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Abstract -The problem of portfolio selection is a very challenging problem in computational finance and has received a lot 
of attention in last few decades. Selecting an asset and optimal weighting of it from a set of available assets is a critical issue 
for which the decision maker takes several aspects into consideration. Different constraints like cardinality constraints, 
minimum buy in thresholds and maximum limit constraint are associated with assets selection. Financial returns associated 
are often strongly non-Gaussian in character, and exhibit multivariate outliers. Taking these constraints into consideration 
and with the presence of these outliers we consider a multi-objective problem where the percentage of each available asset is 
so selected that the total profit of the portfolio is maximized while total risk is minimized. Nondominated Sorting Genetic 
Algorithm-II is used for solving this multiobjective portfolio selection problem. Performance of the proposed algorithm is 
carried out by performing different numerical experiments using real-world data.  
 
Keywords: Multiobjective optimization, Pareto optimal solutions, portfolio asset selection problem, non-dominated sorting, 
elitism, decision making, constraint handling. 

 
I.INTRODUCTION 
 
A portfolio is a collection of assets held by a private 
individual or an institution. The portfolio selection 
seeks an optimal way to distribute a given budget on a 
set of available assets. Massive investment to different 
products like pension funds, banking insurance 
policies, stock exchange and other series of financial 
assets is one of the complex problems in financial 
management. The choice of an appropriate investment 
portfolio is an important task for a portfolio manager. 
Optimal selection of stock exchange assets as well as 
the optimal investment for each asset is a well known 
portfolio selection problem. Portfolio selection is a 
complex task as it depends on various factors such as 
assets interrelationships, preference of the decision 
makers and resource allocation.  When investing 
money in a set of stock exchange assets, the investors 
are interested in obtaining the maximum profit of an 
investment and minimum risk simultaneously. This 
optimization problem has many constraints like (i) the 
number of assets a portfolio can contain is fixed and 
finite (ii) the minimum and maximum amount of 
possible investments for each chosen assets. (iii) the 
maximum number of assets  that the portfolio 
manager can select out of all the assets.(iv) the outliers 
present in the data.  

Markowitz set up a quantitative framework 
for the selection of a portfolio [1,2]. This framework 
uses the mean variance of historical returns of many 
assets to measure its expected return and risk. Konno 
and Yamazaki [3] proposed the mean absolute 
deviation (MAD) of portfolio which is taken as the 
risk measure. The possible asymmetry of return is 
taken into account by Konno Shirakawa and 

Yamazaki [4] who extended the MAD approach to 
include skewness in the objective function. Negative 
semi-variance proposed by Markowitz [2] is one of 
the several objective functions that considered 
downside risk. But the entire algorithms remain silent 
about different constraint associated with portfolio. 
One of the constraint i.e. the cardinality constraint is 
approached by some of the researches, Mansini and 
Speranza [5, 6], and Young[7]. In these papers the 
MOEAs  lacked generality. This multiobjective 
decision making (MODM) problem with constraint 
and outliers is solved by NSGA-II algorithm.    In 
addition to that, the present work  was did with in 
depth analysis in examining how the cardinality 
constraints  affect the evolution search process on the 
measurement of different metric and the efficient 
frontier attained.  

The reminder of the paper is organized as 
follows. Section 2 outlines the multi-objective 
optimization formulation of portfolio selection. In 
Section 3 some of the multi-objective evolutionary 
techniques used in this paper are dealt. For comparing 
different multiobjective algorithm, different metric 
proposed by various authors are presented in section 
4. Section 5 deals with the simulation study using real-
life data. The results in terms Pareto fronts between 
risk and return are shown in Section 6. The paper 
concludes in section 7 with a summary and some ideas 
for further research work direction. 
 
II. MULTIOBJECTIVE OPTIMIZATION: BASIC 

CONCEPTS AND A BRIEF OVERVIEW.   
           

Most of the practical optimization problems 
require decision by simultaneously fulfilling more 
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than one goals. These goals are the minimization or 
maximization of functions generally contradicts in 
nature. It is not possible to find a single solution for 
such multiobjective problems. A multiobjective 
optimization problem (MOOP) is defined as the 
problem of computing finding a vector of decision 
variables that satisfies some restrictions and optimize 
a vector function whose elements represent the value 
of the functions. The generalised multiobjective 
optimization problem   may be formulated as: 
Maximize or minimize  

)(xf m Mm ........,3,2,1                                   (1) 

Subjected  0)( xg j Jj .....,3,2,1                (2) 

                

         0)( xhk    Kk ........,3,2,1                   (3)   

        U
ii

L
i xxx   ni .......,3,2,1                   (4) 

Where x  is represents a  vector of decision 
variables T

nxxxx ),,.........,( 21   and will 
optimize the vector function, 

T
m xfxfxfxf )}(....,),........(),({)( 21


                                                                                               
Where )(xf m  are the x objective functions. The 

values x  and U
ix  represent the minimum and 

maximum acceptable values for the variable ix  
respectively and define the boundary of the search 
space. The J inequalities jg  and the K equalities 

kh  are known as constraint functions. 

