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Abstract

Optimization plays an important role in many areas of science, management,
economics and engineering. Many techniques in mathematics and operation research are
available to solve such problems. However these techniques have many shortcomings to
provide fast and accurate solution particularly when the optimization problem involves
many variables and constraints. Investment portfolio optimization is one such important but
complex problem in computational finance which needs effective and efficient solutions. In
this problem each available asset is judiciously selected in such a way that the total profit is
maximized while simultaneously minimizing the total risk. The literature survey reveals that
due to non availability of suitable multiobjective optimization tools, this problem is mostly
being solved by viewing it as a single objective optimization problem.

Multiobjective solution techniques have been introduced in literature to solve
portfolio optimization problem. In recent past many evolutionary/ swarm computing
techniques have been proposed and have successfully been applied to many engineering,
science and finance problems. Further, multiobjective versions of these algorithms have also
been reported in the literature to efficiently solve the multiobjective problems.

When number of constraints are present, the portfolio optimization problem
becomes complex and needs effective solution. Further, the existing multiobjective
computing methods also require suitable modification to suit to portfolio optimization
problem. The existing methods cannot be applied to plan future portfolio optimization
strategy, as required future data is not available. New multiobjective algorithms are also
needed to efficiently solve the portfolio optimization problems. The portfolio optimization
problem becomes more challenging when some data become uncertain and contaminated
with outliers. These issues have been addressed in this thesis and satisfactory solution of
each of these problems has been provided. In all cases multiobjective evolutionary
algorithms (MOEAS) have been successfully applied.

This thesis has proposed and suitably applied four MOEAs for solving the
multiobjective optimization problem associated with constraints. The performance of these
algorithms has been evaluated and compared using three error measures, six performance

metrics, Pareto front, computational time and nonparametric statistical testing. For
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comparison, the results have also been obtained by formulating the problem as a single
objective problem. The results demonstrate that the proposed algorithms are capable of
identifying good Pareto solutions maintaining adequate diversity for different market
indices.

The Markowitz mean-variance portfolio optimization and many other models use the
mean of the past return as expected return. They also assume that the time series of returns
of each stock follows a normal distribution. However these time series often depart from
normality and exhibits kurtosis and skewness and thus make the variance of returns an
inappropriate measure of risk. Hence there is a need to develop an efficient approach which
will free from this assumption and is capable to predict the future expected return. In the
thesis a new mean-variance model has been proposed in which, the expected return and risk
are predicted using a low complexity functional link artificial neural network (FLANN)
structure. Four multiobjective swarm intelligence technique has been applied to solve the
portfolio optimization problem considering various constraints and their performance has
been compared. The results demonstrate that the proposed model provides improved
performances in terms of diversity and coverage of Pareto solutions.

Actually the stock values are highly uncertain due to political crises or turmoil in
global markets. As a result the stock parameters deviate heavily from its actual value. Under
such condition, the estimation of the expected return and risk becomes poor and hence leads
to inferior optimization performance. To alleviate this shortcoming, a minimum volume
ellipsoid (MVE) methodology using core set and Lagrange multipliers is proposed to handle
outliers present in the stock market data. Simulation results show that the proposed method
exhibits good portfolio strategy in the presence of market uncertainties.

In many situations portfolio optimization is needed for future data. Further, the
present data may be contaminated with outliers. This difficult problem has been addressed
and satisfactory solution has been provided using robust prediction, mean variance model,
MVE and MOEA based method.

Keywords: Portfolio Optimization, Multiobjective Optimization, Efficient Frontier,

Non-dominated Sorting, Cardinality Constraint, Outliers, Minimum Volume Ellipsoid.
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Chapter: 1 I ntroduction

Chapter

1.1 Introduction

In recent past, applications of different swarm agublutionary computation
techniques in diversified domains have gained popyl in wide area ranging from
engineering and computer science to the field rdrfce, ecology, sociology and medicine.
Chen and Kuo [1.1] have reported several popultcles in the area of evolutionary
computing application to economics and finance.

The taxonomy of applications of swarm and evoludigrcomputation in economics
and finance has been provided by Chen [1.2], whidludes (1) investment portfolio
optimization (2) financial time series (3) stocknkang (4) risk-return analysis and (5)
economic modeling. In fact, all these applicatiams inherently multiobjective in nature.
The use of swarm and evolutionary algorithms foviag multi-objective optimization
problem has emerged as a potential field of rebgarcecent years.

In this thesis, different multiobjective evolutiogaalgorithms (MOEASs) have been
studied and successfully employed to solve problesteged to portfolio optimization with
special emphasis on portfolio constraints. The rofaition problem varies from simple
portfolios held by individuals to huge portfoliosamaged by professional investors. The

portfolio consists of stocks, bank investments| esgate holdings, bonds, treasury bills etc.
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The objective is to find an optimal set of assetgvest on, as well as the optimal amount
of investment for each asset. This optimal selaeatibassets and weighting of each asset is a
multi-objective problem where the total profit eivestment has to be maximized and total
risk has to be minimized. There are also diffel@nstraints under which the optimization
task is to be carried out depending on the typproblem to be solved. For example, the
weights normally have lower and upper bounds a$ agemany other practical constraints.
This is the so-called optimal investment portfotitat one wishes to obtain by using
optimization techniques. The recently developedrswand evolutionary computation
algorithms have been effectively used for solvirgngnmultiobjective problems in a single
run giving a set of desired solutions. Hence sietabhoice and applications of
multiobjective evolutionary algorithms (MOEASs) hapetential future to handle different
challenges in constraint portfolio optimization pplem which is inherently a multiobjective

problem.
1.2 Background and scope of the thesis

The problem of portfolio optimization has alwapeen a challenging task for
researchers, investors and fund managers. Markdwagzdevised a quantitative framework
for the selection of a portfolio [1.3],[1.4]. Irhis framework, the percentage of each
available asset is selected in such a way thatota profit of the portfolio is maximized
while total risk is minimized simultaneously. Thets of portfolios of assets that yield
minimum risk for a given level of return form th#i@ent frontier. The optimal solution for
the standard form of the Markowitz portfolio asselection problem, which is classified as
a quadratic programming model, can be solved thraegact methods such as active set

methods, interior point techniques etc.
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However, portfolio optimization is very complicated it depends on many factors
such as preferences of the decision makers, resallocation and growth in sales, liquidity,
total turnover, dividend and several other fact@eme authors have also added some
practical constraints such as floor, ceiling, caatlty etc. to Markowitz model that makes it
more realistic. Inclusion of these constraintsh® portfolio optimization problem makes it
intractable even for small instances. With thesestraints it is a mixed integer
programming problem with quadratic objective fuon8. The traditional optimization
methods used to solve this problem are trappeddal Iminima solutions. To overcome this
problem different efficient heuristic methods h&ezn developed.

An overview of the literature on the applicationesolutionary computation to the
portfolio selection problem has been discussed ib][ These methods consist of simulated
annealing (SA) [1.6], Tabu search (TS) and geragorithm (GA) [1.7]. The PSO (particle
swarm optimization) technique has been appliedliB][to solve cardinality constrained
portfolio and the results have been compared \aitise obtained by using GA, TS and SA.
Improved PSO (particle swarm optimization) algorithhave also been proposed in [1.9]
for portfolio problem with transaction costs. Th8@® algorithm has been applied to solve
constrained portfolio selection problem with bouwdsholdings (minimum buy in threshold
and maximum limit in combination), cardinality, mimum transaction lots and sector
capitalization constraint [1.10]. Hanhosaigal. [1.11] has applied the PSO technique to solve
different restricted and unrestricted risky investinportfolios and compared it with GA.

Portfolio optimization problem is intrinsically a ultiobjective problem having
conflicting objectives i.e. risk and return. Butthre aforementioned studies, the problem has

been viewed as a single objective optimization |gmobby considering the overall objective
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as a weighted sum of objectives. Such a formulagieids multiple solutions by suitably
varying the associated weights. The main advantédgkeese approaches is that it reduces
the multiobjective problem to a scalar optimizatiproblem and any single objective
metaheuristics algorithm can then be applied. Hanesolving this multiobjective problem
with these SOEAs (single objective evolutionaryoalipms) methods require the repeated
use of an optimization technique to find one sirggkution on the efficient frontier per run.
Hence it is a time consuming process to get theeeRtareto front. Furthermore, a uniform
set of weightdoes not guarantee a uniformly distributed setffi€ient points [1.12]. To
achieve a diversity of solutions along the effiti&ontier is of immense importance since
certain trade-off portfolios of interest may be seid if they are concentrated in a small area
of the efficient frontier. One more shortfall ofsfapproach is that it cannot find all efficient
points as shown in [1.7]. In addition, if practicanstraints are considered the problem
becomes extremely difficult to solve by using suoéthod.

To overcome these shortcomings many researdire applied multiobjective
evolutionary algorithms (MOEAS) to solve the prahleOne of the main advantages of
MOEAs is that it gives a set of possible solutiomsa single run called as Pareto optimal
solution in a reasonable amount of time [1.12, [L.Rareto ant colony optimization (PACO)
has been introduced for solving the portfolio sibecproblem [1.13] and the performance
has been compared with other heuristic approadlesHareto simulated annealing and the
nondominated sorting genetic algorithm) by meanscafmputational experiments with
random instances. Some authors have also used fOEAd to solve the portfolio

optimization problem with many practical constraift.14, 1.15].
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Since the introduction of the mean-variance padfoptimization model by Harry
Markowitz, considerable research attention has Ipeéth on model simplifications and the
development of different risk measures such as-sanance, mean absolute deviation and
variance with skewness model. All these techniquss the mean of the past return as
expected return. These models are built upon samdafmental assumptions which are
based on a distortion-free normally distributedieserof returns [1.16]. However, these
assumptions fails as the distribution of seriesrattirn deviates from normalcy due to
kurtosis and skewness [1.17],[1.18]. Hence the ldpweent of a model free from such
assumptions is still a challenging field of resbarc

Markowitz theory helps to diversify the asset adiben. But there are some
evidences which indicate that diversification does help in reducing the total risk when
the global markets face with some crises suchasttident of September, 11 or the recent
turmoil in global markets which started from thedincial sector. The value of stock in these
conditions may be considered as outliers. Durirggl#st two decades, the idea of quality
estimation, making the optimization robust undezhsconditions has become an interesting
area of research. Hence robust optimization aimntbsolutions to a given optimization
problems with uncertain data. Different researchémsse applied different robust
optimization techniques to solve portfolio selegtiproblem in this uncertain condition
[1.19, 1.20]. However in these optimization tecluas, the program dimension increases
exponentially as the size of the problem i.e. nhumbieassets present in the portfolio
optimization increases. The difficulties become enpronounced when the numbers of
constraints become more. In addition, if heavy titron the input data occurs i.e. input

data is contaminated with outliers, the optimizatproblem become more complex to get
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the final solution. Therefore, there is a need &velbp robust portfolio optimization
techniques which can efficiently handle the ouslipresent in the financial data.

In many situations it is required to invest thedun future where the future data are
not available and the present data are uncertagntdithe presence of outliers. In such
scenario future stock has to be predicted and dpeated return and variance is to be
calculated accordingly. Such complex problem neadsolution by involving robust
prediction followed by efficient optimization.

The above cited burning issues need abtergnd appropriate solutions. Hence the
scope of the present thesis is to address thasesissid suggest appropriate methodologies

based on multiobjective optimization techniqueprvide satisfactory solutions.

1.3 Multiobjective optimization: basic conceptsand brief

overview

Multiobjective optimization deals with simultaneowsptimization of multiple
objective functions which are conflicting in naturd multiobjective optimization problem
(MOP) is defined as the problem of computing a @ecof decision variables that satisfies
the constraints and optimize a vector function vehetements represent the objective
functions. The generalized multiobjective minimiaatproblem [1.21, 1.22] is formulated
as

Minimize f(x)=(f,(%), f,(X),..., f, (X)) 1.2

subject to constraints:
9,(X)20,j=1,2,3....) (1.2
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h()=0k=123....K (1.2

where X represents a vector of decision variables

= T

X ={ X, X Xy } (1.4)
The search space is limited by

X <x<x,i=123....N (1.5

The notationsx- and x’ represent the lower and upper acceptable valupecteely for

the variables,. N and M represent the number of decision variables and eunolb

objective functions.
Pareto Dominance: Any solution vectorl={U, U,.....L, }' is said to dominate over

o VopeeeesVi }if @nd only if
f.(U)<f(v) OiD{12,...M}

f.(d)<f(v) 00{12,....M} 1.6
Those solutions which are not dominated by othdutiems for a given set are
considered as non-dominated solutions.

Pareto-optimal front (POF): The front obtained by mapping these non-dominated

solutions is called Pareto-optimal front (POF).

POF = f(X) :{( £(R), F,(R), e £ qz)j KO p} L7

where P is the set of non-dominated solutions.

The generalized concept of Pareto front was inttediby Pareto in 1986 [1.23].

8
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Pareto Optimality: A point X' 0Q is Pareto optimal if for everyx(JQ and

I = {123,.....k} either 0O, (fi(X) = f (X*)) or, there is at least onEl such
thatf (X) > f,(X') . The symbolsf andQ represent the objective function and the feasible

region(Q O S) of the whole search spaSerespectively. In other words" is Pareto optimal

if there exists no feasible vectorwhich would decrease some criteria without causing

simultaneous increase in at least one other aiteri
Pareto optimal set: For a given MOF (x),the Pareto optimal setp’is defined

as,

p ={x0Q| ~x 0Q f(x) < f(x)} (1.8)

The solution of a MOP is a set of vectors which ao¢ dominated by any other
vector, and which are Pareto-equivalent to eaclerothhis set is known as the Pareto-

optimal set.
1.4 Portfolio optimization problem
Two main objective of portfolio optimization is tiheaximization of return and

minimization of risk. In Markowitz model [2] for ptiolio selection, variance is used as a

measure of risk which is mathematically expressed a

N N
a; :ZZWi T 9

i=1 j=1

where, g, is the covariance between assetnd j, o7 is the variance of portfolio
andN denotes the number of assets availabjeand w, (weighting of asset) is the

proportion of the portfolio held in assefind j respectively.

The portfolio return is represented as
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N
rp = Z Wi I (110
i=1

wherer, is the expected return of the asseindr , is the expected return of the portfolio.

In addition, constraints like budget, cardinalitgiling and may be considered for

effective PO. Hence, with the presence of two dbjes as shown in (1.9) and (1.10), the

problem of portfolio optimization is transformedrtaltiobjective optimization problem.

1.5 Motivation behind the resear ch work

A lot of research ideas have gone into the dgretmt of heuristic algorithms based

on a range of swarm intelligence techniques overpist few decades to analyze various

problems in portfolio optimization. There are somignificant issues in the portfolio

optimization problem which needs to be addressedesolved.

The Portfolio optimization problem satisfyingsat of constraints such as budget,
floor, ceiling and cardinality is a challenging pfem. These constraints have been
handled by the conventional statistical and heaartsthniques using both single and
multiobjective optimization. However, these tecluas fail to get efficient solutions
when the number of constraint increases. Hences itequired to use suitable
multiobjective swarm intelligence algorithms to \solthe portfolio optimization
problem with more number of constraints.

Since the introduction of the mean-variance fpbot optimization model by Harry
Markowitz, considerable research attention has Ine@tle on model simplifications
and the development of different risk measuresthfdse techniques use the mean of
the past return as expected return. Hence thexeeéed to develop efficient ways of

approach which would directly predict the futuréura and would be considered as

10
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expected return.

 There is a need to develop robust portfolio optation techniques which can
efficiently handle the outliers present in the finml data.

* In many situations it is required to invest thedun future where the future data are
not available and the present data are uncertantauhe presence of outliers. In
such scenario future stock has to be predictedtlem@xpected return and variance
are to be estimated. Such complex problem need=snalt solution by devising
robust prediction method followed by efficient opization.

Based on the aforementioned motivations, the cdrafejhe research work of this thesis

was born. These above cited problems have beeressdt in the thesis and some

satisfactory solutions to each of them have beewiged using multiobjective evolutionary

computational techniques.

1.6 Objective of thethesis

The objective of the present research work ipriipose few MOEAs for solving
Portfolio optimization problem. In essence the oties of the research work carried in the
present thesis are:

» To formulate the portfolio optimization problera a multiobjective optimization
problem and to successfully apply the multiobjeetRSO and bacteria foraging
optimization (BFO) algorithms to solve the investiportfolio problem.

« To employ multiobjective swarm intelligence édsstrategies for portfolio
optimization when practical constraints are present

» To develop a methodology for future portfoliamagement, by generating future

stock data, through prediction using artificial redunetwork.

11
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* To develop multiobjective swarm intelligence é@dsobust portfolio management
technique to handle the outliers present the sfatk.
* To develop improved and robust swarm intellgeriechniques for portfolio

management for future investment when outlierpaesent in input data.

1.7 Structure and Chapter Wise Contribution of the Thes's
Chapter 1: Introduction

This chapter contains an introduction to the pddf@ptimization problem, its
importance, the motivation behind the proposedamesework and a condensed version of
chapter wise contribution made in the thesis. Bmalhe overall conclusion of the

investigation and scope for further research wankehalso been outlined.

Chapter 2: Multiobjective Evolutionary Algorithms and Performance
Metricsfor Portfolio Optimization

The classical statistical and heuristic optimizati@chniques are ineffective for
solving constrained portfolio optimization probleifhis shortcoming has motivated the
researchers to develop multiobjective evolutionaeghniques to solve the problem
effectively. Some well known MOEAs which have beeported in the literature are Pareto
envelope based selection algorithm (PESA), Panmetohnsed evolution strategy (PAES),
PESA-II, strength Pareto evolutionary algorithm E3), SPEA2, Micro Genetic Algorithm
(Micro-GA). This chapter also outlines adaptive d®ararchived evolution strategy
(APAES) and nondominated sorting genetic algorithiiNSGA-II) . Two novel MOEAs,
based on non-dominated sorting such as nondominsdetihg multiobjective particle

swarm optimization (NS-MOPSO) algorithm and muljesbive bacteria foraging

12
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optimization (MOBFO) have been proposed in theighis portfolio optimization purpose.
Two algorithms based on decomposition such as degsition based particle swarm
multiobjective evolutionary algorithm (P-MOEA/D) éndecomposition based bacteria
foraging multiobjective evolutionary algorithm (B@EA/D) have been proposed and

suitably used for effectively solving constrainemttfolio optimization problem.

Chapter 3. Constrained Portfolio Optimization using Multiobjective
Evolutionary Algorithm

This chapter addresses a realistic portfolio oation problem with budget, floor,
ceiling and cardinality constraints by formulatirigas a multiobjective multiconstrained
optimization problem. This problem has been solbgdusing proposed NS-MOPSO,
MOBFO, P-MOEA/D and B-MOEA/D algorithms. Other MOEAuch as PESA-II, SPEA-
[I, Micro-GA, APAES, NSGA-Il and 2LB-MOPSO have aldeen applied to the same
problem for comparison purpose. The performandbese MOEAs has been evaluated and
has been compared with that obtained by the silgjlective genetic algorithm (GA), Tabu
search (TS), Simulated annealing (SA) and pargalarm optimization (PSO). The mean
Euclidean distance, variance of return error andmreturn error are used as performance
measure. The performance of the MOEAs is also at@dlusing six statistical metrics such
as generation distance, inverted generation digtasigacing, diversity and convergence
metrics and error ratio. The comparison is alsoenasing Pareto front and computational
time. Nonparametric statistical analysis using 8ign test and Wilcoxon signed rank test
are also performed to demonstrate the pairwise aosgn of MOEAs. The simulation
studies are carried out for four different constegi conditions. From the simulation results

it is clear that the investor does not have to shwaoney on all available assets rather to

13
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invest in fewer assets (around 10 percent) to e@plade risk- return areas. The portfolio
manager has the option to make a tradeoff betwisks, return and number assets to decide

the portfolio according to the requirement.

Chapter 4. Prediction based mean-variance Mode for Multiobjective
Portfolio Optimization

This chapter consists of two parts. The first pials with a novel prediction based
portfolio optimization model. In the second pahe tperformance of proposed prediction
based portfolio optimization model is evaluated ammpared with the mean-variance
model.

The novel prediction based portfolio optimizatiolmdel has been proposed in this
chapter which differs from the mean-variance moigln prediction based mean variance
(PBMV) model, the expected return of each stodksipredicted return unlike that in mean-
variance model, where the expected return is thannod past returns. (ii) The individual
risk of each stock and the risk between each dastarks are obtained from the variance
and covariance of the time series of the erroggediction, instead of from the variance and
covariance of the time series of return. (iii) BNV model the normal variable of interest
is the error of prediction of the return of stockg#jile in the mean-variance model the
normal variable of interest is the return of thecks.

An efficient single layer neural network called fasictional link artificial neural
network (FLANN) is used for prediction which isitrad with evolutionary computing. The
inputs to the network are some financial and ecooorariables which are judiciously
selected by using evolutionary algorithms. The FID\Btructure is used for predicting the

expected return and corresponding risk using tbpgsed model.

14
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The new risk and return is calculated for eaclthef stock present in the market
which is the predicted output of the FLANN. Thegse #&aken as two objectives to be
optimized using efficient MOEAs. The results ardaiired with real life data from the
Hang-Seng, DAX 100, FTSE 100, S&P 100 and Nikkéeb 8fock indices. Experimental
results show that the prediction based portfolidingigation model outperforms the

conventional Markowitz model.
Chapter 5: Novel Robust Multiobjective Portfolio Optimization Schemes

In this chapter, the minimum volume ellipsoid (MVE)ethodology is adapted to
handle uncertainty of the stock market data. Thecof uncertainty is the outliepsesent
in the stock data which occurs due to unexpecte@tgns. We can easily differentiate the
data without outliers from unexpected data by elusg the good data using MVE method.
The MVE is formed covering approximately 90 percehthe data (assuming 10 percent of
the data are corrupted by outliers). In order tdkenthe method computationally efficient,
the MVE is formed by using core set and Lagrangéiphiers. Thereafter, the weight factor
is calculated by taking the parameters associatiéla thve ellipsoid. Then the data are
modified by multiplying with the weight factor. Theeight factor is designed in such a way
that it does not change the data those are pressde the ellipsoid, but those are present
outside are diminished according to the weightdiectThen the desired parameters such as
risk and return are calculated from the weighteth.d@he performance is obtained using
real life data from the Hang Seng, DAX 100, FTSB,18&P 100, Nikkei 225 and BSE
stock indices. Simulation results reveal that theppsed method exhibits good portfolio

strategy in the presence of market uncertainties.
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Chapter 6: Prediction Based Robust mean-variance Model for Constraint
Portfolio Optimization

This chapter deals with future investment of thedfuwwhere the future data are not
available and the present data are uncertain dubetqresence of outliers. In order to
predict the future data, the FLANN is used as mtemh model. The inputs to the FLANN
are technical indicators which are judiciously stdd after modifying the real data by
multiplying with suitable weighted factors. This ANN structure is used for prediction of
future data, which is further used for portfolidestion using the Markowitz model. The
same model is again used for prediction of futwtein, which is subsequently used for
portfolio selection using the proposed PBMV moddlis approach helps in mitigating the
effect of outliers in the stock data as well asviates very good portfolio strategy for future
investment. A subset of 20 stocks from Hang-Semg< 00, FTSE 100, S&P 100, Nikkei
225 and BSE-500 index between December 2008 taadp2012 have been selected for the

present study.
Chapter 7: Conclusion and Future Work

In this chapter the overall contribution of the diseis reported. Two novel
multiobjective optimization algorithms approach dé@n bacteria foraging optimization
and particle swarm optimization have been propcmed applied to the portfolio asset
selection problem by formulating it as a multioltige problem with many practical
constraints. From the simulation results it is fodhat the portfolio manager has the option
to make a trade-off between risk, return and nunaeets, to decide the portfolio according

to the requirement. A new methodology is introdut@dimproved portfolio optimization
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using predicted values obtained by artificial néunr@work. Improved and robust swarm
intelligence techniques for portfolio managementehlaeen introduced.

