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Abstract 

With the recent advances in Internet-of-thing devices (IoT), cloud-based services, and 

diversity in the network data, there has been a growing need for sophisticated anomaly 

detection algorithms within the network intrusion detection system (NIDS) that can 

tackle advanced network threats. Advances in Deep and Machine learning (ML) has 

been garnering considerable interest among researchers since it has the capacity to 

provide a solution to advanced threats such as the zero-day attack. An Intrusion 

Detection System (IDS) is the first line of defense against network-based attacks 

compared to other traditional technologies, such as firewall systems. This report adds to 

the existing approaches by proposing a novel strategy to incorporate both supervised 

and unsupervised learning to Intrusion Detection Systems (IDS). Specifically, the study 

will utilize deep Autoencoder (DAE) as a dimensionality reduction tool and Support 

Vector Machine (SVM) as a classifier to perform anomaly-based classification. The 

study diverts from other similar studies by performing a thorough analysis of using deep 

autoencoders as a valid non-linear dimensionality tool by comparing it against Principal 

Component Analysis (PCA) and tuning hyperparameters that optimizes for 'F-1 Micro' 

score and 'Balanced Accuracy' since we are dealing with a dataset with imbalanced 

classes. The study employs robust analysis tools such as Precision-Recall Curves, 

Average-Precision score, Train-Test Times, t-SNE, Grid Search, and L1/L2 

regularization. Our model will be trained and tested on a publicly available datasets 

KDDTrain+ and KDDTest+.  
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Chapter I: Introduction 

Intrusion Detection System  

 The idea of the Intrusion detection system (IDS) as the first line of defense   

against network intrusion can be traced back to Dorothy Denning's seminal paper 

named 'An Intrusion-Detection Model' where she first proposed a model for a real-time 

detection system capable of detecting various forms of threats [1]. Since then, the IDS 

has come a long way especially with the recent advancements in machine learning, big 

data, and an industry-wide shift to the cloud.  

Intrusion detection systems can be divided into variants depending on its 

detection method. The first one follows the signature-based detection technique and the 

second follows an anomaly-based detection technique. An IDS that follows the 

intrusion-based technique matches up the signature of a potential threat against its 

database of known attacks and decides accordingly. Under the anomaly-based scheme, 

IDS are rigorously trained on learning normal traffic flow patterns using machine 

learning algorithms which allows the IDS to detect abnormal traffic.  

The shortcoming of a signature-based IDS is its inability to catch threats that are 

not known beforehand since it heavily relies upon its database of known attacks. The 

signature-based detection method has been widely popular because of its high 

precision rates and low memory consumption [2]; however, attacks have been 

becoming more sophisticated over the years. Threats such as zero-day attacks are not 

publicly known before infecting a host system or organization. Attacks of such nature 
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can wreak havoc since it takes advantage of the required time it takes to patch up an 

IDS against that threat.   

On the other hand, the anomaly-based detection method performs better against 

zero-day since it is trained on good traffic flow and can detect an anomalous pattern. 

One criticism of the detection method in question would be its high false-positive and 

high memory consumption which is required in the training phase of the detection 

algorithm. Solving this challenge would be one of the main themes of this study.  

Machine Learning Algorithms  

There has been a growing interest in the use of machine learning (ML) 

algorithms to catch anomalies since they are considerably better than traditional 

classification algorithms [3]. The use of these advanced algorithms has played an 

important role in increasing precision in detecting anomalies. Various machine learning 

algorithms such as Random Forest (RF) [4], Support Vector Machine (SVM) [4], K-

Nearest Neighbors (KNN) [5], and Naïve Bayes have been utilized to optimize the 

anomaly-based systems.  

At its core, anomaly detection is a classification problem. The machine learning 

algorithms generally do an excellent job of catching threats, but there is an added 

computational cost, which is a challenge for cybersecurity experts since anomalies must 

be dealt with in real-time scenarios. In addition, with the advent of edge computing, 

building an algorithm that is not heavy on computational power is becoming even more 

crucial.  



10 
 

 
 
 

To tackle these issues, the recent implementation of deep learning, a subfield of 

ML, in anomaly-based detection methods have been quite promising. Neural nets allow 

for more robust and thorough learning on inputs owing to its rigorous utilization of 

optimization techniques based on neural networks. Neural Nets are further built on 

principles from calculus, linear algebra, and probability.  

The most basic structure of a neural net is composed of three layers: an input 

layer, hidden layer, outer layer. Neural networks containing 2 or more hidden layers are 

considered Deep Neural Networks [6]. Hidden layers in the neural architecture enable 

backpropagation which allows the neural nets to iteratively adjust the associated 

weights and biases of a given neuron by comparing it against the outcome labels.  

There are many hyperparameters within a given neural network scheme which 

can be adjusted so that it can govern the way the model is trained on the input data. 

One of the distinguishing hyperparameters is Learning Rate, Epochs, Hidden Layers, 

Neurons, and Activation Function1.  

KDDCUP99 and NSL-KDD Dataset  

The KDDCUP99 dataset was prepared and developed by the MIT Lincoln Lab in 

the year 1998 under the DARPA Intrusion Detection Evaluation Program [7]. The 

dataset contains 'bad' and 'good' connections acquired through nine weeks of raw TCP 

dump of a military network environment. Various studies have performed anomaly-

 
 

1 The definition of each of these terms are provided in Chapter IV- Definition of Terms.  
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based modeling on this dataset to gauge their system's performance [8]. Even though 

there are over 37 attacks in the dataset, they can be broadly categorized in five as four 

attack types which can be seen in table 1. However, the KDDCUP99 dataset has 

several issues such as the redundancy of records owing to the synthetic nature of the 

data. This issue can cause statistical errors since being trained on redundant data can 

cause the model to be biased towards the frequent records [8]. Because of this reason, 

we will be implementing our proposed anomaly detection method on the enhanced 

NSL-KDD dataset which addresses the previously mentioned issue. Our study will focus 

on this dataset to gauge the accuracy of our proposed algorithms. Our study will 

evaluate the dataset as both a binary (Attack/Normal) and multi-class.  
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Table 1  

Attack Types in NSL-KDD Dataset [9] 

Attack Type Description Training Dataset  Testing Dataset 

DoS Denial-of-Service 45927 7456 

Probe Surveillance and other probing 11656 2421 

R2L Unauthorized access from a remote machine 995 2756 

U2R Unauthorized access to local superuser (root) privileges 52 200 

 

Problem Statement 

There are potential threats within the network traffic that can compromise a target 

application or computer. Some well-known attacks that can hinder a legitimate user 

from accessing system resources are DOS attacks that can flood your system with 

connection requests, thus rendering your host machine useless. MITM (Man-In-The-

Middle) attacks intercept network communication in order to listen in on the exchange of 

information. Spoofing attacks attempt to mimic an authorized user so that they can 

convince the system to provide access to the attacker. It does so by sending IP packets 

from a known Host. User to Root Attack (U2R) bypasses the system security by gaining 

access through the network option. Application layer attacks exploit the lapses within 

the application layer, so there might be a security weakness in the server-side.  

