708 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    Driver-centered pervasive application for heart rate measurement

    Get PDF
    People spend a significant amount of time daily in the driving seat and some health complexity is possible to happen like heart-related problems, and stroke. Driver’s health conditions may also be attributed to fatigue, drowsiness, or stress levels when driving on the road. Drivers’ health is important to make sure that they are vigilant when they are driving on the road. A driver-centered pervasive application is proposed to monitor a driver’s heart rate while driving. The input will be acquired from the interaction between the driver and embedded sensors at the steering wheel, which is tied to a Bluetooth link with an Android smartphone. The driver can view his historical data easily in tabular or graph form with selected filters using the application since the sensor data are transferred to a real-time database for storage and analysis. The application is coupled with the tool to demonstrate an opportunity as an aftermarket service for vehicles that are not equipped with this technology

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD

    Deep Learning Systems for Advanced Driving Assistance

    Full text link
    Next generation cars embed intelligent assessment of car driving safety through innovative solutions often based on usage of artificial intelligence. The safety driving monitoring can be carried out using several methodologies widely treated in scientific literature. In this context, the author proposes an innovative approach that uses ad-hoc bio-sensing system suitable to reconstruct the physio-based attentional status of the car driver. To reconstruct the car driver physiological status, the author proposed the use of a bio-sensing probe consisting of a coupled LEDs at Near infrared (NiR) spectrum with a photodetector. This probe placed over the monitored subject allows to detect a physiological signal called PhotoPlethysmoGraphy (PPG). The PPG signal formation is regulated by the change in oxygenated and non-oxygenated hemoglobin concentration in the monitored subject bloodstream which will be directly connected to cardiac activity in turn regulated by the Autonomic Nervous System (ANS) that characterizes the subject's attention level. This so designed car driver drowsiness monitoring will be combined with further driving safety assessment based on correlated intelligent driving scenario understanding

    Monitoring fatigue and drowsiness in motor vehicle occupants using electrocardiogram and heart rate - A systematic review

