51 research outputs found

    Single-Slope ADC with Embedded Convolution Filter for Global-Shutter CMOS Image Sensors

    Get PDF
    © 2023 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSII.2023.3266714This paper presents an analog-to-digital converter (ADC) suitable for acquisition and processing of images in the global-shutter mode at the pixel level. The ADC consists of an analog comparator, a multi-directional shift register for the comparator states, and a 16-bit reversible binary counter with programmable step size. It works in the traditional single-slope mode. The novelty is that during each step of the reference ramp, neighboring pixels can exchange status information. During the conversion, the direction and step size of the counter are set globally to realize the corresponding coefficient of a convolution kernel. This technique does not slow down the conversion when used for small kernels (3W3) and does not significantly increase sensor noise. Convolution windows of arbitrary size can be implemented. The concept was verified in an experimental 64W64 imaging array implemented in 180 nm CMOS technology.Peer reviewe

    A high speed programmable focal-plane SIMD vision chip. Analog Integrated Circuits and Signal Processing

    Get PDF
    International audienceA high speed analog VLSI image acquisition and low-level image processing system is presented. The architecture of the chip is based on a dynamically reconfigurable SIMD processor array. The chip features a massively parallel architecture enabling the computation of programmable mask-based image processing in each pixel. Each pixel include a photodiode, an amplifier, two storage capacitors, and an analog arithmetic unit based on a four-quadrant multiplier architecture. A 64 × 64 pixel proof-of-concept chip was fabricated in a 0.35 μm standard CMOS process, with a pixel size of 35 μm × 35 μm. The chip can capture raw images up to 10,000 fps and runs low-level image processing at a framerate of 2,000–5,000 fp

    In-ADC, Rank-Order Filter for Digital Pixel Sensors

    Get PDF
    © 2023 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/This paper presents a new implementation of the rank-order filter which is established on 10 a parallel-operated array of single-slope (SS) analogue-to-digital converters (ADCs). The SS ADCs 11 use “on-the-ramp processing” technique i.e. filtration is performed along with analogue-to-digital 12 conversion, so the final states of the converters represent a filtered image. The proof-of-concept 13 64×64 array of SS ADCs, integrated with MOS photogates, was fabricated in a standard 180-nm 14 CMOS process. The measurement results demonstrate the full functionality of the novel filter 15 concept, with image acquisition in both single-sampling and correlated-double-sampling (CDS) 16 modes (the CDS is performed digitally by ADCs). The experimental, massively-parallel rank-order 17 filter can process 650 frames per second with a power consumption of 4.81 mW.Peer reviewe

    A Sub-Electron-Noise Multi-Channel Cryogenic Skipper-CCD Readout ASIC

    Full text link
    The \emph{MIDNA} application specific integrated circuit (ASIC) is a skipper-CCD readout chip fabricated in a 65 nm LP-CMOS process that is capable of working at cryogenic temperatures. The chip integrates four front-end channels that process the skipper-CCD signal and performs differential averaging using a dual slope integration (DSI) circuit. Each readout channel contains a pre-amplifier, a DC restorer, and a dual-slope integrator with chopping capability. The integrator chopping is a key system design element in order to mitigate the effect of low-frequency noise produced by the integrator itself, and it is not often required with standard CCDs. Each channel consumes 4.5 mW of power, occupies 0.156 mm2{^2} area and has an input referred noise of 2.7μνrms{\mu\nu}_{rms}. It is demonstrated experimentally to achieve sub-electron noise when coupled with a skipper-CCD by means of averaging samples of each pixel. Sub-electron noise is shown in three different acquisition approaches. The signal range is 6000 electrons. The readout system achieves 0.2e{e^{-}} RMS by averaging 1000 samples with MIDNA both at room temperature and at 180 Kelvin

    Diseño CMOS de un sistema de visión “on-chip” para aplicaciones de muy alta velocidad

