271 research outputs found

    Inter-firm collaboration in transportation

    Get PDF
    Dans la littĂ©rature acadĂ©mique et professionnelle relative au transport de marchandise, il y a longtemps que les mĂ©thodes de planification avancĂ©es ont Ă©tĂ© identifiĂ©es comme un moyen de dĂ©gager des Ă©conomies grĂące Ă  une efficacitĂ© accrue des opĂ©rations de transport. Plus rĂ©cemment, la collaboration interentreprises dans la planification du transport a Ă©tĂ© Ă©tudiĂ©e comme une source de gain supplĂ©mentaire en efficacitĂ© et, par consĂ©quent, une opportunitĂ© pour dĂ©gager de nouvelles Ă©conomies pour les collaborateurs. Cependant, la mise en Ɠuvre d'une collaboration interentreprises en transports soulĂšve un certain nombre d’enjeux. Cette thĂšse aborde trois thĂšmes centraux de la collaboration interentreprises et dĂ©montre les contributions via des Ă©tudes de cas dans l’industrie forestiĂšre et du meuble. PremiĂšrement, les moyens technologiques pour soutenir une collaboration en planification du transport sont Ă©tudiĂ©s. Un systĂšme d’aide Ă  la dĂ©cision supportant la collaboration en transport forestier est prĂ©sentĂ©. DeuxiĂšmement, le partage entre les collaborateurs du coĂ»t commun en transport est Ă©tudiĂ©. Une mĂ©thode de rĂ©partition du coĂ»t de transport tenant compte de l'impact - l’augmentation du coĂ»t de transport - des exigences inĂ©gales entre des collaborateurs est proposĂ©e. TroisiĂšmement, la crĂ©ation de groupes collaboratifs - des coalitions - dans un ensemble de collaborateurs potentiel est Ă©tudiĂ©e. Un modĂšle rĂ©seau pour la formation d’une coalition selon les intĂ©rĂȘts d’un sous-ensemble de collaborateurs adoptant ou pas un comportement opportuniste est dĂ©taillĂ©. De plus, pour soutenir l'Ă©tude des thĂšmes prĂ©cĂ©dents, la thĂšse comprend deux revues de la littĂ©rature. PremiĂšrement, une revue sur les mĂ©thodes de planification et les systĂšmes d’aide Ă  la dĂ©cision en transport forestier est prĂ©sentĂ©. DeuxiĂšmement, Ă  travers la proposition d'un cadre pour crĂ©er et gĂ©rer une collaboration en transport et, plus gĂ©nĂ©ralement en logistique, une revue de travaux sur le transport et la logistique collaborative est offerte.In the academic and professional literature on freight transportation, computer-based planning methods have a long time ago been identified as a means to achieve cost reduction through enhanced transportation operations efficiency. More recently, inter-firm collaboration in transportation planning has been investigated as a means to provide further gains in efficiency and, in turn, to achieve additional cost reduction for the collaborators. However, implementation of inter-firm collaboration in transportation raises a number of issues. This thesis addresses three central themes in inter-firm collaboration and exemplifies the contributions in case studies involving collaboration in furniture and forest transportation. First, technological means to enable collaboration in transportation planning are studied. Embedding a computer-based planning method for truck routing, a decision support system enabling collaborative transportation is presented. Second, sharing the common transportation cost among collaborators is studied. A cost allocation method taking into account the impact – an increase of the transportation cost – of uneven requirements among collaborators is proposed. Third, building collaborating groups (i.e. coalitions) among a set of potential collaborators is studied. A network model for coalition formation by a subset of self-interested collaborators adopting or not an opportunistic behaviour is detailed. Moreover, to support the study of the aforementioned themes, the thesis includes two literature reviews. First, a survey on planning methods and decision support systems for vehicle routing problem in forest transportation is presented. Second, through the proposition of a framework for building and managing collaboration in transportation and, more generally in logistics, a survey of works on collaborative transportation and logistics is given

    Determination of Optimal Distribution and Transportation Network (Wood Transportation in Iran)

    Get PDF
    Today, transportation network optimization has become one of the significant aspects of supply chain planning, and even a slight rise in productivity can significantly reduce costs of distribution of wood in the transportation network. In the forest based industry, given that transportation is the main cost of raw wood supply, using transportation planning, distribution should be done in a way so as to minimize the overall wood displacement. Such planning must meet the needs of all demand centers and the distribution supplier points must be used to their full capacity. Accordingly, the present study strived to find an optimal solution for transportation and distribution of raw wood from the main supplier points to small and large centers of wood and paper industries in Iran. This optimization simultaneously focuses on several products and is at the macroeconomic level of the country wood market. To achieve this goal, linear programming – Transportation Simplex Algorithm was used. The results show a significant fall in transportation costs and a more organized wood distribution network than the current situation. This cost reduction can be attributed to decisions about the optimal distribution of wood types, determining transport routes, and opting for the right type of truck supplier based on load tonnage and distance. This plummet in transportation costs plunges the cost of wood and wood products, which will surge competition in the business and will be of interest to manufacturers, distributors, customers and stakeholders in general

