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ABSTRACT 

Driving a vehicle is a complex task that typically requires several physical interactions 

and mental tasks. Inattentive driving takes a driver’s attention away from the primary task 

of driving, which can endanger the safety of driver, passenger(s), as well as pedestrians. 

According to several traffic safety administration organizations, distracted and inattentive 

driving are the primary causes of vehicle crashes or near crashes. In this research, a novel 

approach to detect and mitigate various levels of driving distractions is proposed. This 

novel approach consists of two main phases: i.) Proposing a system to detect various 

levels of driver distractions (low, medium, and high) using a machine learning 

techniques. ii.) Mitigating the effects of driver distractions through the integration of the 

distracted driving detection algorithm and the existing vehicle safety systems. In phase- 

1, vehicle data were collected from an advanced driving simulator and a visual based 

sensor (webcam) for face monitoring. In addition, data were processed using a machine 

learning algorithm and a head pose analysis package in MATLAB. Then the model was 

trained and validated to detect different human operator distraction levels. In phase 2, the 

detected level of distraction, time to collision (TTC), lane position (LP), and steering 

entropy (SE) were used as an input to feed the vehicle safety controller that provides an 

appropriate action to maintain and/or mitigate vehicle safety status. The integrated 

detection algorithm and vehicle safety controller were then prototyped using 

MATLAB/SIMULINK for validation. A complete vehicle power train model including 

the driver’s interaction was replicated, and the outcome from the detection algorithm was 

fed into the vehicle safety controller. The results show that the vehicle safety system 

controller reacted and mitigated the vehicle safety status-in closed loop real-time fashion. 
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The simulation results show that the proposed approach is efficient, accurate, and 

adaptable to dynamic changes resulting from the driver, as well as the vehicle system. 

This novel approach was applied in order to mitigate the impact of visual and cognitive 

distractions on the driver performance.  
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INTRODUCTION 

Driving Distractions 

Driving a car is a complex process that typically involves several physical and 

mental tasks. A proposed “Theory of Action” by Donald Norman identifies two major 

gaps (or Gulfs) in the interaction between humans and computer systems, the Gulf of 

Evaluation, and the Gulf of Execution. These gaps contain multiple stages of user 

activities (Norman, 1986). Following a simplified projection of the same principles, we 

can broadly identify three distinguishable stages a driver goes through when dealing with 

mental tasks. The first stage is the perception phase: large amounts of information are 

perceived simultaneously from different sources including car instrumentation displays, 

passengers, and environment. The second stage is the processing phase: information is 

processed continuously by filtering, sorting and prioritizing. The last stage is the decision 

and execution phase: the driver executes several functions and decisions in fractions of a 

second. 

In an ideal situation, drivers continuously focus on the road and pay full attention 

to relevant information through perceptual processes and ultimately make appropriate 

decisions. In reality, drivers may be paying attention to less important or irrelevant 

information as well as executing irrelevant tasks while driving. This could draw their 

attention away for shorter or longer periods of time causing distractions, which are one of 

the major causes of road accidents and fatalities (Norman, 1986). We can broadly refer to 

this complex driving activity as having a cognitive load on the driver’s side, which 

requires great attention and focus most of the time (Gerven, Paas, Merriënboer, Hendriks, 

& Schmidt, 2003; Hamish & Merat, 2005). Thus, distractions can cause a decrease in 
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driver attention to actual driving and increase the cognitive load which can raise the 

probability and severity of accidents (McEvoy, Stevenson, & Woodward, 2007). In 

addition to the cognitive distractions (i.e. the extra load mental load caused by a 

secondary task), visual driving distraction is another serious issue. Visual distraction 

occurs when the driver’s eyes are off the roadway (e.g., texting while driving), which can 

negatively affect the substantial role of visual attention in driving. In other words, visual 

distraction is “eye-off-road” and cognitive distraction is “mind-off-road” (Victor, 2005).  

As bad as they are, distractions are an inherent part of driving, and cannot be fully 

eliminated – at least not in the foreseeable future. Therefore, a major goal for safety is to 

continuously manage and reduce distractions.  

 

Motivation 

With the growing number of distractions, detection of abnormal driver behavior 

becomes a significant topic that should be addressed and taken into account at the design 

and evaluation phase of in-vehicle driving systems. The importance of driver behavior 

detection comes from the advantages associated with it, which include improving safety 

on the road and increasing energy efficiency. According to many official reports, a large 

number of road accidents are caused by driver fatigue, aggressiveness, intoxication, 

drowsiness, texting or recklessness. For instance, in 2008 a report conducted by the 

National Center for Statistics and Analysis (NHTSA) found that 5,870 people died and 

approximately 515,000 people were injured in police-reported traffic accidents in which 

at least one type of driver distraction was reported on the traffic accident reports (Ascone, 

Lindsey, & Varghese, 2009). In 2014, another report by NHTSA shows that 
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approximately 3,179 people were killed and an estimated additional 431,000 injured in 

motor vehicle crashes involving distracted drivers (NHTSA, 2014). The same report 

shows that the percentage of driver’s text-messaging or using electronic devices while 

driving increased from 1.7% in 2013 to 2.2% in 2014. Driver distraction is a global issue 

that exists in many counties over the world and is not just limited to the USA. A research 

by Volvo shows that human errors caused by distractions are the main cause of 90% of 

the accidents in Europe (Internal Communication Newsdesk, 2005). According to the 

same report, speed, risk awareness, and distraction represent the largest source of human 

errors.  

 

Problem Statement 

Distracted driving redirects a driver’s attention away from the primary task of 

driving, which jeopardizes the safety of driver, passenger(s), as well as pedestrians. 

Furthermore, with the development of new in-vehicle technologies, the next generation of 

automobiles involves more distractive in-cabin systems. As a result, drivers are exposed 

to more sources of distraction, which can lead to more road accidents. Hence, monitoring 

driver attention levels has become a growing research interest and challenge. It has been 

proven that institutional approaches which introduce new laws as preventive tools to 

reduce traffic accidents caused by distractions (such as texting while driving, adjusting 

the navigation system etc.) are ineffective due to multiple reasons (Dotzer , Fischer, & 

Magiera, 2005; Leen, Heffernan, & Dunne, 1999). These reasons include: 
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i) The number and complexity of in-cabin control and entertainment systems have 

increased drastically and associated regulations would prevent users from utilizing the 

technology.  

ii) Such regulations (i.e. laws to reduce traffic accidents) will bar the development of 

advanced technologies pursued by the industry and keep them from being merged 

into the next generation of automobiles 

Due to lack of a driver behavior context aware solution, most of the current 

vehicle safety systems act during or shortly before a critical incident occurs. This 

limitation can negatively affect drivers’ safety. Therefore, one of the goals behind this 

research is to propose a solution that is able to detect the distracted driving at the early 

stage, and then educate the current vehicle safety systems with the driver status to act 

accordingly.  

It has been proved that using the institutional approach of introducing new laws as 

a preventive tool to reduce traffic accidents due to driver behaviors that cause distraction 

(such as texting while driving, adjust the navigation system …etc.) is inefficient due to 

the following reasons: first, number and complexity of in-cabin and entertainment 

systems increases drastically and such regulations will prevent the users from using this 

technology. Second: such regulations will create a barrier for the development of 

advanced technologies pursued by the industry from being merged into the next 

generation of automobiles. Nonetheless, recent advancement in vehicle’s safety systems 

is transforming vehicles from human-controlled passive devices into human-centric 

intelligent/ active systems. There is a wide range of systems from fully autonomous 

vehicles to human augmented control devices which have emerged in this field. 
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Therefore, vehicle active safety systems that have the driver in the decision and control 

processes are preferred due to their ‘human-centric’ approach. However, most of 

uncertainty exists in the driving scenario due to the long term as well as instantaneous 

ability of the driver, changing environment and their interaction. Therefore, the complete 

solution to decrease road accidents is only achievable by making the vehicles active 

safety system 'aware' of the driving context, as well as the driver status (distracted, 

neutral, aggressive, drunk, drowsy etc.). This can be achieved by analyzing driver 

behavior signals including driver inputs to be part of the control process. However, such 

systems place a challenge on the design process due to the fact that obtaining reliable 

human behavior models are difficult due to the complex nature of the driving task in a 

dynamic traffic environment. From a control theory perspective, driving can be seen as a 

combination of continuous control segments combined with a discrete decision process 

(Leen et al., 1999). 

 

Research Objectives 

The objective of this research effort is to develop an efficient, robust, and 

intelligent approach to detect and mitigate various levels of driver distractions. The 

proposed approach should be capable of distinguishing between various levels of driving 

distractions that require different amounts of visual and mental load to perform a 

secondary task. The suggested solution consists of two major phases: i.) Detecting 

various levels of driver distractions (low, medium, and high) using a learning machine 

system. ii.) Mitigating the effects of driver distractions by educating the vehicle active 

safety systems with the detected driver status. Based on the detected level of distractions, 
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time to collection (TTC), lane position (LP), and steering entropy (SE) the active safety 

system will provide appropriate actions to maintain drivers’ safety. Another main 

objective of this effort is to increase the efficiency of the current vehicle active safety 

systems by feeding it with driver distraction levels. 

 

Research Questions 

The goal of this research effort leads to the following research questions: 

• Will the suggested approach be able to efficiently detect and distinguish 

different levels of cell phone-based driving distractions? 

• Can we integrate the early detected operator status into the current vehicle 

active systems to increase safety? 

 

Outline 

Chapter 2 includes a highly focused literature review that discusses and analyzes 

the research in this area, and also contains a suggested categorization of the current 

solutions.  Chapter 3 discusses the proposed approach; design, implementation, and the 

methodology in detail. Chapter 4 provides the implementation and the outcomes. In 

addition, results and evaluation also are included in this chapter. Finally, chapter 5 

represents the conclusions, and the future work.          
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LITERATURE REVIEW 

Most of the uncertainty in a driving scenario stems from variations in the sudden 

situations, as well as long term capability of the driver, changing environment, and their 

interaction. Therefore, the optimal solution to decrease road accidents would be 

significantly beneficial by making the vehicles active safety system 'aware' of the driving 

context as well as driver status (distracted, neutral, aggressive, drunk, drowsy etc.). This 

can be achieved by analyzing driver behavior information, including driver input, as part 

of the control process. However, such systems create a challenge in the design process 

because obtaining reliable human behavior models are difficult due to the complex nature 

of driving in a dynamic traffic environment (Al-Sultan, Al-Bayatti, & Zedan, 2013). 

From a control theory perspective (Doyle, Francis, & Tannenbaum, 1992), driving can be 

seen as a combination of continuous control segments combined with a discrete decision 

process.  

In general, the main goal of detecting abnormal driver behavior is to reduce the 

number of traffic accidents, decrease fatalities, and increase safety on the roads. Research 

in this area suggests a solution to detect different kinds of abnormal driver behavior. The 

importance of abnormal driver detection studies is based on identifying whether or not a 

driver is responsibly driving. Therefore, detection that a driver is drunk, aggressive, 

drowsy, tired, or distracted is not as significant as detecting nonstandard driving behavior 

regardless of the reason. The majority of these behaviors are overlapping with each other. 

According to federal motor carrier safety administration (FMCSA), excessive driver 

fatigue can lead to drowsiness (FMCSA, 2016). Another example of overlap between 
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driver behaviors is the overlap between drowsiness and distractions as shown in figure 

2.1 (Transportation Research Board, 2009).  

 

Figure 2.1. The relation between drowsiness and distraction (Transportation Research 

Board, 2009) 

An intelligent interactive safety system can generally have three main stages: 

Input Processing, Modeling and Simulation, and Output (see figure 2.2). The input stage 

focuses on collecting pertinent information from the user, the vehicle, and the 

environment. The modeling stage detects the presence of specific event occurrences in 

the input data, and deduces certain logical conclusions based on those occurrences. 

Identified events in the input can be single events, sets of concurrent events (composite 

events), or repeated sequences (patterns). The modeling stage often arrives at specific 

conclusions based on the inputs. The output stage typically involves one or more 

executable actions that are based on the conclusion of the modeling stage. They could 

activate or deactivate certain systems in the car, or simply generate a warning. Our 

literature review revealed extensive research covering different parts of the landscape just 
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described. Most current research focuses on the first stage, or a combination of the first 

and second stages. Few researchers addressed the output stage in their work. 

 

Figure 2.2. Intelligent interactive safety system 

 

 

A driver's actions are a primary factor in the driving activity as the driver 

continuously interacts with certain vehicle control/auxiliary parts and the vehicle's 

environment. These interactions create observable patterns related to the driver's actions. 

The patterns could be used to detect abnormal driver behavior.  

Due to the significance of this research area, several researchers from various 

educational and relevant backgrounds have studied and proposed approaches to detect 

abnormal driver behavior. As a result, driver behavior detection has been addressed from 

different perspectives that include: engineering, cognitive science, and physics. In order 

to review several driver behavior detection approaches, this study categorized the current 

solutions into four categories: behavioral measures-based detection approaches, 

physiological conditions-based detection approaches, in-vehicle measure-based 

approaches, and hybrid-based approaches. 
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Behavioral Measures-Based Detection Approach 

The behavior measured based solutions are the most popular solutions. Most of 

behavioral-based detection approaches share the idea that the facial expressions of a 

driver could be monitored through a camera and could be used to detect driver behavior 

(as shown in figure 2.3). In other words, the thought behind these kinds of solutions is to 

seek and record physical driver behaviors and features, which includes: eyes status 

(open/closed), eye gaze, head nodding, face color, or any other driver behaviors that can 

help detect nonstandard driving. In order to identify driver behavior, physical sensors 

combined with image processing technology have been used to monitor, collect, and 

detect a driver's facial expression. 

 

Figure 2.3. Driver eye and gaze tracking (Collett, 2016) 

 

 Particular methods or techniques have been used to extract certain features. 

