
Re-Visiting the Performance Impact of Microarchitectural Floorplanning

Anupam Chakravorty, Abhishek Ranjan, Rajeev Balasubramonian

School of Computing, University of Utah

Abstract

The placement of microarchitectural blocks on a die can

significantly impact operating temperature. A floorplan

that is optimized for low temperature can negatively im-

pact performance by introducing wire delays between crit-

ical pipeline stages. In this paper, we identify subsets of

wire delays that can and cannot be tolerated. These subsets

are different from those identified by prior work. This pa-

per also makes the case that floorplanning algorithms must

consider the impact of floorplans on bypassing complexity

and instruction replay mechanisms.

Keywords: microprocessor operating temperature, mi-

croarchitectural floorplanning, critical loops in pipelines.

1. Introduction

High transistor and power densities have resulted in

thermal issues emerging as a major design constraint for

modern-day microprocessors. Each new microprocessor

generation requires greater design effort to ensure that high

performance can be delivered while maintaining accept-

able operating temperatures. The problem is only exacer-

bated by the recent introduction of vertically stacked 3D

chips [13, 16]. While 3D chips help reduce on-chip com-

munication latencies and power dissipation, they increase

power density levels and can cause operating temperature

to increase by tens of degrees [12].

Heat produced by a microarchitectural structure spreads

laterally and vertically. Heat removal from a high tempera-

ture unit can be accelerated by surrounding it with low tem-

perature units. Therefore, it has been suggested by various

research groups [4, 5, 6, 7, 9, 10, 14] that smart microarchi-

tectural floorplans can lower on-chip peak temperatures and

trigger fewer thermal emergencies. We expect that floor-

planning will continue to receive much attention in future

years, especially in the realm of 3D chips.

A thermal-aware floorplan can negatively impact perfor-

mance. If the inputs to a microarchitectural unit are pro-

duced by a distant unit, long wire delays are introduced. A

recent paper by Sankaranarayanan et al. [14] demonstrates

that some of these wire delays can have a significant impact

on overall performance. Therefore, they argue that floor-

planning algorithms must strive to co-locate certain units,

thereby yielding designs with sub-optimal thermal charac-

teristics.

In this paper, we re-visit the performance analysis of

inter-unit wire delays. We show that smart pipelining can

alleviate the performance impact of many long wire delays.

We identify a subset of wire delays (different from that iden-

tified by Sankaranarayanan et al. [14]) that can degrade per-

formance the most. The lengthening of wire delays also has

a salient impact on register bypassing complexity and in-

struction replay complexity. These issues must also serve

as inputs to any microarchitectural floorplanning tool.

Section 2 describes our simulation methodology. Sec-

tion 3 describes pipeline implementations that can tolerate

wire delays between pipeline stages. Section 3 also pro-

vides simulation results and conclusions are drawn in Sec-

tion 4.

2. Methodology

Our performance simulator is based on an extended ver-

sion of Simplescalar-3.0 [2] for the Alpha AXP ISA. The

simulator models separate issue queues, register files, and

reorder buffer (ROB) instead of a unified Register Update

Unit (RUU). Contention for memory hierarchy resources

(ports, banks, buffers, etc.) are modeled in detail. The

register file and issue queue are partitioned into integer

and floating-point clusters. While Simplescalar’s default

pipeline only has five stages, we model the effect of a deeper

pipeline on branch mispredict penalty and register occu-

pancy. Processor parameters are listed in Table 1. As a

benchmark set, we use the 23 SPEC2k programs compat-

ible with our simulator. Each program is executed for a

100 million instruction window identified by the Simpoint

toolkit [15]. Detailed simulation was carried out for one

million instructions to warm up various processor structures

before taking measurements.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276284915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fetch queue size 16 Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way

Branch mispredict penalty at least 10 cycles Fetch, Dispatch, Commit width 4

Issue queue size 20 Int, 15 FP Register fi le size 80 (Int and FP, each)

Integer ALUs/mult-div 4/2 FP ALUs/mult-div 2/1

L1 I-cache 32KB 2-way Memory latency 300 cycles for the fi rst block

L1 D-cache 32KB 2-way 2-cycle L2 unifi ed cache 2MB 8-way, 30 cycles

ROB/LSQ size 80/40 I and D TLB 128 entries, 8KB page size

Table 1. Simplescalar simulator parameters.

