
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2020

Autoencoder-Based Representation Learning to Predict Autoencoder-Based Representation Learning to Predict

Anomalies in Computer Networks Anomalies in Computer Networks

Shehram Khan
om1507it@go.minnstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Khan, Shehram, "Autoencoder-Based Representation Learning to Predict Anomalies in Computer
Networks" (2020). Culminating Projects in Information Assurance. 102.
https://repository.stcloudstate.edu/msia_etds/102

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an
authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/346450156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/102?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Autoencoder-Based Representation Learning to Predict Anomalies in Computer

Networks

by

Shehram Sikander Khan

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

May, 2020

Thesis Committee:
Akalanka Mailewa Dissanayaka, Chairperson

Mark Schmidt
David Robinson

2

Abstract

With the recent advances in Internet-of-thing devices (IoT), cloud-based services, and

diversity in the network data, there has been a growing need for sophisticated anomaly

detection algorithms within the network intrusion detection system (NIDS) that can

tackle advanced network threats. Advances in Deep and Machine learning (ML) has

been garnering considerable interest among researchers since it has the capacity to

provide a solution to advanced threats such as the zero-day attack. An Intrusion

Detection System (IDS) is the first line of defense against network-based attacks

compared to other traditional technologies, such as firewall systems. This report adds to

the existing approaches by proposing a novel strategy to incorporate both supervised

and unsupervised learning to Intrusion Detection Systems (IDS). Specifically, the study

will utilize deep Autoencoder (DAE) as a dimensionality reduction tool and Support

Vector Machine (SVM) as a classifier to perform anomaly-based classification. The

study diverts from other similar studies by performing a thorough analysis of using deep

autoencoders as a valid non-linear dimensionality tool by comparing it against Principal

Component Analysis (PCA) and tuning hyperparameters that optimizes for 'F-1 Micro'

score and 'Balanced Accuracy' since we are dealing with a dataset with imbalanced

classes. The study employs robust analysis tools such as Precision-Recall Curves,

Average-Precision score, Train-Test Times, t-SNE, Grid Search, and L1/L2

regularization. Our model will be trained and tested on a publicly available datasets

KDDTrain+ and KDDTest+.

3

Table of Contents

 Page

List of Tables…………………………………………………………………………….7

List of Figures……………………………………………………………………………9

Chapter

I. Introduction ... 8

Intrusion Detection System ... 8

Machine Learning Algorithms ... 9

KDDCUP99 and NSL-KDD Dataset.. 10

Problem Statement ... 12

Nature and Significance of the Problem ... 13

Objective of the Study ... 14

Study Questions/Hypotheses ... 14

Summary .. 15

II. Background and Review of Literature .. 16

Introduction ... 16

Background Related to the Problem ... 16

Deep Learning... 16

Autoencoders .. 18

Support Vector Machine (SVM)... 23

Regularization ... 24

4

Chapter Page

Literature Related to the Problem ... 25

Summary .. 28

III. Methodology .. 29

Introduction ... 29

Definition of Terms .. 29

Data Preprocessing .. 30

Hardware and Software Environment ... 30

Design and Implementation of the Study .. 31

Tools and Techniques .. 32

Performance Evaluation ... 32

Accuracy ... 33

Precision-Recall Curve .. 33

Test and Train Timings ... 34

F-measure ... 34

IV. Results .. 35

Visualizing Data using t-SNE .. 35

Grid Search .. 39

Classification Metrics .. 42

Accuracy, Precision-Recall, F-Score ... 42

Precision-Recall Curves .. 49

5

Chapter Page

Performance Metrics ... 55

Train and Test Time .. 55

Conclusion .. 56

References ... 58

Appendix .. 62

6

List of Figures

Figure Page

1. Neural Network Architecture .. 18

2. SELU plotted for a=1.6732~, Lambda=1.0507~ ... 20

3. Autoencoder (AE) Neural Architecture ... 22

4. t-SNE Representation of Encoded Representation (Perplexity= 50,

Iterations=500) ... 36

5. t-SNE Representation of Encoded Representation (Perplexity= 100,

Iterations=500) ... 36

6. t-SNE Representation of Encoded Representation (Perplexity= 50,

Iterations=1000) ... 37

7. t-SNE Representation of PCA (Perplexity= 50, Iterations= 500 38

8. t-SNE Representation of PCA (Perplexity= 100, Iterations= 500) 38

9. t-SNE Representation of PCA (Perplexity= 100, Iterations= 1000) 39

10. Standalone SVM for Binary Class Precision-Recall Curve 50

11. PCA+SVM Binary Class Precision-Recall Curve .. 50

12. AE+SVM Precision-Recall Curve (Polynomial Kernel) 51

13. Standalone SVM for MultiClass Precision-Recall Curves 52

14. PCA+SVM MultiClass Precision-Recall Curves ... 53

15. AE+SVM MultiClass Precision-Recall Curves .. 54

7

List of Tables

Table Page

1. Attack Types in NSL-KDD Dataset ... 11

2. Grid Search with 'F1-Micro' Scoring ... 40

3. Grid Search with 'Balanced Accuracy' Scoring ... 41

4. Binary Label Classification Report for Standalone SVM 43

5. Multi-Label Classification Report for Standalone SVM 44

6. Binary Label Classification Report for PCA+SVM Classifier........................... 45

7. Multi-Label Classification Report for PCA+SVM Classifier 45

8. Binary Label Classification Report for AE-Encoded + SVM Classifier (L2

Regularization) ... 47

9. Multi-Label Classification Report for AE-Encoded + SVM Classifier 48

10. Train and Test Time based on Seconds ... 56

8

Chapter I: Introduction

Intrusion Detection System

 The idea of the Intrusion detection system (IDS) as the first line of defense

against network intrusion can be traced back to Dorothy Denning's seminal paper

named 'An Intrusion-Detection Model' where she first proposed a model for a real-time

detection system capable of detecting various forms of threats [1]. Since then, the IDS

has come a long way especially with the recent advancements in machine learning, big

data, and an industry-wide shift to the cloud.

Intrusion detection systems can be divided into variants depending on its

detection method. The first one follows the signature-based detection technique and the

second follows an anomaly-based detection technique. An IDS that follows the

intrusion-based technique matches up the signature of a potential threat against its

database of known attacks and decides accordingly. Under the anomaly-based scheme,

IDS are rigorously trained on learning normal traffic flow patterns using machine

learning algorithms which allows the IDS to detect abnormal traffic.

The shortcoming of a signature-based IDS is its inability to catch threats that are

not known beforehand since it heavily relies upon its database of known attacks. The

signature-based detection method has been widely popular because of its high

precision rates and low memory consumption [2]; however, attacks have been

becoming more sophisticated over the years. Threats such as zero-day attacks are not

publicly known before infecting a host system or organization. Attacks of such nature

9

can wreak havoc since it takes advantage of the required time it takes to patch up an

IDS against that threat.

On the other hand, the anomaly-based detection method performs better against

zero-day since it is trained on good traffic flow and can detect an anomalous pattern.

One criticism of the detection method in question would be its high false-positive and

high memory consumption which is required in the training phase of the detection

algorithm. Solving this challenge would be one of the main themes of this study.

Machine Learning Algorithms

There has been a growing interest in the use of machine learning (ML)

algorithms to catch anomalies since they are considerably better than traditional

classification algorithms [3]. The use of these advanced algorithms has played an

important role in increasing precision in detecting anomalies. Various machine learning

algorithms such as Random Forest (RF) [4], Support Vector Machine (SVM) [4], K-

Nearest Neighbors (KNN) [5], and Naïve Bayes have been utilized to optimize the

anomaly-based systems.