    Get PDF
    Falta palabras claveEsta Tesis presenta arquitecturas, circuitos y chips para el diseño de sensores de visión CMOS con procesamiento paralelo embebido. La Tesis reporta dos chips, en concreto: El chip Q-Eye; El chip Eye-RIS_VSoC.. Y dos sistemas de visión construidos con estos chips y otros sistemas “off-chip” adicionales, como FPGAs, en concreto: El sistema Eye-RIS_v1; El sistema Eye-RIS_v2. Estos chips y sistemas están concebidos para ejecutar tareas de visión a muy alta velocidad y con consumos de potencia moderados. Los sistemas resultantes son, además, compactos y por lo tanto ventajosos en términos del factor SWaP cuando se los compara con arquitecturas convencionales formadas por sensores de imágenes convencionales seguidos de procesadores digitales. La clave de estas ventajas en términos de SWaP y velocidad radica en el uso de sensores-procesadores, en lugar de meros sensores, en la interface de los sistemas de visión. Estos sensores-procesadores embeben procesadores programables de señal-mixta dentro del pixel y son capaces tanto de adquirir imágenes como de pre-procesarlas para extraer características, eliminar información redundante y reducir el número de datos que se transmiten fuera del sensor para su procesamiento ulterior. El núcleo de la tesis es el sensor-procesador Q-Eye, que se usa como interface en los sistemas Eye-RIS. Este sensor-procesador embebe una arquitectura de procesamiento formada por procesadores de señal-mixta distribuidos por pixel. Sus píxeles son por tanto estructuras multi-funcionales complejas. De hecho, son programables, incorporan memorias e interactúan con sus vecinos para realizar una variedad de operaciones, tales como: Convoluciones lineales con máscaras programables; Difusiones controladas por tiempo y nivel de señal, a través de un “grid” resistivo embebido en el plano focal; Aritmética de imágenes; Flujo de programación dependiente de la señal; Conversión entre los dominios de datos: imagen en escala de grises e imagen binaria; Operaciones lógicas en imágenes binarias; Operaciones morfológicas en imágenes binarias. etc. Con respecto a otros píxeles multi-función y sensores-procesadores anteriores, el Q-Eye reporta entre otras las siguientes ventajas: Mayor calidad de la imagen y mejores prestaciones de las funcionalidades embebidas en el chip; Mayor velocidad de operación y mejor gestión de la energía disponible; Mayor versatilidad para integración en sistemas de visión industrial. De hecho, los sistemas Eye-RIS son los primeros sistemas de visión industriales dotados de las siguientes características: Procesamiento paralelo distribuido y progresivo; Procesadores de señal-mixta fiables, robustos y con errores controlados; Programabilidad distribuida. La Tesis incluye descripciones detalladas de la arquitectura y los circuitos usados en el pixel del Q-Eye, del propio chip Q-Eye y de los sistemas de visión construidos en base a este chip. Se incluyen también ejemplos de los distintos chips en operaciónThis Thesis presents architectures, circuits and chips for the implementation of CMOS VISION SENSORS with embedded parallel processing. The Thesis reports two chips, namely: Q-eye chip; Eye-RIS_VSoC chip, and two vision systems realized by using these chips and some additional “off-chip” circuitry, such as FPGAs. These vision systems are: Eye-RIS_v1 system; Eye-RIS_v2 system. The chips and systems reported in the Thesis are conceived to perform vision tasks at very high speed and with moderate power consumption. The proposed vision systems are also compact and advantageous in terms of SWaP factors as compared with conventional architectures consisting of standard image sensor followed by digital processors. The key of these advantages in terms of SWaP and speed lies in the use of sensors-processors, rather than mere sensors, in the front-end interface of vision systems. These sensors-processors embed mixed-signal programmable processors inside the pixel. Therefore, they are able to acquire images and process them to extract the features, removing the redundant information and reducing the data throughput for later processing. The core of the Thesis is the sensor-processor Q-Eye, which is used as front-end in the Eye-RIS systems. This sensor-processor embeds a processing architecture composed by mixed-signal processors distributed per pixel. Then, its pixels are complex multi-functional structures. In fact, they are programmable, incorporate memories and interact with its neighbors in order to carry out a set of operations, including: Linear convolutions with programmable linear masks; Time- and signal-controlled diffusions (by means of an embedded resistive grid); Image arithmetic; Signal-dependent data scheduling; Gray-scale to binary transformation; Logic operation on binary images; Mathematical morphology on binary images, etc. As compared with previous multi-function pixels and sensors-processors, the Q-Eye brings among other the following advantages: Higher image quality and better performances of functionalities embedded on chip; Higher operation speed and better management of energy budget; More versatility for integration in industrial vision systems. In fact, the Eye-RIS systems are the first industrial vision systems equipped with the following characteristics: Parallel distributed and progressive processing; Reliable, robust mixed-signal processors with handled errors; Distributed programmability. This Thesis includes detailed descriptions of architecture and circuits used in the Q-Eye pixel, in the Q-Eye chip itself and in the vision systems developed based on this chip. Also, several examples of chips and systems in operation are presented

