
Thermal analysis and modeling of embedded processors

José L Ayala , Cándido Méndez , Marisa López-Vallejo
Department of Computer Architecture, Complutense University of Madrid, 28040 Madrid, Spain
Department of Electronic Engineering, Politécnica University of Madrid, 28040 Madrid, Spain

A B S T R A C T

Keywords:
Thermal model
Embedded processor
Temperature

This paper presents a complete modeling approach to analyze the thermal behavior of
microprocessor-based systems. While most compact modeling approaches require a deep
knowledge of the implementation details, our method defines a black box technique which
can be applied to different target processors when this detailed information is unknown.
The obtained results show high accuracy, applicability and can be easily automated. The
proposed methodology has been used to study the impact of code transformations in the
thermal behavior of the chip. Finally, the analysis of the thermal effect of the source code
modifications can be included in a temperature-aware compiler which minimizes the total
temperature of the chip, as well as the temperature gradients, according to these
guidelines.

1. Introduction

Continuing advances in semiconductor technology have allowed dramatic performance gains for general-purpose micro­
processors and embedded systems. These improvements are due both to increasing clock rates as well as to advanced sup­
port for exploiting instruction-level parallelism and memory locality using the additional transistors available in each
process generation. However, as a negative consequence, this causes a significant increase in power dissipation, due to
the fact that the dynamic power is proportional to both clock frequency and switching capacitance (which increases with
the number of devices and components integrated in the chip). Thus, despite continuous attempts to reduce voltages and
to design lower power circuits, power dissipation levels have steadily increased with every new microprocessor.

As technology scales, higher power consumption coupled with smaller chip area will result in higher power density,
which in turn will lead to higher power temperature on the chip [1,2]. In fact, extrapolating the changes in microprocessor
organization and the device miniaturization, one can project future power density to 200 W/cm2 [3]. This requires extensive
efforts on cooling techniques which have shown to be complex and expensive. Early considerations at different design levels
of these thermal effects can lead to more accurate design parameter estimation and faster design convergence [4], what at
the end is translated into better designs and reduced design time. Moreover, the analysis and management of every design
parameter with a strong impact on the thermal behavior can provide an effective way to minimize the total temperature of
the chip as well as the temperature gradient. Both metrics degrade the circuit performance and the reliability of the die and
the package.

While hardware solutions to temperature management problems are very important, software can also play an important
role because it determines the circuit components exercised during the execution and the period of time for which they are
used. In particular, compilers and source code transformations determine the data and instruction access patterns of
applications, what shapes the power density profile.

In this paper we present a parameterized thermal characterization of a programmable microcontroller and we analyze
the effect of different code-level transformations in the thermal map. The use of the thermal model and the analysis tool
developed in this work allows characterizing the thermal behavior of the functional units in the microcontroller, as well
as the evolution in time of the thermal behavior when different implementations of the same benchmark are executed.
Moreover, the analyzed code transformations can be included in a thermal-aware compiler which reduces the gradient of
temperature in the chip area of the target architecture.

The contributions of this paper are:

(1) Definition of a black box methodology to characterize the thermal behavior of the chip under different working loads.
This methodology can be applied to different target architectures of embedded processors even if the implementation
details are unknown.

(2) Analysis of the effect of several source code transformations in the thermal behavior of the chip. The analysis is not
only focused on the total temperature of the chip but it also takes into account the gradients of temperature that
can appear between the functional units.

(3) Establishment of the basis to build a temperature-aware compiler have been stated.

This paper is composed as follows: Section 2 presents the previous relevant works in this topic, while our proposed meth­
odology is briefly explained in Section 3. Finally, Section 4 covers the conducted experimental works and some conclusions
are drawn in Section 5.

2. Related work

In recent years there has been an increasing interest to provide a detailed die temperature distribution [5,6]. In these
works, the authors present different detailed full chip thermal models. All these models have detailed temperature distribu­
tion across the silicon die and can be solved efficiently. However, it has been reported recently that the results achieved by
these models present inaccuracy problems [7,8]. All these works provide an analytical method for studying the thermal dis­
tribution in the die of high-performance processors but they require the complete knowledge of the layout details. Moreover,
these models are constrained to the processor layout and cannot be easily extended to different target architectures.