Pareto Optimality:  A point *x   is Pareto 
optimal if for every x  and 

},....,3,2,1{ kI  either ))()(( *xfxf iiIi


  or, 

there is at least one Ii such that )()( *xfxf ii


 . 

The symbols f and  represents the objective 
function and the feasible region )( S  of the 
whole search space S  respectively. In other words, 

*x   is Pareto optimal if there exists no feasible vector 
x  which would decrease some criteria without 
causing a simultaneous increase in at least one other 
criterion. 
Pareto dominance:  A vector T

kuuuu },.......,{ 21


 

is said to be dominate T
kvvvv },......,,{ 21


that is 

uv 
  if and only if u is partially less than v  i.e. 

    iiii vukivuki  :,.......,2,1,,.....,2,1
                                                                                   (5) 
Pareto optimal set: For a given MOP ),(xf


the 

Pareto optimal set *p is defined as, 

)}()'(,|{: '* xfxfxxp


               (6) 
The solution of a MOOP is a set of vectors which are 
not dominated by any other vector, and which are 
Pareto-equivalent to each other. This set is known as 
the Pareto-optimal set. 

Pareto front: For a given MOOP )(xf


and Pareto 

optimal set *p ,the Pareto front *pf  is defined as:  

}|))(.,),........(),(({: *
21

* pxxfxfxffupf k 


                                                                                   (7) 
The Pareto optimal set when grouped 

generates a discontinuous plot known as the Pareto 
front or Pareto border. The generalized concept is 
given in 1986 by Pareto [8]. It is difficult to find an 
analytical expression of the line or surface that 
contains these points. The  procedure to generate the 
Pareto fronts is to compute the feasible points   and 
the corresponding  f . When there are sufficient 
numbers of points, it is possible to determine the 
nondominated  points and to produce the Pareto front. 
Hence the computation of complete Pareto front 
involves large computational complexity due to the 
presence of large number of suboptimal Pareto fronts. 
It requires the solution to be diverse to cover 
maximum possible regions. 
 
III. MULTI-OBJECTIVE FORMULATION OF 

PORTFOLIO  
The basic mean-variance portfolio selection 

problem can be formalized as: 
 

Min   QWWwV T                                            (8) 
 

Max EW T                                                         (9) 
 

1eW T
                                                                (10) 

 
10  iw  and Ni ...,2,1                               (11) 

Where  N   is the number of assets 
available,Q  denotes the covariance matrix of all 

investment alternatives, i  is the expected return of 
asset i  and  e  is the unit vector. The decision 
variables iw   determines what share of the budget 
should be distributed in asset i .  Here 

 NwwwwW ...321 . 
Equation  1 and 2 give the two competing 

objectives which are to be optimized. Equations 3 and  
4 show the constraints for a feasible portfolio which 
means that  first all the available money is to be 
invested and secondly all investments must be positive 
i.e. no short sales are allowed. The constraints  given 
in equation 3 can be met by normalizing the weights 
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n

i
iws

1                                                        (11) 
Then the new values for each element of weight 

vector are normalized. 

s
ww i

i '

                                                         (12) 
There are some real world constraint that portfolio 
manager must consider while solving the portfolio 
optimization problem. One example of this constraint 
is cardinality constraint. Let K  be the maximum 
number of assets the portfolio manager can invest 
money out of N  available asset. Then K  is called as 
cardinality constraint.  

        
KZ

N

i
i 

1                                 ( 13) 
The decision variable }1,0{iZ  

The variable 1iZ  if any asset ),....,2,1( Nii  is 

held and 0iZ  if it not held. This equation ensures 

that exactly K  asset of N  available asset. 

The multi-objective portfolio selection 
problem involves two competing objectives (i) 
minimize the total variance, denoting the risk 
associated with the portfolio expressed in (1) (ii) 
maximize the return of the portfolio shown in (2).  
Along with this the maximum number of assets that 
the portfolio manager can select out of all the assets 
and the outliers present are to be considered. 

The problem is thus to find portfolios 
amongst   K asset of the N available assets that satisfy 
these two objectives simultaneously with the presence 
of outlier. 
 
