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Abstract:
Small transistors and high clock frequency have resulted in high power density, which

makes temperature a strong constraint in today’s microprocessor design. For maximizing
performance, the thermal design power must be set according to average, instead of worst
case, conditions. Consequently, current processors feature temperature sensors and throt-
tling mechanisms to keep the chip temperature at a safe level. To study future thermally-
constrained processors and systems, researchers and engineers use cycle-accurate perfor-
mance simulators modeling power consumption and temperature. Cycle-accurate simula-
tors are relatively slow and make it difficult to study long-term thermal behaviors that
may require to simulate several minutes or even hours of processor execution. Sampling or
phase analysis cannot be applied directly in this case because temperature depends on all
past energy events. We propose a partial solution to this problem, which consists in de-
coupling cycle-accurate simulations and thermal ones. Temperature-unaware cycle-accurate
simulation is used to generate an energy trace representing the complete execution of an
application. Phase analysis can be used to decrease the trace generation time and make
compact traces. Temperature and thermal-throttling are simulated in a separate thermal
simulator that reads energy traces. The thermal simulator is faster than the cycle-accurate
one and can be used to explore, with the same energy trace, parameters that are not modeled
in cycle-accurate simulation.

Key-words: Temperature-constrained processor, performance, energy, simulation, pro-
gram phase reuse.
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Simulation thermique découplée

Résumé : Les processeurs récents ont une densité de puissance électrique très élevée
qui résulte principalement de la miniaturisation des transistors et de l’augmentation de
la fréquence d’horloge. De ce fait, la température est une contrainte importante pour la
conception des processeurs. Afin d’obtenir un processeur le plus performant possible sous
contrainte thermique, on dimensionne la consommation électrique de plus en plus en fonction
des conditions moyennes au lieu des conditions extrêmes. Cela nécessite d’intégrer sur la
puce des capteurs de temperature et des mécanismes de contrôle permettant de diminuer
la dissipation de chaleur lorsque c’est nécessaire pour maintenir la température en deçà
de la limite. Afin d’étudier les futurs processeurs et systèmes sous contrainte thermique,
les chercheurs et les ingénieurs utilisent des simulateurs microarchitecturaux modélisant la
consommation électrique et la température. Ces simulateurs sont relativement lents et ne
sont pas appropriés à l’étude de certains comportements nécessitant de simuler plusieurs
minutes, voire plusieurs heures d’exécution. L’échantillonnage ou l’analyse de phase de
programme ne peuvent pas être utilisés directement, car la température à un instant donné
dépend de tous les évènements passés. Nous proposons une solution partielle à ce problème,
qui consiste à découpler la simulation microarchitecturale et la simulation thermique. La
simulation microarchitecturale est utilisée pour générer une trace d’énergies représentant
l’exécution complète d’une application. L’analyse de phase permet de réduire le temps de
génération de la trace et d’obtenir une trace compacte. La température et les mécanismes de
contrôle sont simulés dans un simulateur thermique séparé. Le simulateur thermique est plus
rapide que le simulateur microarchitectural et peut servir à explorer, avec une même trace
d’énergies, les paramètres qui ne sont pas modélisés dans le simulateur microarchitectural.

Mots clés : Processeur sous contrainte de température, performance, énergie, simulation,
réutilisation de phase de programme.
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1 Introduction

Smaller feature sizes and constraints on voltage scaling have resulted in very high power
density in current high-performance microprocessors. Consequently, temperature has be-
come a strong constraint and will remain so unless a major technology change occurs. For
maximizing performance, the thermal design power will be set more and more according
to average, instead of worst case, conditions. In these conditions, it is possible to hit the
temperature limit depending on applications characteristics and ambient temperature. Cur-
rent processors feature thermal sensors to monitor temperature, in order to keep it below
the limit. When necessary, the processor power dissipation is throttled, which generally
decreases performance.

Researchers are exploring ways to minimize the performance loss due to thermal throt-
tling, for instance with activity migration (or more generally solutions that spread heat
over a larger area) [30, 48, 22, 38, 44, 6, 45, 8, 24, 39, 32, 13, 34, 7], with temperature-
aware OS scheduling [41, 2, 38, 31, 25, 26, 9], with more efficient throttling mechanisms
[23, 3, 47, 11, 48, 49, 50], with temperature-aware floorplanning, [48, 12, 42, 20, 35], with
temperature-aware compilation [37, 36, 43] etc. The goal of these techniques is to increase
performance under a fixed temperature limit. To study whether and how these techniques
should be implemented in future thermally-constrained processors, researchers need simula-
tors.

The conventional approach for temperature-aware cycle-accurate simulation incorporates
an energy model (e.g. Wattch [4]) and a thermal model (e.g. ATMI [1] or HotSpot [48])
into a cycle-accurate microarchitecture simulator (e.g. Simplescalar [5]) as shown in figure
1. However, cycle-accurate simulators are generally too slow to simulate more than a few
seconds of execution. Yet, thermal behaviors may necessitate to simulate several minutes
or even hours of execution in order to be observed. The usual methods to speed-up cycle-
accurate simulators, like sampling or phase classification, cannot be used directly in this
case because temperature at a given time depends on all past energy events.

We propose decoupled thermal simulation (DTS) as a partial solution to this problem.
Temperature-unaware cycle-accurate (TUCA) simulation is used to generate an IPC/energy
trace representing the complete execution of an application. Phase analysis can be used to
decrease the trace generation time and make compact traces. Temperature and thermal-
throttling are simulated in a separate thermal simulator that reads IPC/energy traces. The
thermal simulator is faster than the cycle-accurate one and can be used to explore, with the
same trace, parameters that are not modeled in cycle-accurate simulation.

This report is organized as follows. Section 2 explains the problem we are trying to solve.
Related work is mentioned in Section 3. Section 4 describes decoupled thermal simulation
and phase substitution. Section 5 evaluates the accuracy of phase substitution and its impact
on trace generation time. Section 6 presents an example of study that can be done with
DTS. Finally, Section 7 concludes this study.

PI n˚1871
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Figure 1: Conventional temperature-aware cycle-accurate simulation.