However, the most relevant for this study would be unseen attacks. Zero-day 

malware, which is a sophisticated form of attack because there is no known prior 

information regarding the threat. Training the IDS to tackle this form of attack would 
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require a security mechanism that is proficient in distinguishing between normal and 

anomalous network traffic. There is a need to classify the different types of threats 

based on different features that yield higher detection with increase precision and recall 

so that the user can stay protected against the modern network-level attacks. 

Nature and Significance of the Problem 

Malicious threats have the potential to wreak havoc within a system’s 

infrastructure. Therefore, the importance of detecting anomalies within given network 

traffic is crucial [10]. With the recent boom in the volume of data owing to Cloud-based 

services, faster internet speeds, and internet-of-things (IoT) devices, there has been an 

onslaught of more sophisticated attacks that defense mechanisms like Internet Firewall 

are unequipped to handle. The internet speeds have gone up to 100Gbps or more, and 

the data is forecasted to grow to 44 ZB [11]. In addition, because of this surge in 

network data, we are seeing a change in the diversity of data and protocols transmitting 

through the network traffic. If a computer host or application does not have an effective 

intrusion detection system, it could pose a threat to data confidentiality, data integrity, 

and vulnerabilities to denial-of-service (DOS) attacks. 

 The network intrusion threats that are prevalent today can pose a significant risk 

to the operational security of big corporations, governments, and individual users. In the 

past decade, there have been 14 major website breaches, which include attacks on the 

National Assembly, Shinhan Bank, the defense ministry, web sites of presidential blue 

house, New York Stock Exchange, among others. In 2009, a google employee 
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uploaded a malware site that declared the entire Internet to malware for 55 minutes. 

This breach caused a lot of reputational damage to Google as well as financial damage 

from ad revenue lost [2].  

Objective of the Study 

  The primary objective of this study is to evaluate the effectiveness of our 

proposed neural network scheme by measuring the performance against well-known 

performance and classification metrics. The performance we will be using for this study 

is the Precision-Recall curve, F1-micro, Prediction Accuracies, and Matthews 

Correlation Coefficient. It is expected that combining autoencoder-based representation 

learning with an SVM would lower the computational requirements during the train and 

test phase of the model. The lowered computational and storage requirement is 

essential against time-sensitive network threats that an intrusion detection system must 

face.     

Study Questions/Hypotheses 

1. Does employing deep autoencoders as a non-linear dimensionality reduction 

technique lead to better classification metrics than a linear dimensionality reduction 

technique?  

2. Does deep autoencoder provide a better alternative to dimensionality reduction than 

its linear counterparts from a reduced train/test time and memory consumption 

viewpoint?  
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3. Does incorporating the regularization penalty term in our model's loss function 

enhance the model performance? If so, what form of regularization (L1, L2, None) is 

most effective within the proposed neural network scheme?  

Summary  

There has been an extensive number of studies conducted for anomaly detection 

by using supervised machine learning approaches such as KNN (k-nearest neighbor), 

support vector machine and artificial neural networks (ANN) [5]. The combined 

approach of unsupervised deep learning for feature reduction and supervised machine 

learning for classification has been proven to be better in terms of lowered training and 

resource consumption viewpoint. In the coming chapters, we will delve deeper into what 

neural net schemes other researchers have employed to enhance intrusion detection 

systems.  
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Chapter II: Background and Review of Literature  

Introduction  

 There has been extensive research concerning the implementation of deep 

neural networks within the network intrusion detection system domain. In this section, 

we will explore different scholarly journals that have implemented disparate neural 

network architecture on the KDDCUP99 and the NSL-KDD. In the first section of the 

literature review, we will briefly discuss the inner working of machine learning and 

neural networks in order to understand the calculations being performed in the backend. 

In the later section of the literature review, we will identify various deep learning 

structures utilized for Network Intrusion Detection Systems (NIDS) for higher accuracy 

and prediction. In the last part of this section, there will be a brief discussion regarding 

how our study deviates from the existing body of research with respect to deep learning 

and anomaly detection.  

Background Related to the Problem 

Deep Learning  

 Deep learning is a subset of machine learning that attempts to model the 

human brain through mathematical functions that imitate the neuron. It finds patterns 

from raw data without the need to be explicitly programmed. The deep learning 

algorithms have been around for decades but it has recently come to the fore owing to 

the plethora that is available in present-day [12]. The architecture of a neural network is 

composed of an input layer, a hidden layer, and an output layer. Every layer is 
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composed of neurons or a perceptron, which his considered the building block of deep 

learning. Each node connects one neuron with another through successive layers. Each 

neuron imposes weights and biases on the input provided. Then the product sum of 

weights and biases is sent through an activation function so that the output 

accommodates non-linearity, which is crucial when dealing with classification problems. 

For instance, a typical activation function would be the sigmoid function. When an input 

is passed onto the sigmoid function, it collapses the product sum of learned weights into 

a range from 0 to 1. Once the product sum of weights is non-linearized with the 

activation function, we get the output in the output layer. This entire process is called 

feedforward propagation. The output is then measured against the actual value and 

then trained iteratively to minimize the error between the initial prediction and the actual 

value. This iterative process of adjusting the weights and biases of input features is 

known as backpropagation. Backpropagation attempts to perform loss optimization. The 

process of minimizing or optimizing the loss function iteratively is called gradient 

descent. There are many loss functions, but the most used are Cross-Entropy Loss and 

Mean Squared Error Loss (RMSE). In figure 1, we can see the neurons in the input 

layer and its interconnectedness with the subsequent hidden and output layers.  
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Figure 1. Neural Network Architecture 

Autoencoders  

 The autoencoder is a neural network that is trained to copy its input to its output 

[13]. The neural network contains two primary mathematical functions that allow the 

input to be reconstructed into output. The encode function  ℎ = 𝑓(𝑥) and the decode 

function 𝑟 = 𝑔(ℎ). h is the internal representation when the input x is being converted to 

r (called reconstruction).  In making the approximate copies of input, the neural network 

learns the most useful properties of the raw dataset. Typically, the h is always a lower-

dimension subspace of the x because of this autoencoder neural networks have a 

bottleneck layer that has a lower number of nodes than the other layers [14].  
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Activation Functions. The 𝑓(. ) and 𝑔(. ) are the activation functions that non-

linearize the bias and weight parameters. There are many variations of activation 

functions that are used within the neural network such as sigmoid, Tanh, and 

ReLU activation functions [14]. Relu, which stands for rectified linear unit, is a 

widely used activation function in deep neural networks [15]. The primary reason 

for the success of this activation function is that it does not require a lot of 

computational resources to execute it compared to complicated activation 

functions that lead to increased difficulty in optimization. Mathematically, ReLU is 

presented as:  

𝑦 = max(0, 𝑥) (1) 

ReLU activation function yields an output of 0 when 𝑥 < 0, and then draws a 

linear line with a slope of 1 when 𝑥 > 0.  