At its core, anomaly detection is a classification problem. The machine learning

algorithms generally do an excellent job of catching threats, but there is an added

computational cost, which is a challenge for cybersecurity experts since anomalies must

be dealt with in real-time scenarios. In addition, with the advent of edge computing,

building an algorithm that is not heavy on computational power is becoming even more

crucial.

10

To tackle these issues, the recent implementation of deep learning, a subfield of

ML, in anomaly-based detection methods have been quite promising. Neural nets allow

for more robust and thorough learning on inputs owing to its rigorous utilization of

optimization techniques based on neural networks. Neural Nets are further built on

principles from calculus, linear algebra, and probability.

The most basic structure of a neural net is composed of three layers: an input

layer, hidden layer, outer layer. Neural networks containing 2 or more hidden layers are

considered Deep Neural Networks [6]. Hidden layers in the neural architecture enable

backpropagation which allows the neural nets to iteratively adjust the associated

weights and biases of a given neuron by comparing it against the outcome labels.

There are many hyperparameters within a given neural network scheme which

can be adjusted so that it can govern the way the model is trained on the input data.

One of the distinguishing hyperparameters is Learning Rate, Epochs, Hidden Layers,

Neurons, and Activation Function1.

KDDCUP99 and NSL-KDD Dataset

The KDDCUP99 dataset was prepared and developed by the MIT Lincoln Lab in

the year 1998 under the DARPA Intrusion Detection Evaluation Program [7]. The

dataset contains 'bad' and 'good' connections acquired through nine weeks of raw TCP

dump of a military network environment. Various studies have performed anomaly-

1 The definition of each of these terms are provided in Chapter IV- Definition of Terms.

11

based modeling on this dataset to gauge their system's performance [8]. Even though

there are over 37 attacks in the dataset, they can be broadly categorized in five as four

attack types which can be seen in table 1. However, the KDDCUP99 dataset has

several issues such as the redundancy of records owing to the synthetic nature of the

data. This issue can cause statistical errors since being trained on redundant data can

cause the model to be biased towards the frequent records [8]. Because of this reason,

we will be implementing our proposed anomaly detection method on the enhanced

NSL-KDD dataset which addresses the previously mentioned issue. Our study will focus

on this dataset to gauge the accuracy of our proposed algorithms. Our study will

evaluate the dataset as both a binary (Attack/Normal) and multi-class.

12

Table 1

Attack Types in NSL-KDD Dataset [9]

Attack Type Description Training Dataset Testing Dataset

DoS Denial-of-Service 45927 7456

Probe Surveillance and other probing 11656 2421

R2L Unauthorized access from a remote machine 995 2756

U2R Unauthorized access to local superuser (root) privileges 52 200

Problem Statement

There are potential threats within the network traffic that can compromise a target

application or computer. Some well-known attacks that can hinder a legitimate user

from accessing system resources are DOS attacks that can flood your system with

connection requests, thus rendering your host machine useless. MITM (Man-In-The-

Middle) attacks intercept network communication in order to listen in on the exchange of

information. Spoofing attacks attempt to mimic an authorized user so that they can

convince the system to provide access to the attacker. It does so by sending IP packets

from a known Host. User to Root Attack (U2R) bypasses the system security by gaining

access through the network option. Application layer attacks exploit the lapses within

the application layer, so there might be a security weakness in the server-side.

However, the most relevant for this study would be unseen attacks. Zero-day

malware, which is a sophisticated form of attack because there is no known prior

information regarding the threat. Training the IDS to tackle this form of attack would

13

require a security mechanism that is proficient in distinguishing between normal and

anomalous network traffic. There is a need to classify the different types of threats

based on different features that yield higher detection with increase precision and recall

so that the user can stay protected against the modern network-level attacks.

Nature and Significance of the Problem

Malicious threats have the potential to wreak havoc within a system’s

infrastructure. Therefore, the importance of detecting anomalies within given network

traffic is crucial [10]. With the recent boom in the volume of data owing to Cloud-based

services, faster internet speeds, and internet-of-things (IoT) devices, there has been an

onslaught of more sophisticated attacks that defense mechanisms like Internet Firewall

are unequipped to handle. The internet speeds have gone up to 100Gbps or more, and

the data is forecasted to grow to 44 ZB [11]. In addition, because of this surge in

network data, we are seeing a change in the diversity of data and protocols transmitting

through the network traffic. If a computer host or application does not have an effective

intrusion detection system, it could pose a threat to data confidentiality, data integrity,

and vulnerabilities to denial-of-service (DOS) attacks.

 The network intrusion threats that are prevalent today can pose a significant risk

to the operational security of big corporations, governments, and individual users. In the

past decade, there have been 14 major website breaches, which include attacks on the

National Assembly, Shinhan Bank, the defense ministry, web sites of presidential blue

house, New York Stock Exchange, among others. In 2009, a google employee

14

uploaded a malware site that declared the entire Internet to malware for 55 minutes.

This breach caused a lot of reputational damage to Google as well as financial damage

from ad revenue lost [2].

Objective of the Study

 The primary objective of this study is to evaluate the effectiveness of our

proposed neural network scheme by measuring the performance against well-known

performance and classification metrics. The performance we will be using for this study

is the Precision-Recall curve, F1-micro, Prediction Accuracies, and Matthews

Correlation Coefficient. It is expected that combining autoencoder-based representation

learning with an SVM would lower the computational requirements during the train and

test phase of the model. The lowered computational and storage requirement is

essential against time-sensitive network threats that an intrusion detection system must

face.

Study Questions/Hypotheses

1. Does employing deep autoencoders as a non-linear dimensionality reduction

technique lead to better classification metrics than a linear dimensionality reduction

technique?

2. Does deep autoencoder provide a better alternative to dimensionality reduction than

its linear counterparts from a reduced train/test time and memory consumption

viewpoint?

15

3. Does incorporating the regularization penalty term in our model's loss function

enhance the model performance? If so, what form of regularization (L1, L2, None) is

most effective within the proposed neural network scheme?

Summary

There has been an extensive number of studies conducted for anomaly detection

by using supervised machine learning approaches such as KNN (k-nearest neighbor),

support vector machine and artificial neural networks (ANN) [5]. The combined

approach of unsupervised deep learning for feature reduction and supervised machine

learning for classification has been proven to be better in terms of lowered training and

resource consumption viewpoint. In the coming chapters, we will delve deeper into what

neural net schemes other researchers have employed to enhance intrusion detection

systems.

16

Chapter II: Background and Review of Literature

Introduction

 There has been extensive research concerning the implementation of deep

neural networks within the network intrusion detection system domain. In this section,

we will explore different scholarly journals that have implemented disparate neural

network architecture on the KDDCUP99 and the NSL-KDD. In the first section of the

literature review, we will briefly discuss the inner working of machine learning and

neural networks in order to understand the calculations being performed in the backend.

In the later section of the literature review, we will identify various deep learning

structures utilized for Network Intrusion Detection Systems (NIDS) for higher accuracy

and prediction. In the last part of this section, there will be a brief discussion regarding

how our study deviates from the existing body of research with respect to deep learning

and anomaly detection.