2 Understanding the problem

Why simulate several minutes of execution to observe thermal behaviors ? The
processor heat-sink acts as a reservoir of thermal energy. It is characterized by a certain
heat capacity. For example, the specific heat of aluminum is approximately 900 joules per
kelvin and per kilogram. An aluminum heat-sink weighting, let’s say, 400 g represents a heat
capacity C = 0.4×900 = 360 J/K. The time necessary to fill or empty this reservoir depends
on the heat-sink thermal resistance R (in kelvins per watt), which itself depends on many
parameters (heat-sink dimensions, number of fins, fan speed, etc.). For instance, assuming
the heat-sink temperature T is approximately uniform, temperature decreases exponentially
with time after power sources have been shut down :

T (t) − Tamb

T (0) − Tamb

= e−
t

RC

where Tamb is the temperature of the air hitting the heat-sink. For example, if R = 0.3 K/W ,
the heat-sink time-constant is RC = 0.3× 360 ≈ 108 s. It means that an application whose
total running time does not exceed a few minutes may not reach a thermal steady state,
even if dissipating a constant power. Here, we have assumed that Tamb is constant. But
the air inside the computer box becomes hotter when the processor dissipates power [51],
and the time necessary to reach a true steady state may be much longer than indicated by
a quick time-constant calculation.

Irisa



Decoupled Thermal Simulation 5

Can we shorten the simulation by choosing representative execution samples ?
The usual solution to speed-up microarchitectural simulations is to use sampling or phase
classification [46]. This solution works well for obtaining reasonably accurate estimations of
performance and energy consumption. However, it cannot be applied directly to temperature
in the general case. Temperature at a given time is a function of all past energy events,
mainly events that occurred in a time window corresponding to the time to reach steady
state. If we take execution samples without knowing what happened between the samples,
we cannot know temperature in general. For example, consider an application with a steady
behavior and dissipating a high constant power, but whose running time is too short to reach
steady state. If we execute the application after a long period of low activity, the heat-sink is
relatively cold, and the temperature when running the application will keep increasing, until
thermal throttling triggers and decreases performance more and more as the heat sink gets
hotter. In these conditions, defining a representative execution sample seems very difficult,
even though the example application has a steady behavior.

3 Related work

The impact of the heat-sink initial temperature was emphasized in [48]. It was proposed
to compute the steady-state temperature corresponding to the application average power
(i.e., the steady-state temperature we would reach if the application dissipated a constant
power) and use this temperature as the initial temperature. It was noted in [50] that a
complication arises if one wants to simulate mechanisms that impact the steady state tem-
perature (e.g., thermal throttling methods), which requires iterative simulations. Anyway,
these propositions do not apply when an application total running time is too short to reach
a steady state, or when the application has distinct execution phases with different power
consumptions.

When studying future processors and future platforms that do not exist yet, it is difficult
to avoid simulation. However, certain temperature-related studies can be conducted on
existing platforms. For instance, temperature can be measured by accessing on-chip thermal
sensors [9], by infrared thermal imaging [16, 17], or by correlating power and temperature
with processor events via performance counters [2, 28, 10, 21, 25, 19, 51].

4 Decoupled Thermal Simulation

Decoupled thermal simulation (DTS) is based on the observation that power density varia-
tions at short time scales have little impact on temperature. If we apply a power density q
in a region of the chip where temperature is initially at Tamb, temperature T in this region
is, for small time values [40]

T (t) − Tamb =
2q

ksi

√

αsi

π
t

PI n˚1871



6 Guntur & Michaud

where ksi and αsi are the thermal conductivity and thermal diffusivity of silicon respectively.
For instance, with ksi = 110 W/mK and αsi = 6×10−5 m2/s, a power density q = 2 W/mm2

applied for t = 10 µs generates approximately a temperature increase of 0.5 °C. So in theory,
we do not need to know exactly the power density values at each CPU clock cycle to
model temperature with reasonable accuracy. If we feed a thermal simulator with a pre-
computed power density trace, we can work with a timestep much longer than a CPU

clock cycle. This way, the ratio simulation time
simulated time

can be much smaller than that of a cycle-

accurate microarchitectural simulator, provided we use a fast thermal model like ATMI [33]
or HotSpot [48]. Yet, we still need a cycle-accurate simulator to obtain the average power
density during a timestep.

DTS is a two-step method :

1. Trace generation : An IPC/energy trace representing the complete execution of an ap-
plication is generated with a temperature-unaware cycle-accurate (TUCA) simulator.

2. Thermal simulation : The trace is read by a fast thermal simulator modeling temper-
ature and estimating the performance impact of thermal throttling.

This method saves simulation time when the same trace is reused several times for exploring
parameters that are not modeled in the TUCA simulator.

Before going further into the description of DTS, we must mention its limitations. If we
change the microarchitecture or any parameter impacting the IPC (instructions retired per
cycle) or the dynamic energy consumption in a non straightforward way, we must generate
a new trace. Also, not all thermal throttling methods can be simulated with DTS. Decou-
pling the thermal simulation from the cycle-accurate one is possible only if the throttling
method alters performance in a simple way. An on/off throttling method that stops the
execution for some time can be simulated with DTS, as power density during off periods
is practically independent from the application characteristics and can be modeled in the
thermal simulator, and the impact on performance is straightforward. This is the method we
have implemented for this study. Other throttling methods like dynamic voltage/frequency
scaling or IPC throttling [14] cannot be easily modeled with DTS. Moreover, the DTS im-
plementation we describe in this report applies to single-thread execution only. We are
currently searching ways to apply DTS to multicores, but a complication arises because
threads executing concurrently may have complex interactions due to shared resources like
caches and memory bandwidth. This is part of our future work. That said, the DTS method
we present in this report can be used to do several sorts of studies, in particular activity
migration, impact of floorplan on temperature, temperature sensors locations, temperature-
aware process scheduling, and package and heat-sink parameters exploration. The rest of
this section gives a detailed description of the DTS method we have implemented.

4.1 Trace generation

The TUCA simulator computes the dynamic energy consumed by each resource every cycle.
A resource that is idle in the current cycle is assumed to be gated and dissipates a certain

Irisa
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Figure 2: A high level schematic of DTS showing (a) Trace generation and (b) Thermal
simulation.

fraction of the dynamic energy that it consumes when it is active. This is called the gating
factor.

