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Abstract. In recent years, autonomous driving technology has gradually appeared
in our field of vision. It senses the surrounding environment by using radar, laser,
ultrasound, GPS, computer vision and other technologies, and then identifies ob-
stacles and various signboards, and plans a suitable path to control the driving of
vehicles. However, some problems occur when this technology is applied in foggy en-
vironment, such as the low probability of recognizing objects, or the fact that some
objects cannot be recognized because the fog’s fuzzy degree makes the planned path
wrong. In view of this defect, and considering that automatic driving technology
needs to respond quickly to objects when driving, this paper extends the prior
defogging algorithm of dark channel, and proposes UDP-YOLO network to apply
it to automatic driving technology. This paper is mainly divided into two parts:
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1. Image processing: firstly, the data set is discriminated whether there is fog or
not, then the fogged data set is defogged by defogging algorithm, and finally, the
defogged data set is subjected to adaptive brightness enhancement; 2. Target de-
tection: UDP-YOLO network proposed in this paper is used to detect the defogged
data set. Through the observation results, it is found that the performance of the
model proposed in this paper has been greatly improved while balancing the speed.

Keywords: Automatic driving technology, computer vision, object detection, im-
age processing

1 INTRODUCTION

The target detection task is to find out the objects that people are interested in
images or videos, and simultaneously detect their positions and sizes. As one of
the basic problems of computer vision, target detection forms the basis of many
other vision tasks, such as instance segmentation [1], image annotation [2], and
target tracking [3]. From the perspective of application of detection, pedestrian
detection [4], face detection [5], text detection [6], traffic light detection [7], and
remote sensing target detection [8] are collectively referred to as the five major
applications of target detection.

At present, the target detection algorithms are conducted in two phases: In-
putting an image and generating candidate region suggestions, after classifying can-
didate areas and correcting coordinates, and finally detecting them. This kind of
algorithm is a two-stage algorithm based on generating regional suggestions. Typical
representative algorithms include R-CNN [9], Fast-RCNN [10], Faster-RCNN [11],
MASK-RCNN [12], etc. The other one is the single-stage algorithm, which carries
out regression analysis of neural network by directly inputting pictures, and then
detecting them. This kind of algorithm regards target detection as a regression
problem and does not need to generate regional suggestions. Typical representative
algorithms are YOLO Series [13, 14, 15, 16, 17], SSD [18], etc. Although the ac-
curacy of the single-stage algorithm is slightly lower than that of the former, it is
favored by researchers because of its powerful real-time detection speed in such an
area of pursuing real-time. Despite the above two types of algorithms have good
performance in their respective fields, there are some problems in cross-domain de-
tection. In addition, under the limited mobile devices, YOLO series algorithms
cannot meet the requirements of real-time detection, so YOLOv4-tiny [19], a sim-
plified version of YOLOv4, was born, considering both detection performance and
real-time detection. YOLOv4-tiny reduces the network model and parameters based
on YOLOv4, and is suitable for deployment in mobile devices with limited comput-
ing power. However, although the above algorithm has good performance when
applied to other data sets, there will be some problems when applied to some spe-
cific scenes. For example, when we apply the above algorithm to the direct detection
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of data sets in foggy scenes, there will be either errors in the detection category or
a decline in the detection performance.

In view of this defect, this paper proposes an improved dark channel prior defog-
ging algorithm and UDP-YOLO model, which mainly performs some image process-
ing on the data set in foggy environment first, and then detects the defogged data
set by our UDP-YOLO model. When detecting objects in fog environment, it is
generally implemented by the principle of defogging firstly and then detecting. The
defogging of images can be divided into two types: one is defogging by traditional
learning methods, such as image enhancement or image restoration. The defogging
algorithms of image enhancement include histogram equalization [20], homomorphic
filtering [21], wavelet transform [22] and Retinex [23]. The defogging algorithm of
image restoration includes dark channel prior the defogging algorithm. The other
is to defog the image by deep learning, and the representative algorithms are De-
hazeNet [24], AOD-Net [25] and GCANet [22]. Although the algorithm based on
deep learning is better than the algorithm based on traditional learning in image
defogging, it is not suitable for unmanned driving technology because it takes a long
time. Therefore, among the above-mentioned algorithms, the dark channel prior de-
fogging algorithm based on image enhancement can achieve the defogging effect on
the one hand, and has good real-time performance on the other hand. In addition,
considering that the automatic driving technology will also be applied to the fog-free
environment, it will waste time to defog the fog-free images, so this paper adds a fog
detection algorithm based on RSV calculation [26] on the basis of this algorithm,
which can first judge the quality of the images and decide whether to defog them or
not. After defogging by dark channel prior algorithm, the brightness of the defogged
image is dark, so the image is subjected to adaptive brightness enhancement. The
above-mentioned image processing process has a general effect when it is carried out
alone, and the effect is quite good when it is fused.