    Transportation Optimization in Tactical and Operational Wood Procurement Planning

    Get PDF
    RÉSUMÉ : L'Ă©conomie canadienne est dĂ©pendante du secteur forestier. Cependant, depuis quelques annĂ©es, ce secteur fait face Ă  de nouveaux dĂ©fis, tels que la rĂ©cession mondiale, un dollar canadien plus fort et une baisse significative de la demande de papier journal. Dans ce nouveau contexte, une planification plus efficace de la chaĂźne d'approvisionnement est devenue un Ă©lĂ©ment essentiel pour assurer le succĂšs et la pĂ©rennitĂ© du secteur. Les coĂ»ts de transport reprĂ©sentent une dĂ©pense importante pour les entreprises forestiĂšres. Ceci est dĂ» aux grands volumes de produits qui doivent ĂȘtre transportĂ©s sur de grandes distances, en particulier dans le contexte gĂ©ographique d'un grand pays comme le Canada. MĂȘme si les problĂšmes de tournĂ©e de vĂ©hicules sont bien couverts dans la littĂ©rature, le secteur forestier a beaucoup de caractĂ©ristiques uniques qui nĂ©cessitent de nouvelles formulations des problĂšmes et des algorithmes de rĂ©solution. À titre d’exemple, les volumes Ă  transporter sont importants comparĂ©s Ă  d’autres secteurs et il existe aussi des contraintes de synchronisation Ă  prendre en compte pour planifier l'Ă©quipement qui effectue le chargement et le dĂ©chargement des vĂ©hicules. Cette thĂšse traite des problĂšmes de planification de la chaĂźne logistique d'approvisionnement en bois: rĂ©colter diverses variĂ©tĂ©s de bois en forĂȘt et les transporter par camion aux usines et aux zones de stockage intermĂ©diaire en respectant la demande pour les diffĂ©rents produits forestiers. Elle propose trois nouvelles formulations de ces problĂšmes. Ces problĂšmes sont diffĂ©rents les uns des autres dans des aspects tel que l'horizon de planification et des contraintes industrielles variĂ©es. Une autre contribution de cette thĂšse sont les mĂ©thodologies dĂ©veloppĂ©es pour rĂ©soudre ces problĂšmes dans le but d’obtenir des calendriers d’approvisionnement applicables par l’industrie et qui minimisent les coĂ»ts de transport. Cette minimisation est le rĂ©sultat d’allocations plus intelligentes des points d'approvisionnement aux points de demande, d’une tournĂ©e de vĂ©hicules qui minimise la distance parcourue Ă  vide et de dĂ©cisions d'ordonnancement de vĂ©hicules qui minimisent les files d’attentes des camions pour le chargement et le dĂ©chargement. Dans le chapitre 3 on considĂšre un modĂšle de planification tactique de la rĂ©colte. Dans ce problĂšme, on dĂ©termine la sĂ©quence de rĂ©colte pour un ensemble de sites forestiers, et on attribue des Ă©quipes de rĂ©colte Ă  ces sites. La formulation en programme linĂ©aire en nombres entiers (PLNE) de ce problĂšme gĂšre les dĂ©cisions d'inventaire et alloue les flux de bois Ă  des entrepreneurs de transport routier sur un horizon de planification annuel. La nouveautĂ© de notre approche est d'intĂ©grer les dĂ©cisions de tournĂ©e des vĂ©hicules dans la PLNE. Cette mĂ©thode profite de la flexibilitĂ© du plan de rĂ©colte pour satisfaire les horaires des conducteurs dans le but de conserver une flotte constante de conducteurs permanents et Ă©galement pour minimiser les coĂ»ts de transport. Une heuristique de gĂ©nĂ©ration de colonnes est crĂ©Ă©e pour rĂ©soudre ce problĂšme avec un sous-problĂšme qui consiste en un problĂšme du plus court chemin avec capacitĂ©s (PCCC) avec une solution qui reprĂ©sente une tournĂ©e de vĂ©hicule. Dans le chapitre 4, on suppose que le plan de rĂ©colte est fixĂ© et on doit dĂ©terminer les allocations et les inventaires du modĂšle tactique prĂ©cĂ©dent, avec aussi des dĂ©cisions de tournĂ©e et d'ordonnancement de vĂ©hicules. On synchronise les vĂ©hicules avec les chargeuses dans les forĂȘts et dans les usines. Les contraintes de synchronisation rendent le problĂšme plus difficile. L’objectif est de dĂ©terminer la taille de la flotte de vĂ©hicules dans un modĂšle tactique et de satisfaire la demande des usines avec un coĂ»t minimum. Le PLNE est rĂ©solu par une heuristique de gĂ©nĂ©ration de colonnes. Le sous-problĂšme consiste en un PCCC avec une solution qui reprĂ©sente une tournĂ©e et un horaire quotidien d'un vĂ©hicule. Dans le chapitre 5, on considĂšre un PLNE du problĂšme similaire Ă  celui Ă©tudiĂ© dans le chapitre 4, mais dans un contexte plus opĂ©rationnel: un horizon de planification d'un mois. Contrairement aux horaires quotidiens de vĂ©hicules du problĂšme prĂ©cĂ©dent, on doit planifier les conducteurs par semaine pour gĂ©rer les situations dans lesquelles le dĂ©chargement d’un camion s’effectue le lendemain de la journĂ©e oĂč le chargement a eu lieu. Cette situation se prĂ©sente quand les conducteurs travaillent la nuit ou quand ils travaillent aprĂšs les heures de fermeture de l'usine et doivent dĂ©charger leur camion au dĂ©but de la journĂ©e suivante. Ceci permet aussi une gestion plus directe des exigences des horaires hebdomadaires. Les contraintes de synchronisation entre les vĂ©hicules et les chargeuses qui sont prĂ©sentes dans le PLNE permettent de crĂ©er un horaire pour chaque opĂ©rateur de chargeuse. Les coĂ»ts de transport sont alors minimisĂ©s. On rĂ©sout le problĂšme Ă  l’aide d’une heuristique de gĂ©nĂ©ration de colonnes. Le sous-problĂšme consiste en un PCCC avec une solution qui reprĂ©sente une tournĂ©e et un horaire hebdomadaire d’un vĂ©hicule.