Background Related to the Problem

Deep Learning

 Deep learning is a subset of machine learning that attempts to model the

human brain through mathematical functions that imitate the neuron. It finds patterns

from raw data without the need to be explicitly programmed. The deep learning

algorithms have been around for decades but it has recently come to the fore owing to

the plethora that is available in present-day [12]. The architecture of a neural network is

composed of an input layer, a hidden layer, and an output layer. Every layer is

17

composed of neurons or a perceptron, which his considered the building block of deep

learning. Each node connects one neuron with another through successive layers. Each

neuron imposes weights and biases on the input provided. Then the product sum of

weights and biases is sent through an activation function so that the output

accommodates non-linearity, which is crucial when dealing with classification problems.

For instance, a typical activation function would be the sigmoid function. When an input

is passed onto the sigmoid function, it collapses the product sum of learned weights into

a range from 0 to 1. Once the product sum of weights is non-linearized with the

activation function, we get the output in the output layer. This entire process is called

feedforward propagation. The output is then measured against the actual value and

then trained iteratively to minimize the error between the initial prediction and the actual

value. This iterative process of adjusting the weights and biases of input features is

known as backpropagation. Backpropagation attempts to perform loss optimization. The

process of minimizing or optimizing the loss function iteratively is called gradient

descent. There are many loss functions, but the most used are Cross-Entropy Loss and

Mean Squared Error Loss (RMSE). In figure 1, we can see the neurons in the input

layer and its interconnectedness with the subsequent hidden and output layers.

18

Figure 1. Neural Network Architecture

Autoencoders

 The autoencoder is a neural network that is trained to copy its input to its output

[13]. The neural network contains two primary mathematical functions that allow the

input to be reconstructed into output. The encode function ℎ = 𝑓(𝑥) and the decode

function 𝑟 = 𝑔(ℎ). h is the internal representation when the input x is being converted to

r (called reconstruction). In making the approximate copies of input, the neural network

learns the most useful properties of the raw dataset. Typically, the h is always a lower-

dimension subspace of the x because of this autoencoder neural networks have a

bottleneck layer that has a lower number of nodes than the other layers [14].

19

Activation Functions. The 𝑓(.) and 𝑔(.) are the activation functions that non-

linearize the bias and weight parameters. There are many variations of activation

functions that are used within the neural network such as sigmoid, Tanh, and

ReLU activation functions [14]. Relu, which stands for rectified linear unit, is a

widely used activation function in deep neural networks [15]. The primary reason

for the success of this activation function is that it does not require a lot of

computational resources to execute it compared to complicated activation

functions that lead to increased difficulty in optimization. Mathematically, ReLU is

presented as:

𝑦 = max(0, 𝑥) (1)

ReLU activation function yields an output of 0 when 𝑥 < 0, and then draws a

linear line with a slope of 1 when 𝑥 > 0.

Our paper incorporates the usage of Scaled Exponential Linear Unit (SELU)

which is one of the newer activation functions being used in deep learning as of now. In

Self-Normalizing Neural Networks [16], the author posits SELU activation function which

exhibits as a self-normalizing property which is proven using the Banach fixed-point

theorem. Essentially, the activations that are closer to zero mean and unit variance

allows the network layers to converge to zero mean and unit variance [32].

Having SELU in our scheme is relevant since we will be employing deep

autoencoders which employ more than three deep layers. Usually, when employing

more than three layers in a neural architecture which can put the forward neural network

20

at a disadvantage since the lack of normalization within the activation function could

lead to gradient issues. Since with SELU, the normalization occurs within the function,

we can bypass that issue and take full advantage of this activation function.

SELU allows room for deeper network layers owing to its faster processing

speeds, in addition since the activation encourages normalization there is a presence of

regularization penalty. In reference to the previously mentioned paper, the authors

meticulously derived two fixed parameters used in the feedforward process. For

standard scaled inputs (mean 0, standard deviation 1), the parameters are a=1.6732~,

and λ= 1.0507 ~. Having fixed parameters our neural network to not backpropagate

through these variables. SELU can be mathematically presented as:

𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥

𝛼𝑒𝑋 − 𝛼
 𝑖𝑓 𝑥>0
𝑖𝑓 𝑥 ≤0

 (2)

Figure 2: SELU plotted for a=1.6732~, Lambda=1.0507~

21

Deep Autoencoders as a Dimensionality Reduction Tool. Merely

reconstructing inputs into an output variable is not considered useful since it does not

achieve much. However, the true power of autoencoder resides in the internal

representation of the encoded input x [33]. The lower-dimensional representation allows

improved performances especially when performing classification tasks. Classifier trains

faster on lower dimensions due to a lower need for memory and computational power

[34]. The autoencoder learns by minimizing the following loss function:

𝐿 (𝑥, 𝑔(𝑓(𝑥))) (3)

In the equation above, the loss function is penalizing 𝑔(𝑓(𝑥)) for 𝒙. In fact, if the

decoder function is linear and the L is mean squared error, the resulting subspace is the

same as Principal Component Analysis (PCA) [13]. The autoencoder scheme is

typically composed of three primary layers. First, the encoder layer, where the inputs

are assigned weights and biases. Afterward, the inputs are reduced to the most useful

features in the code layer. As seen in figure 2, the number of neurons in the input layer

is typically higher than in the ‘code layer.’ Lastly, the decoder layer consists of a

decoder function that reconstructs the input. However, the code layer contains the latent

representation of the input vectors which is essential for classification-based tasks.

When the code layer has a smaller dimension than the input dimension then it is called

undercomplete [13].

Autoencoders is a viable non-linear feature reduction technique and tends to

outperform other dimensionality reduction techniques. Wang, Yao, and Zhao compare

22

autoencoder as a dimensionality reduction algorithm against state-of-the-art

dimensionality reduction algorithms such as Principal Component Analysis, Linear

Discriminant Analysis, Locally linear embedding, and Isomap [17]. The study concludes

that auto-encoders not only outperform other techniques in reducing dimensionality, but

it is also good at detecting repetitive structures [17]. However, there are other studies

that give preference to PCA, linear dimensionality reduction technique, for real-world

tasks as opposed to artificial tasks [18].

Figure 3: Autoencoder (AE) Neural Architecture

 There are many types of autoencoders such as Sparse, Deep, Denoising [19],

Convolutional [20], Contractive [21] and variational Autoencoders. The AE that this

study would be employing deep autoencoders (also named Stacked Autoencoder) [19].

23

Deep AE has several hidden layers, and deeper stacked AE is considered to have a

better training capability compared to lesser layers [13] [22].

Support Vector Machine (SVM)

Our dataset will be trained using a support vector machine (SVM) for anomaly

classification on the NSL-KDD dataset. SVM algorithm attempts to find a hyperplane

(subspace with a dimension that is one less than of its ambient space) that distinctly

classifies the data points. It does so by making use of support vectors that are points

closest to the hyperplane (i.e. decision boundary). The hyperplane is positioned such

which allows the support vectors to sit equidistantly to the hyperplane. The algorithm

calculates the maximum margin hyperplane which is a margin that yields the highest

sum between the two support vectors. Mathematically, the algorithm for a binary SVM

classifier would be represented as follows:

𝑓(𝑥𝑖) {
≥ 0 𝑦𝑖 = +1
< 0 𝑦𝑖 = −1

(4)

Unlike logistic regression which squashes output of its linear function within the

range of 0 to 1, SVM squashes its output from the range of -1 to 1. In other words, the

SVM algorithm classifies the datapoints as negative and positive 1. SVMs are known to

be effective when working with high dimensional data, even when the number of

features is higher than the actual number of data points being used. In addition, SVM is

a flexible classifier in that we can choose among different kernel functions, such as

linear, polynomial, Radial Basis Function (RBF), sigmoid, and even custom kernels

using Python. For the purpose of our study, we will choose the RBF kernel since it

24

allows us to perform non-linear classification on our dataset. The radial basis function

could be mathematically written as such:

RBF: exp(−𝛾 ∥ 𝑥 − 𝑥′ ∥2) (5)

Regularization

In order to ensure that our autoencoder representation contains the highest

informative weights, we can take advantage of a principle called regularization.