Our paper incorporates the usage of Scaled Exponential Linear Unit (SELU) 

which is one of the newer activation functions being used in deep learning as of now. In 

Self-Normalizing Neural Networks [16], the author posits SELU activation function which 

exhibits as a self-normalizing property which is proven using the Banach fixed-point 

theorem. Essentially, the activations that are closer to zero mean and unit variance 

allows the network layers to converge to zero mean and unit variance [32].  

Having SELU in our scheme is relevant since we will be employing deep 

autoencoders which employ more than three deep layers. Usually, when employing 

more than three layers in a neural architecture which can put the forward neural network 
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at a disadvantage since the lack of normalization within the activation function could 

lead to gradient issues. Since with SELU, the normalization occurs within the function, 

we can bypass that issue and take full advantage of this activation function.  

SELU allows room for deeper network layers owing to its faster processing 

speeds, in addition since the activation encourages normalization there is a presence of 

regularization penalty. In reference to the previously mentioned paper, the authors 

meticulously derived two fixed parameters used in the feedforward process. For 

standard scaled inputs (mean 0, standard deviation 1), the parameters are a=1.6732~, 

and λ= 1.0507 ~. Having fixed parameters our neural network to not backpropagate 

through these variables. SELU can be mathematically presented as: 

𝑆𝐸𝐿𝑈(𝑥) =  𝜆 {
𝑥

𝛼𝑒𝑋 − 𝛼
 𝑖𝑓 𝑥>0
𝑖𝑓 𝑥 ≤0

 (2) 

 

Figure 2: SELU plotted for a=1.6732~, Lambda=1.0507~ 
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Deep Autoencoders as a Dimensionality Reduction Tool. Merely 

reconstructing inputs into an output variable is not considered useful since it does not 

achieve much. However, the true power of autoencoder resides in the internal 

representation of the encoded input x [33]. The lower-dimensional representation allows 

improved performances especially when performing classification tasks. Classifier trains 

faster on lower dimensions due to a lower need for memory and computational power 

[34]. The autoencoder learns by minimizing the following loss function:  

𝐿 (𝑥, 𝑔(𝑓(𝑥))) (3) 

In the equation above, the loss function is penalizing 𝑔(𝑓(𝑥)) for 𝒙. In fact, if the 

decoder function is linear and the L is mean squared error, the resulting subspace is the 

same as Principal Component Analysis (PCA) [13]. The autoencoder scheme is 

typically composed of three primary layers. First, the encoder layer, where the inputs 

are assigned weights and biases. Afterward, the inputs are reduced to the most useful 

features in the code layer. As seen in figure 2, the number of neurons in the input layer 

is typically higher than in the ‘code layer.’ Lastly, the decoder layer consists of a 

decoder function that reconstructs the input. However, the code layer contains the latent 

representation of the input vectors which is essential for classification-based tasks. 

When the code layer has a smaller dimension than the input dimension then it is called 

undercomplete [13].  

Autoencoders is a viable non-linear feature reduction technique and tends to 

outperform other dimensionality reduction techniques. Wang, Yao, and Zhao compare 
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autoencoder as a dimensionality reduction algorithm against state-of-the-art 

dimensionality reduction algorithms such as Principal Component Analysis, Linear 

Discriminant Analysis, Locally linear embedding, and Isomap [17]. The study concludes 

that auto-encoders not only outperform other techniques in reducing dimensionality, but 

it is also good at detecting repetitive structures [17]. However, there are other studies 

that give preference to PCA, linear dimensionality reduction technique, for real-world 

tasks as opposed to artificial tasks [18].   

 

Figure 3: Autoencoder (AE) Neural Architecture 

 There are many types of autoencoders such as Sparse, Deep, Denoising [19], 

Convolutional [20], Contractive [21] and variational Autoencoders. The AE that this 

study would be employing deep autoencoders (also named Stacked Autoencoder) [19]. 
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Deep AE has several hidden layers, and deeper stacked AE is considered to have a 

better training capability compared to lesser layers [13] [22].  

Support Vector Machine (SVM)  

Our dataset will be trained using a support vector machine (SVM) for anomaly 

classification on the NSL-KDD dataset. SVM algorithm attempts to find a hyperplane 

(subspace with a dimension that is one less than of its ambient space) that distinctly 

classifies the data points. It does so by making use of support vectors that are points 

closest to the hyperplane (i.e. decision boundary). The hyperplane is positioned such 

which allows the support vectors to sit equidistantly to the hyperplane. The algorithm 

calculates the maximum margin hyperplane which is a margin that yields the highest 

sum between the two support vectors. Mathematically, the algorithm for a binary SVM 

classifier would be represented as follows:  

𝑓(𝑥𝑖) {
≥ 0   𝑦𝑖 =  +1
< 0 𝑦𝑖 =  −1

(4) 

Unlike logistic regression which squashes output of its linear function within the 

range of 0 to 1, SVM squashes its output from the range of -1 to 1. In other words, the 

SVM algorithm classifies the datapoints as negative and positive 1. SVMs are known to 

be effective when working with high dimensional data, even when the number of 

features is higher than the actual number of data points being used. In addition, SVM is 

a flexible classifier in that we can choose among different kernel functions, such as 

linear, polynomial, Radial Basis Function (RBF), sigmoid, and even custom kernels 

using Python. For the purpose of our study, we will choose the RBF kernel since it 
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allows us to perform non-linear classification on our dataset. The radial basis function 

could be mathematically written as such:  

RBF: exp(−𝛾 ∥ 𝑥 − 𝑥′ ∥2) (5) 

Regularization 

In order to ensure that our autoencoder representation contains the highest 

informative weights, we can take advantage of a principle called regularization. 