    Low-power CMOS digital-pixel Imagers for high-speed uncooled PbSe IR applications

    Get PDF
    This PhD dissertation describes the research and development of a new low-cost medium wavelength infrared MWIR monolithic imager technology for high-speed uncooled industrial applications. It takes the baton on the latest technological advances in the field of vapour phase deposition (VPD) PbSe-based medium wavelength IR (MWIR) detection accomplished by the industrial partner NIT S.L., adding fundamental knowledge on the investigation of novel VLSI analog and mixed-signal design techniques at circuit and system levels for the development of the readout integrated device attached to the detector. The work supports on the hypothesis that, by the use of the preceding design techniques, current standard inexpensive CMOS technologies fulfill all operational requirements of the VPD PbSe detector in terms of connectivity, reliability, functionality and scalability to integrate the device. The resulting monolithic PbSe-CMOS camera must consume very low power, operate at kHz frequencies, exhibit good uniformity and fit the CMOS read-out active pixels in the compact pitch of the focal plane, all while addressing the particular characteristics of the MWIR detector: high dark-to-signal ratios, large input parasitic capacitance values and remarkable mismatching in PbSe integration. In order to achieve these demands, this thesis proposes null inter-pixel crosstalk vision sensor architectures based on a digital-only focal plane array (FPA) of configurable pixel sensors. Each digital pixel sensor (DPS) cell is equipped with fast communication modules, self-biasing, offset cancellation, analog-to-digital converter (ADC) and fixed pattern noise (FPN) correction. In-pixel power consumption is minimized by the use of comprehensive MOSFET subthreshold operation. The main aim is to potentiate the integration of PbSe-based infra-red (IR)-image sensing technologies so as to widen its use, not only in distinct scenarios, but also at different stages of PbSe-CMOS integration maturity. For this purpose, we posit to investigate a comprehensive set of functional blocks distributed in two parallel approaches: • Frame-based “Smart” MWIR imaging based on new DPS circuit topologies with gain and offset FPN correction capabilities. This research line exploits the detector pitch to offer fully-digital programmability at pixel level and complete functionality with input parasitic capacitance compensation and internal frame memory. • Frame-free “Compact”-pitch MWIR vision based on a novel DPS lossless analog integrator and configurable temporal difference, combined with asynchronous communication protocols inside the focal plane. This strategy is conceived to allow extensive pitch compaction and readout speed increase by the suppression of in-pixel digital filtering, and the use of dynamic bandwidth allocation in each pixel of the FPA. In order make the electrical validation of first prototypes independent of the expensive PbSe deposition processes at wafer level, investigation is extended as well to the development of affordable sensor emulation strategies and integrated test platforms specifically oriented to image read-out integrated circuits. DPS cells, imagers and test chips have been fabricated and characterized in standard 0.15μm 1P6M, 0.35μm 2P4M and 2.5μm 2P1M CMOS technologies, all as part of research projects with industrial partnership. The research has led to the first high-speed uncooled frame-based IR quantum imager monolithically fabricated in a standard VLSI CMOS technology, and has given rise to the Tachyon series [1], a new line of commercial IR cameras used in real-time industrial, environmental and transportation control systems. The frame-free architectures investigated in this work represent a firm step forward to push further pixel pitch and system bandwidth up to the limits imposed by the evolving PbSe detector in future generations of the