IV. MULTIOBJECTIVE EVOLUTIONARY 
  ALGORITHMS 
 

The classical optimization techniques are 
ineffective for solving constrained optimization 
problem such as portfolio management. This 
shortcoming has motivated researchers to develop 
multi-objective optimization using evolutionary 
techniques. Based on basic concepts from the 
biological model of evolution, the search dynamic of 
multi-objective evolution algorithm (MOEA) is 
guided by biologically inspired evolutionary operators 
like selection, crossover and mutation.  The crossover 
and mutation operator change and create potential 
solutions while the selection operator provides the 
convergence property. When MOEA is applied for 
portfolio optimization, issues like representation, 
variation operator and constraint handling techniques 
are considered. MOEA maintains a population of 
chromosome, where each of them represents a 
potential solution to the portfolio optimization 

problem. One chromosome represented by a weight 
vector, provides the composition of the portfolio. 
       The pioneering work [9] in the practical 
application of genetic algorithm to MOOP is the 
vector evaluated genetic algorithm VEGA. For similar 
applications a number of algorithms based on genetic  
algorithm such as NSGA[10] ,NPGA[11], PESA-
II[12], NSGA-II [13], RDGA [14] and DMOEA [15] 
have been proposed in literature. The NSGA-II 
proposed in [11] is an useful alternative and popular 
algorithm which alleviates various shortcomings of 
NSGA. 

Dev and Pratab have proposed NSGA II 
where selection criteria are based on the crowding 
comparison operator. Here the pool of individuals is 
split into different fronts and each front has assigned a 
specific rank. All individuals from a front iF  are 
ordered according to a crowding measure which is 
equal to the sum of distance to the two closest 
individuals along each objective. The environmental 
selection is processed based on these ranks. The 
archive is formed by the non dominated individuals 
from each front and it begins with the best ranking 
front. Here the new population obtained after 
environmental selection is used for selection crossover 
and mutation to create a new population. It uses a 
binary tournament selection operator. These 
algorithms are dealt in sequel. 
 
NSGA II Algorithm: 

1.  Initialize population 
2. Generate random parent population 0p  of size    

    N  
3.  Evaluate objective Values 
4. Assign fitness (or rank) equal to its non 

dominated level 
5. Generate offspring Population 0Q  of size N    

with binary tournament selection, recombination and 
mutation. 

6. For 1t  to Number of Generations 
6.a. Combine Parent and Offspring Populations 
6.b. Assign Rank (level) based on Pareto    
       Dominance. 
6.c. Generate sets of non-dominated fronts 
6.d. until the parent population is filled do 
6.e.1 Determine Crowding distance between 
points on each front iF  

6.e.2 Include the ith  non dominated front in 
the next parent population  1tP  
6.e.3 check the next front for inclusion 
 
6.f Sort the front in descending order using 
Crowded comparison operator 
6.g Choose the first N  - card  1tP elements 
from front and include them in the next  parent 
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population  1tP  
6.h Using binary tournament selection,            
recombination and mutation create next generation 
7. Return to 6 
 

V. PERFORMANCE MEASURE FOR 
COMPARISON 

 
1. S metric.   It measures the spread of candidate  

solution throughout nondominated vectors found. 
Schott [16] introduced this metric, measuring the 
distance neighboring vectors in the nondomionated 
vectors found. This metric is defined as:  
 












 




n

i
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n
S

1

2

1
1

                                  (14)                                                                                                                                
Where 








































xfxfxfxfd jiji
ji 2211min

     
and   nji ,...,2,1,                                               (15)       




d mean of all id  and n  is the number of 
nondominated vectors found so far. A value of zero 
for this metric indicates all members of the Pareto 
front currently available are equidistantly spaced. The 
S metric indicates the extent of objective space 
dominated by a given nondominated set A.  If the S 
metric of a non dominated front 1f   is less than 

another front 2f  then 1f  is better than 2f . It has 
been proposed by Zitzler . 

 
2.   metric. This metric called as spacing metric 

( ) measures how evenly the points in the 
approximation set are distributed in the objective 
space. This formulation introduced by K. Deb[13 ] is 
given by 

 















dNdd

dddd

lf

N

i
ilf

1

1

1

                           (16) 
Where id  be the Euclidean distance between 

consecutive solutions in the obtained nondominated 

set of solutions. 


d  is the average of these distances. 

fd  and ld  are the Euclidean distance between the 
extreme solutions and the boundary solutions of the 
obtained non dominated set and N  is the number of 
solutions from nondominated set.  The   low value for 
  indicate a better diversity and hence better is the 
algorithm. 
       