There are other approaches which rely on dynamic measures to characterize the thermal behavior of the chip [9]. These
techniques, opposite to ours, require not only the complete knowledge of the target architecture but also the capability to
modify it. Some other approaches like [10] or [11] also propose techniques based on electrical measures to develop a power
consumption model. However, these works have not dealt with the thermal behavior of the chip. Moreover, the thermal ef­
fect of the source level optimizations has not been previously addressed, being one of the keys in our work.

In the field of temperature optimization, research on solving this problem has mainly focused on runtime techniques.
These approaches use predictive algorithms [12], dynamic profiling [1] or activity migration [13] to reduce the temperature
in a chip by dynamically distributing jobs on multiple processors. Our work is different from these in that it is static in its
approach and targets the effect of source-level modifications in the thermal behavior. The related work in the area of static
thermal management is still scarce and few works can be found targeting the temperature-aware floorplanning of the chip
[14] and the loop parallelization for multiprocessors [15]. However, this is the first work which analyzes the effect of code
transformations in the thermal behavior of the functional units of the chip, providing an expertise that can be incorporated in
a temperature-aware compiler.

3. Methodology

In this paper we propose and present a methodology to parameterize the thermal behavior of the components of a pro­
cessor-based system, starting with a low-cost microcontroller. Furthermore, this paper uses our thermal parameterization
methodology to evaluate the temperature distribution in the microcontroller for a specific application program and the im­
pact of the source code modifications in the temperature behavior.

The reason for selecting a low-cost microcontroller as our target processor is that nowadays this kind of microcontrollers
are widely used in many low temperature applications, but the methodology can be also applied to other architectures of
embedded processors. Moreover, their reduced instruction set and their simple architecture, with few easy-to-distinguish
functional units, facilitates the task of characterizing the whole architecture blocks. For most microcontrollers, the functional
blocks under study are: General Purpose RAM, Instruction Memory, Data EEPROM, Register file, ALU, ALU accumulator, Pro­
gram Counter and Decode and Control unit. Fig. 1 shows these functional blocks and the data communication in a typical
low-cost microcontroller (PIC architecture [16]).

One of the issues when performing a thermal characterization of these microcontrollers is the lack of information about
the implementation of their functional units and their layout. Another problem is the difficulty of measuring the tempera­
ture of the chip. These measures need expensive external equipment to be made. We have avoided these problems devising a
black box characterization, which does not require this information, and using power as an intermediate parameter. The
power consumption is a variable that can be easily measured in the processor without expensive and complex equipment.

FLASH

Program

memory

Program
counter

+
HW stack

General

Purpose

RAM

Decode

&

un it

1

\
\

\
AI

Register

File

W
J~

Wregister

Data

EEPROM

Fig. 1. Analyzed functional blocks in the PIC.

The characterization method we have developed has several advantages. Among others, it is not tied to a specific archi­
tecture, and it is easily replicable. Due to this, the methodology can be applied to several target processors without a deep
knowledge of their implementation details. Another advantage is that it is fully automated, the characterization can be in­
cluded in a software tool and the designer is released from this. Also, the thermal model is based on direct measures with
high accuracy in the result. Finally, one of the most important advantages is that it presents thermal temporal evolution for
all functional units as well as the whole chip.

The use of our characterization methodology has allowed to perform a complete thermal analysis and to evaluate the im­
pact of source code transformations in the thermal behavior. Fig. 2 describes the thermal characterization methodology
which is presented in this paper. As this diagram shows, the power characterization of the microcontroller is driven by
the current measures performed during the initial stage. The power characterization uses these measures to build a model
which predicts the power consumed in the functional units given the utilization of the unit. After that, the estimation of the
layout areas allows to define a thermal model which characterizes the architecture. This thermal characterization uses these
areas to build a model which predicts the evolution in time of the thermal behavior for every functional unit in the chip.
Finally, the thermal characterization achieved is used to perform a thermal analysis of the benchmarks and evaluate the
thermal impact of the source code transformations.

The following sections describe briefly the devised methodology for the thermal characterization.

3.1. Power characterization

The first step of our characterization methodology is to obtain the power consumed by every functional unit of the micro­
controller by means of electrical measures. Such electrical measures provide an accurate way to obtain the power informa­
tion of the device.