Essentially, regularization penalizes complexity and encourages simplicity in the training 

model. The way it does so is by adding a regularization term in the loss function of our 

neural network loss function. Having this regularization term in the loss function ensures 

that there is no risk of overfitting. Overfitting typically happens when our model 

overlearns our dataset's training set to the point where it also picks up on the specific 

quirks and outliers. When we incorporate regularization to our neural scheme, we can 

ensure that our model is built to predict unseen data instead of becoming over-trained to 

predict data of the existing training dataset instead of the out-of-sample test set. There 

are various forms of regularization techniques with each having their own advantages 

and disadvantages depending on the nature of the dataset that we are working with. 

There are L1, L2, and L0 regularization terms that are typically employed to penalize 

complexity in each model [23]. For our report, we will use apply all three of these 

regularization techniques and gauge which one (or lack thereof) helps us minimize the 

loss on our testing dataset. Mathematically, L2 regularization could be defined as:  

‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2 (7)  
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The L2 regularization term quantifies the model complexity by takin the squared 

sum of all the calculated weights. The optimization of the neural network is contingent 

on the minimization of the following loss function and the regularization term:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) +  𝜆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)) (8)  

If the lambda in the above equation is zero, then the regularization term is 

removed completely. Setting the right lambda parameter is important when setting up 

regularization for our model. The lower the lambda value, the more complex the model 

becomes and vice versa. On the other hand, L1 regularization is mathematically defined 

as:  

‖𝑤‖ = |𝑤1| + |𝑤2| + |𝑤3| + ⋯ + |𝑤𝑛| (9)  

Essentially, L2 regularization motivates the model weights to converge around 0 

whereas L1 regularization forces the weights to be exactly 0. Depending on the 

situation, L1 may be better than L2 under certain circumstances. For instance, the model 

that has sparse vectors is better off with L1 regularization since they remove many 

sparse weights thus putting less load on RAM and increasing lowering training and 

testing time. In our report, we will compare both L1 and L2 regularization to gauge which 

scenario leads to desirable outcomes against our classification metrics. 

Literature Related to the Problem  

In Intelligent intrusion detection systems using artificial neural networks [24], the 

authors present a model based on artificial neural networks (ANN), which is a 

supervised deep learning classifier. The study performs the grid search technique and 
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decides on using a multi-layer perceptron with two hidden layers composed of 30 

neurons each. In addition, a 10-fold cross-validation technique was utilized to get more 

robust results. The model yielded a high area under the ROC curve, which indicates 

better classification. The average AUROC came out to be 0.98, SD AUROC 0.02, 

Maximum AUROC 1.00, and Minimum AUROC 0.82.  

Apart from the usage of supervised deep neural nets for training IDS on 

abnormality, there are other deep-learning frameworks that can be adopted. A 

promising approach and one that is the focus of this study would be the Self-taught 

learning (STL) framework, which is essentially composed of two stages. The first stage 

employs unsupervised deep learning for feature and dimension reduction. Whereas in 

the second stage, there is a use of traditional machine learning models for classification. 

The combined usage of both approaches yields results that have shown considerably 

better results than other frameworks based on a study performed by Majjed, Lasheng, 

Al-Habib, and al-Sabahi [25] . According to Majjed et al., this approach is efficient in 

terms of computational cost. In addition, the STL approach contributes to an overall 

increase in detection accuracy compared to other shallow machine learning classifiers.  

A study that closely follows the same methodology named Autoencoder-based 

Feature Learning for Cyber Security Application performs an autoencoder based deep 

learning scheme where the reduced features are then classified based on multiple 

machine learning algorithms [26]. The study draws its data from two main datasets: 

KDDCUP99 Dataset and Malware Classification Dataset published by Microsoft at 
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Kaggle in 2015. The study compares the results with standalone machine learning 

classifiers as well as Autoencoder-based input features. The study indicated that 

Gaussian Naïve Bayes coupled with AE-based features proved to have higher intrusion 

detection accuracy than other deep learning models, such as Xgboost, H20 models, 

among others.  

In a similar vein, Shone, Ngoc, Phai, and Shi combines the use of Non-

symmetric Deep Auto-Encoder (NDAE) with Random Forest (RF). Each NDAE has 

three hidden layers with the same number of neurons in each layer [11]. The primary 

way NDAE stands out from other autoencoders is that it does not follow the typical 

encoder-decoder paradigm, but instead, it just employs the encoder formula in the outer 

layer process, so in that sense, this scheme is considered non-symmetric in nature. The 

scheme is implemented on both the KDDCUP99 and NSL-KDD dataset. The analysis is 

performed as a 5-class KDD classification and 13-class KDD classification. The 

comparisons generated after building the models indicated an improvement of 5% in 

accuracy and training time reduction to 98.1%.  

In the Comparative Study of Deep Learning Models for Network Intrusion 

Detection, the authors posit three main approaches to the anomaly classification 

problem [27]. The first approach is the STL model, which yields an average accuracy of 

98.8% across four classes of anomalies – namely -- DoS, Probe, R2L, and U2R. The 

second approach is based on Recurrent Neural Network (RNN), which considers 

previous lags of input feature which allows for an additional memory input. Having that 
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additional memory input allows adding a temporal dimension to the analysis. However, 

the RNN based on Long Short-term Memory yielded an average accuracy of 79.2%. 

Lastly, the deep neural network approach on the KDD dataset yielded an accuracy of 

66%.   

Summary 

 One can safely surmise that the implementation of a deep learning approach to 

network intrusion detection systems is still in its nascent stages. Given how complex the 

model building process can become given its various configuration (i.e. training, 

optimization, activation, and classification) and other model-specific configurations 

(number of hidden layers, learning rate, loss function) we believe that our approach of 

using deep autoencoders with SVM classifier would prove to be a substantial 

contribution to the existing body of literature on the topic. In the next chapter, we will 

precisely discuss the model building process and the methodology of the study.  

 

 

 

 

 

 

 

 



29 
 

 
 
 

Chapter III: Methodology 

Introduction  

 In this section, we will set the bounds of the study by defining the metrics of the 

study. Furthermore, we will address the specifics of the data preprocessing and 

hyperparameter tuning aspect that has been achieved so far in the study.    

Definition of Terms 

• Intrusion Detection System:  An intrusion detection system is a device or 

software application that monitors a network or system for malicious activity or 

policy violations. 