----------ABSTRACT : The Canadian economy is heavily dependent on the forestry industry; however in recent years, this industry has been adapting to new challenges including a worldwide economic downturn, a strengthening Canadian dollar relative to key competing nations, and a significant decline in newsprint demand. Therefore efficiency in supply chain planning is key for the industry to succeed in the future. Transportation costs in particular represent a significant expense to forestry companies. This is due to large volumes of product that must be transported over very large distances, especially in the geographic context of a country the size of Canada. While the field of vehicle routing problems has been heavily studied and applied to many industries for decades, the forestry industry has many unique attributes that necessitate new problem formulations and solution methodologies. These include, but are not limited to, very large (significantly higher than vehicle capacity) volumes to be transported and synchronization constraints to schedule the equipment that load and unload the vehicles. This thesis is set in the wood procurement supply chain of harvesting various assortments of wood in the forest, transporting by truck to mills and intermediate storage locations, while meeting mill demands of the multiple harvested products, and contributes three new problem formulations. These problems differ with respect to planning horizon and varied industrial constraints. Another contribution is the methodologies developed to resolve these problems to yield industrially applicable schedules that minimize vehicle costs: from smarter allocations of supply points to demand points, vehicle routing decisions that optimize the occurrence of backhaul savings, and vehicle scheduling decisions that minimize queues of trucks waiting for loading and unloading equipment. In Chapter 3, we consider a tactical harvest planning model. In this problem we determine the sequence of the harvest of various forest sites, and assign harvest teams to these sites. The MILP formulation of this problem makes inventory decisions and allocates wood flow to trucking contractors over the annual planning horizon, subject to demand constraints and trucking capacities. The novel aspect of our approach is to incorporate vehicle routing decisions into our MILP formulation. This takes advantage of the relatively higher flexibility of the harvest plan to ensure driver shifts of desired characteristics, which is important to retain a permanent driver fleet, and also prioritize the creation of backhaul opportunities in the schedule. A branch-and-price heuristic is developed to resolve this problem, with the subproblem being a vehicle routing problem that represents a geographical shift for a vehicle. In Chapter 4, we assume the harvest plan to be an input, and integrate the allocation and inventory variables of the previous tactical model with vehicle routing and scheduling decisions, synchronizing the vehicles with loaders in the forests and at the mills. The synchronization constraints make a considerably more difficult problem. We use this as a tactical planning model, with no specific driver constraints but a goal of determining vehicle fleet size to maximize their utilization. The objective is to meet mill demands over the planning horizon while minimizing transportation and inventory costs, subject to capacity, wood freshness, fleet balancing, and other industrial constraints. The MILP formulation of the problem is resolved via a column generation algorithm, with the subproblem being a daily vehicle routing and scheduling problem. In Chapter 5, we consider a similar problem formulation to that studied in Chapter 4, but set in a more operational context over a planning horizon of approximately one month. Unlike the daily vehicle schedules of the previous problem, we must schedule drivers by week to manage situations of picking up a load on one day and delivering on another day, which is necessary when drivers work overnight shifts or when they work later than mill closing hours and must unload their truck on the next day's shift. This also allows for more direct management of weekly schedule requirements. Loader synchronization constraints are present in the model which derives a schedule for each loader operator. Given mill demands, transportation costs are then minimized. We resolve the problem via a branch-and-price heuristic, with a subproblem of a weekly vehicle routing and scheduling problem. We also measure the benefits of applying interior point stabilization to the resource synchronization constraints in order to improve the column generation, a new application of the technique

