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Abstract

Portfolio optimization is a widely studied field in modern finance. It involves finding 
the optimal balance between two contradictory objectives, the risk and the return. 
As the number of assets rises, the complexity in portfolios increases considerably, 
making it a computational challenge. This report explores the application of the 
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) and 
Genetic Algorithm (GA) in the field of portfolio optimization. 

MOEA/D and GA have proven to be effective at finding portfolios. However, it 
remains unclear how they perform when compared to traditional approaches used 
in finance. To achieve this, a framework for portfolio optimization is proposed, using 
MOEA/D, and GA separately as optimization algorithms and Capital Asset Pricing 
Model (CAPM) and Mean-Variance Model as methods to evaluate portfolios.

The proposed framework is able to produce weighted portfolios successfully. These 
generated portfolios were evaluated using a simulation with subsequent (unseen) 
prices of the assets included in the portfolio. The simulation was compared with 
well known portfolios in the same market and other market benchmarks (Security 
Market Line and Market Portfolio).

The results obtained in this investigation exceeded expectation by creating 
portfolios that perform better than the market. CAPM and Mean-Variance Model, 
although they fail to model all the variables that affect the stock market, provide a 
simple valuation for assets and portfolios. MOEA/D using Differential Evolution 
operators and the CAPM model produced the best portfolios in this research.

Work can still be done to accommodate more variables that can affect markets and 
portfolios, such as taxes, investment horizon and costs for transactions. 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1. Introduction

Portfolio optimization has been around for more than 60 years. It was first 
introduced in 1952 by Harry Markowitz[1] in his paper Portfolio Selection. This 
mathematical representation of portfolio optimization was awarded the Nobel Prize 
in Economics in 1990[24]. Specifically, Portfolio optimization is the process of 
selecting the best asset distribution from a set of assets (search space), to fulfill an 
objective[2]. This objective is typically a balance between the risk and the return of 
an investment. As the number of possible assets in the portfolio rises, the 
optimization of a portfolio becomes more complex, and exploring all possibilities 
becomes almost impossible[1][2].  

Artificial intelligence (AI) methods have shown to be effective at finding suitable 
solutions to multi-objective problems. In past years, there have been multiple 
attempts to achieve optimal portfolio optimization using a variety of AI based 
methods. Using search methods like Simulated Annealing or Tabu Search has been 
common practice[25] and in recent years these multi-objective search type methods 
have gained popularity in the field[22]. Implementations using methods such 
Particle Swarm Optimization, Genetic Algorithm, Artificial Bee Colony have obtained 
success at portfolio optimization as described in the literature[15-23].


Multi-Objective Evolutionary Algorithms have previously been used for Portfolio 
Optimization[8][9][10]. This research proposes a framework to generate portfolios 
with Evolutionary Algorithms along with a new evaluation method that covers 
different aspects of finance and computer science to asses portfolios and 
algorithms. 


Most of the research currently has been focused in Evolutionary Algorithms as a 
tool for optimization. However, it is unclear whether Evolutionary Algorithm 
optimized portfolios are profitable enough to be an attractive investment and if EAs 
can perform better than current traditional approaches when creating investment 
portfolios. To this end I evaluated whether EA generated portfolios as a profitable 
investment. 


 1



This investigation involves a portfolio search in the Mexican Stock Market, using 
data from January 4, 2016, to December 31, 2019. The data contains the daily 
closing prices of securities listed in this market. I was able to retrieve the data for 
3431 different securities for that period. Using this data set to create different 
portfolios with at least 2 assets but a maximum of 100 assets, taking into account 
the weighted distributions,  results in a continuous search space with infinite 
possibilities.


However, if we narrow down the search to only have integer fractions of 100 (to use 
1% increments in the weights), the possible combinations become





Making it hard and computationally expensive to evaluate all portfolios individually.


Therefore, to create optimal portfolios, two optimization algorithms were applied:

1. Genetic Algorithm (GA)

2. Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)


Evolutionary Algorithms are a family of stochastic search techniques inspired by 
biological evolution. A group of candidate solutions to an optimization problem are 
recombined, mutated and evaluated, to iteratively generate better solutions. EAs 
have proven to be effective for large and complex search spaces[11][7][5], as is 
portfolio optimization[5]. The Genetic Algorithm (GA) and the Multi-Objective 
Algorithm based on Decomposition are examples of evolutionary algorithms.


GA has been around for over 50 years[3]. It was the first evolutionary algorithm 
developed and while it is outdated and falls short for solving Multi-Objective 
Problems (MOPs), it still serves as a benchmark, as it is fast and extensible[3].


C =
(100 + 3431 − 1)!
100!*(3431 − 1)!

≈ 7.3457 × 10169
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MOEA/D is a framework that was first introduced in 2007[4], as an alternative to the 
Non-dominated Sorting Genetic Algorithm II (NSGAII) for solving multi-objective 
problems (MOPs)[4][7]. It is a simple but powerful algorithm that produces good 
results in a variety of problems[7], that combined with the flexibility and space in the 
framework for improvement, makes it a great research tool in the scientific 
community. Specifically for portfolio optimization, it has been proven to have good 
results[5][22].


This thesis is an investigation of using Evolutionary Algorithms for portfolio 
optimization. In particular we:

1. Generate non-dominated portfolios using MOEA/D and GA;

2. Evaluate the performance of these generated portfolios using simulations;

3. Compare the performance of the algorithms against well-known market 

benchmarks;

4. Explore the potential of using these algorithms for real-life investing.

The layout of this thesis is as follows: Chapter 2 will discuss the theoretical 
background of the portfolio optimization problem as well as the background of the 
methods used, followed by a literature review; Chapter 3 contains all the relevant 
information for implementing the solutions to the problem described; Chapter 4 
contains a description for the experimental tests as well as the results; finally, in 
Chapter 5 conclusions are presented, summarizing the main findings of this work as 
well as its limitations, and including suggestions for future research.
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2. Theoretical Framework

The final objective of this research is to automatically create efficient portfolios. To 
achieve that objective, we first needed to review all the theoretical background. As 
explained in the introduction, portfolio optimization is a problem relevant to two 
areas of knowledge: Computer Science and Finance. More specifically Portfolio 
Management and in this particular case, Artificial Intelligence (A.I.). This research will 
focus mostly on applying computer science techniques to optimize portfolios, using 
different financial models.


In this chapter, we will summarize the theoretical framework of this research. This 
review will explain the selection of methods and tools used to solve the problem. 
The first part (section 2.1) will focus on a formal definition of the problem using a 
model created by economists. The following sections will explore possible ways of 
creating and optimizing portfolios.


Finally, in this section, there will be a literature review exploring the most relevant 
state-of-the-art solutions to this problem.


2.1 Investment Theory 
This section explores the developments that have occurred in the field of  
investment theory. The theories developed in this field provide a base for portfolio 
optimization. Markowitz was the first academic to visualize investment portfolios as 
an optimization problem. After that, improvements have been made to Markowitz's 
theory by other academics, such as William Sharpe. Portfolio theories roughly follow 
the same path, trying to model risks and return. In this section, Markowitz's theory 
as well as the Capital Asset Pricing Model will be explained in depth.


2.1.1 Mean-Variance Portfolios 
In 1952, Harry Markowitz provided a framework for evaluating portfolios in terms of 
the variance and the means of the return of the assets. This theory provided the first 
rigorous measure of risk for investors and showed how one selects alternative 
assets to diversify and reduce the risk of a portfolio[2]. 
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He defines the return  of an individual asset at a given time  in terms of its price  
as:


         [1][2]


This can be seen as the percentage change of an asset's price from one time to 
another. This same equation can be applied to a portfolio using the total value of the 
portfolio over time.


The return of a portfolio is the weighted sum of the mean return of each asset. So if 
we have a portfolio of  assets, each asset will have a relative weight in the portfolio 

 and a mean return ,  our expected return  of the portfolio is given by:





In this model, the risk of an asset is calculated as the variance of the returns and the 
risk of a portfolio can be calculated with a sum of covariances of each pair of 
assets.  So, if the variance of the return of an asset is  and the covariance 
between two given assets is , then the variance of the return of a portfolio can be 
expressed as:





Given the two measurements explained above (  and ), Markowitz defines 
portfolio selection as an optimization problem, where  is the risk aversion of the 
investor:





The risk aversion is defined by the investor, it says how much risk the investor is 
willing to take. A lower  value results in a portfolio with smaller variance and when 

, it means the investor only cares about returns.


Rt t P

Rt =
Pt

Pt−1
− 1

n
ωi μi E[R]

E[R] = μ =
n

∑
i=0

ωiμi

σ2
i

σi, j

σ2 =
n

∑
i=1

n

∑
j=1

σi, jωiωj

σ2 μ
A

min(σ2 − Aμ)

A
A → ∞
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Given a set of assets, if we plot each portfolios in  Risk vs. Return (  and ) plane, 
this will result in a curve (Figure 1). The portfolios with maximum return given a set 
of assets and a risk are optimal portfolios. The Efficient Frontier is a line where the 
optimal portfolios are found.


2.1.2 Capital Asset Pricing Model 
The Mean-Variance model, though widely used in academia, falls short to represent 
reality. Mean-Variance offers an incomplete explanation for the relationship between 
the risk and the return. Capital Asset Pricing Model (CAPM), was developed shortly 
after the Mean-Variance model. The CAPM extends portfolio theory in a way that 
allows investors to evaluate the risk-return trade-off for both diversified portfolios 
and individual securities. 


To do this, CAPM adds the concept of a Risk-Free asset to Markowitz's risky 
portfolios and provides a framework to analyze expected returns. A risk-free asset 
in practical terms is usually a government bond with a fixed return rate.


σ2 μ
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Figure 1. The Efficient Frontier of portfolios with two assets, A and B.



Another innovation in this model is introduction of systematic risk and unsystematic 
risk. The first one refers to the general market risk, conditions in the whole market 
that affect all individual assets. The unsystematic risk refers to the particular risk of 
an individual stock. The coefficient beta is a measure of the systematic risk of an 
asset compared to the whole market. It can be estimated with the following 
equation:





 = Return of an individual asset

 = Return of the overall market


The beta coefficient represents the risk that cannot be mitigated with diversification.


Using this beta coefficient we can calculate the return that we should expect from 
an asset at a level of risk:




where:


 Risk-free rate




β =
cov(Ri, Rm)

var(Rm)

Ri

Rm

E[Ri] = Rrf + βi(Rm − Rrf )

Rrf =

 7

βi

E[Ri]
SML

0 1.0

E[Rm]

Rrf

An undervalued stock

An overvalued stock

Figure 2. Chart showing the SML.