device.La present tesi doctoral descriu la recerca i el desenvolupament d'una nova tecnologia monolítica d'imatgeria infraroja de longitud d'ona mitja (MWIR), no refrigerada i de baix cost, per a usos industrials d'alta velocitat. El treball pren el relleu dels últims avenços assolits pel soci industrial NIT S.L. en el camp dels detectors MWIR de PbSe depositats en fase vapor (VPD), afegint-hi coneixement fonamental en la investigació de noves tècniques de disseny de circuits VLSI analògics i mixtes pel desenvolupament del dispositiu integrat de lectura unit al detector pixelat. Es parteix de la hipòtesi que, mitjançant l'ús de les esmentades tècniques de disseny, les tecnologies CMOS estàndard satisfan tots els requeriments operacionals del detector VPD PbSe respecte a connectivitat, fiabilitat, funcionalitat i escalabilitat per integrar de forma econòmica el dispositiu. La càmera PbSe-CMOS resultant ha de consumir molt baixa potència, operar a freqüències de kHz, exhibir bona uniformitat, i encabir els píxels actius CMOS de lectura en el pitch compacte del pla focal de la imatge, tot atenent a les particulars característiques del detector: altes relacions de corrent d'obscuritat a senyal, elevats valors de capacitat paràsita a l'entrada i dispersions importants en el procés de fabricació. Amb la finalitat de complir amb els requisits previs, es proposen arquitectures de sensors de visió de molt baix acoblament interpíxel basades en l'ús d'una matriu de pla focal (FPA) de píxels actius exclusivament digitals. Cada píxel sensor digital (DPS) està equipat amb mòduls de comunicació d'alta velocitat, autopolarització, cancel·lació de l'offset, conversió analògica-digital (ADC) i correcció del soroll de patró fixe (FPN). El consum en cada cel·la es minimitza fent un ús exhaustiu del MOSFET operant en subllindar. L'objectiu últim és potenciar la integració de les tecnologies de sensat d'imatge infraroja (IR) basades en PbSe per expandir-ne el seu ús, no només a diferents escenaris, sinó també en diferents estadis de maduresa de la integració PbSe-CMOS. En aquest sentit, es proposa investigar un conjunt complet de blocs funcionals distribuïts en dos enfocs paral·lels: - Dispositius d'imatgeria MWIR "Smart" basats en frames utilitzant noves topologies de circuit DPS amb correcció de l'FPN en guany i offset. Aquesta línia de recerca exprimeix el pitch del detector per oferir una programabilitat completament digital a nivell de píxel i plena funcionalitat amb compensació de la capacitat paràsita d'entrada i memòria interna de fotograma. - Dispositius de visió MWIR "Compact"-pitch "frame-free" en base a un novedós esquema d'integració analògica en el DPS i diferenciació temporal configurable, combinats amb protocols de comunicació asíncrons dins del pla focal. Aquesta estratègia es concep per permetre una alta compactació del pitch i un increment de la velocitat de lectura, mitjançant la supressió del filtrat digital intern i l'assignació dinàmica de l'ample de banda a cada píxel de l'FPA. Per tal d'independitzar la validació elèctrica dels primers prototips respecte a costosos processos de deposició del PbSe sensor a nivell d'oblia, la recerca s'amplia també al desenvolupament de noves estratègies d'emulació del detector d'IR i plataformes de test integrades especialment orientades a circuits integrats de lectura d'imatge. Cel·les DPS, dispositius d'imatge i xips de test s'han fabricat i caracteritzat, respectivament, en tecnologies CMOS estàndard 0.15 micres 1P6M, 0.35 micres 2P4M i 2.5 micres 2P1M, tots dins el marc de projectes de recerca amb socis industrials. Aquest treball ha conduït a la fabricació del primer dispositiu quàntic d'imatgeria IR d'alta velocitat, no refrigerat, basat en frames, i monolíticament fabricat en tecnologia VLSI CMOS estàndard, i ha donat lloc a Tachyon, una nova línia de càmeres IR comercials emprades en sistemes de control industrial, mediambiental i de transport en temps real.Postprint (published version