    An integrated planning model for multi-supplier, multi-facility, multi-customer, multi-product and multi-period : application to the wood furniture industry

    Get PDF
    Typiquement, un rĂ©seau de crĂ©ation de valeur dans l'industrie du meuble en bois, est composĂ© de fournisseurs de billes de bois, de scieries, de sĂ©choirs, d'usines de meubles, de centres de distribution et de dĂ©taillants. Dans cette thĂšse, nous nous concentrons sur l'Ă©tude du rĂ©seau qui assure l'approvisionnement des usines de meubles en bois. La problĂ©matique Ă  laquelle font face les entreprises de ce rĂ©seau se situe principalement au niveau de la synchronisation des flux de matiĂšre. Ces derniers doivent respecter les contraintes de capacitĂ©, de procĂ©dĂ©s, de transport et la diversitĂ© des produits, pour satisfaire la demande. La planification, dans ce contexte, repose sur une vision locale ce qui affecte la performance globale du rĂ©seau. L'objectif de cette thĂšse est de proposer un modĂšle de planification intĂ©grĂ©e dans un contexte, multifoumisseurs, multiusines, multiproduits, multiclients et multipĂ©riodes, qui vise la synchronisation des flux, et la maximisation de la performance globale tout en respectant les diffĂ©rentes contraintes du rĂ©seau. Nous proposons un modĂšle gĂ©nĂ©rique du problĂšme de planification intĂ©grĂ©e qui permet de dĂ©terminer les dĂ©cisions tactiques d'approvisionnement, d'inventaire, de flux de matiĂšre et de sous-traitance. Ce modĂšle est un programme linĂ©aire mixte en nombres entiers de grande taille. Nous avons dĂ©veloppĂ© une heuristique basĂ©e sur la dĂ©composition dans le temps qui exploite l'aspect multipĂ©riodes du problĂšme de planification. Nous avons aussi proposĂ© deux solutions basĂ©es sur la dĂ©composition de Benders et la dĂ©composition croisĂ©e pour rĂ©duire le temps de rĂ©solution. Enfin, ce modĂšle a Ă©tĂ© validĂ© en utilisant les donnĂ©es rĂ©elles de l'entreprise partenaire du projet et les rĂ©sultats, montrent des rĂ©ductions potentielles du coĂ»t total des opĂ©rations de l'ordre de 22%. L'approche de planification intĂ©grĂ©e adoptĂ©e ainsi que les mĂ©thodes de rĂ©solution proposĂ©es dans cette thĂšse peuvent ĂȘtre exploitĂ©es pour la planification des rĂ©seaux dans d'autres secteurs d'activitĂ©s ayant des similaritĂ©s avec la problĂ©matique traitĂ©e dans cette thĂšse

    Timber and Biomass Transport Optimization: A Review of Planning Issues, Solution Techniques and Decision Support Tools

    Get PDF
    The transport of timber and biomass represents a significant proportion of the operational cost for the forest industry worldwide. This calls for optimization solutions so that companies can organize their transport operations and allocate resources efficiently, and reduce the impact of transport operations on the environment. This paper presents an extensive overview of the transport and biomass optimization problem in the forest industry. It provides a detailed description of mathematical solutions, including linear programming models and algorithms, to solve complex transportation planning problems involving annual, monthly and daily decisions. Also, the paper presents and describes two decision support tools, MCPLAN and FastTRUCK, which have been implemented to assist transport planners to optimize the flows of timber and biomass from the forest to mills and energy plants, and to schedule and route the trucks efficiently between these supply and demand points

