by applying MOBFO for Nikkei 225 data set having different cardinalities are 

presented in Fig.3.12. K  is set at 20 and is increased to 180 at a step of 20. The portfolio 

manager has the option to make a trade-off between risk and returns for different values of 

K . The maximum, minimum, average and standard deviation values of various performance 
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metrics are shown in Table-3.13 It is observed that when K  increases these metrics values 

also increase. Table-3.14 lists the results of convergence ( )C  metric. It shows that the final 

solutions obtained at 20=K dominate the solutions obtained at 180=K . The CPU time for 

various values of K  are shown in Table-3.15. It reveals that the computation time increases 

with an increase in the value of K . From the Fig.3.12, it is clear that Pareto fronts become 

shorter with increase in K  values. Hence the proposed algorithm is able to obtain a near 

optimal solution efficiently by investing lower number of assets i.e. approximately 10 

percent of available assets. The Pareto front of MOBFO is also calculated for other stock 

indices for different K  and are depicted in Figs.3.13 -3.16.  
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  Fig.3.12. MOBFO efficient frontier for different cardinality for Nikkei 225 data 
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Fig.3.13.MOBFO efficient frontier for different cardinality for Hang-Sang data 
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              Fig.3.14.MOBFO efficient frontier for different cardinality for DAX 100 data 
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               Fig.3.15.MOBFOefficient frontier for different cardinality for FTSE 100 data 
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              Fig.3.16.MOBFO efficient frontier for different cardinality for S & P 100 data 

The Pareto front of the NS-MOPSO, P-MOEA/D, B-MOEA/D algorithms for 

different market having a different cardinality constraint for Nikkei 225 data set are shown 

in Figs.3.17 - 3.19.  
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Fig.3.17. NS-MOPSO efficient frontier for different cardinality for Nikkei 225 data 
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Fig.3.18. P-MOEA/D efficient frontier for different cardinality for Nikkei 225 data 
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Fig.3.19. B-MOEA/D efficient frontier for different cardinality for Nikkei 225 data
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Table-3.13.Comparison of results of performance evaluation metrics for different cardinality 

constraints. 

 

 

 

 

Cardinality  

Constraint 

0=K
 

20=K
 

40=K
 

60=K
 

80=K
 

100=K
 

120=K
 

140=K
 

160=K  180=K  

 S  
Max. 5.21 E-6 7.21 E-6 9.21 E-5 5.32 E-5 6.86E-5 9.21 E-5 1.94 E-4 5.45 E-4 1.11 E-3 2.21 E-3 

 Min. 2.32 E-6 3.45 E-6 5.32 E-6 3.45 E-5 5.32 E-5 7.65 E-5 0.98 E-4 3.42 E-4 0.88 E-3 1.67 E-3 

Matric 

Values 

Avg. 3.43E-6 5.64E-6 7.77E-6 4.43E-5 6.45E-5 8.88E-5 1.21E-4 4.24 E-4 1.01 E-3 1.90E-3 

Std. 0.85E-6 1.41E-6 2.12E-6 1.15E-5 1.98E-5 2.52E-5 0.25 E-4 1.6 E-4 0.25 E-3 0.47 E-3 

GD
 

Max. 2.16 E-4 3.90 E-4 4.2 E-4 5.6 E-4 6.7 E-4 7.7 E-4 9.10 E-4 1.92 E-3 5.24 E-3 6.28 E-3 

Min. 1.10E-4 2.6 E-4 3.5 -4 4.1 E-4 5.7 E-4 6.2 E-4 8.21 E-4 1.08 E-3 4.51 E-3 5.42 E-3 

Avg. 1.45E-4 2.20 E-4 3.9 E-4 4.6 E-4 6.3 E-4 6.8 E-4 8.9 E-4 1.62 E-3 5.01 E-3 5.91E-3 

Std. 0.36 E-4 0.49 E-4 0.91 E-4 1.2 E-4 1.7 E-4 1.9 E-4   2.4 E-4 0.42E-3 1.01 E-3 1.47 E-3 

           

\` 

IGD
  

Max. 8.23 E-4 9.11 E-4 1.2 E-3 2.31 E-3 2.98 E-3 3.42 E-3 4.71 E-3 5.83 E-3 7.19 E-3 8.12 E-3 

Min 6.02 E-4 7.52 E-4 0.8 E-3 1.79 E-3 2.09 E-3 2.92 E-3 3.95 E-3 4.28 E-3 6.51 E-3 7.03 E-3 

Avg. 7.05 E-4 8.41 E-4 1.01 E-3 2.01 E-3 2.71 E-3 3.02 E-3 4.05 E-3 4.50 E-3 6.99 E-3 7.49 E-3 

Std. 1.76 E-4 2.11 E-4 0.25 E-3 0.51 E-3 0.61 E-3 0.75 E-3 1.01 E-3 1.20 E-3 1.77 E-3 1.82 E-3 

∆  
Max. 2.45 E-1 3.12 E-1 3.91 E-1 4.21 E-1 4.98 E-1 5.42 E-1 5.99 E-1 6.51 E-1 7.51 E-1 8.61E-1 

Min. 0.99E-1 2.50 E-1 3.01 E-1 3.87 E-1 3.92 E-1 3.98 E-1 5.01 E-1 6.01 E-1 7.01 E-1 8.12 E-1 

Avg. 1.33 E-1 1.84 E-1 2.29 E-1 3.45 E-1 3.75 E-1 4.25 E-1 4.55 E-1 5.61 E-1 6.62 E-1 7.71 E-1 

Std. 0.47E-1 0.46 E-1 0.57 E-1 0.81 E-1 1.32 E-1 1.61 E-1 1.30 E-1 1.40 E-1 1.71E-1 1.91 E-1 

Er  
Max. 0.23 0.29 0.35 0.45 0.51 0.55 0.61 0.67 0.71 0.75 

Min 0.16 0.22 0.28 0.38 0.42 0.47 0.52 0.58 0.60 0.62 

 Avg. 0.18 0.24 0.30 0.39 0.41 0.49 0.54 0.61 0.64 0.68 

 Std. 0.06 0.08 0.09 0.11 0.12 0.14 0.15 0.17 0.19 0.21 
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Table-3.14. Comparison of results of convergence metric (C) for budget and cardinality 
constraints for Nikkei 225 Stock using MOBFO 

 
Cardinality 
Constraint 

20=K
 

40=K
 

60=K
 

80=K
 

100=K
 

120=K
 

140=K
 

160=K
 

180=K
 

20=K  
— 0.2610 0.3400 0.4660 0.5970 0.6580 0.7200 0.7810 0.8600 

40=K  
0.0890 — 0.3020 0.4220 0.5690 0.6260 0.7060 0.7670 0.8420 

60=K  0.0840 0.2420 — 0.3840 0.5322 0.5860 0.6810 0.7420 0.8280 

80=K  0.0810 0.2250 0.2620 — 0.5020 0.5590 0.6640 0.7220 0.8020 

100=K  0.0770 0.2040 0.2420 0.3680 — 0.5220 0.6430 0.7040 0.7840 

120=K  0.0740 0.1880 0.2240 0.3440 0.4740 — 0.6210 0.6810 0.7600 

140=K  0.0710 0.1560 0.1990 0.3260 0.4420 0.4920 — 0.6620 0.7380 

160=K  0.0670 0.1250 0.1640 0.3010 0.4170 0.4480 0.5920 — 0.7040 

180=K  0.0590 0.1080 0.1280 0.2790 0.03820 0.4200 0.5680 0.6390 — 

 

                      Table.3.15.Comparison of mean value of CPU time in seconds for MOBFO 

Number of 

Cardinalit

y 

20=K
 

40=K
 

60=K
 

80=K
 

100=K
 

120=K
 

140=K
 

160=K
 

180=K
 

CPU Time 

in second 

4910 5320 5730 6190 6680 7020 7490 7830 8440 

 

Case3: Budget, floor, ceiling and cardinality constraint  

The effect of combined presence of all the constraints is examined in this section. 

The cardinality constraint is taken as ,10=K  the floor constrain has been set at 01.0=ia  
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and the ceiling constraint is fixed at 1=ib  with all available money has to be invested 

(budget constraint). The performance of all MOEAs has been compared with the results 

obtained using single objective GA, TS, SA and PSO as given in [3.6] by evaluating three 

error measures such as Euclidian distance, variance of return error and mean return error. 

The experimental results of Table-3.16 demonstrate that the proposed NS-MOPSO 

algorithm outperforms all single and multiobjective algorithms for stock with higher number 

of assets i.e. Nikkei 225 with 225 assets. MOBFO gives quite better performance for the 

stock indices such as Hang-Sang, DAX 100, FTSE 100 and S&P 100 which are having 

lesser number of assets than Nikkei 225. Experimental results show that the performance of 

2LB-MOPSO, P-MOEA/D and B-MOEA/D algorithms are almost comparable to each 

other.  

Case 4: Variable cardinality with budget, floor, ceiling and cardinality 

constraints 

Let us assume the portfolio is having the minimum buy in threshold and maximum 

limit constraint within the range {1 % to 10%}. The different ranges of cardinality constraint 

i.e. {10 to 15}, {15 to 20} and {20 to 25} are taken. The Pareto fronts obtained by the 

MOBFO algorithm for these conditions are shown from Figs.3.20 -3.22. 
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                                           Table-3.16. Experimental results for three error measure of all algorithms to five markets 

Index   Assets  Error  GA  TS  SA  PSO  PESA-II  SPEA2  APAES  NSGA-II  2LB-
MOPSO 

P-
MOEA/D 

B-
MOEA/D 

MOPSO  MOBFO  

Hang 
Seng  

31  Mean 
Euclidian 
distance  

0.0040  0.0040  0.0040  0.0049  0.0044  0.0042  00041 0.0041  0.0040 0.0040 0.004 0.0040  0.0040 

  Variance of 
return error  

1.6441  1.6578  1.6628  2.2421  1.5233  1.4877  1.3912 1.3266  1.2981 1.2965 1.2961 1.2840  1.2712 

  Mean return 
error(%)  

0.6072  0.6107  0.6238  0.7427  0.7620  0.6899  0.6652 0.6472  0.6182 0.6212 0.6121 0.6021  0.6015 

DAX 
100  

85  Mean 
Euclidian 
distance  

0.0076  0.0082  0.0078  0.0090  0.0098  0.0084  0.0082 0.0077  0.0075 0.0077 0.0076 0.0075  0.0074 

  Variance of 
return error  

7.2180  9.0390  8.5485  6.8588  9.2819  8.2432  7.5422 7.1211  6.7562 6.8271 6.7723 6.7543  6.7421 

  Mean return 
error(%)  

1.2791  1.9078  1.2817  1.5885  2.2212  1.5922  1.4352 1.2634  1.2532 1.2691 1.2681 1.2671  1.2511 

FTSE 
100  

89  Mean 
Euclidian 
distance  

0.0020  0.0021  0.0021  0.0022  0.0024  0.0022  0.0022 0.0021  0.0019 0.0021 0.0022 0.0019  0.0018 

  Variance of 
return error  

2.8660  4.0123  3.8205  3.0596  5.2381  3.7652  3.2311 2.9871  2.8114 2.9122 2.8813 2.8120  2.7911 

  Mean return 
error(%)  

0.3277  0.3298  0.3304  0.3640  0.4023  0.3652  0.3522 0.3329  0.3248 0.3271 0.3259 0.3250  0.3211 

S&P 
100  

98  Mean 
Euclidian 
distance  

0.0041  0.0041  0.0041  0.0052  0.0056  0.0049  0.0047 0.0042  0.0040 0.0041 0.0041 0.0040  0.0039 

  Variance of 
return error  

3.4802  5.7139  5.4247  3.9136  7.0122  5.4323  4.5362 3.7629  3.4635 3.4773 3.4771 3.4763  3.4751 

  Mean return 
error(%)  

1.2258  0.7125  0.8416  1.4040  2.4232  1.2109  0.9812 0.7321  0.7001 0.7032 0.7028 0.7021  0.7020 

Nikkei  225  Mean 
Euclidian 
distance  

0.0093  0.0010  0.0010  0.0019  0.0101  0.0032  0.0017 0.0010  0.0008 0.0009 0.0008 0.0008  0.0007 

  Variance of 
return error  

1.2056  1.2431  1.2017  2.4274  3.0986  2.0421  1.9811 1.1232  0.9866 0.9888 0.9880 0.9876  0.9872 

  Mean return 
error(%)  

5.3266  0.4270  0.4126  0.7997  1.2314  0.8654  0.6754 0.4325  0.3267 0.3252 0.3249 0.3244  0.3211 
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Fig.3.20. Pareto front obtained MOBFO for floor constraint (1%) and ceiling constraint 

(10%) and cardinality {10 to 15} to Hang Sang data 
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Fig.3.21. Pareto front obtained by MOBFO for floor constraint (1%) and ceiling constraint 

(10%) and cardinality {15 to 20} to Hang Sang data 
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   Fig.3.22. Pareto front obtained by MOBFO for floor constraint (1%) and ceiling constraint 
(10%) and cardinality {20 to 25} to Hang Sang data 

 

The Pareto fronts obtained by applying the ten MOEAs algorithms in the case having 

a cardinality range {10 to 15} are shown in Fig.3.23 
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   Fig.3.23.Pareto front obtained by ten MOEAs for floor constraint (1%) and ceiling 

constraint (10%) and cardinality {10 to 15} to Hang Sang data 
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3.4 Conclusion and further work 

The effects of four different practical constraints such as budget, floor, ceiling and 

cardinality constraints on portfolio have been analyzed by examining the resultant Pareto 

front achieved. 