3. Pipelining Wire Delays

3.1. Pipelining Basics

Deep pipelines can impact IPC in many ways. Firstly,

they can improve IPC because more (independent) instruc-

tions can be simultaneously operated upon in a cycle. The

effect of deep pipelining on dependent instructions depends

on the nature of the dependence. Consider the following

two examples.

Figure 1 shows the behavior of a branch mis-predict in a

shallow and deep pipeline. In either case, a certain number

of gate delays (say, ◆ FO4 gate delays) must be navigated

to determine the outcome of the branch. In the shallow

pipeline, it takes four pipeline stages to execute the branch,

so the penalty for a branch mis-predict equals ◆ ✰ ✹❱ ,

where ❱ equals the latch and skew overhead per pipeline

stage. In the deep pipeline, it takes eight pipeline stages to

execute the branch, so the penalty for a branch mis-predict

equals ◆ ✰ ✽❱ . In other words, the deep pipeline has

increased the gap between two control-dependent instruc-

tions.

Figure 2 shows the behavior of a 64-bit integer add in-

struction in shallow and deep pipelines. In the shallow

pipeline (Figure 2(a)), the add is completed in a single

pipeline stage and the gap between two dependent add op-

erations is▼✰❱ , where▼ represents the FO4 gate delays

required to complete the 64-bit add. In the deep pipelines,

the add operation is broken into 4 pipeline stages. If the

second dependent instruction can begin execution only af-

ter the first instruction completes (shown in Figure 2(b)),

the gap between the instructions is ▼ ✰ ✹❱ . However,

the pipeline may be such that the first stage operates on

the 16 least-significant bits, the second stage on the next

16 least-significant bits, and so on. In such a pipeline (Fig-

ure 2(c)), the second dependent instruction can start oper-

ating on its 16 least-significant bits as soon as the first in-

struction leaves the first stage. A similar pipeline organi-

zation has been implemented in Intel’s Netburst microar-

chitecture [8]. With this pipeline, the gap between depen-

dent instructions is ▼❂✹ ✰ ❱ . Therefore, a deep pipeline

does not necessarily lengthen the gap between dependent

instructions. The pipeline implementation and the nature of

the dependence determine the performance effect of adding

stages to a pipeline. In other words, a microarchitectural

loop is formed when the output of one pipeline stage is re-

quired as an input to an earlier stage [1]. If the introduc-

tion of additional pipeline stages does not lengthen critical

microarchitectural loops, IPC will not be significantly de-

graded.

The microarchitectural units within a typical out-of-

order superscalar processor are shown in Figure 3(a). Each

of these units can represent a pipeline stage. In order to

achieve high clock speeds, each stage can itself be parti-

tioned into multiple pipeline stages. During the process of

microarchitectural floorplanning, some of the units may be

placed far apart. The wire delay for communication be-

tween the units may be long enough that multiple pipeline

stages have to be introduced between the units just for data

transfer. Figure 3(b) shows an example where three new

pipeline stages are introduced between the branch predictor

and I-cache, and between the integer issue queue and the

integer execution units. Sankaranarayanan et al. [14] claim

that separating these units has the most significant impact

on performance. They report that for these sets of units,

the introduction of four additional pipeline stages results in

an execution time increase of 50% and 65%. Next, we show

that the pipeline can be designed such that these wire delays

can be tolerated.

3.2. BackEnd Pipelines

Consider the pipeline shown in Figure 4. The wakeup

and select operation happens within the issue queue in a

single pipeline stage. At the end of the stage, it is known

that instruction ❆ is ready to execute. Control information

is sent to the ALU through long wires that constitute four

pipeline stages (in this example). In the meantime, the reg-

ister tags for the input operands are sent to the register file,

the values are read in a single pipeline stage, and these val-

ues then arrive at the ALU. The ALU can begin its computa-

tion once the control information and the register operands

arrive at the ALU. If the wakeup and select operation com-

pletes at the end of cycle t, the computation begins in cycle

t ✰ ❉, where delay ❉ is determined by the length of the

critical path (either for the register access or for the control

2

PC
Branch

resolved

Delay: N/4 V N/4 V N/4 V N/4 V

PC

Delay: N/8 V N/8 V N/8 V N/8 V N/8 V N/8 V N/8 V N/8 V

(a) Shallow 4-stage pipeline

(b) Deep 8-stage pipeline
Branch

resolved

Figure 1. Branch mispredict loop in a (a) shallow and (b) deep pipeline. Grey boxes represent pipeline latches.