• Network-Level Attacks: Network-delivered threats that typically gain access to 

the internal operating systems. Common types of network attacks are Denial-of-

Service (DOS), spoofing, sniffing, and information gathering. 

• Recall: quantifies the number of positive class predictions made out of all 

positive examples in the dataset 

• Precision: indicates the proportion of correct predictions of intrusions divided by 

the total of predicted intrusions in the testing process 

• Accuracy: indicates the proportion of correct classifications of the total records 

in the testing set 

• F-score: Provides a single score that balances both the concerns of precision 

and recall in one number.  
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• Training and Testing Time: the number of seconds it takes for neural network 

or classifier to train and test respectively on the dataset.  

• Machine Learning: Machine learning is a method of data analysis that 

automates analytical model building. It is a branch of artificial intelligence based 

on the idea that systems can learn from data, identify patterns, and make 

decisions with minimal human intervention. 

• Deep Learning: Deep learning is a subset of machine learning in artificial 

intelligence (AI) that has networks capable of learning unsupervised from data 

that is unstructured or unlabeled. 

• Activation Function: the activation function of a node or neuron defines a 

numerical output by taking input or a set of inputs. 

Data Preprocessing  

During the preprocessing phase of the study, the categorical features within the 

dataset were encoded using one-hot encoder which binarizes the categorical values 

into 0 and 1. The numeric variables were normalized using L2 normalization. 

Sklearn.preprocessing.Normalizer library was used to perform the normalization. 

Normalized numeric inputs are a requirement for many neural network schemes [28]. 

Furthermore, the normalization of numeric inputs helps to avoid outliers that might be 

present in the dataset.  

Hardware and Software Environment 

Operating System: Windows 10 Home 64-bit (10.0, Build 17763)  



31 
 

 
 
 

BIOS: X510UAR.309 (type: UEFI) 

Processor: Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz (8 CPUs), ~1.8GHz 

Memory: 8192MB RAM 

DxDiag Version: 10.00.17763.0001 64bit Unicode 

Software Environment: Python 3.7.5 64-bit | Qt 5.9.6 | PyQt5 5.9.2 | Windows 10 

Python Packages: TensorFlow 2.0.0, NumPy 1.17.2, Pandas 0.25.2 

Design and Implementation of the Study  

The study is going to be quantitative, as anomaly detection is essentially a 

classification problem. We have selected deep autoencoders as the first stage for 

dimension reduction and Support Vector Machine (SVM) classifier as the second part 

for performing classification on the encoded vector.  

  The number of hidden layers and activation neurons will be contingent on the 

grid search algorithm, which performs hyperparameter tuning and selects parameters 

that optimize the loss function. Instead of utilizing PCA, LDA, or other forms of 

dimension reduction, we will use deep autoencoders as a form of non-linear 

dimensionality reduction [30]. Once we receive the subset vector of reduced features, 

we will employ a support vector machine for the classification process.  

The python libraries that are relevant to the study are Numpy, Pandas, Scikit-

learn and Keras. Python was chosen over other statistical programming languages 

since Python has a broader range of libraries, which makes it an ideal choice for 

performing deep learning analysis. The classification will be performed on binary as well 
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as multi-class labels. The first scenario binarizes the label as a simple normal and 

attack label. Whereas, in the multi-class scenario, we have classified the labels in five 

total attack type labels.  

Tools and Techniques  

Grid search is a technique used for performing hyperparameter tuning. The 

technique provides the optimal hyperparameters by performing an exhaustive search 

through the provided parameter grid. The provided grid for the paper contained the 

following parameters: epochs, loss function, kernel function, activation function, and the 

number of k-folds for cross-validation. K-fold cross-validation allows the user to segment 

the training dataset into multiple folds so that the results are less biased and not 

overfitted. The loss function for the model would be RMSE, which is the square root of 

the average of squared differences between prediction and actual observation. RMSE 

loss function is mathematically presented as   

𝑅𝑀𝑆𝐸 =  √
1

𝑛
(𝑌𝑗 + Ῠ𝑗)2  (9) 

Performance Evaluation  

In a two-by-two confusion matrix, the four possible outcomes are as follows:   

1) True Positive (TP): Attack data that is correctly grouped as an attack. 

2) False Positive (FP): Normal data that is incorrectly grouped as an attack. 

3) True Negative (TN): Normal data that is correctly grouped as normal. 

4) False Negative (FN): Attack data that is incorrectly grouped as an attack. 
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Most of the performance metrics that will be discussed are based on these four 

possible outcomes [29]. The concept of classification threshold is tightly linked to 

confusion matrix outcomes since we must define a threshold value that helps us make 

the decision of when to indicate an outcome ‘abnormal’, and ‘normal’.   

Accuracy 

Based on the four measures computed from the confusion matrix, we can 

compute accuracy which is the fraction of the number of correct predictions to the total 

number of predictions. We can formulate accuracy as such:                  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
 (10) 

 The accuracy rates would be the key performance indicator for the several 

machines and deep learning classifiers we will be working on throughout the study.  

Precision-Recall Curve 

The precision and recall metrics are very important measures when dealing with 

imbalanced classes. Precision calculates the proportion of positive identifications that 

were correct. It could be mathematically defined as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 (11) 

Recall is defined as the proportion of actual positives correctly identified. It can 

be written as so: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
 (12) 
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Typically, there is a trade-off between precision and recall as the decision 

threshold is adjusted. An increase in the classification threshold always causes the 

recall to decrease or stay the same. Whereas, the increase in classification threshold 

increases the precision [30]. The precision-recall curve shows the inverse relationship 

graphically.  

F-measure 

The F-measure is a single value metric that is based on Precision and Recall. 