Two novel multiobjective algorithms based on non-dominated sorting and two 

algorithms based on decomposition based framework have been suitably applied to realistic 

portfolio optimization problems with budget, floor, ceiling and cardinality constraints by 

formulating it as a multiobjective optimization problem. The performances of the proposed 

approaches are evaluated by comparing with four single objective evolutionary algorithms 

and a set of competitive MOEAs. The comparisons include the evaluation of three error 

measures, six performance metrics, Pareto optimality and computational complexity. By 

examining different values of performance metrics obtained it is concluded that the Pareto 

solutions obtained by different approaches are comparable with each other. Experimental 

results reveal that the proposed algorithms are able to adequately handle budget, floor, 

ceiling and cardinality constraint simultaneously. From the simulation results it is clear that 

the investor does not have to invest money on all available assets rather to invest in fewer 

assets i.e. approximately 10 percent of available assets, to explore wide risk-return area. The 

portfolio manager has the option to make a tradeoff between risk and return for different 

cardinality constraints to decide the portfolio according to the requirement. In particular, the 

MOBFO algorithm gives best Pareto solutions maintaining adequate diversity.  

The statistical analysis such as Sign test and Wilcoxon signed rank test are also 

performed for pairwise comparison of MOBFO with other algorithms. The simulation 
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results demonstrate significant improvement of MOBFO over PESA-II, SPEA 2, Micro-GA, 

APAES and NSGA-II algorithm with a level of significance 05.0=α and over 2LB-

MOPSO, with a level of significance 1.0=α .    

 Future research work on the topic includes incorporation of advanced local search 

operators into the proposed algorithm which is expected to allow better exploration and 

exploitation of the search space. To assess the strengths and weaknesses of non-dominated 

sorting based or decomposition based MOEAs frameworks further investigation is needed. 

The performance of proposed method can also be evaluated considering other real world 

constraints like round-lot, turnover and trading. The same multiobjective optimization 

algorithm can also be applied to other financial applications such as asset allocation, risk 

management and option pricing. 
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 In this chapter a novel prediction based mean-variance (PBMV) model has been 

proposed to solve constrained portfolio optimization.  In this model, the expected return and 

risk are predicted using a low complexity functional link artificial neural network (FLANN) 

structure. Four swarm intelligence based MOEAs using PBMV model have been applied to 

solve the portfolio optimization problem considering various constraints. The performance 

of MOEAs obtained using the proposed model is compared with that obtained using 

Markowitz mean-variance model. The performance is based on six performance metrics as 

well as Pareto front. In addition to this, in the present study the nonparametric statistical 

analysis using Sign test and Wilcoxon signed rank test are also carried out to compare the 

performance of algorithms pairwise. From the simulation results it is observed that the 

proposed PBMV model approach is capable of identifying good Pareto solutions 

maintaining adequate diversity and is comparable with the Markowitz model. The predicted 

value of risk and return are subsequently used by four MOEAs to achieve the Pareto 

solution.  

 

 

Chapter 

4 
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4.1. Introduction  

The mean-variance model, proposed by Harry Markowitz [4.1], is a landmark in 

Modern Portfolio Theory (MPT). In the past few decades, this model has extensively been 

studied in the field of portfolio optimization. Recently, several authors have tried to improve 

this model by applying some model simplification techniques or by proposing models 

having different risk measure such as semi-variance, mean absolute deviation and variance 

with skewness model [4.2]. The fundamental assumptions of these models have been 

described in [4.3]. It has been observed that in most of the models, the expected return of 

portfolios is given by the linear combination of the participations (weighting) of the stocks 

in the portfolio and its expected returns (the mean returns). The portfolio risk measure of 

these models varies from Markowitz mean-variance model but is based on the moments 

about the mean of the linear combination of the participations and time series of returns of 

its stocks.  

The fundamental assumptions of these models include (i) the time series of returns of 

each stock follows a normal distribution (ii) mean of past stock’s return is taken as expected 

future return (iii) variance taken as a measure of the stock’s risk and (iv) the covariance of 

each pair of time series is considered as a measure of joint risk of each pair of stocks. But 

the fundamental assumptions of the above models have been threatened by real world data 

because of the following reasons. These are (i) distributions of the series of returns often 

depart from normality which exhibits kurtosis and skewness [4.4], [4.5] and make the 

variance of the returns an inappropriate measure of risk [4.6] (ii) use of mean of past stock’s 

returns imposes a low pass filtering effect on the dynamic behaviour of the stock markets 

[4.7].  
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Hence the development of a model, free from those shortcomings is a still 

challenging field of research. There is need to develop an efficient model which would 

directly predict the expected return. Accurate prediction of future data/information such as 

stock parameter (return) is a promising and interesting field of research and has lot of 

importance for commercial applications. However the prediction of stock return is not an 

easy task, because the stock market indices are essentially dynamic, non-linear, complicated, 

nonparametric, and chaotic in nature [4.8]. The time series of stock parameters are also 

noisy and random [4.9]-[4.10]. In addition, stock market's movements are affected by many 

macro-economical factors [4.11] such as political events, firms' policies, general economic 

conditions, investors' expectations, institutional investors' choices, movement of other stock 

market, psychology of investors, etc. 

A good number of research papers have been reported in the field of stock market 

prediction. Researchers have studied various macro-economic factors to discover the extent 

of correlation that may exist with the changes in the stock prices and have extracted the 

trends in the market using past stock prices and volume information. Technical analysts and 

researchers have believed that there are recurring patterns in the market behavior, which can 

be identified and predicted. In the last few decades, different adaptive models have been 

developed for forecasting financial parameters. These models can be broadly divided into 

statistical models and soft-computing models. One of the well known statistical methods 

used for this purpose is auto regressive integrated moving average (ARIMA) [4.12]. The 

recent advancement in the field of soft and evolutionary computing leads to a new 

dimension in the field of financial forecasting. Different soft computing approaches using 

variants of artificial neural networks (ANNs) have been introduced by many researchers in 
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this field. These include radial basis function (RBF) [4.13], recurrent neural network (RNN) 

[4.14], multilayer perceptron, multi branch neural networks (MBNN) [4.15] and local linear 

wavelet neural networks (LLWNN) [4.16]. These variants of ANN have gained popularity 

due to their inherent capabilities to approximate any nonlinear function to a high degree of 

accuracy, less sensitivity to error term assumptions and tolerance to noise, chaotic 

components etc.[4.17]. Most artificial neural network (ANN) based models use historical 

stock index data and technical indicators [4.12] to predict market data.  

In most cases, it has been observed that the development and testing of the model 

involve large computational complexity as well as more prediction and testing time but lacks 

in prediction accuracy. Majhi et al. have proposed functional link ANN (FLANN) based 

model for prediction of exchange rates [4.19]. They have reported that their simple model 

provides improved performance compared to models proposed earlier. The same authors 

have also achieved improved performance of this model by considering various statistical 

parameters such as technical indicators based on historical data and fundamental economic 

factors [4.20]. The basic structure and training algorithm for FLANN have been dealt with, 

in Section 4.2. Recently two different adaptive algorithms such as PSO and clonal-PSO have 

been introduced to update the weights of the prediction model [4.21]. The prediction 

performance has been shown to be better than other methods.  

In this chapter we have chosen the FLANN structure for prediction of return and is 

trained with evolutionary computing. The inputs to the network are some financial and 

economic variables such as moving average, mode and median of input parameters. The 

right combinations of these features are obtained by using evolutionary algorithms. The 

network parameters are also trained using evolutionary algorithms. The corresponding risk 
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of the predicted return is calculated. Considering these two conflicting objectives the 

Portfolio optimization problem can be formulated as a multiobjective optimization problem 

and is solved by using MOEAs algorithm. 

4.2. Evolutionary functional link artificial neural network                
 

The functional link ANN is a novel single layer neural network proposed by Pao [4.22]. The 

structure of the FLANN is very simple. It is a flat net with no hidden layer. Therefore, the 

computation is few and the learning algorithm used in this network is simple. The functional 

expansion of the input to the network effectively increases the dimensionality of the input 

vector and hence the hyper-planes generated by the FLANN provide greater discrimination 

capability in the input pattern space [4.23]. It is capable of forming arbitrarily complex 

decision regions by generating nonlinear decision boundaries [4.24]. Here, the input has been 

enhanced by using nonlinear function. This nonlinear functional expansion of the input 

pattern may be trigonometric, exponential, power series or Chebyshev type. A number of 

research papers on system identification and control of nonlinear systems, noise cancellation 

and channel equalization have been reported in recent times [4.25] using FLANN. These 

experiments have demonstrated that the FLANN has adequate potential to give satisfactory 

results to problems with highly non-linear and dynamic data. It has been shown that the 

FLANN can be conveniently used for functional approximation and pattern classification 

with faster convergence rate and lesser computational complexity than a multi layer 

perceptron (MLP) structure. 

4.2.1 FLANN as a forecasting system. 

           The block diagram of a FLANN forecasting system is shown in Fig.4.1. 
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Let X is the input vector of size N×1 which represents N numberof elements; the nth 

element is given by: 

)1.4(1,)( Nnxn n ≤≤=X   

Each element undergoes nonlinear expansion to form M elements such that the 

resultant matrix has the dimension of N×M. This nonlinear expansion of each element may 

be trigonometric, exponential, power series or Chebyshev type. If the functional expansion of 

the element nx  is carried out using power series expansion it will be expressed as: 
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Fig. 4.1 Structure of the FLANN  
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where 1,2, , 2l M= L .  The Chebyshev polynomials are the set of orthogonal polynomials 

defined as the solution to the Chebyshev differential equation. These higher Chebyshev 

polynomials may be generated using a recursive formula given as 

)4.4()(1)(21 xnTxnxTnT −−=+
 
The first few Chebyshev polynomials are given by 
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 Each element undergoes nonlinear expansion to form M elements such that the 

resultant matrix has the dimension of N×M. In matrix notation, the expanded elements of the 

input vector E, is denoted by S of size N×(M+1). The bias input to the FLANN structure is 

unity. So an extra unity value is suitably added to the S matrix and the dimension of the S 

matrix becomes N×Q, where ( )2Q M= + . 

Let the weight vector be represented by W  with Q  elements given by 

]....321[ wqwwwW =  The output )(ky at instant k is given as 
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In matrix notation the output is obtained as 
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The error term thK instant is computed as 
( ) ( ) ( ) )8.4(kykdke −=  

where )(kd is the predicted value. 