64-bit add

Delay: M V

Cycle 1: r3
�

r1 + r2
Cycle 2: r5

�
r3 + r4

Gap between dependent instructions: M + V

(a) Shallow 1-stage pipeline

16-bit
add

Delay: M/4 V M/4 V M/4 V M/4 V

Cycle 1: r3
�

r1 + r2
Cycle 5: r5

�
r3 + r4

Gap between dependent
instructions: M + 4V

(b) Deep 4-stage pipeline (long loop)

16-bit
add

16-bit
add

16-bit
add

16-bit
add

Delay: M/4 V M/4 V M/4 V M/4 V

Cycle 1: r3
�

r1 + r2
Cycle 2: r5

�
r3 + r4

Gap between dependent
instructions: M/4 + V

(c) Deep 4-stage pipeline (short loop)

16-bit
add

16-bit
add

16-bit
add

Figure 2. The ALU-bypass loop in shallow and deep pipelines.

(a) Pipeline for an example baseline processor that may not be thermal-aware

BPred I$ Decode Rename IQ
Reg
Read

ALU D$
Reg
Write

Commit

(b) Thermal-aware processor with 3 stages of wire delays between Bpred-I$ and IQ-ALU

BPred I$ Decode Rename IQ
Reg
Read

ALU D$
Reg
Write

Commit

Figure 3. Pipelines for a baseline processor and for a thermal-aware processor that places BPred and ICache

far apart, and IQ and ALU far apart.

3

ALU
IQ

Reg
Read

Issued instr’s
tag loops back
to issue queue

Instr’s result
is bypassed

to dependent

Instr A: r3 � r1 + r2
Instr B: r5 � r3 + r4

Cycle at which each instr leaves
each pipeline stage:

A B

IQ t t+1
ALU t+5 t+6

Latches for 4 pipeline
stages of wire delays

Figure 4. Tight loops within a pipeline that places IQ and ALU far apart.

Slowdown as a function of IQ-INTALU latency

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

Extra Delay (in cycles)

pe
rc

en
ta

ge
 s

lo
w

do
w

n

IQ-INTALU (in [14])

IQ-INTALU

Delay affecting only Branch
penalty & register occupancy

Figure 5. Percentage slowdown as a function of IQ - IntALU wire delay for various pipelines.

information). In a compact floorplan with a single-cycle

register file access, ❉ can be as small as 2. In the floorplan

in Figure 4, where the wire delays for the control informa-

tion are on the critical path,❉ is 5.

However, the gap between read-after-write (RAW) de-

pendent instructions is not a function of ❉. The wakeup

and select operation completes in cycle t and it is known

that instruction ❆ will produce its output at the end of cy-

cle t ✰ ❉ (assuming that the ALU operation completes in

a single cycle). Accordingly, in cycle t ✰ ✶, the output reg-

ister for instruction ❆ will be broadcast to the issue queue

and at the end of cycle t ✰ ✶, wakeup and select will pro-

duce the dependent instruction ❇ of instruction ❆. Instruc-

tion ❇’s control information and register values arrive at

the ALU at the end of cycle t ✰ ❉. Instruction ❇ begins

its execution in cycle t ✰ ❉ ✰ ✶, replacing one of its reg-

ister operands with the result of ❆ that is read off of the

bypass bus (note that the result of ❆ is ready by the end

of cycle t ✰ ❉). Thus, regardless of the value of ❉, the

gap between dependent instructions remains a single cy-

cle (max(latency for the ALU+bypass operation, latency for

wakeup+select)). In essence, the gap is determined by the

maximum length of a dependent loop. There is one loop

within the issue queue, where the result of wakeup+select

feeds back into the wakeup+select for the next cycle. There

is a second loop within the ALU and bypass bus, where the

output of an ALU operation is bypassed back to the inputs

of the ALU for use in the next cycle. However, neither of

these loops involve the delay ❉. The delay ❉ will influ-

ence the loop that re-directs fetch on discovering a branch

mis-predict. It also affects the loop that releases registers on

commit and makes these registers available to the dispatch

stage. There are other effects on less critical loops, such as

the loop for branch predictor update.