After image processing, the original YOLOv4-tiny model is used to detect the
data set in foggy environment. Because the original model only has two prediction
scales of 13 × 13 and 26 × 26, and there are a lot of small objects in our data set,
it is found that the effect of the model on small object detection is not very good.
Therefore, after replacing and pruning the backbone network, the neck network is
also improved, multi-feature fusion is completed, and a small target detection head
is added. Finally, while ensuring the performance, we added a lightweight module
PPM to the model to increase the receptive field and enhance its feature extraction
ability. A lightweight attention module CBAM is added to improve the performance
of detection tasks. Among the measures mentioned above, our contribution can be
divided into five points:

1. We extend the dark channel prior algorithm based on image enhancement, and
combine it with the fog detection algorithm based on RSV calculation. Firstly,
we judge the quality of the image, and then choose whether to defog all the
images. In addition, the defogged image is subjected to adaptive brightness
enhancement.
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2. The backbone network is replaced and the number of convolution cores is re-
duced, and a lightweight CSP-MobileNet structure is proposed.

3. We modified the neck network, proposed a new multi-feature fusion structure,
and added a small target detection head to deal with the low performance of
small target detection.

4. We add PPM module to the middle area of the network to increase the receptive
field of the model, so as to improve the feature extraction ability.

5. An improved CBAM attention mechanism module is added to the modified
multi-feature fusion partial structure to obtain important information in the
feature map.

2 RELATED WORK

2.1 Image Defogging

Image defogging is mainly divided into traditional image defogging and based on
deep learning defogging. Traditional defogging algorithms include image enhance-
ment and image restoration, and image enhancement is one of the most basic con-
tents of digital image processing technology. In practical application, no matter
what kind of device is used to collect images, the visual effect of the acquired im-
ages is not ideal due to noise, illumination, weather and other reasons. For example,
the images obtained in foggy days are blurred and it is difficult to extract detailed
information.

Generally, the defogging algorithm based on image enhancement does not con-
sider the reasons of image degradation in foggy scenes, but directly processes the
foggy images, so as to enhance the global characteristics or local images of the foggy
images, improve the image quality, enrich the information in the images and make
them look clearer. This kind of algorithm includes histogram equalization, wavelet
transform, Retinex algorithm, etc. The histogram equalization algorithm makes the
pixel distribution of the image more uniform and enlarges the details of the image.
Wavelet transform algorithm decomposes the image and enlarges the useful part.
According to the imaging principle, Retinex algorithm eliminates the influence of
reflected components and achieves the effect of image enhancement and defogging.
On the basis of this kind of algorithm, many improved algorithms based on the
principle of image enhancement have appeared [27].

The algorithms based on image restoration are defogged by atmospheric scat-
tering model. This kind of algorithm will first analyze the reasons that degrade
the original image, and then establish a physical model to defog. The most clas-
sical algorithm is the dark channel prior algorithm. By analyzing the features of
a large number of fog-free images, the prior relationship between fog-free images
and some parameters in the atmospheric scattering model is found. Therefore, the
detailed information of the image can be kept to a great extent to achieve the pur-
pose of defogging, and many improved algorithms based on dark channel prior are
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proposed [28, 29, 30]. Deep learning-based defogging is to train the defogging model
through a large number of rich image defogging data sets as data drivers, so as to
estimate the transmittance map or fog-free model for defogging. CNN or GAN can
also be used to defog blurred images directly. Typical representative algorithms
are Dehaze-Net and AOD-Net. Although the defogging effect of these algorithms is
good, it takes a long time to process data sets.

2.2 Target Detection Based on Deep Convolution Neural Network

Early feature detection models such as Viola-Jones detector [31], HOG (Histogram
of Oriented Gradients) [32] and DPM (Deformable Parts Model) [33] are constructed
by integrating a series of hand-designed feature extractors. These models are charac-
terized by a slow speed, low accuracy and poor cross-domain performance. In 2012,
Krizhevsky et al. proposed AlexNet [34], an image classifier based on convolutional
neural network, which achieved higher performance than the best model at that
time. AlexNet used a variety of convolutional kernels to obtain image features, and
also used dropout and ReLU for regularization and accelerated training respectively.
Let the convolutional neural network enter the public eye, and soon caused a series
of research upsurge.