4.2.2. Learning Algorithms of FLANN network 

There are varieties of learning algorithms which are employed to train different 

adaptive models. The performance of these models depends on the rate of convergence, 

training time, computational complexity involved and minimum mean square error achieved 

after training. The learning algorithms may be broadly classified into two categories (a) 

derivative based and (b) derivative free. The derivative based algorithms are least mean 

squares (LMS), recursive least squares (RLS) and back propagation (BP). The derivative 

free algorithms are mainly based on evolutionary computation such as GA, PSO and BFO. 

In this section the details of these two categories of learning algorithms are outlined. 

(a) Derivative based Algorithms 

Referring to Fig. 4.1 in Section 4.2.1, the error signal ( )e k  at kth  iteration can be computed 

as follows: 

Let ( )kξ  denote the cost function at iteration k and is given by 

( ) ( ) )9.4(
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where P is the number of nodes at the output layer.  

The update equation for weight vector by applying least mean squares (LMS) algorithm 

[4.29] is given by  
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whereˆ ( )k∇  is an instantaneous estimate of the gradient of ξ  with respect to the weight 

vector ( )w k  and is computed as 
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Substituting the values of ˆ ( )k∇ in equation 4.10 we get 
 

)12.4()()()()1( kskekwkw µ+=+
 

where µ denotes the step-size( )0 1µ≤ ≤ , which controls the convergence speed of 

the LMS algorithm. It is called as learning rate of LMS algorithm. This is the weight update 

formula for FLANN structure train with LMS [4.15], [4.18]. 

(b) Derivative free algorithms/Evolutionary computing based algorithms 

             Evolutionary computing algorithms such as genetic algorithm (GA), particle swarm 

optimization (PSO), bacteria foraging optimization (BFO) etc. can also be used for training 

the network [4.18]. For training the weights using bacteria foraging optimization (BFO), the 

weights of the FLANN are considered as the bacteria and initially their values are set to 

random numbers. A population of such bacteria is chosen to represent the initial solutions of 

the model. Each bacterium updates its values using the BFO principle by way of minimizing 

the mean square error (MSE) as the cost function. The details of training of weight using 

PSO and CPSO are presented in [4.20]. The weights are considered as particles and gene 

while training the network using PSO and GA respectively.  
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4.3. Development of the prediction based mean-variance (PBMV) 

model 

This section proposes a prediction based portfolio optimization model called as the 

prediction based mean-variance (PBMV) model. It uses predicted returns as expected returns 

instead of using the mean of past returns. Furthermore instead of using the variance of the 

returns it uses the variance of the errors of the predicted return as risk measure. An 

investment is planned over a time period and its performance is measured using its return that 

quantifies the wealth variation. The one period stock return at time t  is defined as the 

difference between the price of the stock at time t and the price at time 1−t , divided by the 

price at time 1−t . Mathematically it is expressed as: 

)13.4(1,/)( 11 ≥−= −− tPPPR tttt

 

where tR  is the one-period stock return at time t , and tPand 1−tP  are the stock prices at times 

t  and 1−t , respectively. The series of N  past returns of a stocksR , which is N period series 

return is defined as 

)14.4(),.....,,( 21 NS RRRR =
                  

 The prediction of stock return is a nonlinear task and can be achieved using an 

adaptive predictor. In this chapter we have used a FLANN structure as the predictor which is 

explained in the previous section. The training of FLANN is performed using bacteria 
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foraging optimization. Further Chebybyshev type nonlinear functional expansion of the 

input pattern is used as it provides better forecasting results 

            The predicted and the actual return may be represented as:  

)15.4(ˆ tEtRtR +=
        
where tR  and tR̂  be  the actual return and predicted return at time t  respectively.  

tE is the prediction error at time t  and is defined as  

)16.4(ˆ
ttt RRE −=

        
The time series of N  errors of prediction is represented as:  
  

)17.4(),.......,,( 21 NEEEE =
     

For a non-biased predictor, the series of errors of prediction must be statistically 

independent and identically distributed (iid), with mean and variance given by  
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The prediction-based portfolio optimization model is based on the assumptions that 

the mean of the errors of prediction is zero and the errors of prediction have normal 

distribution. The variance of the errors of prediction 2
Eσ  reflects the uncertainty about the 

realization of the predicted return and is used in the model as a measure of the individual 

risk of each stock (the higher the variance, the higher is the risk). 

A portfolio is a collection of N  stocks and the corresponding weightage 

(participations). The participation, of each asset is ......2,1,0, Niwi =  where 10 ≤≤ iw  

represents the fraction of the portfolio value invested in the stock i  such that  
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It shows the budget constraint which ensures that the sum of the weights associated 

with each asset is equal to one which means all the available money is invested in the 

portfolio. The predicted return of the portfolio, or portfolio expected return, pR , is the linear 

combination of the participations and predicted returns of the stocks of the portfolio and 

may be expressed as  
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The portfolio risk is the variance of the joint Normal distribution of the linear 

combination of the participations and prediction errors of the stocks of the portfolio 
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where 2ˆ pσ  is the total portfolio risk and is equal to the variance of the linear 

combination of the participations and prediction errors of the stocks of the portfolio. N is 

the number of stocks in the portfolio. iw and jw  are the participating stocks i  and j  of the 

portfolio respectively. Eijγ
 
is the interactive prediction risk of stocks i and j , which is the 

covariance of the errors of prediction of the stocks i and j .  

The prediction based portfolio optimization model can be formulated as single 

objective maximization of V . 
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Hence such a formulation yields non-dominated solutions by varying the ( )10 ≤λ≤λ  

factor. But in the present case, this problem is viewed as a dedicated multiobjective problem 

and is solved by using two MOEAs. It does not combine the two objectives to obtain the 

Pareto optimal solution set. Here the two objectives are taken individually and the algorithm 

tends to optimize both the objectives simultaneously. In the proposed work the two 

objectives are expressed as minimization problem. To express both the objectives in 

minimization form, the second objective pR  is expressed as pR− . Accordingly the given 

portfolio problem is expressed as: 

                             Minimize both  2ˆ pσ  and pR−  simultaneously.                                        (4.24) 

Thus the novel prediction based mean-variance (PBMV) portfolio optimization 

model differs from the Markowitz mean-variance model as (a) in prediction based portfolio 

optimization model, the expected return of each stock is its predicted return. But in the case 

of Markowitz mean-variance model, the expected return is taken as the mean of past returns. 

(ii) In PBMV model the individual risk of each stock and the risk between each pair of 

stocks are obtained from the variance and covariance of the time series of the errors of 

prediction. But in the case of Markowitz model it is the variance and covariance of the time 

series of return. (iii) In prediction based portfolio optimization model the normal variable of 

interest is the error of prediction of the return of stocks, while in the case of Markowitz 

model the normal variable of interest is the return of the stocks.  

4.4. Simulation studies  

For simulation all the algorithms are coded in MATLAB and  run on a PC with Intel 

Core 2 Duo 3.0 GHz with 4 GB RAM.   
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4.4.1. Data Collection 

The experiments have been conducted with a set of benchmark data available online 

and obtained from OR-Library [4.26]. The data correspond to weekly prices between March 

1992 and September 1997 from different well known indices such as Hang Seng in Hong 

Kong, DAX 100 in Germany, FTSE100 in UK,S&P 100 in USA and Nikkei225 in Japan. 

This weekly price can also be found out from [4.27]. The numbers of different assets for the 

above benchmark indices are 31, 85, 89, 98 and 225 respectively. Using each data the mean 

return of individual assets is calculated from the weekly price. The data set PORT-1 and 

PORT-5 correspond to the correlation between assets for five markets respectively.  

Covariance between the assets, evaluated from the correlation matrix, can be used for 

calculating the risk of portfolio. The data (risk and corresponding tradeoff return) for 

standard efficient frontiers for the five stocks can be found from PORTEF-1 to PORTEF-

5[4.26] which correspond to Hang-Seng, DAX 100, FTSE 100, S&P 100 and Nikkei 225 

stock indices respectively. 

4.4.2. The problem approach 

(a) Using Markowitz mean-variance model  

The raw weekly prices of all the stocks (assets) of five market indices are collected. 

The weekly return is calculated mathematically from this weekly price. The time series of 

expected return of any asset can be found by calculating the mean of past returns 

mathematically. The individual risk of each stock and the risk between each pair of stocks 

are obtained from the variance and covariance of the time series of return. The FLANN 

network is not used for this model as it does not need prediction to find out the expected 

return.   
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(b) Using proposed mean-variance model 

             The raw weekly prices of all the stocks (assets) of five market indices are collected. 

The weekly returns is calculated mathematically from this weekly price. Then the FLANN 

forecasting network is used to predict the weekly return by taking the calculated previous 

weekly return as input parameter. Some statistical variables such as moving averages, mode 

and median of input is also provided to the network. It is then expanded using Chebyshev 

functional expansions and evolutionary computation is used to adjust the weight parameters 

so that effective prediction is achieved.  

 (c) Constraint portfolio optimization using MOEAs 

By applying the two models, the risk and return of all the assets are found out. After 

calculating the return and risk, the portfolio optimization task is carried out by using some 

efficient multiobjective evolutionary algorithms (MOEAs). Two MOEAs based on particle 

swarm optimization such as non-dominated sorting particle swarm optimization( NS-

MOPSO) and decomposition based particle swarm multiobjective evolutionary algorithm 

(P-MOEA/D) have been applied to solve the portfolio optimization problem. Similarly 

another two algorithms based on bacteria foraging optimization such as multiobjective 

bacteria foraging optimization (MOBFO) and decomposition based bacteria foraging 

multiobjective evolutionary algorithm (B-MOEA/D) have been applied to the same problem.  

4.4.3. Experimental results 

The Pareto front corresponding to five market indices can be found in PORTEF-1 to 

PORTEF-5 [4.26], called as standard efficient front or global optimal Pareto front (GOPF). 

The GOPF for Hang-Seng stock is depicted in Fig.4.2. It shows the tradeoff between risk 

(variance of return) and return (mean return). 
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               Fig.4.2 Global optimal Pareto front for Hang-Seng, stock indices 

The Pareto fronts obtained by different algorithms for Hang-Seng stock using the 

proposed PBMV model is shown in Figs.4.3 to 4.7. It is compared with GOPF and Pareto 

front obtained using Markowitz model.  
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Fig.4.3 The GOPF and Pareto front by P-MOEA/D for Hang-Seng using Markowitz 

and PBMV model  
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Fig.4.4 The GOPF and Pareto front by B-MOEA/D for Hang-Seng using Markowitz 

and PBMV model  
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Fig.4.5. The GOPF and Pareto front by NS-MOPSO for Hang-Seng using Markowitz 

and PBMV model  
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Fig.4.6 The GOPF and Pareto front by MOBFO for Hang-Seng using Markowitz and 

PBMV model 
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        Fig.4.7 The GOPF and Pareto front by four algorithms applying two models 

It is evident from the results that all the algorithms are capable of providing good 

solutions using the proposed PBMV model. The Pareto curve obtained by applying PBMV 

model is more close to GOPF.  
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In our proposed PBMV model risk is calculated by taking the covariance of time 

series of the error of prediction of stock. The risk can also be calculated using the covariance 

of time series of predicted return. The Pareto fronts obtain by taking risk as covariance of 

time series of predicted return is shown in figure 4.8.  
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Fig.4.8. The GOPF and Pareto front by four algorithms applying two models 

Further, the performance of these MOEAs is assessed by  using five different metrics 

such as the S,GD , IGD ,∆  and .Er  The algorithms are run for  25 times and then the 

maximum, minimum, average and standard deviation of these metrics are calculated and the 

corresponding results are shown in Table-4.1. 
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Table-4.1 Comparison of performance evaluation metrics obtained using different 

MOEAs. 

The convergence metrics ( )C  for these MOEAs are demonstrated in Table-4.2 It is 

found that most of the solutions obtained by the MOBFO algorithm with proposed PBMV 

model dominate the solutions obtained from others. 