With these two measures (Beta and Expected Return), the CAPM model can be 
expressed as a chart using the security market line (SML). This line shows the 
average trade-off between risk and returns in the market. It is a straight line that 
intersects the vertical line (zero risk) at the free risk rate. As can be seen in Figure 2, 
securities with a higher return than the SML (for a given Beta), are undervalued 
according to this model. While securities below the SML, are overvalued.


In this table there are some guidelines to read different values of :


2.2 Traditional Methods for Portfolio Creation 
The two models above allow us to evaluate and compare portfolios and individual 
securities. However we still need a way to create the portfolios. To do this we follow 
two steps[2]: 

1. First we select assets;

2. then we optimize the portfolio.

With CAPM and Mean-Variance Model we can then evaluate the created portfolios.


2.2.1 Selecting Assets 
Is the process of finding the assets that are best for the objective. This process 
involves conducting research and selecting assets based on mainly two 
characteristics:

1. Sector: The industry a company belongs to can help diversify assets, normal 

diversification uses assets from different industries;

2. Capitalization: Companies of different sizes have different behavior in the stock 

market. Bigger companies tend to be more stable while emerging companies 
can be very volatile.


β

Table 1: Guidelines for reading ß values
Asset's price moves in the opposite direction, and in a greater amount than the negative of 
the market

Asset's price movement is in the opposite direction of the market

Asset's price movement is uncorrelated to the market

Asset's price moves in the same direction, but in a lesser amount than the market

Asset's price moves in the same direction and in the same amount as the market

Asset's price moves in the same direction, but in a greater amount than the market

β = 1

β = 0
0 < β < 1

β > 1

β < − 1

−1 < β < 0
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With this information, an investor can do a technical analysis and determine in 
which securities the investment is best placed. Additionally, the objective of the 
investor is going to define how the assets are mixed and distributed. In particular, 
this objective will define the risk tolerance that a portfolio has balanced to an 
expected return.


2.2.2 Optimizing the Portfolio 
Once a set of assets to invest in is decided, the next step is to decide the weight of 
each asset in the portfolio to either maximize returns and/or reduce risks. 
Throughout the years, there have been different methods and attempts to optimize 
a portfolio successfully, like Markowitz's Efficient Frontier explained before.


2.3 Evolutionary Algorithms 
The Evolutionary Algorithms (EA) are a set of meta-heuristic algorithms, inspired by 
Darwin's natural selection[3], often used to solve optimization problems. In these 
algorithms, a set of candidate solutions to a problem are selected, combined, and 
altered to find new and potentially better solutions to the problem. Each candidate 
solution, has a value of fitness, which is a quantitative measure of how good is the 
solution at solving the problem.


Evolutionary Algorithms started with the appearance of the Genetic Algorithm, 
published by John Holland in the 1960's. Later in the 80's the Genetic Algorithm 
grew in popularity and many variants started appearing including multi-objective 
versions of the genetic algorithm as is the Non-dominated Sorting Genetic 
Algorithm (NSGA) and more recently the Multi-Objective Evolutionary Algorithm 
based on Decomposition (MOEA/D).


A solution in the context of evolutionary algorithms is often referred to as an 
individual. A group of individuals is called population. A population at a given point 
in the execution of the algorithm is referred to as a generation.


Solutions are represented as a binary string of a fixed size. Each position in the 
array is called gene, and each gene represents a decision variable. Newer 
implementations have used other types of strings as integers or floating point 
numbers. 
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The functions used to select, combine, and alter individuals are called genetic 
operators. These operators are:

1. Crossover: the crossover is a small function that takes two solutions and 

combines them to produce two other solutions that resemble the original 
solutions.


2. Mutation: similar to crossover, the mutation is a small function that takes a 
solution and makes a small alteration to it, producing a new solution.


3. Selection:  selection in evolutionary algorithms is a stochastic process to draw 
solutions from a population based on their fitness.


On a bigger scale, an evolutionary algorithm is a process that takes as input a 
problem and iteratively creates and improves a population of solutions to find an 
optimal[3]. At each iteration, solutions are drawn from the population using the 
selection operator. These solutions are then combined and altered using the 
crossover operator and the mutation operator to produce a new and improved 
population. This process is pictured in figure 3.


To successfully apply any given evolutionary algorithm to a problem some things 
need to be determined[3]:

1. A way to represent a solution as an array of a fixed size; this is also known as 

encoding of a solution.

2. A method to generate an initial population that is as diverse as possible.
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individuals

crossover solutions
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Figure 3. Basic flow of any evolutionary algorithm.



3. Fitness function(s) to evaluate solutions.

4. Genetic operators to use: one crossover, one selection and one mutation 

operator.


In the following sections I will cover in more depth two flavors of evolutionary 
algorithms used in this research: the Genetic Algorithm (GA) and the Multi-Objective 
Evolutionary Algorithm based on Decomposition (MOEA/D).


2.3.1 Genetic Algorithm 
The Genetic Algorithm was the first evolutionary algorithm, it was published in 
1970[3]. It was created by John Holland[3]. Even though the algorithm is now 
outdated, it has provided the basis for every other evolutionary algorithm. One 
limitation of this algorithm is the lack of support for multi-objective problems.


Over the years the Genetic Algorithm has been used for portfolio optimization. It has 
proven to be effective in portfolio optimization using Markowitz Model [10]. More 
recently, S. Lim et al., in 2020 proposed an ensemble method based on GA, using 
more complex analysis, achieving good results using stock from S&P500 and 
KOSPI200 Indexes[9]. 


The algorithm works in the following way[3]:
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Calculate fitness of each 
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Mutate each offspring

Figure 4. Genetic Algorithm



Fitness 
The fitness of an individual is a measurement of how good it is at solving our 
problem. Since we are talking about optimization we are trying to find not only a 
feasible solution, we are trying to find the best solution in the search space. A good 
fitness function will ensure that the GA finds the best solution available.


When we talk about portfolio optimization, the fitness function has to be a 
measurement of return and risk. In later sections, this will be discussed in more 
depth.


Generate Initial Population 
Generating an initial population is a challenge in the implementation of the genetic 
algorithm. The initialization method is mostly determined by the problem that we are 
trying to solve and the restrictions that come with it. It is crucial as it can also 
determine the areas of search space that the algorithm will cover. A common 
practice for this step is to simply generate random arrays that meet all requirements 
imposed by the problem.


To generate the initial population I created a method specific for portfolio 
optimization. To produce a solution, the initialization method will first select few 
random stock, then it will look for the stock that correlate less with the randomly 
selected stock to achieve some diversification.


Selection 
This is the process for selecting which solutions to crossover. It usually involves 
selecting parents with a probability based on fitness however many different 
approaches can be used such as tournament selection, roulette wheel selection, or 
rank selection. The purpose of the selection is to eventually eliminate low-quality 
individuals while still keeping diversity.
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Crossover 
The crossover is a function that takes two individuals and combines them into two 
new individuals that resemble the originals. The idea is that if two different 
individuals are good solutions to a problem if we combine them, we may find an 
even better solution. Also for the crossover, there are many approaches and 
different algorithms for combining individuals, the crossover that is used is 
dependent on the constraints of the encoding, but also different crossovers have a 
different effect on each generation. Crossover is used to explore new areas in the 
search space. 


Mutation 
The mutation is applied to a single individual, it makes small alterations on it to 
generate a new individual. Mutations are used to create more diversity in the 
population, it is a complement of the crossover operator, while crossover makes big 
leaps in the search space, mutation serves for fine-tuning and also adding new 
elements to the current genes in the whole population.


2.3.2 Multi-Objective EA Based on Decomposition 
Multi-Objective Evolutionary Algorithm based on Decomposition, abbreviated as 
MOEA/D, was developed by Quingfu Zhang and Hiu Li and published in 2007[4]. 
The idea is to use mathematical decomposition to address multi-objective problems 
with an evolutionary algorithm[4]. A multi-dimensional problem is decomposed into 
many problems of a single dimension, using uniformly distributed vectors. Since it 
was published there have been several extensions made to enhance this algorithm, 
making it a relevant up-to-date framework[5][7].


On a bigger scale, MOEA/D follows the same flow as the genetic algorithm, the 
main difference is the support for multi-objective problems. In general terms, 
MOEA/D generates many different fitness functions using decomposition, and the 
algorithm tries to optimize the population to each of the fitness functions. To 
achieve this, the population is divided into neighborhoods based on areas of the 
solution space. With the decomposition and the use of neighborhoods, MOEA/D 
can find high-quality solutions distributed across the solution space.
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MOEA/D uses a vector decomposition to handle multi-dimensional problems. A 
multi-dimensional problem is decomposed into many uni-dimensional problems by 
using unitary vectors that are uniformly distributed across the solution space. In a 
two-dimensional solution space (bi-objective problem):




To convert a multi-dimensional fitness to any of the decomposed objectives, we 
select a lambda vector and a decomposition method such as a weighted sum:


maximize 


where:

 is the number of objectives

 is the th component of the vector 


 is the th fitness function (objective)


Another decomposition method, presented as an alternative to the weighted sum, is 
the Tchebycheff approach, the principle is similar, to calculate fitness using the  
vectors:

minimize 


g(x |λ) =
m

∑
j=1

λj fj(x)

m
λj j λ
fj(x) j

λ

g(x |λ, z*) = ma x
1≤ j≤m

{λj | fj(x) − z*j |}
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where:

	

 is a reference point.

A simple method for setting the reference point , is to use the best value in the 
population for each objective:







where:


 is the current population.


In both approaches, when calculating the fitness of a solution, there is a fitness 
value that corresponds to each of the vectors. Each function (created with each 
vector) is a unidimensional problem to be solved. The vectors are distributed 
uniformly to guide the search in different directions across the solution space, 
resulting in a varied set of solutions evenly distributed.


z*
z*

z* = (z*1 , . . . , z*j )T

z*i = ma x{ fi(x) |x ∈ Ω}

Ω
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Figure 6. Neighborhoods



To keep diversity in each generation and to be able to improve each of the 
generated fitness functions, the MOEA/D applies selection depending on the area in 
the solution space. To do this, the concept of neighborhoods is applied. A 
neighborhood is a group of solutions close to each other (when plotted in the 
solution space). To calculate neighborhoods, all solutions are sorted and MOEA/D 
keeps only the best individual of each decomposed problem, then, to know which 
solutions are nearby, we simply use the euclidean distance between the lambda 
vectors (figure 6).