Essentially, regularization penalizes complexity and encourages simplicity in the training

model. The way it does so is by adding a regularization term in the loss function of our

neural network loss function. Having this regularization term in the loss function ensures

that there is no risk of overfitting. Overfitting typically happens when our model

overlearns our dataset's training set to the point where it also picks up on the specific

quirks and outliers. When we incorporate regularization to our neural scheme, we can

ensure that our model is built to predict unseen data instead of becoming over-trained to

predict data of the existing training dataset instead of the out-of-sample test set. There

are various forms of regularization techniques with each having their own advantages

and disadvantages depending on the nature of the dataset that we are working with.

There are L1, L2, and L0 regularization terms that are typically employed to penalize

complexity in each model [23]. For our report, we will use apply all three of these

regularization techniques and gauge which one (or lack thereof) helps us minimize the

loss on our testing dataset. Mathematically, L2 regularization could be defined as:

‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2 (7)

25

The L2 regularization term quantifies the model complexity by takin the squared

sum of all the calculated weights. The optimization of the neural network is contingent

on the minimization of the following loss function and the regularization term:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐿𝑜𝑠𝑠(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) + 𝜆 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑜𝑑𝑒𝑙)) (8)

If the lambda in the above equation is zero, then the regularization term is

removed completely. Setting the right lambda parameter is important when setting up

regularization for our model. The lower the lambda value, the more complex the model

becomes and vice versa. On the other hand, L1 regularization is mathematically defined

as:

‖𝑤‖ = |𝑤1| + |𝑤2| + |𝑤3| + ⋯ + |𝑤𝑛| (9)

Essentially, L2 regularization motivates the model weights to converge around 0

whereas L1 regularization forces the weights to be exactly 0. Depending on the

situation, L1 may be better than L2 under certain circumstances. For instance, the model

that has sparse vectors is better off with L1 regularization since they remove many

sparse weights thus putting less load on RAM and increasing lowering training and

testing time. In our report, we will compare both L1 and L2 regularization to gauge which

scenario leads to desirable outcomes against our classification metrics.

Literature Related to the Problem

In Intelligent intrusion detection systems using artificial neural networks [24], the

authors present a model based on artificial neural networks (ANN), which is a

supervised deep learning classifier. The study performs the grid search technique and

26

decides on using a multi-layer perceptron with two hidden layers composed of 30

neurons each. In addition, a 10-fold cross-validation technique was utilized to get more

robust results. The model yielded a high area under the ROC curve, which indicates

better classification. The average AUROC came out to be 0.98, SD AUROC 0.02,

Maximum AUROC 1.00, and Minimum AUROC 0.82.

Apart from the usage of supervised deep neural nets for training IDS on

abnormality, there are other deep-learning frameworks that can be adopted. A

promising approach and one that is the focus of this study would be the Self-taught

learning (STL) framework, which is essentially composed of two stages. The first stage

employs unsupervised deep learning for feature and dimension reduction. Whereas in

the second stage, there is a use of traditional machine learning models for classification.

The combined usage of both approaches yields results that have shown considerably

better results than other frameworks based on a study performed by Majjed, Lasheng,

Al-Habib, and al-Sabahi [25] . According to Majjed et al., this approach is efficient in

terms of computational cost. In addition, the STL approach contributes to an overall

increase in detection accuracy compared to other shallow machine learning classifiers.

A study that closely follows the same methodology named Autoencoder-based

Feature Learning for Cyber Security Application performs an autoencoder based deep

learning scheme where the reduced features are then classified based on multiple

machine learning algorithms [26]. The study draws its data from two main datasets:

KDDCUP99 Dataset and Malware Classification Dataset published by Microsoft at

27

Kaggle in 2015. The study compares the results with standalone machine learning

classifiers as well as Autoencoder-based input features. The study indicated that

Gaussian Naïve Bayes coupled with AE-based features proved to have higher intrusion

detection accuracy than other deep learning models, such as Xgboost, H20 models,

among others.

In a similar vein, Shone, Ngoc, Phai, and Shi combines the use of Non-

symmetric Deep Auto-Encoder (NDAE) with Random Forest (RF). Each NDAE has

three hidden layers with the same number of neurons in each layer [11]. The primary

way NDAE stands out from other autoencoders is that it does not follow the typical

encoder-decoder paradigm, but instead, it just employs the encoder formula in the outer

layer process, so in that sense, this scheme is considered non-symmetric in nature. The

scheme is implemented on both the KDDCUP99 and NSL-KDD dataset. The analysis is

performed as a 5-class KDD classification and 13-class KDD classification. The

comparisons generated after building the models indicated an improvement of 5% in

accuracy and training time reduction to 98.1%.

In the Comparative Study of Deep Learning Models for Network Intrusion

Detection, the authors posit three main approaches to the anomaly classification

problem [27]. The first approach is the STL model, which yields an average accuracy of

98.8% across four classes of anomalies – namely -- DoS, Probe, R2L, and U2R. The

second approach is based on Recurrent Neural Network (RNN), which considers

previous lags of input feature which allows for an additional memory input. Having that

28

additional memory input allows adding a temporal dimension to the analysis. However,

the RNN based on Long Short-term Memory yielded an average accuracy of 79.2%.

Lastly, the deep neural network approach on the KDD dataset yielded an accuracy of

66%.

Summary

 One can safely surmise that the implementation of a deep learning approach to

network intrusion detection systems is still in its nascent stages. Given how complex the

model building process can become given its various configuration (i.e. training,

optimization, activation, and classification) and other model-specific configurations

(number of hidden layers, learning rate, loss function) we believe that our approach of

using deep autoencoders with SVM classifier would prove to be a substantial

contribution to the existing body of literature on the topic. In the next chapter, we will

precisely discuss the model building process and the methodology of the study.

29

Chapter III: Methodology

Introduction

 In this section, we will set the bounds of the study by defining the metrics of the

study. Furthermore, we will address the specifics of the data preprocessing and

hyperparameter tuning aspect that has been achieved so far in the study.

Definition of Terms

• Intrusion Detection System: An intrusion detection system is a device or

software application that monitors a network or system for malicious activity or

policy violations.

• Network-Level Attacks: Network-delivered threats that typically gain access to

the internal operating systems. Common types of network attacks are Denial-of-

Service (DOS), spoofing, sniffing, and information gathering.

• Recall: quantifies the number of positive class predictions made out of all

positive examples in the dataset

• Precision: indicates the proportion of correct predictions of intrusions divided by

the total of predicted intrusions in the testing process

• Accuracy: indicates the proportion of correct classifications of the total records

in the testing set

• F-score: Provides a single score that balances both the concerns of precision

and recall in one number.

30

• Training and Testing Time: the number of seconds it takes for neural network

or classifier to train and test respectively on the dataset.

• Machine Learning: Machine learning is a method of data analysis that

automates analytical model building. It is a branch of artificial intelligence based

on the idea that systems can learn from data, identify patterns, and make

decisions with minimal human intervention.

• Deep Learning: Deep learning is a subset of machine learning in artificial

intelligence (AI) that has networks capable of learning unsupervised from data

that is unstructured or unlabeled.

• Activation Function: the activation function of a node or neuron defines a

numerical output by taking input or a set of inputs.