    CMOS SPAD-based image sensor for single photon counting and time of flight imaging

    Get PDF
    The facility to capture the arrival of a single photon, is the fundamental limit to the detection of quantised electromagnetic radiation. An image sensor capable of capturing a picture with this ultimate optical and temporal precision is the pinnacle of photo-sensing. The creation of high spatial resolution, single photon sensitive, and time-resolved image sensors in complementary metal oxide semiconductor (CMOS) technology offers numerous benefits in a wide field of applications. These CMOS devices will be suitable to replace high sensitivity charge-coupled device (CCD) technology (electron-multiplied or electron bombarded) with significantly lower cost and comparable performance in low light or high speed scenarios. For example, with temporal resolution in the order of nano and picoseconds, detailed three-dimensional (3D) pictures can be formed by measuring the time of flight (TOF) of a light pulse. High frame rate imaging of single photons can yield new capabilities in super-resolution microscopy. Also, the imaging of quantum effects such as the entanglement of photons may be realised. The goal of this research project is the development of such an image sensor by exploiting single photon avalanche diodes (SPAD) in advanced imaging-specific 130nm front side illuminated (FSI) CMOS technology. SPADs have three key combined advantages over other imaging technologies: single photon sensitivity, picosecond temporal resolution and the facility to be integrated in standard CMOS technology. Analogue techniques are employed to create an efficient and compact imager that is scalable to mega-pixel arrays. A SPAD-based image sensor is described with 320 by 240 pixels at a pitch of 8μm and an optical efficiency or fill-factor of 26.8%. Each pixel comprises a SPAD with a hybrid analogue counting and memory circuit that makes novel use of a low-power charge transfer amplifier. Global shutter single photon counting images are captured. These exhibit photon shot noise limited statistics with unprecedented low input-referred noise at an equivalent of 0.06 electrons. The CMOS image sensor (CIS) trends of shrinking pixels, increasing array sizes, decreasing read noise, fast readout and oversampled image formation are projected towards the formation of binary single photon imagers or quanta image sensors (QIS). In a binary digital image capture mode, the image sensor offers a look-ahead to the properties and performance of future QISs with 20,000 binary frames per second readout with a bit error rate of 1.7 x 10-3. The bit density, or cumulative binary intensity, against exposure performance of this image sensor is in the shape of the famous Hurter and Driffield densitometry curves of photographic film. Oversampled time-gated binary image capture is demonstrated, capturing 3D TOF images with 3.8cm precision in a 60cm range

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    A CMOS 90nm Digital Pixel Sensor Intended for a Visual Cortical Stimulator