Detectors based on convolutional neural networks can be divided into two cat-
egories [35]: two-stage detectors and one-stage detectors. Among them, the two-
stage detector has a separate module for generating the region candidate box. The
first-stage detector directly separates and locates semantic objects through intensive
sampling. R-CNN is the first article in a series of two-stage detectors, which proves
that CNNs can greatly improve the performance. R-CNN uses a region proposals
CNN module with an unknown category to transform detection into classification
and location problems. He et al. proposed to use SPP [36], a pool layer of spa-
tial pyramid, to process pictures with arbitrary size and width ratio. This network
reduces the amount of computation by shifting convolution layer and adding pool-
ing layer, so that the network does not depend on size. Because both R-CNN and
SPP-Net are trained separately in multiple stages, Faster-RCNN solves this prob-
lem by creating a single end-to-end trainable system, which is 146 times faster than
R-CNN model. Lin et al. considered that in the face of small target detection,
image pyramids would be used for multiple levels to obtain feature pyramids, but
the calculation time would be correspondingly increased. Therefore, the feature
pyramid network [37] is proposed, which adopts the top-down horizontal connection
structure to construct high-level semantic features on different scales. Dai et al.
proposed a method combining R-FCN [38] with Faster R-CNN to solve the trans-
lation invariance problem of convolutional neural network, and realized a fast and
more accurate detector. Mask-CNN is based on Faster R-CNN, which adds a branch
for parallel pixel-level target instance segmentation. DetectoRS [39] combines the
above-mentioned systems to improve the performance of detectors, and is equipped
with the most advanced two-stage detectors. Its RFP and SAC modules are uni-
versal and can be used in other detection models. Although the proposed two-stage
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detector has good performance in target detection, it is not suitable for real-time
detection because of its numerous deep convolution neural network.

Considering that the speed of two-stage detectors is really slow, the first-stage
detectors directly classify and locate semantic targets through intensive sampling,
and they use predefined boxes with different proportions and aspect ratios to lo-
cate targets. YOLOv1 reconstructs the detection problem, regards it as a regression
problem, and directly predicts image pixels as targets and their bounding box at-
tributes. SSD is the first one-stage detector that can maintain its performance and
be compatible with real-time, but its performance for small target detection is some-
what difficult. YOLOv2 replaces the backbone network on the basis of YOLOv1,
and combines a variety of technologies, such as adding BN to improve convergence,
and training classification and detection systems to improve the number of detection
categories. The accuracy and speed have been improved. Although the first-stage
detector has achieved good results in speed, its performance is a bit low. The reason
is that the background class is unbalanced. So Lin et al. proposed a modified cross
entropy loss in RetinaNet [40] detector to solve this problem. YOLOv3 is based on
YOLOv2 and integrates various technologies, such as data enhancement, multi-scale
training, batch standardization, etc. Duan et al. proposed CenterNet [41] to model
the object as a point, and the input image generates heatmap through FCN, and the
peak value of heatmap corresponds to the center of the detected object. Efficient-
Det [42] constructed the idea of an extensible detector with higher accuracy and
efficiency, and introduced effective multi-scale features, BiFPN and model scaling.
YOLOv4 model combines various methods to design a target detector that can work
quickly and easily in the existing system. Using the bag-of-freebies method, it only
increases the training time without affecting the reasoning time.

2.3 Feature Fusion

Feature fusion is an important method in the field of pattern recognition. In many
jobs, fusing features of different scales is an important means to improve detection
performance. The low-level features have higher resolution and contain more loca-
tion information and detail information, because of less convolution, the semantics
are lower and the noise goes up. High-level features semantic information is stronger,
but the resolution is low and the perception of details is poor. By fusing the features
of high and low levels, we can make use of various image features, realize the com-
plementary advantages of multiple features, and obtain more robust and accurate
recognition results.

At present, the most common feature fusion methods are FPN, PANet [43]
and NAS-FPN [44]. Among them, FPN uses semantic information of low-level
and high-level features at the same time, and fuses features of different levels to
achieve the prediction effect. Moreover, the prediction is performed separately on
each fused feature layer, which is different from the conventional feature fusion
method. PANet is a feature fusion structure proposed in YOLOv4, which adds
a layer of FPN network from bottom to top, extracts features from each feature layer
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for each proposal, and finally obtains the features to be detected by convolution-
upsampling and full connection layer fusion. NAS-FPN mainly reorganizes feature
maps with multiple scales, and then performs merging cell operation on them. This
operation is divided into three steps: First, two candidate feature layers are selected
as input feature layers, then select the resolution of the output feature, and finally,
a binary operation is selected to integrate the two input feature layers into a new
output feature layer. After completing this series of operations, the cyclic operation
continues to obtain the final output feature layer for detection.

2.4 Attention Mechanism

With the development of science and technology, more and more information comes
to us, and there is a large amount of information around us all the time. However,
the information we receive in a limited time is limited, but researchers have found
that the human visual system has a strong visual information processing capability
in a limited field of vision. When we process information in the early stage, we
will focus our attention on the important things. This choice allows us to reduce
the amount of information to be processed, so that we can suppress unimportant
stimuli when processing complex visual information, and provide easier and more
relevant new information for higher-level perceptual reasoning and more complex
visual processing tasks (such as target recognition, target classification, video com-
prehension, etc.). In view of this advantage, researchers put forward the idea of
attention mechanism. The main idea of attention mechanism is to get the differ-
ence of the importance of each feature map through some measures, so as to use
more resources for more important tasks, and use the results of tasks to guide the
weight update of feature maps in reverse, thus completing the corresponding tasks
efficiently and quickly.

