76 research outputs found

    Re-visiting the performance impact of microarchitectural floorplanning

    Get PDF
    Journal ArticleThe placement of microarchitectural blocks on a die can significantly impact operating temperature. A floorplan that is optimized for low temperature can negatively impact performance by introducing wire delays between critical pipeline stages. In this paper, we identify subsets of wire delays that can and cannot be tolerated. These subsets are different from those identified by prior work. This paper also makes the case that floorplanning algorithms must consider the impact of floorplans on bypassing complexity and instruction replay mechanisms

    Microarchitectural Floorplanning for Thermal Management: A Technical Report

    Get PDF

    Understanding the impact of 3D stacked layouts on ILP

    Get PDF
    Journal Article3D die-stacked chips can alleviate the penalties imposed by long wires within micro-processor circuits. Many recent studies have attempted to partition each microprocessor structure across three dimensions to reduce their access times. In this paper, we implement each microprocessor structure on a single 2D die and leverage 3D to reduce the lengths of wires that communicate data between microprocessor structures within a single core. We begin with a criticality analysis of inter-structure wire delays and show that for most tra- ditional simple superscalar cores, 2D floorplans are already very efficient at minimizing critical wire delays. For an aggressive wire-constrained clustered superscalar architecture, an exploration of the design space reveals that 3D can yield higher benefit. However, this benefit may be negated by the higher power density and temperature entailed by 3D integration. Overall, we report a negative result and argue against leveraging 3D for higher ILP

    Temperature Dependent Wire Delay Estimation in Floorplanning

    Get PDF

    A Floorplan-Aware Dynamic Inductive Noise Controller for Reliable Processor Design

    Full text link

    Post-placement temperature reduction techniques

    Get PDF

    Managing lifetime reliability, performance, and power tradeoffs in multicore microarchitectures

    Get PDF
    The objective of this research is to characterize and manage lifetime reliability, microarchitectural performance, and power tradeoffs in multicore processors. This dissertation is comprised of three research themes; 1) modeling and simulation method of interacting multicore processor physics, 2) characterization and management of performance and lifetime reliability tradeoff, and 3) extending Amdahl’s Law for understanding lifetime reliability, performance, and energy efficiency of heterogeneous processors. With continued technology scaling, processor operations are increasingly dominated by multiple distinct physical phenomena and their coupled interactions. Understanding these behaviors requires the modeling of complex physical interactions. This dissertation first presents a novel simulation framework that orchestrates interactions between multiple physical models and microarchitecture simulators to enable research explorations at the intersection of application, microarchitecture, energy, power, thermal, and reliability. Using this framework, workload-induced variation of device degradation is characterized, and its impacts on processor lifetime and performance are analyzed. This research introduces a new metric to quantify performance-reliability tradeoff. Lastly, the theoretical models of heterogeneous multicore processors are proposed for understanding performance, energy efficiency, and lifetime reliability consequences. It is shown that these system metrics are governed by Amdahl’s Law and correlated as a function of processor composition, scheduling method, and Amdahl’s scaling factor. This dissertation highlights the importance of multidimensional analysis and extends the scope of microarchitectural studies by incorporating the physical aspects of processor operations and designs.Ph.D

    Decoupled Thermal Simulation

    Get PDF
    Small transistors and high clock frequency have resulted in high power density, which makes temperature a strong constraint in today's microprocessor design. For maximizing performance, the thermal design power must be set according to average, instead of worst case, conditions. Consequently, current processors feature temperature sensors and throt-tling mechanisms to keep the chip temperature at a safe level. To study future thermally-constrained processors and systems, researchers and engineers use cycle-accurate performance simulators modeling power consumption and temperature. Cycle-accurate simulators are relatively slow and make it difficult to study long-term thermal behaviors that may require to simulate several minutes or even hours of processor execution. Sampling or phase analysis cannot be applied directly in this case because temperature depends on all past energy events. We propose a partial solution to this problem, which consists in decoupling cycle-accurate simulations and thermal ones. Temperature-unaware cycle-accurate simulation is used to generate an energy trace representing the complete execution of an application. Phase analysis can be used to decrease the trace generation time and make compact traces. Temperature and thermal-throttling are simulated in a separate thermal simulator that reads energy traces. The thermal simulator is faster than the cycle-accurate one and can be used to explore, with the same energy trace, parameters that are not modeled in cycle-accurate simulation

    Thermal analysis and modeling of embedded processors

    Get PDF
    This paper presents a complete modeling approach to analyze the thermal behavior of microprocessor-based systems. While most compact modeling approaches require a deep knowledge of the implementation details, our method defines a black box technique which can be applied to different target processors when this detailed information is unknown. The obtained results show high accuracy, applicability and can be easily automated. The proposed methodology has been used to study the impact of code transformations in the thermal behavior of the chip. Finally, the analysis of the thermal effect of the source code modifications can be included in a temperature-aware compiler which minimizes the total temperature of the chip, as well as the temperature gradients, according to these guidelines

    Exploring the design space for 3D clustered architectures

    Get PDF
    Journal Article3D die-stacked chips are emerging as intriguing prospects for the future because of their ability to reduce on-chip wire delays and power consumption. However, they will likely cause an increase in chip operating temperature, which is already a major bottleneck in modern microprocessor design. We believe that 3D will provide the highest performance benefit for high-ILP cores, where wire delays for 2D designs can be substantial. A clustered microarchitecture is an example of a complexity-effective implementation of a high-ILP core. In this paper, we consider 3D organizations of a single-threaded clustered microarchitecture to understand how floorplanning impacts performance and temperature. We first show that delays between the data cache and ALUs are most critical to performance. We then present a novel 3D layout that provides the best balance between temperature and performance. The best-performing 3D layout has 12% higher performance than the best-performing 2D layout
    • …
    corecore