Behavior measures-based approaches are widely adopted by many researchers due to the 

fact that most driver behaviors can be detected by observing and collecting driver’s visual 

information (Hartley, 2000). Therefore using the measurements based on driver 

behavioral observations to detect driver behavior has been found to be a reliable method 
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to predict driver behavior and has been used in commercial products such as 

SeeingMachines and Lexus. Figure 2.4 represents the backbone of the behavioral-based 

detection approach. As shown in the figure, the main processes of this approach are: 

driver face detection, driver eye and facial part detection, eye and other facial parts 

tracking, features extraction, abnormal driver detection, and finally decision making 

process. 

 

Figure 2.4. Behavioral measures-based approach 

 

Some of the behavior-based detection approaches rely on a single factor to detect 

abnormal behavior (i.e. single factor-based solutions). In 2001, Veeraraghavan & 

Papanikolopoulos proposed a behavior measure-based approach to detect driver fatigue. 

The proposed solution employs image processing and eye tracking techniques to detect 

the driver's face and extract features such as eye state (open or closed). In order to capture 

the driver's face in real time, a video camera was directly mounted towards the driver’s 
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face. The collected output of the camera, which represents continued stream of images, 

was the main input to the proposed approach. These collected images were processed to 

monitor the driver’s eyes by comparing the consecutive frames to detect micro-sleeps, 

defined in the paper as short periods of sleep.   

The main drawback of this approach is neglecting certain realistic scenarios such 

as the fact that many drivers wear sunglasses while driving, which make the suggested 

approach unusable (Sahayadhas, Sundaraj, & Murugappan in 2012 ;Veeraraghavan & 

Papanikolopoulos, 2001). Also, instead of using the entire face as an input to extract eyes 

state (open or closed) several eye tracking approaches could achieve the same work with 

better performance and accuracy. Moreover, execution times for some typical image-

processing techniques are associated with high computational time while real practical 

problems in image processing requires high end  parallel computing to avoid significant 

delays in the processing time. In 2009, Yu Xun suggested a solution to detect drowsiness 

by monitoring whether the driver's eyes are open or closed (Yu, 2009). If the driver's eyes 

are opened, the degree of eye openness will be calculated and compared to threshold 

values before making the decision.  

Dong and Wu proposed an algorithm to detect driver fatigue based on the distance 

between the driver's eye lids while driving (Dong & Wu, 2005). The study relies on 

computer science and image processing to locate and extract body features. An image 

processing technique that depends on skin colors has been used to locate a driver's face, 

then the driver's eyes are recognized by projections and finding connected components. 

The study includes a comparison between the proposed approach and other behavior 

measures-based detection approaches. The results show high eye detection rates and high 
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fatigue detection rates compared with other methods. However, like most eye tracking-

based driver behavior detection approaches, the issue with the proposed solution is 

neglecting many realistic scenarios such as wearing sunglasses or a cap while driving. 

Currently, eye tracking could be done using electronic potentials measured with 

electrodes placed around the eyes (Sahayadhas, et al., 2012). Nevertheless, using 

electrodes to monitor a driver's eyes status is considered an intrusive and unpractical 

solution.     

In order to overcome the limitations and drawbacks of using eye tracking 

techniques to detect driver behavior, several researchers addressed the problem from 

different perspectives. The correlation between gaze directions and the external traffic 

environment (such as pedestrians, traffic signs, and road status; straight, and curved) has 

been used to detect abnormal driving (Apostoloff, & Zelinsky, 2004; Fletcher, Loy, 

Barnes, & Zelinsky, 2005; Hirayama, Mase, & Takeda, 2012). For instance, in 2004, 

Apostoloff & Zelinsky could track the visual behavior of the driver to the road by 

tracking the driver's gaze direction and using a lane tracker system. Due to using gaze 

direction and lane detection systems, the proposed solution represents an example of 

integration between vision inside and outside the vehicle.  

An alternative approach that does not rely on a driver's visual observations was 

conducted to determine the alertness level of the operator (Desai & Haque, 2006). The 

research suggested an approach to overcome many issues related to previous work such 

as the influence of the external environment (traffic, weather, and lightness, etc.) on the 

performance of the system. The proposed solution is based on the idea that the pressure 

on the accelerator pedal can be used to determine the level of driver alertness. The 
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research installed a pressure sensor on the accelerator pedal to detect driver fatigue. Baek, 

Chung, Kim, and Park, (2012), Yu, (2009) applied the same idea in which angle sensors 

were mounted on the steering wheel to measure the driver's steering activities. A 

distracted driver would cause high jitter in steering angles that can be captured by 

steering wheel angle sensors. In fact, rather than using mounted sensors to collect vehicle 

data, CAN-bus can be easily utilized to access most of in-vehicle data such as speed, 

acceleration, steering angle, and accelerator pedal pressure (in-vehicle measure-based 

approach will discuss this part). CAN-bus is a vehicle that is used by a vehicle's 

microcontroller parts to communicate and exchange data. Therefore, bus data would be 

more accurate and reliable than the collected data pressure or angle steering sensors 

because of the influence of the external environment on the sensors' readings.  

The idea of mounting pressure sensors on the steering wheel is a significant 

invention that is related to a vehicle's safety system. This invention was registered as a 

patent “Steering Wheel with Hand Pressure Sensing" (Lisseman, Andrews, & Bosch, 

2011). This invention aimed to mitigate the increase of potential distractions that are 

associated with portable devices such as cell phones, mp3 players and iPods. In many 

cases, the interaction with these electronic devices requires drivers to take their hands off 

of the steering wheel. Therefore, identifying the presence of the driver's hands on the 

steering wheel is a significant factor in detecting distracted drivers. In order to overcome 

the main limitations and drawbacks of single factor-based approach, multiple factors-

based approach appeared to increase the accuracy of the detection algorithms of driver 

distractions. 
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On the other hand, multiple factors-based approaches appeared as a result of 

accuracy issues associated with some of single factor-based solutions. Including more 

than one factor into the design would increase the detection accuracy of (Sigari, Fathy, & 

Soryani, 2013). Besides the low accuracy rate, relying on a single factor would cause a 

high false positive rate (Sigari, Fathy, & Soryani, 2013). For example, Apostoloff and 

Zelinsky (2004),  Dong and Wu (2005); Fletcher, et al., (2005); Hirayama, et al. (2012); 

Veeraraghavan and Papanikolopoulos (2001) were successfully able to extract the 

driver's visual features, yet they suffered low detection accuracy and false positives 

compared to other multiple factor based detection approaches. As an alternative method, 

Sigari, et al., (2013) suggested a driver's face monitoring system for fatigue distraction 

detection using multiple factors extracted from a driver's face and eyes rather than a 

single factor. The study used the following factors: head rotation, percentage of eye 

closure, eyelid distance change with respect to the normal eyelid distance, and eye 

closure rate. Similar to Sigari, Fathy, and Soryani (2013); Batista (2007) suggested a 

solution based on a computation of eyelid movement parameters such as eye blinking and 

head orientation that represents point of attention. Sigari, et al., (2013); Batista, (2007) 

distinguished their work from other multiple factor based eye tracking approaches by 

having multiple factors from different visual expressions (driver's head gaze and eye 

movements). Contrasting, Hirayama, et al., (2012) suggested a solution to monitor two 

different factors from the same visual expression (driver's eyes blinking and closure rate). 

However, relying on more than one visual expression would increase the overall 

detection accuracy and reduce the false positives of the proposed approach (Batista, 

2007).       
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Desai and Haque, (2006); Krajewski, Sommer, Trutschel, Edwards, and Golz, 

(2009); Lee, Li, Liu, and Chen, (2006) followed the same approach, in which visual 

observations such as eyes conditions and movement, head movement, and facial 

expression have been used to identify driver behavior as well. Physical sensors were used 

to collect data and then a specific method such as image recognition to extract certain 

features was applied. (Lee, et al., 2006) used multiple fixed cameras to capture facial 

expressions, eye movement, head movement, and gaze movement. The collected data 

was processed and then patterns were generated to identify the driver’s behavior.  

Although behavior measures-based approaches have several advantages, some 

performance, applicability and intrusion issues are still related to some of them. 

According to Sahayadhas, et al. (2012), the accuracy of behavioral measures-based 

detection approaches would be negatively affected by many factors. These factors 

include: driver activities (e.g. adjusting the radio, talking to passengers, or picking up a 

beverage), environmental backgrounds, and driving conditions. In addition, these 

approaches require a very precise camera for drivers. 

 

Physiological Conditions-Based Approach 

Due to the limitations and detection accuracy issues that are related to facial 

expression and eye/head tracking solutions, other studies addressed the distracted driving 

issue from different perspectives. The thought behind these approaches is to track and 

monitor the physiological changes of a driver while driving. Such physiological changes 

include: heart rate, blood elements, skin electric potential, and electroencephalographic 

activities (EEG).  
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Electroencephalogram activities-based approach. Several researches proved 

that the EEG signals could be used as a sign of a driver's alertness level (Akin, Kurt, 

Sezgin, & Bayram, 2005; Keren, Yuval, & Deouell, 2005; Tagluk, Sezgin, & Akin, 

2010). The changes in the EEG spectrum accompanying performance are correlated with 

abnormal behaviors such as distraction, drowsiness or fatigue. Similar to the EEG 

spectrum itself, the precise pattern of correspondence between the EEG and behavior is 

different for each individual. This correlation shows stability within individuals across 

sessions, which can lead to practical applications such as monitoring and detecting 

abnormal driver behavior. Several researchers proved that it is feasible to accurately 

detect driving errors using a multi-channel EEG power spectrum (Akin, Kurt, Sezgin, & 

Bayram, 2005; Keren, et al., 2005). Figure 2.5 portrays a flowchart of processing EEG 

signals to evaluate the alertness level of the driver. 

 

Figure 2.5. Flowchart of EEG signals processing (Sezgin, & Bayram, 2005). 

 

The first 3 phases are common in most EEG approaches. In the noise removal 

phase, a simple low pass filter was used to remove low and high frequency noises. Then 

the researcher calculated the average power spectrum for all the channels they used. The 

calculated average was used in the next phase by calculating the correlation coefficient 
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between the driving performance of the driver and the log power spectrum of all EEG 

channels at certain frequencies. Finally, the Principle Component Analysis (PCA) was 

used to decompose the highest correlation coefficients while the highest Eigen values 

were chosen to be the inputs to the linear regression model to estimate the driving 

performance of the driver. The study shows the feasibility of using multichannel EEG 

power spectrum to detect drivers' errors and to estimate drivers' performance.   

Healey and Picard (2005) conducted research consisting of multiple experiments 

to propose a solution to monitor the relative stress levels in daily car driving tasks. The 

paper suggested an approach for measuring stress using physiological signals. These 

signals include: electrocardiogram, electromyogram, skin conductance and respiration. 

Data were collected from various drivers in a real time driving environment. The 

recorded data were used as an input of linear discriminant analysis to detect stress levels. 

The drivers were instructed to follow certain routes where certain levels of stress were 

planned to occur. Similar to other physiological-based approaches, this approach 

provided feedback about a driver by continuously collecting data without interfering with 

the driver’s task performance. The high detection and accuracy rates in this study were 

due to include multiple physiological signals in the detection algorithm rather than a 

single factor.  

Although approaches based on EEG signals have some advantages over other 

abnormal driver behavior detection approaches, the main issue with the EEG approach is 

being an intrusive solution and requiring a high collaboration from the driver. The 

possibility of using multi-channel EEG data to predict the inconstant global level 

alertness by measuring the driving performance index (i.e. the deviation between the 
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center of the vehicle and the center of the cruising lane) was also investigated (Sezgin, & 

Bayram, 2005).   

Vital signs-based approach.  In order to limit the intrusiveness problem in EEG-

based approaches, driver behavior detection has been addressed from different 

perspectives. One of these perspectives is vital signs. Chieh and Isa (2011) followed an 

approach that depends on vital signs where the abnormal driver behavior was detected 

based on three different human factors. These factors are: facial expression, thermal 

imaging, and heart rate. In order to collect the required data a visual camera, a thermal 

camera, and a wireless heart rate were used. In addition to these physical sensors, an 

artificial intelligence system has been implemented to predict abnormal and dangerous 

driver behavior incidents and to alert the driver. The main impact of this solution is the 

inclusion of an artificial intelligence system with multiple human factors to detect if the 

driver portrays abnormal states and then acquire a decision on whether the driver 

behavior showed any abnormality. As a result, the accuracy of the detection would 

increase. On the other hand, having many inputs in this study increased the amount of 

collected data, which could lead to reducing the processing time. In order to resolve this 

issue the paper suggested parallel processors instead of using a single CPU. One of the 

issues the study does not address is a driver with an elevated heart rate caused by disease 

and not related to driving intoxicated. Unlike other approaches, no false negative or 

positive was addressed or measured in this study. In addition to previous drawbacks, 

usability of the proposed approach is a major issue since not all drivers feel comfortable 

monitoring their heart rate while driving.   
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 Dissimilar to the other physiological based driver behavior detection approaches, 

Intelligent Transport System at Minnesota University suggested a non-intrusive solution 

(Malik, et al., 1996). Instead of placing the sensors and electrodes on the body of the 

driver; each part of the steering wheel was covered with conductive fabric (biosensors 

and electrode) that is used to collect physiological data. Besides using the steering wheel, 

the conductive fabric was placed on the driver's seat backrest as a second non-intrusive 

method. The driver's heart rate was measured to generate the power spectral density 

(PSD) (Malik, et al., 1996). The suggested non-intrusive methods in the study were used 

to collect the physiological data and then the researchers applied other findings attained 

from further researchers that portray the ratio between low frequency band to high 

frequency band decreases when human condition changes from awaking to drowsiness 

(Elsenbruch, Harnish, & Orr, 1999; Tsunoda, Endo, Hashimoto, Honma, & Honma, 

2001). Similar to solution Malik, et al., (1996), Baek, et al., (2012) suggested a non-

intrusive solution using biosensors that were installed in the back of the driver's chair that 

contained high-input impedance amplifiers, and specific kind of conductive textiles 

installed in the seat capable of collecting electrocardiogram data through clothing. 