  3. Generation distance (GD): The concept of 
generation distance was introduced by Van 
Veldhuizen and Lamont [17]. It estimates the distance 
of elements of nondominated vectors found, from 
those efficient Pareto optimal set and is defined as:  

n

d
GD

n

i
i

 1

2

                                                  (17) 
Where n  is the number of vectors in the set of 
nondominated solution which are called as candidate 
solutions. id  is the Euclidean distance between each 
of these and the nearest member of the global efficient 
Pareto front.  If 0GD , all the candidate solutions 
are in global efficient Pareto front and any other value 
of GD  indicates how far are the solutions from the 
global efficient Pareto front. The more value of GD  
means the elements are more away from the global 
efficient Pareto front.  
 
4. Inverted generation distance (IGD):  This quality 
indicator is used to measure how far the elements are 
in the global efficient Pareto front from those non-
dominated vectors found from proposed algorithm and 
is introduced by Van Veldhuizen [17].  If 0IGD , 
all the candidate solutions are in the global efficient 
Pareto front covering all its extension. 

 
VI. SIMULATION STUDIES 
 

In this section we present the simulation 
results obtained when searching the general efficient 
frontier that resolves the problem formulated in 
equation 1 and 2 and with the presence of associated 
cardinality constraint. 

All the computational experiments have been 
computed with a set of benchmark data available 
online and obtained from OR-Library being 
maintained by Prof. Beasley. Five data sets port 1 to 
port 5 represent the portfolio problem. Each data set 
corresponds to a different stock market of the world. 
The test data comprises of weekly prices from March 
1992 to September 1997 from the following indices: 
Hang Seng in Hong Kong, DAX 100 in Germany, 
FTSE 100 in UK, S&P 100 in USA and Nikkei in 
Japan. For each set of test data, the numbers of    
different assets are 31,85,89,98 and 225. In the paper 
we have used the first data set which corresponds to 
Hang Seng stock having 31 assets. The data can be 
found from http://people.brunel.ac.uk 
/~mastjjb/jeb/orlib /portinfo.html.  In the paper only  
cardinality  constraints as provided in equations 13 
have been used. Along with this there are some 
outliers in the input data i.e. the weekly data of return. 
In the work we have selected  different number of 
assets form the Hang Seng stock where there are 31 
assets. The NSGA II has population size of 100, 
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number of generations 100, crossover rate 0.8 and 
mutation rate 0.05. The number of real-coded 
variables is equal to number of assets and  
 
VII. THE PARETO FRONTS OBTAINED BY NSGA-II 

ALGORITHM 
 
The standard efficient frontier corresponding 

to Hang Seng benchmark problem and the 
unconstraint efficient front generated by four 
algorithms are depicted in Figs. 
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Fig 1. Plots of UEF for Hang Sang  
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Fig 2. Plots of Pareto fronts achieved by NSGA II 

 
      If decision maker is restricted to select only 
five, ten, fifteen or twenty number of assets in his 
portfolio out of all the 31 assets then the Pareto curb 
obtained is shown in the figure 3.      
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Fig 3. Plots of Pareto fronts achieved at different cardinality 

constraint. 
 

                                
Table 2 

 
Table 2 demonstrates the values of performance  
metrics. when cardinality constraint increases these  
metrics values increases. From the graph shows the  
value of S metric.  
 

 
 

Fig.4. S matric for different cardinality constraint 
                             
VIII. CONCLUSION 

 
The paper makes a comparative performance study 

on portfolio management task employing  
Nondominated Sorting Genetic Algorithm-II. The data 
set which corresponding to Hang-Seng stock is used 
for carrying out simulation based experiments. 
Experimental results reveal that the NSGA-II 
algorithm perform satisfactorily to solve the constraint 
portfolio selection problem with the presence of 
outliers. Future work includes introduction of different 
operators for local search in the existing models which 
allow better exploration and exploitation of the search 
space when applied to portfolio optimization problem. 
Another possible future research direction is to handle 
different real world constraints like minimum buy in 
thresholds or maximum limit constraints, which would 
make the problem more complex and then devising 
improved optimization tools to effectively solve it. 
 