 
 

Algorithm P-
MOEA/D 

(M) 

P-MOEA/D 
(P) 

B-MOEA/D 
(M) 

B-MOEA/D 
(P) 

NS-
MOPSO 

(M) 

NS-MOPSO 
(P) 

MOBFO 
(M) 

 

MOBFO 
(P) 

S  
Max. 5.93E-6 5.67E-6 5.99 E-6 5.78 E-6 5.38 E-6 5.04 E-6 5.22E-6 4.98 E-6 

Min. 2.51E-6 2.05E-6 2.38 E-6 2.08 E-6 2.32 E-6 2.02 E-6 2.33E-6 1.99 E-6 

Avg. 3.62E-6 3.43E-6 3.93 E-6 3.65 E-6 3.48 E-6 3.11 E-6 3.45E-6 3.05E-6 

Std. 0.87E-6 0.79E-6 0.98 E-6 0.88 E-6 0.76 E-6 0.59 E-6 0.85E-6 0.73 E-6 

GD  
Max. 2.63E-4 2.13E-4 2.92 E-4 2.23 E-4 2.12 E-4 1.89 E-4 2.16E-4 1.88 E-4 

Min. 1.65E-4 1.15E-4 1.36 E-4 1.06 E-4 1.02 E-4 0.86 E-4 1.10E-4 0.96 E-4 

Avg. 1.76E-4 1.45E-4 1.73 E-4 1.43 E-4 1.58 E-4 1.45 E-4 1.45E-4 1.27 E-4 

Std. 0.57E-4 0.53E-4 0.52 E-4 0.46 E-4 0.38 E-4 0.29 E-4 0.36E-4 0.27 E-4 

IGD
 

Max. 9.10 E-4 8.50 E-4 9.21 E-4 8.81 E-4 8.45 E-4 7.98 E-4 8.30 E-4 7.88 E-4 

Min. 7.67 E-4 7.05 E-4 7.76 E-4 7.26 E-4 6.35 E-4 5.98 E-4 6.45 E-4 6.02 E-4 

Avg. 8.20 E-4 8.01 E-4 8.23 E-4 7.98 E-4 7.15E-4 6.75 E-4 7.10 E-4 6.80 E-4 

Std. 2.02 E-4 1.89 E-4 2.07 E-4 1.88 E-4 1.81E-4 1.75 E-4 1.74 E-4 1.35  E-4 

∆  
Max. 2.34E-1 2.13E-1 2.41 E-1 2.15 E-1 2.43 E-1 2.06 E-1 2.45E-1 1.99 E-1 

Min. 1.20E-1 1.01E-1 1.22 E-1 1.02 E-1 1.20 E-1 0.91 E-1 0.99E-1 0.90E-1 

Avg. 1.45E-1 1.25E-1 1.49 E-1 1.38 E-1 1.34 E-1 0.99 E-1 1.33E-1 1.03E-1 

Std. 0.46E-1 0.36E-1 0.48 E-1 0.43 E-1 0.45 E-1 0.38 E-1 0.47E-1 0.36 E-1 

Er  
Max. 0.29 0.27 0.28 0.27 0.24 0.18 0.23 0.17 

Min. 0.14 0.13 0.15 0.14 0.15 0.14 0.16 0.13 

Avg. 0.21 0.20 0.22 0.20 0.19 0.16 0.18 0.15 

Std. 0.07 0.06 0.08 0.07 0.06 0.05 0.06 0.04 
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Table-4.2. Comparison of results of C metric obtained using different MOEAs 
 
 

 
 

The nonparametric statistical test such as the Sign test and Wilcoxon signed ranks 

rest are carried out for pair wise comparisons of the performance of two algorithms [4.28]. 

The critical number of wins needed to achieve both 05.0=α  and 1.0=α  levels of 

significance is shown in Table-3.8 in Section 3.3.6. An algorithm is significantly better than 

other if its performance is better on at least the cases presented in each row.  

The results of the Sign test for pairwise comparisons among proposed MOBFO(P) 

i.e. MOBFO with PBMV model and other algorithms while taking the S metric as the 

wining parameter (i.e. lower value of S means win) and applying to Heng-Seng stock are 

shown in Table-4.3. From the results it is clear that the MOBFO (P) shows improvement 

over P-MOEA/D with a level of significance 01.0=α . This test can also be conducted using 

other metrics as winning parameters. 

 
 
 
 
 
 

 P-

MOEA/D(M) 

P-

MOEA/D(P) 

B-

MOEA/D(M) 

B-

MOEA/D(P) 

NS-

MOPSO(M) 

NS-MOPSO(P) MOBFO(M) 

 

MOBFO(P) 

P-MOEA/D(M) —  0.2910  0.2720  0.2621  0.2430  0.2231 0.2110 0.2054 

P-MOEA/D(P) 0.3180  —  0. 2910 0.2800  0.2680  0.2531 0.2351 0.2121 

B-MOEA/D(M)    0.3620  0.3400  — 0.3210  0.2822  0.2612 0.2410 0.2321 

B-MOEA/D(P) 0.4228  0.4077  0.3800  —  0.3288  0.2921 0.2728 0.2520 

NS-MOPSO(M) 0.4530  0.4320  0.3999  0.3600  —  0.3428 0.3232 0.2811 

NS-MOPSO(P) 0.4721 0.4632 0.4211 0.3821 0.3455 — 0.3533 0.3111 

MOBFO(M) 0.4910 0.4732 0.4321 0.3922 0.3511 0.3521 — 0.3231 

MOBFO(P) 0.5032 0.4821 0.4402 0.4288 0.3822 0.3722 0.3688 — 
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Table-4.3. Critical values for the two-tailed Sign test at 05.0=α and 1.0=α  using S  metric 
as winning  parameter. 

 

 
The Wilcoxon signed rank test is carried out by calculating +R  and −R  and then 

using well-known statistical software package SPSS. Table-4.4 shows the+R , −R , z , 

Asymp. sig (2-tailed), Exact sig. (2-tailed), Exact sig. (1-tailed) and point of probability 

computed for all the pairwise comparisons with MOBFO(P) considering S metric as 

winning parameter and applying to Hang-Seng market indices. The result of the Wilcoxon 

signed rank test for other metrics can be tested for this case. 

Table-4.4. Wilcoxon Signed test using S  metric as winning parameter and applying 

different  MOEAs to Hang-Seng market indices
 Comparison +R  

−R  
z  Asymp.sig 

(2-tailed), 
Exact sig. (2-
tailed), 

Exact sig. (1-
tailed)  

Point of 
probability 

MOBFO (P) 
with  P-

MOEA/D (M) 

192 133  -0.794 0.427 0.437 0.219 0.004 

MOBFO (P) 
with  P-

MOEA/D (P) 

189 136 -0.714 0.475 0.486 0.243 0.004 

MOBFO (P) 
with B-

MOEA/D(M) 

182 143 -0.711 0.465 0.498 0.251 0.004 

MOBFO (P) 
with B-

MOEA/D(P) 

185.5 139.5 -0.619 0.536 0.546 0.273 0.004 

MOBFO (P) 
with MOPSO 

(M) 

180 145 -0.617 0.543 0.557 0.279 0.004 

MOBFO (P) 
with MOPSO(P) 

156 168 -0.162 0.872 0.879 0.440 0.005 

MOBFO (P)with 
MOBFO (M) 

168 157 -0.148 0.882 0.890 0.445 0.005 

MOBFO with 
B-MOEA/D 

192 133  -0.794 0.427 0.437 0.219 0.004 

MOBFO with 
MOPSO 

189 136 -0.714 0.475 0.486 0.243 0.004 

 

MOBFO(P) P-
MOEA/D(M) 

P-
MOEA/D(P) 

B-
MOEA/D(M) 

B-
MOEA/D(P) 

NS-
MOPSO(M) 

NS-
MOPSO(P) 

MOBFO(M) 
 

Wins(+) 17 16 16 15 15 14         13 
Losses(-) 8 9 9 10 10 9         12 

Detected 
differences 

01.0=α  — — — — —           — 
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From the results it is concluded that the MOBFO(P) i.e. MOBFO algorithm with 

PBMV model show improved performance compared to its counterpart. Similarly all the 

MOEAs can also be applied to other stock indices such as DAX 100, FTSE 100, S&P 100 

and Nikkei 225 using both models.  

The presence of cardinality constraints K  is also studied here. The Pareto fronts 

obtained by applying MOBFO (P) for Hang-Seng data set having different cardinalities are 

presented in Fig.4.9. K  is set at 5 and is increased to 30 at a step of 5. The Pareto fronts 

become shorter with increase in K  values. Hence the proposed algorithm is able to obtain a 

near optimal solution efficiently by investing lower number of assets. The portfolio manager 

has the option to make trade-off between risk and returns for different values of K . 

Similarly the NS-MOPSO, P-MOEA/D, B-MOEA/D algorithms can be applied to different 

market having a different cardinality constraint.  
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Fig.4.9 The Pareto front obtained from MOBFO for Hang-Seng using proposed 

PBMV model for cardinality constraint condition. 
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The proposed algorithm is also applied for BSE-500 (Bombay Stock Exchange) of 

India. The raw weekly prices of 50 stocks (assets) from 500 stocks are collected [4.27]. 
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Fig.4.10 The Pareto front obtained from NS-MOPSO and MOBFO for BSE stock 

using PBMV and Markowitz model. 
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4.5. Conclusion 

A novel prediction based mean variance (PBMV) model has been proposed in the 

chapter and four efficient MOEAs have been successfully employed to solve the portfolio 

optimization problem. In the proposed model the return is predicted with a low complexity 

single layer neural network. The performance of the proposed PBMV model and the 

Markowitz model have been evaluated and compared using six performance metrics. This 

evaluation involves experiments with real data from the five Hang-Seng, DAX 100, 

FTSE100, S&P and Nikkei 225 and Bombay Stock Exchange (BSE-500) data. In addition to 

this, in the present study the Sign test and Wilcoxon Signed rank test are carried out to 

compare the performance of the algorithms. From the simulation results it is observed that 

the PBMV model is capable of identifying good Pareto solutions maintaining adequate 

diversity and the performance is comparable with the well known Markowitz mean-variance 

model. Further study in this field may include performance evaluation of the MOEAs using 

the proposed model considering some real world constraints like ceiling, floor, round-lot, 

turnover etc. The same multiobjective optimization algorithm can also be applied to other 

financial applications such as asset allocation, risk management and option pricing. 

 

 

 

 



                                                  Prediction Based mean-variance Model for                                                                                                                             
Chapter:4                                                                                                  Multiobjective Portfolio Optimization  

 

138 

 

Reference 

[4.1] H. M. Markowitz, “Portfolio selection", Journal of Finance, vol. 7 no.1, pp. 77-91, 

1952. 

[4.2]Tun-Jen Chang, Sang-Chin Yang b, Kuang-Jung Chang, “Portfolio optimization 

problems in different risk measures using genetic algorithm”, Expert Systems with 

Applications, Vol. 36 pp. 10529–10537,2009. 

[4.3] E. J. Elton, M. J. Gruber, S. J. Brown, W. N. Goetzmann, “Modern portfolio theory 

and investment analysis”, seventhed, Wiley, New York, 2007.  

[4.4]E. F. Fama, “Portfolio analysis in a stable Paretian market”, Management Science, 

vol.11,pp.404–419,1965.  

[4.5] S. J. Kon, “Models of stock returns—a comparison”, The Journal of Finance, vol.39. 

no.1, pp. 147–165, 1984. 

[4.6] W. F. Sharpe, G. J. Alexander, J. V. Bailey, “Investments”, sixthed, Prentice-Hall, 

Upper Saddle River, New Jersey,1999. 

[4.7] Fabio D. Freitas, Alberto F. DeSouza , AilsonR. de Almeida,   “Prediction-based 

portfolio optimization model using neural networks”,  Neuro computing, Vol. 72 pp. 2155–

2170,2009. 

[4.8] T.Z. Tan, C. Quek, G.S. Ng, “Brain Inspired Genetic Complimentary Learning for 

Stock Market Prediction”, IEEE congress on evolutionary computation, vol. 3, pp. 2653-

2660, 2-5th Sep., 2005. 

[4.9] K.J. Oh, K-j. Kim, “Analyzing stock market tick data using piecewise non linear 

model.” Expert System with Applications, vol. 22, issue 3, pp. 249-255, April 2002.  