Data Preprocessing

During the preprocessing phase of the study, the categorical features within the

dataset were encoded using one-hot encoder which binarizes the categorical values

into 0 and 1. The numeric variables were normalized using L2 normalization.

Sklearn.preprocessing.Normalizer library was used to perform the normalization.

Normalized numeric inputs are a requirement for many neural network schemes [28].

Furthermore, the normalization of numeric inputs helps to avoid outliers that might be

present in the dataset.

Hardware and Software Environment

Operating System: Windows 10 Home 64-bit (10.0, Build 17763)

31

BIOS: X510UAR.309 (type: UEFI)

Processor: Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz (8 CPUs), ~1.8GHz

Memory: 8192MB RAM

DxDiag Version: 10.00.17763.0001 64bit Unicode

Software Environment: Python 3.7.5 64-bit | Qt 5.9.6 | PyQt5 5.9.2 | Windows 10

Python Packages: TensorFlow 2.0.0, NumPy 1.17.2, Pandas 0.25.2

Design and Implementation of the Study

The study is going to be quantitative, as anomaly detection is essentially a

classification problem. We have selected deep autoencoders as the first stage for

dimension reduction and Support Vector Machine (SVM) classifier as the second part

for performing classification on the encoded vector.

 The number of hidden layers and activation neurons will be contingent on the

grid search algorithm, which performs hyperparameter tuning and selects parameters

that optimize the loss function. Instead of utilizing PCA, LDA, or other forms of

dimension reduction, we will use deep autoencoders as a form of non-linear

dimensionality reduction [30]. Once we receive the subset vector of reduced features,

we will employ a support vector machine for the classification process.

The python libraries that are relevant to the study are Numpy, Pandas, Scikit-

learn and Keras. Python was chosen over other statistical programming languages

since Python has a broader range of libraries, which makes it an ideal choice for

performing deep learning analysis. The classification will be performed on binary as well

32

as multi-class labels. The first scenario binarizes the label as a simple normal and

attack label. Whereas, in the multi-class scenario, we have classified the labels in five

total attack type labels.

Tools and Techniques

Grid search is a technique used for performing hyperparameter tuning. The

technique provides the optimal hyperparameters by performing an exhaustive search

through the provided parameter grid. The provided grid for the paper contained the

following parameters: epochs, loss function, kernel function, activation function, and the

number of k-folds for cross-validation. K-fold cross-validation allows the user to segment

the training dataset into multiple folds so that the results are less biased and not

overfitted. The loss function for the model would be RMSE, which is the square root of

the average of squared differences between prediction and actual observation. RMSE

loss function is mathematically presented as

𝑅𝑀𝑆𝐸 = √
1

𝑛
(𝑌𝑗 + Ῠ𝑗)2 (9)

Performance Evaluation

In a two-by-two confusion matrix, the four possible outcomes are as follows:

1) True Positive (TP): Attack data that is correctly grouped as an attack.

2) False Positive (FP): Normal data that is incorrectly grouped as an attack.

3) True Negative (TN): Normal data that is correctly grouped as normal.

4) False Negative (FN): Attack data that is incorrectly grouped as an attack.

33

Most of the performance metrics that will be discussed are based on these four

possible outcomes [29]. The concept of classification threshold is tightly linked to

confusion matrix outcomes since we must define a threshold value that helps us make

the decision of when to indicate an outcome ‘abnormal’, and ‘normal’.

Accuracy

Based on the four measures computed from the confusion matrix, we can

compute accuracy which is the fraction of the number of correct predictions to the total

number of predictions. We can formulate accuracy as such:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (10)

 The accuracy rates would be the key performance indicator for the several

machines and deep learning classifiers we will be working on throughout the study.

Precision-Recall Curve

The precision and recall metrics are very important measures when dealing with

imbalanced classes. Precision calculates the proportion of positive identifications that

were correct. It could be mathematically defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11)

Recall is defined as the proportion of actual positives correctly identified. It can

be written as so:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12)

34

Typically, there is a trade-off between precision and recall as the decision

threshold is adjusted. An increase in the classification threshold always causes the

recall to decrease or stay the same. Whereas, the increase in classification threshold

increases the precision [30]. The precision-recall curve shows the inverse relationship

graphically.

F-measure

The F-measure is a single value metric that is based on Precision and Recall.

The range of the F-measure is between 0 and 1. F-measure allows to take the precision

and recall into account simultaneously through just one measure as opposed to looking

at them form a trade-off point of view. The F-measure can be mathematically defined

as:

𝐹𝑀 =
(1 + 𝛽1) ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (13)

Test and Train Timings

 The test and train timings are crucial for this study owing to the time-sensitive

nature of network-level attacks. Therefore, having a model that can train much faster

than other algorithms would prove to be quite important for our study.

35

Chapter IV: Results

Visualizing Data using t-SNE

To visualize our dataset, we employ t-distributed Stochastic Neighbor Embedding

(t-SNE) which is a tool for visualizing high-dimensional data. T-SNE employs Kullback-

Leibler (KL) divergence which is a measure of the difference between two probability

distributions [31]. KL divergence could be interpreted as a dimensionality reduction

technique since it converts observations into joint probabilities which lower the overall

information being processed. However, when dealing with higher dimensional data

(generally over 50 dimensions), it is recommended to apply prior dimensionality

reduction technique which would bring manageable subspace that T-SNE can handle

effectively since it demands a considerable amount of computing power. In addition,

performing T-SNE on reduced dimensions also manages the noise without distorting the

interpoint distances. In our situation, we would apply PCA (linear dimensionality

reduction) and deep autoencoder (non-linear dimensionality reduction) and see how t-

SNE visualizes the reduced dimensions from both the techniques. We were able to

bring down the initial feature space of 122 inputs to a subspace of 10 dimensions using

deep autoencoders. We will be using t-SNE to visualize a 2D manifold for our dataset

with adjustments to different perplexity values. Perplexity can be interpreted as a

smooth measure of the effective number of neighbors. Generally, the perplexity value

ranges from 5 to 50. However, when dealing with larger datasets, it is fine to go with

higher perplexity value. In the following figures, we can see the t-SNE representation of

36

PCA and AE-encoded dimensions with adjusted perplexity and iterations. We can

observe that both PCA and AE is able to cluster different attack groups in higher

perplexity and iterations as opposed to lower perplexity and iterations.

Figure 4 t-SNE Representation of Encoded Representation (Perplexity= 50,

Iterations=500)

Figure 5 t-SNE Representation of Encoded Representation (Perplexity= 100,

Iterations=500)

37

Figure 6 t-SNE Representation of Encoded Representation (Perplexity= 50,

Iterations=1000)

The data points in the figures are color-coded according to five attack classes

within the NSL-KDD dataset. The vertical and horizontal axis in the graph above is

generated using the KL-divergence algorithm and is used to embed high-dimensional

data space into a lower subspace.

As the perplexity and iterations become higher, we can observe 'normal' class

data points (red dots) coalescing. A normal class is distinctly separate from the other

attacks labels which indicate that PCA and DAE are quite effective at separating

'normal' and 'attack'. However, when focusing on the other four attack class, we see a

different scenario; except for 'DOS' attack class, we see the other three attack types

being jumbled together and not forming a clear cluster. The t-SNE representation of

principal component analysis and deep autoencoder suggest that classifying the other

three attack types might be challenging to classify.