    Get PDF
    Introdução: A fadiga é um estado complexo que pode resultar em diminuição da vigilância, frequentemente acompanhada de sonolência. A fadiga durante a condução contribui significativamente para acidentes de trânsito em todo o mundo, destacando-se a necessidade de técnicas de monitorização eficazes. Existem várias tecnologias para aumentar a segurança do condutor e reduzir os riscos de acidentes, como sistemas de deteção de fadiga que podem alertar os condutores à medida que a sonolência se instala. Em particular, a análise dos padrões de frequência cardíaca pode oferecer informações valiosas sobre a condição fisiológica e o nível de vigilância do condutor, permitindo-lhe compreender os seus níveis de fadiga. Esta revisão tem como objetivo estabelecer o estado atual das estratégias de monitorização para ocupantes de veículos, com foco específico na avaliação da fadiga pela frequência cardíaca e variabilidade da frequência cardíaca. Métodos: Realizamos uma pesquisa sistemática da literatura nas bases de dados Web of Science, SCOPUS e Pubmed, utilizando os termos veículo, condutor, monitoração fisiológica, fadiga, sono, eletrocardiograma, frequência cardíaca e variabilidade da frequência cardíaca. Examinamos artigos publicados entre 1 de janeiro de 2018 e 31 de janeiro de 2023. Resultados: Um total de 371 artigos foram identificados, dos quais 71 foram incluídos neste estudo. Entre os artigos incluídos, 57 utilizam o eletrocardiograma (ECG) como sinal adquirido para medir a frequência cardíaca, sendo que a maioria das leituras de ECG foi obtida através de sensores de contacto (n=41), seguidos por sensores vestíveis não invasivos (n=11). Relativamente à validação, 23 artigos não mencionam qualquer tipo de validação, enquanto a maioria se baseia em avaliações subjetivas de fadiga relatadas pelos próprios participantes (n=27) e avaliações feitas por observadores com base em vídeos (n=11). Dos artigos incluídos, apenas 14 englobam um sistema de estimativa de fadiga e sonolência. Alguns relatam um desempenho satisfatórios, no entanto, o tamanho reduzido da amostra limita a abrangência de quaisquer conclusões. Conclusão: Esta revisão destaca o potencial da análise da frequência cardíaca e da instrumentação não invasiva para a monitorização contínua do estado do condutor e deteção de sonolência. Uma das principais questões é a falta de métodos suficientes de validação e estimativa para a fadiga, o que contribui para a insuficiência dos métodos na criação de sistemas de alarme proativos. Esta área apresenta grandes perspetivas, mas ainda está longe de ser implementada de forma fiável.Background: Fatigue is a complex state that can result in decreased alertness, often accompanied by drowsiness. Driving fatigue has become a significant contributor to traffic accidents globally, highlighting the need for effective monitoring techniques. Various technologies exist to enhance driver safety and minimize accident risks, such as fatigue detection systems that can alert drivers as drowsiness sets in. In particular, measuring heart rate patterns may offer valuable insights into the occupant's physiological condition and level of alertness, and may allow them to understand their fatigue levels. This review aims to establish the current state of the art of monitoring strategies for vehicle occupants, specifically focusing on fatigue assessed by heart rate and heart rate variability. Methods: We performed a systematic literature search in the databases of Web Of Science, SCOPUS and Pubmed, using the terms vehicle, driver, physiologic monitoring, fatigue, sleep, electrocardiogram, heart rate and heart rate variability. We examine articles published between 1st of january 2018 and 31st of January 2023. Results: A total of 371 papers were identified from which 71 articles were included in this study. Among the included papers, 57 utilized electrocardiogram (ECG) as the acquired signal for heart rate (HR) measures, with most ECG readings obtained through contact sensors (n=41), followed by non-intrusive wearable sensors (n=11). Regarding validation, 23 papers do not report validation, while the majority rely on subjective self-reported fatigue ratings (n=27) and video-based observer ratings(n=11). From the included papers, only 14 comprise a fatigue and drowsiness estimation system. Some report acceptable performances, but reduced sample size limits the reach of any conclusions. Conclusions: This review highlights the potential of HR analysis and non-intrusive instrumentation for continuous monitoring of driver's status and detecting sleepiness. One major issue is the lack of sufficient validation and estimation methods for fatigue, contributing to the insufficiency of methods in providing proactive alarm systems. This area shows great promise but is still far from being reliably implemented

    Driver Drowsiness Detection with Commercial EEG Headsets

    Full text link
    Driver Drowsiness is one of the leading causes of road accidents. Electroencephalography (EEG) is highly affected by drowsiness; hence, EEG-based methods detect drowsiness with the highest accuracy. Developments in manufacturing dry electrodes and headsets have made recording EEG more convenient. Vehicle-based features used for detecting drowsiness are easy to capture but do not have the best performance. In this paper, we investigated the performance of EEG signals recorded in 4 channels with commercial headsets against the vehicle-based technique in drowsiness detection. We recorded EEG signals of 50 volunteers driving a simulator in drowsy and alert states by commercial devices. The observer rating of the drowsiness method was used to determine the drowsiness level of the subjects. The meaningful separation of vehicle-based features, recorded by the simulator, and EEG-based features of the two states of drowsiness and alertness have been investigated. The comparison results indicated that the EEG-based features are separated with lower p-values than the vehicle-based ones in the two states. It is concluded that EEG headsets can be feasible alternatives with better performance compared to vehicle-based methods for detecting drowsiness.Comment: 546 Preprint version of the manuscript published in the proceedings of the 10th RSI International Conference on Robotics and Mechatronics (ICRoM 2022), Nov. 15-18, 2022, Tehran, Ira

    Human-Centric Detection and Mitigation Approach for Various Levels of Cell Phone-Based Driver Distractions