The future research problems are outlined in thagpter for further investigation on
the same/related topics. Incorporation of advarioedl search operators into the proposed
algorithm can been done which is expected to abetter exploration and exploitation of
the search space. The proposed algorithm can astested using other real world
constraints like round-lot, turnover and tradindpeTproposed multiobjective optimization
algorithm may be applied in many other financigblagations such as asset allocation, risk

management and option pricing.
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Chapter

A multiobjective optimization problem involves seakconflicting objectives and
has a set of Pareto optimal solutions. By initializa population of solutions, multiobjective
evolutionary algorithms (MOEAS) are able to appnoaie the Pareto optimal set in a single
run. The MOEAs have attracted a lot of researcbreif last few decades and are still one
of the hottest research areas in the field of diadary computing. In this chapter, a brief
and update overview of several MOEAs have beenepted. Few application areas of
MOEAs have also been dealt. Four novel MOEAs haenltproposed and suitably oriented

for solving portfolio optimization problem.
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2.1 Introduction

Many real world optimization problems involve mplg objectives. Evolutionary
algorithms (EAs) are able to approximate the whedeeto front (PF) of a multiobjective
optimization problem (MOP) in a single run dueheit population based nature.

Schaffer [2.1] in 1985 introduced a multiobjectieolutionary algorithm called as
vector evaluated genetic algorithms (VEGA). Aftes Work, a lot of research effort has been
made to apply EAs for solving multiobjective optaaiion problem. The research work on
MOEAs in different aspect has been surveyed by nrasgarchers. The survey based on
generic methodologies are discussed in [2.2]-[23inilarly, some survey is based on
different fields of application of MOEAs, such asigeéeering problems [2.6],[2.7],
scheduling problems [2.8], economic and financrabfems [2.9], automatic cell planning
problems [210] and traveling salesman problems [2.11] etc. Cohgmsive survey has
been done by Aimin Zhosdt al. on the development of MOEAs in 2011 [2.12]. Acdogd
to algorithmic frameworks the MOEAs may be categedli as MOEAs based on non-
dominated sorting, decomposition-based, memetie ypd indicator based MOEAs etc.
[2.12].

Different non-dominated sorting based approachuges nondominated sorting
genetic algorithm (NSGA) [2.13], strength Paretmlationary algorithm (SPEA) [2.14],
Pareto-archived evolution strategy (PAES) [2.1%)ef0 envelope based selection algorithm
(PESA) [2.16] etc. In this approach, the reproducind selection operators of the MOEA
guide the population iteratively towards non-dortedaregions by preserving the diversity

to get the Pareto optimal set. Decomposition baselfiobjective evolutionary algorithm
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(MOEA/D) [2.17] is based on conventional aggregatichere an MOP is decomposed into
a number of scalar objective optimization probl¢®OPs).

The MOEAs based on the decision mgké’s) preference was introduced by
Fonseca and Fleming [2.18] in 1993. Due to the laiafof the objectives in MOPs, the
total number of Pareto optimal solutions might beyMarge. However, the investor may be
interested in some of the preferred solutions adsiaf all the Pareto optimal solutions. DM
provides the preference information in order todguthe search towards the preferred
solution in the Pareto front (PF). Based on the i the DM in the solution process,
multiobjective optimization can be classified indopriori, a posteriori and interactive
methods [2.19]. If the preference information igegi before the search process, it is called
asa priori method. Similarlya posteriori method uses the preference information of DM
after the search process. In an interactive metlioel, intermediate search results are
presented to the DM so that one can provide théeece information for guiding the
search process. Greenwoedal. have combined preference information in the sutviva
criteria with Pareto ranking to solve MOPs [2.2Btanke and Deb have incorporated the
preference information into NSGA-II by modifyingetldefinition of dominance and using a
biased crowding distance based on weights [2.2éhdDal. have proposed a progressively
interactive MOEA where an approximate value functie progressively generated after
every generation [2.22]. Thielet al. have used the DM’s preferences expressed
interactively in the form of reference points [2.23

Zitzler and Kinzli have suggested a general indichased evolutionary algorithm
(IBEA) to solve MOPs [2.24, 2.25]. Such MOEAs uswlicators such as generational
distance and hypervolume to guide the search fttiingePareto solution. The quality of an
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approximated Pareto front could be measured betbeslar indicators. Basseur and Zitzler
proposed an indicator-based model for handling iaicey, in which each solution is
assigned a probability in the objective space [R.25

The MOEAs can also be categorized as memetic MOERare hybridization of
global search and local search occur. Ishibuchi Mndata have proposed one of the first
memetic MOEAs [2.26] in 1998 where the algorithmesisa local search method after
applying the classical variation operators. In T2.Znowles and Corne have proposed a
memetic Pareto archived evolution strategy to s®l@Ps. The algorithm introduces a
Pareto ranking based selection method and coupleghi a partition scheme in objective
space. Jaszkiewicz [2.28] has suggested a multitibge genetic local search (MOGLS)
algorithm for the multiobjective 0/1 knapsack pehl

The MOEAs can also be categorized in terms of geneethodologies such as
genetic algorithm, particle swarm optimization, teai@ foraging optimization etc. The
pioneering work in the practical application of gea algorithm to MOP is the vector
evaluated genetic algorithm (VEGA) [2.1]. For sianigpplications, a number of algorithms
based on genetic algorithm such as non-dominatgthggenetic algorithm (NSGA) [2.13],
niched Pareto genetic algorithm (NPGA) [2.29], denelgorithms for multiobjetive
optimization (MOGA) [2.18], SPEA [2.14], SPEA2 [BP]3 PAES [2.15], PESA [2.16],
PESA-II [2.31], NSGA-II [2.32], DMOEA [2.33], PAE®.15], APAES [2.34] and Micro-
GA [2.35] have been proposed in the literaturethia recent past, multiobjective bacteria
foraging technique have been reported in [2.3&@9Pwith different variations. Another bio-
inspired technique based on particle swarm optitozato solve multiobjctive problem
(MOP) known as muliobjective particle swarm optiatian (MOPSQO) has been proposed by
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Coello et al. [2.40]-[2.41]. Non-dominated sorting particle swaoptimization (NSPSO) is
reported in [2.42]. Some other variants of multedbive particle swarm optimization
techniques such as TV-MOPSO [2.43], FMOPSO [2.BQPSO [2.45], MOCPSO [2.46]
and QPSO [2.47] have been proposed to solve the .M@HA2.48], a multiobjective
comprehensive learning particle swarm optimizer GA®SO) has been presented. In
[2.49], a twotbests based multiobjective particle swarm optimizer (2MB®PSO) technique
has been reported. A Pareto-frontier differentialetion (PDE) algorithm is dealt in [2.50].
A multiobjective differential evolution algorithmitla diversity enhancement strategies is
available in [2.51]. In [2.52], [2.53], a multiolgjve immune system has been employed to
deal with dynamic multiobjective problems with ctagits. In [2.8], a multiobjective
immune system has been proposed to find Paretmaptobust solutions for bi-objective
scheduling problems.

In the present study, the main objective is to salifferent challenges of portfolio
optimization problem which are inherently a muljetiive in nature. In this chapter two
non-dominated sorting based MOEAs such as non-dasdrsorting multiobjective particle
swarm optimization (NS-MOPSO) and multiobjectivecteaia foraging optimization has
been proposed and suitably oriented for solvingtfplos optimization problem. Two
MOEAs algorithm based on decomposition such as rdposition based particle swarm
multiobjective  evolutionary algorithm (P-MOEA/D) @n decomposition based
multiobjective bacteria foraging optimization (B-NEB/D) have also been proposed to
solve the same problem. In this chapter, these &gorithms have been explained in
details. Six other peer non-dominated sorting badgdrithms such as PESA-II, SPEA-II,
Micro-GA, APAES, NSGA-II and 2LB-MOPSO have alscebeapplied to same problems,
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are dealt in brief. Different performance metricsls as generation distar(@D), inverted

generation distan((eGD), spacing §), diversity metric {A), convergence metricQ) and

error ratio ER), which have been used to compare the performahdéferent algorithms

are discussed in the chapter.
2.2 Overview of existing MOEAS

A majority of MOEAs in both the research and thelaation areas are Pareto-
dominance based which are mostly the same framewask that of NSGA-II [2.32].
However, decomposition based multiobjective evohary algorithm (MOEA/D) is a
recent multiobjective evolutionary algorithmic framork which is successfully applied to
different fields [2.17]. Some of the peer MOEAshufth of these categories, which have
been successfully applied to other fields and blytauned to suit for portfolio optimization

problem are briefly explained in this section.
2.2.1 Non-dominated sorting based MOEAs

The non-dominated sorting based MOEAs involve pepulations of individuals.
The first population, or archive/external populatiosed to retain the “best” solutions are
found during the search. The second populatiorhésrtormal population of individuals,
sometimes used to store the offspring populatiahiarsome other times it takes part in the
reproduction process. The archive is updated bylbst” individuals based on information
from both the population and hence elitism is eedur

In these algorithms, a selection operator basedPareto domination and a
reproduction operator are used. The operator oMO&ASs guides the population iteratively

towards non-dominated regions by preserving therdity to get the Pareto optimal set. The
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evaluation operator leads to population convergemsards the efficient frontier and helps
to preserve the diversity of solutions along thicieint frontier. However, the method by
which they achieve these two fundamental goalseidiff Both goals are achieved by
assigning a rank and a density value to everyisoluThe MOEAs provide first priority to
non-dominance and second priority to diversity. firen difference between the algorithms
lies in their fitness assignment techniques. Thpufar fithess assignment strategies are
alternating objectives-based fitness assignmerh siscthe VEGA [2.1] and domination-
based fithess assignment such as SPEA 2 [2.30],ANS(2.32] etc. The MOEAS which
are based on nondominated sorting such as PESREA 2, Micro-GA, APAES, NSGA I

and 2LB-MOPSO have been explained in brief.
(a) The PESA-II Algorithm

Corne et al. have proposed [2.16] Pareto envelope-based swleatgorithm for
solving multiobjective optimization problem. In shialgorithm, the newly generated

solutions B, are incorporated into the archive one by one. Addate child from newly
generated solutions enters the archive when itois-dominated withif8,, or it is not

dominated by any current member of the archivehédf addition of a solution renders the
archive over-full, then a mating selection is aariout by employing crowding measure.
The crowding distance measurement is done ovearitfdve members. Each individual in

the archive is associated with a particular hypet-lit has a squeeze factor which is equal
to the number of other individuals from the archwikich present in the same hyper box.

The environmental selection criteria is based as ¢howding measure and used for each
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individual from the archive. The PESA-II algorithproposed in [2.31] by incorporating
region based selection and shows improved perforenaner PESA.
(b) The SPEA 2 Algorithm

In SPEA 2 mating selection is used which is baseditoess measure and it uses binary
tournament operator [2.30]. #mphasizes non-dominated individuals by using aniece,
which combines the dominance count and dominano& maethod. Each individual is
assigned a raw fitness value that specifies thebeuraf individuals it dominates and also

the number of individuals by which it is dominatd&dhe density information is incorporated
to the raw fitness by adding a value which is eqoathe inverse of thek™ smallest

Euclidean distance to the" nearest neighbor plus two. The archive updatiqreiormed

according to the fitness values associated witlh @i¢he individuals in the archive. Then,
the updated operator returns all non-dominated/iddals from the combined set of archive
and the current pool. There are two possibilitiegshe archive size is less than the pre-
established size, the archive is completed withidatad individuals from the current pool
otherwise some individuals are removed from théiigec using the truncation operator.

This operator is based on the distance of an iddalito its nearest neighbor.
(c) The Micro-GA Algorithm

The micro-GA algorithm employs a small populatiordanvolves a reinitialization
process [2.35]. Initially the random populationgsnerated which is fed to the population
memory. It is divided in two parts, replaceable ammh replaceable portion. The non
replaceable portion of the population memory remainchanged during the entire run and

provides the required diversity. But the other jortundergoes changes after each cycle.
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The micro-GA uses three forms of elitism such agt(retains non-dominated solutions
found within the internal cycle (ii) it uses a repéable memory whose contents is partially
refreshed at certain intervals and (iii) it repktlee population by the best solutions found

after a full internal cycle of the micro-GA.
(d) The APAES Algorithm

Knowles and Corne [2.15] have suggested a simpbdutenary algorithm called
Pareto Archived Evolution Strategy (PAES). In thigorithm one parent generates one
offspring by mutation. The offspring is comparedhathe parent. If the offspring dominates
the parent, the offspring is accepted as the naserp and the iteration continues. If the
parent dominates the offspring, the offspring iscdrded and the new mutated solution is
generated which becomes the new offspring. If fifigang and the parent do not dominate
each other, a comparison set of previously non-dated individuals is used. For
maintaining population diversity along the Paretonf, an archive of non-dominated
solutions is considered. Newly generated offsprsngompared with the members of archive
to verify whether it dominates any of them. If brdinates, then the offspring enters the
archive and is accepted as a new parent. The dtedisalutions are eliminated from the
archive. If the offspring does not dominate any rnemof the archive, both parent and
offspring are checked for their nearness with tbleiteon of the archive. If the offspring
resides in the least crowded region in the paransgiEce among the members of the archive,
it is accepted as a parent and a copy is addduetarchive. The APAES proposed by M
Olteanet al. [2.34] can be considered as an adaptive repragentaf the standard PAES.
When the current solution dominates the mutategdtisol for a consecutive fixed number of

times, it indicates that the representation of enfrisolution has no potential for exploring
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the search space from the place where it belortgsrefore, the representation of the current
solution must be changed in order to ensure aretoration.
(e) NSGA-I1 algorithm

Dev and Pratab [2.32] have proposed NSGA-II forviegl MOPs. The NSGA-II
algorithm starts from a random population and z2é8i some operators for uniform covering
of Pareto set. The NSGA-II algorithm for multi-etita optimization contains three main
operators (i) a non-dominated sorting (ii) densyimation and (iii) a crowded comparison.
To guide the individuals towards the efficient frien, dominance depth method is adopted
by NSGA-II. It classifies the solutions in sevelayers, based on the position of fronts
containing the individuals. The crowding distancechmnism is employed to preserve the
diversity of solutions which calculates the voluofehe hyper-rectangle defined by the two
nearest neighbors. Based on these values, theeupgatator returns the best individuals
from the combination of archive and the populatibidividuals with the lower rank and
higher crowding distance would fill the archive.eTthree main characteristics of NSGA-II
are (i)Non-dominated sorting algorithm is having the lowemputational complexity than
that of its predecessor NSGA. The maximum numbercarhputational complexity of
NSGA-II algorithm isO(mN?), where N is the population size andh is the number of

objectives (i) Elitism is maintained and (iii) N&haring parameter needs to be chosen

because sharing is replaced by crowded-compartscedtice computations
(f) 2LB-MOPSO Algorithms

In the next chapter, we have employed another neasintly proposed evolutionary

MO algorithm called the Twébests based multi-objective particle swarm optimizer B2L
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MOPSO) [2.49] for solving portfolio optimization gslem. This algorithm uses two local
bests instead of one personal best and one glelsatdlead each particle. In order to select
the first Ibest for a particle, an objective issfirandomly selected followed by a random
selection of a bin of the chosen objective. Witthis bin, the archived member with the
lowest front number and among these with the higbesvding distance is selected as the
first Ibest. The secondbest is selected from a neighboring non empty bin wita lower
front number and the smallest Euclidean distant¢herparameter space to the first Ibest. As
each particle’s velocity is adjusted by the tivests from two neighboring bins, the flight of
each particle will be in the direction of the pasit of twolbests and orientated to improve
upon the current solutions. A pair tfests is assigned to a particle and the number of
iterations the particle fails to contribute a smntto the archive is counted. If the count
exceeds a predefined threshold, the particle sssggned to another pair lifest. The two
local bests are close to each other and help tarmehthe local search ability of the

algorithm.
2.2.2 The decomposition based MOEAs

The decomposition based multiobjective evolutioregorithm (MOEA/D) [2.17] is
another way of approach for solving the multiobjeetproblem which differs from non-
dominated sorting algorithm. In this approach thdtiobjective optimization problem is
decomposed into a number of scalar objective opéitian problems (SOPs). The objective

of each SOP, called subproblem, is a weighted gatjen of the individual objectives.
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2.2.3 The congraint handlingin MOEAs

Although MOEAs have more extensively been investidawithin the context of
unconstrained and bound constrained MOPSs, varieasrgl constraints are involved when
solving real-world problems. Typically, the seaspmaceQ of a constrained MOP can be

formulated as follows [2.12]

9,(¥)=9,0,%, X%X)<0 j=12..J
Q=<h.(X)=h (X,%,,...x,)=0 k=12..,K (21
X" <X <X i=12...,n

where g;(x) and h (x)are inequality and equality constraint functionespectively.

Generally, equality constraints are transformeda imequality forms, and then combined

with inequality constraints using

max{gj(x),o} j=12...,J
()= {max{ Ih,-, ()| -3,0} j=J+1J+2..,J+K (22)
where & is a tolerance parameter for the equality consisaiDue to the presence of
constraints, the search space is partitioned edsible and infeasible regions.

Coello [2.4)] classifies the constraints handling methods iinte categories: (1)
penalty functions (2) special representations goetaiors (3) repair algorithms (4) separate
objective and constraints (5) hybrid methods. Astined dominance concept has been
introduced by Delet al. [2.23] to handle constraints in multiobjective Iplems. A solution

x dominates a solutioty if (i) x is feasible, whiley is infeasible (ii) both are infeasible
and x has less constraint violation thanor (iii) both are feasible and dominates . The

solutions are ranked using the non-constrain-domthanethod while the superiors are
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selected to evolve. The handling of different padtconstraints in portfolio optimization
problem is explained in the next chapter. In theusation the inequality constraint is
considered as a soft constraint and repair operatmsed to adjust the weight so as to meet

it instead of transforming it in to inequality form
2.3 The particle swarm optimization for the design of MOEASs

Kennedy and Eberhart [2.58] realized that an op@tmn problem can be
formulated by mimicking the social behavior of ack of birds flying across an area
looking for food. This observation and inspiratimnthe social behavior exhibited by flocks
of birds and schools of fish resulted the inventidra novel optimization technique called
particle swarm optimization (PSO). Particle swarptimization algorithms optimize an
objective function by conducting a population bastdchastic search. The population
comprises potential solutions, called particleseSghpatrticles are randomly initialized and
freely fly across the multi-dimensional search gpdauring flight, each particle updates its
velocity and position based on the best experiefds own and the best experience of the
entire population. The updating rule enables pagito move toward the desired region

with a higher objective value.
In PSO [2.58] each solution is represented by &igbarand thei™ particle is given

by X, = (X, %,,Xs,... X4 ) Whered is the dimension of the search space. Theparticle
of the swarm population has its best positiar= (p,,, p.,.....py ), that yields the highest

fitness value. The global best positid¥) = (p,,, Py;.-- Py ) iS the position of the best

particle that gives the best fitness value in there population.V, =(vil,viz,...,vid) be the
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current velocity ofi™ the particle.Particles communicate with each other and for & ful
connected topology the position and velocity of hegmarticle in next iteration are

mathematically expressed as:
Via (0 =Wy (t =1+ Cry (g =% )t 1)+ Cra(Pgy =% )E 1) (2.3)
%q (1) =% (E =1+ xvig (t) (2.4)
where d =12,...,.D and i=12,...,N. The size of swarm population i&N. y is a
constriction factor which controls and constridie tmagnitude of velocitywis the inertia

weight parameter to control exploration or explbita in the search space. It can be a linear

or nonlinear function of time or a positive cons$tgh58]. r, and r, are two random values
called as acceleration constants within range][o, 1
2.3.1 Decomposition based particle swvarm MOEAs

The MOEA/D decomposes the multiobjective optimizatproblem intoN scalar
optimization subproblems. It solves these subproblesimultaneously by evolving a
population of solutions. At each generation, thpylation is composed of the best solution
found so far for each subproblem. The neighborhetations among these subproblems are
defined basin®n the distances between their aggregation werggttors. A subproblem is a
neighbor of another subproblem if its weight fallose to that of the other. Each
subproblem is optimized in the MOEA/D by using imf@tion mainly from its neighboring
subproblems. In this case each individual subprobkeeps one solution in its memory,
which could be the best solution found so far far subproblem.

The MOEA/D optimizesN scalar optimization problems rather than directilvisig

MOP as a whole. Therefore, it employs scalar ogttion methods as each solution is
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associated with a scalar optimization problem. iEgaes of fitness assignment and diversity
maintenance are easier to handle in the framewbMQ@EA/D. Several improvements on
MOEA/D have been reported in [2.55] and has beqsliep to a number of application
areas [2.56, 1.57].

The MOEA/D provides flexibility of using any decowgtion approach, into its
framework for solving the MOPs. These approachetide the weighted sum approach,
Tchebycheff approach and the Boundary intersecéipproach [2.17]. If weighted sum
approach is applied to MOEA/D algorithm, it cons&a convex combination of different

objectives. Mathematically it is expressed as
Maximizeg"® =>» Af(X) (2.5)
(5)=3:

subjected to x[1Q

whereA :(Al,...,)\m)T be the weight vector i.&8, 2 forall i =1,...,m and

Z/\i =1 (2.6).

A is a coefficient vector in the objective functiand x is the variable to be optimized.
Different weight vectors\ is used in the above scalar optimization problemenerate a set
of different Pareto optimal vectors.

Hence, the multiobjective optimization problem iscdmposed into a number of
scalar objective optimization problems, called sobfem, is a weighted aggregation of the
individual objectives. In the proposed method theéividual objective is optimized using
particle swarm optimization for designing decomposi based particle swarm

multiobjective evolutionary algorithm (P-MOEA/D).
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2.3.2 Non-dominated sorting multiobjective particle swarm (NS-M OPSO)

In classical PSO, each particle tries to maximizefood substance obtained by
moving across the multi-dimensional search spaagpolating its velocity and position. It is
the only objective that governs the search prod&ssin the course of moving, it may face
constraint like favorable temperature condition @ing expected that swarm should not
move to a region of unfavorable temperature. If tdraperature constraint is incorporated
by adding a penalty function to the actual nutriesnicentration then the approach leads to
single objective constraint optimization. The foozhcentration and favorable temperature
can also be considered as two separate objectidisidual particle tries to optimize these
two objectives simultaneously and can be appliadutiiobjective optimization problem.
PSO is extended to MOPSO in order to deal withntiudtiobjective problem in [2.40]. In
our proposed NS-MOPSO the concept of non-dominsteting is incorporated in MOPSO
satisfying both the objectives and constraints.sEh@wvarms whose locations represent non-
dominated solutions are classified as the optinaaét® front 1 (OPF1) and the remaining
swarms are classified into higher OPFs. In this tis®ycomplete population is ranked based
on Pareto dominance criteria. The locations in lIo@BF1 are rich in food and the locations
of higher OPFs are poor in food content. Each @artipdates its velocity and position
based on the best experience of its own and theelperience of the particles with lower
OPF. The updating rule enables particles to mowao the lower optimal Pareto front.

The constraint handling is carried out based onajygroach given by De#&t al.
[2.32]. In this approach the normalized sum of ¢@mst violations for all individuals are
calculated. Then the individuals are classifiedoatding to the overall constraint violation.

In between any two individuals if the overall vitten of both of them is zero then the
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ordinary ranking assignment is applied. Otherwise individual with the lowest (or null)
overall violation dominates the other one. In tpr®posed study of NS-MOPSO based
portfolio optimization, the position of each paiaepresents a weight vector associated
with different assets. The two fitness functionsik(and return) evaluate the fitness value for
each patrticle.

Pseudo-code of NS-M OPSO algorithm

Step 1: Initialization of parameters

N : Population size and store the population inteP8OList:

X, : The current position of the" particle within specified variable range

V, : The current velocity of thé" particle within specified variable range and i ha

probability of 0.5 being specified in a differentesttion.

The personal best positiéhis set taX.
Ve andV, ,,, : Upper and lower bounds of the decision variaatege.

Maxlterations: Maximum number of iterations.

Step 2: Evaluate each particle in the population.

Step 3: Iteration count loopt =t +1

Step 4. Identify particles that give non-dominated solusion the population and store them
in a listNonDomP3OList.

Step5: Calculate crowding distance value for each paticl

Step6: Resort theNonDomPSOL.ist according to crowding distance values.

Step7: Number of particlest =i +1(step throughPSOL.ist).
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Select randomly a global beB} for the i™ particle from a specified top part (e.g.

top 5 %) of the sortedNonDomPSOL.ist.

Calculate the new velocity, and the newX; based on (7) an@) respectively

Add thei™ particlesP and the newX; to a temporary population, stored in

NextPopList.