In Figure 5, we show the impact of delay ❉ on overall

average IPC for SPEC2k programs. The thin dashed line in

Figure 5 reproduces the result in [14] and depicts the IPC

slowdown as a function of the wire delay ❉ between the

integer issue queue and the integer execution units. The

bold dashed line represents our simulation where the gap

between dependent instructions is varied as a function of

❉. Finally, the solid line in Figure 5 represents the simula-

tion where ❉ only impacts the branch mis-predict penalty,

the delay in releasing registers, and not the gap between

RAW-dependent instructions. We see that the wire delay❉

has a negligible impact on overall performance, unlike the

conclusion drawn in [14].

The above analysis does not take two important effects

into account. Firstly, as ❉ increases, the likelihood of

reading an invalid operand from the register file increases.

Hence, more bypass registers are required at the ALU to

buffer the results of instructions executed in the last ❘ cy-

cles. ❘ is a function of register file read and write latency

and the wire delays between the ALU and register file. Cor-

4

BPred

BTB

RAS

PC I Cache
Partial

Decode

(a) Loops within the pipeline’s front-end

PC1: …
…

PC2: cond.br

PC3: …
…

PC4: cond.br

Basic block X Basic block Y

Pipeline (a) PC2 PC3
Pipeline (b) PC1 PC3

Bpred input output

(c) Example basic block behavior

BPred

BTB

RAS

BBPC I Cache
Partial

Decode

(b) Tighter loops within the front-end

Figure 6. Loops within front-end pipelines.

respondingly, the complexity of the multiplexor before the

ALU also increases [11]. It is possible that an increase in

❉ (and correspondingly in ❘) may result in an increase

in bypass delay, thereby introducing stall cycles between

RAW-dependent instructions. It is unlikely that a processor

will be designed to allow such stalls between every pair of

RAW-dependent instructions. We expect that the following

design methodology is more realistic: circuit complexity

analysis will yield the maximum number of bypass regis-

ters that can be accommodated in a cycle; correspondingly,

the maximum allowed delay ❉ is fed as a constraint to the

floorplanning algorithm. Palacharla et al. [11] quantify by-

passing complexity as a function of issue width and window

size. A similar analysis can help quantify bypassing com-

plexity as a function of bypass registers and this is left as

future work.

The second important effect of increasing ❉ is the cost

of instruction replay mechanisms. Processors such as the

Pentium4 [8] implement load-hit speculation with selective

replay within the issue queue. When an instruction leaves

the issue queue, based on the expected latency of the in-

struction, a subsequent wakeup operation is scheduled. A

load is a variable-latency instruction and a wakeup is sched-

uled, assuming that the load will hit in the cache with no

bank conflicts. As soon as it is known that the load latency

does not match the best-case latency, dependent instructions

that have already left the issue queue are squashed. These

instructions will subsequently be re-issued after the load la-

tency is known. Also, dependents of loads are kept in the

issue queue until the load latency is known. This simpli-

fies the recovery from the load-hit mis-speculation and fa-

cilitates replay. Thus, load-hit speculation can negatively

impact performance in two ways: (i) replayed instructions

contend twice for resources, (ii) issue queue occupancy in-

creases, thereby supporting a smaller in-flight window, on

average. A deeper pipeline can exacerbate this performance

impact because it takes longer to detect if the load is a hit or

a miss. Borch et al. [1] conduct an experiment (Figure 5 in

[1]) to determine the impact of a deep pipeline on load-hit

speculation. While keeping the branch mispredict penalty a

constant, they show that reducing six pipeline stages from

the load-hit speculation loop causes speedups ranging from

1.02 to 1.15, with an average of 1.07. Therefore, the ad-

dition of pipeline stages between the issue queue and the

execution units will impact performance, but not as drasti-

cally as that indicated by [14].