Periodically, at intervals of ts cycles, the accumulated energy and the interval IPC is
stored in the trace file. Figure 3(a) shows the contents of a typical trace. Each row i consists
of an IPC value IPCi and r energy values Eij (1 ≤ j ≤ r), where r is the number of floorplan
blocks (e.g., microarchitectural units). The values represent the IPC of the program and
the dynamic energy consumed by each resource over an interval of ts cycles. Assuming that
each value is represented by a floating point number, an uncompressed IPC/energy trace
file consisting of N rows (which corresponds to N * ts simulation cycles) has a size of N *
[(r + 1) * sizeof(float)] bytes.

Other variants for generating the trace may also be used. For example, instead of writing
into the trace every ts cycles, it is possible to dump IPC and energy values every fixed number
of instructions. Additionally, if the power model assumes that the energy consumed by a
resource doing useful work is constant (i.e., it is a statistical model ignoring bits values, like
Wattch [4]) then it is sufficient to store the number of cycles Nij during which a resource
is doing useful work (cf. Figure 3(b)). Actually, in this case, the power model (i.e., energy
ECj per resource utilization, and gating factors) can be integrated directly in the thermal
simulator.

4.2 Thermal simulation

The thermal simulation phase is composed of three main components : thermal model,
temperature dependent leakage power estimation and thermal throttling mechanism. Figure

PI n˚1871
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t sTimestep/Interval

IPCi+1 E (i+1)1 E (i+1)2 E (i+1)rInterval   (i+1)

E irE i2E i1IPCiInterval  (i)

t sTimestep/Interval

NirNi2Ni1IPCiInterval  (i)

g1 g2 gr

N(i+1)2N(i+1)1IPCi+1 N(i+1)r

rEnergy/cycle EC EC EC1 2
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(b)

Figure 3: Partial trace contents. (a) Accurate format which consists in storing the energy
consumed by each unit over a period of ts cycles. (b) A simpler more compact format
in which resource utilization counts are stored along with the baseline per-resource energy
values.

2(b) and algorithm 1 highlight the interaction between each of these components when
thermal throttling is used.

Leakage power. Static power dissipation due to leakage currents is a significant fraction
of the total power dissipation. In contrast to dynamic power which is application dependent,
static power is present even when a circuit is not switching, unless some power gating is
implemented. Besides, leakage power, unlike dynamic power, is strongly dependent on
temperature [29]. Therefore the leakage power computation is carried out in the thermal
simulator. In this report, the temperature dependent variation of leakage power is computed
using the model of Liao et. al. [29].

Temperature model. We used the ATMI thermal model for our simulations [1][33].
ATMI models the processor floorplan as a set of rectangles with uniform power density. If
the power model gives power numbers at the granularity of main microarchitectural units,
as is the case in this study, then each unit is modeled with a single rectangle. If the power
model is more detailed, or if we want a more detailed temperature map, we may use several
rectangles per unit. In ATMI, the initial thermal state is defined by applying a constant
power density in each rectangle for a time sufficiently long to reach a steady state.

Thermal throttling. Modern processors employ thermal throttling mechanisms that re-
duce power consumption when the temperature exceeds a threshold Tlim. This can be done
by stopping the clock for a fixed duration toff whenever the hottest on-chip thermal sensor
indicates that the thermal limit Tlim is exceeded [15]. For instance, in the Intel Pentium
4, toff is a few microseconds [15]. When off, the circuits are in an inactive state and the
processor consumes only a fraction the power it consumes when doing useful work. Since the
decision to turn-off the processor clock is based on the temperature at the hottest thermal
sensor, it is important that the sensors be placed at appropriate locations so as to capture

Irisa
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Area(r) = Read Floorplan(); /* get area of each unit r */
T (xs, ys, 0) = Tinit; /* start with initial temp */
Initialize Thermal Model();
foreach Resource r do
/* static power at initial temp in each unit */
StaticEnergy(r, T (xs, ys, t), Vdd) = Determine static power(r, T (xs, ys, t), Vdd);

end
Proc state = ON
i = 1; Interval count = 0; AvgIPC = 0;

while i < Num. trace entries do

/* Simulate throttling */
if Proc state == ON then
{IPC(i) , DynEnergy(r, Vdd} = Read Trace Entry(i);

/* Active mode */
TotalEnergy(i, r) = DynEnergy(r, Vdd) + ts ∗ StaticEnergy(r, T (xs, ys, t), Vdd);
AvgIPC + = IPC(i);
Interval count++;

end
else
/* ∃(xs, ys) : T (xs, ys, t) > Tlim ⇒ processor is Off */
/* Inactive mode */
TotalEnergy(i, r) = ts * InactiveEnergy(r, T (xs, ys, t));
Interval count++; /* another timestep elapsed*/
−−DTM interval;
if DTM interval == 0 then
Proc state == ON;

end

end
Powerden(r) = Convert Energy to Powerdensity (TotalEnergy(i, r), Area(r), f);
T (xs, ys, t) = Compute Temperature(Powerden(r), (xs, ys), . . . );
i++;

StaticEnergy(r, T (xs, ys, t), Vdd) = Update Leakage Power (r, T (xs, ys, t));
if ∃(xs, ys) : T (xs, ys, t) > Tlim && Proc state == ON then
Proc state = OFF; /* trigger DTM */
DTM interval = toff ; /* switch-off for toff cycles */

end

end
Overall IPC = AvgIPC / Interval count;

Algorithm 1: Pseudo-code for the thermal simulator. Timestep is ts cycles.

PI n˚1871



10 Guntur & Michaud

the temperature at the truly hot regions of the chip. For this study, we have assumed there
is a temperature sensor in each unit.

On-off throttling reduces the power density at all the units and leads to temperature
oscillations [34]. The amplitude of the oscillations depends on how long the processor is
switched off. A large toff value gives the chip more time to cool resulting in higher ampli-
tudes of oscillation. On the other hand, a small toff leads to higher frequency of oscillations
and more frequent triggering of thermal throttling. Figure 4 shows that the amplitude of the
oscillations is less than 10C and 2.70C for toff of 0.1ms and 1ms respectively. In general,
a smaller off period results in lower processor performance degradation [34].
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Figure 4: Amplitude of temperature oscillations for two different values of toff .