    Optimization models and methods for real-time transportation planning in forestry

    Get PDF
    Lors du transport du bois de la forĂȘt vers les usines, de nombreux Ă©vĂ©nements imprĂ©vus peuvent se produire, Ă©vĂ©nements qui perturbent les trajets prĂ©vus (par exemple, en raison des conditions mĂ©tĂ©o, des feux de forĂȘt, de la prĂ©sence de nouveaux chargements, etc.). Lorsque de tels Ă©vĂ©nements ne sont connus que durant un trajet, le camion qui accomplit ce trajet doit ĂȘtre dĂ©tournĂ© vers un chemin alternatif. En l’absence d’informations sur un tel chemin, le chauffeur du camion est susceptible de choisir un chemin alternatif inutilement long ou pire, qui est lui-mĂȘme "fermĂ©" suite Ă  un Ă©vĂ©nement imprĂ©vu. Il est donc essentiel de fournir aux chauffeurs des informations en temps rĂ©el, en particulier des suggestions de chemins alternatifs lorsqu’une route prĂ©vue s’avĂšre impraticable. Les possibilitĂ©s de recours en cas d’imprĂ©vus dĂ©pendent des caractĂ©ristiques de la chaĂźne logistique Ă©tudiĂ©e comme la prĂ©sence de camions auto-chargeurs et la politique de gestion du transport. Nous prĂ©sentons trois articles traitant de contextes d’application diffĂ©rents ainsi que des modĂšles et des mĂ©thodes de rĂ©solution adaptĂ©s Ă  chacun des contextes. Dans le premier article, les chauffeurs de camion disposent de l’ensemble du plan hebdomadaire de la semaine en cours. Dans ce contexte, tous les efforts doivent ĂȘtre faits pour minimiser les changements apportĂ©s au plan initial. Bien que la flotte de camions soit homogĂšne, il y a un ordre de prioritĂ© des chauffeurs. Les plus prioritaires obtiennent les volumes de travail les plus importants. Minimiser les changements dans leurs plans est Ă©galement une prioritĂ©. Étant donnĂ© que les consĂ©quences des Ă©vĂ©nements imprĂ©vus sur le plan de transport sont essentiellement des annulations et/ou des retards de certains voyages, l’approche proposĂ©e traite d’abord l’annulation et le retard d’un seul voyage, puis elle est gĂ©nĂ©ralisĂ©e pour traiter des Ă©vĂ©nements plus complexes. Dans cette ap- proche, nous essayons de re-planifier les voyages impactĂ©s durant la mĂȘme semaine de telle sorte qu’une chargeuse soit libre au moment de l’arrivĂ©e du camion Ă  la fois au site forestier et Ă  l’usine. De cette façon, les voyages des autres camions ne seront pas mo- difiĂ©s. Cette approche fournit aux rĂ©partiteurs des plans alternatifs en quelques secondes. De meilleures solutions pourraient ĂȘtre obtenues si le rĂ©partiteur Ă©tait autorisĂ© Ă  apporter plus de modifications au plan initial. Dans le second article, nous considĂ©rons un contexte oĂč un seul voyage Ă  la fois est communiquĂ© aux chauffeurs. Le rĂ©partiteur attend jusqu’à ce que le chauffeur termine son voyage avant de lui rĂ©vĂ©ler le prochain voyage. Ce contexte est plus souple et offre plus de possibilitĂ©s de recours en cas d’imprĂ©vus. En plus, le problĂšme hebdomadaire peut ĂȘtre divisĂ© en des problĂšmes quotidiens, puisque la demande est quotidienne et les usines sont ouvertes pendant des pĂ©riodes limitĂ©es durant la journĂ©e. Nous utilisons un modĂšle de programmation mathĂ©matique basĂ© sur un rĂ©seau espace-temps pour rĂ©agir aux perturbations. Bien que ces derniĂšres puissent avoir des effets diffĂ©rents sur le plan de transport initial, une caractĂ©ristique clĂ© du modĂšle proposĂ© est qu’il reste valable pour traiter tous les imprĂ©vus, quelle que soit leur nature. En effet, l’impact de ces Ă©vĂ©nements est capturĂ© dans le rĂ©seau espace-temps et dans les paramĂštres d’entrĂ©e plutĂŽt que dans le modĂšle lui-mĂȘme. Le modĂšle est rĂ©solu pour la journĂ©e en cours chaque fois qu’un Ă©vĂ©nement imprĂ©vu est rĂ©vĂ©lĂ©. Dans le dernier article, la flotte de camions est hĂ©tĂ©rogĂšne, comprenant des camions avec des chargeuses Ă  bord. La configuration des routes de ces camions est diffĂ©rente de celle des camions rĂ©guliers, car ils ne doivent pas ĂȘtre synchronisĂ©s avec les chargeuses. Nous utilisons un modĂšle mathĂ©matique oĂč les colonnes peuvent ĂȘtre facilement et naturellement interprĂ©tĂ©es comme des itinĂ©raires de camions. Nous rĂ©solvons ce modĂšle en utilisant la gĂ©nĂ©ration de colonnes. Dans un premier temps, nous relaxons l’intĂ©gralitĂ© des variables de dĂ©cision et nous considĂ©rons seulement un sous-ensemble des itinĂ©raires rĂ©alisables. Les itinĂ©raires avec un potentiel d’amĂ©lioration de la solution courante sont ajoutĂ©s au modĂšle de maniĂšre itĂ©rative. Un rĂ©seau espace-temps est utilisĂ© Ă  la fois pour reprĂ©senter les impacts des Ă©vĂ©nements imprĂ©vus