At present, the attention mechanisms proposed are mainly divided into two
types: single-channel attention and multi-channel attention. There is only one
module in single-channel attention to obtain attention in the channel, and the rep-
resentative networks mainly include SE-Net [45] and ECA-Net [46]. The main idea
of SE-Net is to estimate the loss function value LOSS through the network model,
so as to learn the feature weight. Generally speaking, the weight of the feature
graph with obvious task effect becomes larger, while the weight of the feature graph
with no obvious or no effect becomes smaller, and then the model is trained to
achieve better results. ECA-Net is an improvement on SE-Net, and proposes a local
cross-channel interaction strategy without dimensionality reduction and a method
of adaptively selecting the size of one-dimensional convolution kernel. More accu-
rate attention information is obtained by summarizing cross-channel information
in one-dimensional convolution layer. There are two modules in the multi-channel
attention mechanism, which mainly capture the attention between channels and fea-
ture pixels. The representative networks mainly include SK-Net [47], CBAM [48]
and DA-Net [49]. SK-Net is an attention mechanism based on convolution kernel,
that is, by comparing the importance of different images passing through different
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convolution kernels. CBAM module puts forward that the channel of feature image
not only contains a lot of attention information, but also contains rich attention
information inside the channel, that is, between the pixels of feature image. There-
fore, CBAM has built two modules, CAM and BAM, to collect the attention in the
channel and empty space respectively, and then synthesize the collected attention
to avoid wasting the attention in the space. Although the idea of DA-Net (Dual
Attention Network) network is the same as that of CBAM, its way of obtaining two
channels of attention information is different from that of CBAM, and it is obtained
through parallel mode.

2.5 Model Pruning

In order to improve the performance of the model while maintaining the speed of
the model, some pruning measures are taken to the model. Pruning method can
explore the redundancy of model weights and try to trim redundant and non-critical
weights [50, 51]. Model pruning is mainly divided into unstructured pruning [52]
and structured pruning [53]. Unstructured pruning mainly changes the combined
structure of neurons in the single layer of the network model, and its representative
pruning includes fine-grained pruning [54], vector pruning [55] and nuclear prun-
ing [56]. Although this kind of pruning can achieve a high compression rate, while
maintaining a high performance. But it needs enough hardware structure to support
sparse operations. Structured pruning is to change the structural characteristics of
the network model, so as to achieve the effect of compressing the model. Its rep-
resentative pruning includes filter pruning [57]. Although there are many types of
model pruning, the main purpose is to prune the neural network structure, and the
general ideas can be summarized into three types: standard pruning, pruning based
on sub-model sampling, and pruning based on search. The idea of standard pruning
is to carry out pre-training, then pruning, then fine-tuning, and then repeat the
above processes in turn, and finally get a suitable pruning structure. Sub-model-
based sampling process is to randomly sample the trained model according to the
pruning target, and then prune each sampled network structure to obtain the sam-
pling model and evaluate the best pruning model. Search-based pruning is based
on unsupervised learning or semi-supervised learning algorithm, and the optimal
substructures are searched by selecting pruning target.

3 MODEL DESIGN

3.1 YOLOv4-Tiny

Figure 1 shows the model structure of YOLOv4-tiny, which is simplified based on
YOLOv4 model. The model consists of three parts: Backbone network to extract
features, feature pyramid network to fuse features, and YOLO head to predict the
acquired features.
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The backbone network of this model is CSPDarknet53-tiny network, which is
mainly composed of Conv and CSPBlock. Conv not only performs convolution
operation on it, but also performs batch standardization and activation function
operation, in which BN (Batch Norm) is used in batch standardization, and the
activation function is modified to Leaky ReLU (Leaky Rectified Linear Unit). In the
CSPBlock module, CSP-net is mainly used. In fact, the original residual block stack
is split into two parts: the main part continues to stack the original residual block,
and the other part is like a residual edge. After a small amount of processing, it is
directly connected to the last two parts, and the final output is obtained by merging
them. The FPN structure can fuse feature maps of different scales, which can not
only ensure the rich semantic information of the deep network, but also obtain the
geometric details of the low-level network, so as to strengthen the ability of feature
extraction. YOLO head predicted the features of the fused feature map, and finally
formed two prediction scales of 13× 13 and 26× 26. Although YOLOv4-tiny model
has good detection performance and real-time performance on VOC and COCO data
sets, its effect is not so optimistic if the model is applied to the target detection of
autonomous driving technology in foggy scenes. Therefore, this paper proposes
UDP-YOLO network for this defect and combines it with the defogging algorithm.
Firstly, the improved defogging algorithm is used to process the image of the data
set. Then, CSP-MobileNet structure is introduced into the backbone network, and
a new idea of multi-feature fusion is proposed. The receptive field module is added
to the extracted feature maps with dimensions of 128×128, 256×256, and 512×512.
Finally, attention mechanism is added to some stages of feature fusion.