The thermal simulation phase accepts the IPC/energy trace as input and estimates the
temperature profile for the concerned application. Each row i of the IPC/energy trace file
represents the IPC and dynamic energy (DynEnergy) consumed by every resource r over
a period of ts cycles. Thus, the total energy consumed at each resource over ts cycles is
total energy = dynamic energy +ts× static power (see Algorithm 1). The ATMI timestep
is set equal to ts. At each timestep, we compute the power density from the dynamic
energy information stored in the trace and from the static power model, and ATMI updates
temperature accordingly.

The resulting temperature estimate is used to update the leakage power at each unit
for the next timestep. The IPC of the processor during this interval is simply the value
read from the trace. Thermal throttling is triggered when the temperature of the hottest
thermal sensor exceeds Tlim. During this period, the circuits are in an inactive mode and
the contents of the trace file are not read (i.e. IPC = 0 and DynamicEnergy = 0). The

Irisa
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processor remains turned-off for toff cycles. In general, we take toff as an integral multiple
of the timestep ts, which makes thermal simulation easier.

4.3 Faster and compact trace generation using program phases

Trace generation involves cycle-accurate simulation of the entire benchmark and is therefore
the most time consuming part of DTS. An alternative approach for trace generation is to
sacrifice some accuracy for speed by simulating only representative portions of the program
[27, 46]. As already mentioned in Section 2, phase classification cannot be applied directly
to temperature because temperature depends on all past energy events. However, it can be
used to speed up trace generation and to make more compact traces.

We use the SimPoint tool [18] to identify representative phases and the sequence of phases
within a program. The dynamic instruction stream of a program is divided into fixed or
variable length intervals Ii and the basic block vector frequency counts (BBV) are obtained
via functional simulation for each interval. Unless otherwise mentioned, we use fixed length
intervals Ii of 100 million instructions. We find that using variable length intervals does not
improve the accuracy of the temperature estimate by much. SimPoint uses the BBV counts
and K-means clustering to identify the simulation points of the program. It also assigns a
phase label Pi to each interval Ii. For better understanding, we shall describe this approach
using the example of figure 5 which shows an application consisting of five intervals I1, . . .
, I5. SimPoint identifies three phases P1, P2 and P3 for this application. Interval I1 is
assigned a phase label P1 while I4 has a label P3.

Baseline DTS: The baseline DTS trace generation ignores phases. It simulates every
interval with a TUCA simulator, as described in section 4.1. For the example of Figure 5,
the overall trace is a concatenation of the individual interval traces in program order i.e.
{T1R|T2R|T3R|T4R|T5R}.

Direct Phase Substitution: The idea behind phase substitution is that since intervals
having the same phase label (i.e. I1, I3 and I5) are approximately similar in their behavior,
only one representative interval (or simulation point) may be simulated in detail (e.g. I3),
and the IPC/energy values of this representative interval may be used for the remaining
intervals having the same phase label (i.e. for I1 and I5). Once the representative phases have
been identified, the simulator processes instructions of an interval Ii either using functional
simulation or using detailed cycle-accurate simulation. With regard to figure 5, instructions
belonging to intervals I1 and I5 are skipped using fast-forwarding, while those belonging
to I2, I3 and I4 are executed in the detailed cycle-accurate simulation mode. Thus, the
IPC/energy trace file is generated much faster than the baseline policy and consists of
values from only these intervals i.e. Trace = {T2R|T3R|T4R}. For the skipped intervals,
only some pointer information is stored (see figure 5(c)). These pointers point to the start
and end of the respective simulation points and are used only during thermal simulation.
Thus, a program with P phases has IPC/energy entries corresponding to P intervals.

During thermal simulation, the IPC/energy values of I3 (i.e. T3R), which is representa-
tive of phase P1 is used for the (skipped) intervals I1 and I5 (the pointers in the trace file
enable this to be done). This substitution of the IPC/energy values is required since tem-

PI n˚1871
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Figure 5: DTS using program phase information with various substitution schemes. The
simulation points for phases P1, P2 and P3 are intervals I3, I2 and I4 respectively. Each
interval trace TiR contains IPC/energy values in the format shown in figure 3. Figures
(a)-(d) show the “unrolled” values of the trace files used during thermal simulation. Figures
(e) and (f) show the format of the trace generated with direct and recent phase substitution
respectively. The start and end pointers point to the beginning and end of the interval
whose values need to be used during thermal simulation.

perature is a function of all previous energy events. Thus, unlike performance, which can be
estimated once the CPI of each phase is available [18], temperature simulation requires that
the IPC/energy of all intervals be processed in program order. Thus, for the example con-
sidered, the IPC/energy values used by the thermal simulator to estimate the temperature
behavior of the complete application is essentially the trace {T3R|T2R|T3R|T4R|T3R}.

Selective Phase Substitution: To improve the accuracy of direct phase substitution,
specially for benchmarks that have complex phase behavior, one can use the following meth-
ods - (i) increase the number of representative simulation points, for example, by changing
the parameters of SimPoint and (ii) by being more selective during substitution by simu-
lating more intervals in the detailed mode. In this study, we evaluate the latter “selective
phase substitution” approach that takes into account not just the phase labels, but also the
cluster distance values associated with each interval. The cluster distance is a measure of
how close or similar an interval Ii is with respect to the representative interval (or simulation
point) at the cluster center. The smaller the distance value, the greater the similarity. If
the phase labels of two intervals Ii and Ij (Ij occurs after Ii in program order) match, and
the cluster distances between them is less than or equal to a threshold Dist Thresh, then,
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Ij is substituted with the IPC/energy values of Ii (provided trace TiR is available). Thus,
instructions of Ij are skipped using the functional mode of execution. This scheme intro-
duces selectivity by ensuring that substitution is done only when two intervals are relatively
similar. Two variants of this scheme are described below. For illustration purposes, we
assume that Dist Thresh = 0.1 and describe the method with regard to figure 5.