 
 

     NC     
K=5 

     
K=10 

    
K=1
5 

      
K=20 

S matric 0.000004
5 

0.000
0098 

0.0000
354 

0.000
0657 

0.00096
43 
 

Delta  
matric 

0.531574
3 

0.674
2157 

0.7564
327 

0.899
8673 

0.96768
54 

GD 
matric 

0.000715
6 

0.000
9956 

0.0018
989 

0.009
9753 

0.02678
76 
 

IGD 
matric 

0.007374
6 

0.009
7854 

0.0196
453 

0.084
3251 

0.32154
61 

0

0.00005

0.0001

k=0 k=5 k=10 k=15

 
         International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1



Constraint Robust Portfolio Selection by Multiobjective Evolutionary Genetic Algorithm  
 

 

 
62 

 
REFERENCES 
 
[1]. H .M. Markowitz. Portfolio Selection, Journal of 

Finance7(1952)77-91 
 
[2]. H.M. Markowitz, Portfolio Selection: efficient diversification  

of investments. New York: Yale University Press. John 
Wiley &  Sons, (1991). 

 
[3]. H .Konno and H.Yamazki, Mean absolute-deviation portfolio 

optimization model and its application toTokyo Stock 
Market. Management Science 37 (1991) 519-531. 

 
[4]. H.Konno, H.Shrirakawa and H.Yamazki , A mean-absolute 

deviation-skewness portfolio optimization model. Annals of 
Operation research 45(1993)205-220. 

 
[5]. R . Mansini and M.G. Speranza, Heuristic algorithms for the 

portfolio selection problem with minimum transaction 
lots,Working paper (1997) available from the second author 
at Dip.di Metodi Quantitativi, Universita  di Brescia, C.da.S 
Chiara 48 /b,25122 Brescia , Italy. 

 
[6]. H. Kellerer ,R. Mansini and M.G. Speranza,  On selecting a 

portfolio with fixed costs and minimum transaction lots. 
Working paper(1997) available from the third author at 
Dip.di Metodi Quantitativi, Universita di Brescia, C.da .S 
Chiara 48/b,25122 Brescia, Italy. 

 
[7]. M.R. Young, a minimax portfolio selection rule with linear 

programming solution. Management Science 44(1998) 673-
683. 

 
[8]. Vilfredo Pareto. Cours. D,  Economie Politique , Volume I 

and II. F. Rouge, Lausanne.1896. 
 
[9]. Schaffer J.D. Multiple objective optimization with vector 

evaluated genetic algorithms. In Genetic Algorithms and their 
Applications: Proceedings of the international conference 
ongenetic algorithm, Lawrence Erlbaum, (1985) 93-100. 

 
 

 
 
 
[10]. Srinivas N, Deb K, Multiobjective optimization using 

nondominated sorting in genetic algorithms. J Evol Comput 
(1994) 221-248. 

 
[11]. Horn. J, Nafpliotis. N, Goldberg D.E, A niched pareto genetic 

algorithm for multiobjective optimization, In: Proceedings of 
the first IEEE conference on evolutionary computation, IEEE 
world congress on computation intelligence, 27-29 June, 
Orlando, FL, USA,( 1994) 82-87. 

 
[12]. Corne D, Jerram NR, Knowles J, Oates J. PESA-II: region-

based selection in evolutionary multiobjective optimization. 
In:Proceeding conference (GECCO-2001), San Francisco, 
CA, 2001. 

 
[13]. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist 

multiobjective genetic algorithm: NSGA-II. IEEE Trans 
Evolutionary  Computing 6(2), (2002) 182–197. 

 
[14]. Lu H, Yen G.G, Rank-density-based multiobjective genetic 

algorithm and benchmark test function study, IEEE Trans 
Evolutionary Computing 7(4), (2003), 325–343. 

 
[15]. Yen G.G, Lu H, Dynamic multiobjective evolutionary 

algorithm: adaptive cell-based rank and density estimation. 
IEEE Trans Evolutionary Computing 7(3), (2003) 253–274. 

 
 
[16]. J. R. Schott, Fault tolerant design using single and 

multicriteria genetic algorithm optimization, M.S. thesis, 
Dept. Aeronautics and Astronautics, Massachusetts Inst. 
Technol, Cambridge, MA, May 1995. 

 
 
[17]. D. A. Van Veldhuizen and G. B. Lamont, Multiobjective 

evolutionary algorithm research: A history and analysis, 
Dept. Elec. Comput. Eng., Graduate School of Eng., Air 
Force Inst. Technol., Wright PattersonAFB, OH, Tech. Rep. 
TR-98-03, (1998). 
 

 
 

 
     International Journal of Electronics Signals and Systems (IJESS) ISSN: 2231-5969, Vol-2, Iss-1


	CONSTRAINT ROBUST PORTFOLIO SELECTION BY MULTIOBJECTIVE EVOLUTIONARY GENETIC ALGORITHM
	Recommended Citation

	CONSTRAINT ROBUST PORTFOLIO SELECTION BY MULTIOBJECTIVE EVOLUTIONARY GENETIC ALGORITHM

