18,589 research outputs found

    Performance Comparison Analysis of Classification Methodologies for Effective Detection of Intrusions

    Get PDF
    Intrusion detection systems (IDS) are critical in many applications, including cloud environments. The intrusion poses a security threat and extracts privacy data and information from the cloud. The user has an Internet function that allows him to store personal information in the cloud environment. The cloud can be affected by various issues such as data loss, data breaches, lower security and lack of privacy due to some intruders. A single intrusion incident can result in data within computer and network systems being quickly stolen or deleted. Additionally, intrusions can cause damage to system hardware, resulting in significant financial losses and exposing critical IT infrastructure to risk. To overcome these issues, the study employs the performance comparison analysis of Autoencoder Convolutional neural network (AE+CNN), Random K-means clustering assisted deep neural network (RF+K-means+DNN), Autoencoder K-means clustering assisted long short term memory (AE+K-means+LSTM), Alexnet+Bi-GRU, AE+Alexnet+Bi-GRU and Wild horse AlexNet assisted Bi-directional Gated Recurrent Unit (WABi-GRU) models to choose the best methodology for effective detection of intrusions. The data needed for the analysis is collected from CICIDS2018, UNSW-NB15 and NSL-KDD datasets. The collected data are pre-processed using data normalization and data cleaning. Finally, through this research, the best model suitable for effective intrusion detection can be identified and used for further processes. The proposed models, such as RF+K-means+DNN, AE+K-Means+LSTM, AlexNet Bi-GRU, AE+Alexnet+Bi-GRU and WABi-GRU can obtain an accuracy of 99.278%, 99.33%, 99.45%, 99.50%, 99.65% for the CICIDS dataset 2018 for binary classification. In multi-class classification, the AlexNet Bi-GRU, AE+Alexnet+Bi-GRU and WABi-GRU can attain accuracy of 99.819%, 99.852% and 99.890%. In NSL-KDD, the AlexNet Bi-GRU, AE+Alexnet+Bi-GRU and WABi-GRU achieve accuracy of 99.34%, 99.546% and 99.7%. In UNSW-NB 15 dataset, AlexNet Bi-GRU, AE+Alexnet+Bi-GRU and WABi-GRU achieve accuracy of 99.313%, 99.399% and 99.53%. AlexNet Bi-GRU-based models can obtain better performances than other existing models

    DaaS: Dew Computing as a Service for Intelligent Intrusion Detection in Edge-of-Things Ecosystem

    Get PDF
    Edge of Things (EoT) enables the seamless transfer of services, storage, and data processing from the cloud layer to edge devices in a large-scale distributed Internet of Things (IoT) ecosystems (e.g., Industrial systems). This transition raises the privacy and security concerns in the EoT paradigm distributed at different layers. Intrusion detection systems (IDSs) are implemented in EoT ecosystems to protect the underlying resources from attackers. However, the current IDSs are not intelligent enough to control the false alarms, which significantly lower the reliability and add to the analysis burden on the IDSs. In this article, we present a Dew Computing as a Service (DaaS) for intelligent intrusion detection in EoT ecosystems. In DaaS, a deep learning-based classifier is used to design an intelligent alarm filtration mechanism. In this mechanism, the filtration accuracy is improved (or sustained) by using deep belief networks. In the past, the cloud-based techniques have been applied for offloading the EoT tasks, which increases the middle layer burden and raises the communication delay. Here, we introduce the dew computing features that are used to design the smart false alarm reduction system. DaaS, when experimented in a simulated environment, reflects lower response time to process the data in the EoT ecosystem. The revamped DBN model achieved the classification accuracy up to 95%. Moreover, it depicts a 60% improvement in the latency and 35% workload reduction of the cloud servers as compared to edge IDS

    Autoencoder-Based Representation Learning to Predict Anomalies in Computer Networks

    Get PDF
    With the recent advances in Internet-of-thing devices (IoT), cloud-based services, and diversity in the network data, there has been a growing need for sophisticated anomaly detection algorithms within the network intrusion detection system (NIDS) that can tackle advanced network threats. Advances in Deep and Machine learning (ML) has been garnering considerable interest among researchers since it has the capacity to provide a solution to advanced threats such as the zero-day attack. An Intrusion Detection System (IDS) is the first line of defense against network-based attacks compared to other traditional technologies, such as firewall systems. This report adds to the existing approaches by proposing a novel strategy to incorporate both supervised and unsupervised learning to Intrusion Detection Systems (IDS). Specifically, the study will utilize deep Autoencoder (DAE) as a dimensionality reduction tool and Support Vector Machine (SVM) as a classifier to perform anomaly-based classification. The study diverts from other similar studies by performing a thorough analysis of using deep autoencoders as a valid non-linear dimensionality tool by comparing it against Principal Component Analysis (PCA) and tuning hyperparameters that optimizes for \u27F-1 Micro\u27 score and \u27Balanced Accuracy\u27 since we are dealing with a dataset with imbalanced classes. The study employs robust analysis tools such as Precision-Recall Curves, Average-Precision score, Train-Test Times, t-SNE, Grid Search, and L1/L2 regularization. Our model will be trained and tested on a publicly available datasets KDDTrain+ and KDDTest+

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Efficient classification using parallel and scalable compressed model and Its application on intrusion detection

    Full text link
    In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average

    User-profile-based analytics for detecting cloud security breaches

    Full text link
    While the growth of cloud-based technologies has benefited the society tremendously, it has also increased the surface area for cyber attacks. Given that cloud services are prevalent today, it is critical to devise systems that detect intrusions. One form of security breach in the cloud is when cyber-criminals compromise Virtual Machines (VMs) of unwitting users and, then, utilize user resources to run time-consuming, malicious, or illegal applications for their own benefit. This work proposes a method to detect unusual resource usage trends and alert the user and the administrator in real time. We experiment with three categories of methods: simple statistical techniques, unsupervised classification, and regression. So far, our approach successfully detects anomalous resource usage when experimenting with typical trends synthesized from published real-world web server logs and cluster traces. We observe the best results with unsupervised classification, which gives an average F1-score of 0.83 for web server logs and 0.95 for the cluster traces
    corecore