At this stage the® and X, coexist and the size diextPopList is2N .

Step 8: If i <N, go to the next particlé +1) (step 7).

Step 9: Identify particles that give non-dominated solosdromNextPopList and store

them inNonDomPSOList. Particles other than non-dominated ones fiaxtPopList are

stored in a lisNextPopListRest.

Stepl10: EmptyPSOList for next iteration step.

Stepll: Select random membersbéNDomMP3OLIist and add them tBOList (not to

exceed the number of particle §. Assign rest oNonDomPSOList as

NonDomPSOListRest.

Step 12: If PSOList size < Number of particles\)

Identify non-dominated particles frolonDomPSOL.istRest and store them in
NextNonDomList.
Add member ofNextNonDomList to PSOList.

If still the PSOList size <N, copyNextPopListRest to NextPopListRestCopy, then
vacantNextPopListRest.
Assign the vacalextPOPListRest with the remaining particles other than non-

dominated ones froNextPopListRestCopy.
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Step 13: If PSOlist size < Number of particled\), go to (step 12).

Step 14: If t < MaxlIterations, go to the next iteration (step 3)

2.4 Bacteria foraging optimization algorithm for the design of

multiobj ective evolutionary algorithms

The evolutionary algorithms rely on tleoperative behavior of insects, birds etc. It
is a fact that animals with poor foraging stratsgéee extinguished and those who have
successfully foraging strategies survive from gatien to generation and are reshaped into
good ones. This idea was used by Bremermann [2ri®Fsubsequently by Passion [2.36] to
develop bacteria foraging optimization algorithnheTway bacteria search for high gradient
nutrient regions may be viewed as an optimizatisoc@ss. Each bacterium tries to
maximize its obtained energy per each unit of tioiethe foraging process and avoid
noxious substances. In addition the swarms comrmateiamong individuals. The swarm
behavior dealt in [2.36] is summarized as:

1. At first the bacteria are randomly placed in thgion of nutrients. Subsequently they
move towards high nutrient regions.

2 Those bacteria that are located in the regioh maixious substances die and those at low-
nutrient region disperse.

3. Bacteria with convenient region split and repme and tend to move towards high
nutrient region.

4. The bacteria disperse to look for new nutriegion.

The E-coli bacteria of our intestine have a forggstrategy with four processes such
as chemotaxis, swarming, reproduction, and elironand dispersal. The detailed analysis
of this concept is presented in [2.36],[2.37].
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Let the parameters used are:

N : Number of bacteria used in the search space.

p : Dimension of the search space.

N, : Swimming length.

N.: Number of iterations in a chemotactic loopl{ > N,)
N,.: Number of reproduction.

N, : Number of elimination and dispersal events.

P - The probability of elimination and dispersal.

1. Chemotaxis: This process comprises of swimming ®mbling. Depending upon the
rotation of flagella it decides whether to moveaipredefined direction called swimming or
in a different direction called tumbling. The ditiea of movement after a tumble can be

expressed as
60, j+1.k,1)=6(, j.k,1) +c(i).e(]) 2.7)
Whered(i, j,k,|) represents the position of bacterium atj™ chemotactick™ reproduction

and I elimination and dispersal stegi)and ¢(j) denote the step size taken in random

direction specified by the tumble and an unit léngtrandom direction.

2. Swarming: The bacterium that has discoveredotftenum path for the food tries to
attract other bacteria. This process makes theebadiundle into groups and hence move as
concentric patterns of groups with high bactereisity.

3. Reproduction: Half of the least healthy bacteli@ and each of the healthy ones splits

into two bacteria and are placed in the same locaifihis process makes the population of
bacteria constant.

4. Elimination and dispersal: The life of populatioof bacteria changes either by

consumption of nutrients or due to other environtaleinfluence. This in turn destroys the

chemotactic progress and at time it helps to plaaeteria near good food source. This

process facilitates in reducing the behavior ofjisédion.
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Flowchart of the BFO

Initialization of variable
R Fitnessf (i, j) evaluation

>

Counter for eliminate and l
dispersal loop,
I =1+1

Is
fa,)<f@, -1
i=i+1

Y

N

Counter for
reproduction loop <«

k=k+1

Swim, w=w+1

swim() = w

o E@
Y
(0

Counter for chemotactiq
—» loop
j=j+1

v

Flow graph for bacteria fgireg algorithm

42



Multiobjective Evolutionary Algorithms and Performance
Chapter:2 Metrics for Portfolio Optimization

2.4.1 Decomposition based bacteria foraging M OEA

The multiobjective optimization problem is decompdsinto a number of
subproblem which is a weighted aggregation of tidividual objectives. The individual
objective can be optimized using bacteria foragingtimization. The proposed
multiobjective optimization algorithm is named ascdmposition based bacteria foraging

multiobjective evolutionary algorithm (B-MOEA/D).
2.4.2 Multiobjective bacteria foraging optimization (M OBFQO) algorithm

In BFO, each bacterium tries to maximize its nutrisubstance obtained and
attempts to avoid noxious substances. In additiothis objective if it faces constraint like
favorable temperature condition, then it is expedteat bacterium should not move to a
region of unfavorable temperature. The nutrientceottration and favorable temperature can
be considered as two separate objectives. Individaeterium tries to optimize these two
objectives simultaneously and can be applied tdiahjéctive problem.

The BFO is extended to MOBFO in order to deal with multiobjective problem
[2.39]. In the proposed (MOBFO) the bacterial lamatrepresents the value of decision
variables within the range of search space. Theedi values of all the variables which
represent the amount of nutrients present in theramment are computed. All bacteria
form a colony and are located at random positidqpglying a fast non-dominated sorting
procedure [2.32] the current positions are groupedifferent Pareto fronts. Those bacteria
whose locations represent non-dominated solutians,classified within the first set of
optimal Pareto front 1 (OPF1) and the remainingdyée are classified into higher OPFs. In

this way the whole of the population is ranked adtwm to Pareto dominance criteria. The
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locations in OPF1 are rich in nutrients and thexretbe bacteria present there have enough
nutrients to eat. The locations of higher OPFspa in nutrient content.

During chemotaxis the bacteria in OPF1 compghe non-dominated classification
of their current location with the previous onegnide these bacteria reach with any of the
two possible movements. If both the previous andecu locations are rich in nutrients
(OPF1), the bacteria take a very small step inndomn direction (tumble). However if the
present location is rich in nutrient the bacteaketa swim. The bacteria present at higher
OPF get a signal from bacteria present at OPFlah#teir location the nutrient is high.
Each bacterium present at higher OPF selects rdgdostirong bacterium from lower rank
and moves towards its rich location, by taking answing step. The reproduction step
consists of sorting bacteria based on their fitfiesstion values and discarding half of them
with the worst values with a higher front and loveeowding distance and duplicating the
other half. Elimination and dispersal operations earried out on bacterium with some
probability and disperse it to a random locatioafiag the swarm size constant.

In MOBFO based portfolio optimization, the positioheach bacterium represents a
weight vector associated with different assets. flleefitness functions (risk and return) are
evaluated for each bacterium. The constraint hagds based on the approach given by
Debet al. [2.32].

Pseudo-code of MOBFO algorithm

Step 1: initialization of parameters
N : Population size.

p : Dimension of the search space.
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N. : Number of chemotactic loopN, > N,).

N, : Number of swimming loops.

The chemotaxis loop consists of swimming and turfdievhich (N, > N,).

The number of swimming loop depends on the sitnatthich a bacterium faces at the time
of chemotaxis.

N,.: Number of reproductions.

N, : Number of elimination and dispersal events.

P : Probability of elimination and dispersal.
C(i): Size of the step taken in the random directiorcifipe by the tumble.

M :Number of objective functions.

Initialize the parameters: Ranks of all the baatario 1m=1, j=k=1=0
Step 2: Elimination and dispersal loop=1 +1

Step 3: Reproduction loopk =k +1

Step 4: Chemotactic loop;j = j +1

Step 5: Objective functionsm=m+1

Step 6: Number of bacteria=i+1

Compute the fitness functidi"(6(, j,k,1)).

Tumbling /swimming decision:

* Tumble: Generaté\(i) which is an unit vector towards another bacterium

belonging to a front whose rank is lower. The indéxhe new bacterium is
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chosen at random. Suppos® bacterium is chosen at random and it belongs

to a lower rank front compared t8 bacterium.

Then,
A(i):ﬁ(n,j,k,l)—ﬁa,j,k,I) (2.8)

Else,

Generate a random vecta(i) with each elemend, (i) wherer =12,.....,p, a random
number of0]1] .
Ai)

)7
JAT().AG)

. Move: letd(i, j +1,k,1)=8(,j k] )}*+C (2.9

Compute” (i, j +1,k,1)

fraw( T LK) =150 G+ 1) FAFT @ (j+ k)P (+ K, ) (2.1C
Where Af "(8, p(j,k,1)) are the cost function values of objectives to kdeddo the actual

cost function.

e Swim:

0 Let g=0 (counter for swim length)
0 While g< N, (If climbed down is incomplete)
Letg=q+1
= If 3, ] +1kI) < f_4(if performance is
improving)
Now let f_, = f (@, ] +1k,I)and

A

JA ().A6)

G, +1k,1) =860, j,k,1)+c(i)
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Used(, j +1k,l) to compute the
newf™(i,j+1k,l).
= Else, lem= N,
o End of while statement.

Step 7: Ifi <N, go to the next bacteriuigi + 1) (step 6).
Step 8: Store these new as well as the old positionsenriemory which are ordered on the
basis of non-dominated sorting. Only numbers ofeoetanked positions are retained from
the sorted pool to be used in the next itergtjonl). If j <N_, go to step 4 which indicates
chemotactic operation to continue since the lifehefbacteria is not over.
Step 9: Reproduction: Reproduction step consists of selgdtalf of the bacteria with a
higher front and lower crowding distance and thigmieating the lower half. The remaining
half is duplicated to maintain a fixed populatioizes For the givenl and for each

i=12,....,N, fq, = jD{rLr}!r]N }{ f.u (i, J, k1) represents the health of bacteriim

If k<N,,, go to step 3 which means that the process hageashed the number of
specified reproduction steps.

Step 10: Elimination-dispersal: Eliminate and disperse baatehosen with probability
P,to a random location on the optimization space retdining the bacteria population
space.

If | <Ng,then go to step 2.

Elsestop

The bacteria foraging optimization steps during-dominated sorting are outlined as
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Begin
Initialize input parameters
Create a random initial swarm of bacteéi@, j,k,1) , 0i,i =12,....,N
Evaluatef " (4G, j,k,1)).0i,i =12,....,N
For | =1to N Do
Fork=1to N, Do
Forj =1to N Do
For =1 to N Do
Form=1to M Do
Perform the chemotactepsiumble-swim or tumble-tumble
operations for all ba@end for all objective#(i, j,k,|) .Evaluate
the cost functions oftakk bacteria and for all the objectives.
end for
end for
end for
Perform the reproduction step by eliminating thi Wwarst bacteria with higher front

and with lower crowding distance and duplicating tither half.
end for

Perform the elimination-dispersal step for all leaiet with probabilityp< P, <1.

end for
end

2.5 Performance measur e metrics

The main objective of MOEASs is to provide solutis®isfying three objectives: (i)

minimal distance to the standard efficient frontgtwbal optimal Pareto front (GOPF) (ii)

good distribution (iii) maximum spread. The finaarBto optimal front obtained from

different MOEAs is compared using performance rostproposed by many researches

[2.2], [2.13], [2.14]. Six different metrics defidein the sequel are used during the

investigation for measuring the performance quatdityiven as:
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(a) Generation distance(GD)

It estimates the distance of elements of non-domthaectors found, from those

standard efficient frontier [2.2] and is mathemalticexpressed as

[T
Gh=1=__ (2.11)

n
wherenis the number of vectors in the set of obtained-d@minated solutionsd, is the

Euclidean distance between each of these and #restanember of the standard efficient
frontier. If GD =0, all the candidate solutions are in standard iefficfrontier. The smaller

the value ofGD the closer is the solution to the standard efficfeontier.

(b) Inverted generation distance(IGD)

This indicator [2.2] is used to measure how fardlements of the standard efficient
fronts are from the non-dominated vectors foundhayproposed algorithm. KGD =0, all

the candidate solutions are in the global optinzae® front covering all its extensions.

(c) Spacing (S)
It measures the spread of candidate solution ttauwigthe non-dominated vectors

found. This metric [2.30] is mathematically expesssis

si\/ni_liz:‘(&—di jz (2.12)
fl‘(i) — 1, (x) f, [xj — 1, [xj

d =mean of alld, andn is the number of non-dominated vectors found soAavalue of

where d, =min{ +

J and i,j=1212,...n
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zero for this metric indicates all members of thare®o front currently available are
equidistantly spaced.
(d) Diversity metric (A)

This metric (A) measures the extent of spread i.e. how evenlypthiats are
distributed among the approximation set in the dbje space [2.13]. This metric does not
require any standard efficient frontier and ha®lation with Euclidean distance between

solutions. It is defined as

N-1 -
d, +d +> |d —d‘
A= E - (212
d, +d, +(N-1)d

where d, is the Euclidean distance between consecutivetisnfuin the obtained non-

dominated set of solutionsd is the average of these distana#s d, and d, are the

Euclidean distance between the extreme solutiorts the boundary solutions of the
obtained non-dominated se\l is the number of solutions on the best non-domahétent.
If there are N solutions then there areN —1 consecutive distances. The low value
indicates better diversity of the non-dominatedusoh. Its value for most widely and
uniformly spread out set of non-dominated solutisnzero.
(e) Convergence metric (C)

This metric compares the quality of two non-domedaset. This matrix is computed
without taking standard efficient frontier into cgiteration. LeA and B be two different

sets of non-dominated solutions then the C meZit4]] is mathematically expressed as
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bOB|[ADA:a<b
c(A,B)J{ ||B| ) (2.14)

wherea andb are candidate solutions of satand B respectively. The functio maps

the order pair A, B) to the interval [0, 1]. IC(A, B) =1, all the candidate solutions Bare
dominated by at least one solutionAinSimilarly, if C(A, B) =0, no candidate solutions in
B is dominated by any solution .

(f) Error ratio (ER)

This metric is introduced by Veldhuizen and Lamj@i2] to indicate the percentage

of candidate solutions those are not the memb#reofjlobal optimal Pareto front.

ER=-Z (2.15)

wheren is the number of vectors in the current set ofdominated vectors available.

Ife =0, vectori is a member of the global optimal Pareto front @ndhe reverse is true

which indicates that the candidate solutions vect@nerated by the algorithm belong to the

GOPF of the problem.
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2.6 Conclusion

In this Chapter, six MOEAs which have earlier begplied in PO problem are
discussed in brief. Two non-dominated sorting baBKAEAs such as NS-MOPSO and
MOBFO have been discussed in details. Two decortippgbased MOEA algorithm such
as decomposition based particle swarm MOEA (P-M@BAand decomposition based
bacteria foraging MOEA (B-MOEA/D) have also beesadissed. In P-MOEA/D and B-
MOEA/D the objective of each subproblem has beetimiped using PSO and BFO
respectively. These four proposed MOEAs have baeoessfully applied to solve portfolio

optimization problems in subsequent chapters.
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Chapter

This chapter addresses a realistic portfolio oation problem as a multiobjective
optimization problem by considering budget, flooejling and cardinality as constraints.
Four novel multiobjective evolutionary optimizatioalgorithms, two based on non-
dominated sorting and two based on decompositiore HEeen employed to solve the
problem efficiently. The performance of the prombsggorithms is compared with four
single objective evolutionary algorithms such asage algorithm (GA), tabu search (TS),
simulated annealing (SA) and particle swarm optatian (PSO) as well as a set of
competitive multiobjective algorithms. The comparnis are based on three performance
measures, six performance metrics, Pareto front aamdputational time. Nonparametric
statistical analysis using the Sign test and Witcogigned rank test has also carried out to
demonstrate the pairwise comparison. On examiriagperformance metrics it is observed
that the proposed MOEAs are capable of identifygogpd Pareto solutions maintaining

adequate diversity in the presence of cardinality.
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3.1. Introduction

The task of portfolio optimization is a very chaligng and interesting problem in
computational finance and has received attentiormahy researchers in the last few
decades. The portfolio contains stocks, bank imvests, real estate holdings, bonds,
treasury bills etc. Markowitz has set up a quatitié framework for the selection of a
portfolio [3.1], [3.2]. In this framework, the pmmtage of each available asset is selected in
such a way that the total profit of the portfolsomaximized while total risk is minimized
simultaneously. Hence the portfolio optimizatiorolglem is inherently a multiobjective
problem. The portfolio optimization is very comglied as it depends on many factors such
as preferences of the decision makers, resourgeasithn, growth in sales, liquidity, total
turnover, dividend and several other factors. Sanmhors have also added some practical
constraints such as floor, ceiling, cardinality. étt Markowitz model that makes it more
realistic. Inclusion of these constraints to thetfpbo optimization problem makes it
intractable even for small instances. With thesestraints, it becomes a mixed integer
programming problem with quadratic objective fuan8. Researchers have tried to solve
the constrained portfolio optimization problem gsifa) classical/exact method such as
active set methods, interior point techniques @)rtstics approach such as single objective
heuristic approach and multiobjective heuristicrapph.

(a) Classical method
Bienstock [3.3] in 1996 have presented a ‘branuth eut algorithm’ for the exact

solution of the cardinality constrained portfoliptonization problem. Shaet al. [3.4] have
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used a ‘lagrangean relaxation based procedure’sédving the cardinality constrained
portfolio optimization problem using the exact/cliaal method. Recently Vielmet al.
[3.5] have proposed a “branch-and-bound algorittw'using classical method for solving
cardinality constrained portfolio optimization pteim based on a lifted polyhedral
relaxation of conic quadratic constraints. Bertsnaad Shioda [3.6] have introduced an
approach for the cardinality constrained portfotiptimization problem using “Lemkes
pivoting algorithm”. In 2010 Gulpinaet al. [3.7] have applied “difference of convex
functions programming” for getting the exact salatiof the cardinality constrained
portfolio optimization problem. Considering the dfoand cardinality constraint, let al.
[3.8] have solved the portfolio optimization pramleHowever, these classical/traditional
optimization methods meant for solving this cartiipaconstrained portfolio optimization
problem are likely to be trapped to local miniméugtons. Hence there is a need to propose
new approach which avoids this limitation to théeex possible.
(b) Heuristic approach

To overcome the shortcomings of the classical odsthdifferent efficient heuristic
methods are developed. Chast@l. [3.9] in 2000 have presented three heuristic allgors
based on genetic algorithm, Tabu search and sietitnealing for finding the cardinality
constrained efficient frontier. This may be conssdeto be the first heuristic approach to
solve cardinality constrainted portfolio optimizati problem. Computational results are
presented for five test problems of five differestdck indices such as Hang-Seng, DAX
100, FTSE 100, S&P 100 and Nikkei 225 having 31,88 98 and 225 assets respectively.
These data are publicly available from OR-Librargimtained by Prof. Beasley [3.33]. In
our study also we have used these data. Many cdsmarhave followed the work @hang
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et al. [3.9] for solving the same problem using differemétaheuristics. This approach can
be divided into two categories such as single a@ilvjeor multiobjective metaheuristic.
(i) Single objective heuristic approach.

Fernandez and Gomez have applied a Hopfield newtaork along with three
heuristics GA, SA and Tabu Search to the portfoliimization problem [3.10]. Pai and
Michel (2009) have applied a clustering approaahctmosing the assets in the portfolio,
thereby eliminating the cardinality constraint [B.1Crama and Schyns have proposed a
simulated annealing approach to the constrainedfgtior optimization problem, (that
includes cardinality, turnover and trading as patams) [3.12]. Derigs and Nickel have also
used simulated annealing based metaheuristic tee ghe portfolio management problem
[3.13]. Particle swarm optimization has been agplesolve portfolio optimization problem
in [3.14]. Genetic algorithm [3.15] has been applie solve the portfolio optimization
problem considering different constraints such asmum transaction lots and cardinality.
Changet al. [3.16] in 2009 have used three other measuressbfsuch as semi-variance,
mean absolute deviation and variance with skewfoesaodeling of MOEA using GA.

The aforementioned models are most popular appro® solve portfolio
optimization problem considering the overall ohjpes as a weighted sum of the two
objectives. However, solving this multiobjectiveoplem with these single objective
evolutionary algorithms (SOEAS) require the repegaise of an optimization technique to
find one single solution on the efficient frontiper run. Hence it is a time consuming
process to get the entire Pareto front. Furthermaraniform set of weight does not
guarantee a uniformly distributed set of efficigmiints [3.17]. The diversity of solutions

along the efficient frontier is of much importanae certain trade-off portfolios of interest
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may be missed if they are concentrated in a smedl af the efficient frontier. One more
shortfall of this approach is that, it cannot fadtlefficient points [3.14].
(if) Multiobjective heuristic approach

To overcome the shortcomings of single objectiydinoization approach, many
researchers have applied multiobjective evolutipnalgorithms (MOEAS) to solve the
problem that does not require any weight parametee of the main advantages of MOEAs
is that it gives a set of possible solutions callsda Pareto optimal solution in a single run
and in a reasonable amount of time [3.17]. Paretaalony optimization (PACO) has been
introduced in [3.18] for solving the portfolio setmn problem and compared its performance
has been compared with other heuristic approaadhes &s Pareto simulated annealing and
the non-dominated sorting genetic algorithm. Misktaal. [3.19], [3.20] have applied
different MOEASs to solve portfolio optimization griem considering only budget constraint.
The literature survey reveals that the cardinadibystraint has been addressed in [3.21],
and [3.22]. The floor, ceiling and cardinality ctiamts have been dealt with in [3.23].
However, all these aforementioned studies lack @fiegality and in depth analysis in
examining how the presence of these constraintsctaffthe decision of the portfolio
manager. Hence the portfolio optimization probleatisfying a set of constraint is a
challenging problem for researchers. In the propos@rk the combined presence of
practical constraints such as budget, floor, cgilimd cardinality is considered to make the
portfolio optimization problem more realistic. Amagstopoulos and Mamanis 23] have
adopted a tri-objective view of the problem and énaapplied three multiobjective
evolutionary optimization algorithms such as NSGAIPEA2 and the PESA. In 2011 the

same authors compare the effectiveness of five-stathe-art multiobjective evolutionary
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algorithms (MOEASs) together with a steady statel@ianary algorithm on the mean—
variance cardinality constrained portfolio optimiea problem (MVCCPO) [3.25]. Burbank
et al. [3.26] have used a multiobjective evolutionaryagithm in conjunction with the

critical line algorithm of Markowitz. They have inded a constraint (involving additional
zero-one variables) based on the German investiannt

In the aforementioned studies a particular caseowistraint condition has been
analyzed but in-depth analysis of different combaraof constraints is not considered and
hence it lacks generality. In most cases the indgua the cardinality restriction has been
replaced by an equality restriction. Hence handbhghese constraints is very challenging
and there is a need to apply efficient MOEAs altponi for achieving efficient solution.

This chapter addresses the portfolio optimizagiosblem considering budget, floor,
ceiling and cardinality constraints. Two multioldjge evolutionary algorithms (MOEAS)
based on non-dominated sorting such as NS-MOPSOVM@MBIFO as discussed in previous
chapter have been applied to the portfolio optitazaproblem. Two MOEA algorithms
based on decomposition (MOEA/D) such as decompositbased particle swarm
evolutionary algorithm (P-MOEA/D) and decompositiobased bacteria foraging
evolutionary algorithm (B-MOEA/D) have also beenoposed for solving the same
problem. The performance of these algorithms is pamed with some peer MOEAs
algorithms such as PESA-II [3.27], SPEA-II [3.28]licro-GA [3.29], APAES [3.30],
NSGA-II [3.31], and 2LB-MOPSO [3.32]. The perfornt@nobtained from the study is also
compared with those of single objective evolutignalgorithms such as genetic algorithm
(GA), tabu search (TS), simulated annealing (SAJ particle swarm optimization (PSO)
identical to [3.9]. The comparisons of the perfone® include, three error measures, Six
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performance metrics, Pareto front and computatioimaé. Nonparametric statistical test
such as the Sign test and Wilcoxon signed rankaestlso performed to demonstrate the

performance of proposed algorithms.