3.2 Image Processing

3.2.1 Judge Whether There is a Fog or Not

Considering that the defogging of data sets is a time-consuming process, and when
the data sets contain normal pictures, defogging will make the high-frequency com-
ponents contained in them change greatly, and the detection effect will be poor.
Therefore, we need to improve the real-time performance and effectiveness of our
improved model in foggy scenes. Firstly, the fog detection algorithm is used to
calculate the ratio of saturation (S) and color value (V) of the picture, and then
the defogging process is judged, as shown in Figure 2. Firstly, find out the general
driving direction of vehicles, and find out their intersection point by extending the
driving direction, which is the vanishing point proposed by us. Then, take this point
as the center to select an area, which is called ROI box, and then calculate the ratio
of saturation (S) and color value (V) in HSV color model domain in this box. In
addition, considering that setting one ROI box may lead to inaccurate results, four
ROI boxes are set, and the ratio of each ROI box is calculated separately and the
average value is added to make a more reasonable fog judgment, which is defined as
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CSPDarknet53-tiny

DarknetConv2d_BN_ReLU 
(104,104,64)

Resblock_body(26,26,256)

Resblock_body(13,13,512)

DarknetConv2d_BN_ReLU 
(13,13,512)

DarknetConv2d_BN_ReLU 
(208,208,32)

Resblock_body(52,52,128)

Conv

Upsample

Contact Yolo Head

Yolo Head

input(416,416,3)

Figure 1. YOLOv4-tiny model structure

Equation (1) and Equation (2):

u(i) =
s(i)

v(i)
, (1)

u =

∑4
i=1 u(i)

4
, (2)

where i is the selected ith ROI box, s(i) is the saturation of the ith box, and v(i) is
the color value of the ith box. u(i) represents the ratio of the saturation of the ith

frame to the color value of the ith frame, and u represents the average value of u(i)
of the four frames obtained respectively. It is compared by comparing the value with
the set prior value u0 = 3.5. If the value is greater than 3.5, defogging is required,
otherwise, it is not required.
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Figure 2. Judgment principle diagram of fog

3.2.2 Improve the Ability of Fog Environment Detection

After judging whether the image is foggy or not, the foggy image is restored, which
uses the atmospheric scattering model to defog the image. The atmospheric scat-
tering model is shown in Figure 3.

 

Figure 3. Atmospheric scattering model

By modeling the imaging process of fog scene, we can get:

F (x) = J(x)t(x) + A(1− t(x)). (3)

Here, x represents a certain pixel in F (x), F (x) represents a foggy image scat-
tered by atmospheric particles and reaching the sensor, J(x) is a clear fog-free
image that is not scattered by atmospheric particles, A is atmospheric illumina-
tion, and t(x) represents the transmittance in a foggy scene. In the above formula:
t(x) = e−βd(x) where β represents the atmospheric scattering coefficient and d(x)
represents the scene depth.

Based on the atmospheric scattering model, priority of an image defogging al-
gorithm based on dark channel is proposed. The theoretical basis of this algorithm
is that when the image is taken in the normal weather, at least one channel in RGB
image will have pixel values with intensity approaching 0 after the sky area of the
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image is removed. Therefore, take any shot image and define it as J(x), it can also
be written as:

Jdark(x) = min
t∈Ω(x)

(min, J c(t))
c∈(r,g,b)

(4)

In Equation (4), J c is the image of a certain color channel in RGB color space
in J(x). Ω(x) is a neighborhood centered on pixel X in image J(x). The image
defogging algorithm based on dark channel prior includes the following steps:

1. Estimate and refine the transmittance value. The idea is as follows: Assuming
that the atmospheric care A is known, and A>0, divide both the left and right
sides by Ac to get Equation (5):

Ic(x)

Ac
= t(x)

J c(x)

Ac
+ 1− t(x), c ∈ (r, g, b). (5)

By minimizing the above formula, you can get:

min
y∈Ω(x)

( min
c∈(r,g,b)

Ic(y)

Ac
) =

∼
t(x) min

y∈Ω(x)
( min
c∈(r,g,b,)

J c(y)

Ac
) + 1−

∼
t(x). (6)

In Equation (6), it is constant only in a small neighborhood, so it is not needed to
minimize it. And the dark channel in the clear image is 0. The predicted trans-
mittance can be corrected by introducing a factor w between 0 and 1 (typically
0.95) to make the defogged image more natural.