To use MOEA/D we need to define/create the following:

1. Multi-Objective Problem:  

2. Population size: 

3. A set of weight vectors, containing  vectors: 

4. Neighborhood size: 

5. Stopping criteria.


During each generation, MOEA/D will maintain a set of ordered solutions 
(population)  where  is the fittest solution found so far for the 
weight vector , and a set of non-dominated solutions .


f1(x), f 2(x), . . .
N

N P = {λ1, λ2, . . . λN}
T

Ω = {x1, x2, . . , xN} xi

λi EP ⊂ Ω
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Shortly after MOEA/D was published, some improvements were made[5][7][13][14]. 
One successful attempt was adapting MOEA/D to use Differential Evolution (DE) 
operators[7]. Differential Evolution is explained in more depth in the next section.


2.3.3 Differential Evolution 
The Differential Evolution (DE) is yet another heuristic that optimizes a problem by 
improving a population of candidate solutions. To improve candidate solutions, DE 
uses simple formulas to combine existing solutions and to generate new solutions.


Algorithm 1: MOEA/D [4]

1. Initialization:

2. Update population:

3. End if stopping criteria is satisfied. Otherwise, go to step 2.

Add  to  if no solution from  dominates . Remove all solutions from 
 that are dominated by 
y EP EP y

EP y

Update reference point .z*

Initialize reference point .z*

Output: , a set of non-dominated solutions.EP

Set .EP = ∅

Calculate the distance between weight vectors to find  closest vectors to each vector. 
Create sets , where  are the  closest vectors to 

.

T
B(i) = {i1, . . . , iT} λi1, . . . , λiT T

λi

Select two indexes  from  and generate solution  with crossover 
from .

k, l B(i), y
xk, xl

Apply mutation to  with a probability.y

Calculate the fitness of  using each weight vector . If 
, then replace  with  in .
y λj ∈ P

f (y |λj) ≥ f (x j |λj) x j y Ω

Create initial population .Ω = {x1, . . . , xN}

for  until i = 1 i = N
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The crucial idea behind DE is a scheme for generating new solutions[27]. DE 
generates new solutions by adding a weighted difference vector between two 
candidate solutions to a third one.


Given 3 different candidate solutions ,  and , a new solution  is generated 
according to




where  is a real and constant factor that controls the amplification of the 
differential vector , subject to .


Differential Evolution was first published in 1997, as a single objective optimization 
algorithm and long before MOEA/D first appeared. In the time of its inception the 
authors, R. Storn and K. Price, demonstrated that DE was capable of minimizing 
continues space functions, and proved that it was superior to Adaptive Simulated 
Annealing (ASA) as well as Annealed Nelder & Mead approach[27].


Later, in 2007, Chung Kwan, Fan Yang, and Che Chang proposed the replacement 
of mutation and crossover operators of the NSGA-II with a variant of differential 
evolution (DE). Proving that for the real world problems, NSGAII-DE generated 
better results than NSGA-II[28]. Consequently, in 2009, Hui Li and Qingfu Zhang 
created a version of MOEA/D that uses a variant of differential evolution. The 
operators proposed for MOEA/D Differential Evolution are the following[7]:


Given three candidate solutions on the same neighborhood ,  and , a new 
solution  is generated according to:





Then the polynomial mutation generates  from  in the following 
way:





̂x1 ̂x2 ̂x3 ̂x′ 

̂x′ = ̂x1 + F ⋅ ( ̂x2 − ̂x3)
F

( ̂x2 − ̂x3) F > 0

̂x1 ̂x2 ̂x3
̂y

̂y = { ̂x1 + F ⋅ ( ̂x2 − ̂x3)  with probability CR
̂x1  with probability 1 − CR

̂y′ = (y′ 1, y′ 2, . . . , y′ n) ̂y

y′ k = {yk + σk ⋅ (bk − ak)  with probability Pm

yk  with probability 1 − Pm
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Experiments using these methods proved MOEA/D to be superior to the Elitist Non-
Dominated Sorting Genetic Algorithm (NSGA-II)[7]. This is due to MOEA/D's ability 
to do parallel searches in different parts of the plane, and with the support of DE 
operators, the algorithm is effective even in complicated Pareto fronts[7].


2.4 Literature Review 
Ever since Harry Markowitz set the basis for portfolio theory as an optimization 
problem, there have been attempts to achieve optimal asset distribution. In the last 
years, using computational intelligence for portfolio optimization has been a field of 
interest for both finance and computer science. To get familiar with the current 
practices and to get to know the background framing for this investigation, I 
conducted a literature review. In this review, I selected the most relevant state-of-art 
solutions to portfolio optimization. Each of these solutions was analyzed and 
classified by publication date, optimization algorithm, portfolio model, and 
evaluation strategies. 


Given the scope of this review, I divided the content into two sections: single-
objective and multi-objective optimization. Later followed by some conclusions 
drawn from this review.


2.4.1 Single Objective Portfolio Optimization 
In 2006, W. Chen, R. Zhang, Y. Cai, and F. Xu, proved that Particle Swarm 
Optimization (PSO) is an effective algorithm for portfolio optimization. Their 
approach worked with a constrained Mean-Variance model with transaction 
costs[15]. This result was later improved by Jianguo Cao and Liang Tao (2010), who 
applied a mutation to the solutions in the algorithm to enhance results[18].


In that same year, 2010, Hoklie and L. R. Zuhal published a paper about portfolio 
optimization using a Genetic Algorithm. After conducting some experiments they 
conclude that a Genetic Algorithm can produce good portfolios if it is correctly 
configured[10]. Some months later in 2010, A. Talebi, M. A. Molaei, and M. J. Sheikh 
concluded that a Genetic Algorithm is more effective for portfolio optimization than 
PSO by running simulations with portfolios generated by each method[19].
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In 2020, S. Lim, M. Kim, and C. W. Ahn created an ensemble method based on a 
Genetic Algorithm to find optimal portfolios. This method has the innovation of 
using different models: Mean-Variance, CAPM, and Momentum Strategy; optimized 
by a Genetic Algorithm. The ensemble method was evaluated by the Return of 
Investment in the long term (5 years), having positive results[9].


2.4.2 Multi-Objective Portfolio Optimization 
For multi-objective portfolio optimization, algorithms seem more varied. There is a 
constant discussion on which algorithm performs best.


M. Chen, Jian Weng, and Xia Li (2009) attempted to find optimal portfolios using 
many algorithms Multi-Objective Extremal Optimization (MOEO), Non-dominated 
Sorting Genetic Algorithm II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 
(SPEA2) and Pareto Archived Evolution Strategy (PAES). They compared the results 
based on the Coverage and Front Spread, demonstrating that NSGA-II finds more 
varied solutions and from higher quality[16].


Another study from that same year comparing Multi-Objective Particle Swam 
Optimization (MOPSO), NSGA-II, SPEA2, and Parallel Single Front Genetic 
Algorithm (PSFGA) for portfolio optimization was published by S. K. Mishra, G. 
Panda, and S. Meher. In this study, MOPSO produced higher quality portfolios, 
more evenly spread in the Pareto front than the rest of the algorithms[17].


Two studies from Divya Kumar, K.K.Mishra, (2017) and R. Ramadhiani, M. Yan, G. F. 
Hertono, and B. D. Handari (2018), tested Multi-Objective Co-Variance based 
Artificial Bee Colony (M-CABC) for portfolio optimization[21][23]. The conclusions 
from that study are that M-CABC produces good results and is capable of 
accommodating constraints as needed[23] but other algorithms can produce better 
results[21].
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In a recent study, MOEA/D was presented as the best performing algorithm for 
portfolio optimization (B. Y. Qu, Q. Zhou, J. M. Xiao, J. J. Liang, and P. N. 
Suganthan, 2017)[22]. In this paper MOEA/D was compared with Multi-Objective 
Differential Evolution (MODE), NSGA-II, Non-Dominated Sorting Algorithm (NDS) 
and Multi-Objective Comprehensive Learning Particle Swarm Optimizer 
(MOCLPSO), in an extensive experiment with Mean-Variance portfolio optimization. 
The results showed that MOEA/D with objective normalization finds higher quality 
portfolios than the rest of the algorithms in both dimensions (risk and return)[22]. A 
different study from 2018 (H. Zhang, Y. Zhao, F. Wang, A. Zhang, P. Yang, and X. 
Shen) also applied MOEA/D to portfolio optimization successfully, the authors 
proposed an initialization method for the weight vectors with better results than the 
standard version[5].


Outside of portfolio optimization, MOEA/D has been the subject of study in other 
papers achieving good results. Hui Li and Qingfu Zhang, the original creators of 
MOEA/D[4] did an extensive study after the initial paper was released[7]. In this 
paper the authors test MOEA/D against NSGA-II, demonstrating in a variety of 
problems, that MOEA/D can be superior to NSGA-II[7]. In this paper, the authors 
also propose a new variation of MOEA/D, based on differential evolution (DE)[7], 
evidence suggests that decomposition methods are very promising for multi-
objective optimization in evolutionary algorithms. Another paper from Ishibuchi, H., 
Doi, K. & Nojima, Y. (2017) explained the importance of objective normalization in 
multi-objective normalization, and by applying normalization, the authors can obtain 
better results from MOEA/D, making it a more robust algorithm[13].


2.4.3 Conclusions of this Review 
In this review, there are references to more than eight different optimization 
algorithms. Most of them regarding multi-objective optimization. There is a constant 
discussion trying to find a better algorithm for the purpose and the options are more 
varied. Using multiple objectives for portfolio optimization opens up more 
possibilities to model the problem and comparing results is a difficult task by itself. 
In the near past NSGA-II appeared to be the norm in multi-objective optimization, 
but in recent years, works on MOEA/D have proven it to be a good alternative. As it 
grows in popularity, the community creates new improvements to the algorithm, 
making it more suitable for portfolio optimization.


For single-objective portfolio optimization, the situation is a bit different, 
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the choices are either PSO or GA. When it comes to performance, both of them 
seem to be pretty close. The open question here remains to be: How can we 
evaluate portfolios with a single function?


If we talk about portfolio models used, all researchers tend to use the Mean-
Variance model, probably because of its simplicity. When the studies try to replicate 
real-life decisions more variables can be accommodated to the Mean-Variance 
model, such as transaction costs[15], cardinality constraints[15][21], or metrics 
coming from another model like CAPM[9] or Risk Budgeting Strategy[20].