The first time an interval with a new phase label is encountered, its instructions are
executed using cycle accurate simulation. Thus, instructions belonging to intervals I1 and
I2 are executed in detailed mode resulting in portions of the trace file T1R and T2R. Interval
I3 has the same phase label as I1. However, the cluster distance metric between I3 (0.5) and
I1 (0.3) is greater than Dist Thresh (0.1). Thus, substitution is not done and instructions of
I3 are executed in the cycle accurate mode. Interval I4 has a new phase label P3 which was
not encountered before and is executed in detailed mode. Interval I5 has the same phase
label as a previously encountered interval (e.g. I1 and I3).
In the early phase substitution policy, the IPC/energy values of the earliest encountered
phase (that was executed in detailed mode) having the same phase label are used for sub-
stitution. Thus, instructions of I5 are skipped (via functional simulation) and it is assumed
to have an IPC/energy trace of I1 i.e. T1R.
In the recent phase substitution policy, the IPC/energy values of the most recent inter-
val (having same phase label) that was executed in detail is used for substitution. Thus,
I5 uses the trace contents of I3 (i.e. T3R) since the distances between these is equal to the
threshold.

To prevent values of one particular portion of the program from being propagated all
over, we resort to detailed simulation after a a certain number of substitutions. The idea is to
use the IPC/energy values of the current program slice for future substitutions. For example,
with the early phase substitution policy, the IPC/energy values of the initialization portion
of the program I1 are propagated to all subsequent intervals that have the same phase label
and satisfy the distance criterion. This may not be representative of the original program
behavior. To prevent this from happening, we allow a maximum of 60 substitutions at a time
after which the association between the phase labels and the intervals is cleared. The start
reference is changed to the current interval that is yet to be simulated and the methodology
is repeated assuming that this is the first interval in the program. Thus, with this approach,
IPC/energy values from different portions of the program are used for phase substitution.

5 Phase substitution : accuracy and trace generation

time

5.1 Simulation environment

For TUCA simulation, we use the PTScalar [29] simulation infrastructure. This infrastruc-
ture is based on the Simplescalar performance simulator [5] and incorporates a dynamic and
static power model.
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Parameter Configuration
Fetch 4 instr/cycle. 8 entry IFQ. 1 taken

branch/cycle.
Branch Combined, 4K-entry bimodal,

2-level 1K table, 10 bit history, 4K chooser
8 entry RAS. 512 set 4 way BTB

Dispatch 4 instr/cycle, RUU = 64, LSQ = 32
Issue 4 instr/cycle, OoO issue, in-order commit
L1 I/D cache 64KB, 32-byte block, 4 way assoc.
L2 cache Unified, 4MB, 128B block, 8 way assoc.
Miss latency 1 cycle for L1 I/D-cache, 12 cycle for L2
FUs 3 IALU, 1 IMULT, 1 FPALU, 1 FPMULT,
FU latency/ IMUL 3/1, IDIV 20/19, Other integer 1/1
throughput FPMULT 4/1, FPDIV 12/12, FPALU 2/1

Table 1: Baseline processor configuration.

The simulator runs on a host machine with an Intel Xeon processor having a 2.8 GHz
clock. The baseline configuration that we simulate is a 4-way dynamically scheduled super-
scalar processor with a floorplan closely resembling the Alpha 21264 processor ([29]). We
choose 100-nm technology in our experiments and integrate the ATMI thermal model [1] in
this simulator to estimate the temperature behavior. The baseline processor configuration
and the ATMI parameters used are shown in Tables 1 and 2. In all our simulations, we used
a timestep ts = 5×105 cycles, which, with a 5 GHz clock, corresponds to 100 µs. Parameter
toff represents the duration (in cycles) for which the processor is turned-off when thermal
throttling is active. Unless stated otherwise, we assumed Tlim = 85 °C and toff = 1 ms.

Benchmarks. We present results only for a subset of SPEC CPU2000 benchmarks. The
benchmarks chosen have widely varying thermal stress properties ranging from medium to
high and are simulated to completion. Table 3 shows some statistics including the baseline
IPC, dynamic energy per instruction (EPI) and time taken to generate the IPC/energy
trace. The IPC/energy trace generated with baseline DTS is used as the reference for all
comparisons.

It is important to distinguish the simulated time from the simulation time. The simula-
tion time is the time required to simulate a benchmark (denoted by Time in table 3). It
is a function of the simulator complexity. The simulated time represents the time it would
take to execute the benchmark on the processor we have modeled in the simulator if this
processor were real.
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Name and units Value
Silicon thermal conductivity; k1 (W/mK) 124.2
Copper thermal conductivity; k2 (W/mK) 400

Silicon thermal diffusivity; α1 (m2/s) 7.1 x 10−5

Copper thermal diffusivity; α2 (m2/s) 1.1 x 10−4

Interface material thermal conductance; h1 (W/m2K) 8 x 104

Heat sink thermal conductance; h2 (W/m2K) 680.2
Die thickness; z1 (mm) 0.5

Heat sink base plate thickness; z2 - z1 (mm) 5
Heat sink base plate width; L (cm) 7

Supply voltage/frequency; Vdd / Frequency 1.1V / 5GHz
Ambient temperature; Tamb 450C

Table 2: Baseline ATMI parameters.