et pour gĂ©nĂ©rer ces itinĂ©raires. La solution obtenue est gĂ©nĂ©ralement fractionnaire et un algorithme de branch-and-price est utilisĂ© pour trouver des solutions entiĂšres. Plusieurs scĂ©narios de perturbation ont Ă©tĂ© dĂ©veloppĂ©s pour tester l’approche proposĂ©e sur des Ă©tudes de cas provenant de l’industrie forestiĂšre canadienne et les rĂ©sultats numĂ©riques sont prĂ©sentĂ©s pour les trois contextes.When wood is transported from forest sites to mills, several unforeseen events may occur, events which perturb planned trips (e.g., because of weather conditions, forest fires, or the occurrence of new loads). When such events take place while the trip is under way, the truck involved must be rerouted to an alternative itinerary. Without relevant information on such alternative itineraries, the truck driver may choose a needlessly long one or, even worse, an itinerary that may itself be "closed" by an unforeseen event (the same event as for the original itinerary or another one). It is thus critical to provide drivers with real-time information, in particular, suggestions of alternative itineraries, when the planned one cannot be performed. Recourse strategies to deal with unforeseen events depend on the characteristics of the studied supply chain, such as the presence of auto-loaders and the management policy of forestry transportation companies. We present three papers dealing with three differ- ent application contexts, as well as models and solution methods adapted to each context. In the first paper, we assume a context where truck drivers are provided a priori with the whole weekly plan. In this context, every effort must be made to minimize the changes in the initial plan. Although the fleet of trucks is homogeneous, there is a priority ranking of the truck drivers. The priority drivers are ensured the highest work- loads. Minimizing the changes in their plans is also a priority. Since the consequences of unforeseen events on transportation are cancellations and/or delaying of some trips, the proposed approach deals first with single cancellations and single delayed trips and builds on these simple events to deal with more complex ones. In this approach, we try to reschedule the impacted trips within the same week in such a way that a loader is free at the truck arrival time both at the forest site and at the mill. In this way, none of the other trips will be impacted or changed. This approach provides the dispatchers with alternative plans in a few seconds. Better solutions could be found if the dispatcher is allowed to make more changes to the original plan. In the second paper, we assume a context where only one trip at a time is communicated to the drivers. The dispatcher waits until the truck finishes its trip before revealing the next trip. This context is more flexible and provides more recourse possibilities. Also, the weekly problem can be divided into daily problems since the demand is daily and the mills are open only for limited periods in the day. We use a mathematical programming model based on a time-space network representation to react to disruptions. Although the latter can have different impacts on the initial transportation plan, one key characteristic of the proposed model is that it remains valid for dealing with all the unforeseen events, regardless of their nature. Indeed, the impacts of such events are reflected in the time-space network and in the input parameters rather than in the model itself. The model is solved for the current day each time an unforeseen event is revealed. In the last paper, the fleet of trucks is heterogeneous, including trucks with onboard loaders. The route configuration of the latter is different than the regular truck routes, since they do not have to be synchronized with the loaders. We use a mathematical model where the columns can be easily and naturally interpreted as truck routes. We solve this model using column generation. As a first step, we relax the integrality of the decision variables and consider only a subset of feasible routes. The feasible routes with a potential to improve the solution are added iteratively to the model. A time-space network is used both to represent the impacts of unforeseen events and to generate these routes. The solution obtained is generally fractional and a heuristic branch-and-price algorithm is used to find integer solutions. Several disruption scenarios were developed to test the proposed approach on case studies from the Canadian forest industry and numerical results are presented for the three contexts