The power consumption can be obtained just setting a resistor between the power supply and the chip and measuring the
current passing through it. Then, using Ohm's law, P = V x /, it is possible to calculate the power consumption of the chip.

To collect these power figures for all the functional units of the microcontroller, we have developed a set of benchmarks
that are able to excite the processor in a particular way. Each benchmark is made to stress a specific functional block under
diverse workloads. Therefore, a 100% utilization for a functional unit means that every executed instruction makes use of
such functional unit. These synthetic benchmarks are composed of atomic operations such as: continuous execution of

Current

Measures

SZ
Power

Characterization

Area

Estimation

Benchmark
Thermal

Analysis

Thermal

Characterization

Code
Transform
Analysis

Fig. 2. Characterization methodology.

Table 1
Accuracy of the power model.

Operation

Multiplication (8-bits integer operands)
Division (16-bits integer operands)
Square root (12-bits integer operand)
HEX to BCD conversion
Log2 calculation

Measured power (mW)

6.137
6.175
6.204
5.994
6.451

Estimated power (mW)

6.268
6.203
6.192
6.103
6.245

Error (%)

2.14
0.46
0.19
1.82
3.19

arithmetic operations, continuous execution of memory loads and stores, arithmetic operations with immediate operands,
bit-test operations, so on.

In this way, the power measured when executing the benchmark will be proportional to the power consumed by the ex­
cited functional unit. We have made experiments with various workloads for the functional units to see how different uti­
lizations affect their power consumption and to refine the power model obtained. Also, the power consumed by the
microcontroller during the idle state (P¡die) and the energy dissipation due to the communication buses (Pbus)1 are measured
in order to subtract these values from the functional unit measures.

Once we have gathered power measures from all the benchmarks developed, it is possible to obtain a set of power/uti­
lization equations that let us to estimate the power behavior of the microcontroller for different applications. Therefore, the
model can determine the power consumption expected in every functional unit due to its workload.

The accuracy of this model has been analyzed comparing the results given by the model with the electrical measures di­
rectly acquired from the resistor (see Table 1). As can be seen, the estimated power consumption does not differ in more than
a 3% from the measured power consumption. Moreover, the average error for the devised power model is less than a 2%.

3.2. Thermal parameterization

Once all the power figures have been collected, the next step is to obtain the temperature estimation. In order to do that,
we have used a dynamic compact thermal model based on RthCth-networks [17].

There exists a well-known duality [18] between heat transfer and electrical phenomena. Heat flow can be described as a
current passing through a thermal resistance, leading to a temperature difference analogous to a voltage. Thermal capaci­
tance is also necessary for modeling transient behavior, to capture the time required for a mass to change temperature

1 Power consumption in the communication buses is estimated mathematically after the calculation of the switching activity of the data transfer.

and hence to account for the delay before a change in power results in the temperature's steady state. Lumped values of ther­
mal Rth and Cth can be computed to represent the heat flow among regions of a chip and from each region to the thermal
package. The thermal resistances and capacitances together lead to exponential rise and fall times characterized by thermal
RthCth time constants, analogous to the electrical RC time constants. The rationale behind this duality is that current and
heat flow are described by exactly the same differential equations for a voltage difference. In the thermal-design community,
these equivalent circuits are called compact models [17], or dynamic compact models if they include thermal capacitors. This
duality provides the convenient basis for an architecture-level thermal model. For a microarchitectural unit, heat conduction
to the thermal package and to neighboring units are the dominant mechanisms that determine the temperature.

With this thermal model, each functional block is modeled as an RthCth pair, representing the vertical heat transfer. The
lateral heat transfer is not considered in the model because embedded single-core processors are not constrained by this
phenomenon, on the contrary, the vertical heat transfer is much more intense [19]. Also, this model provides the following
formulae to calculate Rth and Cth:

Rth = t/(kxA)

and

Cth = f x C X A

where k is the thermal conductivity of the material per unit volume,2 c is the thermal capacitance per unit volume,3 t is the
chip thickness and in our experiments it has been set to 0.5 mm as in [17], and A is the estimated or measured area of the
device.

As this model shows, we need some information about the area required by the layout of the blocks. To overcome this
problem, we have devised a mathematical model where the estimated area is proportional to the power dissipated by the
chip when all the functional units have a 100% utilization. For that, the total power consumption due to the described func­
tional units when they have a 100% utilization (PT) is modeled as:

where P, corresponds to the power measured by the system when a particular functional unit is stressed (obtained by the
previous characterization) and Pidle is the power consumed by the system during the idle state (obtained by electrical
measures).