Several limitations and issues such as practicality, accuracy, and driver comfortability 

could be negatively affected by these approaches. According to Yu, (2009), the pulse 

wave sensor measurement could be sensitive to hands where the method and the strength 

of holding the steering wheel by a driver could affect the sensors' readings. Besides, heart 

rate variability (HRV) is a unique metric for individuals that would lead to difficulties in 

creating a general detection pattern. One of the other issues is the other parameters that 

could affect the driver behavior, which make physiological conditions solely incapable of 
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detecting driver behavior (Yu, 2009). For example, a driver might suffer a disease that 

can cause an increase in heart rate preventing this method from creating a general pattern 

of abnormal driver behavior. 

 

In-Vehicle Measures-Based Approach 

 

The main thought behind in-vehicle measure-based approaches is using a series of  

data analysis methods to evaluate the driving proficiency and detecting driver errors. 

Such approaches use in-vehicle operating data as an input of abnormal driver behavior 

detection algorithm. These data include: speed, acceleration, engine torque, the brake 

pressure, steering angle, traction, and yaw rate. Many researches who addressed this topic 

from an engineering perspective have conducted their studies based on the hypothesis 

that driver behavior can be characterized as a sequence of basic actions. These actions 

can be associated with a specific state of the driver-vehicle- environment and 

characterized by a set of observable features. The presence of repeated sequences of the 

driver actions are called  patterns, which are generated by collecting different kinds of 

data such as speed, acceleration and steering angle at a certain time.  

Al-Sultan, et al., 2013 proposed a solution to detect four types of driver behavior 

in real time driving. The driver behaviors that have been addressed in this paper include: 

normal, fatigued, drunk and reckless driving. The proposed approach used the Bayesian 

network model to perform probabilistic reasoning to infer with the behavior of the driver. 

The input of this model has been collected from different research papers and the 

collected data has been gathered from different kinds of sensors to create certain patterns. 

The inputs were collected by physical equipment such as cameras, speed sensors, GPS, 
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alcohol and the accelerometer sensor. The proposed approach was implemented based on 

three phases: the sensing phase, reasoning phase, and the application phase. The 

contextual information that was collected in the sensing phase represents the input of the 

reasoning phase which used a Dynamic Bayesian network algorithm to detect the 

behavior of the driver. The study also proposed a corrective action algorithm, which aims 

to suggest the proper actions for other vehicles in the road in case the detection algorithm 

detects abnormal behaviors for the driver.   

The study neglects many details of the action algorithm and instead focuses more 

on the detection algorithm. Moreover, the study did not mention the structure, content 

and format of warning messages that have been used in the proposed action algorithm 

besides the dissemination methods. Another issue in this study is using data from other 

literatures rather than collecting the data directly, which could be unreliable. 

The Hidden Markov Model and Gaussian Mixture Models were used to establish 

a pattern of driver characteristics based on the collected data from the CAN-bus (Choi, 

Kim, Kwak, Angkititrakul, & Hansen, 2007). These data include steering wheel angle, 

brake status, speed, and acceleration. Five actions were considered as driver distraction 

tasks: calling a video portal, controlling the radio, controlling the window, talking with an 

assistant, or performing some common tasks. In addition to distraction tasks, the 

researchers specify six long term behaviors: turn left, turn right, lane change left, lane 

change right, stop, and neutral driving. The main issue was low accuracy for driver 

identification and distraction detection besides the limited number of distraction tasks 

that were addressed. Similar to Choi, et al., (2007), Mitrovic (2005) conducted a research 

using Hidden Markov Model to recognize driving events. The study refers to driving 
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events as any significant change in vehicle speed or attitude such as stop, or turn right or 

left. The researchers developed a data acquisition system which includes: accelerometers, 

gyroscopes, and a GPS. The idea behind this study is to observe frequently occurring 

patterns in driving since most drivers visit similar locations (school, job, friends’ houses, 

and relative’s houses). By identifying a driver’s patterns, lots of useful information could 

be gathered to assist in event driving detection. The main challenge in this approach is the 

more places the driver visits, the more patterns there are. Assigning a pattern to each 

place a driver visits can be an impractical way of detecting the driver's behavior since 

individuals may visit new places daily.  

To overcome some drawbacks of other in-vehicle measure-based approaches, 

another study was conducted by Jensen, Wagner, and Alexander (2011) to evaluate driver 

performance and detect driver behavior. An in-vehicle measure -based approach was 

proposed to evaluate driver performance based on three analysis methods: data threshold 

violations, phase plane analysis with limits and a recurrence plot with outlier limits. In 

this research, six different driver classifications were studied: timid, cautious, 

conservative, neutral, assertive and aggressive. This study establishes a single and multi-

variable threshold analysis methodology, as well as a recurrence plotting strategy to 

assess drivers during their ordinary driving conditions.  Every instant value that is larger 

than the specified threshold was considered a violation. Real data were collected by 

having the participants drive for two weeks after equipping their vehicles with the Engine 

Control Unit (ECU) data device. The CAN data recorder was used when driving to 

collect data such as speed and acceleration. The research model was implemented based 

on various gathered inputs, which include: the vehicle speed, engine speed, coolant 
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temperature, and throttle percentage. As a result of input variations, the detection 

accuracy was high. In addition, an important advantage of the proposed approach is the 

suggested data collecting method. Using an in-vehicle data acquisition device mounted to 

the OBD-II diagnostic port with no interaction with drivers makes them more 

comfortable. In spite of several advantages of this study, the research includes some 

drawbacks such as the limited number of participants which could affect the accuracy of 

the results. Another extended study that investigates such concepts with a larger number 

of participants and refinements of the methodology would be needed. 

To employ standard measurable safety parameters Lu & Wang, (2011) conducted 

research in which a K-means clustering algorithm was used combined with measurable 

safety parameters to distinguish four different longitudinal driver behaviors. These 

behaviors included: aggressive versus prudent, unstable versus stable, risk prone versus 

safety prone, and non-skillful versus skillful. The paper included several measurable 

safety parameters from automotive engineering perspective including:  

• Average level of time  headway during car-following (THW)  

• Fluctuation level of the time headway during car-following (σTHW) 

•  Fluctuation level of the time headway during car-following using standard deviation 

( σ TTCi) 

• Brake response time of the driver to the lead vehicle deceleration (TRESB) 

• Accelerator release response time of the driver to the lead vehicle deceleration 

(TRESA) 

• Preferred danger estimation level to trigger brake pedal activation (TTCi) 
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• Preferred danger estimation level to trigger accelerator pedal release (TTCi) 

• Pedal switch urgency level (Tsw)  

Using these standard measurable parameters increased the accuracy and 

efficiency of the proposed approach as well as led to high detection accuracy and more 

reliable results. According to Lu and Wang (2011), carrying out the same concepts by 

real world environment instead of simulation would validate and evaluate such work.  

Unlike other research that depends on biometrics features to detect drunk drivers, 

a more applicable approach was proposed using specific smart phones (Fazeen, Gozick, 

Dantu, Bhukhiya, & González, 2012). The main idea was to use a smart phone equipped 

with an accelerator and orientation sensors to read the data and compare it with 

distinctive drunk driver patterns. The proposed detection algorithm relies on extracting 

and analyzing drunken behavior based on lateral and longitudinal accelerations and the 

lane position maintenance. Currently, many smart phones are equipped with accelerator 

and orientation sensors, which make this solution convenient and realistic to detect drunk 

drivers in a real time manner. However, the increase in smart phone power consumption 

caused by the proposed algorithm negatively affected battery life (Fazeen, et al., 2012). 

In order to overcome this limitation, the proposed approach can be implemented in the 

vehicle itself using available sensing data such as location by GPS, speed and 

acceleration by the CAN-bus and lateral acceleration by a gyroscope. (Imkamon, 

Saensom, Tangamchit, & Pongpaibool, 2008) addressed the issue from different 

perspectives. One of these perspectives was slightly different from previous in-vehicle 

measure-based approaches. An On-Board Diagnosis II (OBD-II) reader was used to 
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collect the engine speed and velocity of the vehicle. A fuzzy logic system was used to 

classify three different levels of danger. In order to train the fuzzy interface, a survey was 

used to collect the opinions of passengers to rate how safe they feel. Using the fuzzy 

interface helped build an accurate and learning intelligent system to detect variant levels 

of danger. Although a large number of information could be collected from the CAN-bus, 

most of the current studies in driver behavior and distraction detection utilized limited 

inputs from the various available data. 

 

Hybrid-Based Approach 

The idea behind these types of approaches is to combine the advantages of two or 

more different categories (i.e. Behavioral measures-based, Physiological-based, and In-

vehicle measure-based) together in one solution. For example, the approach using the 

CAN-bus data (i.e. vehicle data) combined with driver's eyes status (behavior measures-

based) to detect driver behavior would be considered a hybrid-based approach. Unlike 

behavior measures-based approaches, hybrid-based approaches depend on more than a 

single factor from different categories. The main advantage of hybrid-based approaches is 

combining the strength of two or more different categorized driver detection approaches 

into one behavior detection approach. 

UTDrive project is a platform for a human- machine interactive system 

(Angkititrakul, et al., 2009). This platform is an ongoing project to collect and analyze 

multimodal data gathered for modeling driver behavior while the driver is performing 

other secondary task such as talking on the cell-phone or operating a navigator (GPS). In 

order to build such platform to recognize driver behavior, a comprehensive understanding 
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of human behavior besides mathematical models is required. Li, Jain, and Busso, (2013) 

suggested one of the best examples of the hybrid driver behavior detection approaches 

that used the UTDrive platform to detect a distracted driver. A solution to detect a 

distracted driver was proposed by using a video camera to capture the driver's face, a 

microphone to capture the driver's audio, a road camera for lane tracking, and a data bus 

reader to collect the vehicle activity. Figure 2.6 shows the proposed multimodal 

information to monitor driver behavior.  

 

 

Figure 2.6. Monitoring driver behavior model 

Figure 2.6 shows the combination of all visual and acoustic observations and 

CAN-bus activity in one solution. In this paper, a distracted driver was defined as a driver 

who is voluntarily or involuntarily involved in a secondary task that causes diversion of 

attention from the primary task (driving). These secondary tasks include: operating a 

radio, operating and following a navigation system, talking to a passenger, and talking on 

the phone. The distractions generated by fatigue, drowsiness, alcohol, aggressiveness or 

other sources of distraction were neglected in this study.  
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The CAN-bus information used to detect a distracted driver includes: steering 

wheel angle, vehicle speed, and, brake pedal pressures. Furthermore, the acoustic 

information that is relevant to secondary tasks recorded talking on a cell phone or 

following a GPS. Finally, a video camera mounted inside the vehicle facing the driver is 

used to collect visual observations which consist of: head yaw and pitch values, eye 

movements and closure rate, and blink frequency. These values were estimated with 

CERT algorithm, which was developed by (Whitehill & Movellan, 2008). The proposed 

approach was tested and evaluated based on a real world driving environment involving 

conditions that are hard to replicate in simulation. Using a real driving environment is 

considered one of the major advantages of this approach. In addition to a real world 

environment, multiple factors were taken into consideration from different perspectives, 

including vehicle measures and visual and acoustic observations that would combine the 

advantages of both approaches in one solution. On the other hand, the proposed approach 

suffers from a few issues and limitations that include: neglecting the learning effect of the 

driver, and neglecting the driver behavior changes due to weather and illumination 

conditions (Whitehill & Movellan, 2008). Additionally, the corpus was recorded using a 

predefined route (Whitehill & Movellan, 2008). Cheng, Zhang, Lin, Feng, and Zhang 

(2012) proposed another hybrid-based driver behavior detection approach in which a 

drowsy driver was detected using many factors that include: abnormal eye behaviors, 

steering wheel activity, and vehicle trajectory. However, this approach still experiences 

some limitations of behavior measures-based detection approaches. 

 

 

 



 

29 

 

Discussion 
 

The detailed review of several research papers in regard to the inattentive driver 

behavior detection approaches, showed that the current approaches could be classified 

under certain categorizes. This classification is based on the measures that are used in the 

proposed algorithm. For example: the measures that are used in behavior measures-based 

approaches include: head pose, eye blinking, yawning, and eye closure. Physiological 

measures-based approaches measures include: heart rate, blood pressure, and 

physiological signals. In-vehicle data measures-based approaches include: steering wheel, 

acceleration, speed, and brake value. Meanwhile, the hybrid approach measures include 

the combination of two or more of other categories measures.  

Behavior Measures-Based Approach: due to the large quantity of research work in 

behavior measures-based driver approach, many methods are used in data acquisition and 

feature extraction. This variance of methods led to both a high detection accuracy rate 

and a low false positive rate. Because an image process and computer vision techniques 

were used to extract a driver's visual features in most behavior measures-based 

approaches, these solutions can be considered computerized approaches. Furthermore, 

behavior measures-based approaches are considered non-intrusive behavioral approaches 

because they lack of a direct contact/interact with the driver.  

Although behavior measures-based approaches have many advantages, these 

approaches suffer from certain limitations and disadvantages. Data acquisition methods 

are one of the limitations that could significantly impact behavior measures-based 

approaches. For example, a driver who wears glasses would cause a serious problem to 

eye based detection approaches, and a driver who wears a cap or scarf would cause issues 



 

30 

 

to head based detection approaches. Another main issue with the eye and head movement 

tracking approaches is the need to perform an intensive calibration process for each 

individual. For instance, to evaluate some approaches, applicants were not allowed to 

move their heads and only very slight head motions were allowed whereas recalibration 

was needed whenever users moved their heads. In addition to an intensive calibration, 

lighting is another limitation, because regular cameras could contain issues with 

acquiring detailed data. Instead, some researchers used infrared light emitting diode to 

overcome regular camera limitations. However, infrared light emitting diodes do not 

operate well during the day. Due to this limitation, most researchers used a regular 

camera during the day and an infrared camera during the night.  

Physiological Measure-Based Approach: unlike in-vehicle data and behavior 

measures-based driver behavior detection approaches, physiological based approaches 

can detect driver behavior in very early stages. This early behavior detection helps take 

early proper action such as alerting a driver in a timely manner to prevent road accidents. 