2. Estimate the atmospheric illumination value.

3. Substituting the transmittance value t(x) and atmospheric illumination value A
obtained in Equation (1) into Equation (2), and obtaining the defogged image
of the input image.

4. The image that needs to be defogged is restored by a dark channel prior algo-
rithm based on guided filtering. After the image is restored, considering that
the color quality of the image is a little black, the final image is obtained by
brightness enhancement.

3.3 UDP-YOLO Network Structure

3.3.1 Improved Multi-Scale Prediction Network

For the application of autonomous driving technology in foggy scenes, there are
usually small objects such as people and bicycles in the scenes, while YOLOv4-tiny
model has only two prediction scales of 13 × 13 and 26 × 26. Using YOLOv4-tiny
model to detect the data set we selected in this paper, it is found that the detection
effect of small objects such as people and bicycles is poor. Therefore, inspired by
FPN, PANet and NAS-FPN, this paper proposes a new neck network for feature
fusion without adding too many model parameters, and adds a small target detection
head. The improved network structure is shown in Figure 4.
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As can be seen from Figure 4, this paper has improved the original MobileNetv1
network, and made the following modifications to the original stage1, stage2, and
stage3, reducing the number of convolution kernels of stage1 and making it output
a feature map with a size of 64× 64. Then, CSP module was added between stage1
and stage2 to make it input a feature map with a size of 128 × 128 and extract
it. Stage2 is also modified to output and extract the feature map with the size of
256×256. Finally, the number of convolution kernels of stage3 is trimmed to output
and extract the feature map with the size of 512 × 512. The characteristic graphs
of these three dimensions are respectively marked as F1, F2 and F3. Next, feature
fusion is performed. Firstly, F3 is convolved and downsampled to get F3.1, and F2
is convolved to get F2.1. F1 is convolved and upsampled to get F1.1, and then it is
fused to get our first fused feature. After that, F1.1 is up-sampled, and fused with
the feature map of F3 after convolution operation to obtain the second feature. At
last, F2.1 is downsampled to get F2.2, and it is fused with the feature map obtained
by convolution operation of F1 to get the third feature. These three fusion features
not only contain strong detail information, but also have great semantic information,
so the detected results are very comprehensive.

3.3.2 Expand Receptive Field

Expanding receptive field in the model, a low-cost measure, is helpful to improve the
feature extraction ability, thus improving the performance. In this paper, we put the
PPM module into the feature maps of P3, P4 and P5 extracted from the improved
YOLOv4-tiny model in Figure 4, so as to increase the feature extraction ability. The
PPM module can divide the extracted feature maps into two branches, one of which
is divided into multiple sub-areas for GAP (Global Average Pooling) operation,
then adjust the channel size through convolution operation, and then obtain the un-
pooled feature map through bilinear interpolation. The PPM module [58] consists
of five steps:

1. Pool the feature map extracted from the backbone network to obtain a feature
pyramid.

2. Get the characteristic maps with the size of 1 × 1, 2 × 2, 3 × 3, 6 × 6 and
channel = 1/N through the 1× 1 depth convolution descending channel.

3. Bilinear interpolation filling and upsampling the feature map to the original
feature map size.

4. Channel splicing with the feature map to obtain a feature map with double
channel number.

5. Using 1× 1 convolution kernel to deeply convolve and channel down the spliced
feature map to obtain the final prediction result which is consistent with the
channel number of the input feature map.
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Figure 4. UDP-YOLO model structure

3.3.3 Attention Mechanism

Deep Convolutional Neural Network (CNN) has been widely used in computer field,
and has made great progress in image recognition, object detection and semantic
segmentation. Because the performance of the original model will be slightly de-
graded by pruning, this paper adds a lightweight attention module CBAM module
while considering the speed and performance. This module can conduct attention
mechanism in space and channel, deduce the attention weight coefficient along the
channel and space dimensions, and then multiply it with feature map to adjust the
features adaptively. Because CBAM is a lightweight general-purpose module, it can
be seamlessly integrated into any CNN architecture, and its computational cost is
basically negligible. And can carry out end-to-end training with basic CNN. On dif-
ferent classification and detection data sets, after integrating CBAM into different
models, the performance of the models has been consistently improved, showing its
wide applicability.
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Figure 5. The module of PPM

As shown in Figure 6, CBAM module is divided into two sections: channel
attention module and spatial attention module. This module can not only save
parameters and attention, but also ensure that it can be integrated into the existing
network architecture as a plug-and-play module.

Figure 6. The module of CBAM

The CAM module is shown in Figure 7, the attention module on the channel
firstly passes the input feature map F through global max pooling and global average
pooling based on width and height respectively to obtain two 1 × 1 × C feature
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maps C1 and C2. C1 will be upsampled. Then C1 and C2 respectively pass through
a neural network sharing two layers, the number of neurons in the first layer is
C/r (r is the reduction rate), and the number of neurons in the second layer is
C. The features of MLP output are added based on element-wise, and then the
final channel attention feature, namely M C, which is generated by LA (LeakyRelu
Activation) operation. Finally, M C and input F are multiplied by element-wise,
and the required input features of the next module are obtained.