3.2. Portfolio optimization problem with different practical
constraints
As discussed in Chapter-1 the variance of Markowmodel [3.2] are

mathematically expressed as:

o= iiwiwj o, (39

i=1 j=1
where, g, is the covariance between assetand j,o is the variance of portfolio and
N denotes the number of assets availableand w; (weighting of asset) is the proportion
of the portfolio held in asset and j respectively. The portfolio return is represented a
N
o =D W, (32)
i=1
where, 1; is the expected return of the assetis the expected return of the portfolio,

subjected to constraints. These constraints are:

(a) Budget constraint

Z w =1 (33)

Eq. (3.3) shows the budget constraint which ensthras the sum of the weights
associated with each asset is equal to one i.@ahallvailable money is invested in the

portfolio. The budget constraint is an equalityelin constraint. This constraint makes the

68



Constrained Portfolio Optimization using
Chapter:3 Multiobjective Evolutionary Algorithm

portfolio optimization problem a convex problem ahdnce is referred to as convex

constraint.
(b) Floor constraint

It is expressed as:

az <w, 0O<a <1 B4
f - >0

where z = L for W'_ (35)
0, otherwise

The decision variable, is 1 or 0 depending upon an asggt=12,....,N) is held or

not respectively.a, is the lowest limit on the proportion of any ast&it can be held in a

single portfolio if it selected. It is the lowenlit on the proportion of each asset that can be
held in a single portfolio. It prevents excessidenaistrative cost for very small holdings
which have insignificant influence on the performanof the portfolio. It is called as

minimum proportion constraint or floor constraint.

(c) Ceiling constraint

It is expressed as:

wz <b, 0<b <1 (36)
f - >0

where z = L for V\I" 37
0, otherwise

The decision variable, is 1 or O depending upon an ass@t=12,....,N)is held or

not respectivelyb is the maximum limit on the proportion of anyetsthat can be held in

a single portfolio if it will be selected. It isa@rhighest limit on the proportion of each asset
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that can be held in a single portfolio. It prevetite excessive exposure to any portfolio

which is a part of the institutional diversificatipolicy. It is called as ceiling constraint.
(d) Cardinality constraint

This constraint specifies the number of assets thgtortfolio can hold. The
cardinality constrainK denotes the number of assets a portfolio manageimegast money

out of N available assets. The decision varialdés 1 or 0 depending upon an asset

i(i=12,....,,N)is held or not respectively.

ZN: z =K 37

This equation ensures that exaddyassets ofN available assets are held.
It also specifies the maximum and munm number of assets that a portfolio can

hold and is expressed as:
N
K, < ZZ‘ <K, (38)

It implies that the number of assets in the I;dﬂfbés betweerK, andK, (K, #K,).

In this model the risk is formulated usic@variance. An equivalent formulation can
be obtained using correlations because the covaibatween the returns of assetsnd |
is equal to the product of the standard deviation®turn for assets and j multiplied by
the correlation between returns for assetad) .

The Markowitz unconstrained model is shown in (3.9 (3.3) with
O<sw <1i=123..,N. Considering all constraints from (3.1) to (3.%etproblem

becomes a quadratic mixed-integer program (QMIFAEkvhas been solved by Chaeical.

in [3.9]. Most of the research works on MOEAs sotlie QIPM by relaxing the equality
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N
constraint of (3.7) to inequality constraint i.ez z < K. But the portfolio problem is
i=1

solved for a fixedK asset or for a range oK assets as shown in (3.7) and (3.8)
respectively. Hence with the presence of two objestas shown in (3.1) and (3.2) and
constrains shown in (3.3) to (3.8) the problem airtfolio optimization becomes a
multiobjective one and the aim is to find all noorainated set of solutions.
3.2.1 Single objective formulation of portfolio optimization

This multiobjective optimization problem is usualiplved with single objective
solution techniques. The most popular approach iderss the overall objectives as a

weighted sum of these two objectives [3.9] andlmaexpressed mathematically as:

v =Ao3]-@-A)r,]

:A{iiwwjau}—(l—/l)[z:wri (39)

i=1 j=1
Now the only objective to be minimized'\&'. The efficient portfolios from the

minimum variance portfolio4 = 1) to the maximum return portfoliol(= 0) can be found
out by repeatedly varying the parameter valleand solving a sequence of optimization
problems (for eachA ). Hence such a formulation yields non-dominatddtsms by suitably
varying the A factor from 0 to 1 with a small increment of 0.0he main advantage of
these approaches is that it reduces the multiobgegiroblem to a scalar optimization
problem and any single objective metaheuristicorédlgn can then be applied. In this
chapter four single objective evolutionary algamg(SOEAS) such as the PSO, GA, TS and
SA have been applied for solving the multiobjecipeetfolio optimization problem identical

to those dealt in [3.9].
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However, solving the portfolio optimization problema time consuming process to
get the entire Pareto front. A uniform setbfdoes not guarantee a uniformly distributed set

of efficient points [3.17].
3.2.2. M ultiobjective formulation of portfolio optimization

The portfolio optimization problem which is inhetlgra multiobjective problem can

be efficiently solved by using the MOEAs.
(a) Formulation for non-dominated sorting based MOEAS

The multiobjective portfolio optimization problenarc be solved by MOEAs based
on non-dominated sorting which do not combine thie bbjectives to obtain the Pareto
optimal solution set. Here the two objectives afeeh individually and try to optimize both

simultaneously.

The main objective is to maximize returp and minimize riskaf). The proposed
NS-MOPSO and MOBFO are suitably oriented in sucloasinimize the two objectives.
To express both the objectives in minimization fpthe second objectiver, is expressed
as-r,. In addition to these objectives, different preaticonstraints mentioned in (3.3) to

(3.8) are also considered. Accordingly portfoliolgem is expressed as

Minimize Jf) and —r, simultaneously considering all constraint (3.10)

Hence with the presence of this multiple objectieesl constraints, the problem
becomes a multiobjective minimization problem. Bfwsg this, a set of efficient solutions

called the efficient frontier is obtained. Thisaigurve lies between the global minimum risk
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portfolio and the maximum return portfolio. In thetudy, this efficient frontier is termed as

Pareto front.

(b) Formulation for decomposition based MOEAs (M OEA/D)

As discussed in Chapter-2 in the decomposition baOEA (MOEA/D) [3.33]
approach the multiobjective optimization problemdecomposed into a number of scalar
objective optimization problems (SOPs). The optirsalution to the scalar optimization

problem is expressed as:

Maximizeg™ (%/ )= 3"x. f.(x) (3.11)
)=
ubjected to x[1Q

In portfolio optimization problem the number of ebjives m is two i.e. risk and

return. For applying MOEA/D, the portfolio optimizan problem can be expressed as:

2
Maximize g (\%): ;/\i . (w) 13)
2
where), 20 for all i =12 and ) A =1, subjected taxJQ, A is a coefficient vector of
i=1
the objective function arxis the variable to be optimized. The two functiohgx) and
f,(x) are to be maximized. To generate a set of diffeRameto optimal vectors, one can

use different weight vectors in the above scalar optimization problem. In al&rrun, a
set values ofA is utilized and using the neighborhood conceptctiraplete set of solutions

on the Pareto front is obtained.

Since the objective is to maximize returpand minimize riskaﬁ. The same may be

expressed in maximization form asoﬁ, In addition to these objectives, different preatki
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constraints mentioned in (3.3) to (3.8) are alsosatered. Accordingly portfolio problem is

expressed as:
Maximize —oi and r, considering all constraints together (3.13)

Hence in the presence of this multiple objectiee®l constraints, the problem
becomes a multiobjective maximization problem. Wdlial objectives are optimized using
any single objective heuristic optimization techugqIn the thesis work we have applied
PSO and BFO to optimize it. The constraints aredleghin the same way in case of
conventional PSO or BFO algorithm. A set of Pasatution is obtained by solving (3.13)

in a single run.
3.3. Simulation study

The algorithms are coded in MATLAB and were runaoRC with Intel Core2 Duo

3.0 GHz with 4 GB RAM.
3.3.1. Data Collection

The test data, which have been used in [3.9], vadtained from OR-Library
(Beasley, 1996) available {8.34]. The data corresponds to weekly prices betwedarch
1992 and September 1997 from different well knonaides of Hang Seng in Hong Kong,
DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USAd Nikkei 225 in Japan. The
numbers of different assets for the above benchrmatices are 31, 85, 89, 98 and 225
respectively. In each data set the return of intial assets and the correlation between
assets are given. The covariance between the asgalbsated from the correlation matrix, is

used for calculating the risk of portfolio. The reard efficient frontiers (Global optima

74



Constrained Portfolio Optimization using

Chapter:3 Multiobjective Evolutionary Algorithm

Pareto front) for each of these data sets are ablailin files PORTEF-1 to PORTEF-5
[3.34].

At first, four assets from Hang-Seng stock indiege considered. The mean
return, standard deviation and the correlation ma@mong these four assets are shown in
Table-3.1.

Table-3.1. The mean return, standard deviationcaneklation matrix for first four
assets of Hang-Seng stock indices

Correlation Matrix
Asset Mean return Standard
deviation 1 2 3 4
1 .001309 .043208 .562289 746125 .70785
2 .004177 .040258 1 .625215 570407
3 .001487 .041342 1 757165
4 .004515 .044896 1

3.3.2. Solution representation and encoding

In order to allow for a fair comparison, we havestn all algorithms to have the
same solution representation. We have implemetedybrid representation proposed by
Streichertet al. [3.35] which seems to be more appropriate for portfolitirozation. In
hybrid representation, two vectors are used fomdef a portfolio: a binary vector that
specifies whether a particular asset participatethe portfolio, and a real-valued vector

used to compute the proportions of the budget tedeis the assets:

A={z,...z.}, z={01,i=1...n
W={w,,...,w}, 0Osw <1i=1...,n (398)
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3.3.3. Constraints satisfaction

To meet the budget constraint, the simplest styai®go normalize the weights so

that the total sum of weights will be equal to ofleis can be mathematically shown as:

New w, = L (3_9)

Zin:lvvi -4

To satisfy the cardinality constraint, the folloginepair condition foWV is applied.

If the number of assets in the portfolio i.e., thenber of 1's inA of (3.8), exceeds the
maximum allowed, those assets that have the minimaight inW is deleted (by changing
its value from 1 to 0 imd).

If the floor and ceiling constraint are includetden the weight values are to be
within a specific range. For this case, the singptategy of normalizing the total weights to
one so as to meet the budget constraint is no taqgaicable, since the normalized weights
might not be within the limits.

Hence the fitness evaluation for the proposed sgmtation needs to be modified.
The modified fitness evaluation has to be initediavith an empty portfolio where assets
are to be added iteratively. However, the varicalsies in the weight vector will have to be
adjusted to the floor and ceiling constraint. Téas be represented as:

W .Z i=1
i=1 !

Wogused = &+ +%[bi Z =>4 .zij, i=1....n (310)

76



Constrained Portfolio Optimization using
Chapter:3 Multiobjective Evolutionary Algorithm

If weight has to adjust for budget and floor coaisit and there being no restriction
on the upper limit (ceiling constraint) then thguatied portfolio weight can be computed

using the following equation:

Wogused = &+ +#[1—Zai .zi} i=1....,n (1)

Similarly, if weight has to adjust for budget araling constraint and there being no
restriction on lower limit (floor costraint) thernd adjusted portfolio weight can be
computed using the following equation:

_ W .Z
Wogiusted — bl'zi J—

(b.z)i=1....n (312
DLWz

3.3.4. Parametersused in the smulation of MOEAS

Identical schemes for all tested algorithms areduse order to ensure a fair
comparison. For selecting the parents, binary mment selection is used for all genetic
algorithms based MOEAs. For reproducing the offgpgopulation, the uniform crossover
operator is applied in each string of the chromasom uniform crossover two selected
individuals generate a single child and its valoe éach array is selected with equal
probability from one or another parent. The chifldmgere considered also for mutation
having some probability which is mentioned in ngx¢tion.

The conceptual framework for parameter tuning éfedent evolutionary algorithm
is presented in [3.37]. For all the six MOEAs tlgpplation size and number of generations
are taken as 100 and 10000 respectively. For thEAMbased on genetic algorithm such as
PESA-II, APAES, Micro-GA, SPEA2 and NSGA-Il one ohmosome represents one set of
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weights of assets and each gene represents welighheoasset. In NS-MOPSO, 2LB-
MOPSO and P-MOEA/D the position of each particleresents a weight vector associated
with different assets. In MOBFO and B-MOEA/D thesfimn of each bacterium represents
the weight given to one asset. The dimensions afchespace depend on the number of
assets of the stock. After several experiments diffierent parameters, the final parameters
of fine-tuned algorithms are mentioned below.

PESA-II: The internal and external population size is taken50, uniform crossover is
taken having rate of 0.8. It has a mutation raté/af , whereL refers to the length of the
chromosome string that encodes the decision vagalilhe grid size i.e. the number of
division per dimension is set at 10.

APAES:. The number of times the current solution domisdie mutated solutions is fixed
at 20.The crossover is uniform and is fixed at M8tation rate is taken as 0.05.

SPEA 2: The crossover is taken as uniform. The crossovémautation rate is taken as 0.8
and 0.05 respectively. The archive size is fixe8at

NSGA-II: The uniform crossover and mutation rates are t@k@® and 0.05 respectively.
Micro-GA: An external memory of 100 individuals, 5 percehnhon-replaceable memory

and 25 subdivisions of the adaptive grid are u3ée. crossover rate of 0.9 and mutation
rate of%_ (L = length of the chromosomic string) are choseritigr algorithm.

NS-MOPSO: Velocity having probability of 0.5 being specifieda different direction. The
upper and lower bounds of the decision variablgean,. andV, ., are fixed at 0.06 and

0.5 respectively.
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MOBFO: Values of various parameters for the proposed MORBKorithm are provided in

Table-3.2.
Table-3.2. Parameters of MOBFO
N p N, N, Ngy Pe C() M
100 31 100 100 100 0.15 0.10

2LB-MOPSO: The parametew = 0.862, C, =C, =2.05. Each objective function range in
the external archive is divided into a number ofshie.n _binand it is set to 10.
P-MOEA/D: Each subproblem of P-MOEA/D has been optimizeshgugiarticle swarm
optimization. The parameter = 0.862 andC, =C, = 205.

B-MOEA/D: Each subproblem of B-MOEA/D has been optimized gisiacteria foraging

optimization. The values of various parameters @sedgrovided in Table-3.3.

Table-3.3 Parameters of B-MOEA/D

N N N

S Cc

Nre Ned ped

100 50 100 100 100 0.15

3.3.5. Nonparametric statistical testsfor comparing algorithms

The interest in nonparametric statistical analysis grown recently for comparing
evolutionary and swarm intelligence algorithms 73.3The pairwise comparisons are the
simplest kind of statistical test which can be &aplwithin the framework of an
experimental study. Such tests compare the perfwwenaf two algorithms when applied to
a common set of problems. In this Chapter the $&gh and Wilcoxon signed rank test
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[3.37] are carried out to compare the performaraieyise. In simulation work the two tests
are carried out by comparing all the MOEAs alganshwith the NS-MOPSO algorithms.

The Sign test requires counting the number of aictsieved either by NS-MOPSO
or by the comparison algorithm. The Wilcoxon sigmnedk test is analogous to the paired t-
test in nonparametric statistical procedure [3.37e aim of Wilcoxon signed rank test is to
detect the difference between the behavior of tigorahms.

3.3.6. Experimental results

The standard efficient fronts for five stock indiceuch as Hang-Seng, DAX 100,
FTSE 100, S&P 100 and Nikkei 225 are depicted gsHE.1-3.5. which show the tradeoff

between risk (variance of return) and return (nmrediarn).

Hang-Seng with 31 Assets

0.01-

0.009-

0.008-

0.007

0.006-

0.005

Mean return

0.004-

0.003-

0.002- T

== Global optimal Pareto front

0.001-

0 | | | | | | | | |
1] 0.5 1 1.5 2 3 3.5 4 4.5 5

Variance of return

Fig.3.1.Global optimal Pareto frémt Hang-Seng, stock indices
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DAX 100 with 85 Assets
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Fig.3.2.Glbkyptimal Pareto front for DAX 100 stock indices

FTSE 100 with 89 Assets
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Fig.3.3. Global Optimal Pareto front for FH $00 stock indices
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S&P 100 with 98 Assets
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Mean return

—— Global optimal Pareto front
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Fig.3.4. Global Optimal Pareto front f8&P 100 stock indices

Nikkei with 225 Assets
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Fig.3.5. Global Optimal Pareto frontier &md Nikkei 225 stock indices
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The effects of four different practical constraistech as budget, floor, ceiling and
cardinality on portfolio have been analyzed by examg the resultant Pareto front
achieved. The theoretical implementation of thest@mnt is that it limits the portfolio size
and hence influences the level of return and thesipte risk. The experiments have been
carried out to study four distinct cases of comstreonditions.

Case 1: Budget constraint

Case 2: Fixed cardinality with budget constraint

Case3: Budget, floor, ceiling and cardinality coaisit

Case 4: Variable cardinality with budget, floor ar&ling constraint.

Case 1: Budget constraint

Hang-Seng, DAX 100, FTSE 100, S&P 100 and Nikkés B2nchmark indices have
31, 85, 89, 98 and 225 assets respectively. Irepperiment for testing we have applied ten
MOEAs to Nikkei 225 stock indices as it has thehlest number of assets to test them. The
frontiers obtained have been shown in Fig.3.6.

It is evident that the MOBFO is capable of provglimetter solutions in comparison
to other five algorithms, as its Pareto front isser to the standard efficient frontier. The
Pareto front obtained from NS-MOPSO, P-MOEA/D andVIBEA/D algorithm are

comparable with each other and better than otkkermnpetitive MOEAs.
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-3 Nikkei with 225 Assets
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Fig.3.6.Global optimal Pareto front and ten MOEA&®Nt frontiers
For Nikkei 225 stock indices

Further, the performance of ten different MOEAseisluated using six different
metrics such a$, GD,IGD, A , ER andC metrics. Each algorithm is applied to Nikkei
225 market for 25 independent runs. The maximummimmim, average and standard
deviation value ofS, GD,I1GD, A and ER metrics for 25 independent runs are calculated
and are shown in Table-3.4.

The smallest value of standard deviation obtaingdhie 2LB-MOPSO algorithm
indicates better consistency compared to otherrithgas. The mean value of five

metricsS, GD,IGD, A and ER for different MOEAs in graphical form are shown in

Figs.3.7 to 3.11.
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Table-3.4.Comparison of performance evaluation isgetibtained using different MOEASs

Algorithm PESA-II| SPEA2 Micro- | APAES NSGA-II 2LB- | P- B- NS-MOPS{Q MOBFO

GA MOPSO | MOEA/D [MOEA/D

S Max. | 3.21E-5 7.43E-6| 7.12E- 6.86 E{6 6.54E16 B:62| 5.93E-6 | 5.99E-6 5.38 E-6 5.22E-6

Min. | 1.87E-5| 5.23E-6| 4.54 E- 4.12 E16 3.98E6 B8E® 2.51E-6 | 2.38E-p 2.32E-6 2.33E-6

Avg. | 2.33E-5 6.36E-6] 5.87 E- 5.12 E{6 4.74E6 BB3| 3.62E-6 | 3.93E-§ 3.48 E-6 3.45E-6

Std. | 0.58E-5 1.58E-6] 1.21E-p 1.01E}6 1.53E(6 B682| 0.87E-6 | 0.98E-§ 0.76 E-6 0.85E-6

GD Max. | 2.54E-2( 2.01E-3] 7.20E-3 6.21E{4 7.23E44 B-81| 2.63E-4 | 292E-4 212E-4 2.16E-4

Min. | 1.01E-2| 0.89E-3| 4.32E-3 4.10EH4 5.23E¢ E@2| 1.65E-4 | 1.36 E-4 1.02E-4 1.10E-4

Avg. | 1.76E-2 1.02E-3| 5.45E- 523 E{4 6.72E#4 E-36| 1.76E-4 | 1.73E-4 158 E-4 1.45E-4

Std. | 0.42E-2[ 0.28E-3] 136E-f 131E}4 1.48E}4 B-82| 0.57E-4 | 0.52E-4 0.38 E-4 0.36E-4

IGD Max. | 11.2E-3| 10.8E-3J 10.2E-B 2.32E[3 9.98 B4 .52&-4 9.10E-4| 9.21E# 8.45E-4 8.30E-4

Min. | 7.32 E-3| 7.02E-3] 6.98 E- 0.98 E{3 7.02 Ej4 .806E-4 767E-4| 776 Ef 6.35E-4 6.45 E-4

Avg. | 9.83E-3| 9.37E-3 8.32E-J 1.28EB 8.72EH4 E20| 820E-4| 8.23E-f 7.15E-4 7.10E-4

Std. | 2.77E-3[ 2.35E-3 2.08E-3 3.20E}{4 2.18E}4 E@4| 202E-4| 2.07E-f# 1.81E-4 1.74 E-4

A Max. | 6.78E-1| 4.34E-1f 4.12E-] 3.99Ep1 3.34E{1 B-32| 2.34E-1 | 241E-] 243E-1 2.45E-1

Min. | 423E-1| 2.89E-1| 2.76 E-] 254 Eq1 1.89E4L EQ2| 1.20E-1 | 1.22E-] 1.20E-1 0.99E-1

Avg. | 593E-1| 3.86E-1| 3.27 E- 3.02 E{1 2.96E{L E42| 1.45E-1 | 149E-] 134E-1 1.33E-1

Std. | 1.48E-1| 0.93E-1] O0.86E-{L 0.78FE}1 0.78E}11 B-24| 0.46E-1 | 048E-1 045E-1 0.47E-1

Er Max. 0.54 0.50 0.58 0.44 0.35 0.26 0.29 0.28 0.24 230
Min. 0.35 0.40 0.34 0.27 0.20 0.16 0.14 0.1p 0.15 160
Avg. 0.44 0.42 0.41 0.37 0.26 0.20 0.21 0.2p 0.14 .180
Std. 0.18 0.19 0.16 0.12 0.08 0.07 0.07 0.8 0.0 .06 0
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Fig.3.11 Average value oER metric for MOEAs algorithms
The convergence(C) metrics for all the ten MOEAs are listed in TaBlé- It

clearly shows that most of the solutions obtaingtNB-MOPSO and MOBFO dominate the
solutions obtained by other MOEAs. The results bB-MOPSO, P-MOEA/D and B-
MOEA/D are almost comparable with each other.

The computational time is also evaluated for eddgorghm based on the same
hardware platform. The CPU times for Nikkei 225adagt of all algorithms are shown in
Table-3.6 which indicates the decomposition baseOEMs (MOPEA/D) such as P-
MOEA/D and B-MOEA/D are comparable with each otlasd take much less time as
compared to others. Among all the algorithms th&&SR2 takes maximum time. The
execution times of these algorithms are also catedlfor other stock indices and are shown

in Table-3.7.
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Table.3.5 Comparison d€) metrics obtained using different MOEAs

PESA-II SPEA 2| Micro- APAES NSGA-II 2LB- P- B- NS-MOPSQ MOBFO
GA MOPSO | MOEA/D | MOEA/D
PESA-II — 0.3810 0.3620 0.2600 0.2230 0.2111 0.2010 0.1905 0.1900 0.188!
SPEA-II 0.6280 — 0.4200 0.3400 0.3289 0.2821 0.2651 0.2621 0.2620 0.248
Micro-GA | 0.6400 0.4400|  ----- 0.3610 0.3421% 3@2 0.2910 0.2821f 0.2410 0.23(0
APAES 0.6988 0.6377 0.610q -—- 0.3888 01342 0.3328 0.3220 0.3164 0.312
NSGA-II 0.8530 0.7620 0.7399 0.460¢ — 0854 0.3432 0.3411 0.3400 0.323]
2LB- 0.8721 0.8432 0.8211 0.7021 0515 - 0.35B3 413 0.3213 0.2811
MOPSO
P- 0.8810 0.8532 0.8221 0.7322 0.541) 0.4321 3142 0.3544 0.3012
MOEA/D
B- 0.8932 0.8621 0.8302 0.7412 0.572p 0.4832 0.3988 --- -- 0.3744 0.3211
MOEA/D
NS- 0.9090 0.8920 0.8600 0.7900% 0.680p 0.4962 0.4%2P.4412 |  -—--- 0.3522
MOPSO
MOBFO 0.9166 0.9012 0.8700 0.8013 0.7243 a51p 0.4866 0.4711 0.3900 —
Table.3.6.Comparison of CPU time required amdi@EAs for Nikkie-225
Algorithms | PESA-Il | SPEA 2 | Micro-GA | APAES | NSGA-II 2LB- P- B- NS- MOBFO
MOPSO | MOEA/D | MOEA/D | MOPSO
CPU Time 4820 4960 4825 4905 4760 4720 3100 3050 4700 4650
inseconds
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Table-3.7.Comparison of CPU time in seconds amadafferent markets using MOEAs

Algorithms PESA-II SPEA-| Micro- APAES | NSGA-II| 2LB- P- B- NS- | MOBFO
1l GA MOPSO|MOEA/D|MOEA/D| MOPSO
CPU | Hang-Seng 685 708 689 700 675 673 443 436671 664
Time
DAX-100 1606 1653 1608 1608 1586 1570 1033 1016] 6615 | 1550
FTSE-100 1621 1669 1623 1647 1601 1585 1048 1031 582 1 1565
S&P-100 1641 1680 1644 1668 1617 1600 1070 10520 0216 |1586

The nonparametric statistical test such as Stghand Wilcoxon signed rank test

are carried out for pairwise comparisons of MOBH@oathms with other MOEAs. The

critical number of wins needed to achieve batk 005 and a = 0.1 levels of significance

is shown in Table-3.8. An algorithm is significantietter than other if its performance is

better on at least the cases presented in each row.