One of the other advantages of physiological condition-based approaches besides early 

behavior detection is the high reliability and accuracy of these approaches. The main 

disadvantage of a physiological condition-based approach is the intrusive nature of these 

approaches. In order to collect physiological conditions such as heart rate or blood 

pressure wired or wireless devices need to be attached to the driver's body which makes 

these approaches intrusive and non-practical. To overcome the intrusive nature of these 

solutions, some researchers added wireless sensors on steering wheels or on the driver's 

seat rather than on the body of the driver. However, these solutions are still considered as 

none fully comfortable solutions for the drivers. In addition, sensitivity of bio and EEG 
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sensors to impedance changes and disturbance caused by external environment noise, 

could negatively affect these solutions.  

In-vehicle data measures-based approach: unlike physiological-based approaches, 

in-vehicle data based approaches are considered fully non-intrusive approaches because 

they use in-vehicle data operating data that is available on the CAN-bus as an input of the 

driver behavior detection algorithm. The CAN-bus is one of the important and rich 

resources of information that includes vehicle speed, vehicle acceleration, brake pressure 

value, steering wheel angle, and gas pedal pressure. These available data have been 

exploited by many researchers to create patterns associated with abnormal driver 

behavior such as distraction, drowsiness, and fatigue. However, most of the current in-

vehicle data based detection approaches have a limited number of inputs. The CAN-bus 

has thousands of available data that could be correlated with the driver’s condition and be 

used to detect driver behavior. As a result, this can increase the accuracy of detection rate 

and decrease the false positive rate as well. 

Hybrid measures-based approach: the hybrid-based driver behavior detection 

approach combines two or more different detection categories in one solution. Therefore, 

these approaches would include the advantages of more than one category. The hybrid 

based approaches have a high accuracy detection rate and low false negative rates due to 

include several inputs from different perspectives such as combine the visual 

observations and the CAN-bus inputs. On the other hand, having several inputs from 

different perspectives would increase the complexity of the system besides having 

limitations of each detection category.  
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Despite of these limitations of the hybrid driver distraction detection approaches, 

these approaches are still considered reliable and efficient due to the fact of having high 

accuracy rate and low false negative rate. 

 

Driver Simulators to Investigate Distractions   

Driving simulators provide researchers with various advantages to help them 

conduct their research in comparison to real vehicles. According to Winter, Van, and 

Happee  (2012), these advantages include: controllability, reproducibility, and 

standardization: most driver simulators are capable of adjusting and manipulating visual 

traffic, road status (congestion level, traffic light, kind of roads), and weather conditions 

as a function of research aims. The ability to generate different driving scenarios enables 

the researcher to investigate the research question from different perspectives in a shorter 

time compared to the real environment. Also, simulators used for training enable trainees 

to be exposed to different driving scenarios, weather conditions, road status and hazards 

which can be risky and hard to create in a real world environment. 

1. Ease of data collection: Many of the current driving simulators can measure driving 

performance accurately and efficiently. In most cases, conducting the study in a real 

environment can be a fundamental challenge to obtain accurate, complete, and 

synchronized measurement data. For instance, in one study using an equipped vehicle 

and a driving simulator, it was not feasible to calculate the distance between the car 

and a stop line on the road, whereas the simulator was able to readily obtain this 

information (Plantec, 2004). Also, Roskam, Brookhuis, Waard et al., (2006) pointed 

to the challenge of calculating the vehicle lateral position because it requires visible 
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and clear lane markers while weather conditions and shades can affect the correctness 

of the measurement. 

2. Risk-free simulation of potential dangerous situations: Simulators can be used to train 

operators on how to deal with unpredictable or safety-critical tasks that may be 

improper to practice on the road, such as collision avoidance (Hoeschen, Verwey, & 

Bekiaris, 2001). Furthermore, simulators allow researchers to investigate different 

kinds of hazards perception by exposing drivers to several dangerous driving 

situations, which can be an ethically unacceptable endeavor in a real environment 

(Underwood, Crundall, & Chapman, 2011).  

Driver simulators disadvantages. On the other hand, the current driver simulators 

still suffer from known disadvantages and challenges. According to Winter, Van, and 

Happee (2012), these disadvantages include:  

1. Limited perceptual, physical, and behavioral fidelity: low fidelity simulators may 

induce unrealistic driving behavior and consequently result in invalid research 

conclusions. Simulator fidelity is known to affect user opinions. Low fidelity 

simulators can also demotivate participants and make them prefer a real environment. 

Käppler (2014), debates that the safety features that are considered one of the 

advantages of driving simulations can be interpreted as a disadvantage in some cases. 

For example, the real danger feeling and the real consequences of actions we 

experience are not the same in a driving simulator. 

2. Lack of research investigating validity of simulation: a rising body of evidence points 

out that driving simulator measures are predictive for on the road driving performance 

(Bédard, Parkkari, Weaver et al., 2010). However, only a few studies have 
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investigated whether the learned skills in a driving simulator can be completely or 

partially transferred to the road (Strayer & Drews, 2003). 

3.  Simulator sickness (e.g. dizziness, headache, and nausea): this issue can ruin training 

effectiveness and also negatively affect the usability of driver simulators. Research 

shows that simulator sickness is more prevalent for old people than for young drivers 

(Brooks, Goodenough, Crisler, Klein, Alley et al., 2010). Studies also show that 

limiting the horizontal field of view, avoiding sharp curves or continuing to stop 

during the simulation experiment, along with using short sessions (less than 10 min), 

with enough breaks between sessions, significantly decreases simulator sickness 

(Brooks, Goodenough, Crisler, Klein, Alley et al., 2010). 

Driver simulators evaluation. Using simulation to conduct research on operator 

behavior and to train operators has been around since the early days of flight history 

(Allen & Jex, 1980; Moroney & Lilienthal, 2009). Because training pilots in the real 

world environment is too expensive, the use of simulation is justified. However, it is 

more challenging to defend using driver simulation in investigating different driver 

behaviors, conducting research, and training drivers based on the cost. The most obvious 

advantage of using driver simulators is not related to the cost, but rather safety. During 

the last decade because driving  simulators started being accepted practice to conduct 

research and training, many features and enhancements in terms of design, display, and 

capabilities were supplemented (Moroney & Lilienthal, 2009). These features aim to 

increase both validity and reliability of driving simulators. However, validity of many 

current driving simulators that are used to study driver behavior and conduct research is 

still a critical issue (Moroney & Lilienthal, 2009).  
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Simulation validity. Validity in behavioral studies refers to how well a measure 

and procedure does what it is supposed to do (Graziano & Raulin, 1989). Using a driving 

simulator as a research measure or training tool provides the researcher with a high 

flexibility represented by the capability of creating different scenarios under different 

conditions. As a result, the researcher can save more time, cost, and effort compared with 

conducting the research in a real world environment. Despite the huge benefits and wide 

use of driving simulators, some important technical details are still neglected by 

researchers. These technical details are related to how well the simulator represents the 

real environment (Graziano & Raulin, 1989). The decision of whether to use driver 

simulation to investigate a particular driver behavior should be based on whether the 

simulator is adequately valid to conduct that research (Kaptein, Theeuwes, & van der 

Horst, 1996). In Kaptein, Theeuwes, and van der Horst, (1996), the researchers discussed 

two different factors that can significantly affect the validity of driving simulators. These 

factors are physical validity and behavioral validity.  

Physical validity. Driving simulators have different shapes, designs, capabilities, 

and sizes. Physical fidelity is the level in which the simulator replicates the physical 

properties of the driving situation, unlike behavioral fidelity, which is related to the 

ability of the simulators to replicate drivers behavior observed in the world. Low fidelity 

simulators: consists of: personal computers with a gaming steering wheel, and pedal 

components with a normal chair. Figure 2.7 represents two different examples of low 

fidelity driver simulators that are used for video gaming and to conduct very limited 

research and training.  
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Figure 2.7. Low fidelity driver simulators (Allen, Park, & Cook, 2007) 

Furthermore, medium fidelity simulators demonstrate a better level of driving 

experience that is close to real world environment by using advanced technologies 

utilizing comprehensive graphics and providing motion feedback to the driver. Figure 2.8 

represents an example of medium fidelity driver simulator that is used for research in 

several universities such as Arizona State University, and Ohio State University. This 

simulator consists of: half of a vehicle (Ford Focus) that is connected to workstation 

simulation system, three outsized screens that project traffic scenes, and its rearview and 

side view mirrors display additional real-time images. These kinds of simulators can 

create hundreds of different driving scenarios, from a rural road with emergency vehicles 

to a city highway. 
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Figure 2.8. Medium fidelity driver simulator 

Finally, high fidelity simulators can provide the driver with approximately a 360-

degree view by the advanced sophisticated visual graphics, and dynamic feedback 

corresponding to the driver speed and acceleration. These kinds of simulators provide the 

driver with a high level of driving experience close to driving in real environment by 

using the following systems (Salaani, Heydinger, & Grygier, 2002): 

• Control Feel System: accelerator and brake pedals apply software-controlled 

electrical motors to provide feedback. 

• Motion System: it can rotate the physical part of the simulator around its vertical axis 

by a value close to 360 degrees in each direction. 

• Visual System: comprehensive and sophisticated graphics with 3-D with and no 

edges. 

• Audio System: The simulator acoustic system provides different kinds of sounds that 

emulate engine, tire, wind, and other vehicle noise, as well as special effects. 
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 National Advanced Driving Simulator (NADS) is one of the most popular 

examples of high fidelity simulators and is located at the University of Iowa (NADS, 

2009). This simulator consists of: a large dome that contains entire vehicle cab, which 

is mounted to a motorized turntable allowing 400 square meters of horizontal and 

longitudinal travel and close to a 360 degree view (sees figure 2.9).  

 

Figure 2.9. High fidelity driver simulator (Salaani, Heydinger, & Grygier, 2002) 

Behavioral validity. To ensure the results of driver simulator research equate to 

driving in the real world, simulators should be validated. Behavioral validity refers to the 

level to which the simulator creates the same driving experience that happens in the real 

driving environment (Mullen, Charlton, Devlin, & Bedard, 2011). In addition to 

comparing the performance in simulation and real environments, behavioral validity is 

defined in terms of absolute and relative validity (Mullen et al., 2011). Although absolute 

validity entails producing the same numeric values in both the simulation and real world 
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driving, relative validity is established by whether the conclusions of the two 

environments are in the same direction and magnitude (Mullen et al., 2011). Many 

simulator-based studies rarely achieve absolute validity, but achieving relative validity is 

both highly possible and sufficient for researchers in most cases to draw their conclusions 

(Mullen et al., 2011).  

 According to Godley et al., 2002; Liu et al., 2009, it is possible for a high fidelity 

driving simulator to have the same behavioral validity as a low fidelity driving simulator, 

and draw the same conclusions (i.e. relative validity) from the same research conducted 

using both simulators. According to the same study, physical validity of a simulator is the 

one that is reported in most cases, and the behavioral validity is the neglected one. Also, 

the study discusses how methodological considerations related to research validation can 

affect the validity, including: research questions, dependent and independent variables, 

task conditions, simulator equipment, participant’s characteristics, and how driver 

behavior is measured in the simulator 

Advanced Driver Assistance Systems (ADAS) 

Advanced driver assistance systems (ADAS) are technologies that mainly 

increase in-vehicle safety by alerting a driver in critical situations, providing a driver with 

information regarding the road, or automate and adapt vehicle systems. These 

technologies are either built-into the vehicle such as adaptive cruise control in modern 

cars, or an add-on such as a navigator. According to statistics and research, ADAS is one 

the fastest growing technologies compared to other automotive electronics systems in the 

vehicle (Hojjati-Emami, Dhillon, & Jenab, 2012). Some of ADAS technologies have 
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been around for a long time such as built-in GPS navigator system that first appeared in 

1995 Oldsmobile Eighty Eight. The importance of ADAS technologies are based on 

two different perspectives that include: send visual or/and acoustic alerts to the driver in 

potential conditions or implementing vehicle active system controllers that can take 

control of the vehicle in a critical situation (Hojjati-Emami, Dhillon, & Jenab, 2012; 

Lundgren & Tapani, 2006). An example of the first type of ADAS that provides 

information and alerts the driver, is to incorporate a GPS that provides the driver with 

information about the speed, traffic and the status of the road. On the other hand, adaptive 

cruise control is an example of active/intelligent system in which the basic functionality 

of cruise control system (i.e. maintaining a constant speed) has changed. These adaptive 

systems are capable of adjusting the throttle and brake to maintain a safe distance 

between vehicles. As a result, this mechanism can help prevent traffic collisions that are 

caused by distracted driving without intervention from the driver. 

Next generation of ADAS and challenging. ADAS technologies are based on 

vision/camera systems, sensor technology, and in-vehicle data, or vehicle to 

vehicle/infrastructure communications (ex. GPS). Vehicle- to vehicle (V2V) and vehicle 

to infrastructure communication technology is the new promising domain to increase the 

safety on the roads. This next version where the vehicle passengers and the driver would 

be connected together to the external world requires the addition of intensive instruments 

that include many embedded devices, chips, and sensors. In fact, on September 5, 2014 

Delphi Automotive PLC announced Delphi’s wireless vehicle communication technology 

to extend the current ADAS technologies. Their system will be able using the radio signal 

to exchange traffic data between vehicles. According to this article, the vehicle that 
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equipped with a certain ADAS technology will be able to notify the drivers about road 

conditions, traffic congestion, accidents, or any other emergency situations. Also, 

General Motor (GM) announced that they will launch Super Cruise advanced driver 

assistance system and vehicle to vehicle communications in 2017 model cars. According 

to GM, Super Cruise can control the car when a congestion alert is received and the 

driver will be able to drive hands free.  

 The most challenging issue is to secure the communication between vehicle to 

vehicle and vehicle to infrastructure (Leinmüller, Buttyan, Hubaux, Kargl, Kroh, 

Papadimitratos, & Schoch, 2006; Bai, Elbatt, Hollan, Krishnan, & Sadekar, 2006). What 

will happen if an intruder was able to send a false alert to other vehicles? What if these 

automotive systems got jammed by various false alerts by intruders? How is the identity 

of the message senders validated?  Another serious issue is the intensive computation 

process and the high communication overhead and latency which can affect the 

performance of ADAS technology. In 2012, Schönwald, Viehl, Bringmann, & Rosenstiel 

suggested an approach to reduce both the communication overhead and computations that 

is caused by exchange messages between vehicles in order to be used by ADAS 

technology.  