2.4.4 Algorithms Found in Literature (more details in Appendix 1)

• Particle Swarm Optimization[15][18]

• Genetic Algorithm[10][9][19]

• Multi-Objective Extremal Optimization[16]

• Multi-Objective Particle Swarm Optimization[22][17]

• Multi-Objective Differential Evolution[22][16]

• Multi-Objective Co-variance based Artificial Bee Colony[23][21]

• Non-dominated Sorting Genetic Algorithm II[22][17][16]

• Multi-Objective Evolutionary Algorithm Based on Decomposition[22][7][5][13]
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". Methodology

For a portfolio to be successful, the stock included must have an expectancy to 
grow over time, so that later, when the stock is sold, a profit is made. To achieve 
such, each stock must be analyzed carefully, however it is nearly impossible to 
individually assess each market factor. In the earlier section, we have explored 
different analytical theories for evaluating and measuring assets and risks, as well 
as some strategies to mitigate some of these risks. Additionally, we reviewed 
methods in computer science to find optimal combinations automatically. 


3.1 Tools and Methods 
By using the analytical models and the evolutionary algorithms as optimization 
frameworks, the computer can create investment portfolios based on historical 
performance. Having this in mind I created a method for generating and evaluating 
portfolios. The idea is to combine different approaches from our theoretical 
framework to find the optimal combination of algorithms and financial models.


By selecting one optimization algorithm and one financial model at a time, this 
framework will generate a portfolio or a set of portfolios, based on historical data.
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Figure 7. Interaction of the components in the solution. In this framework, only one 
evolutionary algorithm is selected at the time as well as only one financial model to 

produce a set of portfolios.



3.2 Implementation 
This section will explain thoroughly my implementation of each of the components 
seen in part 3.1. 


As seen in the theoretical framework, to be able to generate portfolios we need to 
define these aspects: encoding, initialization, fitness function(s), and genetic 
operators. In this section, I will cover each of the components that will make these 
evolutionary algorithms excel in portfolio selection.


Out of a full set of stocks, these EAs will return a subset of stocks where the 
investor should invest in. Additionally, the EAs will output the weights for each of the 
stocks. First I will cover single-objective optimization, using a simple Genetic 
Algorithm, followed by Multi-Objective optimization, using MOEA/D.




Lastly, to improve the results of the evolutionary algorithms, I created an algorithm 
to select the best assets. The algorithm is explained in more depth in section  3.2.3 
(Algorithm 3). This algorithm will serve as a filter before using the Evolutionary 
Algorithms for optimization. Using the mean return, standard deviation and the 
coefficient of variation the algorithm will select a subset of stocks to then be fed to 
the Evolutionary Algorithms. This will narrow the search space, improving execution 
times by removing noise from the security list, such as inactive companies listed in 
the stock market.
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AMD *: 14.8% 
CIG N: 20.0% 
DRIP *: 10.0% 
HOMEX *: 4.4% 
ITM *: 6.4% 
JBSAY N: 4.0% 
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SID N: 22.7% 
XLNX *: 7.8% 

std_dev: 15.44%  
return: 19.75%A list with all stocks.

One or many weighted portfolios.

Input OutputEvolutionary Algorithm

Figure 8. Input and output of the Evolutionary Algorithms. 



3.2.1 Genetic Algorithm 
Fitness Function 
The fitness function will guide our algorithm to find better portfolios, a fitness 
function that represents the reality better will result in portfolios that perform better 
in real life. In section 2.1 we explored different portfolio models to evaluate assets. 
For this investigation, the fitness functions will be derived from that theoretical 
frame, in particular from Capital Asset Price Model[26] and the Mean-Variance 
Model[1]. The focus is to optimize for low-risk and high-return portfolios using a 
single fitness function (objective).


In this scenario, I have seen different approaches, usually involving a combination of 
metrics. The two approaches that fit my research best are:


1)	



2)	
	 


In the equations above  refers to the expected return (or mean return) of the 
portfolio and  is the risk-free rate. The first one is a simple ratio between risk and 
return. The second equation contains two different concepts, the first term is the 
Sharpe Ratio, which tells us is an investment is good when comparing the risk taken 
to the return of the risk-free asset, the second term is the valuation using the Capital 
Asset Pricing Model, which will let us know if we are buying an undervalued or 
overvalued asset. 


Encoding 
Defining the encoding to be used is the first step in development. For genetic 
algorithms, it is necessary to use an encoding that is easy to interpret, but also 
simple to evaluate with fitness functions. Also, it is important that the encoding is as 
free as possible, having a very restrictive encoding can lead to producing 
inadmissible solutions. Producing inadmissible solutions can have effects on 
computational performance but also the quality of the results.


f =
Rp

Risk

f =
(Rp − Rf )

Risk
+ CAPM

Rp
Rf
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The number of possible assets available for investing is finite and constant. The 
obvious encoding is to have an array with one space for the weight of each asset. 
So if we have  possible assets, a solution can be represented as:





where  is the weight of the asset identified with index  in the portfolio. Such that





Assets not included in the portfolio will simply have . 


However, this encoding has some drawbacks, to generate a random solution we 
need to make sure the sum of weights is always 1. This also applies when we use 
mutation and crossover operators. 


By removing the constrain of the sum of weights, we have an encoding with relative 
weights that is more abstract, but easier to handle. To find the weight of an asset 
expressed as a percentage, we simply apply a normalization. 

Given a solution :








This approach produces an overhead when computing the fitness of the solutions, 
but it reduces the complexity of generating, crossing, and mutating solutions.


To avoid going to extremes or to impossible situations I created two additional 
constraints to the model:


- Use arrays of integers, where each element is between 0 and 100. This gives 
enough granularity for the weights but one unit difference is still noticeable in the 
portfolio.


N
[ω1, ω2, . . . , ωN]

ωi i

N

∑
k=1

ωk = 1

ωj = 0

S
S = [c1, c2, . . . , cN]

ωi =
ci

∑N
k=1 ck
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- The minimum number of assets in a portfolio is 2 and the maximum is 100. The 
number of assets in a portfolio is determined by the costs of holding and the 
amount of money invested. However, in this study transaction/holding costs are 
not being considered. I have set the maximum number to 100 because studies 
show that in a market of 2000 securities, 99% of the diversifiable risk is 
eliminated with portfolios of 95 assets (Gordon Y. N. Tang, 2003).[12]


Initialization 
Using random initialization can have a large impact on the last generations of an 
evolutionary algorithm. To avoid inconsistent results and to start with a better 
population of portfolios in the first generation, I created an initialization method 
appropriate for portfolio design.
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Figure 9. Comparison between a random initialization and the 
proposed initialization (Algorithm 2). The Y-axis corresponds to 

return and the X-axis corresponds to the risk.



The initialization algorithm will produce a set of solutions. To produce each solution, 
the algorithm will first select random stock. And the rest of the stock is selected 
based on the least correlation. The weights of each stock in the portfolio are 
random and the quantity of different stocks in each portfolio is also random, so for it 
to work properly a minimum and a maximum number of stocks must be defined 
(marked as  and  in the algorithm). Empirical tests showed better results than 
generating a population randomly (figure 9).


Genetic Operators 
For the Genetic Algorithm, we need to select three genetic operators: Selection, 
Crossover, and Mutation. 

To select the operators I followed the implementation made by S. Lim et al[9]. For 
selection, a tournament is used to reduce early convergence without re-scaling. 
Moreover, tournament selection is expected to have a better takeover time, 
compared to the proportional selection methods (such as roulette and rank 
selections).  

a b

Algorithm 2: Create an initial set of portfolios

for  until i = 1 i = N

Input: Population size ( ).N

Generate a random number , where .K a ≤ K ≤ b

Add selected stock to .P

while the size of  P < K

for each stock  in s P

Find stock least correlated to  that is not in .s P

Pick randomly  different stocks and place them into a new portfolio .K ÷ 4 P

Assign a random weight to each stock .s ∈ P

Add  to .P Ω

Output: A random set of solutions ( ).Ω

 28



3.2.2 MOEA/D 
Fitness Function 
In multi-objective optimization, there is no need to create a single metric that 

correlates with the risk and the return. However, in this research, I reviewed two 
different ways to calculate the risk:

1. Using the Mean-Variance model, the risk is calculated using the portfolio 

standard deviation formula.

2. Using CAPM, we calculate the Beta of the portfolio.


Table 2: Genetic Operators for GA

Algorithm Selection Mutation Crossover

Genetic Algorithm Tournament Selection Single-Point Mutation Two-Point Crossover
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Figure 10. Solutions found by two executions of MOEA/D 
with the same configuration except for objective 

normalization. In this plot we can clearly appreciate a better 
distribution of the solutions in the Pareto front when using 

normalization.



The second objective in this optimization is the return. Again we can use two 
different calculations depending on the model we use:

1. Mean-Variance Model: The return is calculated using the historical mean return 

of the portfolio.

2. CAPM Valuation: Calculate the return using the historical mean return and using 

the Expected return equation. The difference between those values tells us is 
the investment is better or worse than the market average (overvalued or 
undervalued asset).


Genetic Operators 
Selection with MOEA/D is given by the algorithm itself, so it is only necessary to 
select a mutation and a crossover. When we talk about MOEA/D-DE, then all 
operators are given, no need to select any other operator.


Objective Normalization 
When dealing with multiple objectives, one of the problems that arise is that each 
objective has its scale, the results in MOEA/D prioritizing one of the objectives more 
than the rest. For example, if returns of portfolios range between 10% and 15% and 
the standard deviation for those same portfolios is in the range between 8% and 
13%, MOEA/D will favor return more than standard deviation, this will create 
difficulties when we need to distribute solutions evenly across the plane. This 
behavior is explained thoroughly in the paper by Ishibuchi, H., Doi, K. & Nojima, Y. 
(2017)[13].


To mitigate this behavior, normalization is applied to the objectives[13], this will 
result in having all objectives on the same relative scale. For this project, I will be 
using the same normalization as in the paper (Ishibuchi et al. 2017). The fitness 
corresponding to th objective , will be normalized as:


Table 3. MOEA/D and MOEA/D Genetic Operators

Algorithm Selection Mutation Crossover

MOEA/D MOEA/D Selection Single-Point Mutation Two-Point Crossover

MOEA/D-DE MOEA/D-DE Selection Polynomial Mutation Differential Evolution

i f (x)i
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calculated using an upper and lower reference point (  and  respectively). It is 
a min-max normalization function with a little modification: to avoid the risk of the 
denominator becoming zero, a positive constant  is added, . 

This method proved to have positive results with the data of this research (figure 
10).