                                                  Prediction Based mean-variance Model for                                                                                                                             
Chapter:4                                                                                                  Multiobjective Portfolio Optimization  

 

139 

 

[4.10] Y. Wang, “Mining stock prices using fuzzy rough set system” Expert System with 

Applications, vol. 24, issue 1, pp. 13-23, Jan. 2003. 

[4.11] Y. Wang, Predicting stock price using fuzzy grey prediction system” Expert System 

with Applications, vol. 22, pp. 33-39, Jan. 2002. 

[4.12] M. Schumann and T. Lohrbach, “Comparing artificial neural networks with statistical 

methods within the field of stock market prediction”, Proc. Of Twenty-Sixth Hawaii 

International Conference on System Sciences, vol. 4, pp. 597-606, 1993. 

[4.13] J. Hanm, N. Kamber, “Data Mining: Concepts & Techniques”, San Francisco; 

Morgan Kanfmann Publishers, 2001.  

[4.14] E.W. Saad , D.V. Prokhorov, D.C. Wunsch, “Comparative study of stock trend 

prediction using time delay, recurrent and probabilistic neural networks”, IEEE Transactions 

of Neural Network, vol. 9, issue 6, pp.  1456-1470,  Nov.1998. 

[4.15] T. Yamashita, K. Hirasawa, J. Hu, “ Application of multi-branch neural networks to 

stock market prediction”, International joint conference on neural networks, Montreal, 

Canada, 31st July-4th Aug., 2005,vol.4, pp. 2544-2548. 

[4.16] Y. Chen, X. Dong, Y. Zhao, “Stock index modeling using EDA based local linear 

wavelet neural  network”, International conference on neural networks and brain, 13th-

15thOct., 2005, vol. 3, pp. 1646-1650. 

[4.17] T. Masters, “Practical Neural Network recipes in C++”, Academic Press, New York, 

1993. 

[4.18] Kyoung-jaeKim, “Artificial neural networks with evolutionary instance selection for 

financial forecasting”, Expert System with Applications, vol.30, issue 3, pp. 519-526, April, 

2006. 



                                                  Prediction Based mean-variance Model for                                                                                                                             
Chapter:4                                                                                                  Multiobjective Portfolio Optimization  

 

140 

 

[4.19] Ritanjali Majhi, G. Panda, G. Sahoo, “Efficient prediction of exchange rates with low 

complexity artificial neural network models”, Expert Systems with Applications, vol.36, 

pp.181-189, 2009. 

 [4.20] Ritanjali Majhi, G. Panda, G. Sahoo, “Development and performance evaluation of 

FLANN based model for forecasting of stock markets”, Expert Systems with Applications, 

vol. 36, pp.6800-6808, 2009. 

[4.21] Ritanjali Majhi, G. Panda, G. Sahoo, “On the development of improved adaptive 

models for efficient prediction of stock indices using clonal-PSO (CPSO) and PSO 

techniques”, Int. J. Business Forecasting and Marketing Intelligence, Vol. 1, No. 1, PP.50-

67, 2008. 

 [4.22]Y. H. Pao,“Adaptive Pattern Recognition and Neural Networks”, Reading, MA : 

Addison-Wesley, 1989. 

[4.23] Y. H. Pao, S. M Phillips and D. J. Sobajic, “Neural Net Computing and intelligent 

control systems”, Int. Journal on Contr., vol. 56, issue 2, pp. 263-28, 1992. 

[4.24] Y. H. Pao,“Adaptive Pattern Recognition and Neural Networks”, Addison Wesley, 

Reading, Massachusetts, 1989. 

[4.25]  J. C. Patra, R. N Pal, B. N. Chatterji and G. Panda, “Identification of non-linear & 

dynamic system using functional link artificial neural network” IEEE Transactions on 

System, Man & Cybernetics – Part B; Cybernetics, vol. 29, issue 2, pp. 254-262, 1999. 

[4.26] http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html 

[4.27] http://in.finance.yahoo.com/q/hp?s=%5EHSI  



                                                  Prediction Based mean-variance Model for                                                                                                                             
Chapter:4                                                                                                  Multiobjective Portfolio Optimization  

 

141 

 

[4.28] J. Derrac, S. García, D. Molina, F. Herrera, "A practical tutorial on the use of 

nonparametric statistical tests as a methodology for comparing evolutionary and swarm 

intelligence algorithms", Swarm and Evolutionary Computation,Vol.1 no.1, pp.3-18, 2011. 

[4.29] B. Widrow and S.D. Sterns,“Adaptive Signal Processing” Prentice-Hall, Inc. Engle-

wood Cliffs, New Jersey, 1985. 

[4.30] S. Haykin, “Adaptive Filter Theory”, 4th edition, Pearson Education Asia, 2002. 



 Chapter:5                                                           Novel Robust Multiobjective Portfolio Optimization Schemes 
 

142 

 

 

 

 

             Chapter 5 
 

 

 

 

 

Novel Robust Multiobjective Portfolio 
Optimization Schemes 

 



 Chapter:5                                                           Novel Robust Multiobjective Portfolio Optimization Schemes 
 

143 

 

 

 
In this chapter the minimum volume ellipsoid (MVE) methodology is adopted to handle 

uncertainty of the stock market data. The uncertainty is in form of outliers present in the 

stock data and occurs at random samples. The uncertainties may be due to incidence like 

Sep 11 or sudden fall of oil price or any political crises. The value of stock at that 

unexpected situation may be called as uncertain or unexpected stock data. Firstly, the MVE 

is formed covering the data that are not corrupted by outliers. The unexpected data can 

easily be differentiated from other data by clustering using MVE method.  In order to make 

the method computationally efficient, the MVE is formed by using the core set and 

Lagrange multipliers. Secondly, the weight factor is calculated by taking the parameters 

associated with the ellipsoid. Then the unexpected data are modified by multiplying the 

weighting factor with it and the desired parameters such as risk and return are calculated 

from the weighted data. The trade-off (Paretro curve) between this new estimated return and 

risk parameters are found out by using some efficient MOEAs using both Markowitz mean-

variance model and prediction based mean-variance (PBMV) model as proposed in the 

previous chapter. Simulation results reveal that the proposed method exhibits good portfolio 

strategy in the presence of these market uncertainties. 

 

 

 

Chapter 

5 
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5.1 Introduction  

The mean-variance model, proposed by Harry Markowitz [5.1], is a landmark in 

modern portfolio theory (MPT). Subsequently some other methods such as semi-variance, 

mean absolute deviation and variance with skewness model are also used for portfolio 

optimization problem [5.2]. The idea of designing a model by suitably modifying the 

conflicting objectives is also investigated by Lin et al. [5.3]. All these frameworks require 

the knowledge of stock values from which these models estimate the expected return and 

calculate the corresponding risk. However the stock values are highly uncertain. This 

uncertainty may be due to incidents like September 11, any political crises or the recent 

turmoil in global markets which started from the financial sector. These uncertain factors 

make the stock value uncertain and deviate heavily from its actual value. The value of stock 

indices due to these types of unexpected situation may be considered as uncertain or 

unexpected stock data. These uncertain values of stock may be called as outliers. Hence, 

inaccuracy creeps in while estimating the return and risk by using such contaminated stock 

values.  

Most of the aforementioned models consider the estimated parameters as the actual 

parameters without considering these types of uncertainty which limits the versatility of 

these models. Hence, the problem of portfolio optimization becomes more challenging and 

complicated under these uncertain conditions.  

In the last two decades, robust optimization under such conditions has become an 

interesting area of research. Soyster et al. [5.4] were first to introduce the idea of robust 

optimization. In general, the robust optimization aims to find the solutions to a given 

optimization problem with uncertain parameters. The authors in [5.5] have developed a new 
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robust methodology using interior point based algorithm to find the robust solution. They 

have also applied a robust method to some portfolio optimization problems and have shown 

that the final optimal solution remains feasible against the uncertainty on different input 

parameters.  

Robust optimization has been applied to portfolio selection problem to alleviate the 

sensitivity of optimal portfolios to statistical errors in the estimates of the parameters.  

Goldfarb and Iyengar [5.6] have considered a factor model for the random portfolio returns 

and have proposed some statistical procedures to construct the uncertainty sets for the 

parameters. Bertsimas and Pachamanova [5.7] have investigated the viability of different 

robust optimization approaches for multi-period portfolio selection. Recently robust 

optimization has been applied to different fields including finance and industrial problems 

[5.8-10].  

In these studies, the robust optimization models treat the asset returns as uncertain 

coefficients and map the level of risk aversion of the investor to the level of tolerance of the 

total error in asset return estimation. However in these robust optimization techniques, the 

program dimension increases exponentially as the size of the problem i.e. number of assets 

present in the portfolio optimization increases. The difficulties become more pronounced 

when the number of constraints becomes more. Therefore, there is a need to develop robust 

portfolio optimization techniques which can handle efficiently the outliers present in the 

financial data. 

  In this Chapter, we propose a new framework using the MVE methodology for 

achieving robust portfolio optimization. The MVE is formed by using the core set and 

Lagrange multipliers. Some weight factor is calculated by taking the parameters associated 
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with the ellipsoid. Then the data are modified by multiplying each of them with the weight 

factor. The weight factor is designed in such a way that it does not change the data those are 

present inside the ellipsoid. The magnitude of data those are present outside the ellipsoid are 

suitably decreases. Then the desired parameters such as risk and return are calculated from 

the weighted data. The trade-off (Pareto curve) between this new estimated return and risk 

parameters are found out by using some efficient MOEAs.  In this present study, the 

portfolio optimization problem with practical constraints has been solved by applying four 

MOEAs such as MOPSO, MOBFO, MOEA/D-P and MOEA/D-B algorithms and using both 

the Markowitz mean-variance model and proposed PBMV models.  

5.2 Development of robust portfolio optimization under uncertainties 

       Since the data of the market do not changes fast with time, all the data points remain 

close to each other forming a cluster in multidimensional space. However, in the presence of 

uncertainty, the market data points deviate from its normal deviation. In multidimensional 

space these unexpected data remain away from the clustered data. Moreover, every 

unexpected datum also remains away from each other depending on the strength of the 

outliers. So the first objective is to suitably modify the uncertain data.  

In order to achieve this, the minimum volume ellipsoid (MVE) method [5.11-13] is 

applied to get an ellipsoid covering healthy (good) data points. This covering of finite data 

set using MVE is a convex optimization [5.14] problem which is formulated as:                    
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where 1+kQ , 1+kc  are  the spreading matrix and the center associated with the ellipsoid. 1+kx , 
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nk ...,3,2,1=  are the good market data set. The above convex optimization problem can be 

solved by using interior point method [5.15]. However this method requires large amounts 

of computational complexity. In order to avoid this, the Lagrange multipliers based 

approach has been used. The Khachiyan’s algorithm [5.16],[5.17] is one such method to 

calculate the MVE using the Lagrange multipliers. To apply the Khachiyan’s algorithm the 

data should be symmetric across the origin. In order to make this, firstly the data number is 

increased to two times by first collecting the data and then multiplying by 1 and -1.Then 1 or 

-1 is padded according to the data is multiplied by 1 or -1 respectively. By this way n  

numbers of data points change to  n2  number of data points with one extra dimension which 

is symmetric to the origin. Mathematically, it is given by 

{ } )2.5(,......,1 nyyS ±±=′

where iy   and iy−  are   

[ ]
[ ] )3.5(1,)(1

1,)(1

11

11

′−′×−=−

′′×+=+

xy

xy

  

Since the new data points are symmetric with respect to the origin, the center of the 

MVE to be formed lies at the origin. Hence the original ellipsoid is related to this new MVE 

to be formed as:   

( ) )4.5()( HSMVEESMVEE I′=
 

where )(SMVEE  means the minimum volume ellipsoid enclosing S original points and 

)( 'SMVEE  is the minimum volume ellipsoid enclosing 'S new high dimensional  points.  

and H is mathematically expressed as 
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{ } )5.5(1: 1
1 =∈= +

+
d

d xRxH

                    
Now the formulation of the MVE for the data of high dimension is given by   
 

)6.5(....,,1,1.