Figure 7. The module of CAM

Figure 8. The module of SAM

As shown in Figure 8, SAM module uses the features obtained in the last round
as a global max pooling and a global average pooling based on channel to obtain
two H × W × 1 feature maps, then performs channel splicing operation on these
two feature maps based on channel, and then reduces the dimension to one channel
through a 7× 7 convolution operation. Then the Leaky ReLU generates the spatial
attention feature, namely M s. Finally, the feature and the original input features
of the module are multiplied to obtain the final features for detection.
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4 EXPERIMENT

4.1 Experimental Data and Experimental Platform

The data sets adopted in this paper are Foggy-cityscape data set and BDD100k
data set. Foggy-cityscape data set is a data set obtained by photographing the
road conditions of many foreign cities, which can be used for object detection and
segmentation. BDD100K data set is the largest and most diverse open driving data
set published by Berkeley Artificial Intelligence Laboratory. In this work, a part of
BDD100K data set and Foggy-cityscape data set are selected for fusion experiment,
and the fused data set is divided into training set for experiment according to the
proportion, and the test set is used as evaluation. In this paper, mAP and FPS are
used to evaluate the performance of the model. Table 1 describes the details of the
data set we selected.

Foggy-cityscape and BDD100k

Number of classes 6
Training datasets 5 976
Test datasets 960

Table 1. Datasets details

The operating system used in this experimental platform is Windows 10, the
processor is Intel (R) Core (TM) i7-4790 KCPU@4.00GHz, the running memory
is 32GB, the GPU is NVIDIA GeForce GTX 3060, and the parallel computing
framework version is CUDA 11.6.

The flow chart of this experiment is shown in Figure 9. Firstly, select the desired
dataset from the Foggy-cityscape dataset and the BDD100k dataset, then discrim-
inate the selected data set by fog judgment algorithm, defog the foggy data set,
and finally fuse the defogged data set and the fog-free data set to divide the train-
ing set and the test set, and carry out adaptive brightness enhancement. Finally,
the original YOLOv4-tiny model and our proposed UDP-YOLO model are used for
detection. Figure 10 shows the effect diagram after each step of operation.

4.2 Training Model

After the image processing of the data set pair, we start to train the processed data
set. During the training, we adopt the default size of YOLOv4-tiny (416, 416),
and set the input batch size to 8 and the momentum to 0.9. Firstly, without using
the pre-training weight, only the backbone network is loaded for training to get
a better weight. Then, this weight is put into the model as the pre-training weight
to train 50 epochs, and then 250 epochs are trained to get the performance of our
original YOLOv4-tiny model test data set. During the pre-training, the learning
rate of our first 50 training sessions was set at 0.001, and then the learning rate
was gradually reduced from 0.001 to 0.0001 by adopting cosine annealing. Then we
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add our improved structure in turn, and take the weight of the best performance
measured last time as the pre-training weight for training.

 

Figure 9. Experimental flow chart

 

Figure 10. Image processing and target detection process

4.3 Ablation Experiment

To prove the effectiveness of our improved model, we first processed the original
data through image processing, and detected the processed data by using YOLOv4-
tiny model. By replacing the backbone network with MobileNetv1 and reducing
the network parameters, we improved the neck network to form a new multi-feature
fusion structure. Add PPM module and CBAM module in turn. The validity of the
improved model is verified by mAP, FPS.

As shown in Table 2, after replacing the backbone network from CSPDarknet-
tiny with MobileNetv1, and greatly modifying the neck network to form a new
feature fusion structure, our average performance of detecting six types of objects
has increased from 19.75% to 32.41%, but its speed has also decreased from the
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YOLOv4-tiny UDP-YOLO

MobileNetv1 – + + + + +
Delete parameter – – + + + +
CSP–MobileNetv1 – – – + + +
Add PPM – – – – + +
Add CBAM – – – – – +
mAP (%) 19.36 32.41 31.74 34.27 36.86 40.54
FPS 100.3 78.3 90.2 83.1 68.5 61.7

Table 2. The result of Ablation experiment. The ’–’ sign indicates that the operation cor-
responding to the first column of the table was not performed in the ablation experiment,
and the ’+’ sign indicates that the operation corresponding to the first column of the table
was performed in the ablation experiment.

original 100.3 to 78.3. Therefore, in order to maintain its speed, the convolution
kernel of the backbone network is pruned. After pruning, the observation results
show that while the performance decreases by less than one point, our speed increases
by about 15%. After that, we added CSP module to the backbone network to form
CSP-MobileNet, and the detection performance increased from 31.74% to 34.27%
when the speed decreased by less than 8%. After that, by adding PPM module to
increase the receptive field of our model, the performance is improved to 36.86%
and the speed is reduced to 68.5. Finally, we added a lightweight attention module
CBAM to the model, which improved our performance to 40.54% and the speed to
61.7.