3.2.3 Stock Pre-Selection 
During the creation of this system, the first problem to be encountered is how to 
deal with a big amount of stock options. Having a large search space can affect 
widely the performance of an evolutionary algorithm, it increments the generations 
needed to converge as well as the size of the solutions and the population. A pre-
selection of the stock was implemented to make the algorithm leaner and faster. It 
takes into consideration some aspects:

1. Mean return

2. Standard deviation

3. Variance covariance matrix


Using those characteristics, this program will select a subset of stocks to then be 
fed to the Evolutionary Algorithms. The number of stocks selected to be used will 
be set to be around 500. This implies that the solutions of the Evolutionary 
Algorithms are arrays of 500 integers.


zi: =
zi − ziL

ziU − ziL + ϵ

ZiL ZiU

ϵ ϵ = 10−6
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Algorithm 3: Stock Pre-selection

Remove all outliers regarding the return:

Remove all the stocks whose standard deviation ( ) is zero.σ

Return all remaining stocks as S′ 

Calculate the mean return of the population ( ).μp

Input: Set of stocks ( )S

Calculate the standard deviation of the mean return of the population ( ).σμp

Remove all the stocks with a return  outside of the interval: μ [0,μp + 3σμp]

Output: Subset of stocks ( )S′ 
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Figure 11. Mexican Stock Exchange Market Portfolio percentage returns. 



4. Experimental Phase

The objective of this investigation is to find a suitable framework for Portfolio 
Selection and to compare it against current existing methods used in finance. The 
idea is to use Evolutionary Algorithms for creating portfolios using historical prices. 
Once we have created the portfolios we evaluate them using future prices of the 
assets. In this section, I will explain how the performance of the selected methods 
will be evaluated.


4.1 Data 
Originally all data was provided by Bolsa Institucional de Valores (BIVA). BIVA is a 
relatively new stock exchange in Mexico, it started operations in July 2018, and they 
kindly supported this project by providing all daily closing prices for their stock from 
the beginning of their operations, on July 25, 2018, until the 31st of December of 
2019. In addition to the closing prices, they also provided the capitalization of each 
stock. This price list is composed of daily closing prices for 3431 different stocks 
that were traded at that time. 


Additionally, given the need for more data, I extended the dataset to 4 years worth 
of data, starting from 2016 until the end of 2019. The additional data was gathered 
from BMV (Bolsa Mexicana de Valores) and Yahoo Finance. However, not all of the 
stocks were listed since the beginning and/or until the end of the period. So, to 
compare stock equally in the whole period, I removed all the stocks that were 
added to the list after January 4th, 2016, and all the stocks that were removed from 
the stock exchange before December 31, 2019, as well as all the stock with missing 
data. After filtering the data, the list is narrowed down to 1503 stock with exactly 
1005 close prices. Those 1005 prices correspond to each of the business days in 
the time range in observation.


Using the capitalization and the daily price changes, we can produce a market 
portfolio. The market portfolio is a portfolio that includes all assets weighted by their 
capitalization (figure 11).
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For the experiment, I divided the data into two sets of equal size, by date, one 
dataset for the model to select portfolios, and the other dataset to evaluate 
portfolios.


The first dataset, to create the portfolios contains 754 closing prices, which 
correspond to the first 3 years (2016, 2017, and 2018). The dataset for evaluating 
the portfolios contains the last year of data or exactly 251 closing prices. Both sets 
contain the same securities. As explained in the introduction, the entire dataset 
goes from January 4, 2016, until the 31st of December of 2019, and it is constituted 
by 1503 different securities that were available throughout the whole time range.


 

4.2 Metrics 
To decide whether a portfolio is better than others, I selected some metrics:


CAPM Expected Return:  



Historical Mean Return: 
 

 

Beta: 

 

Standard Deviation: 

E[Rp] = Rrf + βp(Rm − Rrf )

μ = Rp =
n

∑
i=0

ωiμi

β =
cov(Rp, Rm)

var (Rm)
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Portfolio Creation 
2016-01-01 to 2018-12-31 

754 business days

Portfolio Evaluation 
2019-01-01 to 2019-12-31  

251 business days

Figure 12. Data split.






The first two metrics are different calculations for the expected return of 
investment[2] and the last two reflect measurements of risk systematic and 
unsystematic[2]. These metrics can provide expectations for the future performance 
of a portfolio.

I will gather the metrics for the creation dataset and the evaluation dataset 
separately.


4.3 Benchmarks 
Once all the portfolios have been generated using the methods explained in the 
previous chapter and having them evaluated using the metrics selected, I compared 
them side by side. To have an idea of how these portfolios are performing I selected 
three benchmarks: the security market line, the market portfolio, and the Mexican 
stock market (BMV because of its initials in Spanish Bolsa Mexicana de Valores) 
S&P index.


These benchmarks and the portfolios will be evaluated using the evaluation dataset, 
so we can compare future performance. 

Market Portfolio 
The idea is that all investors are highly intelligent, so creating a portfolio containing 
all the stocks in the market, weighted by capitalization can give us an idea of how 
much money are the investors making on this market. However, it is impossible to 
invest in all stocks in the market, so this is a theoretical reference. Having that in 
mind, this portfolio can give us an expectation of how should our portfolios behave.


BMV S&P Index 
This index was created by financial experts, selecting stocks that are representative 
of this particular market. This index gives us an idea of how the market is moving, it 
serves as a proxy for the Market Portfolio, however, this index is a realistic portfolio, 
as it only contains a fraction of the companies in the market.


σ =
n

∑
i=1

n

∑
j=1

σi, jωiωj
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SML  
This line shows the average trade-off between risk and return of investment. Any 
portfolio above this line can be treated as a good portfolio, portfolios on this line are 
average performing portfolios and the ones below the line are worse than average 
portfolios. We can obtain this chart by plotting the CAPM equation: 





4.4 Procedure 
To gather the results I followed these steps:


Step 1: Find optimal parameters for each of the algorithms (explained below in 
section 4.4.1):


A. Mutation Rates (GA, MOEA/D & MOEA/D-DE)

B. Crossover Rates (GA, MOEA/D & MOEA/D-DE)

C. Neighborhood Size (MOEA/D & MOEA/D-DE) 

D. Scaling Factor (MOEA/D-DE only)

E. Distribution Index (MOEA/D-DE only)

F. Initialization Method (GA, MOEA/D & MOEA/D-DE)

G. Normalization (MOEA/D & MOEA/D-DE)

H. Decomposition Method (MOEA/D & MOEA/D-DE)


Step 2: Create using creation dataset with the following methods:

A. MOEA/D + Mean-Variance

B. MOEA/D + CAPM

C. MOEA/D-DE + Mean-Variance

D. MOEA/D-DE + CAPM

E. Genetic Algorithm + Mean-Variance

F. Genetic Algorithm + CAPM


Step 3: Select the most significant portfolios at different risk levels (low and high). 
This only applies to MOEA/D and MOEA/D-DE. Solutions obtained from each of the 
algorithms will be ordered by ascending risk. Then a solution will be selected at the 
15th percentile for low risk, and at the 80th percentile for a high-risk portfolio.

Step 4: Gather metrics (Mean Return, Standard Deviation, Expected Return, and 
Beta).


E[Ri] = Rrf + βi(Rm − Rrf )
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Step 5: Compare gathered metrics against the metrics calculated using future 
prices using simulation dataset.

Step 6: Compare results against benchmarks.


Please find the full algorithm configuration in Appendix 2.


4.4.1 Parameter Optimization 
To find the optimal parameters I ran individual tests for each parameter and value.


For each parameter: 
1. Select 5 different values for the selected parameter.

2. For each of those 5 values:


A. Run the algorithm 10 times with the selected value.

B. Collect metrics (Fitness, Standard Deviation, Number of 

Solutions Found)

3. Compare results and select value.


Please find full results for the optimal parameter search in Appendix 2 and 3.


4.5 Results and Discussion 
In this section, divided into four parts, I will present the results obtained from the 
experiments and the subsequent discussion. In the first part, I will explain the 
performance of the algorithms and techniques used as optimization methods for 
portfolios creation. In the second part, I will explore the risk handling and result 
predicting capacity of the models. In the third part, I will compare the results against 
well-known benchmarks. Finally, in the fourth part, I will present a brief discussion 
of the results.
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4.5.1 Optimization Comparison 
The purpose of this section is to analyze which algorithm serves better for portfolio 
optimization. Each algorithm was used twice, first with the Mean-Variance model 
and then with the CAPM model. It is important to note that the ability of each 
algorithm to find optimal solutions is related to the shape of the Pareto front, and 
these Pareto fronts are themselves determined by the fitness functions we use. 
Changes in the portfolio model, result in different behaviors of a given algorithm.


4.5.1.1 Mean-Variance Model 
As seen in the literature, when using multi-objective optimization for the Mean-
Variance portfolio, the Pareto front produces a curve that goes from Low-Risk-Low-
Return to High-Risk-High-Return. In figure 13, the results for the three algorithms 
are in the same plot.
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Figure 13. Solutions found by each algorithm when using a 
Mean-Variance Model. Please note that the Return and the 

Standard Deviation are normalized to values between 0 and 1 
using a MinMax function. Selected Portfolios (marked with the 

red cross) refer to the portfolios used for later analysis and 
simulations.



Unquestionably, MOEA/D found the best results, stretching each portfolio for a 
higher return for any given level of risk. However, when the set of portfolios found by 
MOEA/D is compared directly to the set of portfolios found by MOEA/D-DE, we can 
see advantages in MOEA/D-DE even if the quality is a bit lower. The set of results of 
MOEA/D-DE are evenly spread across the lower and upper limits, conformed by 99 
different points (portfolios). MOEA/D found fewer results (74 different portfolios), 
leaving bigger gaps between each portfolio. However, in the middle of the line, the 
portfolios are closer together.


Single Point Crossover and Swap Mutation operators tend to find higher quality 
results in fewer generations than Differential Evolution operators. However, in the 
longer term, the limits of Single Point Crossover and Swap Mutation are lower 
(figure 14).


The Genetic Algorithm is a great option if we know what we are looking for, its 
implementation is faster and simpler than the multi-objective EAs, and the portfolio 
found has a similar quality than the ones found with the multi-objective algorithms. 
In this case, the fitness function pointed to the middle of the two objectives, giving 
balanced results. Further customization can be achieved when scaling the 
components in the fitness function, for a better risk and return balance.
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Figure 14. Solutions found by MOEA/D and MOEA/D-DE, 
when run for 1000 generations, 500 more generations than in 

the executions used for gathering results.
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In the three algorithms, there is room enough to accommodate more constraints for 
more robust searches.