    Get PDF
    RÉSUMÉ La capture d’images et le traitement d’images et de signaux font partie des domaines les plus en vogue de nos jours. Un autre domaine qui retient l’attention des chercheurs à travers le monde est celui qui regroupe les applications biomédicales - en particulier celles qui font le pont entre l’électronique et la biologie. L’équipe Polystim œuvre sur différents projets à la pointe de la technologie qui touchent à ces domaines, dont le projet Cortivision: un stimulateur visuel cortical. Le système englobe la capture et le traitement d’images ainsi que la stimulation du cortex pour donner une certaine perception d’images aux patients souffrant de cécité. Le but de ce travail est de concevoir le module de capture d’images de ce système. Les modes d’opération du capteur d’images doivent être configurables par l’usager. Il doit se distinguer par une gamme dynamique élevée, une consommation de puissance réduite, une haute vitesse d’acquisition, une surface réduite, la portabilité, la possibilité d’avoir du traitement d’images sur puce, et la facilité de l’intégrer dans un système sur puce avec le reste des modules de Cortivision. Un DPS (Digital Pixel Sensor) CMOS a été conçu et fabriqué avec la nouvelle technologie CMOS 90nm. Chaque pixel comprend une photodiode, un circuit de conversion de photocourant, un convertisseur analogique à numérique et une mémoire numérique de 8 bits, dans une surface de 9 µm x 9 µm avec un facteur de remplissage de 26% et 57 transistors. Le capteur offre plusieurs modes d’opération: • Un mode d’intégration linéaire. • Un mode logarithmique avec une gamme dynamique étendue qui permet d’accéder aux pixels indépendamment du temps mais avec une diminution de linéarité et un bruit plus prononcé. • Un mode différentiel qui soustrait deux images successives à même la puce pour obtenir une image binaire. Ce mode permet d’accélérer le traitement d’images et fonctionne à une vitesse plus élevée. Il peut être utilisé simultanément avec le mode linéaire ou avec le mode logarithmique. • Un mode d’expositions multiples qui est une option du mode linéaire pour augmenter la gamme dynamique, mais qui aurait l’effet de réduire la vitesse d’acquisition.----------ABSTRACT The image sensing and image processing fields make up some of the hottest topics in today’s industrial and research communities. Another field that is getting a lot of attention is biomedical applications - especially the combination of electronics to biology. The Polystim team is working on some state-of-the-art projects encompassing all that. One of these is the Cortivision project that consists of a visual cortical stimulator. The system comprises image sensing, image processing, and brain cortex stimulation to help blind patients acquire a sense of visual perception. The goal of this work is to cover the image sensing portion of the system. This requires the design and implementation of an image sensor which is user configurable to operate in several modes, has a high dynamic range, low power consumption, high frame rate capability, reduced surface area, is portable, allows some on-chip image processing, and can easily be integrated in a system-on-chip with the rest of the Cortivision modules. A CMOS Digital Pixel Sensor was designed and fabricated using the novel CMOS 90nm technology. Each pixel consists of a Photodiode, a photo-current conversion circuit, an Analog-to-Digital Converter and a digital 8-bit memory. It has a pixel pitch of 9µm with a Fill-Factor of 26% and 57 transistors. The sensor offers several modes of operation: • A linear integration mode. • A logarithmic mode that extends the dynamic range and allows time-independent pixel access at the cost of a forsaken linearity and an increase in noise. • A differential (or better termed difference) mode that allows subtracting two consecutive frames to obtain a binary image. This mode helps speed up the image processing and allows a very high frame rate. It can be used in conjunction with either the linear or the logarithmic modes of operation. • A multiple exposure mode that can be used in combination with the linear mode to increase the dynamic range at the expense of a decrease in frame rate

    Active pixel sensors for breast biopsy analysis using x-ray diffraction.

    Get PDF
    Breast cancer diagnosis currently requires biopsy samples to be analysed by a histopathologist a time consuming, highly specialised process. X-ray diffraction is a quantitative technique that can distinguish between healthy and diseased breast biopsy samples using the change in proportions of fat and fibrous tissue that occurs when cancer invades. A semi-automated breast biopsy analysis system based on X-ray diffraction could yield a faster patient diagnosis. Recording X-ray diffraction patterns is a challenging task needing low noise, large area, and wide dynamic range detectors. Scientific complementary metal oxide semiconductor (CMOS) Active Pixel Sensors will soon be able to meet all of these demands in a single device. Characterization of two novel Active Pixel Sensors that advance towards an ideal X-ray diffraction detector is presented. 'Vanilla' exhibits a low read noise of 55e r.m.s. and high quantum efficiency of up to 70% so was selected for the design and implementation of the first 'Active Pixel X-ray Diffraction' (APXRD) system. Following on from Vanilla, the 'Large Area Sensor' (LAS) covered an area of over 29cm2 and had a wide dynamic range of over 95dB. The first linear systems model of an Active Pixel Flat Panel Imager (scintillator coupled APS) was formulated in the design of the APXRD system, to select filters to narrow the spectral width of the X-ray beam and predict the recorded scatter intensity. Following system implementation, scatter signatures were recorded for numerous breast tissue equivalent samples. A multivariate analysis model calibrated with these was able to predict the percentage fat content of an 'unknown' sample to within 3% a very promising result. The width of the filtered polychromatic X-ray spectrum had only a minor influence on the APXRD scatter signatures indicating that the system preserves all relevant structural information
    corecore