    New decision support tools for forest tactical and operational planning

    Get PDF
    Doutoramento em Engenharia Florestal e dos Recursos Florestais - Instituto Superior de AgronomiaThe economic importance of the forest resources and the Portuguese forest-based industries motivated several studies over the last 15 years, particularly on strategic forest planning. This thesis focuses on the forest planning processes at tactical and operational level (FTOP). These problems relate to harvesting, transportation, storing, and delivering the forest products to the mills. Innovative Operation Research methods and Decision Support Systems (DSS) were developed to address some of these problems that are prevalent in Portugal. Specifically, Study I integrates harvest scheduling, pulpwood assortment, and assignment decisions at tactical level. The solution method was based in problem decomposition, combining heuristics and mathematical programming algorithms. Study II presents a solution approach based on Revenue Management principles for the reception of Raw Materials. This operational problem avoids truck congestion during the operation of pulpwood delivery. Study III uses Enterprise Architecture to design a DSS for integrating the operations performed over the pulpwood supply chain. Study IV tests this approach on a toolbox that handled the complexity of the interactions among the agents engaged on forest planning at regional level. Study V proposes an innovative technological framework that combines forest planning with forest operations' control

    ProblĂšme de transport avec contraintes d'horaires

    Get PDF
    L’industrie forestiĂšre est un secteur extrĂȘmement important pour plusieurs pays dont le Canada. En 2007, ce secteur offrait de l’emploi Ă  environ 1 million de personnes (directement et indirectement)Ă  travers le pays et a contribuĂ© par 23.4milliardsaˋlabalancecommercialenationale.Plusieursprobleˋmeslieˊsaˋcetteindustriesontdenatured’aideaˋladeˊcision.Ilssedivisentgeˊneˊralemententroiscateˊgories:strateˊgique,tactiqueetopeˊrationnelle.Toutaulongdecettetheˋse,nousnoussommesinteˊresseˊaˋcettedernieˋrecateˊgorieetpluspreˊciseˊmentauprobleˋmedutransportforestieravechoraire.Danslalitteˊraturedudomaine,cettequestionafaitl’objetdeplusieurstravaux.Denotrepart,nousavonsadapteˊleprobleˋmeaucontextecanadienenprenantencomptelescontraintesdesynchronisationentreleschargeusesetlescamions.Cescontraintesdesynchronisationtraduisentlefaitqueleschargeusesenfore^tnepeuventpassupporterd’autresopeˊrationsenceslieux,aˋpartlechargement,vulagrandesuperficiedessitesforestierscanadiens.Ainsi,ileˊtaitprimordialdeminimiserlesattentesdeschargeusesetdescamions,pourreˊduirelescou^tsdetransport.Danslepremierarticledecetravail,nousavonstraiteˊleprobleˋmejournalierouˋnousavonssupposeˊquelesreque^tesdetransportsontconnuesaˋl’avance.Unemeˊthodehybridemettantenoeuvrelaprogrammationparcontraintesetlaprogrammationlineˊaireennombresentiersaeˊteˊadopteˊe,desortequecettedernieˋremodeˊliselaviicirculationdescamionscommeunprobleˋmedeflotaˋcou^tminimumdansunreˊseau,alorsqueprogrammationparcontraintess’occupedel’ordonnancementdesta^ches,unefoislacirculationesteˊtablie.−−−−−−−−−−ABSTRACTTheforestindustryisanimportanteconomicsectorforseveralcountriesincludingCanada.In2007,thisindustryemployedabout1millionpeople(directlyandindirectly),andcontributed23.4 milliards Ă  la balance commerciale nationale. Plusieurs problĂšmes liĂ©s Ă  cette industrie sont de nature d’aide Ă  la dĂ©cision. Ils se divisent gĂ©nĂ©ralement en trois catĂ©gories : stratĂ©gique, tactique et opĂ©rationnelle. Tout au long de cette thĂšse, nous nous sommes intĂ©ressĂ© Ă  cette derniĂšre catĂ©gorie et plus prĂ©cisĂ©ment au problĂšme du transport forestier avec horaire. Dans la littĂ©rature du domaine, cette question a fait l’objet de plusieurs travaux. De notre part, nous avons adaptĂ© le problĂšme au contexte canadien en prenant en compte les contraintes de synchronisation entre les chargeuses et les camions. Ces contraintes de synchronisation traduisent le fait que les chargeuses en forĂȘt ne peuvent pas supporter d’autres opĂ©rations en ces lieux, Ă  part le chargement, vu la grande superficie des sites forestiers canadiens. Ainsi, il Ă©tait primordial de minimiser les attentes des chargeuses et des camions, pour rĂ©duire les coĂ»ts de transport. Dans le premier article de ce travail, nous avons traitĂ© le problĂšme journalier oĂč nous avons supposĂ© que les requĂȘtes de transport sont connues Ă  l’avance. Une mĂ©thode hybride mettant en oeuvre la programmation par contraintes et la programmation linĂ©aire en nombres entiers a Ă©tĂ© adoptĂ©e, de sorte que cette derniĂšre modĂ©lise la vii circulation des camions comme un problĂšme de flot Ă  coĂ»t minimum dans un rĂ©seau, alors que programmation par contraintes s’occupe de l’ordonnancement des tĂąches, une fois la circulation est Ă©tablie.----------ABSTRACT The forest industry is an important economic sector for several countries including Canada. In 2007, this industry employed about 1 million people (directly and indirectly),and contributed 23.4 billion to Canada’s trade balance. The operations research problems related to this sector are divided into three categories: strategic, tactical and operational. In this thesis, we are interested in the later category and more precisely in the log-truck scheduling problem. Many papers in the literature have addressed this issue, and our contribution has been to address the problem to the Canadian context, taking into account the synchronization constraints between loarders and trucks. These constraints reflect the fact that forest-loaders cannot support other operations in forests except loading, since in Canada, we have large areas.In the first article of this thesis, we presented the daily problem where we have assumed that requests are known in advance. We proposed a hybrid approach involving a linear model to deal with the routing part of the problem and a constraint programming model to deal the scheduling part. Both of these models are combined through the exchange of global cardinality constraints. In the second article, we discussed the weekly problem where inventories at wood mills are taken into consideration in order to allow wood mills to work in a just in x time mode. For this purpose, we have developed a two-phase method