Table-3.8. Critical values for teo-tailed signtest att = 005anda = 0.1.

Cases 5/6|7(8|9|10 |11 |12 (13 |14 (15 |16 (17 |18 |19 {20 |21 |22 |23 |24 |25
a=005 5|67 |7 (8|9 9 10 (10 |11 |12 |12 |13 |13 |14 |15 |15 |16 |17 | 18 | 18
a=001L|5|6|6|7(7|8 9 9 10 | 10 | 11 |12 |12 |13 |13 |14 |14 |15 | 16 | 16 | 17

The results of the Sign test for pairwise comparssamong proposed MOBFO and

other algorithms while taking th& metric as the wining parameter (i.e. lower valfieSo

means win) are shown in Table-3.9. From the restlis clear that the MOBFO shows

significant improvement over PESA-Il, SPEA-Il, MiGA, APAES, and NSGA-II

algorithm with a level of significancen = 005and over NSGA-Il, with a level of

significancen = 0.1. Similarly for A metric the result of Sign test is shown in Tabl&ae3.
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This test can be conducted using other metricsiasing parametershe Wilcoxon signed
rank test is carried out by calculatifgf and R~ and then using well-known statistical
software package SPSS. Table-3.11 showRth& ,z, Asymp. sig (2-tailed), Exact sig.
(2-tailed), Exact sig. (1-tailed) and point of pabldity computed for all the pairwise
comparisons with MOBFO considerin§ metric as winning parameter and applying to
Nikkie 225 market indices. The result of the Wilooxsigned rank test for another metfic

is shown in Table-3.12. Win

Table-3.9. Critical values for the two-tailed Sigst att = 005anda = 0.1 using S metric
as winning parameter.

MOBFO PESA-II SPEA 2 Micro-GA APAES NSGA-II 2LB- P- B-MOEA/D|NS-MOPS(

MOPSO | MOEA/D

Wins(+) 22 21 19 18 17 16 15 14 13

Losses(-) 3 4 6 7 8 9 10 11 12

Detected [ g=005| a=005| =005 | a=005| a=001

differences

Table-3.10.Critical values for the two-tailed Stgst ab = 005anda = 0.1 usingA metric
as winning parameter

MOBFO PESA-II SPEA 2 Micro-GA APAES NSGA-II 2LB- P- B-MOEA/D|NS-MOPS(

MOPSO | MOEA/D

Wins(+) 22 21 20 19 18 17 16 14 13

Losses(-) 3 4 5 6 7 8 9 11 12

Detected | ¢=005| a=005| a=005 | a=005| a=005| a=001

differences
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Table-3.11.Wilcoxon Signed test usiisy metric as winning parameter and applying

different MOEAsNbkkie 225 market indices

Comparison R* R” 2 Asymp.sig(2-| Exact sig. | Exact sig. | pointof
tailed), (2-tailed), | (1-tailed) | probability

MOBFO 252 73 -2.41( 0.01¢ 0.01¢« 0.007 0.00(
with PESA-II
MOBFO with 231 94 -1.84¢ 0.06¢ 0.06t 0.03: 0.0C1
SPEA-II
MOBFO with 22z 10z -1.60z2 0.10¢ 0.117 0.05¢ 0.00z
Micro-GA
MOBFO with 217 10€& -1.46¢ 0.142 0.14¢ 0.07: 0.00z
APAES
MOBFO with 211.t 113k -1.31¢ 0.18: 0.19: 0.09¢ 0.00z
NSGA-II
MOBFO with 20¢ 117 -1.22¢ 0.22( 0.227 0.11¢ 0.00:
2LB-MOPSO
MOBFO with 18€ 13¢ -0.63: 0.527 0.53¢ 0.26¢ 0.00¢4
P-MOEA/D
MOBFO with 16C 16E -0.06% 0.94¢ 0.95¢ 0.47¢ 0.00¢
B-MOEA/D
MOBFO with 16¢ 152 -0.14¢ 0.88: 0.81c 0.44¢ 0.00t
MOPSO
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Table-3.12. Wilcoxon signed tesngsh metric as winning parameter and
applying differentO&As to Nikkie 225 market indices

Comparison R* R” z Asymp.sig(2-| Exact sig.| Exactsig.| pointof
tailed), (2-tailed), | (1-tailed) | probability
MOBFO with 274.5( 50.5( -3.01¢ 0.00¢ 0.00¢ 0.00¢ 0.00c¢
PESA-II
MOBFO with 246.0( 79.0( -2.25( 0.02¢ 0.02: 0.01: 0.00c¢
SPEA-II
MOBFO with 234.0( 91.0( -1.92¢ 0.05¢ 0.05¢ 0.02i 0.001
Micro-GA
MOBFO with 214 111 -1.3&7 0.16f 0.17c¢ 0.08¢t 0.00z
APAES
MOBFO with 19¢€ 12¢ -0.90z2 0.36 0.37i 0.18¢ 0.00¢4
NSGA-II
MOBFO with 194 131 -0.84¢ 0.39¢ 0.407 0.20: 0.00¢
2LB-MOPSO
MOBFO with 191.t 133.f -0.781 0.43¢ 0.44¢ 0.22: 0.00¢
P-MOEA/D
MOBFO with 18t 14C -0.54% 0.632 0.642 0.342 0.00¢
B-MOEA/D
MOBFO with 186.t 168.t -0.162 0.872 0.87¢ 0.44( 0.00¢
NS-MOPSO

Case 2: Cardinality with budget constraint

The effect of cardinality constraints is studied in this section. The Pareto fronts
obtained by applying MOBFO for Nikkei 225 data $eiving different cardinalities are
presented in Fig.3.1X is set at 20 and is increased to 180 at a st&).ol he portfolio
manager has the option to make a trade-off betwiskrand returns for different values of

K. The maximum, minimum, average and standard dewi&alues of various performance

93



Constrained Portfolio Optimization using
Chapter:3 Multiobjective Evolutionary Algorithm

metrics are shown in Table-3.13 It is observed tian K increases these metrics values
also increase. Table-3.14 lists the results of eaysnce(C) metric. It shows that the final

solutions obtained aK = 20dominate the solutions obtainedkat180. The CPU time for
various values oK are shown in Table-3.15. It reveals that the coatput time increases
with an increase in the value &f. From the Fig.3.12, it is clear that Pareto frdmésome
shorter with increase ik values. Hence the proposed algorithm is able taiokd near
optimal solution efficiently by investing lower nib@r of assets i.e. approximately 10
percent of available assets. The Pareto front oBMO is also calculated for other stock

indices for differentK and are depicted in Figs.3.13 -3.16.

% 107 Nikkei with 225 Assets
4 T T
3.5 B
3, —
c 2.5 B
>
T —K=20
c o K=40 ||
3 ——K=60
= 15- K=80 |
——K=100
1+ K=120|
——K=140
0.5F K=160|
—K=180
O | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Variance of return X 10-3

Fig.3.12. MOBFO efficient frontier for differectrdinality for Nikkei 225 data
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Hang Seng with 31 Assets
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Fig.3.13.MOBFO efficient frontier for different ainality for Hang-Sang data
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Fig.3.14.MOBFO efficient frontier fdifferent cardinality for DAX 100 data
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FTSE 100 with 89 Assets
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Fig.3.15.MOBFOefficient frontier fdifferent cardinality for FTSE 100 data
S&P 100 with 98 Assets
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Fig.3.16.MOBFO efficient frontier fdifferent cardinality for S & P 100 data
The Pareto front of the NS-MOPSO, P-MOEA/D, B-MOBAAlgorithms for

different market having a different cardinality straint for Nikkei 225 data set are shown

in Figs.3.17 - 3.19.
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-3 Nikkei with 225 Assets
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Fig.3.17. NS-MOPSO efficient frontier for differecardinality for Nikkei 225 data
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Fig.3.18. P-MOEA/D efficient frontier for differemardinality for Nikkei 225 data
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-3 Nikkei with 225 Assets
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Fig.3.19. B-MOEA/D efficient frontier for differerdardinality for Nikkei 225 data
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Table-3.13.Comparison of results of performancduaten metrics for different cardinality
constraints.

Cardinality K=0| K=20l K=40] K=6( K=80 K=10( K =120| K =140|K =160[ K =180
Constraint
S Max. | 52166 | 72166 | 921E5 | 53265 | 6.8665 | 9.21E5 1.94 E-4 5.45 E-4 1.11 E-3 2.21 E-3
Min. | 2.32E-6| 34566 | 53266 | 345E-5 | 532E5 | 7.65E5 0.98 E-4 3.42 E-4 0.88 E-3 1.67 E-
Matric Avg. | 3.436-6 | 5.64E-6 77766 | 44365 | 6.45E-5 8.88E-5 1.21E-4 424 E-4 1.01 E-3 1.90E-3
Values Std. | 0.856-6 | 1.41E-6 21266 | 1.156-5 | 1.98E-5 2.52E-5 0.25E-4 1.6 E4 0.25 E-3 0.47 E-3
GD | Max. | 216 E-4[ 390E-4| 42E4 56E4 67Ep EA 9.10 E-4 1.92 E-3 5.24 E-] 6.28 E-
Min. | 1.10E-4 | 26E-4 3.5-4 4.1 E-4 5.7 E-§ 6.2E¢ 8.21E-4 1.08 E-3 451 E-3 5.42 E-
Avg. | 14564 | 220E-4| 39E-4| 46E-4 63EA 6.8 E-/ 89E-4 62E-3 5.01 E-3 5.91E-3
Std. | 036E4 | 0.49E-4| 091E-4| 12E4 1.7E-4 19E-4 24E-f 0.42E-3 1.01E-3 1.47 E-3
Max. | 8.23E-4| 911E-4] 12E-3[ 231E[3 298H3 42%-3 471E-3 5.83E-3 7.19 E- 8.12 E-B
v Min | 6.02E-4| 752E4| 08E3[ 179EB 209E]3 2293 3.95E-3 428 E-3 6.51 E-] 7.03E-B
IGD| Avg. | 7.05E-4| 841E-4] 101E4 201E[3 27163 .02E-3 4,05 E-3 450 E-3 6.99 E- 7.49EB
Std. | 1.76 E-4| 2.11E-4 0.25E- 051El3  0.61H-3 .75&-3 1.01E-3 120 E-3 1.77 E- 1.82EB
A Max. | 2.45E-1| 312E-1] 391E-1 421E{1 498H1 .42%-1 5.99 E-1 6.51 E-1 7.51E-] 8.61E-1
Min. | 0.99E-1 | 250E-1| 3.001E-1 387E{L 3.92F1 98FE-1 5.01 E-1 6.01 E-1 7.01E- 8.12 E-L
Avg. | 13361 | 1.84E-1| 229E-1| 345E-1] 375EfL  4.25Ej1 485E[ 561E-1 6.62 E-1 7.71E-1
Std. | 04761 | 046E-1| 057E-1|] 081E-1 132EfL 1.61E{l 130E[ 1.40E1 1.71E-1 1.91E-1
Er | Max. 0.23 0.29 0.35 0.45 0.51 0.55 0.61 0.67 0.71 750
Min 0.16 0.22 0.28 0.38 0.42 0.47 0.52 0.58 0.60 620.
Avg. 0.18 0.24 0.30 0.39 0.41 0.49 0.54 0.61 064 068
Std. 0.06 0.08 0.09 0.11 0.12 0.14 0.15 0.17 019 o021
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Table-3.14. Comparison of results of convergenceiogC) for budget and cardinality
constraints for Nikkei 225 Stock using MOBFO

Cardinality | K =20 K =4( K=60| K=80[ K =100 K =12{ K =14{ K =160 K =18
Constraint
K =20 — | 0.2610( 0.3400 | 0.4660 [ 0.5970 | 0.6580 | 0.7200 [ 0.7810 | 0.8600
K = 40 0.0890 | — 0.3020 | 0.4220 | 0.5690 | 0.6260 | 0.7060 | 0.7670 | 0.8420
K =60 | 0.0840| 0.2420( — 0.3840 | 0.5322 | 0.5860 | 0.6810 | 0.7420 | 0.8280
K =80 | 0.0810| 0.2250| 0.2620 — 0.5020 | 0.5590 | 0.6640 [ 0.7220 | 0.8020
K =100 | 0.0770 [ 0.2040| 0.2420 | 0.3680 — 0.5220 | 0.6430 | 0.7040 | 0.7840
K =120 | 0.0740| 0.1880| 0.2240 | 0.3440 [ 0.4740 — 0.6210 | 0.6810 | 0.7600
K =140 | 0.0710| 0.1560| 0.1990 | 0.3260 | 0.4420 | 0.4920 | — 0.6620 | 0.7380
K =160 | 0.0670 | 0.1250( 0.1640 | 0.3010 | 0.4170 | 0.4480 | 0.5920 — 0.7040
K =180 | 0.0590 | 0.1080| 0.1280 | 0.2790 [ 0.03820 | 0.4200 [ 0.5680 | 0.6390 —
Table.3.15.Comparison of mealue of CPU time in seconds for MOBFO
T:ﬁ:;i K=20 K=4( K=60] K=80| K=100] K =120 K =140] K =160 K =180
y
crutime | 4910 | 5320 | 5730 | 6190 | 6680 7020 | 7490 | 7830 | 8440
in second

Case3: Budget, floor, ceiling and car dinality constraint

The effect of combined presence of all the constsais examined in this section.

The cardinality constraint is taken ks=10, the floor constrain has been setaat= 001
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and the ceiling constraint is fixed &f = Jith all available money has to be invested

(budget constraint)The performance of all MOEAs has been comparett wie results
obtained using single objective GA, TS, SA and R8Qiven in [3.6] by evaluating three
error measures such as Eucliddistance, variance of return error and mean returor.
The experimental results of Table-3.16 demonstiht@ the proposed NS-MOPSO
algorithm outperforms all single and multiobjectalgorithms for stock with higher number
of assets i.e. Nikkei 225 with 225 assets. MOBF@egiquite better performance for the
stock indices such as Hang-Sang, DAX 100, FTSE dff) S&P 100 which are having
lesser number of assets than Nikkei 225. Experiah@asults show that the performance of
2LB-MOPSO, P-MOEA/D and B-MOEA/D algorithms are alsh comparable to each

other.

Case 4: Variable cardinality with budget, floor, celling and cardinality

constraints

Let us assume the portfolio is having the minimwny i threshold and maximum
limit constraint within the range {1 % to 10%}. Thidferent ranges of cardinality constraint
i.e. {10 to 15}, {15 to 20} and {20 to 25} are take The Pareto fronts obtained by the

MOBFO algorithm for these conditions are shown fieigs.3.20 -3.22.
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Tabld-8. Experimental results for three error measur@lalgorithms to five markets

Index | Assets | Error GA TS SA PSO PESA-Il | SPEA2 | APAES|NSGA-II |2LB- P- B- MOPSO | MOBFO
MOPSO | MOEA/D | MOEA/D
Hang |31 Mean 0.0040 |0.0040 [(0.0040 |0.0049 |0.0044 0.0042 | 00041 |0.0041 0.0040 0.0040 0.004 0.0040 |0.0040
Seng Euclidian
distance
Variance off 1.6441 |1.6578 |1.6628 |2.2421 |1.5233 1.4877 |1.3912 | 1.3266 1.2981 1.2965 1.2961 1.2840 |1.2712
return error
Mean returr] 0.6072 |0.6107 [0.6238 |0.7427 |0.7620 0.6899 | 0.6652 |0.6472 0.6182 0.6212 0.6121 0.6021 ]0.6015
error(%)
DAX |85 Mean 0.0076 ]0.0082 |0.0078 |0.0090 |0.0098 0.0084 | 0.0082 |0.0077 0.0075 0.0077 0.0076 0.0075 |0.0074
100 Euclidian
distanc
Variance off 7.2180 |9.0390 |8.5485 |6.8588 |9.2819 8.2432 | 7.5422 | 7.1211 6.7562 6.8271 6.7723 6.7543 |6.7421
return error
Mean returr] 1.2791 |1.9078 [1.2817 |[1.5885 |2.2212 1.5922 |1.4352 |1.2634 1.2532 1.2691 1.2681 1.2671 |1.2511
error(%)
FTSE |89 Mean 0.0020 |0.0021 |0.0021 |0.0022 |0.0024 0.0022 | 0.0022 |0.0021 0.0019 0.0021 0.0022 0.0019 |0.0018
100 Euclidian
distance
Variance off 2.8660 |4.0123 |3.8205 |3.0596 |5.2381 3.7652 | 3.2311 | 2.9871 2.8114 2.9122 2.8813 2.8120 |2.7911
return error
Mean returr] 0.3277 |0.3298 [0.3304 [0.3640 |0.4023 0.3652 | 0.3522 |0.3329 0.3248 0.3271 0.3259 0.3250 |0.3211
error(%)
S&P |98 Mean 0.0041 ]0.0041 [0.0041 |0.0052 |0.0056 0.0049 | 0.0047 |0.0042 0.0040 0.0041 0.0041 0.0040 |0.0039
100 Euclidian
distance
Variance off 3.4802 |5.7139 |5.4247 |3.9136 |7.0122 5.4323 [ 4.5362 | 3.7629 3.4635 3.4773 3.4771 3.4763 |3.4751
return error
Mean returr] 1.2258 |0.7125 [0.8416 |[1.4040 |2.4232 1.2109 | 0.9812 | 0.7321 0.7001 0.7032 0.7028 0.7021 ]0.7020
error(%)
Nikkei | 225 Mean 0.0093 |0.0010 |(0.0010 |0.0019 |O0.0101 0.0032 | 0.0017 |0.0010 0.0008 0.0009 0.0008 0.0008 |0.0007
Euclidian
distanc:
Variance off 1.2056 |1.2431 |1.2017 |2.4274 |3.0986 2.0421 [ 1.9811 |1.1232 0.9866 0.9888 0.9880 0.9876 ]0.9872
return errao
Mean returr] 5.3266 |0.4270 [(0.4126 |0.7997 |1.2314 0.8654 | 0.6754 |0.4325 0.3267 0.3252 0.3249 0.3244 ]0.3211

error(%)
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Fig.3.20. Pareto front obtained MOBFO for floor straint (1%) and ceiling constraint
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Fig.3.21. Pareto front obtained by MOBFO for fl@eanstraint (1%) and ceiling constraint

(10%) and cardinality {15 to 20} to Hang Sang data
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Fig.3.22. Pareto front obtained by MOBFO foiofi@onstraint (1%) and ceiling constraint
(10%) and cardinality {20 to 25} to Hang Sang data

The Pareto fronts obtained by applying the ten M@®Egorithms in the case having

a cardinality range {10 to 15} are shown in Fig3.2
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Fig.3.23.Pareto front obtained by ten MOEASsfloor constraint (1%) and ceiling
constraint (10%) and cardinality {10 to 15} to Hagng data
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3.4 Conclusion and further work

The effects of four different practical constraistsch as budget, floor, ceiling and
cardinality constraints on portfolio have been gradl by examining the resultant Pareto
front achieved.

Two novel multiobjective algorithms based on nomadwated sorting and two
algorithms based on decomposition based framewavk been suitably applied to realistic
portfolio optimization problems with budget, floareiling and cardinality constraints by
formulating it as a multiobjective optimization ptem. The performances of the proposed
approaches are evaluated by comparing with fowgieiobjective evolutionary algorithms
and a set of competitive MOEAs. The comparisonsude the evaluation of three error
measures, six performance metrics, Pareto optiynalid computational complexity. By
examining different values of performance metribtamed it is concluded that the Pareto
solutions obtained by different approaches are ewaipe with each other. Experimental
results reveal that the proposed algorithms are #&bladequately handle budget, floor,
ceiling and cardinality constraint simultaneoustyom the simulation results it is clear that
the investor does not have to invest money onailable assets rather to invest in fewer
assets i.e. approximately 10 percent of availabets, to explore wide risk-return area. The
portfolio manager has the option to make a tradbefiveen risk and return for different
cardinality constraints to decide the portfolio @cling to the requirement. In particular, the
MOBFO algorithm gives best Pareto solutions maimitej adequate diversity.

The statistical analysis such as Sign test and d&fln signed rank test are also

performed for pairwise comparison of MOBFO with ethalgorithms. The simulation
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results demonstrate significant improvement of MQBdver PESA-II, SPEA 2, Micro-GA,
APAES and NSGA-II algorithm with a level of sigréince a = 005and over 2LB-
MOPSO, with a level of significance= 0.1.

Future research work on the topic includes incapon of advanced local search
operators into the proposed algorithm which is eigx to allow better exploration and
exploitation of the search space. To assess teagitrs and weaknesses of hon-dominated
sorting based or decomposition based MOEAs framiesviurther investigation is needed.
The performance of proposed method can also beiaeal considering other real world
constraints like round-lot, turnover and tradingieTsame multiobjective optimization
algorithm can also be applied to other financigblaations such as asset allocation, risk

management and option pricing.
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Chapter

In this chapter a novel prediction based mearawag (PBMV) model has been
proposed to solve constrained portfolio optimizatidn this model, the expected return and
risk are predicted using a low complexity functiblirak artificial neural network (FLANN)
structure. Four swarm intelligence based MOEAsq§IBMV model have been applied to
solve the portfolio optimization problem considegrimarious constraints. The performance
of MOEAs obtained using the proposed model is cosgawith that obtained using
Markowitz mean-variance model. The performanceaiseld on six performance metrics as
well as Pareto front. In addition to this, in theegent study the nonparametric statistical
analysis using Sign test and Wilcoxon signed rask are also carried out to compare the
performance of algorithms pairwis€rom the simulation results it is observed that th
proposed PBMV model approach is capable of identfygood Pareto solutions
maintaining adequate diversity and is comparabté thie Markowitz model. The predicted
value of risk and return are subsequently usedduwy MOEAs to achieve the Pareto

solution.
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4.1. Introduction

The mean-variance model, proposed by Harry Markoytl], is a landmark in
Modern Portfolio Theory (MPT). In the past few dees, this model has extensively been
studied in the field of portfolio optimization. Rautly, several authors have tried to improve
this model by applying some model simplificatiorchieiques or by proposing models
having different risk measure such as semi-variamessan absolute deviation and variance
with skewness model [4.2]. The fundamental assuwnptiof these models have been
described in [4.3]. It has been observed that istnod the models, the expected return of
portfolios is given by the linear combination ogtparticipations (weighting) of the stocks
in the portfolio and its expected returns (the mestarns). The portfolio risk measure of
these models varies from Markowitz mean-variancelehtut is based on the moments
about the mean of the linear combination of thdigipations and time series of returns of
its stocks.