38

Figure 7 t-SNE Representation of PCA (Perplexity= 50, Iterations= 500)

Figure 8 t-SNE Representation of PCA (Perplexity= 100, Iterations= 500)

39

Figure 9 t-SNE Representation of PCA (Perplexity= 100, Iterations= 1000)

Grid Search

In order to choose parameters for our classifier optimally, we employed the

GridSearchCV available to via scikit-learn which is an open-source machine learning

library available on Python The GridSearchCV attempts to perform an exhaustive

search over specified parameter values for our SVM classifier based off against

important score. For our purpose, we will base our grid search against Micro-recall and

balanced accuracy.

Important parameters to consider when working with SVM with RBF kernel

function is the selection of Gamma and C parameters. C variable is seen as a

regularization term that keeps sparse variables in check. The optimal parameter

selection is contingent on the level of noise and balance that the dataset exhibit.

40

 Since our dataset is non-linear, we employed the kernel functions available in the

scikit-learn python library. We can choose out of four kernel functions –namely—linear,

polynomial, Radial Basis Function (RBF), and sigmoid. For our analysis, we employed

'RBF' since our grid search predicted RBF to be the best kernel function in order to

optimize F1-Micro (Table 2).

Table 2

Grid Search with 'F1-Micro' Scoring

F1-Micro Score Std C kernel

0.704 (+/-0.258) 1 linear

0.815 (+/-0.011) 1 rbf

0.781 (+/-0.019) 1 poly

0.497 (+/-0.017) 10 linear

0.883 (+/-0.010) 10 rbf

0.851 (+/-0.013) 10 poly

0.567 (+/-0.023) 100 linear

0.928 (+/-0.011) 100 rbf

0.903 (+/-0.014) 100 poly

0.665 (+/-0.028) 1000 linear

0.949 (+/-0.013) 1000 rbf

0.937 (+/-0.012) 1000 poly

41

Table 3

Grid Search with 'Balanced Accuracy' Scoring

Balanced Accuracy Std C kernel

0.458 (+/-0.035) 1 linear

0.823 (+/-0.094) 1 rbf

0.755 (+/-0.081) 1 poly

0.611 (+/-0.056) 10 linear

0.841 (+/-0.154) 10 rbf

0.851 (+/-0.100) 10 poly

0.66 (+/-0.079) 100 linear

0.849 (+/-0.126) 100 rbf

0.875 (+/-0.106) 100 poly

0.688 (+/-0.109) 1000 linear

0.828 (+/-0.091) 1000 rbf

0.845 (+/-0.135) 1000 poly

42

Classification Metrics

Accuracy, Precision-Recall, F-Score

In this section, we will closely examine three main models to interpret their

effectiveness at predicting anomalies as well as the quality of their prediction by looking

at subtler yet important measures such as precision, recall, and F-score. Simply looking

at accuracy is not enough to gauge the effectiveness of our model, especially owing to

the imbalanced label distribution of the NSL-KDD dataset.

We need to give extra importance in analyzing recall values for the models in

question since false negatives (Type 1 error) can cause intrusions that could lead to a

breach in the information system of another individual or organization. To avoid that

scenario, the recall metric holds considerable importance to us as cybersecurity

experts.

It is also important to look at precision, recall, and f1-score values of specific

attack types, as that will help us understand a finer picture of the model's performance.

For instance, not having a high recall in 'U2R' attack type would mean potentially giving

root access information of the system to a hacker. Thus, measuring our models'

effectiveness against specific attack type would be as important as focusing on the

overall model, if we intend to build a robust anomaly-based IDS.

The first model that we will examine would be the standalone SVM model with

input data that is scaled using L2 normalization. The predictions of the model are

43

generated against an unseen validation set provided in the NSL-KDD. In the binary

label scenario (Table 4), we find the overall prediction accuracy to be 77%, whereas the

model yields a weighted average f1-score of 76%.

Table 4

Binary Label Classification Report for Standalone SVM

Label

precision recall f1-score support

Normal

65% 97% 78% 9711

Attack

97% 61% 75% 12833

Other Measures

Accuracy

 77% 22544

Macro Average

81% 79% 77% 22544

Weighted Average

83% 77% 76% 22544

In table 5, we use the same model on a multi-class scenario where attack label is

further divided into four classes. The overall accuracy as well as weighted f1, recall, and

precision drop quite significantly when performing multi-label predictions.

The second model incorporates dimensionality reduction using PCA with similarly

adjusted SVM. Bearing on the binary data presented in table 6, we observe a reduced

accuracy and recall of 74 percent. In so far as multiclass labels are concerned, we also

44

observed a decrease in weighted averages (Table 7) for recall, f1-score, precision, and

overall accuracy compared to the multi-class standalone SVM model.

Table 5

Multi-Label Classification Report for Standalone SVM

Label

precision recall f1-score support

Normal

70% 84% 77% 9711

DOS 90% 70% 79% 7460

Probe

59% 62% 60% 2421

R2L

42% 23% 30% 2885

U2R

4% 60% 8% 67

Other Measures

Accuracy

 69% 22544

Macro Average

53% 60% 51% 22544

Weighted Average

72% 69% 69% 22544

Our proposed model shows considerable increases in accuracy as well as

average recall rates when handling binary labels (Table 8). Our proposed model does

far better in terms of weighted averages of precision, recall, and f1-score, as well as

accuracy, compared to the metrics of the previous two models when working with

45

multiple classes. However, when focusing on U2R, we find that the recall rates are

considerably higher in the standalone SVM case than it is with our model (Table 9).

Table 6

Binary Label Classification Report for PCA+SVM Classifier

Label

precision recall f1-score support

Normal

63% 96% 76% 9711

Attack

95% 56% 71% 12833

Other Measures

Accuracy

 74% 22544

Macro Average

79% 76% 73% 22544

Weighted Average

81% 74% 73% 22544

Table 7

Multi-Label Classification Report for PCA+SVM Classifier

Label

precision recall f1-score support

Normal 61% 55% 58% 9711

DOS 88% 68% 77% 7460

Probe

48% 63% 54% 2421

46

R2L

19% 10% 13% 2885

U2R

1% 52% 2% 67

Other Measures

Accuracy

 55% 22544

Macro Average

44% 50% 41% 22544

Weighted Average

63% 55% 58% 22544

47

Table 8

Binary Label Classification Report for AE-Encoded + SVM Classifier (L2 Regularization)

Label

precision recall f1-score support

Normal

67% 97% 80% 9711

Attack

96% 65% 77% 12833

Other Measures

Accuracy

 78% 22544

Macro Average

82% 81% 78% 22544

Weighted Average

84% 78% 78% 22544

48

Table 9

Multi-Label Classification Report for AE-Encoded + SVM Classifier

Label

precision recall f1-score support

Normal

71% 89% 79% 9711

DOS

90% 74% 81% 7460

Probe

70% 62% 65% 2421

R2L

50% 23% 32% 2885

U2R

5% 48% 9% 67

Other Measures

Accuracy

 73%

22544

Macro Average

57% 59% 53% 22544

Weighted Average

74% 73% 72% 22544

49

Precision-Recall Curves

Another useful way to look at precision and recall metrics would be visualizing it

through the precision-recall curve. The curve helps us in gauging our classifier's output

quality. The relationship between precision and recall metric is typically based on a

tradeoff between one another; this quality is exhibited in the precision-recall curve since

it plots the two metrics based on various decision boundaries. When we move along the

curve the decision threshold (AKA classification threshold) decreases, the number of

false positives increases but false negatives decrease. As a result, precision decreases,

while recall increases (refer to formulas in the previous chapter).