)(logminarg

niyQyts

QDetQ

i
P

i

P

Q

P
P

=≤′

−=

  Now the Lagrange multipliers [5.18] based MVE can easily be found from the 

optimum point which is obtained by taking the the Karush–Kuhn–Tucker (KKT) condition. 

This is given mathematically as  

( ) ( )
( )

)7.5(0

1

....,,1,01

0

*

*

**

*1*

≥

≤′
==′−

=Π+− −

z

yQy

niyQyz

ZQ

ii

ii

  where    )1()1(: +×+ℜ→ℜΠ ddn   
  which is given by  

( ) )8.5(: ∑ ′=Π iii yyzz

 

In order to achieve the optimum point based on the KKT condition the duality problem is  
( )

)9.5(0

1..

detlogmax

≥
=′

Π

u

uets

u
u

This dual problem is the maximization of a concave function. So the optimum MVE 

covering S  is given as  

( ) ( )[ ] [ ] ( ) )10.5(1
1

111:
1*













≥







Π′+ℜ∈=

− x
uxdxSMVEE d

where , )( *uΠ  is  defined in terms of the parameter of the MVE of the original problem in 
the following way

 ( ) )11.5(
10

* *
*











 ′
=Π PuPPU

u

Then applying the Schur complement [5.19] to the (5.11), we obtain  
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Then the inverse of )( *uΠ is given as  
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The original MVE problem is related to the parameter of the new MVE problem of higher 
dimension by the formula given in (5.14) 

( ) ( ) ( ) )14.5(1:: ***
**







 ≤−

′
−ℜ∈=∈= cxQcxxSMVEE d

CQ

        
             

where,

( ) ( )
1

* * * *

* * (5.15)

: 1Q d PU P Pu Pu

c Pu

−′ ′= − 
 

=
 

The method of duality problem expressed in (5.9) is based on the entire data set. It is 

a fact that the MVE of any number of data set with dimensions L  can be the obtained from 

L2  number of points which may occur at the circumference of the data set. These 2L points 

are subset of original n  number of points. To find out this L2  number of points the Gram-

Schmidt Orthogonalisation procedure is used in the Chapter. In this procedure, a vector is 

randomly selected and then all the points are projected upon that vector.  Furthermore, only 

two points are selected that are having large and small magnitudes of projected values. 

These two points are used to find the new vector which is passing through these two points. 

Subsequently, another vector is selected which is perpendicular to this new vector. Another 

two points are found out by applying similar projection based approach. This procedure of 

finding the orthogonal vector and the points based on projection is repeated number of times 

of the dimensions i.e. L  number of times. The number of points obtained by this procedure  
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is called the core set of the data points. The pseudo code of this algorithm is dealt next. 

The pseudo code: 

( ) { }{ }
( ) { }{ }

{ }( )
)16.5(

,

,maxarg

,maxarg

2

:1

,....1

,....1

end

ppSpan
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RbdirectionarbitraryanPick

while

else
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di

d

αβ

β

α
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φ
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←
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′

←

Ψ
∈

≠Ψℜ

←
≤

=

ΟΟ
=

ΟΟ
=

Ο

  

        

 The next objective is to find out the MVE from the core set. Thus the computational 

complexity of the MVE decreases. The dual problem of the original MVE problem taking 

only the core set point is given by   

( ) ( )
)17.5(.0,0.

max
1

1
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−

∈

vvets

yuyv
n

k
k

i
kk
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Now the (5.17) is solved by using Khachiyan’s algorithm and is given by  

( ) )18.5(max:
1

,....1
k

i
k
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j yuyk
−

=
Π′=

  
( ) )19.5(1:1
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        Thus a MVE is formed covering the data set without outlier inside of it. The data 

contaminated with outliers are present outside of it. The next objective is to find out the 

weight factor for every data point.   

The data presented inside the MVE remains as they are and the data away from the 

MVE are provided lesser importance. The points remaining far away from the ellipse are 

assigned lesser weightage than those which are situated nearer to it. In order to calculate the 

required weight values the Mahalanobis distance [5.23] is found out by using the parameters 

of the MVE and is given by   

( ) ( ) )21.5()( 1
ii

T
iii cxQcxxM −−= −               

             

Now the weight factor corresponding to ix  is given as 

                      
                                                                        

( ) ( )
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ii
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ii
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i

cuQcu
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χ
  
                         

To obtain the modified data, iw  is multiplied to each of it. It is clear from (5.22) that 

iw  is 1 for those data present inside the ellipsoid and this factor computed from (5.22) is less 

than 1 for those data outside the ellipsoid.   

5.3 Forecasting network  

The same FLANN network as discussed in Chapter 4 is used in our study. In the 

simulation, the bacteria foraging optimization (BFO) based algorithm is used for updating 

the weights of the network. A population of such bacteria is chosen to represent the initial 
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solutions of the model. Each bacterium updates its values using the BFO principle by 

suitably minimizing the mean squares error (MSE) as the cost function.  

5.4 Simulation study 

To evaluate the performance of the proposed algorithm real life data are collected 

and used. The algorithm described in the previous section is coded in MATLAB and runs on 

a PC with Intel Core 2 Duo 3.0 GHz with 4 GB RAM.   

5.4.1 Data collection 

The data for 31 stocks from Hang-Seng, 85 from DAX 100, 89 from FTSE 100, 98 

from S&P 100 and 225 from Nikkei 225 stock indices are obtained from the website                               

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html [5.20]. The data of PORT-1 and 

PORT-5 correspond to weekly prices between March 1992 and September 1997. The 

weekly price of these stock can also be found from  

http://in.finance.yahoo.com/q/hp?s=%5EHSI [5.21]. Similarly the weekly closing price of 

the day of stocks for BSE is available in http://in.finance.yahoo.com/q/hp?s=%5EBSESN[5. 

22]. In the present study, the weekly stock values of Hang-Seng, DAX 100, FTSE 100, S&P 

100 and Nikkei 225 between March 1992 and September 1997 were collected.  A subset of 

20 stocks from the 500 stocks that participated in Bombay Stock Exchange (BSE-500) index 

between December 2008 to January 2012 has been selected for the present study. The data 

collected for each one of these 20 stock indices consisted of the weekly closing price of the 

stock. 
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5.4.2 Construction of MVE from real life data 

In the present study, it is assumed that some percent of the collected stock data of all 

the markets are contaminated with outliers. At first, the attempt is to neutralize the effect of 

outliers by using the MVE methodology. As explained in the previous section, the data 

without outliers will lie inside the ellipse and the data contaminated with outliers will remain 

outside it. This cannot be displayed in multidimensional space. To make the MVE method 

more clear, we have considered two stocks and explain the same in two dimensional space. 

Two stocks such as State Bank of India (SBI) and Coal India Limited (CIL) from BSE-500 

stock is selected between period November-1, 2011 to January-31, 2012.  The ellipsoid is 

found out by applying the MVE method and is shown in Fig.5.1.The x-axis represents the 

stock value for SBI and y-axis represents the stock value for CIL.  It is observed that some 

points are present outside the ellipse. It implies that on some days the stock values changes 

abruptly from its normal variation. This heavy fluctuation of stock value is primarily due to 

some unforeseen situations such as sudden fall of oil price or political crisis etc. The stock  

values on such days may be considered as outliers. 
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                                                                     (e) 
                                     (a)Assuming 10 % of collected data are contaminated by outliers. 

                                     (b)Assuming 20 % of collected data are contaminated by outliers. 

                                     (c)Assuming 30 % of collected data are contaminated by outliers. 

                                     (d)Assuming 40 % of collected data are contaminated by outliers. 

                                     (e)Assuming 50 % of collected data are contaminated by outliers. 

             Fig.5. 1 Minimum volume ellipsoid for SBI and CIL stock data from November to 
January 2012  
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The weight factors associated with such data are calculated. These data are suitably 

modified by multiplying the weighting factor obtained using (5.22).  

5.4.3. The problem approach 

(a) Using Markowitz mean-variance model  

The MVE is applied to the weekly price of the stocks and accordingly they are 

modified. The new data set is used to calculate the corresponding modified weekly returns. 

The expected return is calculated by taking the mean of the modified weekly returns and 

accordingly the corresponding risk is found out.  

 (b) Using our proposed prediction based mean-variance (PBMV) model 

In this case also the MVE is applied to the weekly price and it is suitably modified. 

Using the new set of data, the weekly return is calculated mathematically. Then, the FLANN 

forecasting network is used to predict the future weekly return by taking the modified 

weekly return as input parameters. The modified weekly return is not directly used as input 

rather some statistical information such as moving averages, mode and median of the input 

parameters are considered as the input to the network. Then, it is expanded using Chebyshev 

functional expansion to transform the input information to nonlinear form. Evolutionary 

computation selectively chooses functionally expanded variables for effective prediction. 

The weights of the FLANN model has been efficiently trained using BFO algorithm. In 

addition, the input features are also weighted suitably and the weight factors are also 

obtained using BFO. 
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(c) Constraint portfolio optimization using MOEAs 

By applying the two models, the risk and return of individual assets are found out. 

This process is repeated for all the assets. After estimating the return and risk of individual 

assets, the portfolio optimization is carried out by using some efficient MOEAs. Two 

MOEAs (MOPSO, MOBFO) based on non-dominating sorting and two based on 

decomposition (P-MOEA/D, B-MOEA/D) have been applied. The constraint handling issue 

has also taken into consideration in the optimization process.  

5.4.4 The simulation results 

In previous chapter we observed, under identical condition, the MOBFO algorithm 

gives the best possible solutions among all MOEAs. Hence in this section we have applied 

MOBFO to Heng-Seng and BSE-500 stock indices assuming 10%,20%,30%,40%,50% of 

the stock data are contaminated by outliers. 
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               Fig.5.2. Global optimal Pareto front for Hang-Seng, stock indices 
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                   (e) 

(a) applying MVE method and using the PBMV model  

(b) applying MVE method and  using Markowitz mean-variance model 

(c) without applying MVE method and using the proposed PBMV model 

(d) without applying MVE method and using Markowitz mean-variance model  

(e) for all the four conditions 

          Fig.5.3. GOPF and Pareto front obtained by applying MOBFO to Hang-Seng  stock    
   assuming 20% of the data are contaminated with outliers. 
 

The global optimal Pareto front (GOPF) corresponding to Hang-Seng stock  is 

depicted in Fig.5.2. From Fig.5.3, it is clear that the Pareto front obtained by MOBFO 

applying the MVE method and proposed PBMV model provide the best Pareto solution. The 

C  metric is used to compare between this four different conditions as shown in Table-5.1. 
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Table-5.1.Comparison of results of C  metric for MOBFO with different condition 
 

 

From the performance metricC , it is observed that MOBFO algorithm is giving 

better Pareto solution applying MVE and using PBMV model. The obtained results can be 

tested using six performance metrics and analyzing the Pareto front obtained. The statistical 

testing can also be performed for in depth analysis. The Pareto fronts obtained by assuming 

20%, 30%, 40%, 50% of stock data contaminated by outliers are also shown in figure 5.4. It 

is seen that the results obtained are comparable to each other.  
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Fig.5.4.Pareto fronts obtained by applying MOBFO to Hang-Seng stock assuming 10%, 

20%, 30%,40% and 50 % of the data contaminated with outliers. 

 Without MVE and 
Markowitz 

Without MVE and 
PBMV 

With MVE and 
Markowitz 

With MVE and 
PBMV 

Without MVE and Markowitz ___ 0.3988 0.3652 0.3211 

Without MVE and PBMV 0.4523 0.4421 ___ 0.4012 

With MVE and Markowitz 0.4672 ___ 0.4523 0.4242 

With MVE and PBMV 0.5722 0.5421 0.5012 ___ 
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Subsequently the MOBFO algorithm is applied to handle the cardinality constraint 

for DAX 100 stock applying MVE method and using PBMV model.  
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        Fig.5.5.Pareto front for MOBFO for DAX 100 stock data by applying MVE method 

using PBMV models in the presence of cardinality. 