The fundamental assumptions of these models ingijtiee time series of returns of
each stock follows a normal distribution (ii) meafrpast stock’s return is taken as expected
future return (iii) variance taken as a measuréefstock’s risk and (iv) the covariance of
each pair of time series is considered as a measyoint risk of each pair of stocks. But
the fundamental assumptions of the above models haen threatened by real world data
because of the following reasons. These are (ijiloligions of the series of returns often
depart from normality which exhibits kurtosis ankewness [4.4], [4.5] and make the
variance of the returns an inappropriate measuresiof4.6] (ii) use of mean of past stock’s
returns imposes a low pass filtering effect on diggamic behaviour of the stock markets

[4.7].
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Hence the development of a model, free from thdsertsomings is a still
challenging field of research. There is need toettgy an efficient model which would
directly predict the expected return. Accurate mtsah of future data/information such as
stock parameter (return) is a promising and intargsfield of research and has lot of
importance for commercial applications. However pinediction of stock return is not an
easy task, because the stock market indices agatedly dynamic, non-linear, complicated,
nonparametric, and chaotic in nature [4.8]. Theetiseries of stock parameters are also
noisy and random [4.9]-[4.10]. In addition, stocknket's movements are affected by many
macro-economical factors [4.11] such as politicadres, firms' policies, general economic
conditions, investors' expectations, institutiom&lestors' choices, movement of other stock
market, psychology of investors, etc.

A good number of research papers have been reportée field of stock market
prediction. Researchers have studied various mamsaomic factors to discover the extent
of correlation that may exist with the changesha stock prices and have extracted the
trends in the market using past stock prices amahwe information. Technical analysts and
researchers have believed that there are recypatigrns in the market behavior, which can
be identified and predicted. In the last few desadkfferent adaptive models have been
developed for forecasting financial parameters.s€h@odels can be broadly divided into
statistical models and soft-computing models. Oh¢he well known statistical methods
used for this purpose is auto regressive integrateding average (ARIMA) [4.12]. The
recent advancement in the field of soft and evohdry computing leads to a new
dimension in the field of financial forecasting.ffierent soft computing approaches using

variants of artificial neural networks (ANNs) haleen introduced by many researchers in
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this field. These include radial basis function B4.13], recurrent neural network (RNN)
[4.14], multilayer perceptron, multi branch neunatworks (MBNN) [4.15] and local linear

wavelet neural networks (LLWNN) [4.16]. These vat@of ANN have gained popularity

due to their inherent capabilities to approximatg aonlinear function to a high degree of
accuracy, less sensitivity to error term assumpti@md tolerance to noise, chaotic
components etc.[4.17]. Most artificial neural nett@ANN) based models use historical
stock index data and technical indicators [4.13jreedict market data.

In most cases, it has been observed that the geveltt and testing of the model
involve large computational complexity as well asrenprediction and testing time but lacks
in prediction accuracy. Majhet al. have proposed functional link ANN (FLANN) based
model for prediction of exchange rates [4.19]. Thaye reported that their simple model
provides improved performance compared to modeipqsed earlier. The same authors
have also achieved improved performance of thisehbg considering various statistical
parameters such as technical indicators basedsborical data and fundamental economic
factors [4.20]. The basic structure and trainingpathm for FLANN have been dealt with,
in Section 4.2. Recently two different adaptivecaidhms such as PSO and clonal-PSO have
been introduced to update the weights of the ptiedicmodel [4.21]. The prediction
performance has been shown to be better than wibkods.

In this chapter we have chosen the FLANN structargrediction of return and is
trained with evolutionary computing. The inputsthe network are some financial and
economic variables such as moving average, modensdian of input parameters. The
right combinations of these features are obtaingdiding evolutionary algorithms. The

network parameters are also trained using evolatipalgorithms. The corresponding risk
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of the predicted return is calculated. Considerihgse two conflicting objectives the
Portfolio optimization problem can be formulatedaamultiobjective optimization problem

and is solved by using MOEAs algorithm.

4.2. Evolutionary functional link artificial neural network

The functional link ANN is a novel single layer malinetwork proposed by Pao [4.22]. The
structure of the FLANN is very simple. It is a fla¢t with no hidden layer. Therefore, the
computation is few and the learning algorithm uisethis network is simple. The functional
expansion of the input to the network effectivetgreases the dimensionality of the input
vector and hence the hyper-planes generated biyLtABIN provide greater discrimination
capability in the input pattern space [4.23]. ltcapable of forming arbitrarily complex
decision regions by generating nonlinear decisimmblaries [4.24]. Here, the input has been
enhanced by using nonlinear function. This nonlinkemctional expansion of the input
pattern may be trigonometric, exponential, powereseor Chebyshev type. A number of
research papers on system identification and cbotnmonlinear systems, noise cancellation
and channel equalization have been reported imtdoees [4.25] using FLANN. These
experiments have demonstrated that the FLANN haguate potential to give satisfactory
results to problems with highly non-linear and dyima data. It has been shown that the
FLANN can be conveniently used for functional apgmuation and pattern classification
with faster convergence rate and lesser computdticomplexity than a multi layer

perceptron (MLP) structure.
4.2.1 FLANN as aforecasting system.

The block diagram of a FLANN forecastBygtem is shown in Fig.4.1.
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Fia. 41 Structure of the FLANM

Let X is the input vector of siziix1 which representsl numberof elements; th&"

element is given by:
X(n)=x,, 1sn<N 4.1

Each element undergoes nonlinear expansion to fdrralements such that the
resultant matrix has the dimensionN¥M. This nonlinear expansion of each element may

be trigonometric, exponential, power series or @akbv type. If the functional expansion of

the elementx, is carried out using power series expansion it péllexpressed as:

X, fori=1
Si=q . (4.2)
X, fori=234,.M
where | = 1,23......... M
For trigonometric expansion, the expanded elenmametexpressed as:
Xn fori=1
§j =<sin{7xp) fori=24,....M
cos(7/xp) fori=35,....M+1 43
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wherel =1,2;-- M/ 2. The Chebyshev polynomials are the set of orthagpolynomials

defined as the solution to the Chebyshev diffea¢rgguation. These higher Chebyshev

polynomials may be generated using a recursivedtamgiven as

Tn+1 =2XTn(¥) = Th-1(X) (44)
The first few Chebyshev polynomials are given by

T,(x) =1

T,(X)=x

T,(x)=2x?-1

To(x) = 4x3 - 3x

T,(x) =8x* -8x% +1

T5(x) =16x° — 20x> +5x (45)

Each element undergoes nonlinear expansion to fdrralements such that the

resultant matrix has the dimensionN¥M. In matrix notation, the expanded elements of the
input vectorE, is denoted bys of sizeNx(M+1). The bias input to the FLANN structure is

unity. So an extrainity value is suitably added to tl&matrix and the dimension of ti&
matrix becomedixQ, whereQ =(M +2).
Let the weight vector be represented B with Q elements given by

W =[wl w2 w3..wq]. The outputy(k) at instantk is given as

Q
NOEDIERY (46)
i=1
In matrix notation the output is obtained as
Yy =sw' (47)
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The error termK " instant is computed as
elk)=d(k)- y(k) 48)

whered(k) is the predicted value.

4.2.2. Learning Algorithms of FL ANN network

There are varieties of learning algorithms whick amployed to train different
adaptive models. The performance of these modglerdts on the rate of convergence,
training time, computational complexity involveddaminimum mean square error achieved
after training. The learning algorithms may be bligaclassified into two categories (a)
derivative based and (b) derivative free. The ddive based algorithms are least mean
squares (LMS), recursive least squares (RLS) aw#t peopagation (BP). The derivative
free algorithms are mainly based on evolutionampgotation such as GA, PSO and BFO.

In this section the details of these two categarfdearning algorithms are outlined.

(a) Derivative based Algorithms

Referring to Fig. 4.1 in Section 4.2.1, the eriignal e(k) atk" iteration can be computed
as follows:

Let £(k) denote the cost function at iteratioand is given by

£k)== > ej2(K) 49)

whereP is the number of nodes at the output layer.
The update equation for weight vector by applyiegst mean squares (LMS) algorithm

[4.29] is given by

w(k +2) = w(k) —% A(k) 410)
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whereﬁ(k) is an instantaneous estimate of the gradienf oiith respect to the weight

vector w(k) and is computed as

O(k) = g—vi =-2 e(k)%(k) =-2 e(k)w = -2¢(k)s(k) (411

Substituting the values dfﬂ(k) in equation 4.10 we get
w(k +1) = w(k) + pe(k)s(k) (412
where u denotes the step-sig@< 1 <1), which controls the convergence speed of

the LMS algorithm. It is called as learning ratd S algorithm. This is the weight update

formula for FLANN structure train with LMS [4.15.18].
(b) Derivative free algorithms/Evolutionary computing based algorithms

Evolutionary computing algorithms such as genetgoathm (GA), particle swarm
optimization (PSO), bacteria foraging optimizati@&@+O) etc. can also be used for training
the network [4.18]. For training the weights usbagteria foraging optimization (BFO), the
weights of the FLANN are considered as the bactanid initially their values are set to
random numbers. A population of such bacteria ¢seh to represent the initial solutions of
the model. Each bacterium updates its values usm@FO principle by way of minimizing
the mean square error (MSE) as the cost functibe. details of training of weight using
PSO and CPSO are presented in [4.20]. The weigbteansidered as particles and gene

while training the network using PSO and GA respet.
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4.3. Development of the prediction based mean-variance (PBM V)

modéel

This section proposes a prediction based portigtittmization model called as the
prediction based mean-variance (PBMV) model. Isysedicted returns as expected returns
instead of using the mean of past returns. Furtberrmstead of using the variance of the
returns it uses the variance of the errors of thedipted return as risk measure. An
investment is planned over a time period and itlopmance is measured using its return that
quantifies the wealth variation. The one periodclstoeturn at timet is defined as the
difference between the price of the stock at tinaaed the price at tinte-1, divided by the
price at tim¢ —1. Mathematically it is expressed as:

R=(R-Ry)/Ry, t21 413

whereR, is the one-period stock return at timeand PandP_; are the stock prices at times

t andt —1, respectively. The series & past returns of a sto€k , which is N period series
return is defined as

R, =(R. R Ry) (414

The prediction of stock return is a nonlinear tasid can be achieved using an
adaptive predictor. In this chapter we have usedANN structure as the predictor which is

explained in the previous section. The trainingFANN is performed using bacteria
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foraging optimization. Further Chebybyshev type lm@mar functional expansion of the
input pattern is used as it provides better forgagsesults

The predicted and the actual return beyepresented as:
Rt =R +E¢ (415

whereR and R be the actual return and predicted return at timespectively.

E, is the prediction error at timeand is defined as

E =R -R (416)
The time series oN errors of prediction is represented as:
E=(E,E,,.......EN) 417
For a non-biased predictor, the series of errorpretliction must be statistically

independent and identically distributed (iid), witfean and variance given by

mean= 0 (418
of=—>E (419)

The prediction-based portfolio optimization modelbased on the assumptions that

the mean of the errors of prediction is zero anel d¢irors of prediction have normal
distribution. The variance of the errors of preidict o2 reflects the uncertainty about the

realization of the predicted return and is useths model as a measure of the individual

risk of each stock (the higher the variance, tighéi is the risk).
A portfolio is a collection of N stocks and the corresponding weightage

(participations). The participation, of each assetw,i= 012....N. where Osw <1

represents the fraction of the portfolio value steel in the stock such that
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w, =1 (420
i=1

It shows the budget constraint which ensures timatstim of the weights associated
with each asset is equal to one which means allatfalable money is invested in the

portfolio. The predicted return of the portfolia, mortfolio expected returnR , is the linear

combination of the participations and predictedimet of the stocks of the portfolio and

may be expressed as
N ~
Ry =2 WR (429
i=1

The portfolio risk is the variance of the joint Mual distribution of the linear

combination of the participations and predictioroes of the stocks of the portfolio
np N N
V = Up = ZZ\NIW] yEij (422)

where 6% is the total portfolio risk and is equal to the igace of the linear

combination of the participations and predictioroes of the stocks of the portfolid\ is

the number of stocks in the portfolia; andw; are the participating stocksand j of the
portfolio respectively.y; is the interactive prediction risk of stockand j, which is the

covariance of the errors of prediction of the stichnd | .

The prediction based portfolio optimization modencbe formulated as single

objective maximization oY/ .

Vv =A|52]- (- A)[R,]

=A{iiwiwjyaj}(l—/l)w w H (423

i=1 j=1 i=1
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Hence such a formulation yields non-dominated &mistby varying theA(0< A <1)
factor. But in the present case, this problemesved as a dedicated multiobjective problem
and is solved by using two MOEAs. It does not carebihe two objectives to obtain the
Pareto optimal solution set. Here the two objestiee taken individually and the algorithm
tends to optimize both the objectives simultanepush the proposed work the two
objectives are expressed as minimization problem.eXpress both the objectives in

minimization form, the second objectiig, is expressed asR,. Accordingly the given

portfolio problem is expressed as:

Minimize botﬁ§ and — R, simultaneously (4.24)

Thus the novel prediction based mean-variance (PBMbftfolio optimization
model differs from the Markowitz mean-variance nicake (a) in prediction based portfolio
optimization model, the expected return of eacklsts its predicted return. But in the case
of Markowitz mean-variance model, the expectedrretsitaken as the mean of past returns.
(i) In PBMV model the individual risk of each sto@and the risk between each pair of
stocks are obtained from the variance and covagiaricthe time series of the errors of
prediction. But in the case of Markowitz modelstthe variance and covariance of the time
series of return. (iii) In prediction based porbobptimization model the normal variable of
interest is the error of prediction of the returdnstocks, while in the case of Markowitz

model the normal variable of interest is the retfrthe stocks.
4.4. Simulation studies

For simulation all the algorithms are coded in MAAB.and run on a PC with Intel

Core 2 Duo 3.0 GHz with 4 GB RAM.
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4.4.1. Data Collection

The experiments have been conducted with a se¢raftbmark data available online
and obtained from OR-Library [4.26]. The data csp@nd to weekly prices between March
1992 and September 1997 from different well knomtides such as Hang Seng in Hong
Kong, DAX 100 in Germany, FTSE100 in UK,S&P 100W$A and Nikkei225 in Japan.
This weekly price can also be found out from [4.Z#He numbers of different assets for the
above benchmark indices are 31, 85, 89, 98 and&giectively. Using each data the mean
return of individual assets is calculated from Weekly price. The data set PORT-1 and
PORT-5 correspond to the correlation between asBmtsfive markets respectively.
Covariance between the assets, evaluated from dhelation matrix, can be used for
calculating the risk of portfolio. The data (riskdacorresponding tradeoff return) for
standard efficient frontiers for the five stocksrdae found from PORTEF-1 to PORTEF-
5[4.26] which correspond to Hang-Seng, DAX 100, ETE0, S&P 100 and Nikkei 225

stock indices respectively.

4.4.2. The problem approach

(a) Using M ar kowitz mean-variance model

The raw weekly prices of all the stocks (assetdjvef market indices are collected.
The weekly return is calculated mathematically frims weekly price. The time series of
expected return of any asset can be found by edingl the mean of past returns
mathematically. The individual risk of each stoeidahe risk between each pair of stocks
are obtained from the variance and covariance eftithe series of return. The FLANN
network is not used for this model as it does regdhprediction to find out the expected

return.
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(b) Using proposed mean-variance model

The raw weekly prices of all the sto¢issets) of five market indices are collected.
The weekly returns is calculated mathematicallynfriiis weekly price. Then the FLANN
forecasting network is used to predict the weeklyimn by taking the calculated previous
weekly return as input parameter. Some statistigehbles such as moving averages, mode
and median of input is also provided to the netwdirks then expanded using Chebyshev
functional expansions and evolutionary computatsonsed to adjust the weight parameters

so that effective prediction is achieved.
(c) Constraint portfolio optimization usng M OEAs

By applying the two models, the risk and returralbthe assets are found out. After
calculating the return and risk, the portfolio optiation task is carried out by using some
efficient multiobjective evolutionary algorithms MEAs). Two MOEAs based on particle
swarm optimization such as non-dominated sortingigha swarm optimization( NS-
MOPSO) and decomposition based particle swarm afpictive evolutionary algorithm
(P-MOEA/D) have been applied to solve the portfaliptimization problem. Similarly
another two algorithms based on bacteria foragipinozation such as multiobjective
bacteria foraging optimization (MOBFO) and deconifims based bacteria foraging
multiobjective evolutionary algorithm (B-MOEA/D) txa been applied to the same problem.

4.4.3. Experimental results

The Pareto front corresponding to five market iedican be found in PORTEF-1 to
PORTEF-5 [4.26], called as standard efficient fronglobal optimal Pareto front (GOPF).
The GOPF for Hang-Seng stock is depicted in Fig.h.2hows the tradeoff between risk

(variance of return) and return (mean return).
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Fig.4.2 Global optimal Pareto frémt Hang-Seng, stock indices
The Pareto fronts obtained by different algorithimis Hang-Seng stock using the
proposed PBMV model is shown in Figs.4.3 to 4.1s Itompared with GOPF and Pareto

front obtained using Markowitz model.
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Fig.4.3 The GOPF and Pareto front by P-MOEA/D fanlg-Seng using Markowitz
and PBMV model
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Fig.4.4 The GOPF and Pareto front by B-MOEA/D fand-Seng using Markowitz
and PBMV model
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Fig.4.5. The GOPF and Pareto front by NS-MOPSOHfamg-Seng using Markowitz
and PBMV model
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Fig.4.6 The GOPF and Pareto front by MOBFO for H&egg using Markowitz and

PBMV model
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Fig.4.7 The GOPF and Pareto front by fdgoathms applying two models

It is evident from the results that all the aldomils are capable of providing good

solutions using the proposed PBMV model. The Pacatee obtained by applying PBMV

model is more close to GOPF.
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In our proposed PBMV model risk is calculated bkirig the covariance of time
series of the error of prediction of stock. Th& gan also be calculated using the covariance
of time series of predicted return. The Paretotfabtain by taking risk as covariance of

time series of predicted return is shown in figdi&.
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Fig.4.8. The GOPF and Pareto front by four algangrapplying two models
Further, the performance of these MOEAs is assdsgaasing five different metrics
such as theS,GD,IGD,A and Er. The algorithms are run for 25 times and then the

maximum, minimum, average and standard deviatiadhedge metrics are calculated and the

corresponding results are shown in Table-4.1.
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Table-4.1 Comparison of performance evaluation icgetbtained using different

MOEAs.
Algorithm P- P-MOEA/D | B-MOEA/D | B-MOEA/D NS- NS-MOPSO | MOBFO MOBFO
MOEA/D P) (M) (P) MOPSO P) (M) (P)
(M) (M)
S Max. 5.93E-6 5.67E-6 5.99 E-6 5.78 E-6 5.38 E 4% 5.22E-6 4.98E-6
Min. 2.51E-6 2.05E-6 2.38 E-6 2.08 E-6 2.32 E- 27606 2.33E-6 1.99 E-6
Avg. 3.62E-6 3.43E-6 3.93E-6 3.65 E-6 3.48 E 1E16 3.45E-6 3.05E-6
Std. 0.87E-6 0.79E-6 0.98 E-6 0.88 E-§ 0.76 E IES 0.85E-6 0.73E-6
GD Max. 2.63E-4 2.13E-4 2.92 E-4 2.23E-4 212E 9EH 2.16E-4 1.88 E-4
Min. 1.65E-4 1.15E-4 1.36 E-4 1.06 E-4 1.02 E 6(ER4 1.10E-4 0.96 E-4
Avg. 1.76E-4 1.45E-4 1.73E-4 1.43 E-4 1.58 E 5E4 1.45E-4 1.27 E-4
Std. 0.57E-4 0.53E-4 0.52 E-4 0.46 E-4 0.38E Q&2 0.36E-4 0.27 E-4
IGD | Max 9.10 E-4 8.50 E-4 9.21 E-4 8.81 E-4| 8.45El4 98F-4 8.30 E-4 7.88 E-4|
Min. 7.67 E-4 7.05E-4 7.76 E-4 7.26 E-4 6.35E4 .98F-4 6.45 E-4 6.02 E-4
Avg. 8.20 E-4 8.01 E-4 8.23 E-4 7.98 E-4 7.15E%  75&-4 7.10E-4 6.80 E-4
Std. 2.02 E-4 1.89 E-4 2.07 E-4 1.88 E-4 1.81E 75E-4 1.74 E-4 1.35 E-4
A Max. 2.34E-1 2.13E-1 2.41E-1 215 E-1 2.43E 6 Ea 2.45E-1 1.99 E-1
Min. 1.20E-1 1.01E-1 1.22 E-1 1.02 E-1 1.20 E 191 0.99E-1 0.90E-1
Avg. 1.45E-1 1.25E-1 1.49 E-1 1.38 E-1 1.34 E 9EaL 1.33E-1 1.03E-1
Std. 0.46E-1 0.36E-1 0.48 E-1 0.43 E-1 0.45E ELE] 0.47E-1 0.36 E-1
Er Max. 0.29 0.27 0.28 0.27 0.24 0.18 0.23 0.17
Min. 0.14 0.13 0.15 0.14 0.15 0.14 0.16 0.13
Avg. 0.21 0.20 0.22 0.20 0.19 0.16 0.18 0.15
Std. 0.07 0.06 0.08 0.07 0.06 0.05 0.06 0.04

The convergence metrid€) for these MOEAs are demonstrated in Table-4.2 It is

found that most of the solutions obtained by theBRO algorithm with proposed PBMV

model dominate the solutions obtained from others.
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Table-4.2. Comparison of results of C metric ol#dinsing different MOEAS

P- P- B- B- NS- NS-MOPSO(PMOBFO(M) | MOBFO(P)
MOEA/D(M) | MOEA/D(P) | MOEA/D(M) | MOEA/D(P) | MOPSO(M)
P-MOEA/D(M) — 0.2910 0.2720 0.2621 0.2430 G622 0.2110 0.2054
P-MOEA/D(P) 0.3180 — 0.2910 0.2800 0.2680 0.2531 02341 2171
B-MOEA/D(M) | 0.3620 0.3400 — 0.3210 0.2822 2612 0.2410 0.2321
B-MOEA/D(P) 0.4228 0.4077 0.3800 — 0.3288 ar9 0.2728 0.2520
NS-MOPSO(M) 0.4530 0.4320 0.3999 0.3600 — 2834 0.3232 0.2811
NS-MOPSO(P) 0.4721 0.4632 0.4211 0.3821 0.3455 — 3533, 0.3111
MOBFO(M) 0.4910 0.4732 0.4321 0.3922 0.3511 0352 — 0.3231
MOBFO(P) 0.5032 0.4821 0.4402 0.4288 0.3822 0.3722 0.3688 —

The nonparametric statistical test such as the &ighand Wilcoxon signed ranks

rest are carried out for pair wise comparisonshefgerformance of two algorithms [4.28].

The critical number of wins needed to achieve botkr 005 and o = 0.1 levels of

significance is shown in Table-3.8 in Section 3.2\6 algorithm is significantly better than

other if its performance is better on at leastdhges presented in each row.

The results of the Sign test for pairwise comparssamong proposed MOBFO(P)

i.e. MOBFO with PBMV model and other algorithms ehtaking the S metric as the

wining parameter (i.e. lower value & means win) and applying to Heng-Seng stock are

shown in Table-4.3. From the results it is cleat tthe MOBFO (P) shows improvement

over P-MOEA/D with a level of significanee= 001. This test can also be conducted using

other metrics as winning parameters.
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Table-4.3. Critical values for the two-tailed Sigist abt = 005anda = 0.1 using S metric
as winning parameter.

MOBFO(P) P- P- B- B- NS- NS- MOBFO(M)
MOEA/D(M) MOEA/D(P) MOEA/D(M) MOEA/D(P) | MOPSO(M) | MOPSO(P)
Wins(+) 17 16 16 15 15 14 13
Losses(-) 8 9 9 10 10 9 12

Detected o =001 — — — — — —
differences

The Wilcoxon signed rank test is carried out bycekiting R* and R™ and then
using well-known statistical software package SP$8&ble-4.4 shows tHe*,R™, z,
Asymp. sig (2-tailed), Exact sig. (2-tailed), Exai). (1-tailed) and point of probability
computed for all the pairwise comparisons with M@EF) consideringS metric as
winning parameter and applying to Hang-Seng marigites. The result of the Wilcoxon
signed rank test for other metrics can be testethfe case.