    Get PDF
    abstract: Driving a vehicle is a complex task that typically requires several physical interactions and mental tasks. Inattentive driving takes a driver’s attention away from the primary task of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. According to several traffic safety administration organizations, distracted and inattentive driving are the primary causes of vehicle crashes or near crashes. In this research, a novel approach to detect and mitigate various levels of driving distractions is proposed. This novel approach consists of two main phases: i.) Proposing a system to detect various levels of driver distractions (low, medium, and high) using a machine learning techniques. ii.) Mitigating the effects of driver distractions through the integration of the distracted driving detection algorithm and the existing vehicle safety systems. In phase- 1, vehicle data were collected from an advanced driving simulator and a visual based sensor (webcam) for face monitoring. In addition, data were processed using a machine learning algorithm and a head pose analysis package in MATLAB. Then the model was trained and validated to detect different human operator distraction levels. In phase 2, the detected level of distraction, time to collision (TTC), lane position (LP), and steering entropy (SE) were used as an input to feed the vehicle safety controller that provides an appropriate action to maintain and/or mitigate vehicle safety status. The integrated detection algorithm and vehicle safety controller were then prototyped using MATLAB/SIMULINK for validation. A complete vehicle power train model including the driver’s interaction was replicated, and the outcome from the detection algorithm was fed into the vehicle safety controller. The results show that the vehicle safety system controller reacted and mitigated the vehicle safety status-in closed loop real-time fashion. The simulation results show that the proposed approach is efficient, accurate, and adaptable to dynamic changes resulting from the driver, as well as the vehicle system. This novel approach was applied in order to mitigate the impact of visual and cognitive distractions on the driver performance.Dissertation/ThesisDoctoral Dissertation Applied Psychology 201

    IoT based Driver Drowsiness and Pothole Detection Alert System

    Get PDF
    One of the common in progressing countries is the maintenance of roads. Well maintained roads contribute a major portion to the country’s economy. Identification of pavement distress such as potholes and humps not only help drivers to avoid accidents or vehicle damages, but also helps authorities to maintain roads. This paper discusses various pothole detection methods that have been developed and proposes a simple and cost-effective solution to identify the potholes and humps on roads and provide timely alerts to drivers to avoid accidents or vehicle damages. Not only Potholes and humps are the main cause of accidents other than over speeding and drowsiness of driver includes the issue of accidents. Drowsy state may be caused by lack of sleep, medication, tiredness, drugs or driving continuously for long period of time. So, here is the solution for detecting the potholes and humps and to alert the driver from drowsiness while driving. In this paper, the system is structured to detect potholes and to alert the drowsy driver by using the ultrasonic sensor, eyeblink sensor and IR sensor and microcontroller. Ultrasonic sensor senses the humps, IR sensor senses the potholes and eye blink sensor the blinking of eye and this sensing signals fed into the Arduino to alert the driver by buzzer sound

    Fatigue analysis and design of a motorcycle online driver measurement tool using real-time sensors