3.3. FrontEnd Pipelines

The results in [14] show that wire delays between the

branch predictor and I-cache have the second largest impact

on performance. The branch/jump/return PC serves as an

input to the branch predictor, branch target buffer (BTB),

and return address stack (RAS). Correspondingly, the next

target address is determined. This target address is then sent

to the I-Cache to fetch the next line. After partial decod-

ing, it is known if the line contains a branch/jump/return

instruction. If the next line does not contain a control in-

struction, the next sequential cache line is fetched from the

I-Cache. When a branch/jump/return instruction is encoun-

tered, the PC is sent to the branch predictor to determine the

next fetch address. In the pipeline just described (and de-

picted in Figure 6(a)), there are two loops. The longer loop

determines the next input to the branch predictor/BTB/RAS

after fetching and decoding the instruction. If wire delays

are introduced between the branch predictor/BTB/RAS and

the I-Cache, this loop becomes longer and the rate of in-

struction fetch is severely crippled. The thin dashed line

in Figure 7 reproduces the results in [14] and indicates the

performance degradation effect of introducing wire delays

between the branch predictor and I-Cache. The bold dashed

line in Figure 7 attempts to model a similar effect in our

5

Average slowdown as a function of BPRED-ICACHE Delay

0

20

40

60

80

100

120

0 2 4 6 8 10

Extra Delay(in cycles)

A
ve

ra
ge

 s
lo

w
do

w
n(

in
 p

er
ce

nt
ag

e) BPRED-ICACHE (in [14])

BPRED-ICACHE

BPRED-ICACHE with
tighter loops

Figure 7. Percentage slowdown for BPred - ICache wire delays.

simulator. Given a loop length of ❉ cycles, our simulator

stalls fetch for ❉ cycles every time a control instruction is

encountered.

Fortunately, the branch predictor and I-Cache can be eas-

ily decoupled. Instead of identifying a branch by its PC, the

branch can be identified by the PC of the instruction that

starts the basic block. As shown in Figure 6(c), P❈✶ is the

start of basic block❳ andP❈✸ is the start of basic block ❨ .

P❈✷ is the branch that terminates basic block❳ and P❈✹

is the branch that terminates basic block ❨ . In the pipeline

described before, P❈✷ is used to look up the branch pre-

dictor and the output is P❈✸. A few cycles later, it is deter-

mined that P❈✹ is the next branch and this is used as input

to the branch predictor to determine that the next instruc-

tion is P❈✶, and so on. In the proposed pipeline (shown

in Figure 6(b)), P❈✶ is used to index into the branch pre-

dictor and the output is P❈✸. This is fed to the I-Cache,

where it is queued. The I-Cache adopts this PC as soon

as it encounters the next control instruction. In the mean-

time, P❈✸ is fed to the branch predictor and the output is

P❈✶. In essence, when a PC is input to the branch predic-

tor, the predicted address represents control information for

the branch that terminates the basic block for that PC.

Clearly, the same policy must be adopted during update.

Once the outcome of P❈✷ is known, P❈✶ is used as the

index to update the branch predictor state. When P❈✷ is

encountered during fetch, the index of the previous branch

prediction (P❈✶) can be saved in its reorder buffer (ROB)

entry to facilitate such an update.

If a basic block has multiple entry points, note that mul-

tiple branch predictor entries are created for the branch that

terminates the basic block. This may even improve the qual-

ity of the branch predictor. As shown in Figure 6(b), the

advantage of the above approach is that the microarchitec-

tural loop involving the branch predictor does not include

the I-Cache, decode, or the wire delays to reach the I-Cache.