4.5.1.2 CAPM 
The results of the CAPM optimization are not as straight-forward as the Mean-
Variance's. In this setting, the MOEA/D-DE out-bested the other two algorithms. We 
can note that the negative behavior for the MOEA/D operators seen in the previous 
section is exaggerated when using CAPM equations. Results for MOEA/D are fewer 
and further apart. Also, it is important to note, that the set of solutions found by 
MOEA/D and MOEA/D-DE differ in shape.


The highest risk portfolio for MOEA/D is probably a lucky strike achieved by the 
genetic operators, finding a far away portfolio with better quality than the rest.


The Genetic Algorithm did not perform as expected. The objective of GA was to find 
a balanced portfolio, but it found an extremely low-risk-low-return portfolio (when 
compared to the ones found by MOEA/D and MOEA/D-DE).
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Figure 15. Solutions found by each algorithm when using a 
CAPM Model. Please note that the portfolio Beta and CAPM 

values are normalized between 0 and 1 using a MinMax 
function.



4.5.2 Simulations and Portfolio Model Comparison 
In this section, we will compare the performance of each portfolio found. This 
comparison will be based on the evaluation dataset. As explained before, to find 
optimal portfolios, I used historical data from 2016, 2017, and 2018. The portfolios 
found by the algorithms are close-to-optimal portfolios during that period, achieving 
the highest returns with a low standard deviation. However, it is uncertain if the 
trend can continue in the same direction, and if so, which characteristics we need to 
look at. To evaluate the models, we will look ahead into the future prices (daily 2019 
prices), and compare the expectations with the actual behavior of the portfolios.


The results can be found in Appendix 4, where metrics by portfolio were gathered 
into a single table. Additionally, the assets contained and their weights for each 
portfolio can be found in Appendix 5.


Genetic Algorithm 
Two tests were executed using the Genetic Algorithm, one using the Mean-Variance 
Model, the second using the CAPM model. The Mean-Variance portfolio registered 
a historical mean return of 97% per year with a standard deviation of 38% and a 
Beta of 0.66. The CAPM portfolio registered a historical mean return of 33% per 
year with a standard deviation of 21% and a very low Beta of 0.000099. These 
values can be seen graphically in figure 16.
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Figure 16. In the horizontal axis is portfolio Beta, and on the vertical axis is 
the return. In these two plots the GA portfolios are compared against the 
SML. On left-hand side, Betas and returns are calculated using data from 

2016 to 2018 and on the right side, Betas and returns are from 2019.
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When running the simulation, after a year, both portfolios achieved a very similar 
level of return (27% for CAPM portfolio and 25% for Mean-Variance portfolio). 
However, as it can be seen in figure no. 17, the Mean-Variance portfolio is more 
volatile. In that year, the Mean-Variance portfolio had a standard deviation of 19%, 
while the CAPM portfolio stayed as a more stable option with a standard deviation 
of 14%. Also, there was a bigger gap in the volatility explained by the beta 
coefficient. In 2019, we can observe a Beta of .04 in the CAPM portfolio, while the 
Mean-Variance portfolio had a Beta of .34 in that same period.


MOEA/D 
The procedure for MOEA/D was slightly different. Same two tests were executed, 
but since MOEA/D can find a set of optimal solutions, I selected two portfolios from 
each execution at different percentiles (described in section 4.4) one for low risk and 
one for high risk. This results in four different portfolios, two CAPM portfolios, and 
two Mean-Variance portfolios (figure 18). 

When we compare directly the CAPM Low-risk portfolio with the Mean-Variance 
Low-risk portfolio we see that CAPM found a portfolio with a very high return (92%) 
and a very high standard deviation (104%), but with an extremely low Beta of 0.004. 
However, the Mean-Variance portfolio has different characteristics: 59% mean 
annual return with a standard deviation of 16% and a Beta of 0.39. When we look at 
the values from the simulation, in 2019, the CAPM low-risk portfolio grew 31% and 
had a standard deviation of 19%, while the Mean-Variance portfolio only grew 10%. 
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Figure 17. In this figure, the cumulative returns are plotted over time. 
Both lines cross the zero in 01-Jan-19, as if that day is the moment 

of investment.
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For the high-risk portfolios, the situation is not so different. CAPM found a portfolio 
with low-beta and high return, with a significantly higher standard deviation than the 
Mean-Variance portfolio (140% vs. 50% standard deviation) but a lower Beta (0.09 
and 0.58 respectively). Then, during 2019, the CAPM portfolio out-bested the 
Mean-Variance portfolio when it comes to gross return. 


In figure 19, we can see the Mean-Variance high-risk portfolio having a higher 
volatility than the rest of the portfolios, while the CAPM high-risk portfolio appears 
to have a more steady growth during the simulation period. The CAPM low-risk 
portfolio has a very similar line when compared to the CAPM high risk, but the 
variations are in a smaller amount, resulting in a lower growth rate.
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Figure 19. Cumulative returns are plotted over time for the MOEA/D 
portfolios.
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Figure 18. Returns (y-axis) against Beta (x-axis) for the MOEA/D portfolios. In blue, the 
Security Market Line is plotted. Left side corresponds to the creation dataset, right 

side to the evaluation dataset.
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MOEA/D-DE 
The result found by MOEA/D-DE does not differ too much from MOEA/D results. 
The CAPM portfolios have higher mean return rates (125% and 153%) at the cost of 
high standard deviation (193% and 294%), while the Mean-Variance portfolio have a 
more moderate return rate (61% and 114%) with moderate standard deviation (23% 
and 78%) but at higher Beta values when compared to the CAPM Betas which are 
close to zero. It is interesting to note that the Mean-Variance high-risk portfolio has 
a lower Beta (0.41) than the Mean-Variance low-risk portfolio which has a Beta of 
0.88. These values can be seen plotted in figure 20.
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Figure 21. Cumulative returns are plotted over time for the MOEA/
D-DE portfolios.
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Training Simulation

Figure 20. MOEA/D-DE portfolios compared against the SML. On left-hand side, 
Betas and returns are calculated using the creation dataset, on the right side using 

the evaluation dataset.
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In figure 21, we can see a simulation of the cumulative return rates of each portfolio. 
Hard to see in the plot but the portfolio that produced the most return during that 
year was the Mean-Variance High-risk portfolio with 55% return, but closely 
followed by the CAPM High risk, with 52% gross return. As seen in the MOEA/D 
portfolios and contrary to my initial expectations the Mean-Variance high-risk 
portfolio had the highest volatility, 106%. Both CAPM portfolios have a similar 
shape, but the low-risk portfolio shows the variations in a lesser amount, reflected in 
the return. 


4.5.3 Comparison Against Benchmarks 
Finally, to assess the results I compared each of the portfolios against the selected 
benchmarks: Security Market Line, Market Portfolio, and BMV S&P Index. This 
comparison should tell us if the methods used are better or worse than the average 
investment in the market.


SML 
As seen in the second chapter, plotting a portfolio against the SML tells us if it 
performs better or worse than the expected market average. A portfolio above the 
SML is an undervalued portfolio, which is giving more return than expected, and a 
portfolio under the SML is an overvalued portfolio. In figure 22, we can see all the 
portfolios obtained plotted against the SML with the values from the simulation 
period, from the 2nd of January, 2019 until the 31st of December, 2019.
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Figure 22. Returns during the simulation period 
(01/01/19 - 31/12/2019) on the y-axis and Beta 

coefficient in the x-axis. SML represented as a blue line.
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As we can see, all of the portfolios generated more return than their expected return 
according to the CAPM model. The GA CAPM stands out, generating a return of 
27% under a very low beta of 0.04.


Market Portfolio 
In figure 23, we can find a time series showing the cumulative returns of each 
portfolio and having the market portfolio as a comparison. All of the portfolios 
created with Evolutionary Algorithms produced more gross returns than the market 
portfolio except for MOEA/D MV Low Risk (brown line). However, the market 
portfolio appears as a line with steady growth and low volatility, while most of the 
portfolios are reasonably more volatile, in particular the MOEA/D-DE MV High-Risk 
portfolio (pink line). As a safer option, showing less volatility the MOEA/D-DE CAPM 
low-risk portfolio (light blue line) is one of the portfolios with the highest return.
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Figure 23. Cumulative returns of each portfolio (dashed lines) plotted 
next to the market portfolio (solid red line) over the time.
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BMV S&P Index 
As seen previously, the market portfolio and SML are both theoretical concepts. In 
contrast, this benchmark is an attainable portfolio. It contains the most 
representative assets of the Mexican Stock Market (BMV) and it is used as a proxy 
of the Market Portfolio, one important difference between the two is that the BMV 
S&P Index is less volatile than the market portfolio. In figure 24 we can see the 
comparison of all portfolios (dashed lines) against the index (solid red line). All of the 
portfolios perform better than the BMV S&P Index, reporting higher returns at the 
end of the simulation period, on the 31st of December, 2019.


4.5.4 Discussion 
After carefully reviewing the results, I found some important points:

1. CAPM together with the Evolutionary Algorithms appears to give the most 

consistent results, during the simulation year, the volatility remained steady and 
the growth was constant in the CAPM portfolios.


2. MOEA/D-DE is the most versatile optimization method used in the research, it 
delivers a wider range of results than its predecessor (MOEA/D) and more evenly 
spread.


3. While MOEA/D appears to find better results for Mean-Variance portfolios, 
evidence suggests MOEA/D-DE has the potential to surpass it.
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Figure 24. Cumulative returns of each portfolio (dashed lines) plotted next to 
the S&P BMV Index ^MXX (solid red line) over the time.
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4. When searching for optimal portfolios for the CAPM model, diversification is lost, 
the algorithms concentrated most of the investment into few assets, which may 
seem like a risky practice.


5. Contrary to the previous point, when optimizing for Mean-Variance portfolios, 
when trying to find a low-risk portfolio, the algorithms try to excessively diversify 
to lower the portfolio standard deviation, which in real life can have a large impact 
on the transaction costs.


#$ Having in mind the two previous points, the Beta coefficient and standard 
deviation are complimentary risk measures, reflecting different behaviors of an 
asset.!
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%. Conclusion and Future Work

This research has been an investigation into the use of the Genetic Algorithm, 
MOEA/D, and MOEA/D-DE for optimizing portfolios. We reviewed two different 
adaptions of each algorithm to enable the creation of optimal portfolios based on 
two different portfolio theories. All the work was done using real data from the 
Mexican Stock Market and the portfolios were evaluated according to: (1) historical 
performance; (2) future performance using unseen data; and (3) its comparison to 
well-known benchmarks. The three algorithms were able to produce highly 
competitive portfolios. 