Given that the power consumed by the functional unit is proportional to its active area

P¡ = I2 x KSUp x A

where Rsup is the resistance per unit area, we obtain the relationship between the power consumed by the functional unit
with a 100% utilization and the active area of the device. This relationship allows to calculate the area A of the functional
unit and, hence, the Rth and Cth values are obtained. This characterization achieves an estimation of the layout of the micro­
controller where the device areas are estimated but the placement cannot be assured. Any information provided by the man­
ufacturer can be incorporated into the model to improve the results. The proposed model relates the power dissipation with
the area on silicon of the functional units. This assumption fails for high-performance architectures, but it has been shown to
be accurate in embedded processors with standard pipelines, as the PIC considered in this work [20].

Once the Rth and Cth values are known, and the power behavior of the functional units of the chip has been modeled, the
thermal evolution can be estimated.

As a result of this process, a relationship between temperature and utilization of each functional unit is obtained. With all
this information, the thermal evolution for every functional unit, as well as for the whole chip, can be studied.

3.3. Application of the model

Finally, the characterization presented in the previous sections has been used to analyze the thermal effect of the source
modifications in a set of application examples. We have developed various alternative implementations of these benchmarks
with several code-level transformations. Doing this, it can be observed how the different code variations affect the temper­
ature distribution inside the chip. Examining the results, the designer can reach conclusions such as which transformations
should be selected to reduce the total temperature in the chip, or which transformations achieve the best temperature dis­
tribution minimizing the gradients. These conclusions could be then included in a future temperature-aware compiler.

Summarizing, in preceding sections we have presented the methodology followed to accurately characterize the thermal
behavior of a low-cost microcontroller. With all the parameters gathered, it is possible to simulate the thermal variances of
the chip and its functional blocks. Besides, this simulation could be fully automated, so an easy-to-use thermal simulator can
be developed. It has also been clearly shown that this methodology is independent from the architecture of the processor and
a different target architecture can be used without a deep knowledge of its implementation details. A problem of this

2 100 W/m K for silicon and 400 W/m K for copper at 85 °C.
3 1.75 x 106J/m3 for silicon and 3.55 x 106J/m3 for copper.

Table 2
Power characterization and area estimations.

Decoder
RAM
ALU
Accumulator
Register file
Program counter
Flash
EEPROM
Leakage
Static
Fetch
Bus switch

Power (mW)

3.016
0.374
0.115
0.148
0.100
0.358
0.616
0.225
0.295
0.489
1.075
0.764

Area (mm2)

2.317E-01
2.878E-02
8.850E-03
1.142E-02
7.761E-03
2.751E-02
4.737E-02
1.736E-02

for (1=1; i<100; i++) f°r (¡=1; ¡<50; ¡+=2)

Fig. 3. Example of loop-unrolling compiler transformation.

characterization method is the difficulty of reaching a lower level of granularity. This is imposed by the simplicity of the
microcontroller and the lack of knowledge about the functional units implementation. This problem can be overcome by
the selection of a processor with a richer architecture would allow to increase the granularity of this analysis.

4. Experimental work

For our set of experiments we have selected a Microchip PIC16F873, complex enough to validate the thermal character­
ization methodology proposed here, and can be found in many embedded systems with low-power and low-temperature
constraints. This device is a low-cost microcontroller with a Harvard RISC architecture. It includes 4 K x 14 words of FLASH
program memory, 192 bytes of RAM and a data EEPROM of 128 bytes. This microcontroller also includes a SRAM Register file,
a Program Counter with an eight level deep hardware stack and an 8-bit ALU with an 8-bit accumulator. As can be seen, the
architecture resembles the common characteristics of a broad range of embedded processors.

One of the reasons to select this PIC for our studies is that, due to its low-complexity core architecture, a simple selection
of the composing functional units can be found. Moreover, the reduced set of instructions minimizes the number of power
measures and simplifies the aforementioned thermal characterization process.

The first stages of the thermal characterization process provide the power consumption of every functional unit in the
chip with a 100% utilization, and the estimation of their active areas (see Table 2). The thermal characterization methodology
can be applied to a different target architecture just changing the values stored in the table, and these values can come from
direct power measures or information from the manufacturer.