    Get PDF
    Work fatigue is an important aspect and is very influential in determining the level of accidents, especially motorbike accidents. According to WHO, almost 30% of all deaths due to road accidents involve two- and three-wheel­ed motorized vehicles, such as motorbikes, mopeds, scooters and electric bicycles (e-bikes), and the number continues to increase. Motor­cycles dominate road deaths in many low- and middle-income countries, where nine out of ten traffic accident deaths occur among motorcyclists, as in Indonesia. However, until now, in Indonesia, there has been no monitor­ing system capable of identifying fatigue in motorbike drivers in the transportation sector. This research aims to determine fatigue patterns based on driver working hours and create a sensor system to monitor fatigue measurements in real-time to reduce the number of accidents. The research began with processing questionnaire data with Pearson correlation, which showed a close relationship between driver fatigue and driving time and a close relationship between fatigue and increased heart rate and sweating levels. From calibration tests with an error of 3% and direct measurements of working conditions, it was found that two-wheeled vehicle driver fatigue occurs after 2-3 hours of work. With a measurement system using the Box Whiskers analysis method, respondents' working conditions can also be de­ter­mined, which are divided into 4 zones, namely zone 1 (initial condition or good condition), zone 2 a declining condition, zone 3 a tired condition and zone 4 is a resting condition. Hopefully, this research will identify fati­gue zones correctly and reduce the number of accidents because it can iden­tify tired drivers so they do not have to force themselves to continue working and driving their motorbikes. As a conclusion from this research, a measure­ment system using two sensors, such as ECG and GSR can identify work fatigue zones well and is expected to reduce the number of accidents due to work fatigue.Pentingnya aspek identifikasi kondisi kelelahan kerja sangat mempengaruhi tingkat kecelakaan khususnya pada kecelakaan sepeda motor. Namun hingga saat ini di Indonesia belum ada sistem pemantauan yang mampu mengidentifikasi kelelahan pengemudi kendaraan sepeda motor di sektor transportasi. Tujuan dari penelitian ini adalah untuk mengetahui pola kelelahan berdasarkan jam kerja pengemudi dan membuat sistem sensor untuk memantau pengukuran kelelahan secara real-time untuk mengurangi angka kecelakaan. Hasil penelitian dari pengolahan data kuesioner dengan korelasi Pearson menunjukkan adanya hubungan yang erat, antara kelelahan dengan lama berkendara dan kelelahan yang erat kaitannya dengan peningkatan denyut nadi dan berkeringat. Dari pengujian kalibrasi dengan error 3% dan pengukuran langsung kondisi kerja, diperoleh kelelahan yang terjadi setelah 2-3 jam kerja. Dengan sistem pengukuran menggunakan metode analisa Box Whiskers ini juga dapat diketahui kondisi kerja responden yang terbagi menjadi 4 zona yaitu zona 1 (kondisi awal atau kondisi fit), zona 2 kondisi menurun, zona 3 kondisi lelah dan zona olah raga. 4 keadaan istirahat. Dari penelitian ini diharapkan dapat mengidentifikasi zona kelelahan dengan tepat dan dapat menurunkan angka kecelakaan karena dapat mengidentifikasi pengemudi yang kelelahan sehingga tidak memaksakan diri untuk terus bekerja dan mengemudikan sepeda motornya. Sebagai kesimpulan dari penelitian ini, sistem pengukuran menggunakan dua sensor seperti ECG dan GSR dapat mengidentifikasi zona kelelahan dengan baik dan diharapkan dapat mengurangi angka kecelakaan akibat kelelahan

    Fatigue Detection for Ship OOWs Based on Input Data Features, from The Perspective of Comparison with Vehicle Drivers: A Review

    Get PDF
    Ninety percent of the world’s cargo is transported by sea, and the fatigue of ship officers of the watch (OOWs) contributes significantly to maritime accidents. The fatigue detection of ship OOWs is more difficult than that of vehicles drivers owing to an increase in the automation degree. In this study, research progress pertaining to fatigue detection in OOWs is comprehensively analysed based on a comparison with that in vehicle drivers. Fatigue detection techniques for OOWs are organised based on input sources, which include the physiological/behavioural features of OOWs, vehicle/ship features, and their comprehensive features. Prerequisites for detecting fatigue in OOWs are summarised. Subsequently, various input features applicable and existing applications to the fatigue detection of OOWs are proposed, and their limitations are analysed. The results show that the reliability of the acquired feature data is insufficient for detecting fatigue in OOWs, as well as a non-negligible invasive effect on OOWs. Hence, low-invasive physiological information pertaining to the OOWs, behaviour videos, and multisource feature data of ship characteristics should be used as inputs in future studies to realise quantitative, accurate, and real-time fatigue detections in OOWs on actual ships
    • …
    corecore