The range of the F-measure is between 0 and 1. F-measure allows to take the precision 

and recall into account simultaneously through just one measure as opposed to looking 

at them form a trade-off point of view. The F-measure can be mathematically defined 

as:  

𝐹𝑀 =
(1 + 𝛽1) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13) 

Test and Train Timings 

     The test and train timings are crucial for this study owing to the time-sensitive 

nature of network-level attacks. Therefore, having a model that can train much faster 

than other algorithms would prove to be quite important for our study. 
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Chapter IV: Results 

Visualizing Data using t-SNE 

To visualize our dataset, we employ t-distributed Stochastic Neighbor Embedding 

(t-SNE) which is a tool for visualizing high-dimensional data. T-SNE employs Kullback-

Leibler (KL) divergence which is a measure of the difference between two probability 

distributions [31]. KL divergence could be interpreted as a dimensionality reduction 

technique since it converts observations into joint probabilities which lower the overall 

information being processed. However, when dealing with higher dimensional data 

(generally over 50 dimensions), it is recommended to apply prior dimensionality 

reduction technique which would bring manageable subspace that T-SNE can handle 

effectively since it demands a considerable amount of computing power. In addition, 

performing T-SNE on reduced dimensions also manages the noise without distorting the 

interpoint distances. In our situation, we would apply PCA (linear dimensionality 

reduction) and deep autoencoder (non-linear dimensionality reduction) and see how t-

SNE visualizes the reduced dimensions from both the techniques. We were able to 

bring down the initial feature space of 122 inputs to a subspace of 10 dimensions using 

deep autoencoders. We will be using t-SNE to visualize a 2D manifold for our dataset 

with adjustments to different perplexity values. Perplexity can be interpreted as a 

smooth measure of the effective number of neighbors. Generally, the perplexity value 

ranges from 5 to 50. However, when dealing with larger datasets, it is fine to go with 

higher perplexity value. In the following figures, we can see the t-SNE representation of 
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PCA and AE-encoded dimensions with adjusted perplexity and iterations. We can 

observe that both PCA and AE is able to cluster different attack groups in higher 

perplexity and iterations as opposed to lower perplexity and iterations.    

 

Figure 4 t-SNE Representation of Encoded Representation (Perplexity= 50, 

Iterations=500) 

 

Figure 5 t-SNE Representation of Encoded Representation (Perplexity= 100, 

Iterations=500) 
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Figure 6 t-SNE Representation of Encoded Representation (Perplexity= 50, 

Iterations=1000) 

The data points in the figures are color-coded according to five attack classes 

within the NSL-KDD dataset. The vertical and horizontal axis in the graph above is 

generated using the KL-divergence algorithm and is used to embed high-dimensional 

data space into a lower subspace.   

As the perplexity and iterations become higher, we can observe 'normal' class 

data points (red dots) coalescing. A normal class is distinctly separate from the other 

attacks labels which indicate that PCA and DAE are quite effective at separating 

'normal' and 'attack'. However, when focusing on the other four attack class, we see a 

different scenario; except for 'DOS' attack class, we see the other three attack types 

being jumbled together and not forming a clear cluster. The t-SNE representation of 

principal component analysis and deep autoencoder suggest that classifying the other 

three attack types might be challenging to classify.  
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Figure 7 t-SNE Representation of PCA (Perplexity= 50, Iterations= 500) 

 

Figure 8 t-SNE Representation of PCA (Perplexity= 100, Iterations= 500) 
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Figure 9 t-SNE Representation of PCA (Perplexity= 100, Iterations= 1000) 

Grid Search  

In order to choose parameters for our classifier optimally, we employed the 

GridSearchCV available to via scikit-learn which is an open-source machine learning 

library available on Python The GridSearchCV attempts to perform an exhaustive 

search over specified parameter values for our SVM classifier based off against 

important score. For our purpose, we will base our grid search against Micro-recall and 

balanced accuracy.  

Important parameters to consider when working with SVM with RBF kernel 

function is the selection of Gamma and C parameters. C variable is seen as a 

regularization term that keeps sparse variables in check. The optimal parameter 

selection is contingent on the level of noise and balance that the dataset exhibit.  



40 
 

 
 
 

 Since our dataset is non-linear, we employed the kernel functions available in the 

scikit-learn python library. We can choose out of four kernel functions –namely—linear, 

polynomial, Radial Basis Function (RBF), and sigmoid. For our analysis, we employed 

'RBF' since our grid search predicted RBF to be the best kernel function in order to 

optimize F1-Micro (Table 2).   

 

Table 2 

Grid Search with 'F1-Micro' Scoring 

F1-Micro Score Std C kernel 

0.704 (+/-0.258) 1 linear 

0.815 (+/-0.011) 1 rbf 

0.781 (+/-0.019) 1 poly 

0.497 (+/-0.017) 10 linear 

0.883 (+/-0.010) 10 rbf 

0.851 (+/-0.013) 10 poly 

0.567 (+/-0.023) 100 linear 

0.928 (+/-0.011) 100 rbf 

0.903 (+/-0.014) 100 poly 

0.665 (+/-0.028) 1000 linear 

0.949 (+/-0.013) 1000 rbf 

0.937 (+/-0.012) 1000 poly 
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Table 3 

Grid Search with 'Balanced Accuracy' Scoring 

Balanced Accuracy Std C kernel 

0.458 (+/-0.035) 1 linear 

0.823 (+/-0.094) 1 rbf 

0.755 (+/-0.081) 1 poly 

0.611 (+/-0.056) 10 linear 

0.841 (+/-0.154) 10 rbf 

0.851 (+/-0.100) 10 poly 

0.66 (+/-0.079) 100 linear 

0.849 (+/-0.126) 100 rbf 

0.875 (+/-0.106) 100 poly 

0.688 (+/-0.109) 1000 linear 

0.828 (+/-0.091) 1000 rbf 

0.845 (+/-0.135) 1000 poly 
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Classification Metrics 

Accuracy, Precision-Recall, F-Score 

In this section, we will closely examine three main models to interpret their 

effectiveness at predicting anomalies as well as the quality of their prediction by looking 

at subtler yet important measures such as precision, recall, and F-score. Simply looking 

at accuracy is not enough to gauge the effectiveness of our model, especially owing to 

the imbalanced label distribution of the NSL-KDD dataset.  

We need to give extra importance in analyzing recall values for the models in 

question since false negatives (Type 1 error) can cause intrusions that could lead to a 

breach in the information system of another individual or organization. To avoid that 

scenario, the recall metric holds considerable importance to us as cybersecurity 

experts.  

It is also important to look at precision, recall, and f1-score values of specific 

attack types, as that will help us understand a finer picture of the model's performance. 

For instance, not having a high recall in 'U2R' attack type would mean potentially giving 

root access information of the system to a hacker. Thus, measuring our models' 

effectiveness against specific attack type would be as important as focusing on the 

overall model, if we intend to build a robust anomaly-based IDS.   

The first model that we will examine would be the standalone SVM model with 

input data that is scaled using L2 normalization. The predictions of the model are 
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generated against an unseen validation set provided in the NSL-KDD. In the binary 

label scenario (Table 4), we find the overall prediction accuracy to be 77%, whereas the 

model yields a weighted average f1-score of 76%.  