In order to analyze the thermal behavior of the PIC when applying a source code transformation, two common embedded
applications have been chosen: an image processing algorithm and a dijkstra algorithm from the MiBench benchmark suite
[21]. These benchmarks stress the processor architecture in the similar way to common embedded applications. The first
benchmark is basically an image filtering application which is based on a loop dominated algorithm.4 Due to the severe
memory constraints imposed by the PIC architecture, this algorithm had to be adapted to satisfy all the memory require­
ments. The second application is a well-known algorithm to solve shortest path problems. In this case, the application is
dominated by the data transfers to registers.

We have developed four different implementations of the image filtering benchmark and the dijkstra application accord­
ing to different source-level transformations. These implementations are executed by the processor and the thermal infor­
mation is retrieved, providing the impact of the code modifications in the temperature of the chip.

We have analyzed four different implementations of every benchmark:

(1) Baseline implementation: Original implementation of the application adapted to be executed by the PIC. This case
responds to a single-processor single-stage algorithm.

4 As many other multimedia applications.

int *x;

int x[100]; x = (¡ n t *)malloc{100*sizeof(int));

free (x);

Fig. 4. Example of dynamic memory implementation.

Totals
0.06

0.05 -

0.04

0.03

0.02

0.01

- © - Baseline
Loop-Splitting
Dynamic- mem
Pipeline

0.006 0.00S
Time (sec)

0.012 0.014

Fig. 5. Evolution in time of the total temperature in the chip (image processing algorithm).

(2) Loop-unrolled (split) implementation: Modified code after a loop-unrolling transformation applied to the main loop of
the original processing algorithm. The goal of this optimization is to increase the program's speed by reducing the
"end of loop" test on each iteration. In this way, loops are re-written as a sequence of independent statements which
eliminate the overhead of the loop controller (as appears in Fig. 3).

(3) Dynamic memory implementation: Modified code in which the static declaration of variables and data has been moved
to dynamic memory and managed in order to decrease the memory requirements. Fig. 4 shows an example of this
technique in a simple code.

(4) Pipelined implementation: Segmented version of the code in which the image processing algorithm and the dijkstra
application are split into multiple stages which communicate along a pipeline. In our results, the temperature varia­
tions for just one of the stages are presented.

The thermal characterization methodology has been used to perform a global (total temperature) and local (temperature
gradient) experimental work. The global and local thermal analysis of the previous implementations of the image filtering
algorithm and the dijkstra application will provide a complete knowledge of the thermal impact of the source-level trans­
formations. A complete set of design guidelines can be incorporated in a temperature-aware compiler.

4.1. Global analysis

The impact of the code modifications in the temperature of the whole chip has been analyzed. This analysis provides a
general view on how the temperature evolution of the chip is depending on how the benchmark is implemented. This kind

of global heating has a negative effect on propagation delays, signal integrity and power consumption. Therefore, one of the
first goals in our research is to evaluate such global heating in the chip considering the implementation details of the exe­
cuted benchmarks.

A Temperature vs Power

0.0S

0 05 •

0 . 0 4 5 - -

| 0 04 •

Q.

SÜ 0 0 3 5 •
h-
<1

0 0 3 -

0.025 •

0.02-

0.015

Pipel ine Stac s
I I

: ^Dynamic Msmory

JjJaselinE mplementatiDn

±.oop-splitring
u i i i

6.14 S16 S.18 S.2 6 2 2
Power (W)

6 2 4 S.26 62B

K10^

Fig. 6. Power consumption vs. Total temperature in the chip (image processing algorithm).

A Temperature us Power
0.QS5

0.08 •

0.055 •

0.05 - -

'¿ 0.045 -
w

5, 0.04 •
Q.
£
as

^ 0.035

Q.Q3 -

0.025 •

0.015

I I I

leap-spl i t t ing : : :

i i i

I

^Dynamic

i

Merndry

£a

I I

eline

; P'P

Imp

eline

ementatjan

^h
6 21 6 215 6 22 S 225 6 23 S.235 S 24 8.245 S.25 S 255

Power (W) x 1 0 - 3

Fig. 7. Power consumption vs. Total temperature in the chip (dijkstra application).

