12 research outputs found

    Towards extending the SWITCH platform for time-critical, cloud-based CUDA applications: Job scheduling parameters influencing performance

    Get PDF
    SWITCH (Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications) allows for the development and deployment of real-time applications in the cloud, but it does not yet support instances backed by Graphics Processing Units (GPUs). Wanting to explore how SWITCH might support CUDA (a GPU architecture) in the future, we have undertaken a review of time-critical CUDA applications, discovering that run-time requirements (which we call ‘wall time’) are in many cases regarded as the most important. We have performed experiments to investigate which parameters have the greatest impact on wall time when running multiple Amazon Web Services GPU-backed instances. Although a maximum of 8 single-GPU instances can be launched in a single Amazon Region, launching just 2 instances rather than 1 gives a 42% decrease in wall time. Also, instances are often wasted doing nothing, and there is a moderately-strong relationship between how problems are distributed across instances and wall time. These findings can be used to enhance the SWITCH provision for specifying Non-Functional Requirements (NFRs); in the future, GPU-backed instances could be supported. These findings can also be used more generally, to optimise the balance between the computational resources needed and the resulting wall time to obtain results

    Opt: A Domain Specific Language for Non-linear Least Squares Optimization in Graphics and Imaging

    Full text link
    Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of these functions are extremely concise, but their implementation in real code is tedious, especially when optimized for real-time performance on modern GPUs in interactive applications. In this work, we propose a new language, Opt (available under http://optlang.org), for writing these objective functions over image- or graph-structured unknowns concisely and at a high level. Our compiler automatically transforms these specifications into state-of-the-art GPU solvers based on Gauss-Newton or Levenberg-Marquardt methods. Opt can generate different variations of the solver, so users can easily explore tradeoffs in numerical precision, matrix-free methods, and solver approaches. In our results, we implement a variety of real-world graphics and vision applications. Their energy functions are expressible in tens of lines of code, and produce highly-optimized GPU solver implementations. These solver have performance competitive with the best published hand-tuned, application-specific GPU solvers, and orders of magnitude beyond a general-purpose auto-generated solver

    UDP-YOLO: High Efficiency and Real-Time Performance of Autonomous Driving Technology

    Get PDF
    In recent years, autonomous driving technology has gradually appeared in our field of vision. It senses the surrounding environment by using radar, laser, ultrasound, GPS, computer vision and other technologies, and then identifies obstacles and various signboards, and plans a suitable path to control the driving of vehicles. However, some problems occur when this technology is applied in foggy environment, such as the low probability of recognizing objects, or the fact that some objects cannot be recognized because the fog's fuzzy degree makes the planned path wrong. In view of this defect, and considering that automatic driving technology needs to respond quickly to objects when driving, this paper extends the prior defogging algorithm of dark channel, and proposes UDP-YOLO network to apply it to automatic driving technology. This paper is mainly divided into two parts: 1. Image processing: firstly, the data set is discriminated whether there is fog or not, then the fogged data set is defogged by defogging algorithm, and finally, the defogged data set is subjected to adaptive brightness enhancement; 2. Target detection: UDP-YOLO network proposed in this paper is used to detect the defogged data set. Through the observation results, it is found that the performance of the model proposed in this paper has been greatly improved while balancing the speed

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    Vision-based Person Re-identification in a Queue

    Get PDF

    Real-time classification of coffee fruits using FPGA

    Get PDF
    The goal in this work was to design a circuit that could classify objects by color in real-time that can be used for quality improvement. A circuit that performs color analysis of an image and, according to that analysis, classifies the object was designed. A histogram of the Spherical Coordinate Transform of the image is computed and compared to histogram patterns to make a classification decision. The circuit was tested on the classification of coffee fruits in four maturity stages: immature, under-mature, mature and over-mature. The results showed that it is possible to build a system for color object classification that works in real-time and that can be affordable and portable. The designed circuit is implemented on a Field Programmable Gate Array (FPGA), acquires video at 64 frames per second, classifies the coffee fruits at a rate of 25 fruits per second and achieved an average efficacy of 75.7%Abstract : El objetivo de este trabajo fue diseñar un circuito que lograra clasificar objetos basado en su color funcionando en tiempo real y que pueda ser usado en aplicaciones de control de calidad. Se diseñó un circuito que toma una imagen, analiza sus características de color y, de acuerdo a este análisis, asigna el objeto a una categoría. La imagen se transforma del espacio RGB a coordenadas esféricas, se calcula el histograma de la imagen transformada y se compara con los patrones de cada categoría para realizar la asignación. El circuito fue usado para clasificar frutos de café en cuatro estados de maduración: inmaduro, pintón, maduro y sobremaduro. Los resultados mostraron que es posible construir un sistema que clasifique objetos basado en su color, que funcione en tiempo real y que además sea económico y portátil. El circuito diseñado adquiere video a una velocidad de 64 cuadros por segundo, clasifica frutos de café a una tasa de 25 frutos por segundo y obtuvo una eficacia promedio de 75.7%Doctorad

    Forum Bildverarbeitung 2016

    Get PDF
    Bildverarbeitung spielt in vielen Bereichen der Technik zur schnellen und berührungslosen Datenerfassung eine Schlüsselrolle. Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 1. und 2. Dezember 2016 in Karlsruhe als Veranstaltung des Karlsruher Instituts für Technologie und des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung stattfand, enthält die Aufsätze der eingegangenen Beiträge. Darin wird über aktuelle Trends und Lösungen der Bildverarbeitung berichtet
    corecore