Table 4  

Binary Label Classification Report for Standalone SVM 

Label 
 

precision recall f1-score support 

      

Normal 
 

65% 97% 78% 9711 

Attack 
 

97% 61% 75% 12833 

      

Other Measures 

Accuracy 

 

  77% 22544 

Macro Average 
 

81% 79% 77% 22544 

Weighted Average 
 

83% 77% 76% 22544 

 

In table 5, we use the same model on a multi-class scenario where attack label is 

further divided into four classes. The overall accuracy as well as weighted f1, recall, and 

precision drop quite significantly when performing multi-label predictions.  

The second model incorporates dimensionality reduction using PCA with similarly 

adjusted SVM. Bearing on the binary data presented in table 6, we observe a reduced 

accuracy and recall of 74 percent. In so far as multiclass labels are concerned, we also 
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observed a decrease in weighted averages (Table 7) for recall, f1-score, precision, and 

overall accuracy compared to the multi-class standalone SVM model.   

Table 5  

Multi-Label Classification Report for Standalone SVM 

Label 
 

precision recall f1-score support 

      

Normal 
 

70% 84% 77% 9711 

DOS  90% 70% 79% 7460 

Probe 
 

59% 62% 60% 2421 

R2L 
 

42% 23% 30% 2885 

U2R 
 

4% 60% 8% 67 

      

Other Measures 

Accuracy 

 

  69% 22544 

Macro Average 
 

53% 60% 51% 22544 

Weighted Average 
 

72% 69% 69% 22544 

 

Our proposed model shows considerable increases in accuracy as well as 

average recall rates when handling binary labels (Table 8). Our proposed model does 

far better in terms of weighted averages of precision, recall, and f1-score, as well as 

accuracy, compared to the metrics of the previous two models when working with 
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multiple classes. However, when focusing on U2R, we find that the recall rates are 

considerably higher in the standalone SVM case than it is with our model (Table 9).  

Table 6  

Binary Label Classification Report for PCA+SVM Classifier 

Label 
 

precision recall f1-score support 

      

Normal 
 

63% 96% 76% 9711 

Attack 
 

95% 56% 71% 12833 

  
   

 

      

Other Measures 

Accuracy 

 

  74% 22544 

Macro Average 
 

79% 76% 73% 22544 

Weighted Average 
 

81% 74% 73% 22544 

 

Table 7  

Multi-Label Classification Report for PCA+SVM Classifier 

Label 
 

precision recall f1-score support 

      

Normal  61% 55% 58% 9711 

DOS  88% 68% 77% 7460 

Probe 
 

48% 63% 54% 2421 
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R2L 
 

19% 10% 13% 2885 

U2R 
 

1% 52% 2% 67 

      

Other Measures 

Accuracy 

 

  55% 22544 

Macro Average 
 

44% 50% 41% 22544 

Weighted Average 
 

63% 55% 58% 22544 
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Table 8  

Binary Label Classification Report for AE-Encoded + SVM Classifier (L2 Regularization) 

Label 
 

precision recall f1-score support 

      

Normal 
 

67% 97% 80% 9711 

Attack 
 

96% 65% 77% 12833 

  
   

 

      

Other Measures 

Accuracy 

 

  78% 22544 

Macro Average 
 

82% 81% 78% 22544 

Weighted Average 
 

84% 78% 78% 22544 

      

 

  



48 
 

 
 
 

Table 9  

Multi-Label Classification Report for AE-Encoded + SVM Classifier  

 

 

Label 

 
precision recall f1-score support 

      

Normal 
 

71% 89% 79% 9711 

DOS 
 

90% 74% 81% 7460 

Probe 
 

70% 62% 65% 2421 

R2L 
 

50% 23% 32% 2885 

U2R 
 

5% 48% 9% 67 

  
   

 

      

Other Measures 

Accuracy 

 

  73% 

 

22544 

Macro Average 
 

57% 59% 53% 22544 

Weighted Average 
 

74% 73% 72% 22544 

 

  



49 
 

 
 
 

Precision-Recall Curves  

Another useful way to look at precision and recall metrics would be visualizing it 

through the precision-recall curve. The curve helps us in gauging our classifier's output 

quality. The relationship between precision and recall metric is typically based on a 

tradeoff between one another; this quality is exhibited in the precision-recall curve since 

it plots the two metrics based on various decision boundaries. When we move along the 

curve the decision threshold (AKA classification threshold) decreases, the number of 

false positives increases but false negatives decrease. As a result, precision decreases, 

while recall increases (refer to formulas in the previous chapter).  

Another quality metric to closely examine the precision-recall curve is computing 

the average precision score (AP) which is essentially the weighted mean of precisions 

achieved at each threshold, with the increase in recall from the previous threshold used 

as the weight. Mathematically it is represented as:  

AP = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

(14) 

Where R represents recall, P representing Precision, and N representing the nth 

threshold.  One of the important things to look out for when examining precision-recall 

curves is the area beneath it. AP and trapezoidal rules are ways to approximate the 

area beneath the curve. A higher precision-recall curve suggests a high value for both 

the metrics, which is considered important for a robust, valid model. Within this section, 

we will only compare the binary precision-recall curve for scaled, PCA, and DAE 
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encoded datasets which classified using SVM. The precision-recall graphs for other 

algorithms can be found in the appendix section for further examination.  

 

Figure 10 Standalone SVM for Binary Class Precision-Recall Curve 

The graph represents the precision-recall curve for a standalone SVM operating 

on an RBF kernel function. The average precision score is a mere 0.57 which is not a 

desirable outcome for an IDS.  

 

Figure 11 PCA+SVM Binary Class Precision-Recall Curve 



51 
 

 
 
 

 The graph presents data relating to PCA encoded inputs coupled with the 

Support Vector Machine classifier. The shape of the curve is relatively outwards facing, 

suggesting an increase in the area beneath the curve compared to the data presented 

in the previous figure. The algorithm receives an AP score of 0.69.  

 

Figure 12 AE+SVM Precision-Recall Curve (Polynomial Kernel) 

This graph clearly shows the precision-recall trade-off that was mentioned at the 

start of this section. We can observe as the decision boundary decreases; the recall 

tends to increase. We can clearly see the area beneath the curve is much greater than 

the two previous graphs of SVM and PCA-SVM respectively. Our proposed model 

receives an AP score of 0.90 which is considerably high.   

We use the models in multiclass but with an extra adjustment of weight 

balancing. It should be noted that because the precision-recall curve is used primarily 

for binary labels, we will be binarizing individual curves for the five classes. Since there 
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is a class imbalance in our dataset, we chose to micro-average than the macro-average 

of all five classes which may lead to a different interpretation.   