 Finally, one of the most important ADAS technologies is to reduce the driver 

distractions, which eventually leads to reduction of accidents and an increase in safety. I 

would like to say that until self-driving vehicles are available to use, driver distractions 

will continue to be a significant issue. 
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Machine Learning 

Machine learning is a fairly new discipline of artificial intelligent that gives 

machines the ability to learn and adapt without being directly programmed (Ayodele, 

2010). Machine learning mainly focuses on dynamic environments, which change when 

exposed to new conditions or data. Similar to data mining, machine learning searches 

through data to observe and extract patterns. Unlike the data mining case in which the 

system extracts data for humans, machine learning model uses that data to extract 

patterns from trained data and to make predictions on new data.  Machine learning 

algorithms were categorized as being supervised or non-supervised. In supervised 

algorithms case, the computer is provided with data that include inputs and desired output 

(training phase). Then, supervised algorithms will apply the knowledge that was 

established from the training phase to new data. On the other hand, neither labels nor 

desired outputs are given to the computer and its function to find the correlation, 

interference and data structure.   

Several studies applied machine learning to implement a model that is able to 

distinguish between distracted driving and normal driving. Several of these studies used 

neural networks, Bayesian network, or support vector machine (SVM). Neural networks 

are an example of a learning algorithm that is inspired by our understanding of how the 

brain learns. One of the significant applications of neural networks is pattern recognition. 

During the training phase, the network is trained to associate outputs with certain input 

patterns. When the neural network is implemented, it recognizes the input pattern and 

tries to associate it with a specific output (see figure 2.10).  
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Figure 2.10. Neural networks to detect driving distractions 

According to Akin, Kurt, Sezgin, and Bayram, (2008), the main advantages of 

neural networks can be summarized in: 

1. Adaptive learning: an ability to achieve tasks based on the data given in the training 

phase while the initial experience processes 

2. Self organization: neural networks can establish its own representation of the 

information it receives during learning phase. 

3. Real time operation: neural network computations can be carried out in parallel, and 

the current hardware devices are designed and manufactured in a way to take 

advantage of this capability. 

4. Fault tolerance: partial destruction of a system can negatively affect the performance 

of the system. However, some systems capabilities may be preserved even with major 

system damage. 

In addition to use neural networks to detect driving distractions, other researchers 

used Bayesian network to recognize and observe the specific patterns associated with 

distracted driving. Bayesian networks algorithm is based on the joint probability 

distribution that can be computed over all the variables X1… Xn by using the formula: 
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Where Parents (Xi) means the values of the Parents of the node Xi with respect to the 

graph 

  

In order to support understand how Bayesian networks can be used to detect 

driver distractions, we analyzed one of the distraction scenarios. Figure 2.11 represents a 

backbone of Bayesian networks that was built for testing. In this figure, we represent the 

distraction as the first state (the parent node). We assumed that if the driver is distracted 

that will be reflected on in-vehicle data including velocity, steering angle, acceleration, 

and lane position. We applied the joint probability distribution formula to detect 

distractions. According to previous knowledge (training phase), when the driver is 

distracted the speed and acceleration goes down, start unintentionally departure the 

current lane, and moving steering unsmooth.    

 

Figure 2.11. Driver Distraction and In-vehicle Data   
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By Applying Bayesian,  

P (Distracted = True | Velocity went down = True, Steering Angle unsmooth = True, 

departure Lane Position = True, Acceleration went down = True) = P (Distracted = True 

& Velocity went down = True & Steering Angle unsmooth = True & departure Lane 

Position = True & Acceleration went down =True) / P (Velocity went down = True & 

Steering Angle unsmooth = True & departure Lane Position = True & Acceleration went 

down =True) 

Now, by applying 

 

The output (All numbers are not real, it just to demonstrate distracted driving detection 

using Bayesian network): 

Table 2.1 

Distraction certainty (numbers are not real)  
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As table 2.1 shows, if the velocity distracted pattern is true and acceleration 

distracted pattern is true, and lane position driver pattern is true the probability that the 

driver is distracted is 0.92 (high level distraction). Otherwise, if all of the driver patterns 

are false the probability of the distraction is zero.  

The last machine learning algorithm that we would like to discuss in this section 

is support vector machine (SVM). It is an example of supervised machine algorithm that 

can be used for classification and regression challenges. In 1995, Cortes and Vapnik 

published a paper to introduce SVM algorithm to be used mainly for classification 

defined by separation hyberplane. The output of SVM is a hyberplane that can categorize 

new data. In this algorithm, each data item will be plotted as a point in n-dimensional 

space (where n is number of features) with the value of each feature being the value of a 

particular coordinate. Then, classification process will be performed by finding the best 

hyper-plane that well differentiates the classes. Support vector machine (SVM) is 

basically started as a method for binary classifications. The main idea is to find a 

hyperplane that can well separate the d-dimensional data into two classes. However, 

because realistic data are often not linearly separable, SVM proposed the notion of a 

“kernel induced feature space” that casts the data into a higher dimensional space (see 

figure 2.12). 
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Figure 2.12. Linear and Non-linear hyperplane (SVM) 

SVM were initially designed for binary (two-class) problems. When dealing with 

multiple classes, an appropriate multi-class method is needed. Cortes and Vapnik 

suggested comparing one class with the others taken together. This strategy generates n 

classifiers, where n is the number of classes. The final output is the class that corresponds 

to the SVM with the largest margin, as defined above. Although SVM is mainly for 

binary classifications, several researchers suggested methods to deal with multiclass 

problems. The most known strategy for multiclass problem is one against all (OAA). In 

this approach we should implement M (i.e. M is number of classes) binary SVM 

classifiers, each one of these classifiers should be able to separates one class from the 

rest. In order to achieve that, the ith SVM is trained with all dataset for that class is 

positive labels, and all the other classes with negative labels (Hsu & Lin, 2002).  

The following advantages of the SVM approach were largely adopted from Auria 

& Moro, 2008: 
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1. SVM maximizes margin, so the model is highly accurate and more robust to noise.  

2.  SVM supports non-linear relations, so you can model linear and non-linear relations. 

3. SVM usually offers a good out-of-sample generalization.  In other words, by selecting 

a proper generalization grade, SVM can provide a less noise and more robust 

solution; even in case of the training sample has some bias. 

4. Because the optimality problem is convex, SVM can easily find global optimum and 

exclusive solution. This is considered a big advantage compared to Neural networks 

that provide multiple solutions. 
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METHODS 

This proposed approach consists of two main phases: Phase- 1 and Phase- 2. The 

first phase proposes a system to detect various levels of driver distractions (low, medium, 

and high) using Support Vector Machine (SVM). The second phase is to mitigate the 

effects of driver distractions through the integration between the distracted driving 

detection system (i.e. phase- 1) and the current vehicle active safety systems. In phase- 1, 

vehicle data were collected from advanced driving simulator, and face monitoring 

systems using visual based sensor (webcam). Then the model was trained and validated 

to detect different human operator distraction levels. In phase 2, several parameters were 

used as an input to the vehicle safety controller to determine the proper actions that 

maintain vehicle safety systems. These parameters include: level of distraction, time to 

collision (TTC), lane position (LP), and steering entropy (SE). 

The DS-600c Advanced Research Simulator by DriveSafety™ similar to (Gilchrist 

and Winter, 1996) was used to investigate the driver cell phone-based distractions in 

different scenarios. The distraction was simulated through performing a secondary task 

while driving.  In this study, the suggested secondary tasks were categorized based on the 

simplicity of the task and the visual and cognitive demands. Moreover, the suggested 

categorization was supported by previous studies (Klauer, Guo, Simons-Morton, Ouimet, 

Lee, & Dingus, 2014; Hosking, Young, & Regan, 2009; Cook & Jones, 2011). Other 

studies show that manipulating the phone while driving has higher risk than performing 

phone conversation. Therefore, task that does not require the drivers to take eyes off the 

road with low cognitive load too was considered to be a  low distraction level.  
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Phase- 1 includes three sub phases: data collection, extract features, and then 

classification, which represents detection specific distraction levels. Figure 3.1 illustrates 

the main stages of phase- 1.  

 

Figure 3.1. Phase- 1 main stages 

First, data collection includes gathering all raw data that are required to identify 

the distraction levels. Second, feature extraction that includes finding and deriving 

interesting values and features from the initial set of the measured data. Finally, 

classification phase in which a trained classifier using machine learning strategy was 

implemented to be capable of identifying different levels of cell-phone driving 

distractions.  

On the other hand, phase- 2 basically is a controller that fully integrated with the 

current vehicle safety systems. The main purpose of this controller is to provide 

appropriate actions corresponding to different levels of driver distractions. These actions 

can be variant from a simple action as acoustic signal or/and a visual signal, to more 

sophisticated actions including auto applying the emergency brake. The suggested actions 
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mainly depend on the detected level of distraction (phase- 1).  Figure 3.2 is a simple part 

of the controller that is described in later section in this chapter. 

 

Figure 3.2. Part of phase-2 implementation 

After phase- 1 was implemented, and the trained model was affectively capable of 

classifying various levels of cell phone-based distractions, phase 2 took place to mitigate 

the effect of the detected distractions.  Figure 3.3 represents a top level abstract of the 

integration between phase- 1 and phase- 2. As described later in this chapter, MATLAB 

and Simulink were used to implement dashboard, alert systems, and simulate different 

safety actions.  
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Figure 3.3. Top level of Phase- 1 and Phase- 2 integration 

 

The next sections describe dependent and independent variables, design and 

implementation, phase -1and phase 2, software and simulation environment, and different 

distractions scenarios in detail. After well clarifying the adapted methodology, approach 

evaluations and results analyses were performed to draw the final conclusions. 

 

Predictors and Responses  

Predictors: 

• Entity Acceleration: The forward acceleration of the monitor entity in meters per 

second squared.  

• Entity Velocity: The forward speed of the monitor entity in m/s  

• Lane Position:  The lane offset in meters within the current lane. It will be '-' if the 

subject is not in a lane. Positive is to the right, negative is to the left.  
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• Latitudinal Acceleration:  component for the acceleration of the subject vehicle. The 

lateral and longitudinal acceleration are the total acceleration of the vehicle with 

respect to inertial coordinates expressed in the local frame, i.e. this is the acceleration 

that would be measured by an accelerometer in the vehicle, and except that gravity is 

not included (gravity would also be measured by an accelerometer).  

• Longitudinal Acceleration: component for the acceleration of the subject vehicle. The 

lateral and longitudinal acceleration are the total acceleration of the vehicle with 

respect to inertial coordinates expressed in the local frame, i.e. this is the acceleration 

that would be measured by an accelerometer in the vehicle, and except that gravity is 

not included (gravity would also be measured by an accelerometer) 

• Steering Input: is a value in degrees. A steering wheel can make three complete 

revolutions, with each revolution containing 360 degrees. Starting at the rest position 

( 0 degrees ), the steering wheel can turn one and one half revolutions to the right ( 

+540 degrees ) and the same to the left ( - 540 degrees ).  

• Velocity: The speed of the subject vehicle in m/s.  

• Gaze (x, y locations): Head x, and y directions to monitor visual distraction. 

 

Responses: 

 

• Distraction Levels with four degrees: 

� Distraction Level- 1: normal driving. 

� Distraction Level- 2: minimal distraction. 

� Distraction Level- 3: moderate distraction. 

� Distraction Level- 4: high distraction. 



 

54 

 

Participants 

Thirty participants were recruited to participate in the experiment. They were 

English speakers; Arizona State University (ASU) students, randomly selected, valid U.S. 

driver’s license holders, and each participant needed to own a smart phone. Each 

participant was willing to provide his/her number and ASU email account. All 

participants gave informed written consent, and also the experiment was given ethics 

approval by the Arizona State University Institutional Review Board (IRB). Nineteen 

participants were used to train the model, and the rest of the participants were used to 

validate the model.  

Experimental Design  

The experiment used within-subject design.  The experiment consisted of four 

different driving distractions scenarios and one baseline driving with no distraction. The 

visual and cognitive driving distractions were implemented by asking drivers to engage in 

a secondary task using a smart phone while driving. Each participant completed five five-

minute sessions of driving. Excluding the baseline driving, each drive contained one 

distraction task; and each distraction task had a different completion time. The order in 

which the participants received these distraction tasks was randomly selected. Each 

participant drove for the first two minutes with no distractions and then the participant 

was given a secondary task.   

Driving Environment 

  The DS-600c advanced research simulator by DriveSafety™ was used to conduct 

this study.  
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This simulator was comprised of a 300 degree wraparound display, a full-width 

automobile Ford Focus cab and a motion engine platform as shown in figure 3.4.  

 

Figure 3.4. The Driving Simulator at Arizona State University (Mcnabb & Gray, 2016) 

A dynamic torque feedback from the steering wheel and vibration transducers 

mounted under the driver’s seat to provide tactile and deep sensing of feedback cues. The 

motion platform provided coordinated inertial cues for the onset of longitudinal 

acceleration and deceleration. The driver simulator was adjusted to record data with 60 

Hz rate. During the drive, the participant’s face was video recorded using a Logitech 

C920 Webcam. The roadway used in this experiment was a zigzag, two-lane freeway 

separated by a marked line. Traffic in the left lane approached the subject vehicle from 

behind and in front. Participants were instructed to maintain the speed around the speed 

limit. A lead vehicle (LV) was driving with a speed around the speed limit (55 mph – 60 

mph).  
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Software Platform 

To design and implement the trained classifier and phase- 2 MATLAB and 

Simulink software platform were used. MATLAB is a high-performance programming 

language and interactive environment developed by MathWorks.inc for engineers and 

scientists to model and visualize ideas across different disciplines (Guide, 1998). 

Furthermore, MATLAB integrates computation, visualization and high level language, 

and interactive environments for research purposes. In fact, this software is considered as 

one of the most well-known tools for scholars and researchers worldwide.  