Table-4.4. Wilcoxon Signed test usit®) metric as winning parameter and applying

different MOEAs to Hang-Seng market indices

Comparison R+ R Z Asymp.sig Exact sig. (2- | Exact sig. (1-| Point of
(2-tailed), tailed), tailed) probability
'V'?VﬁhFOPfP) 19z 13z -0.79¢ 0.42i 0.43: 0.21¢ 0.00¢
MOEA/D (M)
M?VE:]:?DSP) 18¢ 13€ -0.71¢ 0.47¢ 0.48¢ 0.24: 0.00¢
MOEA/D (P)
M?vﬁr'?‘;_(P) 182 14z -0.711 0.46¢ 0.49¢ 0.25] 0.00¢
MOEA/D(M)
MOBEO(P) 185t 139.t -0.61¢ 0.53¢ 0.54¢ 0.27: 0.00¢
with B-
MOEA/D(P)
MOBFO (P) | 18( 14E -0.617 0.54: 0.557 0.27¢ 0.004
with MOPSO
(M)
voBro () | 15€ 16€ -0.16z | 0.87: 0.87¢ 0.44( 0.05
with MOPSO(P)
MOBFO (P)with | 16€ 157 -0.14¢ 0.88: 0.89( 0.44¢ 0.00¢
MOBFO (M)
MOBFO with 192 13< -0.79¢ 0.42i 0.43i 0.21¢ 0.00¢
B-MOEA/D
MOBFO with | 18¢€ 13€ -0.71¢ 0.47¢ 0.48¢ 0.24: 0.00¢4
MOPSO
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From the results it is concluded that the MOBFG(E) MOBFO algorithm with
PBMV model show improved performance compared gocdunterpart. Similarly all the
MOEAs can also be applied to other stock indicehsas DAX 100, FTSE 100, S&P 100
and Nikkei 225 using both models.

The presence of cardinality constrairts is also studied here. The Pareto fronts
obtained by applying MOBFO (P) for Hang-Seng datahsving different cardinalities are
presented in Fig.4.9K is set at 5 and is increased to 30 at a step ®h&.Pareto fronts
become shorter with increase lf values. Hence the proposed algorithm is able taiolat
near optimal solution efficiently by investing losmeumber of assets. The portfolio manager
has the option to make trade-off between risk agtdirns for different values oK.
Similarly the NS-MOPSO, P-MOEA/D, B-MOEA/D algoritis can be applied to different

market having a different cardinality constraint.
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Fig.4.9 The Pareto front obtained from MOBFO forngseng using proposed

PBMV model for cardinality constraint condition.
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The proposed algorithm is also applied for BSE-8B0mbay Stock Exchange) of
India. The raw weekly prices of 50 stocks (asdetsh 500 stocks are collected [4.27].

-3 BSE Stock
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Fig.4.10 The Pareto front obtained from NS-MOPS@ MOBFO for BSE stock

using PBMV and Markowitz model.
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4.5. Conclusion

A novel prediction based mean variance (PBMV) mduesd been proposed in the
chapter and four efficient MOEAs have been sucodgsémployed to solve the portfolio
optimization problem. In the proposed model themeis predicted with a low complexity
single layer neural network. The performance of greposed PBMV model and the
Markowitz model have been evaluated and compargdy s$x performance metrics. This
evaluation involves experiments with real data frone five Hang-Seng, DAX 100,
FTSE100, S&P and Nikkei 225 and Bombay Stock ExghgBSE-500) data. In addition to
this, in the present study the Sign test and Wico$igned rank test are carried out to
compare the performance of the algorithms. Fromsthrilation results it is observed that
the PBMV model is capable of identifying good Pareblutions maintaining adequate
diversity and the performance is comparable withwiell known Markowitz mean-variance
model. Further study in this field may include peniance evaluation of the MOEAs using
the proposed model considering some real world tcainss like ceiling, floor, round-lot,
turnover etc. The same multiobjective optimizatadgorithm can also be applied to other

financial applications such as asset allocatiak management and option pricing.
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Chapter

In this chapter the minimum volume ellipsoid (MVE)ethodology is adopted to handle
uncertainty of the stock market data. The uncestam in form of outliers present in the
stock data and occurs at random samples. The amtexs may be due to incidence like
Sep 11 or sudden fall of oil price or any politicaises. The value of stock at that
unexpected situation may be called as uncertaimekpected stock data. Firstly, the MVE
is formed covering the data that are not corrugigdoutliers. The unexpected data can
easily be differentiated from other data by clustgusing MVE method. In order to make
the method computationally efficient, the MVE isrrfeed by using the core set and
Lagrange multipliers. Secondly, the weight factercalculated by taking the parameters
associated with the ellipsoid. Then the unexpedaih are modified by multiplying the
weighting factor with it and the desired parametarsh as risk and return are calculated
from the weighted data. The trade-off (Paretro epubetween this new estimated return and
risk parameters are found out by using some effididOEAs using both Markowitz mean-
variance model and prediction based mean-variaR8M{) model as proposed in the
previous chapter. Simulation results reveal thatpgtoposed method exhibits good portfolio

strategy in the presence of these market uncadsaint
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5.1 Introduction

The mean-variance model, proposed by Harry Markoybtl], is a landmark in
modern portfolio theory (MPT). Subsequently someeotmethods such as semi-variance,
mean absolute deviation and variance with skewnesdel are also used for portfolio
optimization problem [5.2]. The idea of designingmadel by suitably modifying the
conflicting objectives is also investigated by ldnal. [5.3]. All these frameworks require
the knowledge of stock values from which these r®dstimate the expected return and
calculate the corresponding risk. However the stealkues are highly uncertain. This
uncertainty may be due to incidents like Septenildgrany political crises or the recent
turmoil in global markets which started from thaedincial sector. These uncertain factors
make the stock value uncertain and deviate he&wahy its actual value. The value of stock
indices due to these types of unexpected situati@y be considered as uncertain or
unexpected stock data. These uncertain valuesook shay be called as outliers. Hence,
inaccuracy creeps in while estimating the returd ask by using such contaminated stock
values.

Most of the aforementioned models consider thenedéd parameters as the actual
parameters without considering these types of tmiogy which limits the versatility of
these models. Hence, the problem of portfolio op@tion becomes more challenging and
complicated under these uncertain conditions.

In the last two decades, robust optimization urslerth conditions has become an
interesting area of research. Soystenl. [5.4] were first to introduce the idea of robust
optimization. In general, the robust optimizatioimms to find the solutions to a given

optimization problem with uncertain parameters. @bthors if5.5] havedeveloped a new
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robust methodology using interior point based atgor to find the robust solution. They
have also applied a robust method to some portégiomization problems and have shown
that the final optimal solution remains feasibleaiagt the uncertainty on different input
parameters.

Robust optimization has been applied to portfoétestion problem to alleviate the
sensitivity of optimal portfolios to statisticalrers in the estimates of the parameters.
Goldfarb and Iyengar [5.6] have considered a fastodel for the random portfolio returns
and have proposed some statistical procedures ristraat the uncertainty sets for the
parameters. Bertsimas and Pachamanova [@avé investigated the viability of different
robust optimization approaches for multi-period tfmdio selection. Recently robust
optimization has been applied to different fieldsluding finance and industrial problems
[5.8-10].

In these studies, the robust optimization modedattthe asset returns as uncertain
coefficients and map the level of risk aversionhaf investor to the level of tolerance of the
total error in asset return estimation. Howevethiese robust optimization techniques, the
program dimension increases exponentially as tres & the problem i.e. number of assets
present in the portfolio optimization increasese Tdifficulties become more pronounced
when the number of constraints becomes more. Tdrerethere is a need to develop robust
portfolio optimization techniques which can handféciently the outliers present in the
financial data.

In this Chapter, we propose a new framework usivg MVE methodology for
achieving robust portfolio optimization. The MVE fermed by using the core set and
Lagrange multipliers. Some weight factor is caltedaby taking the parameters associated
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with the ellipsoid. Then the data are modified byltiplying each of them with the weight
factor. The weight factor is designed in such a Wy it does not change the data those are
present inside the ellipsoid. The magnitude of dadge are present outside the ellipsoid are
suitably decreases. Then the desired parametensasudsk and return are calculated from
the weighted data. The trade-off (Pareto curveyvben this new estimated return and risk
parameters are found out by using some efficienBE)& In this present study, the
portfolio optimization problem with practical coraints has been solved by applying four
MOEAs such as MOPSO, MOBFO, MOEA/D-P and MOEA/D1Bagithms and using both

the Markowitz mean-variance model and proposed PBidels.
5.2 Development of robust portfolio optimization under uncertainties

Since the data of the market do not chafegeswith time, all the data points remain
close to each other forming a cluster in multidisienal space. However, in the presence of
uncertainty, the market data points deviate frannibrmal deviation. In multidimensional
space these unexpected data remain away from tstecdd data. Moreover, every
unexpected datum also remains away from each atbpending on the strength of the
outliers. So the first objective is to suitably nfgdhe uncertain data.

In order to achieve this, the minimum volume ebips(MVE) method [5.11-13] is
applied to get an ellipsoid covering healthy (goddda points. This covering of finite data
set using MVE is a convex optimization [5.14] pril which is formulated as:

Q.c= argngin log Det(Qy+1)
,C

St (Xga1 — Csn)’ Qe (Xiesq = Cpar) €1
Kk=1..n 1)

whereQ,,,, c,,, are the spreading matrix and the center assdorth the ellipsoid.x,,, ,
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k =123...,n are the good market data set. The above convémiaption problem can be
solved by using interior point method [5.15]. Howethis method requires large amounts
of computational complexity. In order to avoid thithe Lagrange multipliers based
approach has been used. The Khachiyan's algorith@6],[5.17] is one such method to
calculate the MVE using the Lagrange multipliers. dpply the Khachiyan’s algorithm the
data should be symmetric across the origin. Inot@enake this, firstly the data number is
increased to two times by first collecting the daa then multiplying by 1 and -1.Then 1 or
-1 is padded according to the data is multipliedlbgr -1 respectively. By this wap
numbers of data points change Bm number of data points with one extra dimensionctwhi

is symmetric to the origin. Mathematically, it ivgn by

S ={t yp, it ¥y} (5.2)
wherey, and-vy, are

ty =lrix o)
-y, =[-1x (%) 63

Since the new data points are symmetric with resjpethe origin, the center of the
MVE to be formed lies at the origin. Hence the mradj ellipsoid is related to this new MVE
to be formed as:

MVEE (S)= MVEE (S') N H (54)

where MVEE (S) means the minimum volume ellipsoid enclosi8@riginal points and

MVEE (S) is the minimum volume ellipsoid enclosif®new high dimensional points.

and H is mathematically expressed as
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H ={xOR™ : Xy, =1} (55)
Now the formulation of the MVE for the data of higimension is given by
QP =argmin - log Det(Q")
st yQy;<1,i=1....,n (5.6)
Now the Lagrange multipliers [5.18] based MVE aaasily be found from the
optimum point which is obtained by taking the K&rush—Kuhn-Tucke(KKT) condition.

This is given mathematically as

z (1—yI’Q yi) =0,i=1...,n
yQy <1
zZ =0 B.7)
where M :0O" - O@wx@D
which is given by
n(z):= z ZiYiYi (58)
In order to achieve the optimum point based orkik& condition the duality problem is
mastogdet(u)
u
st. €u=1
u=0 (59

This dual problem is the maximization of a concduaction. So the optimum MVE

covering S is given as

MVEE (S)= {x 0o y(d+1)][x 1 n (u* )1m 21} (510)

where ,M(u’) is defined in terms of the parameter of the MMEhe original problem in
the following way

n (u* ) {PU; i Pﬂ (519

Then applying the Schur complement [5.19] to th&Xh we obtain
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0 1 0 1
Then the inverse ofl(u” i3 given as

] 1 0 iy ) "
n(u*) :{_(PU*)' 1] (PU*P—PL(J) (Pu jJ (l) Ll) —Fiu } (513

The original MVE problem is related to the parametiethe new MVE problem of higher
dimension by the formula given in (5.14)

k)= [i PP oL g g

MVEE (8) = Oy = {XDD ¢:x-c ) Q (x-¢ )sl} (514)

where,
Q*:(yd)(Pu*PH—PJ(PJ)J

¢ =PU (5.15)

The method of duality problem expressed in (5.%ased on the entire data set. It is
a fact that the MVE of any number of data set wiithensionsL can be the obtained from
2L number of points which may occur at the circumieeesof the data set. These 2L points
are subset of originah number of points. To find out thiBL number of points the Gram
Schmidt Orthogonalisation procedure is used inGhapter. In this procedure, a vector is
randomly selected and then all the points are ptejeupon that vector. Furthermore, only
two points are selected that are having large amdllsmagnitudes of projected values.
These two points are used to find the new vectaclwis passing through these two points.
Subsequently, another vector is selected whicleipgndicular to this new vector. Another
two points are found out by applying similar prajec based approach. This procedure of
finding the orthogonal vector and the points basegrojection is repeated number of times

of the dimensions i.eL. number of times. The number of points obtainedhiy procedure
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is called the core set of the data points. Thegseonde of this algorithm is dealt next.

The pseudo code:

Fori=1:n
if n<2d

Xo<S
else
while
0¢/wzge
Pick anarbitrarydirection b'DRY
orthogonal component of W

@ — argmax (bi ) P, Xo - {)(o D{pa}}
k=1...,n

B — argmax (bi ) P*, Xo - {)(o D{pp}}

k=1...,n

w . span (w,{p” - p}
end (516)

The next objective is to find out the MVE from tbere set. Thus the computational
complexity of the MVE decreases. The dual probldrnthe original MVE problem taking

only the core set point is given by

max Zn:Vk(yk )' n (Ui )_1 Yk

n
vOR k=1

st ev=0, v=0. (517

Now the (5.17) is solved by using Khachiyan’s aldpon and is given by

k)= max vy (ui)_lyk (518)
k=1...,n
Ut == g+ e, (519
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B = argmax log det I ((1—,B)ui +ﬂejj
pojol]

[k -( +1)}/{(d +1) (! -1” (520

Thus a MVE is formed covering the datawihout outlier inside of it. The data
contaminated with outliers are present outsidet.oTlhe next objective is to find out the
weight factor for every data point.

The data presented inside the MVE remains as treeprad the data away from the

MVE are provided lesser importance. The points iemg far away from the ellipse are
assigned lesser weightage than those which amesitunearer to it. In order to calculate the
required weight values the Mahalanobis distanc23]5s found out by using the parameters

of the MVE and is given by

M(x;) :\/(Xi -¢) Q% -¢) (629

Now the weight factor corresponding ¥p is given as

! :min{l' \/(Ui ‘Ci))(Tpg:(Ui -G )} ©

To obtain the modified datay, is multiplied to each of it. It is clear from (ZPthat
w; is 1 for those data present inside the ellipsoi this factor computed from (5.22) is less
than 1 for those data outside the ellipsoid.

5.3 Forecasting networ k

The same FLANN network as discussed in Chapter dsésl in our study. In the
simulation, the bacteria foraging optimization (BH@ased algorithm is used for updating

the weights of the network. A population of sumdcteria is chosen to represent the initial
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solutions of the model. Each bacterium updatesvaisies using the BFO principle by

suitably minimizing the mean squares error (MSBEhascost function

5.4 Simulation study

To evaluate the performance of the proposed alguriteal life data are collected
and used. The algorithm described in the previeaian is coded in MATLAB and runs on
a PC with Intel Core 2 Duo 3.0 GHz with 4 GB RAM.

5.4.1 Data collection

The data for 31 stocks from Hang-Seng, 85 from DKO0O, 89 from FTSE 100, 98
from S&P 100 and 225 from Nikkei 225 stock indice® obtained from the website
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/pofti.html [5.20]. The data of PORT-1 and
PORT-5 correspond to weekly prices between MarcB218nd September 1997. The
weekly price of these stock can also be found from
http://in.finance.yahoo.com/q/hp?s=%5EHSI [5.21mifarly the weekly closing price of
the day of stocks for BSE is available in http:firance.yahoo.com/q/hp?s=%5EBSESN[5.
22]. In the present study, the weekly stock valfddang-Seng, DAX 100, FTSE 100, S&P
100 and Nikkei 225 between March 1992 and Septern®@r were collected. A subset of
20 stocks from the 500 stocks that participate@ombay Stock Exchange (BSE-500) index
between December 2008 to January 2012 has beeateskfer the present study. The data
collected for each one of these 20 stock indicesisted of the weekly closing price of the

stock.

152



Chapter:5 Novel Robust Multiobjective Portfolio Optimization Schemes

5.4.2 Construction of MVE from real life data

In the present study, it is assumed that some peodahe collected stock data of all
the markets are contaminated with outliers. At filse attempt is to neutralize the effect of
outliers by using the MVE methodology. As explainiedthe previous section, the data
without outliers will lie inside the ellipse andetidata contaminated with outliers will remain
outside it. This cannot be displayed in multidimenal space. To make the MVE method
more clear, we have considered two stocks and iexfila same in two dimensional space.
Two stocks such as State Bank of India (SBI) andl @udia Limited (CIL) from BSE-500
stock is selected between period November-1, 2611ahuary-31, 2012. The ellipsoid is
found out by applying the MVE method and is showrfig.5.1.The x-axis represents the
stock value for SBI and y-axis represents the st@ike for CIL. It is observed that some
points are present outside the ellipse. It impilies on some days the stock values changes
abruptly from its normal variation. This heavy fluation of stock value is primarily due to
some unforeseen situations such as sudden faill pfice or political crisis etc. The stock

values on such days may be considered as outliers.

360

350

3401

330

320

Stock value of Coal India

| | | | |
1500 1600 1700 1800 1900 2000 2100
Stock value of State Bank of India

(@)

153



Chapter:5 Novel Robust Multiobjective Portfolio Optimization Schemes

360

350

3401

330

320

3101

Stock value of Coal India Limited

| L | | |
1500 1600 1700 1800 1900 2000 2100
Stock value of State Bank of India

(b)

360

350 —

3401 * b

3301 . _

4+

320 b

3101 —

Stock value of Cole India Limited

[ [ [ [ |
1500 1600 1700 1800 1900 2000 2100
Stock value of State Bank of India

(©

154



Chapter:5 Novel Robust Multiobjective Portfolio Optimization Schemes

360

350 .
340+ * .

3301 * -

4

320 b

Stock value of Coal India

3101 b

L L L L |
1500 1600 1700 1800 1900 2000 2100
Stock value of State Bank of India

(d)

360

3501 3 b

3401 * -

3301 * b

3201 B

3101 b

Stock value of Coal India

L L L L L
1500 1600 1700 1800 1900 2000 2100
Stock value of State Bank of India

(a)Assuming %0of coIIecte((?)data are contaminated by outliers.
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(e)Assuming%Qof collected data are contaminated by outliers.

Fig.5. 1 Minimum volume ellipsoid f&BI and CIL stock data from November to
January 2012
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The weight factors associated with such data dreileded. These data are suitably

modified by multiplying the weighting factor obtait using (5.22).

5.4.3. The problem approach

(a) Using M ar kowitz mean-variance model

The MVE is applied to the weekly price of the stoand accordingly they are
modified. The new data set is used to calculatectineesponding modified weekly returns.
The expected return is calculated by taking the mafathe modified weekly returns and

accordingly the corresponding risk is found out.

(b) Using our proposed prediction based mean-variance (PBMV) mode

In this case also the MVE is applied to the wegkige and it is suitably modified.
Using the new set of data, the weekly return isudated mathematically. Then, the FLANN
forecasting network is used to predict the futureekly return by taking the modified
weekly return as input parameters. The modifiedkiyeesturn is not directly used as input
rather some statistical information such as mowngrages, mode and median of the input
parameters are considered as the input to the retWben, it is expanded using Chebyshev
functional expansion to transform the input infotima to nonlinear form. Evolutionary
computation selectively chooses functionally exmahdariables for effective prediction.
The weights of the FLANN model has been efficierttigined using BFO algorithm. In
addition, the input features are also weightedablyt and the weight factors are also

obtained using BFO.
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(c) Constraint portfolio optimization using MOEAs

By applying the two models, the risk and returnrafividual assets are found out.
This process is repeated for all the assets. Af&mating the return and risk of individual
assets, the portfolio optimization is carried oyt Ussing some efficient MOEAs. Two
MOEAs (MOPSO, MOBFO) based on non-dominating sgrtiand two based on
decomposition (P-MOEA/D, B-MOEA/D) have been apgli&he constraint handling issue
has also taken into consideration in the optimizapirocess.

5.4.4 The smulation results

In previous chapter we observed, under identicalitmn, the MOBFO algorithm
gives the best possible solutions among all MOHBAence in this section we have applied
MOBFO to Heng-Seng and BSE-500 stock indices assyih0%,20%,30%,40%,50% of

the stock data are contaminated by outliers.
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Fig.5.2. Global optimal Pareto frémt Hang-Seng, stock indices
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(e)
(a) applying MVE method and using the PBMV model
(b) applying MVE method and using Markowitz mean-vaci& model
(c) without applying MVE method and using the propoB&MV model
(d) without applying MVE method and using Markowitz meaariance model
(e) for all the four conditions

Fig.5.3. GOPF and Pareto front obtaingdfiplying MOBFO to Hang-Seng stock
assuming 20% of the data are contaminated witinecs.

The global optimal Pareto front (GOPF) correspogdia Hang-Seng stock is
depicted in Fig.5.2. From Fig.5.3, it is clear tlthé Pareto front obtained by MOBFO
applying the MVE method and proposed PBMV modeljate the best Pareto solution. The

C metric is used to compare between this four dfieconditions as shown in Table-5.1.
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Table-5.1.Comparison of results Gf metric for MOBFO with different condition

Without MVE and Without MVE and With MVE and With MVE and
Markowitz PBMV Markowitz PBMV
Without MVE and Markowitz - 0.3988 0.3652 0.3211
Without MVE and PBMV 0.4523 0.4421 - 0.4012
With MVE and Markowitz 0.4672 _ 0.4523 0.4242
With MVE and PBMV 0.5722 0.5421 0.5012 -

From the performance metf, it is observed that MOBFO algorithm is giving

better Pareto solution applying MVE and using PBlddel. The obtained results can be

tested using six performance metrics and analyttiagPareto front obtained. The statistical

testing can also be performed for in depth analyidie Pareto fronts obtained by assuming

20%, 30%, 40%, 50% of stock data contaminated Ibyeosi are also shown in figure 5.4. It

is seen that the results obtained are comparalgado other.

Hang-Seng with 31 Assets
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Fig.5.4.Pareto fronts obtained by applying MOBFOHang-Seng stock assuming 10%,

20%, 30%,40% and 50 % of the data contaminated auithers.
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Subsequently the MOBFO algorithm is applied to hanbde cardinality constraint
for DAX 100 stock applying MVE method and using PBIivhodel.

DAX 100 with 85 Assets

0.01 \
0.009 4
0.008F- 4
0.007F 4
£ 0.006+ 4
=2
o —K=10
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0.003F ——K=50|
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0 0.5 1 15 2 25 3
Variance of return % 10°

Fig.5.5.Pareto front for MOBFO for DAX 100 stocktaaby applying MVE method
using PBMV models in the presence of cardinality.
Thus, the MOBFO can handle cardinality constraifficiently by applying this
combination of MVE method and PBMV model.
The MOBFO algorithm is applied to 20 stocks of B8Eere it is assumed that 10

percent of the stock is uncertain due to outli€se Pareto front obtained with and without

applying MVE method is shown in Figs.5.5.
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BSE stock
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(e)
(a) applying MVE method and using the PBMV model
(b) applying MVE method and using Markowitz mean-vaci& model
(c) without applying MVE method and using the propoB&MV model
(d) without applying MVE method and using Markowitz meaariance model
(e) for all the four conditions
Fig.5.6. The Pareto front obtained by apgyWhOBFO to BSE-500 stock

Similarly MOBFO can also be applied to other stoukces such as FTSE 100, S&P
100 and Nikkei 225 using both models. Similarly BEA/D, B-MOEA/D, NS-MOPSO,

MOBFO can be applied to different markets by apmgyMVE and using PBMV model.
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5.5 Conclusion

The Minimum volume ellipsoid (MVE) methodology devised by using core set
and Lagrangenultipliers and is suitably applied to handle utaeity present in the stock
market data. The data with outliers are modifiedrjtiplying appropriate weighting factor
with the data. The FLANN network is chosen for pcadg the desired parameters such as
risk and return from the modified weighted datauFMOEAs have been employed to
obtain the final Pareto solution using this newnested return and risk parameters. The
experimental result reveals that the MOEAs are #&blgrovide efficient Pareto solution in
the presence of outliers in the stock data. In tamdithe MOEAs provides better Pareto
solution using proposed prediction based mean+vegigPBMV) model as compared to
Markowitz mean-variance model.