 

Figure 13 Standalone SVM for MultiClass Precision-Recall Curves 

Figure 13 presents precision-recall curves based on a standalone SVM classifier 

for normalized inputs. An important measure in the above graph is the micro-average of 

precision-recall curves for all five classes by aggregating the contributions of the five 

classes to compute the average metric.  
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Figure 14 PCA+SVM MultiClass Precision-Recall Curves 

PCA-encoded inputs lead to a considerable increase in the micro-average of 

precision-recall, specifically from 0.59 to 0.63. It should be noted that our graphs also 

display iso curves at different f1 values. Iso-curves are convex-shaped curves that in 

this case follows a combination of precision and recall values for a given f1-score. The 

iso-curves gives us a reliable reference point to better understand the precision-recall 

curve.  
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Figure 15 AE+SVM MultiClass Precision-Recall Curves 

Figure 17 reflects data given from DAE inputs which are classified on SVM. The 

data indicates a much higher micro-average than the previous two models. Specifically, 

the area under the micro-average precision-recall is 0.72 which is 10 basis points higher 

than the previous model.  
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Performance Metrics  

Train and Test Time 

One of the most important features of a good model is the time and 

computational power that it requires to generate its predictions. We used the time 

module in python to measure the time it takes for our models to perform training and 

testing on the NSL-KDD dataset. The table below shows the training and testing time in 

seconds for the algorithms used in this paper.  

Based on our data, we can conclude that L1 regularized DAE coupled with SVM 

is the most time effective when dealing with binary class. Whereas, in the multi-class 

case, we find that DAE-SVM without any regularization term takes the least time to train 

and test the NSL-KDD dataset which gives us a clear answer to our initial research 

question that asks the effectiveness of an autoencoder based dimensionality reduction 

tool. A standalone support vector machine appears to take the longest time in both multi 

and binary class scenarios.  
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Table 10 

Train and Test Time based on Seconds 

Algorithm Training Time 

(sec)  

Testing Time 

(sec)  

Total Time 

(sec)  

Class 

SVM 392.70  39.68  432.38  Binary 

DAE-SVM 59.13 + 86.60  2.28  148.01  Binary 

DAE-SVM L1 52.55 + 90.49  2.80  145.84*2 Binary 

DAE-SVM L2 62.22 + 89.64  2.69  154.53 Binary 

SVM 1545.64 133.23 1,678.87 Multi-Class 

PCA-SVM 270.16 29.83 299.99 Multi-Class 

DAE-SVM 48.09 + 89.75 7.78 145.62* Multi-Class 

DAE-SVM L1 49.20 + 121.04 10.72 180.96 Multi-Class  

DAE-SVM L2 48.60 + 114.15 9.51 172.26* Multi-Class 

  

Conclusion 

The results yielded during this study have addressed all the topics posed earlier 

in the research question section. To recapitulate the findings of our research, we found 

DAE+SVM based neural network scheme being effective based on various classification 

 
 

2 * Algorithm that takes the least time to train and test on the NSL-KDD dataset.  
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and performance metrics. Autoencoders were much more effective at capturing useful 

properties of inputs which were demonstrated through t-SNE to embed higher 

dimension inputs on a two-dimensional plane and were compared to its linear PCA 

counterpart.   

Specifically, in terms of training and testing time, autoencoder encoded inputs 

proved to be much more time-efficient in the training and testing phase of the model. In 

addition, our proposed neural scheme proves to be better at classification metrics like 

the weighted average of Recall, F-score, and Accuracy in multi-class scenario 

compared to standalone SVM and PCA-encoded SVM.  

By focusing on metrics such as precision and recall, we were able to get a more 

refined perspective of our proposed neural scheme's performance by focusing on Type 

1 (False Positives) and Type II (False Negatives) errors. Since we are dealing with 

anomaly detection, more importance should be given to Type II error since allowing an 

anomaly to infiltrate through our intrusion detection system has the potential to wreak 

havoc on our system's resources.  

After rigorously examining the classification metrics, we can safely conclude the 

reliability and robustness of Autoencoders as a viable dimensionality reduction tool 

compared to PCA for anomaly detection based on NSL-KDD Dataset.  
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Appendix 

The appendix includes supplementary information regarding the study. The table in the 

appendix section contains a list of features that is present in the KDD 99 dataset. In the 

second exhibit, we see the attack types of KDD 99 further segmented to get a better 

picture of the dataset in question.  

List of Features in KDD 99 Dataset 

Feature Type No. Feature Name  Data Type 

Basic Features  1 Duration Continuous 

2 Protocol_type Symbolic 

3 Service Symbolic 

4 Flag Symbolic 

5 Src_bytes Continuous 

6 Dst_bytes Continuous 

7 Land Symbolic 

8 Wrong_fragment Continuous 

9 Urgent Continuous 

Content Features 10 Hot Continuous 

11 Num_failed_logins Continuous 

12 Logged in Symbolic 

13 Num_compromised  Continuous  
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14 Root_shell Continuous 

15 Su_attempted Continuous 

16 Num_root Continuous 

17 Num_file_creations Continuous 

18 Num_shells Continuous 

19 Num_access_files Continuous 

20 Num_outbound_cmds Continuous 

21 Is_host_login Symbolic 

22 Is_guest_login Symbolic 

Traffic Features 23 Count Continuous 

24 Srv_count Continuous 

25 Serror_rate Continuous 

26 Srv_serror_rate Continuous 

27 Rerror_rate Continuous 

28 Srv_rerror_rate Continuous 

29 Same_srv_rate  Continuous 

30 Diff_srv_rate Continuous 

31 Srv_diff_host_rate Continuous 

32 Dst_host_count Continuous 

33 Dst_host_srv_count Continuous 
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34 Dst_host_same_srv_rate  Continuous 

35 Dst_host_diff_srv_rate  Continuous 

36 Dst_host_same_src_port_rate Continuous 

37 Dst_host_same_src_host_rate Continuous 

38 Dst_host_serror_rate Continuous 

39 Dst_host_srv_serror_rate Continuous 

40 Dst_host_rerror_rate Continuous 

41 Dst_host_srv_rerror_rate Continuous 

 

Attack Types in KDDCUP99 dataset 

Denial of Service 

(DoS)  

User to Root 

(U2R) 

Remote to Local 

(R2L) 

Probing 

(Probe) 

Back Buffer Overflow FTP write IPSweep 

Land Load module Guess Password NMAP 

Neptune Perl IMAP Port Sweep 

Ping of Death Rootkit MultiHop Satan 

Smurf  Phf  

Teardrop  SPY  

  Warezclient  

  WarezMaster  
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