4.4 Comparison of UDP-YOLO and YOLO Series Models

In this section, we compare the performance of the non-lightweight model of YOLO
series with that of UDP-YOLO model proposed in this paper, because the perfor-
mance of YOLOv4-tiny model in detecting the data set selected in this paper is
low. YOLOv3 is the third version of YOLO series. The test result of this model
on the selected data set is 41.35%, but its FPS is only 48.6. Compared with UDP-
YOLO proposed in this paper, its performance is 0.81% higher, but its speed is
much lower. After that, this paper replaces the backbone network of YOLOv3,
Darknet53, with EfficientNet, and finds that its performance and speed are not as
good as YOLOv3. YOLOv4 is based on YOLOv3, and the measured performance
of this model is 42.85%, which is 3.6% higher than YOLOv3 and 5.6% higher
than UDP-YOLO. But the speed is reduced by 31.7% compared with UDP-YOLO.
MobileNetv2-YOLOv4 replaces the CSP-Darknet53 backbone network of YOLOv4
with MobileNetv2 for training, and evaluates the best weight after training. Al-
though compared with YOLOV4 in speed, it is still not as fast as UDP-YOLO
proposed in this paper. And its performance has been greatly reduced.

From Figure 3, we can see that. Compared with the model of YOLO series,
the effect of replacing the backbone network of YOLO series and detecting it is not
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YOLOv3 EfficientNet-YOLOv3 YOLOv4 MobileNetv2-YOLOv4 UDP-YOLO

mAP (%) 41.35 27.68 42.85 28.05 40.54
FPS 48.6 46.5 42.3 52.1 61.7

Table 3. Comparison of UDP-YOLO and YOLO series models

as good as the original effect. However, the UDP-YOLO proposed in this paper,
although the performance of the backbone network is a little reduced after it is
replaced by a new network, is indeed much faster. In fact, we can completely
increase the performance by reducing the speed, but this principle is not adopted
due to the real-time requirement of autonomous driving technology. The comparison
of mAP and FPS shows that the UDP-YOLO model proposed by us is completely
feasible.

4.5 Comparison of UDP-YOLO and Other Lightweight Models

In this section, we use MobileNetv2-SSD, YOLOv5s, YOLOx-tiny and EfficientNet
to test our selected data set, and compare the performance with our UDP-YOLO
model. The experimental environment and details are the same as before.

MobileNetv2-SSD YOLOv5s YOLOx-tiny EfficientNet UDP-YOLO

mAP (%) 22.91 38.50 37.56 34.33 40.54
FPS 75.5 25.3 48.5 30.1 61.7

Table 4. Comparison of UDP-YOLO and other lightweight models

As can be seen from Table 4, the UDP-YOLO model is at the optimal perfor-
mance compared to all four of these networks. Compared to the MobileNetv2-SSD
model, its performance almost doubles, although its speed is reduced by about 22%,
which is a good indication of the efficiency of our model.

4.6 Comparison Experiments Using Our Model on Road Defect Dataset

In autonomous driving technology, in addition to avoiding vehicles travelling in the
road, self-driving cars also need to avoid some road defects by predicting them
in advance. To demonstrate the efficient generalisation of the model proposed in
this paper, experiments are conducted on the GRDDC2020 road defect detection
dataset using the UDP-YOLO model. Table 5 shows the experiments comparing
our proposed model with some other lightweight models.

By looking at Table 5, we see that the performance of our proposed model
is better than other models, and we can show after these experiments that our
proposed model is effective for the application of autonomous driving technology in
this direction of computer vision.
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YOLOv4-tiny YOLOv4 YOLOv5s Tiny-YOLOX UDP-YOLO

mAP (%) 52.45 54.56 56.79 56.95 57.30
FPS 101.5 30.6 24.8 45.3 62.8

Table 5. Comparison experiments using our model on road defect dataset

5 CONCLUSIONS

In this work, we propose an improved model based on YOLOv4-tiny to deal with
the problem of avoiding vehicles while driving, and to demonstrate the effectiveness
of our proposed model, we also carry out generalisation experiments in case of road
defects. The evaluation metrics of our experimental results show that our model
outperforms these comparative lightweight models, allowing us to detect the target
briskly. However, there is still room for improvement in our proposed model. For
example, the performance of our detection is not robust enough, which may prevent
us from avoiding a vehicle in an accident while driving because we do not detect the
target. Therefore, we will continue working on this issue and further to improve and
experiment with the model to come up with a more efficient model that detects the
target in the shortest possible time.
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