Name Input Instr Phase IPC Time EPI Power Sim
art 110 41.7 9 1.76 63 4.0 35.5 4.7

bzip2 graphic 143.5 12 1.56 266 3.5 27.7 18.3
eon kajiya 101.2 10 1.83 152 3.7 33.5 11.0
gcc 166 46.9 12 1.50 76 3.9 29.7 6.2
gzip graphic 103.7 10 1.85 166 3.4 32.0 11.1
lucas ref 142.3 13 0.50 344 6.5 16.4 56.2
mcf ref 61.8 12 0.28 347 11.8 16.5 43.8
perl diffmail 39.9 7 1.52 85 4.1 30.8 5.2

Table 3: Benchmark statistics for the baseline processor configuration including Inputs,
number of instructions Instr (in billions) and number of phases in the program, IPC, ap-
proximate simulation time to generate IPC/energy trace (in hours), average EPI (nJ/instr),
average power (Watts) and simulated time (Sim) in seconds.
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Name Scheme 0.02 0.04 0.06 0.08 0.1 ∞
art Early 104 97 70 70 70 36

Recent 49 40 37 37 37 36
bzip2 Early 1087 862 782 636 469 177

Recent 1083 897 739 627 527 177
eon Early 102 99 99 99 99 99

Recent 100 99 99 99 99 99
gcc Early 405 381 332 309 299 44

Recent 220 166 148 123 118 44
gzip Early 212 85 77 77 77 69

Recent 192 95 71 70 70 69
lucas Early 1307 1275 1080 1048 919 260

Recent 1118 1021 934 860 805 260
mcf Early 562 401 206 198 100 65

Recent 214 153 130 112 100 65
perl Early 156 31 20 19 18 16

Recent 28 23 21 21 20 16

Table 4: Number of intervals Ii simulated in detail with Early and Recent phase substitution.
The column denoted ∞ represents the case with infinite Dist Thresh.

5.2 Baseline DTS vs. phase substitution based approximation

We first examine the number of program intervals that are subjected to detailed cycle-
accurate simulation as a function of Dist Thresh (see Table 4). As the Dist Thresh value
increases, the potential for phase substitution improves and the number of intervals Ii sub-
jected to detailed cycle-accurate simulation (during trace generation) reduces. The simula-
tion time for trace generation can be improved further by using checkpoints. This is possible
since the intervals to be substituted are known in advance (can be computed offline) once
the phase labels and cluster distance values of all the program intervals are available.

When thermal throttling is triggered, the temperature profile of an application changes
significantly making it impossible to compare temperature curves with the naked eye. For
example, figure 6 shows a snapshot of the temperature curves obtained with baseline DTS
and those obtained by the early and recent phase substitution policies. The obvious question
that arises is “Which temperature curve best represents the exact behavior?”. By looking at
the figure, it is hard to conclude if the early or the recent phase substitution policy is better.
At some portions, the early policy seems to do better, while at others, the temperature
response with recent phase substitution seems more accurate. Thus, appropriate metrics are
required for comparing temperature curves in the presence of thermal throttling. Simply
computing the temperature difference at various instances in time is not a viable alternative

Irisa



Decoupled Thermal Simulation 17

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59
46

46.5

47

47.5

48

48.5

49

49.5

50

50.5

51

Time(s)

Te
m

pe
ra

tu
re

(C
)

 

 

Baseline
Early phase substitution
Recent phase substitution

Figure 6: A snapshot of the temperature behavior of bzip2 as estimated by baseline DTS
and early/recent phase substitution when thermal throttling is triggered for a hypothetical
value of 50°C.

since the difference can be large when the temperature responses, of even identical curves,
are shifted.

The metric we choose for this study is the dynamic energy. Since the total energy
consumed by a program is a constant, the difference between the energy obtained by DTS and
that obtained with approximate simulation (e.g. via direct/early/recent phase substitution)
is a reasonable way of quantifying the accuracy of a simulation scheme; the smaller the
difference, the greater is the accuracy. This computation can be done once the dynamic
energy trace is available.

Table 5 shows the dynamic energy, the approximate trace generation time, and the sim-
ulated time of baseline DTS vs. direct phase substitution, without thermal throttling. As
expected, SimPoint allows to obtain reasonably accurate performance and energy values
while decreasing considerably the simulation time (not counting the time to generate fre-
quency vectors and classify phases). These results are consistent with published results on
SimPoint [18]. Table 6 shows the dynamic energy values for different Dist thresh values with
early and recent phase substitution. For easier comparison, the energy for baseline DTS and
direct phase substitution is also shown. The results indicate that, recent phase substitution
is more accurate than early or direct phase substitution. This can be primarily attributed to
the fact that a larger fraction intervals are simulated in detail with this scheme. The recent
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Name Baseline DTS Direct phase substitution
Energy Time Sim Energy Time Sim

art 167.8 63 4.7 167.7 2.2 4.71
bzip2 508.7 266 18.3 506.7 7.5 18.75
eon 369.1 152 11.0 369.4 5.1 11.02
gcc 184.7 76 6.2 181.3 2.4 6.0
gzip 356.9 166 11.1 357.3 5.4 11.13
lucas 924.6 344 56.2 920.0 7.0 55.95
mcf 726.4 347 43.8 714.9 3.2 43.07
perl 161.2 85 5.2 162.3 1.9 5.27

Table 5: Total dynamic energy (in Joules), approximate trace generation time (Time in
hours) and simulated time (Sim in seconds) of the benchmarks for baseline DTS and direct
phase substitution (no thermal throttling).

substitution policy for Dist Thresh = 0.1 (which results in the best energy estimate with
minimal number of intervals being subjected to detailed simulation) is henceforth referred
to as the best-recent phase substitution policy.

However, for temperature, the picture is different. Since phase substitution involves
using the IPC/energy values of another interval (instead of the actual values which can only
be obtained by detailed simulation), it may introduce significant errors in power density
and temperature. In particular, since the program behavior across the concerned intervals
is rarely the same (even though they have the same phase label), substitution introduces
error in two ways - (i) by approximating the IPC/energy values of interval Ij with those
from Ii and (ii) by approximating the number of values substituted. The impact of the
former is reflected as a difference in the magnitude of the temperature behavior, while that
of the latter as either an elongation or compression of the time axis in the temperature
profile. As an example, Figure 7 shows the temperature curve obtained with baseline DTS
for the gcc benchmark, vs. the temperature curve obtained with direct phase substitution.
As can be seen in this example, for benchmarks like gcc with complex phase behavior,
phase substitution may incur large errors on the simulated temperature, even though overall
performance and energy are estimated reasonably accurately. For this kind of application,
a finer phase granularity may be necessary. This is confirmed by the results for the best-
recent substitution policy in which a larger number of intervals are subjected to detailed
simulation.