Time (seg] ^ g - 3

Fig. 8. Local thermal evolution for the dynamic memory implementation (image processing algorithm).

Fig. 5 shows the evolution in time of the total temperature in chip when the four different implementations of the image
processing algorithm are executed. It can be observed that there are few differences in the way that the temperature behaves
in time for all the implementations. The results obtained for the dijkstra application show a similar behavior. After this anal­
ysis, we can conclude that the studied code transformations do not have a representative impact in the global behavior of the
temperature in the chip.

However, it is clear that there are absolute temperature differences between implementations. Such differences are
caused by the execution time required to finish the applications. For example, the loop-splitted implementation is executed
seven times faster than the pipeline implementation. This speed up in the execution causes that the chip does not reach the
high temperatures suffered during the execution of other benchmark implementations. Therefore, the loop-splitted imple­
mentation can be considered a low-temperature transformation.

However, as will be shown later, there are source code transformations for which the reduction of the execution time and
the temperature of the chip has the cost of an increase in the power consumed by the application. Therefore, there is a trade­
off for the power consumed and the temperature in the chip that the designer (or the compiler) has to take into account.

Fig. 6 shows the power consumed and the temperature reached in the chip during the execution of the four different
implementations. As can be seen, the loop-split implementation is able to reduce the total temperature of the chip by a
72% without any impact on the power consumption. However, other benchmark versions, as the pipelined implementation,
decrease the power consumed by the application but increase the temperature. Therefore, the temperature-aware compila­
tion is not always followed by the low-power execution.

Fig. 7 shows the results of the same analysis for the dijkstra application. The total temperature in the chip is again reduced
by the application of the loop-splitting transformation, but the effect is less dramatic since the dijsktra algorithm is not
strongly loop dominated. However, in this algorithm the pipelined implementation achieves an increase in the power con­
sumed and a decrease in the total temperature of the chip, opposite to the results shown for the image processing algorithm.
The use of unbalanced pipeline stages in the dijkstra application, as well as the impact of the memory transactions used to
communicate the pipeline stages, explain this result.

4.2. Local analysis

Decoder
RAM
ALU
AGC
Reg. file
PG
FLASH
EEPROM

When executing an application, not all the functional units are used at the same time, and probably workloads are dif­
ferent between them. This leads to different temperatures in different points of the chip, what is translated into temperature

Worst case
0 1

0.G9

0.08

D.D7

g 0.Q6

0.04

0.G3

0.Q2

0.01

/ 'Lie

' «jfi ' '
'• J f * • • ' • • ' •

1 :Reg file-AGG
2:PC-ACC
3:RGgfilG-ACC
4:Regfile-ACG

1: BasGline
2: Loop Splitting
3: Dynamic Mem.
4: Pipeline

l _L _L _L _L J
0.002 0.004 0.006 0.008

Time (sec)
0.01 0.012 0.014

Fig. 9. Maximum expected temperature gradients (image processing algorithm).

gradients. If only the global warming of the chip is observed, these temperature gradients can be probably overlooked and
cause several problems to the chip. For example, high temperature gradients can cause problems such as electromigration or
thermal diffusion on functional units. Quick variations of the gradients could also cause another kind of technological dam­
ages. Therefore, analyzing what functional units are warmer during the execution of an application and the consequent tem­
perature gradients, it is possible to establish techniques and rules that could be included into a temperature-aware compiler
to make temperature inside the chip more uniform.

Fig. 8 presents the thermal evolution of all the functional units considered in the microcontroller when executing the dy­
namic memory implementation of the image processing benchmark. The figure represents the increment in temperature
(relative value) with respect to the ambient temperature. As can be seen in the figure, Register File, Program Counter, FLASH
instruction memory and Decoder unit show the highest temperature values. This behavior can be explained, on the one hand,
because FLASH, Program Counter, and the Register file are used in every cycle when fetching a new instruction. On the other
hand, the Decoder unit is always used before executing a new instruction. The zero value of the EEPROM unit shows that it is
not used during the execution, so it maintains its initial temperature.

To study the effects of the code transformations on the thermal evolution of different functional units and their impact on
the chip, we have considered two types of thermal gradients: First, we have studied the maximum gradient that can appear
in the chip, that is, the worst case gradient. Then, we have analyzed a typical gradient.