MOEA/D-DE seems to be the best algorithm in the research, the differential 
evolution operators are good enough to solve the problem. Additional research is 
required for more thorough parameter optimization, in that way we can guarantee 
the best results out the algorithm. Another enhancement to this algorithm is a 
convergence test, to know whether we have reached the limits of the search or not, 
instead of having an arbitrary number of generations.


CAPM together with the evolutionary algorithms was able to produce more accurate 
predictions of the future performance. However, it would be interesting in the future 
to see proposals that mix different portfolio theories with Evolutionary Algorithms. A 
more complete model could be done using a 3-objective optimization, taking the 
mean return, the standard deviation, and the Beta coefficient as separate 
objectives, MOEA/D-DE has proven to be the ideal candidate for such optimization.


The comparison between the EA portfolios and the benchmarks suggests that the 
Evolutionary Algorithms can produce portfolios that could be useful in real-life 
conditions, however the research fall short in representing life-like conditions. 
Additional investigations can be done taking into account transaction costs, taxes, 
and investment money to prove the performance in scenarios closer to real-life.


The advantages of using computer intelligence for financial applications are evident 
in this research. The MOEA/D-DE is a suitable algorithm for finding optimal 
portfolios. More research should be done to represent real-life conditions and that 
can be adapted to computer optimization. The current setting has given a confident 
expectation for Evolutionary Algorithms in portfolio optimization.!
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Appendix 1: Systematic Literature Review Table
Ref Author Year Algorithm Model Metrics Finding

15 W. Chen, 
R. Zhang, 
Y. Cai and 
F. Xu

2006 Particle 
Swarm 
Optimization

Constrained 
Mean-Variance 
+ Transaction 
Costs

Average Fitness, 
Maximum Fitness

PSO with Mean-Variance 
model + Transaction costs 
and limits proved to be an 
effective method.

16 M. Chen, 
Jian Weng 
and Xia Li

2009 Multi-
objective 
Extremal 
Optimization

Mean-Variance Front Spread, 
Coverage

The results of MOEO were 
comparable to NSGA-II but 
not better.

7 H. Li and 
Q. Zhang

2009 MOEA/D -- -- A multi-objective optimization 
algorithm that show great 
potential.

17 S. K. 
Mishra, G. 
Panda 
and S. 
Meher

2009 Multi-
Objective 
Particle 
Swarm 
Optimization

Mean-Variance Front Spread, 
Fitness

Multi-Objective Particle 
Swarm Optimization out-
bested the rest of the 
algorithms in the study 
(NSGA-II, SPEA2 and 
PSFGA).

10 Hoklie 
and L. R. 
Zuhal

2010 Genetic 
Algorithm

Mean-Variance Risk and Return The results show that a simple 
genetic algorithm can provide 
good results for portfolio 
optimization and also that to 
find an optimal portfolio with 
GA, it is important to observe 
the different parameters of the 
GA.

18 Jianguo 
Cao and 
Liang Tao

2010 Improved 
Particle 
Swarm 
Optimization

Mean-Variance Average Fitness Proposed an Improved 
Particle Swarm Optimization 
(IPSO) and tested with Mean-
Variance portfolio 
optimization, having better 
results than the original PSO.

19 A. Talebi, 
M. A. 
Molaei 
and M. J. 
Sheikh

2010 Genetic 
Algorithm

Mean-Variance The gap between 
predicted values 
and actual values 
in simulation.

The study showed that GA is 
more effective for portfolio 
optimization than PSO and 
that calculating yearly returns/
variances are better than 
monthly.

20 G. A. V. 
Pai

2014 Multi-
Objective 
Differential 
Evolution

Mean-
Variance, Risk 
Budgeting 
Strategy

Sharpe ratio found 
vs Maximum 
Sharpe ratio

The algorithm was able to find 
the maximal Sharpe ration 
possible given the assets and 
results were consistent

23 Divya 
Kumar, 
K.K.Mishr
a

2017 Multi-
objective 
Co-variance 
based 
Artificial Bee 
Colony

Mean-Variance Generational 
DIstance (from the 
Pareto front) and 
Spread

The result is good and can be 
worked further to 
accommodate more 
constraints.

 a



22 B. Y. Qu, 
Q. Zhou, 
J. M. 
Xiao, J. J. 
Liang, 
and P. N. 
Sugantha
n

2017 MOEA/D, 
MODE, 
MODE-SS, 
MODE-NDS, 
NSGA-II and 
MOCLPSO

Mean-Variance Maximum values in 
each dimension

In their experiment, the 
authors found that the 
normalized version of MOEA/
D (NMOEA/D) performed 
better than the rest.

13 Ishibuchi, 
H., Doi, K. 
& Nojima, 
Y. 

2017 MOEA/D -- -- The advantages and use 
cases of normalizing 
objectives in MOEA/D.

21 R. 
Ramadhia
ni, M. 
Yan, G. F. 
Hertono 
and B. D. 
Handari 

2018 e-New Local 
Search 
based 
Multiobjectiv
e 
Optimization 
Algorithm

Constrained 
Mean-Variance

The gap between 
the solution and 
the efficient frontier

Results were compared to the 
efficient frontier given the set 
of assets. The e-NSLS 
appears to find better results 
than M-CABC.

5 H. Zhang, 
Y. Zhao, F. 
Wang, A. 
Zhang, P. 
Yang and 
X. Shen

2018 MOEA/D Mean-Variance The gap between 
the solution and 
the efficient frontier

The weight vector is a very 
important component for 
MOEA/D, they propose a new 
computing method for those 
vectors. The results shown in 
the paper are good. 

9 S. Lim, M. 
Kim and 
C. W. Ahn

2020 Genetic 
Algorithm

Mean-Variance 
+ CAPM

ROI in simulation The algorithm attempts to find 
investment opportunities that 
can make a person rich, like 
AMZN, or NFLX, which in ten 
years created a profit for 
stock investors of more than 
2500%. The algorithm failed 
to find such assets during the 
experimentation, however, 
results in general were 
positive.

 b



Appendix 2: Algorithm Configuration

Genetic Algorithm 



† Algorithm presented in section 3.2.1 

MOEA/D 

Attribute Value

Population Size 100

Number of Generations 500

Solution Size 473

Mutation Operator Single-Point Mutation

Crossover Operator Two-Point Crossover

Selection Operator Tournament Selection

Tournament Size 10

Crossover Probability 0.9

Mutation Probability 0.9

Initialization Method Original Algorithm†

Elitism 1

Attribute Value

Population Size 100

Number of Generations 500

Neighborhood Size 15

Solution Size 473

Mutation Operator Single-Point Mutation

Crossover Operator Two-Point Crossover

Normalization 1

Crossover Probability 0.3

Mutation Probability 0.9

Initialization Method Random

Decomposition Tchebycheff

 c

Optimized parameters

Arbitrary parameters



MOEA/D-DE 

† Algorithm presented in section 3.2.1 !

Attribute Value

Population Size 100

Number of Generations 500

Neighborhood Size 15

Solution Size 473

Mutation Operator Polynomial Mutation

Crossover Operator Differential Evolution

Normalization 1

Crossover Probability 0.5

Mutation Probability 0.7

Initialization Method Original Algorithm†

Scaling Factor 0.5

Distribution Index 10

Decomposition Tchebycheff

 d

Optimized parameters

Arbitrary parameters



Appendix 3: Parameter Optimization Results

Genetic Algorithm 
Baseline 

Crossover Probability 

Mutation Probability 

Parameter Value

Crossover Probability 0.5

Mutation Probability 0.5

Elitism 1

Initialization Method Random

Average Fitness Standard Deviation Minimum Maximum

166.5 11.2 143.3 184.7

Crossover Rate Average Fitness Standard Deviation Minimum Maximu
m

0.1 159.0 17.1 121.4 181.8

0.3 164.2 14.1 135.6 179.5

0.5 166.5 11.2 143.3 184.7

0.7 167.2 9.3 146.4 181.2

0.9 168.6 7.0 157.2 178.0

Mutation Rate Average Fitness Standard Deviation Minimum Maximu
m

0.1 112.4 13.6 91.5 135.2

0.3 151.9 21.8 107.9 175.0

0.5 164.0 11.3 137.2 178.7

0.7 170.8 8.1 159.2 182.3

0.9 175.6 14.1 151.1 194.2

 e

Best value in each category



Initialization Method 

† Algorithm presented in section 3.2.1 

Elitism 

MOEA/D 
Baseline 

Neighborhood Size 

Initialization Average Fitness Standard Deviation Minimum Maximu
m

Random 169.6 12.3 151.0 188.3

Original Algorithm† 169.8 8.5 155.0 188.4

Elitism Average Fitness Standard Deviation Minimum Maximu
m

0 163.8 9.7 145.7 182.5

1 166.5 10.6 146.4 179.7

Parameter Value

Crossover Probability 0.5

Mutation Probability 0.5

Normalization 1

Initialization Method Random

Neighborhood Size 10

Decomposition Method Weighted Sum

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

14.2 1.75119 0.75752 0.02845 -0.00243 0.00009

Neighborhoo
d Size

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

3 13.60000 2.06559 0.76468 0.03195 -0.00216 0.00013

8 13.60000 2.01108 0.73083 0.01623 -0.00232 0.00015

10 14.00000 3.23179 0.74303 0.02794 -0.00223 0.00021

15 14.60000 3.27278 0.72059 0.01518 -0.00210 0.00017

20 13.00000 2.44949 0.76575 0.03940 -0.00229 0.00018

 f

Best value in each category



Crossover Probability 

Mutation Probability 

Normalization 

Decomposition Method 

Crossover P. Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

0.1 11.7 2.90784 0.74496 0.02187 -0.00222 0.00017

0.3 13.6 3.27278 0.73025 0.02499 -0.00209 0.00016

0.5 13.2 3.25918 0.72681 0.01677 -0.00216 0.00018

0.7 13.1 1.96921 0.76252 0.03225 -0.00222 0.00017

0.9 13.5 2.75882 0.74383 0.02430 -0.00218 0.00016

Mutation P. Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

0.1 9.1 2.02485 0.70379 0.03414 -0.00256 0.00022

0.3 12.3 2.11082 0.70459 0.02084 -0.00237 0.00020

0.5 14.5 2.63523 0.76389 0.03786 -0.00225 0.00017

0.7 14.9 1.79196 0.76525 0.02584 -0.00215 0.00014

0.9 15.6 3.62706 0.75778 0.01722 -0.00203 0.00019

Normalize Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

1 13.9 2.55821 0.73688 0.02536 -0.00219 0.00016

0 5.2 1.13529 0.77130 0.02052 -0.00362 0.00040

Decompositio
n

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

Weighted Sum 14.2 1.75119 0.75752 0.02845 -0.00243 0.00009

Tchevycheff 70 16.04854 0.75760 0.04482 -0.00253 0.00015

 g

Best value in each category



Initialization 

† Algorithm presented in section 3.2.1 

MOEA/D-DE 
Baseline 

Neighborhood Size 

Initialization Avg Num 
of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

Random 13.6 2.79682 0.74406 0.03345 -0.00216 0.00018

Original Algorithm† 13.1 3.17805 0.73833 0.01626 -0.00240 0.00007

Parameter Value

Crossover Probability 0.5

Mutation Probability 0.5

Normalization 1

Initialization Method Random

Neighborhood Size 10

Decomposition Method Weighted Sum

Distribution Index 1

Scaling Factor 1

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

75 13.71131 0.76510 0.07915 -0.00386 0.00031

Neighborhood 
Size

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

3 73.9 8.91254 0.77444 0.07060 -0.00339 0.00045

8 77.5 11.48187 0.77349 0.09294 -0.00377 0.00032

10 75 13.71131 0.76510 0.07915 -0.00386 0.00031

15 71.5 11.28667 0.77444 0.06704 -0.00349 0.00057

20 74.8 14.09334 0.77368 0.09078 -0.00365 0.00034

 h

Best value in each category



Crossover Probability 

Mutation Probability 

Normalization 

Decomposition Method 

Initialization 

Crossover 
P.