Thus, the MOBFO can handle cardinality constraint efficiently by applying this 

combination of MVE method and PBMV model. 

The MOBFO algorithm is applied to 20 stocks of BSE where it is assumed that 10 

percent of the stock is uncertain due to outliers. The Pareto front obtained with and without 

applying MVE method is shown in Figs.5.5.     
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               (e) 

(a) applying MVE method and using the PBMV model  

(b) applying MVE method and  using Markowitz mean-variance model 

(c) without applying MVE method and using the proposed PBMV model 

(d) without applying MVE method and using Markowitz mean-variance model  

(e) for all the four conditions 

      Fig.5.6. The Pareto front obtained by applying MOBFO to BSE-500 stock 

Similarly MOBFO can also be applied to other stock indices such as FTSE 100, S&P 

100 and Nikkei 225 using both models. Similarly P-MOEA/D, B-MOEA/D, NS-MOPSO, 

MOBFO can be applied to different markets by applying MVE and using PBMV model.  
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5.5 Conclusion 

 The Minimum volume ellipsoid (MVE) methodology is devised by using core set 

and Lagrange multipliers and is suitably applied to handle uncertainty present in the stock 

market data. The data with outliers are modified by multiplying appropriate weighting factor 

with the data. The FLANN network is chosen for predicting the desired parameters such as 

risk and return from the modified weighted data. Four MOEAs have been employed to 

obtain the final Pareto solution using this new estimated return and risk parameters. The 

experimental result reveals that the MOEAs are able to provide efficient Pareto solution in 

the presence of outliers in the stock data. In addition, the MOEAs provides better Pareto 

solution using proposed prediction based mean-variance (PBMV) model as compared to 

Markowitz mean-variance model.  

It can be concluded that the proposed MVE method gives a quite satisfactory 

solution in the abrupt build-up of situations and exhibits good portfolio strategy. The 

implementation of the proposed model can also be done to a variety of benchmark data sets. 

The performance of proposed method can also be evaluated considering other real world 

constraints such as round-lot, turnover and trading.  
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In many situations, it is required to invest the money for future, but the relevant future data 

are not available. In addition, the present data are contaminated by outliers. Such complex 

problem needs an acceptable solution by involving robust prediction followed by efficient 

optimization method. For this robust prediction, the FLANN model trained with 

evolutionary computation is used as a predictor. The future return and risk of all assets have 

been predicted by FLANN using Markowitz model and prediction based mean-variance 

(PBMV) model. Then, constraint portfolio optimization is obtained using four efficient 

MOEAs. The experimental results reveal that, the proposed PBMV model in combination 

with MVE followed by efficient MOEAs give efficient portfolio strategy for future 

investment. 

 

 

 

 

 

 

 

Chapter 

6 
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6.1 Introduction  

The investment of funds in the presence of outliers is a very challenging and 

interesting problem. The handling of uncertainty has been reported by many researchers 

[6.1-6.8]. Tutuncu and Koenig [6.2] consider a box-type uncertainty structure for the mean 

and covariance matrix of the asset returns. They have solved the portfolio optimization 

problem by formulating it as a smooth saddle-point problem in this uncertain condition. Zhu 

and Fukushima [6.3] have demonstrated that the portfolio optimization problem can be 

formulated as linear or second-order cone programs by considering conditional value-at-risk 

(CVaR) for handling uncertainty. Huang et al. [6.4] have formulated the portfolio problem 

with uncertainty as a semi-definite program where only partial information on the exit time 

distribution function and the conditional distribution of portfolio return are available. De 

Miguel and Nogales [6.5] have proposed a novel approach for portfolio selection by 

minimizing certain robust estimators of portfolio risk. In their approach, robust estimation 

and portfolio optimization are performed by solving a single nonlinear program. Quaranta 

and Zaffaroni [6.6] studied a portfolio selection model in which the methodologies of robust 

optimization are used for the minimization of the conditional value at risk (CVaR) of assets. 

In the work of Seyed Jafar et.al. a new framework has been presented and the cardinality 

constrained portfolio problem is efficiently solved when all input parameters are subjected 

to uncertainty[6.7]. Bertsimas and Pachamanova [6.8] have studied the viability of different 

robust optimization approaches for multi-period portfolio selection.  

However, in these robust optimization techniques the program dimension increases 

exponentially, as the number of assets present in the portfolio optimization increases. 
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Moreover, the problem becomes more challenging when many practical constraints are 

considered.  

In many situations it is required to invest money in future where the future data are 

not available. In the recent times attention has been focused on future investment of the fund 

[6.9]. Kia-Hong Tee uses the n-degree lower partial moment (LPM) models and analyzes the 

effect of downside risk reduction on UK portfolio diversification and returns for managing 

funds in future.  

In many situations, the future fund investment in the presence of outliers is important 

but difficult to solve. In the combined presence of these two conditions, the portfolio 

strategy becomes more challenging and is yet to be explored.  In the present study, the first 

challenge of handling the outliers present in the input data is same as described in chapter 5. 

The minimum volume ellipsoid (MVE) which is formed by using core set and Lagrange 

multipliers, differentiate the data having outliers and without outliers [6.13], [6.18]. Then the 

weight factor associated with each uncertain datum is calculated by taking the appropriate 

parameters associated with the ellipsoid. The weight factor is designed in such a way that it 

does not change the data those are present inside the ellipsoid but suitably decreases the 

magnitudes of data which are present outside it. The weight factor is lowest for data far 

away from the center of the ellipsoid and vice-versa. Thereafter, the weight factors are 

multiplied with uncertain data to suitably modify it.  

The second challenge of investing money in different assets requires a robust 

predictive algorithm. The FLANN which has been successfully applied in chapter 4 is used 

as the predictor. The literature survey reveals that the performance of FLANN is improved 

by providing some technical indicators of stock data instead of giving it directly [6.12]. 
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Moreover evolutionary computation can be used to choose some of the expanded branch 

selectively to reduce the computational time by rejecting the branch having less contribution 

to the output [6.13]. In [6.13] it is shown that if the weight of each branch is updated by 

evolutionary computation it becomes less susceptible to local optima problem and also 

consumes less time to update the weight. In this chapter the FLANN is applied for 

prediction of risk and return of each asset using Markowitz and proposed PBMV models. 

The Pareto solutions of portfolio are found out by using four efficient MOEAs techniques. 

6.2 Development of prediction based robust mean-variance 
model for constraint portfolio optimization 
          

For the development of prediction based robust model, the minimum volume 

ellipsoid (MVE) method followed by FLANN using prediction based mean-variance 

(PBMV) model is applied.  

6.2.1 Minimum volume ellipsoid  

In this chapter also the same MVE approach is applied to mitigate the effect of 

outliers in the stock values.  

6.2.2 Forecasting Model 

A low complexity FLANN employing Chebyshev functional expansion as explained 

in Chapter 4 is used as a forecasting model. The forecasting potentiality of a network 

becomes efficient if fundamental analysis factors are used as inputs. The fundamental 

analysis is the study of economic, industry, and company conditions in an effort to 

determine the value of a company's stock. Ten technical indicators and five fundamental 

analysis factors are used as important parameters to study the future stock movement 
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efficiently. These ten indicators are explained in Section 6.2.3 followed by five fundamental 

analysis factors in section 6.2.4. Bacteria foraging optimization (BFO) algorithm is used for 

selecting some of the indicators and for updating the weights of the network. Each bacterium 

represents one weight of the forecasting model. A population of such bacteria represents the 

initial solutions of the model which are iteratively updated using the BFO principle by 

minimizing the mean squares error (MSE) as the cost function. The input to the network is 

nonlinearly expanded using Chebyshev functional expansions.  

6.2.3 Technical indicators  

The technical indicators have been used [6.13] as inputs to FLANN model to 

improve the performance of prediction. These technical indicators have been obtained from 

past stock market data. Technical indicators are important features to predict the future price 

levels, or the general price direction. A brief explanation of each indicator defined in [6.13] 

is provided in Table-6.1. These are: 

(a) Simple Moving Average (SMA) 

 It is the simple average of the values by taking a window of the specified period.  

(b) Exponential Moving Average (EMA) 

It is also an average of the values in the specified period but it gives more weightage to 

recent values and thus it is more close to the actual values.  

(c) Accumulation/Distribution Oscillator (ADO) 

It measures money flow in the security. The ADO aims to measure the ratio of buying to 

selling by comparing price movements of a period to the volume of that period. Also it has 

been calculated for each day. 
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(d) Stochastic Oscillator (STO) 

The stochastic Oscillator is a momentum indicator that shows the location of the current 

close relative to the high/low range over a set of number of periods. Closing levels which are 

consistently near the top of the range indicate accumulation (buying pressure) and those near 

the bottom of the range indicate distribution (selling pressure).  

(e) On Balance Volume (OBV) 

It is a momentum indicator that relates volume to price change.  

(f) Williams %R (WILLIAMS) 

It is a momentum indicator that measures overbought/oversold levels. 

(g) Relative Strength Index (RSI) 

It calculates the internal strength of the security.  

(h) Price Rate of Change (PROC) 

The PROC indicator displays the difference between the current price and a previous closing 

price for a given time period ago.  

(i) Closing Price Acceleration (CPACC) 

It is the acceleration of the closing prices during the given period.  

(j) High Price Acceleration (HPACC)   

It is the acceleration of the high prices in the given period. 
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Table 6.1. The list of technical indicators with their formulae used as inputs 

 

 

Technical Indicators 

 

Formula 

 

Simple Moving Average (SMA) 1

1 N

i
i

x
N =
∑  

N = No. of Days                ix = today’s price 

Exponential Moving Average (EMA) 
( ) (Previous EMA (1- ))P A A× + × ; A=2/(N+1)  

P – Current Price, A- Smoothing factor, N-Time Period 

Accumulation/Distribution Oscillator 

(ADO) 

(C.P - L.P) - ( H.P - C.P))

(H.P - L.P)  (Period's Volume)×
 

C.P – Closing Price, H.P – Highest price, L.P – Lowest price 

Stochastic Oscillator 

(STO) 

(Today's Close - Lowest Low in K period)
% 100

(Highest High in K period - Lowest Low in K period)
K = ×  

%D  = SMA of %K for the Period. 

On Balance Volume 

(OBV) 

If Today’s Close > Yesterday’s Close 

OBV = Yesterday’s OBV + Today’s Volume 

If Today’s Close < Yesterday’s Close 

OBV = Yesterday’s OBV - Today’s Volume 

 

WILLIAM’s %R 

(Highest High in n period - Today's Close)
% 100

(Highest High in n period - Lowest Low in n period)
R = ×  

Relative Strength Index 

(RSI) 

100
RSI = 100 - 

1 + (U/D)
 

U= total gain/n, D= total losses/n, n = number of RSI period 

Price Rate Of Change 

(PROC) 

(Today's Close - Close X-period ago)
100

(Close X-period ago)
×  

Closing Price Acceleration 

(CPACC.) 

( Close Price - Close Price N-period ago)
100

(Close Price N-period ago)
×  

High Price Acceleration 

(HPACC) 

( High Price - High Price N-period ago)
100

(High Price N-period ago)
×  
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6.2.4 Fundamental analysis factors 

In addition to technical indicators which depend on the past value of the data other 

features known as fundamental analysis factors are also used as inputs. These are generally 

macroeconomic parameters which affect the stock market. Five fundamental factors used in 

the study are crude oil prices, United States’ GDP growth rate, corporate dividend rates, 

federal interest rates and commodity price index (CPI). 

6.3 Simulation studies 

In this chapter the algorithms are coded in MATLAB and were run on a PC with 

Intel Core 2 Duo 3.0 GHz with 4 GB RAM.   