4.2.1. Worst case analysis
The maximum expected temperature gradient in the chip is the temperature difference between its hottest and its coolest

units. Observing this gradient, it is possible to find the worst thermal stress into the chip and to apply the source code mod­
ifications in a way that this effect is minimized. Fig. 9 shows maximum gradients for the four implementations of the image
processing algorithm. In this figure, for every implementation of the algorithm (baseline, loop splitting, dynamic memory
and pipeline) it has been plotted the maximum temperature gradient between two functional units (Register File vs. Accu­
mulator, Program Counter vs. Accumulator, Register File vs. Accumulator and Register File vs. Accumulator, respectively). It
can be seen that in the pipelined implementation there is an important temperature gradient between the Register File and
the Accumulator of the ALU. In the rest of the implementations, their maximum gradients are much lower. The reason for

ddle values
0.018 ^

-* -
~^-
- B -

1 RAM
£ RAM
3 RAM
4 A L U -

-ALU
-ALU
-ALU
•RAM

Baseline
Loop-Splitting
Dynamic Mem
Pipeline

0.006 0 008
Time (sec)

0.012 0 014

Fig. 10. Typical expected temperature gradients (image processing algorithm).

these differences is that the transfers between different memory spaces are massive in the pipeline implementation. These
transfers are made using indirect addressing, what makes use of some special registers located into the Register file. This
massive use of registers causes a higher heat-up of the Register file block.

Therefore, the pipelined implementation can be applied to a reduced portion of the source code (local optimization) and,
in this way, the effect of the temperature gradient is minimized as being restricted to a shorter execution time. Also, an alter­
native source code transformation that cools down these units can be employed in parallel with the pipeline code
modification.

4.2.2. Typical case analysis
It is also interesting to analyze the thermal gradient existing between functional units that do not have extreme temper­

atures. This will be the situation of most of the blocks during the execution of a benchmark and needs to be properly char­
acterized. Fig. 10 shows the typical expected temperature gradients for the four implementations of the image processing
algorithm. In this case, the dynamic memory implementation presents the highest temperature gradient due to the amount
of memory transactions, highly increased with this transformation.

Apart from the pipeline implementation, this figure presents other interesting results. The gradient profile of the dynamic
memory implementation shows one quick gradient variation. This variation coincides with the operations of memory re­
lease. During these operations, the ALU has little use in favor of the memory transferences. Therefore, this analysis can be
taken into account in order to propose a scheduling of source code transformations that homogenizes the thermal behavior
in the functional units of the chip.

An example of this homogenization policy for the image processing algorithm is shown in Fig. 11. As can be seen, the
combination of the loop-splitting transformation with the use of dynamic memory is able to achieve a better response in
terms of thermal gradients. The use of the loop-splitting transformation produces a heating in the RAM of the system during
the initial time which reduces the transient in the temperature when the memory begins to be stressed. The sharp temper­
ature transitions are the main factor in the chip damage and must be avoided.

Similar results in terms of thermal gradients have been found for the dijkstra application. The combination of the loop-
splitting transformation with the use of dynamic memory is able to reduce the thermal differences between the processing
units in the chip. Moreover, as Fig. 12 shows, the use of the loop-splitting technique can reduce the impact of the dynamic

Q.018r

O 01S •

0.014-

0 012 •

g
¡ 0.01

W

!Ü 0.008 •

Middle values dynamic mem:RAM-ALU

0.006-

0.004 -

0O02

0 Í

: : P I
: ;. . . . , /
: : 0
• • /

i i i i

1 3 4 5
Time (sec)

without Loop-Splitting
with Loop-Splitting

3 7 8 9

X10"3

Fig. 11. Typical expected temperature gradients before and after homogenization policy (image processing algorithm).

0.0S5

0.055 •

ü 0.045 -

0 0 4 -

A Temperature us P ower

0 03 •

0.025 -

0.02

0.015

I I

Toop-Split t ing+Dyn. mem.

loop-spl i t t ing ;

i i

I

nynkmiD M emdry

J3asellne Implementation

• Pipeline Stage

6 21 3.215 6 22 6.225 6 23 6 235 6 24 6 245 6 25 6.255
Power (W) i 1 0 - =

Fig. 12. Power consumption vs. Total temperature in the chip (dijkstra application).

memory transformation in the total temperature of the chip and power consumed by the application. Therefore, the negative
impact in terms of power and temperature of the applications implemented with dynamic memory routines can be reduced
by the subsequent application of the loop-splitting transformation.