Avg Num 
of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

0.1 69.6 14.46221 0.77409 0.09868 -0.00331 0.00037

0.3 73.6 13.26817 0.76510 0.09118 -0.00356 0.00034

0.5 77.4 4.90351 0.76817 0.08527 -0.00386 0.00027

0.7 72.6 16.20151 0.77101 0.11361 -0.00362 0.00032

0.9 74.6 19.38613 0.77449 0.11553 -0.00369 0.00039

Mutation 
P.

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

0.1 67.2 13.13012 0.76255 0.10719 -0.00387 0.00031

0.3 79.5 11.90005 0.77518 0.11573 -0.00336 0.00040

0.5 74.5 14.00992 0.77449 0.11703 -0.00336 0.00039

0.7 75 12.77150 0.77253 0.08380 -0.00326 0.00047

0.9 69.7 9.45222 0.77426 0.06880 -0.00375 0.00042

Normalizatio
n

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

1 78.4 10.83410 0.75771 0.08120 -0.00335 0.00038

0 19.2 13.43131 0.77370 0.05922 -0.00365 0.00032

Decomposition Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

Weighted Sum 74.5 12.66886 0.77370 0.10470 -0.00366 0.00035

Tchebycheff 99.4 1.34990 0.76255 0.09079 -0.00363 0.00030

 i

Best value in each category



† Algorithm presented in section 3.2.1 

Scaling Factor 

Distribution Index 

Initialization Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std 
Dev

Average 
Max Fitness 
2

Std Dev

Random 64.5 15.00555 0.77102 0.0966
2

-0.00361 0.00035

Original Algorithm† 70.2 15.65461 0.76630 0.0728
9

-0.00373 0.00049

Scaling 
Factor

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

0.4 70.9 20.04135 0.77520 0.07216 -0.003503 0.00027

0.5 82.6 9.57079 0.77448 0.04962 -0.00354 0.00037

0.75 78.1 16.61626 0.76476 0.09697 -0.00382 0.00017

0.9 78 13.59739 0.77518 0.08101 -0.003496 0.00031

1 78 12.98717 0.77504 0.02242 -0.00401 0.00024

Distribution 
Index

Avg Num of 
Solutions

Std Dev Average Max 
Fitness 1

Std Dev Average Max 
Fitness 2

Std Dev

1 75 15.52775 0.76544 0.10374 -0.00326 0.00036

5 68.6 19.06830 0.76609 0.05997 -0.00373 0.00029

10 79.1 7.50481 0.77440 0.08192 -0.00351 0.00040

20 72.9 12.20610 0.77441 0.01266 -0.00342 0.00042

50 76 11.13553 0.75563 0.12554 -0.00397 0.00030

 j

Best value in each category



Appendix 4: Results Summary
GA + Mean-Variance GA + CAPM

Training (2016, 2017, 2018) Training (2016, 2017, 2018)

Historical Mean Return 0.9447 Historical Mean Return 0.333395

Standard Deviation 0.3899 Standard Deviation 0.213736

Expected Return CAPM 0.0966 Expected Return CAPM 0.042508

Beta 0.6635 Beta 0.000099

Evaluation (2019) Evaluation (2019)

Return 0.2543 Return 0.2750

Standard Deviation 0.1985 Standard Deviation 0.1531

Beta 0.3447 Beta 0.0420

MOEA/D + Mean-Variance (Low Risk) MOEA/D + CAPM (Low Risk)

Training (2016, 2017, 2018) Training (2016, 2017, 2018)

Historical Mean Return 0.5971 Historical Mean Return 0.9230

Standard Deviation 0.1688 Standard Deviation 1.0433

Expected Return CAPM 0.0750 Expected Return CAPM 0.0429

Beta 0.3993 Beta 0.0048

Evaluation (2019) Evaluation (2019)

Return 0.1076 Return 0.3158

Standard Deviation 0.1023 Standard Deviation 0.1931

Beta 0.2591 Beta 0.4354

MOEA/D + Mean-Variance (High Risk) MOEA/D + CAPM (High Risk)

Training (2016, 2017, 2018) Training (2016, 2017, 2018)

Historical Mean Return 1.1138 Historical Mean Return 1.1613

Standard Deviation 0.5843 Standard Deviation 1.4320

Expected Return CAPM 0.0900 Expected Return CAPM 0.0498

Beta 0.5836 Beta 0.0900

Evaluation (2019) Evaluation (2019)

Return 0.3735 Return 0.4500

Standard Deviation 0.3043 Standard Deviation 0.2465

Beta 0.3547 Beta 0.4700

MOEA/D-DE + Mean-Variance (Low Risk) MOEA/D-DE + CAPM (Low Risk)

Training (2016, 2017, 2018) Training (2016, 2017, 2018)

Historical Mean Return 0.6132 Historical Mean Return 1.2552

 k



Standard Deviation 0.2318 Standard Deviation 1.9361

Expected Return CAPM 0.1148 Expected Return CAPM 0.0476

Beta 0.8869 Beta 0.0622

Evaluation (2019) Evaluation (2019)

Return 0.1933 Return 0.4285

Standard Deviation 0.1775 Standard Deviation 0.2199

Beta 0.8154 Beta 0.5694

MOEA/D-DE + Mean-Variance (High Risk) MOEA/D-DE + CAPM (High Risk)

Training (2016, 2017, 2018) Training (2016, 2017, 2018)

Historical Mean Return 1.1400 Historical Mean Return 1.5388

Standard Deviation 0.7818 Standard Deviation 2.6463

Expected Return CAPM 0.0761 Expected Return CAPM 0.0749

Beta 0.4124 Beta 0.3974

Evaluation (2019) Evaluation (2019)

Return 0.5533 Return 0.5262

Standard Deviation 1.0632 Standard Deviation 0.2651

Beta 0.4543 Beta 0.8078

 l



Appendix 5: Portfolios Found

Genetic Algorithm + Mean-Variance 
ADVANCED MICRO DEVICES INC	
23.05%

BOMBARDIER INC	
17.42%

DIREXION SHARES ETF TRUST DAILY	
23.05%

GOL LINHAS AEREAS INTELIGENTES	
19.83%

VALE S.A.	
16.62%


Genetic Algorithm + CAPM 
AMPHENOL CORP	
8.16%

DRDGOLD LTD	
14.37%

GRUPO FINANCIERO BANORTE	
14.22%

GOL LINHAS AEREAS INTELIGENTES	
8.92%

MONEX SAB DE CV	
12.85%

NOVAGOLD RESOURCES INC	
13.01%

GRUPO RADIO CENTRO SAB DE CV	
10.74%

RH	
10.89%

TERNIUM SA	
6.80%


MOEA/D + Mean-Variance (Low Risk) 

 m



AEROPORTS DE PARIS	
7.98%

AUTODESK INC	
9.17%

BOMBARDIER INC	
9.05%

THE CHEMOURS COMPANY LLC	
9.05%

DIREXION SHARES ETF TRUST DAILY	
9.05%

GOL LINHAS AEREAS INTELIGENTES	
7.03%

KERING	
9.89%

NVIDIA CORP	
7.03%

SONY CORP	
11.32%

GRUPO TMM S.A.B.	
11.32%

VALE S.A.	
9.05%


MOEA/D + Mean-Variance (High Risk) 
ADVANCED MICRO DEVICES INC	
32.74%

DIREXION SHARES ETF TRUST DAILY	
33.62%

GOL LINHAS AEREAS INTELIGENTES	
33.62%


MOEA/D + CAPM (Low Risk) 
APPLIED MATERIALS INC	
28.57%


 n



GOL LINHAS AEREAS INTELIGENTES	
17.62%

PETROLEO BRASILEIRO SA PETROBRA	
26.13%

PROMOTORA Y OPERADORA DE INFRST	
27.65%


MOEA/D + CAPM (High Risk) 
APPLIED MATERIALS INC	
39.45%

GOL LINHAS AEREAS INTELIGENTES	
24.36%

GRUPO KUO SAB DE CV	
36.13%


MOEA/D-DE + Mean-Variance (Low Risk) 
ADIDAS AG	
11.19%

ADVANCED MICRO DEVICES INC	
13.04%

AMAZON COM INC	
16.03%

THE CHEMOURS COMPANY LLC	
15.91%

GOLDGROUP MINING INC	
5.35%

GOL LINHAS AEREAS INTELIGENTES	
7.68%

KANSAS CITY SOUTHERN	
16.54%

VALE S.A.	
14.22%


MOEA/D-DE + Mean-Variance (High Risk) 

 o



ADVANCED MICRO DEVICES INC	
31.08%

THE CHEMOURS COMPANY LLC	
20.18%

GOL LINHAS AEREAS INTELIGENTES	
48.72%


MOEA/D-DE + CAPM (Low Risk) 
APPLIED MATERIALS INC	
54.99%

CIA ENERGETICA MINAS GERAIS-CEM	
45.01%


MOEA/D-DE + CAPM (High Risk) 
APPLIED MATERIALS INC	
76.08%

CIA ENERGETICA MINAS GERAIS-CEM	
23.91% 

 p
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