Table 7 shows the impact of phase substitution on performance in the presence of thermal
throttling. We assume on/off throttling with toff = 200 µs, and we vary the value of
Tlim from 70°C to 85°C. Performance is given by the IPC, obtained by dividing the total
number of retired instructions by the total simulated time (counting off periods). For these
simulations, the ambient temperature is Tamb = 45°C and the heat-sink thermal resistance
is R = 0.8 K/W . The initial thermal state is defined with the steady state temperature
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Name Base Direct Scheme 0.02 0.04 0.06 0.08 0.1
art 167.8 167.7 Early 167.7 167.7 167.9 167.9 167.9

Recent 167.8 167.7 167.8 167.8 167.8
bzip2 508.7 506.7 Early 509.8 510.0 507.2 507.8 508.4

Recent 508.3 508.5 508.8 511.0 508.1
eon 369.1 369.4 Early 368.9 368.9 368.9 368.9 368.9

Recent 368.9 368.9 368.9 368.9 368.9
gcc 184.7 181.3 Early 184.2 184.5 184.4 185.2 185.4

Recent 184.6 184.9 184.2 184.6 184.4
gzip 356.9 357.3 Early 356.5 357.4 356.6 356.5 356.5

Recent 356.4 357.1 356.9 356.5 356.5
lucas 924.6 920.0 Early 925.1 924.3 922.8 925.6 923.7

Recent 922.0 924.1 925.3 926.2 926.3
mcf 726.4 714.9 Early 727.6 724.3 718.5 717.5 751.4

Recent 727.0 728.0 722.4 719.4 724.2
perl 161.2 162.3 Early 160.9 162.0 162.2 161.9 162.0

Recent 161.1 162.9 161.9 161.9 162.3
Avg 424.9 422.4 Early 425.0 424.8 423.5 423.9 428.0

Recent 424.5 425.2 424.5 424.5 424.8

Table 6: Comparison of the dynamic energy (in Joules) of baseline DTS (Base), direct
phase substitution (Direct) and Early/Recent phase substitution. In case of early/recent
substitution, the energy for Dist thresh values of 0.02 through 0.1 is shown.
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Figure 7: Temperature at the center of the instruction cache for gcc with baseline DTS
compared to direct phase substitution and best-recent phase substitution Thermal throttling
is disabled. The number of intervals simulated in detail are 12 and 118 with direct and best-
recent phase substitution respectively.
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Name Scheme IPC
70°C 75°C 80°C 85°C ∞

art Base 0.25 0.79 1.27 1.74 1.76
Best 0.25 0.79 1.27 1.74 1.76
PS 0.25 0.80 1.27 1.75 1.76

bzip2 Base 0.67 0.97 1.10 1.42 1.56
Best 0.66 0.98 1.10 1.42 1.56
PS 0.71 1.02 1.19 1.48 1.52

PS 92 0.66 0.99 1.10 1.39 1.55
eon Base 0.41 0.46 0.74 1.08 1.83

Best 0.41 0.46 0.74 1.08 1.83
PS 0.40 0.46 0.74 1.08 1.83

gcc Base 0.69 1.07 1.09 1.38 1.50
Best 0.68 1.06 1.09 1.38 1.51
PS 0.73 1.11 1.15 1.44 1.55

PS 50 0.68 1.06 1.10 1.37 1.48
gzip Base 0.51 0.76 0.78 1.17 1.85

Best 0.51 0.76 0.78 1.17 1.85
PS 0.50 0.76 0.78 1.17 1.86

lucas Base 0.50 0.50 0.50 0.50 0.50
Best 0.50 0.50 0.50 0.50 0.50
PS 0.50 0.50 0.50 0.50 0.50

mcf Base 0.27 0.27 0.27 0.28 0.28
Best 0.28 0.28 0.28 0.28 0.28
PS 0.28 0.28 0.28 0.28 0.28

perl Base 0.10 0.48 0.79 1.11 1.52
Best 0.12 0.49 0.79 1.12 1.49
PS 0.16 0.48 0.79 1.11 1.51

Table 7: Comparison of IPC for baseline DTS (Base), direct phase substitution (PS)
and best-recent phase substitution (Best) when thermal throttling is triggered at Tlim =
70, 75, 80, 85 °C (assuming toff = 200 µs). Tlim = ∞ represents a processor that is not
thermally constrained. The number of phases for direct phase substitution is given in Table
3. For benchmarks bzip2 and gcc, we also show direct phase substitution when SimPoint
parameters are modified to obtain a larger number of phases (92 phases for bzip2, 50 phases
for gcc).
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corresponding to the time-average power density of benchmark gcc (with appropriate scaling
so that initial temperature does not exceed Tlim).

Benchmarks lucas and mcf are relatively ”cold” and are not impacted by the temperature
limit. Other benchmarks, like art and bzip2, are strongly impacted by thermal throttling.
Their performance increases with Tlim. As can be seen, direct phase substitution provides
an accurate approximation of the behavior under thermal throttling, except for bzip2 and
gcc where the approximation is rougher. For these two benchmarks, as shown in the table,
we can obtain a more accurate approximation by configuring SimPoint so as to obtain more
phases.

Results in Table 7 may look surprising. For example, when going from Tlim = 70°C to
Tlim = 75 °C, the performance of art is multiplied by more than 3. We do not claim this
example to be realistic. Yet, the reason for this counterintuitive behavior is instructive and
justifies that we explain it with a simplified model. Temperature (relative to ambient) is
roughly proportional to power :

T − Tamb = Rja × P

where Rja is the junction to ambient thermal resistance and P is the total power. Under
thermal throttling, the total power is

P = λPon + (1 − λ)Poff

where λ = ton

ton+toff
is the on/off duty cycle and is a measure of performance. Pon and Poff

are the power consumptions when the processor is on and off respectively. Under thermal
throttling, we have T ≈ Tlim, hence

λ =
Tlim − Tamb − Rja × Poff

Rja × (Pon − Poff )

Our simulation parameters give a value of Rja×Poff (which is the temperature contribution
due to non-gated dynamic power and static power) close to 70 − Tamb. Going from Tlim =
70°C to Tlim = 75°C yields a large increase for λ, hence a much higher performance. This
example stresses the importance of minimizing power consumption during off periods.