Another quality metric to closely examine the precision-recall curve is computing

the average precision score (AP) which is essentially the weighted mean of precisions

achieved at each threshold, with the increase in recall from the previous threshold used

as the weight. Mathematically it is represented as:

AP = ∑(𝑅𝑛 − 𝑅𝑛−1)𝑃𝑛

𝑛

(14)

Where R represents recall, P representing Precision, and N representing the nth

threshold. One of the important things to look out for when examining precision-recall

curves is the area beneath it. AP and trapezoidal rules are ways to approximate the

area beneath the curve. A higher precision-recall curve suggests a high value for both

the metrics, which is considered important for a robust, valid model. Within this section,

we will only compare the binary precision-recall curve for scaled, PCA, and DAE

50

encoded datasets which classified using SVM. The precision-recall graphs for other

algorithms can be found in the appendix section for further examination.

Figure 10 Standalone SVM for Binary Class Precision-Recall Curve

The graph represents the precision-recall curve for a standalone SVM operating

on an RBF kernel function. The average precision score is a mere 0.57 which is not a

desirable outcome for an IDS.

Figure 11 PCA+SVM Binary Class Precision-Recall Curve

51

 The graph presents data relating to PCA encoded inputs coupled with the

Support Vector Machine classifier. The shape of the curve is relatively outwards facing,

suggesting an increase in the area beneath the curve compared to the data presented

in the previous figure. The algorithm receives an AP score of 0.69.

Figure 12 AE+SVM Precision-Recall Curve (Polynomial Kernel)

This graph clearly shows the precision-recall trade-off that was mentioned at the

start of this section. We can observe as the decision boundary decreases; the recall

tends to increase. We can clearly see the area beneath the curve is much greater than

the two previous graphs of SVM and PCA-SVM respectively. Our proposed model

receives an AP score of 0.90 which is considerably high.

We use the models in multiclass but with an extra adjustment of weight

balancing. It should be noted that because the precision-recall curve is used primarily

for binary labels, we will be binarizing individual curves for the five classes. Since there

52

is a class imbalance in our dataset, we chose to micro-average than the macro-average

of all five classes which may lead to a different interpretation.

Figure 13 Standalone SVM for MultiClass Precision-Recall Curves

Figure 13 presents precision-recall curves based on a standalone SVM classifier

for normalized inputs. An important measure in the above graph is the micro-average of

precision-recall curves for all five classes by aggregating the contributions of the five

classes to compute the average metric.

53

Figure 14 PCA+SVM MultiClass Precision-Recall Curves

PCA-encoded inputs lead to a considerable increase in the micro-average of

precision-recall, specifically from 0.59 to 0.63. It should be noted that our graphs also

display iso curves at different f1 values. Iso-curves are convex-shaped curves that in

this case follows a combination of precision and recall values for a given f1-score. The

iso-curves gives us a reliable reference point to better understand the precision-recall

curve.

54

Figure 15 AE+SVM MultiClass Precision-Recall Curves

Figure 17 reflects data given from DAE inputs which are classified on SVM. The

data indicates a much higher micro-average than the previous two models. Specifically,

the area under the micro-average precision-recall is 0.72 which is 10 basis points higher

than the previous model.

55

Performance Metrics

Train and Test Time

One of the most important features of a good model is the time and

computational power that it requires to generate its predictions. We used the time

module in python to measure the time it takes for our models to perform training and

testing on the NSL-KDD dataset. The table below shows the training and testing time in

seconds for the algorithms used in this paper.

Based on our data, we can conclude that L1 regularized DAE coupled with SVM

is the most time effective when dealing with binary class. Whereas, in the multi-class

case, we find that DAE-SVM without any regularization term takes the least time to train

and test the NSL-KDD dataset which gives us a clear answer to our initial research

question that asks the effectiveness of an autoencoder based dimensionality reduction

tool. A standalone support vector machine appears to take the longest time in both multi

and binary class scenarios.

56

Table 10

Train and Test Time based on Seconds

Algorithm Training Time

(sec)

Testing Time

(sec)

Total Time

(sec)

Class

SVM 392.70 39.68 432.38 Binary

DAE-SVM 59.13 + 86.60 2.28 148.01 Binary

DAE-SVM L1 52.55 + 90.49 2.80 145.84*2 Binary

DAE-SVM L2 62.22 + 89.64 2.69 154.53 Binary

SVM 1545.64 133.23 1,678.87 Multi-Class

PCA-SVM 270.16 29.83 299.99 Multi-Class

DAE-SVM 48.09 + 89.75 7.78 145.62* Multi-Class

DAE-SVM L1 49.20 + 121.04 10.72 180.96 Multi-Class

DAE-SVM L2 48.60 + 114.15 9.51 172.26* Multi-Class

Conclusion

The results yielded during this study have addressed all the topics posed earlier

in the research question section. To recapitulate the findings of our research, we found

DAE+SVM based neural network scheme being effective based on various classification

2 * Algorithm that takes the least time to train and test on the NSL-KDD dataset.

57

and performance metrics. Autoencoders were much more effective at capturing useful

properties of inputs which were demonstrated through t-SNE to embed higher

dimension inputs on a two-dimensional plane and were compared to its linear PCA

counterpart.

Specifically, in terms of training and testing time, autoencoder encoded inputs

proved to be much more time-efficient in the training and testing phase of the model. In

addition, our proposed neural scheme proves to be better at classification metrics like

the weighted average of Recall, F-score, and Accuracy in multi-class scenario

compared to standalone SVM and PCA-encoded SVM.

By focusing on metrics such as precision and recall, we were able to get a more

refined perspective of our proposed neural scheme's performance by focusing on Type

1 (False Positives) and Type II (False Negatives) errors. Since we are dealing with

anomaly detection, more importance should be given to Type II error since allowing an

anomaly to infiltrate through our intrusion detection system has the potential to wreak

havoc on our system's resources.

After rigorously examining the classification metrics, we can safely conclude the

reliability and robustness of Autoencoders as a viable dimensionality reduction tool

compared to PCA for anomaly detection based on NSL-KDD Dataset.

58

References

[1] D. E. Denning, "An Intrusion-Detection Model," IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, vol. 13, no. 2, p. 222, 1987.

[2] N. Harale and B. B. Meshram, "Network Based Intrusion Detection and Prevention

Systems: Attack Classification , Methodologies and Tools," International Journal of

Engineering And Science, vol. 6, no. 5, pp. 1-12, 2016.

[3] S. NASEER, Y. SALEEM, S. KHALID, M. K. BASHIR, J. HAN, M. M. IQBAL and K.

HAN, "Enhanced Network Anomaly Detection Based on Deep Neural Networks,"

IEEE Access, vol. 6, pp. 48231-48246, 2018.

[4] S. Mukkamala, G. Janoski and A. Sung, "Intrusion Detection Using Neural

Networks and Support Vector Machines," Computers in Biology and Medicine, vol.

96, pp. 116-127, 2018.

[5] Y. Liao and V. R. Vemuri, "Use of K-nearest neighbor classifier for intrusion

detection," Computers & Security, vol. 21, no. 5, pp. 439-448, 2002.

[6] M. A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[7] "Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion

detection evaluation," Proceedings - DARPA Information Survivability Conference

and Exposition, DISCEX , vol. 2, no. February, pp. 12-26, 2000.

59

[8] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, "A detailed analysis of the

KDD CUP 99 data set," IEEE Symposium on Computational Intelligence for

Security and Defense Applications, CISDA , pp. 1-6, 2009.

[9] "KDD-CUP-99 Task Description," [Online]. Available:

https://kdd.ics.uci.edu/databases/kddcup99/task.html.