    Decision support systems for forest management: a comparative analysis and assessment

    Full text link
    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.compag.2013. 12.005.[EN] Decision Support Systems (DSS) are essential tools for forest management practitioners to help take account of the many environmental, economic, administrative, legal and social aspects in forest management. The most appropriate techniques to solve a particular instance usually depend on the characteristics of the decision problem. Thus, the objective of this article is to evaluate the models and methods that have been used in developing DSS for forest management, taking into account all important features to categorize the forest problems. It is interesting to know the appropriate methods to answer specific problems, as well as the strengths and drawbacks of each method. We have also pointed out new approaches to deal with the newest trends and issues. The problem nature has been related to the temporal scale, spatial context, spatial scale, number of objectives and decision makers or stakeholders and goods and services involved. Some of these problem dimensions are inter-related, and we also found a significant relationship between various methods and problem dimensions, all of which have been analysed using contingency tables. The results showed that 63% of forest DSS use simulation modelling methods and these are particularly related to the spatial context and spatial scale and the number of people involved in taking a decision. The analysis showed how closely Multiple Criteria Decision Making (MCDM) is linked to problem types involving the consideration of the number of objectives, also with the goods and services. On the other hand, there was no significant relationship between optimization and statistical methods and problem dimensions, although they have been applied to approximately 60% and 16% of problems solved by DSS for forest management, respectively. Metaheuristics and spatial statistical methods are promising new approaches to deal with certain problem formulations and data sources. Nine out of ten DSS used an associated information system (Database and/or Geographic Information System - GIS), but the availability and quality of data continue to be an important constraining issue, and one that could cause considerable difficulty in implementing DSS in practice. Finally, the majority of DSS do not include environmental and social values and focus largely on market economic values. The results suggest a strong need to improve the capabilities of DSS in this regard, developing and applying MCDM models and incorporating them in the design of DSS for forest management in coming years.The authors acknowledge the support received from European Cooperation in Science and Technology (COST Action FP0804 - Forest Management Decision Support Systems "FORSYS"), the Ministry of Economy and Competitiveness through the research project Multiple Criteria and Group Decision Making integrated into Sustainable Management, Ref. ECO2011-27369 and Ministry of Education (Training Plan of University Teaching). We also thank the editor and reviewers for their suggestions to improve the paper.Segura Maroto, M.; Ray, D.; Maroto Álvarez, MC. (2014). Decision support systems for forest management: a comparative analysis and assessment. Computers and Electronics in Agriculture. 101:55-67. https://doi.org/10.1016/j.compag.2013.12.005S556710
    • 

    corecore