For the pipelines in Figure 6 (a) and (b), there still remains

the loop (not shown in the figure) where the branch pre-

dictor and fetch are re-directed because of a branch/target

mis-predict. The solid line in Figure 7 shows the perfor-

mance impact of the above approach. The increase in wire

delay between branch predictor and I-Cache only increases

the cost of a branch mis-predict and not the ability of the

branch predictor to produce a new target every cycle. The

change in the branch predictor algorithm (indexing with ba-

sic block start address) has a minimal impact on branch pre-

dictor accuracy. For nearly all applications, the branch di-

rection and target accuracy are effected by much less than

a single percentage point. In eon, the branch direction pre-

diction accuracy actually improved from 92% to 99% and

in mcf, the accuracy improved from 92% to 96%. The new

branch predictor algorithm improves IPC by 1% on aver-

age, with almost all of this improvement being attributed to

a 19% increase in the IPC for eon. As wire delay between

branch predictor and I-Cache increases, the IPC degradation

for this new pipeline is marginal.

The above result shows that by decoupling branch pre-

dictor look-up from the I-Cache look-up, wire delays be-

tween the two stages can be tolerated, allowing greater flex-

ibility when floorplanning. The proposed pipeline is not the

only possible alternative. The I-Cache can implement next

line and set (NLS) prediction [3] and the branch predictor

can be used for more accurate prediction and can over-ride

the NLS prediction in case of a disagreement. In the com-

mon case where the NLS prediction agrees with the branch

prediction, the wire delay between I-Cache and branch pre-

dictor is not part of any critical loop. Such a decoupled

pipeline will also be tolerant of I-Cache to branch predictor

wire delays.

3.4. Delays in Executing Dependent Instructions

In Section 3.2, we noted that result bypassing (forward-

ing) can allow RAW-dependent instructions to execute in

consecutive cycles even if there exist wire delays between

the issue queue and the ALUs. If the dependent instructions

6

Average slowdown for delay between different paris of units

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9

Extra delay (in cycles)

P
er

ce
nt

ag
e

sl
ow

do
w

n
DCACHE-INTALU

DCACHE-FPALU

BPRED-ICACHE

IQ-INTALU

FPALU-INTALU

Figure 8. Effect of wire delays between various execution clusters.

execute on different ALUs that are placed far apart, wire

delays for bypassing can increase the gap between the exe-

cution of these dependent instructions. These delays were

not considered in the analysis in [14] (or may have been at-

tributed to other aspects of the pipeline). We assume that

there exist three clusters of execution units: integer ALUs,

floating-point ALUs, and the load/store unit. The load store

unit contains the L1 data cache and load/store queue (LSQ).

The integer and FP execution units also contain the corre-

sponding issue queues and register files. Consider the fol-

lowing ways in which these clusters communicatewith each

other.

When executing a load or store operation, the effective

address is computed in the integer execution cluster and

communicated to the LSQ. After memory disambiguation

is completed, the load issues. If the two clusters are placed

far apart, the introduced wire delays cause an increase in

load latency. Even if the effective address is computed at an

ALU within the load/store unit, the communication of in-

teger register values from the integer execution cluster will

add to load latency. After a value is fetched from the data

cache, it is written into either the integer or floating-point

register file. The result may also be bypassed to dependent

instructions executing on either the integer or FP ALUs.

In all of the above cases, the wire delays between the data

cache and the ALUs will determine the gap between depen-

dent instructions. If an integer value is being fetched from

the data cache, the load-to-use latency involves two trans-

fers on wires between the integer and load/store units. If

a floating-point value is being fetched from the data cache,

the load-to-use latency involves one transfer on wires be-

tween the integer and load/store unit and one transfer on

wires between the load/store unit and FP unit.

Finally, some instructions move results between the in-

teger and floating-point register files. Wire delays between

these two units will increase the gap between dependent in-

structions that execute on different units.

Figure 8 shows the effect of increasing wire delays be-

tween each pair of units. The wire delay between integer

and FP units has a minor impact on performance. The wire

delay between the data cache and integer unit impacts per-

formance for most benchmark programs (overall 38% per-

formance degradation for an 8-cycle delay). The wire delay

between the data cache and FP unit similarly impacts per-

formance for most FP programs, although to a much lesser

degree. Comparing Figures 5, 7, and 8, we see that a 4-

cycle wire delay between units can cause the following per-

formance penalties:

✎ Int cluster✩ Ld/St cluster : 16.7%

✎ Bpred✦ ICache : 3.3%

✎ IQ✦ Int-ALU : 3.2% (not including the effect on in-

struction replay)

✎ Ld/St cluster✦ FP cluster : 1%

Based on these observations, we claim that floorplans must

primarily strive to reduce the bypass delays between the Int

and Ld/St clusters. The delays between IQ and Int-ALU

must also be reduced to minimize bypassing and instruction

replay complexity.