Simulink is a block diagram environment built on top of MATLAB for simulation 

and modeling based design. It is fully incorporated with MATLAB and other Mathworks 

objects, as well as a capability to establish real time testing by connecting with hardware. 

Using Simulink, complete vehicle model incorporating was developed using a bottom-up 

approach. This model is illustrated in the illustrative top level vehicle model shown 

below. 

 

Figure 3.5. Top level of the vehicle model 
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The major components for the implemented vehicle model are shown in figure 

3.5. The fundamental operations for each individual component are either calculated by 

the physical equations to control the dynamic response of the component, or by 

implementing the empirical data provided by the component manufacturer or found in the 

literature. The supervisory controller model is considered one of the major parts of the 

entire vehicle system. However, it can be the simplest or the most complex part of the 

vehicle depending upon the tasks embedded into its operations. Generally, the controller 

calculates the total torque required from the power train to achieve the driver request by 

having both acceleration and brake commands from the driver as inputs to torque 

calculation algorithm.  

Procedure 

The experiment took place in the previously described driving simulator and 

included five 5-minute drives: five with secondary tasks and one as a baseline drive. 

During each secondary task drive, participants completed 1-4 minutes of a certain 

secondary task while driving. Each participant had a short break in between. In the 

baseline drives, participants did not perform any secondary task. Each secondary task had 

different level cognitive and visual loads. Head movement and driving performance data 

were collected at a rate of 60 Hz for thirty participants using a web cam and a driving 

simulator, respectively.  

Assumptions  

The experiment has four different scenarios. Each scenario has different level of 

simplicity and load of visual and cognitive demands. In this study a valid assumption was 
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made in which the distraction levels were suggested based on the simplicity of the 

secondary task. For example, the scenario that requires more visual interaction and 

cognitive load had a higher distraction level. This assumption is supported by other 

studies, which confirmed that the secondary tasks associated. According to the studies, 

the high risk of a crash or near crash all is related to driver visual attention diversion from 

the road ahead (Klauer, Guo, Simons-Morton, Ouimet, Lee, & Dingus, 2014; Hosking, 

Young, & Regan, 2009; Cook & Jones, 2011). Other studies show that manipulating the 

phone while driving has a higher risk than performing a phone conversation. 

 

The Proposed Approach: Phase- 1 and Phase- 2 

Five different secondary tasks were implemented and categorized into three 

different levels of driving distraction. This classification is mainly based the simplicity of 

the task and the amount of visual and cognitive load that drivers need to accomplish a 

secondary task. Figure 3.6 represents the secondary tasks scenarios with the 

corresponding level of distractions (distraction Level- 1 is the non-distraction driving 

scenario or the baseline). 

 

Figure 3.6. Secondary tasks with different levels of distractions  

A driving simulator shown in figure 3.4 was used to investigate driver distraction 

patterns and identify the levels of distractions shown in figure 3.6. The driving scenarios 
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were implemented with the described simulation environment in the previous sections. 

These scenarios include:  

Baseline:  

• Each participant was asked to drive for 5 minutes, and try maintaining the lane 

position. 

• Each participant was asked to focus on the primary task (driving) and to not engage in 

any secondary task during the 5 minutes. 

• This scenario represents the baseline for other scenarios and has distraction Level- 1.  

Scenario 1: 

• Before starting the driving session, the participant was informed that he/she is going 

to receive a phone call from one of the companies regarding an available position 

he/she applied for. The participant received a screening interview call for 

approximately 3 minutes long.  

• Each participant was asked to try maintaining the lane position. After 2 minutes of 

driving, the participant received and engaged with the inbound call. This task 

represents distraction level- 2 because this task is a simple task with most likely yes/ 

no answers.  In addition, the task does not require a heavy visual distraction compared 

to other scenarios. 

Scenario 2: 

• Before starting the driving session, the participant was informed that he/she is going 

to be asked to use the GPS on the phone to navigate to a specific location. The 

specific location was passed to the participant verbally during driving. The participant 
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was asked to try to observe the destination path to find the shortest path to the 

destination. 

• Each participant was asked to drive for 5 minutes, and try maintaining the lane 

position. After 2 minutes of driving, the participant was asked to navigate to Arizona 

State University downtown campus and observe the shortest path. 

• This task represents distractions level- 3 since the task is more complicated than the 

previous task. The task included manipulating the cell phone, which requires higher 

visual demands than the previous scenario. 

Scenario 3: 

• The participant was informed that he/she is going to receive an email while driving. 

The email includes questions about a job the participant applied for. The participant 

was asked to reply with the answers.    

• Each participant was asked to drive for 5 minutes, and try maintaining the lane 

position. After 2 minutes of driving, the participant received the email below: 

Hello Sir/Madam 

Thank you for your interests in human factors position that we have posted 

recently. If you are still interested please reply with answers for the following questions: 

� Are you willing to relocate? 

� Are you currently employed? 

� Are you okay with traveling/ if yes what is the acceptance percentage? 

�  When can you start working? 

�  What is the minimum salary you are looking for? 
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• This task represents distractions level- 4 since the task is apparently requires higher 

visual attention than previous tasks and also more cognitive demands needed. 

Scenario 4: 

• Each participant was informed that we are going to assume that the participant posted 

his car on craigslist for sale. The participant was asked to reply to the messages that 

he /she is going to receive from a buyer.  

• Each participant was asked to drive for 5 minutes, and try maintaining the lane 

position. After 2 minutes of driving, the participant started receiving the following 

messages about the car: 

� Is the car still available for sale? 

� Any dents or scratches? 

� Final price? 

� Can we meet to take a look at the car?  

• This task also represents distractions level- 4 since the task is apparently requires high 

visual attention cognitive demands. 

 

Phase- 1: Detection Algorithm  

The main purpose of Phase- 1 is to implement a trained and efficient model that is 

capable of detecting different levels of driving distractions level. In order to achieve that 

sufficient data were collected and normalized to be used as inputs of machine learning 

algorithm. This process of Phase-1 consists of three sub phases: sensing and data 

collection, feature extraction, and classification.  
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• Data collection: is based on reading data from the driver simulator main controller 

(CAN-bus) in real time while driving. These data include: velocity, acceleration, 

steering angle, and lane position. The main hypothesis is that all human interactions 

with the vehicle system controls appear as a response on the vehicle 

systems/subsystems. All vehicle sensory networks are attached to one or more nodes 

on the CAN-bus. Therefore, the CAN-bus is the most effective node to be used as an 

input to the driver behavior detection algorithm. In addition to the CAN-bus, a 

Logitech C920 Webcam was used to record drivers’ head movements. The collected 

videos were analyzed using CascadeObjectDetector function in MATLAB to detect 

drivers x, and y gaze while driving with and without distractions.  

• Feature extraction: is the process of reducing the amount of collected data required 

to describe a large set of data. Instead of performing analysis of complex and large set 

of data with high number of variables involved, a subset of data intended to be more 

informative and non redundant can be used. The process of performing analysis with 

a large number of variables usually requires a large amount of memory and 

computation power. Thus, feature extraction was used to get around these problems 

while still describing the data with sufficient accuracy. For example, the recorded 

videos for the drivers were used to extract drivers gaze (x, and y locations) and the 

rest of the data that is associated with the videos were discarded. 

• Classification: as a result of having several unique patterns for a distracted driver: 

speed, lane position, steering angle, and driver’s gaze, one of the machine learning 

techniques was utilized to detect driver distractions. Several studies were successfully 
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able to identify and detect driver distraction using support vector machine (SVM), 

and Bayesian Networks (BNs) (Al-Sultan, et al., 2013; Liang, & Lee, 2010; Yang, 

Chang, & Hou, 2010). As previously discussed, most of the hybrid based driver 

distraction detection approaches show better detection accuracy rate compared other 

measures approaches. In the proposed approach a support vector machine (SVM) 

algorithm similar to the study in (Chang, & Hou, 2010) was used. Thus, a trained 

model that is capable of detecting different levels of distraction was implemented. 

The Fine Gaussian training algorithm had six predictors and 4 responses were used. 

These predictors include: speed, lane position, steering angle, driver’s x-gaze, and 

driver’s y-gaze. The responses are distraction level- 1, distraction level- 2, distraction 

level-3, and distraction level- 4. Figure 3.7 represents the classifier.  

 

Figure 3.7. Predictors and responses of the suggested classification 

 

Phase- 2: Correction Algorithm  

Phase- 2: is the last phase of the proposed model. In this phase the output of the 

driver behavior detection algorithm is sent to intelligent/active safety system controller. 

This controller manages some active driving safety systems to help vehicle stay under 
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control and avoid accidents. The safety vehicle’s systems that the detection algorithm 

feeds include:  

• Lane departure warning system: a strategy designed to alert the driver when the 

vehicle begins unintentionally departure the lane (unless the right direction blinker is 

ON). The main purpose of these systems is to decrease number of accidents by 

addressing main causes of collisions such driver errors, distractions and drowsiness. 

• Anti-collision or Collision avoidance system: these systems are considered pre-crash 

safety systems. One of main examples of these kinds of systems is sending 

visual/auditory warning messages to the driver. In our proposed approach, if the driver is 

distracted, visual/auditory warning messages will be sent to the driver to maintain normal 

driving.  

• Advanced Emergency Braking System (AEBS): is a safety system that is able to take 

action (i.e. brake) automatically in case the driver did not respond to the warning 

messages that are generated from the collision avoidance system. In our proposed 

approach, if time to collision is low and the driver is distracted with high level, the safety 

control system may deploy emergency brake to avoid collisions. In some cases 

deceleration was applied rather than full brake deployment.  

 

Phase- 1 and Phase- 2 Integration 

Figure 3.8 represents a top level of the proposed solution that demonstrates phase- 

1 and phase- 2 in a high level. As shown in the figure, in a real time driving, the 

implemented model that was trained and tested is performing detection for various levels 

of driver distractions. The detected level goes to vehicle safety systems that should act 
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based on both: distraction level, and other in-vehicle data.  The taken actions are 

perceptible by the driver so he/she are going to be aware of the situation and further 

actions may be taken by the driver to correct it.  

 

Figure 3.8. Top level of phase- 2 implementation 

Figure 3.9 represents an a low level presentation of the proposed solution in 

which phase- 1 output (level of distraction) is an input along with other in-vehicle data to 

intelligent/safety controller that provides appropriate actions and eventually minimize 

road accidents (phase- 2). 

 

Figure 3.9. The low level of the proposed approach 
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Because any trained model suffers from false positive and false negative, relying 

on the detected distraction level only can cause serious issues. For example, if the trained 

model detects a distraction level- 4 (the highest), but in reality the true distraction level 

was less than 4, this false positive can lead to wrong actions. Furthermore, if the vehicle 

safety systems deploy an emergency brake due to false detected distractions, this can 

seriously jeopardize drivers’ safety. Therefore, other parameters were considered in the 

design to overcome the false alarms problem and create a context aware system that 

response with appropriate actions at the right time. The parameters that were added to 

enhance the proposed model and make the model more realistic include: time to collision 

(TTC), lane position (LP), and steering entropy (SE). 

Figure 3.10, illustrates the conditions with the corresponding appropriate actions. 

The figure shows various actions. These actions include: 

� Emergency brake: The action is the highest level of actions in which the safety 

controller will apply emergency brake if and only if TTC less than or equal 1 sec. 

� Deceleration: this action will be taken in one of the following scenarios: 

�  TTC between 1 and 1.3 sec. 

� Distraction level- 3 

� Distraction level- 4 

� Lane Keep Assistance: The designed dashboard includes an indicator for 

unintentionally lane departure. 

� Alerts system: a multimodal alert system consists of acoustic and visual messages 

were implemented. These messages include: 
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� Alert- 1: This is a first level alert. The alert includes a orange color indicator with 

minimal non-continues volume peep.   

� Alert -2: This is a second level alert. The alert includes an orange color indicator with 

moderate non-continues volume peep.   

� Alert -3: This is a highest level alert. The alert includes a red color indicator with high 

non-continues volume peep.   

 

Figure 3.10. Flowchart of phase- 2 
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The most critical parameter in figure is TTC so when the time to collision is short 

(less than one sec) the emergency brake was immediately applied to avoid a crash. If time 

to collision between 1 and 1.3 seconds, the situation is still critical so deceleration and 

Alert- 3 were deployed.  The final situation is TTC between 1.5 and 3 seconds, in this 

case Alert- 1 will be triggered. The TTC threshold values are adapted from the literature 

and other studies. On the other hand, the actions that are related to distractions driving 

should not include an emergency brake or any another severs action due to false positive 

detection. Other parameters include steering rate, and steering entropy is discussed on 

next sections. 

Steering Entropy (SE) 

Steering entropy (SE) is a measure of high-frequency steering corrections (Boer et 

al., 2005). In other words, steering entropy measures how steady or arbitrary the steering 

wheel angle is in different driving scenarios compared to baseline driving. In addition to 

steering variance and frequency, steering entropy mainly focuses on the derivation, which 

represents the prediction errors. In non-distraction driving scenario, drivers mainly focus 

on driving and monitor environment effectively and instinctively deploy smooth and 

predictable steering control. On the other hand, distracted drivers deploy random and non 

smooth steering control due to the lack of effectively monitoring the environment. 

To calculate steering entropy (SE) values, the SE calculation method was adopted 

from Nakayama et al. (1999). The steering angle was reported every 16.7 milliseconds 

for each 5 minute driving scenario. After obtaining the data, a second-order Taylor 
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expansion in MATLAB was performed to make a prediction of the steering angle at a 

given time. The SE equation that was adopted from Nakayama et al. (1999) is: 

�� =  ��−�	 . �� ��	��      ����� 	 = 1 … .9
�

���
 

Where pi represents the proportion of steering prediction errors, e(n). The 

prediction errors, e(n), as defined by Nakayama et al. (1999) is : 

���� = ����� −  ����� 

Where θα(n) is the actual steering angle and θp(n) is the predicted steering angle at 

time n. To calculate the predicted steering angle value a second-order Taylor expansion 

series was used (Weisstein, 2002).  