6.3.1 Data collection 

The data for Hang-Seng and Nikkei-225 stock indices were obtained from OR-

Library which is maintained by Prof. Beasley [6.14]. The data of PORT-1 and PORT-5 

correspond to weekly prices between March 1992 and September 1997. The numbers of 

different assets for the above two benchmark indices are 31 and 225 respectively. The daily 

closing price, opening price, lowest value, and highest value on the day and the total volume 

of these stocks and weekly closing price are also available in [6.15]. Similarly these daily 

and weekly stock information for BSE have been collected from [6.16]. For the present 

study the daily and weekly value of  20 stocks from  Heng-Seng, 20 from DAX 100, 20 

from FTSE 100, 20 from S&P 100, 20 from Nikkei 225 and  20 stocks from the BSE-500 

stocks between December 2008 to January 2012 have been collected. 
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6.3.2 The problem approach 

(a) The procedure for MVE 

We assume 50 percent of the collected stock data of all the markets are having 

outliers. The MVE approach discussed in Chapter 5 is applied to nullify the effect of 

uncertainty which modifies the unexpected data by multiplying it with appropriate weight 

factors. In Markowitz model the MVE method is applied to all the daily closing price, 

opening price, lowest value, highest value on the day and the total volume of stocks. But in 

the proposed PBMV model, the MVE is applied only to the daily closing prices of stocks. 

(b) Using Markowitz mean-variance model  

In this model the daily closing price, opening price, lowest value, highest value on 

the day and the total volume of stocks present with outliers are collected and are modified 

using the MVE. Ten technical and five fundamental indicators defined in Table-6.1 are 

calculated using the collected data. These indicators are employed as inputs to the FLANN 

forecasting model. The FLANN is used to predict the closing price of the stock for future 

time. Evolutionary computation technique is used to select some proper indicators for 

achieving effective prediction. The weights of the FLANN are also trained with the 

evolutionary computation based method. In the present simulation, the BFO algorithm is 

chosen to train the network parameters. The output of the FLANN structure provides future 

stock values. From this predicted closing price, the stock returns for a time horizon are 

computed. The return after a specified time is the mean of calculated returns. The individual 

risk of each stock and the risk between each pair of stocks are obtained from the variance 

and covariance of the return time series. 
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(c) Using proposed prediction based mean-variance (PBMV) model 

In this model, the unexpected weekly closing stock values are modified using 

minimum volume ellipsoid (MVE) method. Then the weekly past returns are calculated 

from this modified weekly closing value of stock. The inputs used for the FLANN structure 

are financial variables such as the moving average, mode and median of the calculated past 

return, and the right combinations are selected using the BFO tool. The weights of the 

network are also trained by BFO. The output of the FLANN gives future returns. This 

process is repeated for all the assets to predict the corresponding returns after a fixed time. 

The individual risk of each stock and the risk between each pair of stocks are obtained from 

the covariance matrix of the time series of errors of prediction. The individual risk of each 

stock (variance) is found out by from the diagonal elements of the matrix.    

(d) Constraint portfolio optimization using MOEAs 

Using two different models the future risk and return of individual asset are found 

out. This process is repeated for all assets. After estimating the return and risk of all assets 

for a fixed time the portfolio optimization with some practical constraints are carried out by 

using NS-MOPSO, MOBFO, P-MOEA/D and B-MOEA/D multiobjective optimization 

algorithms. 

6.3.3 Experimental results 

In this section we have applied MOBFO to Heng-Seng and BSE-500 stock indices 

for future portfolio strategies. It is assumed that 10% of stock data are contaminated by 

outliers.  
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               Fig.6.1. Global optimal Pareto front for Hang-Seng, stock indices 

The global optimal Pareto front (GOPF) corresponding to Hang-Seng stock is 

depicted in Fig.6.1. 
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(a) applying MVE method and using the PBMV model  

(b) applying MVE method and  using Markowitz mean-variance model 

(c) without applying MVE method and using the proposed PBMV model 

(d) without applying MVE method and using Markowitz mean-variance model  

(e) for all the four conditions 

Fig.6.2. GOPF and Pareto front obtained by applying MOBFO to Hang-Seng stock after one 
month assuming 10 % of stock contaminated by outliers  
 

It is evident that the MOBFO applying MVE method and proposed PBMV model is 

providing better solutions in comparison to other, as its Pareto front is closer to the standard 

efficient frontier. Further, the performance of them is assessed using C  metrics. The C  

metric is demonstrated in Table-6.2.  

Table-6.2. Comparison of results of C  metric for MOBFO with different condition 

 

It clearly shows that most of the solutions obtained by MOBFO applying MVE and 

PBMV model dominate the solutions obtained by others. The obtained results can also be 

tested using six performance metrics. The statistical testing can also be performed for in 

depth analysis. Similarly, the MOBFO can also be applied to other stock indices such as 

DAX 100, FTSE 100, S&P 100 and Nikkei 225 using both models. Similarly P-MOEA/D, 

B-MOEA/D, NS-MOPSO can be applied to different markets by applying MVE and using 

PBMV model. These algorithms can also be used to handle cardinality constraint efficiently 

by applying this combination of MVE method and PBMV model. 

 Without MVE and 
Markowitz 

after one month 

Without MVE and 
PBMV 

after one month  

With MVE and 
Markowitz 

after one month  

With MVE and PBMV
after one month  

Without MVE and Markowitz 
after one month 

___ 0.4132 0.3942 0.3423 

Without MVE and PBMV 
after one month 

0.4632 0.4321 ___ 0.4102 

With MVE and Markowitz 
after one month 

 

0.4732 ___ 0.4611 0.4321 

With MVE and PBMV 
after one month 

0.5911 0.5522 0.5213 ___ 
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The MOBFO algorithm is applied to 20 stocks of BSE where it is assumed that 10 

percent of the stock is uncertain due to outliers and money has to invest after one month. 

The Pareto fronts obtained with and without applying MVE method are shown in Figs.6.3.    
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                                     (e) 

(a) applying MVE method and using the PBMV model after one month 

(b) applying MVE method and  using Markowitz mean-variance model after one month  

(c) without applying MVE method and using the proposed PBMV model after one month 

(d) without applying MVE method and using Markowitz mean-variance model after one 

month  

(e) all the four conditions 

Fig.6.3. The Pareto front obtained by applying MOBFO to 20 stocks (assets) from BSE-500 

stock indices after one month assuming 10% of stock data are contaminated by outliers.   

 

It is evident that the MOBFO algorithm, applying MVE method and proposed 

PBMV model is providing better solutions in comparison to others as it cover more risk-

return area. It provides more option to the portfolio manager for investing money after one 

month.  
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6.4 Conclusion 

 The portfolio optimization issue for future time when the corresponding data are not 

available and the present available data are uncertain has been studied in this Chapter. A 

subset of 20 stocks from Heng-Seng and BSE-500 indices between December 2008 to 

January 2012 have been selected for obtaining portfolio strategy after one month, that is on 

February 2012. The effect of outliers in the stock data has been minimized using the MVE 

method. The MOBFO algorithms have been applied using both Markowitz mean-variance 

and prediction based mean-variance (PBMV) models. The proposed prediction based mean-

variance (PBMV) portfolio optimization model in combination with minimum volume 

ellipsoid (MVE) method is observed to be effectively mitigating the effect of outliers for 

future investment. Experimental results demonstrate that the proposed PBMV portfolio 

optimization model outperforms the conventional Markowitz model for investing in future.  
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In this chapter the overall contributions of the thesis are reported. The future research 

problems are also outlined for further investigation on the same/ related topics.  
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7.1. Conclusion  

The conclusion of the overall thesis is presented in this section and some of the 

major contributions achieved in the thesis are reported in the next section. Some future 

research problems related to the topics of the thesis and which may be attempted by 

interested readers are outlined in the last section. 

 Two novel multiobjective evolutionary algorithms (MOEAs) based on non-

dominated sorting and two algorithms based on decomposition are proposed and suitably 

applied to portfolio optimization problem with budget, floor, ceiling and cardinality 

constraints by formulating it as a multiobjective optimization problem. On examining the 

performance metrics, it is observed that the proposed MOBFO approach is capable of 

identifying best possible Pareto solutions maintaining adequate diversity. The Pareto front 

obtained by MOBFO is closer to the standard efficient front covering more risk return area. 

The Sign test and Wilcoxon signed rank test are also performed to show the superiority of 

MOBFO over others. In terms of computational time, the P-MOEA/D is found to be the 

fastest among other such algorithms used in the thesis. All the four algorithms have been 

found to be potential candidates for solving constrained portfolio optimization problem. 

From the simulation results, it is evident that the investor does not have to invest money on 

all the available assets rather to invest in fewer assets i.e. approximately 10 percent of 

available assets to explore wide risk-return area. The portfolio manager has the option to 

make a tradeoff between risk and return for different cardinality constraints to decide on the 

portfolios according to the requirement. 

A novel prediction based mean-variance (PVMV) model has been proposed and four 

MOEAs have been employed to solve the portfolio optimization problem. In the PBMV 
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model, the return is first predicted with a low complexity single layer neural network. The 

performance of four MOEAs in solving portfolio optimization problem using the proposed 

and Markowitz mean-variance models has been evaluated. From the simulation results it is 

observed that the proposed PBMV model is capable of identifying good Pareto solutions by 

maintaining adequate diversity. The comparison of results shows that the performance of 

PBMV is comparable to that of well known Markowitz mean-variance model. 

In order to reduce the effects of uncertainty of the stock market data (outliers), the 

Minimum volume ellipsoid (MVE) methodology has been proposed. It has been observed 

through the experimental and theoretical studies that the MVE methodology is robust for 

handling outliers. It has been seen from the study that this method has effectively found out 

appropriate weight factors for all the data and those have been used to modify the 

contaminated data. The FLANN network has been used to predict risk and return for further 

processing. Experimental results reveal that the MOEAs provide good Pareto solution using 

this new predicted return and risk parameters. Moreover, the simulation results have shown 

that the MOBFO algorithm provides the best possible solutions among all MOEAs for 

uncertain market conditions. Furthermore, the MOBFO algorithm using PBMV model and 

MVE method has also been found to be robust in the presence of the cardinality constraint. 

It is a challenging problem to find suitable portfolio strategy for investment of 

money for the future where the relevant future data are not available and the present data are 

uncertain due to the presence of outliers. To solve this problem the MVE methodology in 

combination with the PBMV model followed by FLANN based forecasting are chosen. 

Then the MOBFO algorithm is used to provide the best Pareto solutions. 
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7.2. Contribution Achieved 
  

       Some key contributions achieved in this thesis are listed below.  

• Two novel MOEAs, based on non-dominated sorting such as nondominated sorting 

multiobjective particle swarm optimization (NS-MOPSO) algorithm and 

multiobjective bacteria foraging optimization (MOBFO) have been proposed to solve 

the constrained portfolio optimization problem by formulating it as a multiobjective 

minimization problem. Similarly two algorithms based on decomposition such as P-

MOEA/D and B-MOEA/D have been also proposed and suitably applied to solve 

this problem by viewing it  as a multiobjective maximization problem.  

• Developed an prediction based mean-variance (PBMV) model incorporating 

prediction strategy as an useful alternative of Markowitz mean-variance model for 

solving constraint portfolio optimization problem.   

•     Developed multiobjective swarm intelligence based robust portfolio management 

method to neutralize the effect of outliers using minimum volume ellipsoid (MVE) 

based approach. 

•      Developed improved and robust swarm intelligence techniques for future 

investment of fund, with non availability of future data as well as uncertainty of the 

present data due to the presence of outliers. 
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7.3 Suggestions for future work 
 

The work carried out in the present thesis can further be extended in many directions.  

• To incorporate advanced local search operators into the proposed MOEAs 

algorithms which is expected to allow better exploration and exploitation of the 

search space. 

• To investigate on the strengths and weaknesses of non-dominated sorting or 

decomposition based MOEAs. To develop new MOEAs based on any other 

algorithmic framework which may be better suited for portfolio optimization 

problem. 

• To handle outliers in the financial time series, S-estimates, the minimum covariance 

determinate estimate and one-step reweighting method may be used as an useful 

alternative to minimum volume ellipsoid method dealt in the thesis. 

• To evaluate the performance of proposed method considering other real world 

constraints like round-lot, turnover and trading. 

• To test the performance of proposed MOEAs with other realistic data to validate its 

potentiality in addition to the benchmark problems. 

• To apply the MOEAs to other financial applications such as asset allocation, risk 

management, option pricing etc.  
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