4. Conclusions

The microarchitectural loops within a pipeline determine

the gap between dependent instructions. In this prelim-

inary study, we show that wire delays between specific

pipeline stages (issue queue and ALU; branch predictor and

I-Cache) are not part of critical loops. Instead, bypass de-

lays between the data cache and integer ALUs impact over-

all IPC the most. If wire delays are introduced within the

execution back-end, bypassing complexity and the negative

effect of instruction replay can increase. These are impor-

tant phenomena that have been ignored by floorplanning al-

gorithms to date. For future work, we will carry out a more

7

detailed characterization of various wire delays on different

pipelines and include the effect of instruction replay in our

simulator. We also plan to extend floorplanning algorithms

such as HotFloorplan [14] to take our performance results

into account.

References

[1] E. Borch, E. Tune, B. Manne, and J. Emer. Loose

Loops Sink Chips. In Proceedings of HPCA, February

2002.

[2] D. Burger and T. Austin. The Simplescalar Toolset,

Version 2.0. Technical Report TR-97-1342,University

of Wisconsin-Madison, June 1997.

[3] B. Calder and D. Grunwald. Next Cache Line and Set

Prediction. In Proceedings of ISCA-22, June 1995.

[4] J. Cong, A. Jagannathan, G. Reinman, and M. Rome-

sis. Microarchitecture Evaluation with Physical Plan-

ning. In Proceedings of DAC-40, June 2003.

[5] M. Ekpanyapong, M. Healy, C. Ballapuram, S. Lim,

H. Lee, and G. Loh. Thermal-Aware 3D Microar-

chitectural Floorplanning. Technical Report GIT-

CERCS-04-37, Georgia Institute of Technology Cen-

ter for Experimental Research in Computer Systems,

2004.

[6] M. Ekpanyapong, J. Minz, T. Watewai, H. Lee, and

S. Lim. Profile-Guided Microarchitectural Floorplan-

ning for Deep Submicron Processor Design. In Pro-

ceedings of DAC-41, June 2004.

[7] Y. Han, I. Koren, and C. Moritz. Temperature Aware

Floorplanning. In Proceedings of TACS-2 (held in

conjunction with ISCA-32), June 2005.

[8] G. Hinton, D. Sager, M. Upton, D. Boggs,

D. Carmean, A. Kyker, and P. Roussel. The Microar-

chitecture of the Pentium 4 Processor. Intel Technol-

ogy Journal, Q1, 2001.

[9] W. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye,

T. Theocharides, and M. Irwin. Thermal-Aware Floor-

planning using Genetic Algorithms. In Proceedings of

ISQED, March 2005.

[10] V. Nookala, D. Lilja, S. Sapatnekar, and

Y. Chen. Comparing Simulation Techniques for

Microarchitecture-Aware Floorplanning. In Proceed-

ings of ISPASS, March 2006.

[11] S. Palacharla, N. Jouppi, and J. Smith. Complexity-

Effective Superscalar Processors. In Proceedings of

ISCA-24, pages 206–218, June 1997.

[12] K. Puttaswamy and G. Loh. Thermal Analysis of a 3D

Die-Stacked High-Performance Microprocessor. In

Proceedings of GLSVLSI, April 2006.

[13] Samsung Electronics Corporation. Samsung Elec-

tronics Develops World’s First Eight-Die Multi-Chip

Package for Multimedia Cell Phones, 2005. (Press re-

lease from http://www.samsung.com).

[14] K. Sankaranarayanan, S. Velusamy, M. Stan, and

K. Skadron. A Case for Thermal-Aware Floorplan-

ning at the Microarchitectural Level. Journal of ILP,

7, October 2005.

[15] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically Characterizing Large Scale Program

Behavior. In Proceedings of ASPLOS-X, October

2002.

[16] Tezzaron Semiconductor.

(http://www.tezzaron.com).

8