6 Example : Impact of heat-sink on performance

To illustrate the flexibility of DTS, we provide an example of a thermal-centric case study
that involves several thermal simulations per benchmark.

As emphasized in Section 2, unless we run an application with a stable behavior for sev-
eral minutes, the heat-sink temperature seldom reaches a steady state. The performance of a
heat-sink, i.e., its ability to remove heat from the processor, depends on several parameters,
in particular its dimensions and the speed of the air-blowing fan. A larger heat-sink is gen-
erally more efficient than a small one, and a fan rotating faster yields a higher heat transfer
coefficient. On personal computers, for user comfort, the heat-sink should be dimensioned
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so that, under low processor activity, the fan speed is minimum, or even null. Low processor
activity does not mean that the processor performance can be low. Under interactive uti-
lization, the CPU activity generated by the system and by the user’s commands is low on
average. But for user comfort, the response to commands should be shorter than what the
user can perceive. For example, let us assume we use the processor for short times, say less
than 1 second, during which the processor dissipates a high power. Temperature increases
quickly, but the time is too short to reach a steady state. If the next utilization is several
seconds later, the heat sink temperature has enough time to cool down. Ideally, to dimen-
sion the heat-sink under such scenario, we need a model of computer/user interaction. Such
modeling is out of the scope of this report though, and we have chosen to illustrate DTS
with a slightly different example, where the heat-sink is optimized for continuous utilization.

We consider the 8 benchmarks listed in Table 3 for which we have obtained the IPC/energy
traces as described in previous sections. The situation we have simulated is that of execut-
ing one benchmark followed by a second benchmark, both benchmarks being executed to
completion. The first benchmark execution serves to create an initial thermal state for the
second benchmark. What we are measuring is the performance of the second benchmark
when the maximum temperature is set to Tlim = 85 °C, and the chip temperature is con-
trolled with an on/off thermal throttling mechanism. It should be noted that some of the
benchmarks listed in Table 3 run only for a few seconds when not throttled, and the thermal
state at the end of the first benchmark execution may not be representative of a continuous
utilization of the processor. Hence before executing the first benchmark we initialized ATMI
with the steady-state corresponding to the time-average power density generated by the gcc
benchmark.

We number the 8 benchmarks from 1 to 8. Let j ∈ [1, 8] be the first benchmark and
i ∈ [1, 8] the second benchmark. Let t∞(i) be the total execution time of benchmark i when
there is no thermal throttling (i.e., Tlim = ∞). Let t85(i, j, h) be the total execution time
of benchmark i when executing after benchmark j, where h is the heat-sink effective heat
transfer coefficient, and under Tlim = 85 °C. Coefficient h, in W/m2K, is related to the
heat-sink thermal resistance R in K/W as follows :

R =
1

hA

where A is the heat-sink base area. The higher h, the more efficient the heat sink. In
our simulations, we assumed A = 49 cm2. We define the average processor performance as
follows :

X(h) =
1

64

8
∑

i=1

8
∑

j=1

t∞(i)

t85(i, j, h)

To illustrate the impact of the initial thermal state, we run another experiment similar
to the one mentioned previously. We use gcc for the initial thermal state, but instead of
simulating two applications j and i in succession, we run only benchmark i. For this second
experiment, the average performance is defined as follows :
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Y (h) =
1

8

8
∑

i=1

t∞(i)

t85(i, h)

We have X(h) = 1 and Y (h) = 1 when there is no thermal throttling, X(h) < 1 and
Y (h) < 1 otherwise. Figure 8 shows a plot of the average performance X(h) and Y (h) when
h varies. The plot shows that both X and Y reach a maximum for h ≥ 291.5 W/m2K,
which corresponds to a thermal resistance R = 0.7 K/W . If the 8 benchmarks we used
were representative of the processor utilization, and if we wanted to dimension the heat-
sink so that the fan speed is null under continuous utilization, we would conclude from this
experiment that a thermal resistance R = 0.7 K/W under null fan speed is sufficient.

On this example, although using only gcc for the initial thermal state leads to a slight
overestimation of the performance loss due to thermal throttling, this does not change our
conclusion. However, it was not obvious beforehand that using gcc for defining the initial
thermal state would be sufficient here. We had to run the simulations to convince ourselves.

This experiment is mainly an example to illustrate the gain in simulation time. The
experiment to obtain the X(h) curve represents a total simulated time of 5 hours. With our
simulation infrastructure, this corresponds to 2600 hours of simulation time. This includes
the time required to generate the IPC/energy traces for all 8 benchmarks 1 as well as the
time required for all thermal simulations. The simulation time necessary to simulate this
experiment with a temperature-aware cycle-accurate simulator would have been roughly two
orders of magnitude longer than with DTS.

7 Conclusion

Simulating thermal throttling in a cycle-accurate simulator may give very different perfor-
mance numbers depending on how the heat-sink temperature is initialized. We have argued
in this report that there is no satisfactory way to initialize the heat-sink temperature. If
we want to simulate thermal throttling, we must consider long simulations lasting tens of
seconds or even several minutes. But cycle-accurate simulators are slow and make this kind
of study difficult. We have proposed in this report a partial solution to this problem, decou-
pled thermal simulation (DTS). The basic idea, very simple, is to generate an IPC/energy
trace with a cycle-accurate simulator and simulate thermal throttling in a separate thermal
simulator taking as input the IPC/energy traces. The thermal simulator works at a larger
time granularity than the cycle-accurate simulator and is therefore much faster. DTS is
able to shorten the simulation time when a study requires to reuse the same IPC/energy
trace several times. We have shown that a phase analysis tool like SimPoint can be used to
decrease the trace generation time and make compact traces.

DTS, as described in this report, is not suitable for all thermal studies. DTS can be used
to explore parameters that are not modeled in the cycle-accurate simulator, or parameters
that can be modeled approximately in the thermal simulator. DTS as we have implemented

1We did not use phase substitution for this experiment.
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Figure 8: Average performance X(h) and Y (h) as a function of heat-sink effective heat
transfer coefficient h.

it is only for single-thread execution and for on/off throttling. We are currently searching
ways to extend DTS to multicores and to other throttling methods like dynamic voltage and
frequency scaling.
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