Our ongoing work in this field is focused on increasing the set of source code transformations with a characterized ther­
mal behavior and looking for an analytical way to apply these transformations in the thermal homogenization problem.

5. Conclusions

The thermal analysis in embedded systems is nowadays one of the main problems that the designers of embedded sys­
tems have to solve before thermal-aware system can be devised. Moreover, the way the application code is written, and the
way the compilers manage this code, has a strong impact in the thermal behavior of the system.

This paper has presented an efficient way to characterize a processor-based system from a thermal point of view. The
proposed methodology is target-independent and does not require a deep knowledge of the implementation details. The pro­
posed methodology has been applied to the thermal characterization of several source code transformations. The analysis of
this effect is a precious information to be considered for achieving the temperature-aware compilation.

Acknowledgement

This work is supported by the Spanish Government Research Grant TIN2008-508.

References

Brooks D, Martonosi M. Dynamic thermal management for high-performance microprocessors. In: International symposium on high-performance
computer architecture; 2001.
Donald J, Martonosi M. Temperature-aware design issues for smt and cmp architectures. In: Workshop on complexity-effective design; 2004.
<http://www.hpl.hp.com/research/dca/smartcooling/>.
Huang W, Stan MR, Skadron K, Sankaranarayanan K, Ghosh S, Velusamy S. Compact thermal modeling for temperature-aware design. In: Design
automation conference; 2004.
Su H, Liu F, Devgan A, Acar E, Nassif S. Full leakage estimation considering power supply and temperature variations. In: International symposium on
low power electronics and design; 2003.
Li P, Pileggi L, Ashegi M, Chandra R Efficient full-chip thermal modeling and analysis. In: International conference on computer-aided design; 2004.
Huang W, Humenay E, Skadron K, Stan M. The need for a full-chip and package thermal model for thermally optimized IC designs. In: International
symposium on low power electronics and design; 2005.
Huang W, Stan M, Skadron K. Parameterized physical compact thermal modeling. IEEE Trans Compon Packag Manufact Technol 2005;28(4):615-22.
Lopez-Buedo S, Garrido J, Boemo EI. Dynamically inserting, operating, and eliminating thermal sensors of FPGA-based systems. IEEE Trans Compon
Packag Technol 2002;25(4):561-6.
Julien N, Laurent J, Senn E, Martin E. Power consumption modeling and characterization of the ti c6201. IEEE Micro 2003;23(5):40-9.
Senn E, Laurent J, Julien N, Martin E. Softexplorer: Estimation, characterization, and optimization of the power and energy consumption at the
algorithmic level. In: International workshop on power and timing modeling, optimization and simulation; 2004.
Srinivasan J, Adve SV. Predictive dynamic thermal management for multimedia applications. In: International conference on supercomputing; 2003.
Heo S, Barr K, Asanovic K. Reducing power density through activity migration. In: International symposium on low power electronics and design; 2003.
Sankaranarayanan K, Velusamy S, Stan M, Skadron K. A case for thermal-aware floorplanning at the microarchitectural level. J Instruct Level Parallel
2005; 7.
Narayanan SHK, Chen G, Kandemir M, Xie Y. Temperature-sensitive loop parallelization for chip multiprocessors. In: International conference on
computer design; 2005.
PIC16F873 Datasheet. Microchip; 1997.
Skadron K, Sankaranarayanan K, Velusamy S, Tarjan D, Stan M, Huang W. Temperature-aware microarchitecture: modeling and implementation. ACM
Trans Archit Code Optim 2004;1(1):94-125.
Krum A. The CRC handbook of thermal engineering. CRC Press; 2000 [Ch: Thermal management].
Skadron K, Abdelzaher T, Stan MR. Control-theoretic techniques and thermal-RC modeling for accurate and localized dynamic thermal management.
In: International symposium on high-performance computer architecture; 2002.
Moyer B. Low-power design for embedded processors. Proc IEEE 2001;89(ll):1576-87.
<http://www.eecs.umich.edu/mibench/>.

http://www.hpl.hp.com/research/dca/smartcooling/
http://www.eecs.umich.edu/mibench/