It can be concluded that the proposed MVE methogsyia quite satisfactory
solution in the abrupt build-up of situations anxhibits good portfolio strategy. The
implementation of the proposed model can also e do a variety of benchmark data sets.
The performance of proposed method can also beiaeal considering other real world

constraints such as round-lot, turnover and trading
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Chapter

In many situations, it is required to invest thenmy for future, but the relevant future data
are not available. In addition, the present dagacantaminated by outliers. Such complex
problem needs an acceptable solution by involvolgust prediction followed by efficient
optimization method. For this robust prediction,e tHLANN model trained with
evolutionary computation is used as a predictoe fLhure return and risk of all assets have
been predicted by FLANN using Markowitz model angdiction based mean-variance
(PBMV) model. Then, constraint portfolio optimizati is obtained using four efficient
MOEAs. The experimental results reveal that, theppsed PBMV model in combination
with MVE followed by efficient MOEAs give efficientportfolio strategy for future

investment.

171



Chapter:6 Prediction Based Robust mean-variance Model for Constraint Portfolio Optimization

6.1 Introduction

The investment of funds in the presence of outlisrsa very challenging and
interesting problem. The handling of uncertainty lieeen reported by many researchers
[6.1-6.8]. Tutuncu and Koenif$.2] consider a box-type uncertainty structure for theam
and covariance matrix of the asset returns. Thee leolved the portfolio optimization
problem by formulating it as a smooth saddle-ppnablem in this uncertain condition. Zhu
and Fukushimdg6.3] havedemonstrated that the portfolio optimization problean be
formulated as linear or second-order cone progtayrsonsidering conditional value-at-risk
(CVvaR) for handling uncertainty. Huamgjal. [6.4] haveformulated the portfolio problem
with uncertainty as a semi-definite program whemly artial information on the exit time
distribution function and the conditional distritlmut of portfolio return are available. De
Miguel and Nogaleg6.5] have proposed a novel approach for portfolio selectign b
minimizing certain robust estimators of portfoligk: In their approach, robust estimation
and portfolio optimization are performed by solviagingle nonlinear program. Quaranta
and Zaffaron{6.6] studied a portfolio selection model in which thethoelologies of robust
optimization are used for the minimization of tlwnditional value at risk (CVaR) of assets.
In the work of Seyed Jafat.al. a new framework has been presented and the chiylina
constrained portfolio problem is efficiently solvadhen all input parameters are subjected
to uncertainty[6.7]. Bertsimas and Pachamar{6\@] havestudied the viability of different
robust optimization approaches for multi-periodtfmio selection.

However, in these robust optimization techniquesglogram dimension increases

exponentially, as the number of assets presentheénpbortfolio optimization increases.
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Moreover, the problem becomes more challenging wimamy practical constraints are
considered.

In many situations it is required to invest moneyuture where the future data are
not available. In the recent times attention hanldecused on future investment of the fund
[6.9]. Kia-Hong Tee uses the n-degree lower panti@ament (LPM) models and analyzes the
effect of downside risk reduction on UK portfolioversification and returns for managing
funds in future.

In many situations, the future fund investmentha presence of outliers is important
but difficult to solve. In the combined presencetbése two conditions, the portfolio
strategy becomes more challenging and is yet texptored. In the present study, the first
challenge of handling the outliers present in tiput data is same as described in chapter 5.
The minimum volume ellipsoid (MVE) which is formdx; using core set and Lagrange
multipliers, differentiate the data having outliarsd without outliers [6.13], [6.18]. Then the
weight factor associated with each uncertain dagicelculated by taking the appropriate
parameters associated with the ellipsoid. The wdagttor is designed in such a way that it
does not change the data those are present insdellipsoid but suitably decreases the
magnitudes of data which are present outside ie Wkight factor is lowest for data far
away from the center of the ellipsoid and vice-ser§hereafter, the weight factors are
multiplied with uncertain data to suitably modity i

The second challenge of investing money in differagsets requires a robust
predictive algorithm. The FLANN which has been sssfully applied in chapter 4 is used
as the predictor. The literature survey reveals tta performance of FLANN is improved

by providing some technical indicators of stockadatstead of giving it directly [6.12].
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Moreover evolutionary computation can be used toosk some of the expanded branch
selectively to reduce the computational time bgeeng the branch having less contribution
to the output [6.13]. In [6.13] it is shown thattife weight of each branch is updated by
evolutionary computation it becomes less susceptibl local optima problem and also
consumes less time to update the weight. In thigptem the FLANN is applied for

prediction of risk and return of each asset usireykdwitz and proposed PBMV models.

The Pareto solutions of portfolio are found outusyng four efficient MOEAS techniques.

6.2 Development of prediction based robust mean-variance
model for constraint portfolio optimization

For the development of prediction based robust mothee minimum volume
ellipsoid (MVE) method followed by FLANN using pnetion based mean-variance

(PBMV) model is applied.
6.2.1 Minimum volume dlipsoid

In this chapter also the same MVE approach is agplo mitigate the effect of

outliers in the stock values.
6.2.2 Forecasting M odel

A low complexity FLANN employing Chebyshev funct@rexpansion as explained
in Chapter 4 is used as a forecasting model. Thecésting potentiality of a network
becomes efficient if fundamental analysis factors ased as inputs. The fundamental
analysis is the study of economic, industry, andangany conditions in an effort to
determine the value of a company's stock. Ten teahindicators and five fundamental

analysis factors are used as important parameterstudy the future stock movement
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efficiently. These ten indicators are explainedéction 6.2.3 followed by five fundamental
analysis factors in section 6.2.4. Bacteria forggiptimization (BFO) algorithm is used for
selecting some of the indicators and for updativegweights of the network. Each bacterium
represents one weight of the forecasting modelopufation of such bacteria represents the
initial solutions of the model which are iteratiyalipdated using the BFO principle by
minimizing the mean squares error (MSE) as the fogttion. The input to the network is
nonlinearly expanded using Chebyshev functionabagns.

6.2.3 Technical indicators

The technical indicators have been used [6.13]npsits to FLANN model to
improve the performance of prediction. These teddrindicators have been obtained from
past stock market data. Technical indicators apontant features to predict the future price
levels, or the general price direction. A brief xyation of each indicator defined in [6.13]
is provided in Table-6.1. These are:

(a) Simple Moving Average (SMA)

It is the simple average of the values by takingraedow of the specified period.

(b) Exponential Moving Average (EMA)

It is also an average of the values in the spetifieriod but it gives more weightage to
recent values and thus it is more close to theahwalues.

(c) Accumulation/Distribution Oscillator (ADO)

It measures money flow in the security. The ADO saitm measure the ratio of buying to
selling by comparing price movements of a perioth®volume of that period. Also it has

been calculated for each day.
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(d) Stochastic Oscillator (STO)

The stochastic Oscillator is a momentum indicatat tshows the location of the current
close relative to the high/low range over a setwhber of periods. Closing levels which are
consistently near the top of the range indicateiecdation (buying pressure) and those near
the bottom of the range indicate distribution {sgllpressure).

(e) On Balance Volume (OBV)

It is a momentum indicator that relates volumeriogpchange.

(f) Williams %R (WILLIAMS)

It is @ momentum indicator that measures overbdagétsold levels.

(g) Relative Strength Index (RSI)

It calculates the internal strength of the security

(h) Price Rate of Change (PROC)

The PROC indicator displays the difference betwercurrent price and a previous closing
price for a given time period ago.

(i) Closing Price Acceleration (CPACC)

It is the acceleration of the closing prices duttimg given period.

(1) High Price Acceleration (HPACC)

It is the acceleration of the high prices in theegi period.
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Table 6.1. The list of technical indicators witkithformulae used as inputs

Technical Indicators

Formula

Simple Moving Average (SMA)

1 N
N2

i=1

N = No. of Days X = today’s price

Exponential Moving Average (EMA)

(Px A) +(Previous EMAx (1A ); A=2/(N+1)
P — Current Price, A- Smoothing factor, N-Time Beéri

Accumulation/Distribution Oscillator
(ADO)

(C.P-L.P)-(H.P-C.P))
(H.P - L.PXx (Period's Volum

C.P - Closing Price, H.P — Highest price, L.P — kstprice

Stochastic Oscillator
(STO)

%K = (Today's Close - Lowest Low in K period)
(Highest High in K period - Lowest Low in K period)

%D = SMA of %K for the Period.

On Balance Volume
(OBV)

If Today's Close > Yesterday's Close
OBV = Yesterday's OBV + Today’s Volume
If Today’s Close < Yesterday's Close
OBV = Yesterday's OBV - Today's Volume

WILLIAM’s %R

%R = (Highest High in n period - Today's Close) 100
(Highest High in n period - Lowest Low in n period)

Relative Strength Index
(RSI)

100
1+ (U/D)

RSI =100 -

U= total gain/n, D= total losses/n, n = number & Reriod

Price Rate Of Change

(Today's Close - Close X-period ag&)oo

(PROC) (Close X-period ago)
Closing Price Acceleration ( Close Price - Close Price N-period ago) -
(CPACC.) (Close Price N-period ago)
High Price Acceleration ( High Price - High Price N-period angOO
(HPACC) (High Price N-period ago)
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6.2.4 Fundamental analysisfactors

In addition to technical indicators which dependtbea past value of the data other
features known as fundamental analysis factorsalseused as inputs. These are generally
macroeconomic parameters which affect the stoclkebaFive fundamental factors used in
the study are crude oil prices, United States’ Gp®wth rate, corporate dividend rates,

federal interest rates and commodity price indeRI{C
6.3 Simulation studies

In this chapter the algorithms are coded in MATLABd were run on a PC with

Intel Core 2 Duo 3.0 GHz with 4 GB RAM.
6.3.1 Data collection

The data for Hang-Seng and Nikkei-225 stock indisese obtained from OR-
Library which is maintained by Prof. Beasley [6.14he data of PORT-1 and PORT-5
correspond to weekly prices between March 1992 September 1997. The numbers of
different assets for the above two benchmark irsdare 31 and 225 respectively. The daily
closing price, opening price, lowest value, anchbgj value on the day and the total volume
of these stocks and weekly closing price are alsdlable in [6.15]. Similarly these daily
and weekly stock information for BSE have beenemt#éd from [6.16]For the present
study the daily and weekly value of 20 stocks fradeng-Seng, 20 from DAX 100, 20
from FTSE 100, 20 from S&P 100, 20 from Nikkei 22&d 20 stocks from the BSE-500

stocks between December 2008 to January 2012 lesredwollected.
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6.3.2 The problem approach

(a) The procedurefor MVE

We assume 50 percent of the collected stock datallahe markets are having
outliers. The MVE approach discussed in Chaptes &pplied to nullify the effect of
uncertainty which modifies the unexpected data ytiplying it with appropriate weight
factors. In Markowitz model the MVE method is apglito all the daily closing price,
opening price, lowest value, highest value on e ahd the total volume of stocks. But in
the proposed PBMV model, the MVE is applied onlytte daily closing prices of stocks.

(b) Using M arkowitz mean-variance model

In this model the daily closing price, opening pritowest value, highest value on
the day and the total volume of stocks present wittiers are collected and are modified
using the MVE. Ten technical and five fundamentalicators defined in Table-6.1 are
calculated using the collected data. These indisace employed as inputs to the FLANN
forecasting model. The FLANN is used to predict thesing price of the stock for future
time. Evolutionary computation technique is useds&dect some proper indicators for
achieving effective prediction. The weights of tReANN are also trained with the
evolutionary computation based method. In the prtesenulation, the BFO algorithm is
chosen to train the network parameters. The owptite FLANN structure provides future
stock values. From this predicted closing prices $itock returns for a time horizon are
computed. The return after a specified time isntigan of calculated returns. The individual
risk of each stock and the risk between each dastaxrks are obtained from the variance

and covariance of the return time series.
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(c) Using proposed prediction based mean-variance (PBMV) model

In this model, the unexpected weekly closing steekues are modified using
minimum volume ellipsoid (MVE) method. Then the Wigepast returns are calculated
from this modified weekly closing value of stockélinputs used for the FLANN structure
are financial variables such as the moving averapele and median of the calculated past
return, and the right combinations are selectedgushe BFO tool. The weights of the
network are also trained by BFO. The output of FBANN gives future returns. This
process is repeated for all the assets to prduéctorresponding returns after a fixed time.
The individual risk of each stock and the risk betw each pair of stocks are obtained from
the covariance matrix of the time series of erafrprediction. The individual risk of each
stock (variance) is found out by from the diagaglaments of the matrix.

(d) Constraint portfolio optimization using MOEAS

Using two different models the future risk and ratof individual asset are found
out. This process is repeated for all assets. Afstimating the return and risk of all assets
for a fixed time the portfolio optimization with @ practical constraints are carried out by
using NS-MOPSO, MOBFO, P-MOEA/D and B-MOEA/D mulbjective optimization
algorithms.

6.3.3 Experimental results

In this section we have applied MOBFO to Heng-Sand BSE-500 stock indices

for future portfolio strategies. It is assumed th@fo of stock data are contaminated by

outliers.
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Hang-Seng with 31 Assets

0.01-

0.009-

0.007-

0.006

0.005-

Mean return

0.004

0.003-

0.002- b

== Global optimal Pareto front |

0.001-

0 | | | | | | | | |
0 0.5 1 1.5 2 . 3 3.5 4 4.5 5
Variance of return

x 10

&

Fig.6.1. Global optimal Pareto frémt Hang-Seng, stock indices
The global optimal Pareto front (GOPF) correspogdin Hang-Seng stock is
depicted in Fig.6.1.
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(a) applying MVE method and using the PBMV model

(b) applying MVE method and using Markowitz mean-vaci& model

(c) without applying MVE method and using the propoB&MV model

(d) without applying MVE method and using Markowitz meaariance model
(e) for all the four conditions

Fig.6.2. GOPF and Pareto front obtained by appl@BFO to Hang-Seng stock after one
month assuming 10 % of stock contaminated by asatlie

It is evident that the MOBFO applying MVE methoddgmroposed PBMV model is
providing better solutions in comparison to otleey jts Pareto front is closer to the standard
efficient frontier. Further, the performance of rthés assessed usin@ metrics. TheC
metric is demonstrated in Table-6.2.

Table-6.2. Comparison of results Gf metric for MOBFO with different condition

Without MVE and
Markowitz
after one month

Without MVE and
PBMV
after one month

With MVE and
Markowitz
after one month

\With MVE and PBM
after one month

Without MVE and Markowitz
after one month

0.4132

0.3942

0.3423

Without MVE and PBMV
after one month

0.4632

0.4321

0.4102

With MVE and Markowitz
after one month

0.4732

0.4611

0.4321

With MVE and PBMV

0.5911

0.5522

0.5213

after one month

It clearly shows that most of the solutions obtdilby MOBFO applying MVE and
PBMV model dominate the solutions obtained by ahé&ihe obtained results can also be
tested using six performance metrics. The statilstiesting can also be performed for in
depth analysis. Similarly, the MOBFO can also bpliad to other stock indices such as
DAX 100, FTSE 100, S&P 100 and Nikkei 225 usinghbotodels. Similarly P-MOEA/D,
B-MOEA/D, NS-MOPSO can be applied to different netskby applying MVE and using
PBMV model. These algorithms can also be used malkacardinality constraint efficiently

by applying this combination of MVE method and PBM\del.
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The MOBFO algorithm is applied to 20 stocks of BBEere it is assumed that 10
percent of the stock is uncertain due to outlierd mmoney has to invest after one month.
The Pareto fronts obtained with and without apgyiiVE method are shown in Figs.6.3.
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3.5 1
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0.5 I I I I I I
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Variance of return E

(a)

- BSE stock
4 T

N
2
T
I

Mean return
N
T
|

1.5~ b

==MVE with Markowitz after one month B

0.5 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Variance of return -3
x 10

(b)
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-3
4x 10 BSE stock
T

3.5

Mean return

MVE with PBMV after one month
1.5 = MVE with Markowitz after one month 7
=No MVE with PBMV after one month

== No MVe with Markowitz after one month

0.5 ! ! ! ! ! ! ! ! !
0o 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

Variance- of retrm -3
x 10

()

(a) applying MVE method and using the PBMV model afire month
(b) applying MVE method and using Markowitz mean-vacia model after one month
(c) without applying MVE method and using the propoB&MV model after one month
(d) without applying MVE method and using Markowitz meaariance model after one
month
(e) all the four conditions
Fig.6.3. The Pareto front obtained by applying M@Bte 20 stocks (assets) from BSE-500

stock indices after one month assuming 10% of stiat& are contaminated by outliers.

It is evident that the MOBFO algorithm, applying ®MVmethod and proposed
PBMV model is providing better solutions in comgan to others as it cover more risk-
return area. It provides more option to the potf@hanager for investing money after one

month.
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6.4 Conclusion

The portfolio optimization issue for future timénen the corresponding data are not
available and the present available data are wmnenas been studied in this Chapter. A
subset of 20 stocks from Heng-Seng and BSE-50Ccesdbetween December 2008 to
January 2012 have been selected for obtainingglortrategy after one month, that is on
February 2012. The effect of outliers in the stdeka has been minimized using the MVE
method. The MOBFO algorithms have been appliedgubmth Markowitz mean-variance
and prediction based mean-variance (PBMV) modéis. @roposed prediction based mean-
variance (PBMV) portfolio optimization model in cbmation with minimum volume
ellipsoid (MVE) method is observed to be effectyvetitigating the effect of outliers for
future investment. Experimental results demonstthtg the proposed PBMV portfolio

optimization model outperforms the conventional kéavitz model for investing in future.
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Chapter

In this chapter the overall contributions of the thesis are reported. The future research

problems are a so outlined for further investigation on the same/ related topics.
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7.1. Conclusion

The conclusion of the overall thesis is presented in this section and some of the
major contributions achieved in the thesis are reported in the next section. Some future
research problems related to the topics of the thesis and which may be attempted by
interested readers are outlined in the last section.

Two novel multiobjective evolutionary agorithms (MOEAs) based on non-
dominated sorting and two algorithms based on decomposition are proposed and suitably
applied to portfolio optimization problem with budget, floor, ceiling and cardinality
constraints by formulating it as a multiobjective optimization problem. On examining the
performance metrics, it is observed that the proposed MOBFO approach is capable of
identifying best possible Pareto solutions maintaining adequate diversity. The Pareto front
obtained by MOBFO is closer to the standard efficient front covering more risk return area.
The Sign test and Wilcoxon signed rank test are also performed to show the superiority of
MOBFO over others. In terms of computational time, the P-MOEA/D is found to be the
fastest among other such algorithms used in the thesis. All the four algorithms have been
found to be potential candidates for solving constrained portfolio optimization problem.
From the simulation results, it is evident that the investor does not have to invest money on
al the available assets rather to invest in fewer assets i.e. approximately 10 percent of
available assets to explore wide risk-return area. The portfolio manager has the option to
make a tradeoff between risk and return for different cardinality constraints to decide on the
portfolios according to the requirement.

A nove prediction based mean-variance (PVMV) model has been proposed and four

MOEAs have been employed to solve the portfolio optimization problem. In the PBMV
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model, the return is first predicted with alow complexity single layer neural network. The
performance of four MOEAS in solving portfolio optimization problem using the proposed
and Markowitz mean-variance models has been evaluated. From the simulation results it is
observed that the proposed PBMV model is capable of identifying good Pareto solutions by
maintaining adequate diversity. The comparison of results shows that the performance of
PBMYV is comparable to that of well known Markowitz mean-variance model.

In order to reduce the effects of uncertainty of the stock market data (outliers), the
Minimum volume dlipsoid (MVE) methodology has been proposed. It has been observed
through the experimental and theoretical studies that the MVE methodology is robust for
handling outliers. It has been seen from the study that this method has effectively found out
appropriate weight factors for al the data and those have been used to modify the
contaminated data. The FLANN network has been used to predict risk and return for further
processing. Experimental results reveal that the MOEAS provide good Pareto solution using
this new predicted return and risk parameters. Moreover, the simulation results have shown
that the MOBFO algorithm provides the best possible solutions among all MOEAs for
uncertain market conditions. Furthermore, the MOBFO algorithm using PBMV model and
MV E method has a so been found to be robust in the presence of the cardinality constraint.

It is a chalenging problem to find suitable portfolio strategy for investment of
money for the future where the relevant future data are not available and the present data are
uncertain due to the presence of outliers. To solve this problem the MVE methodology in
combination with the PBMV model followed by FLANN based forecasting are chosen.

Then the MOBFO algorithm is used to provide the best Pareto solutions.
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7.2. Contribution Achieved

Some key contributions achieved in thisthesis are listed below.

Two novel MOEAS, based on non-dominated sorting such as hondominated sorting
multiobjective particle swarm optimization (NS-MOPSO) agorithm and
multi obj ective bacteria foraging optimization (M OBFO) have been proposed to solve
the constrained portfolio optimization problem by formulating it as a multiobjective
minimization problem. Similarly two agorithms based on decomposition such as P-
MOEA/D and B-MOEA/D have been also proposed and suitably applied to solve
this problem by viewing it as a multiobjective maximization problem.

Developed an prediction based mean-variance (PBMV) model incorporating
prediction strategy as an useful aternative of Markowitz mean-variance model for
solving constraint portfolio optimization problem.

Developed multiobjective swarm intelligence based robust portfolio management
method to neutralize the effect of outliers using minimum volume ellipsoid (MVE)
based approach.

Developed improved and robust swarm intelligence techniques for future
investment of fund, with non availability of future data as well as uncertainty of the

present data due to the presence of outliers.
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7.3 Suggestionsfor futurework

The work carried out in the present thesis can further be extended in many directions.

To incorporate advanced local search operators into the proposed MOEAS
algorithms which is expected to allow better exploration and exploitation of the
search space.

To investigate on the strengths and weaknesses of non-dominated sorting or
decomposition based MOEAs. To develop new MOEAs based on any other
algorithmic framework which may be better suited for portfolio optimization
problem.

To handle outliers in the financial time series, S-estimates, the minimum covariance
determinate estimate and one-step reweighting method may be used as an useful
aternative to minimum volume ellipsoid method dealt in the thesis.

To evaluate the performance of proposed method considering other real world
constraints like round-lot, turnover and trading.

To test the performance of proposed MOEAS with other redlistic data to validate its
potentiality in addition to the benchmark problems.

To apply the MOEAS to other financial applications such as asset alocation, risk

management, option pricing etc.

196



Sudhansu Kumar Mishra

Date of Birth:28" May.1979

Correspondence

PhD scholar, Department of Electronics and Communication Engineering,
National Institute of Technology,Rourkela,Odisha,India-769008
Ph:+91-9439536462 (M), +91-8986822135 (M), 06682-220493(Phone),

Email: sudhansu.nit@gmail.com, sudhansu_nit@yahoo.co.in
Qualification
e Ph.D. (continuing)
National Institute of Technology, Rourkela, India-769008
* M.Tech.
National Institute of Technology, Rourkela, India-769008 [2003]

* B.E(Electricd)
Fakir Mohan University, Odisha, India[2001]

* 42 (Science)
Council of Higher Secondary edution, Odisha, India[1996]
. 10th

Board of Secondary Education, Odisha, India[1994]
Professional Experience

1. Assistant Professor, at Birla Institute of Technology, Mesra, India from Dec 2011 to till date.
2. Sr. Lecturer, a C.V.R.C.E, Bhubaneswar,Odisha,India from May 2005 to June 2008.

3. Lecturer, at P.I.E.T, Rourkela, Odisha, Indiafrom August 2001 to July 2003.

Permanent Address

At: Ladarpai Chawk, PO: Attabira
Dist: Bargarh, PIN: 768027, Odisha, India

Publications

e 05journa Articles
¢ 15 Conference Paper



	cover_page
	S.K.Mishra Final thesis front
	Chepter_1_Introduction final....today
	Chepter_2_Evolutionary_MOOP_Algorithms_final
	Chapter_3_constrained_PO_final
	Chapter_4_Predictionfinal
	Chepter 5 robust portfolio ver1  _2_ madan
	chepter_6-1
	Chapter_7_Conclusion
	biodata