After obtaining the data, a second-order Taylor expansion was performed to make 

a prediction of the steering angle at a given time. This was done by using three preceding 

data points using the following formula: 

����� = 5 2⁄ θα�� − 1� − 2θα�� − 2�  + 0.5θα�� − 3� 

Figure 3.11 illustrates the difference between θα(n) (actual) and θp(n) (predicted), 

which represents the prediction error e(n).  
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Figure 3.11. Steering entropy prediction 

In order to evaluation the proposed approach, all collected data from the 

previously described scenarios using advanced driving simulator, were analyzed on the 

next chapter. In addition to the collected results, all the implemented vehicle dashboards, 

alert systems, states flow (SF) were provided and described. 
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RESULTS 

This chapter discusses the implementation of the proposed approach, and the 

integration between the designed distraction classifer and the current vehichle saftey 

systems. Also, the suggested vehicles human vehicle interface (HVI), alerts system, and 

state flow (SF) were included in detail. Moreover, results from phase- 1 and phase- 2 

were added to evaluate the proposed approach.  

Phase- 1: Lane Position (LP) and Steering Values Analysis: 

Many researchers who addressed this topic from an in-vehicle measure 

perspective have conducted their studies based on the hypothesis that driver behavior can 

be characterized as a sequence of basic actions. These actions can be associated with a 

specific state of the driver-vehicle- environment and characterized by a set of observable 

features.  These repeated sequences of the driver actions are called patterns.  In this 

section, analysis of each signal (speed, lane position, steering angle, and driver gaze) is 

analyzed in order to observe these patterns. 

Figure 4.1 represents the average of all participants’ lane position values for each 

distracted driving scenario compared to the baseline scenario. As shown in the figure, the 

changes of lane position are unsmooth and random in the phone manipulating scenarios 

(i.e. texting, emailing, and GPS). Unlike phone manipulating scenarios, talking over the 

phone while driving shows less randomness in steering values. Also, the figure shows 

that drivers maintain lane position in better way while engaging with a simple task (i.e. 

talking) compared to more complicated tasks.    
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Figure 4.1. Lane position (LP) average of distracted vs. non-distracted drivers 

 

Figure 4.2 represents the average steering values for all participants with and 

without distractions. As shown in the figure, the changes in steering values are random in 

distracted driving scenarios compared with the base driving scenarios. Similar to the 

previous discussion, the changes in steering angle values in the phone manipulating 

scenarios (i.e. texting, emailing, and GPS) are more than talking scenario. Unlike, phone 

manipulating scenarios talking over the phone while driving shows less randomness in 

steering values. As a result, drivers engaged with a simple task such as talking over the 

phone seem to control the steering wheel better than performing a more complex 

secondary task such as texting. These findings confirm the previous defined assumptions 

in which phone manipulating tasks while driving can lead to more distractions more than 

non- manipulating phone tasks. Also, these results are in line with of the previous studies.         
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Figure 4.2. Steering values average of distracted vs. non-distracted drivers 

 

In order to invesitage the randomness in steering values under different speeds, 

figure 4.3 shows the average steering angle values for all participants along with the 

speed for each scenario.  
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Figure 4.3. Steering values and speed for emailing and texting senarios 

 

Similar to the previous figure but for GPS and talking on the phonescenarios.  

 

Figure 4.4. Steering values and speed for the GPS and talking on the phone senarios 
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Due to the high sensitivey of the steering at high speed, studies shows that 

randomness of steering angle values with a high speed profile can put driver at high risk. 

On the other hand, low speed profile leads to low sensitivity of the steering. For instance, 

drivers need to provide large steering input while planning for parking, but not while 

driving on freeway at high speeds. Table 4.1 shows the  horizontal curvature and 

designed speed. As shown in the table, increasing in the speed requires to increase raduis 

of the curve for safety. Therfore, if drivers exceeds the designed speed limit for that 

curve, they will be at high risk.  

Table 4.1 

Horizontal curvature of high speed highways and connecting roadways with 

supervelation (Rene, 2014) 

 

 

Phase- 1: Gaze Analysis  

For gaze analysis, a Logitech C920 Webcam was used to record drivers’ eyes and 

head movements. The collected videos were analyzed using CascadeObjectDetector 
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function in MATLAB to detect drivers x, and y head location while driving with and 

without distractions. Figure 4.5 represents average Y-locations of the drivers head for all 

scenarios. As shown in the figure, the drivers attend to move their heads up and down (Y-

axes) in emailing, GPS and texting scenarios more than the baseline and talking. Unlike 

phone manipulating scenarios, drivers appear not to move their heads vertically so often 

in talking scenario. Because the texting scenario has certain intervals in which the driver 

was waiting for a reply, the texting scenario shows smooth changes during these 

intervals. Unlike texting, emailing is a long text with no waiting reply intervals which 

make the graph looks unsmooth for the most of time.  

 

Figure 4.5. Average drivers heads Y-locations for all scenarios 
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On the other hand, Figure 4.6 represents the average drivers head X-location 

while driving with and without distractions. The figure shows that the changes in X-

locations were smoother in case of baseline and talking. Unlike the scenarios that do not 

require typing, GPS, texting, and emailing shows unsmooth and random changes in x-

locations.    

Figure 4.6. Average drivers head X-locations in all scenarios 

 

Phase- 1: Machine Learning and Classification Stage  

As a result of having several unique patterns for a distracted driver: speed, lane 

position, steering angle, and driver’s gaze, support vector machine (SVM) algorithm 

similar to the study in (Chang, & Hou, 2010)  was utilized to detect and classify several 

levels of driver distractions. Thus, a trained model that is capable of detecting different 

levels of distractions was implemented.  

In general, M-class problem, we have N training samples: {X1, Y1}. . . {XN, YN}. 

Here Xi ∈ Rm is a m-dimensional feature vector. Yi ∈ {1, 2 . . . m} is the corresponding 
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class label. One-against-all approach builds d binary SVM models; each classifier will 

separate one class from all the others. The Yi classifier was trained with all the training 

samples in which Yi class has positive labels, and the rest with negative labels. In this 

case the Yi SVM explains the following problem that yield the Yi decision function (Liu 

& Zheng, 2005): 

 

In our case we have 4 classes figure 4.7. Fine Gaussian training algorithm that had 

six predictors and 4 responses were used. These predictors include: speed, lane position, 

steering angle, driver’s x-gaze, and driver’s y-gaze. The responses are distraction level- 1, 

distraction level- 2, distraction level- 3, and distraction level- 4. 
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Figure 4.7. Predictors and responses of the fine Gaussian model 

After training the model with the collected data, the model shows 98.7% overall 

accuracy, and 1.3% overall error. In addition to overall accuracy, Figure 4.8 demonstrates 

more than 99% of true positive rate (TPR) for non-distracted driving detection and 97%, 

96%, and 98 for distractions level 2, 3, and 4 respectively. On the other hand, false 

negative rate (FPR) is less than 0.1% for non-distracted driving detection, and 3%, 4%, 

and 2% for distractions level 2, 3, and 4 respectively.   

 

Figure 4.8. Confusion matrix of the proposed model 
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Figure 4.9 represents ROC graphs for the model where true positive (TP) rate is 

plotted on the Y axis and false positive (FP) rate is plotted on the X axis. An ROC graph 

portrays relative compromise between benefits (true positives) and costs (false positives). 

The Area under curve (AUC) is a measure of the overall quality of the classifier. The 

model demonstrates a high performance due to the larger area under curve.  

 

 

 

 

Figure 4.9. ROC for all distraction levels 
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As confusion matrix and ROC graphs demonstrate, the trained generated model 

(TrainedDrivingDistraction.mat) shows high accuracy rate, and low false positive and 

negative rates. The last step is to test and validate the model. In order to validate the 

model the collected data from 11 participants were used as inputs to the model 

(TrainedDrivingDistraction.mat). The model was able to detect scenario 1 (no 

distraction), scenario 2 (distraction level- 2), scenario 3 (distraction level- 3), and 

scenario 4 (distraction level- 4) with accuracy 99.3%, 96.1%, 95%, and 97.7% 

respectively. 

The implementation of phase- 2 which includes the designed human vehicle 

interface (HVI) is described in the following sections. Also, the integration between the 

distraction detection model and vehicle safety systems is explained in detail.   

Phase- 2 Implementation  

In this phase, a complete vehicle model is developed in order to mimic: driver 

behavior (i.e. brake and acceleration pedals input), power train, vehicle longitudinal 

dynamic, Vehicle Interactive Safety System. The driver behavior detection algorithm is 

interfaced with the vehicle safety controller. The signal exchange between both is 

depicted in figure 4.10. 
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Figure 4.10. Top level of phase- 1 and phase- 2 integration 

 

Figure 4.11 represents the low level abstract of the proposed model. This abstract 

was built using MATLAB/Simulink. As shown in the figure, the abstract has 2 major 

components; the first one left side represents the real time distracted driving classifier 

including the previously mentioned six inputs and one output (distraction level). The 

second component represents the controller that responds to certain conditions (e.g. 

distraction level- 4) by providing appropriate actions to increase drivers’ safety. This 

component consists of inputs, outputs, and flow states (FS) that determine the relation 

between these inputs and outputs. The inputs include: distraction level (DL), steering 

entropy (EN), lane position (LP), steer value, time to collision (TTC), speed (alpha), and 

brake value (beta). The outputs include: distraction level indicator (4 levels), time to 

collision indicator (4 levels), lane assist indicator, sounds indicator, actual speed, and 

actual brake value.  
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Figure 4.11. Low level design of phase-1 and phase -2  

Figure 4.12 represents the implemented human vehicle interface (HVI). This 

dashboard was implemented using MATLAB/Simulink. The HVI consists of: distractions 

level indicator, time to collision indicator (TTC), and lane assist Indicator, sounds 

volume indicator, actual speed, and finally RPM. The main purpose of HVI is to simulate 

different driving scenarios and evaluate the suggested model. For instance, a baseline 

scenario (i.e. no distraction) was generated to be as an input to the model and no alerts or 

actions were applied during this scenario.  
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Figure 4.12. Human Vehicle Interface (HVI) 

Each alert indicator has different state that represents a certain condition. These 

states include both a specific color associated with each condition and different level of 

sound (see figure 3.13 and figure 4.14). 

 

Figure 4.13. Color coded system for different alarm levels 
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    Figure 4.14. Sound indicator levels 

 

Phase- 2: State Flow (SF) Implementation 

Figure 4.15 represents the backbone of the design. The flowchart shows various 

conditions and actions associated with them. As shown in the figure, TTC is the first 

parameter that the system should check to avoid accidents. If TTC is larger than 3 

seconds the system start checking other conditions such as distraction levels, lane 

position, and steering entropy. Distraction level means normal driving so no action will 

be taken. Distraction Level -2 means a low level of distracted driving (e.g. talking over 

the phone where no phone manipulating involved). In this case the system will activate 

alert level 1 and non-continuous peep with 30db level to notify the driver. Another 

example when the classifier detects level- 4 of distracted driving; active vehicle safety 

system will force deceleration (the amount of deceleration is discussed later in this 

chapter) and alert level-4 with non-continuous peep with 30db level to notify the driver.  
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Similar to distraction and TTC, steering entropy and lane position parameters are 

frequently checked by the system to make sure drivers safety. 

 

Figure 4.15. Flowchart representation of the different conditions and actions    

 

Distraction levels state flow (SF). To implement the suggested platform, state 

flow (SF) to control the transition from a state to another was implemented using 

MATLAB/Simulink. Each state includes different actions (e.g. alert) and a default state 
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(i.e. the state that represents the normal and stable conditions) is always implemented 

where the system starts with. To transit from a state to another, a specific condition (e.g. 

if distraction level- 2 is detected) should be met. Figure 4.16 represents the state flow 

(SF) of distracted driving levels that control transition from the normal state (no 

distraction) to another states (i.e. distracted level-2, 3, and 4) once distracted driving 

detected. The state in the middle is the normal state in which no distractions involved. 

Then, when distraction- L2 (level 1 is normal driving) is detected, the controller switches 

to the right state (state L2 in the upper side). In this state the distraction indicator will be 

activated (W1 is the defined distraction signal) with orange color and 30 db non-

continues peep sound (W4 is the defined sound indicator). The driver stays in the same 

state until the driver responds to the indicator and pay attention to the road. As a result of 

the real time distracted driving classifier (i.e. the one implemented in phase -1) starts 

detecting a normal driving again (i.e. the controller will switch back to the normal state). 

In some cases, the controller may transit from distraction- L2 state to distraction- L3 or 

L4 states. The concept of transition from one state to another is similar in all scenarios; in 

which specific conditions should be existing to transit. 

L3 and L4 states show deceleration as an action once distraction Level 3 or Level 

4 is detected. Deceleration amount of 0.1 and 0.05 from the original speed is applied 

when distraction- L4, and L3 respectively detected. Due to fact of the classifier suffers 

from false negatives and positives; the amount of deceleration was little. Unlike 

distraction Level- 3 and 4, no deceleration are involved in distraction level- 2 and only 

alert will be applied.  
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Due to the fact that there is no free false positive and negative classifier, we 

included other parameters to provide more appropriate actions for different realistic 

driving scenarios. These parameters include time to collision (TTC), lane position (LP), 

and steering entropy (SE). The state flow for each parameter is included on the next 

sections.  

 

Figure 4.16. State flow (SF) diagram for L1-L4 driving distractions  

 

Time to collision (TTC) state flow (SF). Similar to the previous scenario, figure 

4.17 represents the state flow (SF) of time to collision (TTC) that control transition from 

the normal state to other states. The default state in this scenario is the normal state, 

which represents the condition of TTC is greater than 3 seconds. Once TTC becomes less 

than or equal 3 seconds the controller starts checking other states. When the value is less 

than or equal 3 and greater than1.5 seconds the controller transits to another state (du_L2 
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state in the lower side). In this state the TTC indicator will be activated (W =2) with 

orange color and 30 db non-continues peep sound.   

In a real time scenario, we expect the driver to respond to the alarm and pay attention to 

the road, and then the controller will transit back to the normal state. In some cases, the 

controller may move from the current state to worse state (e.g. TTC<1.3 sec) if the driver 

is not positively responding. The concept of transition from one state to another is similar 

in all scenarios; the only difference is the condition and the actions in that state.