[10] M. K. Asif, T. A. Khan, T. A. Taj, U. Naeem and S. Yakoob, "Network Intrusion

Detection and its Strategic Importance," IEEE Business Engineering and Industrial

Applications Colloquium (, pp. 140-144, 2013.

[11] N. Shone, T. N. Ngoc and Q. Shi, "A Deep Learning Approach to Network Intrusion

Detection," IEEE TRANSACTIONS ON EMERGING TOPICS IN

COMPUTATIONAL INTELLIGENCE, vol. 2, no. 1, p. 45, 2018.

[12] M. Minsky and S. A. Papert, Perceptrons, MA, USA: MIT Press, 1969.

[13] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge, MA: MIT

Press, 2016.

[14] D. Liu, "A Practical Guide to ReLU," 30 November 2017. [Online]. Available:

https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7. [Accessed

12 December 2019].

[15] P. Ramachandran, B. Zoph and Q. V. Le, "SEARCHING FOR ACTIVATION

FUNCTIONS," 6th International Conference on Learning Representations, ICLR -

Workshop Track Proceedings, pp. 1-13, 2018.

60

[16] G. Klambauer, T. Unterthiner and A. Mayr, Self-Normalizing Neural Networks,

Linz: Advances in Neural Information Processing Systems (NIPS) , 2017.

[17] Y. Wang, H. Yao and S. Zhao , "Auto-encoder based dimensionality reduction,"

Neurocomputing, vol. 184, no. November, pp. 232-242, 2015.

[18] L. v. d. Maaten, E. Postma and J. . v. d. Herik, "Dimensionality Reduction: A

Comparative," Journal of Machine Learning Research, vol. 10, pp. 1-41, 2009.

[19] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P.-A. Manzagol, "Stacked

Denoising Autoencoders: Learning Useful Representations in a Deep Network with

a Local Denoising Criterion," Journal ofMachine Learning Research, vol. 11, pp.

3371-3408, 2010.

[20] J. Masci, U. Meier, D. Ciresan and J. Schmidhuber, Stacked Convolutional Auto-

Encoders for Hierarchical Feature Extraction, Berlin, Heidelberg: Springer, 2011.

[21] S. Rifai, P. Vincent, X. Muller, X. Glorot and Y. Bengio, "Contractive auto-

encoders: Explicit invariance during feature extraction," Proceedings of the 28th

International Conference on Machine Learning,, no. 1, pp. 833-840, 2011.

[22] Q. Xu, C. Zhang, L. Zhang and Y. Song, "The Learning Effect of Different Hidden

Layers Stacked Autoencoder," International Conference on Intelligent Human-

Machine Systems and Cybernetics, 2016.

[23] Y. A. Ng, "Feature selection, L1 vs. L2 regularization,," in Proceedings of the

twenty-first international conference on Machine learning, 2004.

61

[24] A. Shenfield, D. Day and A. Ayesh, "Intelligent intrusion detection systems using

artificial neural networks," ICT Express, vol. 4, no. 2, pp. 95-99, 2018.

[25] M. Al-Qatf, Y. Lasheng, M. Al-Habib and . K. Al-Sabahi, "Deep Learning Approach

Combining Sparse Autoencoder With SVM for Network Intrusion Detection," IEEE

Access, vol. 6, 2018.

[26] M. Yousefi-Aza, V. Varadharajan, L. Hamey and U. Tupakula, "Autoencoder-based

Feature Learning for Cyber Security Applications," nternational Joint Conference

on Neural Networks, 2017.

[27] B. Lee, S. Amaresh, C. Green and D. Engels, "Comparative Study of Deep

Learning Models for Network Intrusion Detection," SMU Data Science Review, vol.

1, no. 8, 2018.

[28] S. K. Patro and K. K. Sahu, "Normalization: A Preprocessing Stage," CoRR, pp.

20-22, 2015.

[29] N. Seliya, T. M. Khoshgoftaar and J. V. Hulse, "A Study on the Relationships of

Classifier Performance Metrics Naeem," Proceedings - International Conference

on Tools with Artificial Intelligence, ICTAI, pp. 59-66, 2009.

[30] "Classification: Precision and Recall," Google, [Online]. Available:

https://developers.google.com/machine-learning/crash-

course/classification/precision-and-recall. [Accessed 9 12 2019].

62

[31] L. v. d. Maaten and G. Hinton, "Visualizing Data using t-SNE," Journal of Machine

Learning Research , vol. 9, pp. 2579-2605 , 2008.

[32] A. Dertat, "Applied Deep Learning - Part 3: Autoencoders," 3 October 2017.

[Online]. Available: https://towardsdatascience.com/applied-deep-learning-part-3-

autoencoders-1c083af4d798. [Accessed 3 12 2019].

[33] G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with

Neural Networks," Science, vol. 313, no. 5786, p. 504–507, 2006.

[34] H. Chauhan, V. Kumar, S. Pundir and E. S. Pilli, "A Comparative Study of

Classification Techniques for Intrusion Detection," Proceedings - 2013

International Symposium on Computational and Business Intelligence, pp. 40-43,

2013.

63

Appendix

The appendix includes supplementary information regarding the study. The table in the

appendix section contains a list of features that is present in the KDD 99 dataset. In the

second exhibit, we see the attack types of KDD 99 further segmented to get a better

picture of the dataset in question.

List of Features in KDD 99 Dataset

Feature Type No. Feature Name Data Type

Basic Features 1 Duration Continuous

2 Protocol_type Symbolic

3 Service Symbolic

4 Flag Symbolic

5 Src_bytes Continuous

6 Dst_bytes Continuous

7 Land Symbolic

8 Wrong_fragment Continuous

9 Urgent Continuous

Content Features 10 Hot Continuous

11 Num_failed_logins Continuous

12 Logged in Symbolic

13 Num_compromised Continuous

64

14 Root_shell Continuous

15 Su_attempted Continuous

16 Num_root Continuous

17 Num_file_creations Continuous

18 Num_shells Continuous

19 Num_access_files Continuous

20 Num_outbound_cmds Continuous

21 Is_host_login Symbolic

22 Is_guest_login Symbolic

Traffic Features 23 Count Continuous

24 Srv_count Continuous

25 Serror_rate Continuous

26 Srv_serror_rate Continuous

27 Rerror_rate Continuous

28 Srv_rerror_rate Continuous

29 Same_srv_rate Continuous

30 Diff_srv_rate Continuous

31 Srv_diff_host_rate Continuous

32 Dst_host_count Continuous

33 Dst_host_srv_count Continuous

65

34 Dst_host_same_srv_rate Continuous

35 Dst_host_diff_srv_rate Continuous

36 Dst_host_same_src_port_rate Continuous

37 Dst_host_same_src_host_rate Continuous

38 Dst_host_serror_rate Continuous

39 Dst_host_srv_serror_rate Continuous

40 Dst_host_rerror_rate Continuous

41 Dst_host_srv_rerror_rate Continuous

Attack Types in KDDCUP99 dataset

Denial of Service

(DoS)

User to Root

(U2R)

Remote to Local

(R2L)

Probing

(Probe)

Back Buffer Overflow FTP write IPSweep

Land Load module Guess Password NMAP

Neptune Perl IMAP Port Sweep

Ping of Death Rootkit MultiHop Satan

Smurf Phf

Teardrop SPY

 Warezclient

 WarezMaster

66

	Autoencoder-Based Representation Learning to Predict Anomalies in Computer Networks
	Recommended Citation

	tmp.1589391100.pdf.H0g5c

