220 research outputs found

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    TweeProfiles4: a weighted multidimensional stream clustering algorithm

    Get PDF
    O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquecedora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de processos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados tem recebido um foco significativo recentemente. O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este é um projeto em desenvolvimento que ainda possui muitos aspetos que podem ser melhorados. Uma das recentes melhorias inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos dados, por um método de streaming. O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em primeiro lugar, será proposto um novo algoritmo de clustering para fluxos de dados com o objetivo de melhorar o existente. Para esse efeito será desenvolvido um algoritmo incremental com suporte para fluxos de dados multi-dimensionais. Esta abordagem deve permitir ao utilizador alterar dinamicamente a importância relativa de cada dimensão do processo de clustering. Adicionalmente, a avaliação empírica dos resultados será alvo de melhoramento através da identificação e implementação de medidas adequadas de avaliação dos padrões extraídos. O estudo empírico será realizado através de tweets georreferenciados obtidos pelo SocialBus.The emergence of social media made it possible for users to easily share their thoughts on different topics, which constitutes a rich source of information for many fields. Microblogging platforms experienced a large and steady growth over the last few years. Twitter is the most popular microblogging site, making it an interesting source of data for pattern extraction. One of the main challenges of analyzing social media data is its continuous nature, which makes it hard to use traditional data mining. Therefore, mining stream data has also received a lot of attention recently.TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimensions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text of the tweet) and social (relationship graph). This is an ongoing project which still has many aspects that can be improved. For instance, it was recently improved by replacing the original clustering algorithm which could not handle the continuous flow of data with a streaming method. The goal of this dissertation is to continue the development of TweeProfiles. First, the stream clustering process will be improved by proposing a new algorithm. This will be achieved by developing an incremental algorithm with support for multi-dimensional streaming data. Moreover, it should make it possible for the user to dynamically change the relative importance of each dimension in the clustering. Additionally, the empirical evaluation of the results will also be improved.Suitable measures to evaluate the extracted patterns will be identified and implemented. An empirical study will be done using data consisting of georeferenced tweets from SocialBus

    Yavaa: supporting data workflows from discovery to visualization

    Get PDF
    Recent years have witness an increasing number of data silos being opened up both within organizations and to the general public: Scientists publish their raw data as supplements to articles or even standalone artifacts to enable others to verify and extend their work. Governments pass laws to open up formerly protected data treasures to improve accountability and transparency as well as to enable new business ideas based on this public good. Even companies share structured information about their products and services to advertise their use and thus increase revenue. Exploiting this wealth of information holds many challenges for users, though. Oftentimes data is provided as tables whose sheer endless rows of daunting numbers are barely accessible. InfoVis can mitigate this gap. However, offered visualization options are generally very limited and next to no support is given in applying any of them. The same holds true for data wrangling. Only very few options to adjust the data to the current needs and barely any protection are in place to prevent even the most obvious mistakes. When it comes to data from multiple providers, the situation gets even bleaker. Only recently tools emerged to search for datasets across institutional borders reasonably. Easy-to-use ways to combine these datasets are still missing, though. Finally, results generally lack proper documentation of their provenance. So even the most compelling visualizations can be called into question when their coming about remains unclear. The foundations for a vivid exchange and exploitation of open data are set, but the barrier of entry remains relatively high, especially for non-expert users. This thesis aims to lower that barrier by providing tools and assistance, reducing the amount of prior experience and skills required. It covers the whole workflow ranging from identifying proper datasets, over possible transformations, up until the export of the result in the form of suitable visualizations

    Similarity based learning method for drug target interaction prediction

    Get PDF
    In silico prediction of drug target interactions has gained its popularity with the growth of publicly available information in chemical and biological sciences. The old paradigm of \u27one drug-one target\u27 is quickly becoming outdated. It was smart way of understanding the drug-protein interactions but the biological systems we are dealing with are made up of myriad of proteins exhibiting multiple functions. To analyze and understand these systems as a whole, we require efficient computational models. In this work we have improved a machine learning method by integrating more correlated information about the drug compounds and extend this method to weighted profile method in order to infer novel interactions for drugs and targets with no prior interaction information, which was not possible with the current model. We have evaluated our method using area under the ROC curve and the results obtained show that the proposed model can predict drug target interactions accurately

    Data Clustering: Algorithms and Its Applications

    Get PDF
    Data is useless if information or knowledge that can be used for further reasoning cannot be inferred from it. Cluster analysis, based on some criteria, shares data into important, practical or both categories (clusters) based on shared common characteristics. In research, clustering and classification have been used to analyze data, in the field of machine learning, bioinformatics, statistics, pattern recognition to mention a few. Different methods of clustering include Partitioning (K-means), Hierarchical (AGNES), Density-based (DBSCAN), Grid-based (STING), Soft clustering (FANNY), Model-based (SOM) and Ensemble clustering. Challenges and problems in clustering arise from large datasets, misinterpretation of results and efficiency/performance of clustering algorithms, which is necessary for choosing clustering algorithms. In this paper, application of data clustering was systematically discussed in view of the characteristics of the different clustering techniques that make them better suited or biased when applied to several types of data, such as uncertain data, multimedia data, graph data, biological data, stream data, text data, time series data, categorical data and big data. The suitability of the available clustering algorithms to different application areas was presented. Also investigated were some existing cluster validity methods used to evaluate the goodness of the clusters produced by the clustering algorithms

    Context Selection on Attributed Graphs for Outlier and Community Detection

    Get PDF
    Today\u27s applications store large amounts of complex data that combine information of different types. Attributed graphs are an example for such a complex database where each object is characterized by its relationships to other objects and its individual properties. Specifically, each node in an attributed graph may be characterized by a large number of attributes. In this thesis, we present different approaches for mining such high dimensional attributed graphs

    Relational clustering models for knowledge discovery and recommender systems

    Get PDF
    Cluster analysis is a fundamental research field in Knowledge Discovery and Data Mining (KDD). It aims at partitioning a given dataset into some homogeneous clusters so as to reflect the natural hidden data structure. Various heuristic or statistical approaches have been developed for analyzing propositional datasets. Nevertheless, in relational clustering the existence of multi-type relationships will greatly degrade the performance of traditional clustering algorithms. This issue motivates us to find more effective algorithms to conduct the cluster analysis upon relational datasets. In this thesis we comprehensively study the idea of Representative Objects for approximating data distribution and then design a multi-phase clustering framework for analyzing relational datasets with high effectiveness and efficiency. The second task considered in this thesis is to provide some better data models for people as well as machines to browse and navigate a dataset. The hierarchical taxonomy is widely used for this purpose. Compared with manually created taxonomies, automatically derived ones are more appealing because of their low creation/maintenance cost and high scalability. Up to now, the taxonomy generation techniques are mainly used to organize document corpus. We investigate the possibility of utilizing them upon relational datasets and then propose some algorithmic improvements. Another non-trivial problem is how to assign suitable labels for the taxonomic nodes so as to credibly summarize the content of each node. Unfortunately, this field has not been investigated sufficiently to the best of our knowledge, and so we attempt to fill the gap by proposing some novel approaches. The final goal of our cluster analysis and taxonomy generation techniques is to improve the scalability of recommender systems that are developed to tackle the problem of information overload. Recent research in recommender systems integrates the exploitation of domain knowledge to improve the recommendation quality, which however reduces the scalability of the whole system at the same time. We address this issue by applying the automatically derived taxonomy to preserve the pair-wise similarities between items, and then modeling the user visits by another hierarchical structure. Experimental results show that the computational complexity of the recommendation procedure can be greatly reduced and thus the system scalability be improved
    corecore