 

Figure 4.17. State flow (SF) diagram based on TTC threshold  

 

Lane position (LP) state flow (SF). Figure 4.18 represents the state flow (SF) of 

lane position (LP) that controls transition from the normal state to other states based on 

LP values. The default state in this scenario is the normal state, which represents the 

condition of LP absolute value (-/+ represents the direction of the displacement) is greater 
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than 0.7. Once LP becomes greater than or equal 0.9 seconds the controller transit to state 

on the left side. In this state the controller will activate lane position assist indicator along 

with 30 db non-continues peep sound. When the LP value is less than 0.7 and greater than 

0.9, the controller will transit to another state (M on the upper side). In this state, sound 

alert with 30 db non-continues peep will be applied. In a real time scenario, we expect the 

driver to respond to the alarm and pay attention to the road, and then the controller will 

transit back to the normal state. In some cases, the controller may move from the current 

state to worse state (e.g. unintentionally departure the lane) if the driver is not positively 

responding. The concept of transition from one state to another is similar in all scenarios; 

the only difference is the condition and the actions in that state. 

 

Figure 4.18. State flow (SF) diagram based on LP threshold  

 

Steering entropy (SE) state flow (SF). Figure 4.19 represents the average of 

steering entropy values for the five driving scenarios. Due to the fact that the drivers were 
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not engaged with any secondary task during the baseline scenario, the baseline steering 

entropy value was the minimum (49.1%). Also, SE value of the talking while driving 

scenario shows the minimum among all other distraction scenarios (56.7%). Furthermore, 

the scenarios that require a phone manipulating while driving showed high steering 

entropy values (GPS: 66.7%, texting: 73.4%, and emailing: 73.6%) .  Based on these 

values, state flow (SF) was implemented. 

 

Figure 4.19. Average steering entropy values for all scenarios  

 

Figure 4.20 represents the state flow (SF) of steering entropy (SE) that controls 

transition from the normal state to other states based on both SE and the speed values. 

We included the speed value in the controller implementation since a high steering 

entropy value along with a high speed profile is riskier than high SE with low speed 

profile. As shown in the figure, the default state in this scenario is the normal state, which 

represents the condition of SE is less than 55% .Once SE becomes greater than or equal 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Basline Talking GPS Texting Emailing

S
te

e
ri

n
g

 E
n

tr
o

p
y

The Driving Scenario

Steering Entropy (SE)



 

92 

 

70% with high speed (65m/h) the controller transits to another state (the state on the right 

side). In this state, the controller will activate lane position assist indicator along with 90 

db non-continues peep sound. When the SE value becomes greater than or equal 70% 

with speed greater than or equal 55m/h, the controller will transit to another state (the one 

in the middle). In this state, lane position assist indicator along with 60 db non-continues 

peep sound. Finally, if the SE value is between 55% and 70% with high speed profile 

greater than or equal 65m/h, non-continues sound alert with 60 db will be applied. In real 

time scenario, we expect the driver to respond to the alarm and pay attention to the road, 

and then the controller will transit back to the normal state. In some cases, the controller 

may move from the current state to worse state (e.g. increasing of steering entropy value) 

if the driver is not positively responding. The concept of transition from one state to 

another is similar in all scenarios; the only difference is the condition and the actions in 

that state. 
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Figure 4.20. State flow (SF) diagram based on SE threshold  

 

Driving Scenarios 

In this section several scenarios were simulated to test the implemented model. 

These scenarios include: distraction level-2, distraction level- 3, distraction level-4, and 

TTC less than 1 sec. In each scenario, the driving profile (includes speed, acceleration, 

lane position, steering angle, and drivers gaze) was an input to the proposed model. We 

expect from the model to detect distractions level and take appropriate actions.  

Talking on the phone while driving. In this scenario, a talking and driving 

profile was taken and tested. As shown in the previous chapter, talking and driving task 

represents a distraction level- 2. The driving profile of this task (i.e. talking and driving) 

includes: speed, longitudinal acceleration, lane position, steering angle, gaze-x location, 
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and gaze-y locations.  As shown in figure 4.21, once the driver engaged with a call, the 

model detected a distraction level-2. The figure shows some distraction level -1 and 4 

were detected in a very short period of time. 

 

Figure 4.21. Changes of distraction levels in a real time driving with talking on the Phone 

 

As a result of distracted driving detection, the controller act based on the 

previously implemented flow states. In this scenario, distraction level- 2 was detected, so 

that the distracted indicator was activated with light orange color and 30 db non 

continuous peeps. Figure 4.22 represents a snapshot of the model while was running 

talking and driving profile. Due to the very short time of the detected false positives 

(fraction of seconds), the actions were not observed and the driver should not be affected.  
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Figure 4.22. Indicators Status in A real Time Driving with Talking over the Phone  

 

Using GPS. In this scenario, a random profile of using GPS while driving was 

taken and tested. According to the valid assumptions in the previous chapter, using GPS 

task represents a distraction level- 3. The driving profile of this task (i.e. using GPS while 

driving) includes: speed, longitudinal acceleration, lane position, steering angle, gaze-x 

location, and gaze-y locations.  As shown in figure 4.23, once the driver started using 

GPS, the model detected a distraction level-3. The figure shows some distraction level -1 

and 4 were detected in a very short period of time. 

 

Figure 4.23. Changes of distraction levels in a real time driving with using GPS  
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As a result of distracted driving detection, the controller act based on the 

previously implemented flow states. In this scenario, distraction level- 3 was detected, so 

that the distracted indicator was activated with dark orange color as well as 60 db non 

continuous peeps. Figure 4.24 represents a snapshot of the model while was running 

using GPS while driving profile. Due to the very short time of the other detected levels of 

distractions, the actions were not observed and the driver should not be affected.  

 

Figure 4.24. Indicators status in a real time driving with using GPS  

  

Texting and emailing while driving. Since both texting and emailing both 

scenarios represents distraction level- 4 we have merged both in one section. In this 

scenario, a random profile of emailing while driving was taken and tested. According to 

the valid assumptions in the previous chapter, texting and emailing while driving tasks 

represent a distraction level- 4. The driving profile of this task (i.e. emailing while 

driving) includes: speed, longitudinal acceleration, lane position, steering angle, gaze-x 

location, and gaze-y locations.  As shown in figure 4.25, once the driver started texting, 
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the model detected a distraction level- 4. The figure shows some distractions level -1 and 

3 were detected in a very short period of time. 

 

Figure 4.25. Changes of distraction levels in a real time driving with emailing  

 

As a result of distracted driving detection, the controller act based on the 

previously implemented flow states. In this scenario, distraction level- 4 was detected, so 

that the distracted indicator was activated with red color as well as 90 db non continuous 

peeps. Also, deceleration was applied. On the other hand, lane assist was activated with 

green color due to the high steering entropy. This system should active lane keep assist in 

the vehicle that helps drivers maintain the lane. Figure 4.26 represents a snapshot of the 

model while was running texting and driving profile. Due to the very short time of the 

other detected levels of distractions, the actions were not observed and the driver should 

not be affected.  
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Figure 4.26. Indicators status in a real time driving with emailing  

 

According to previously implemented flow states (FS) of the driver distraction 

levels, level 4 also includes deceleration action with 1 percent. Figure 4.27 represents the 

deceleration when distracted level- 4 is detected (the figure includes both the main speed 

profile and the one when the controller applies braking).   

 

Figure 4.27. Applying brake in a real time driving with emailing  
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Time to collision (TTC) and texting. In this scenario, a profile of texting while 

driving was taken and tested. Besides texting, the scenario includes time to collision 

values less than 3 seconds. Texting and emailing while driving tasks represent a 

distraction level- 4. The driving profile of this task (i.e. texting while driving) includes: 

speed, longitudinal acceleration, lane position, steering angle, gaze-x location, and gaze-y 

locations. In Phase- 2 implementation, TTC represents an input to the model along with 

steering entropy, and lane position. As shown in figure 4.28, once the driver started 

texting, the model detected a distraction level- 4. The figure shows that level -1 and 3 

were detected in a very short period of time. 

 

Figure 4.28. Changes of distraction levels in a real time driving with texting  

 

As a result of distracted driving detection, the controller act based on the 

previously implemented flow states. In this scenario, distraction level- 4 was detected, so 

that the distracted indicator was activated with red color as well as 90 db non continuous 

peeps. Also, lane assist indicator was activated with green color because of high steering 

entropy. This system should active lane keep assistance in the vehicle that helps drivers 

maintain the lane. Figure 4.29 represents a snapshot of the model while was running 
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texting and driving profile. The snapshot shows TTC indicator in a red state which means 

TTC was less than or equal 1 sec. Due to the very short time of the detected false 

positives (fraction of seconds), the actions were not observed and the driver should not be 

affected.  

This scenario represents a hybrid scenario since more than one condition was 

applied at the same time. For instance, the system detected distraction level- 4 and 

applied all the actions associated with that level of distraction, and then the system detect 

TTC less than 3 seconds while distraction level- 4 state is still active. In realistic 

scenarios, we expect that the driver responds immediately for the indicators before the 

situation becomes worse. 

 

Figure 4.29. Indicators status in a real time driving with texting scenario 

  

On the other hand, Figure 4.30 represents another snapshot from the same 

scenario in which the system detects TTC value between 1 and 1.5 seconds.  Based on the 
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flow states, a TTC indicator was turned orange with 60 db non continuous peeps, lane 

assist also was activated, and finally braking with 0.2 was applied. During the whole 

driving scenario the dashboard dynamically changes based on the detected conditions.  

Again, we expect in real driving scenario that the driver will respond positively and pay 

attention to the road from first indicator to avoid worse situations. 

 

Figure 4.30. Indicators status in a real time driving with texting  

 

The implemented states flow (SF) of the driver distraction levels shows another 

action for distraction level- 4, which includes deceleration with 1 percent. On the other 

hand, once the model detected TTC value less than or equal 1.5 seconds, the deceleration 

was applied.  The red line shown in the figure 4.31 represents the area that represents 

TTL <=3 sec. Once TTC is less than 1.5 and greater than 1 second deceleration was 

applied to avoid accidents.  Finally, when TTC became less than or equal 1 second, the 

emergency brake is applied. 
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Figure 4.31. Different TTC values and speed profile 

 

According to the tested real time scenarios described in this chapter, the 

implemented driving distractions detection model is efficiently capable of identifying 

various levels of cell phone based driving distractions. In addition, the integration 

between detection algorithm and the current vehicle system systems is achieved in a 

novel method. Since this result shows such kind of integration we expect this 

amalgamation to improve safety and significantly decrease accidents on roads.   
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CONCLUSION 

Conclusions 

This research contributes to the science related to abnormal driving behaviors 

detection and mitigation. Specifically, this work emphasizes cell-phone driving 

distraction detection and mitigation.  This research was conducted with a combination of 

human in-the-loop experiments using an advanced driving simulator, machine learning 

modeling and classification, and MATLAB/Simulink to simulate different actions.  

Although several researchers have addressed abnormal driver behavior and 

inattentive driving issues from different perspectives that include: engineering, cognitive 

science, and physics. Issues include: practicality, performance, accuracy rate, false 

negative rate, and usability were analyzed, and a comprehensive driver behavior 

detection solution that takes into consideration the effectiveness and usability of the 

system is proposed. The approach handles and mitigates other issues including low 

performance, detection rate, and high false positive rate that can directly affect the 

usability of the system.  

Also, we conclude that lacking the context of the driver status system can 

negatively affect drivers as well as vehicle safety. Therefore, a complete solution to 

decrease road accidents is only promising by making the vehicles active safety system 

'aware' of the driving context as well as the driver status. Driver behavior signals 

including driver inputs to be part of the control process are analyzed. The suggested 

approach focuses on the driver distraction levels detection and feeds the vehicle active 

safety controller in order to avoid severe accidents.  
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Furthermore, results show that the proposed hybrid driver distraction detection 

approach is considered a highly reliable and effective compared to other approaches. A 

hybrid approach combines the advantages of other approaches in one conciliated solution, 

which can lead to both; high accuracy detection rate and low false positive rate. The 

validated hybrid model in this research shows 98.7% overall accuracy, and 1.3% overall 

error. It also demonstrates more than 99% (TPR) for non-distracted driving detection and 

97%, 96%, and 98 for distractions level 2, 3, and 4 respectively. Similarly, false negative 

rate (FPR) associated with hybrid approach is less than 1% for non-distracted driving 

detection, and 3%, 4%, and 2% for distractions level 2, 3, and 4 respectively.  

Upon successful validation using MATLAB/SSIMULINK platform; this work 

demonstrated that the integration between detection algorithm and the existing vehicle 

safety system can be achieved in a novel real-time driving scenarios. The integrative 

driver behavior mitigation strategy and the vehicle safety controller were able to generate 

visual and audible dashboard alerts, activate vehicle lane assist, decelerate the vehicle to 

a safe/reasonable speed and/or apply emergency stop.  

 

Future Work 

The human vehicle interface (HVI) that includes the warning systems can be 

implemented on the dashboard of the driving simulator where participants can experience 

a real world alert scenario. Hence, while participants are driving and based on their 

driving performance, the system can be evaluated for re-action with an appropriate 

action. Also, how the drivers react to designed human vehicle interface (HVI) can be 

investigated and evaluated to suggest improvements to the current HVI.   
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Also, Vehicle- to vehicle (V2V) and vehicle to infrastructure communication 

technology is the new promising domain to increase the next generation of vehicle’s 

safety on roads. This next version or domain, in which vehicle passengers and the driver 

would be connected together and to the external world, requires the addition of intensive 

instruments that include many embedded devices, chips, and sensors. These instruments 

will be added to almost every part of the vehicle (to name few: brake system, airbag, 

cruise control, power seat, and electronic stability control ...etc). Consequently, various 

data could be exchanged between vehicle systems as well as between the vehicle and the 

external environment. This intensive communication would create more data available on 

the CAN bus that could be used to detect abnormal driver behaviors. These available data 

can significantly be used in real time to generate the patterns associated with different 

kinds of driver behaviors.  
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