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Interpretability and Explainability of machine learning algorithms are

becoming increasingly important as Machine Learning (ML) systems get widely

applied to domains like clinical healthcare, social media and governance. A

related major challenge in deploying ML systems pertains to reliable learning

when expert annotation is severely limited. This dissertation prescribes a com-

mon framework to address these challenges, based on the use of constraints

that can make an ML model more interpretable, lead to novel methods for

explaining ML models, or help to learn reliably with limited supervision.

In particular, we focus on the class of latent variable models and develop

a general learning framework by constraining realizations of latent variables

and/or model parameters. We propose specific constraints that can be used

to develop identifiable latent variable models, that in turn learn interpretable

outcomes. The proposed framework is first used in Non–negative Matrix Fac-

torization and Probabilistic Graphical Models. For both models, algorithms
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are proposed to incorporate such constraints with seamless and tractable aug-

mentation of the associated learning and inference procedures. The utility of

the proposed methods is demonstrated for our working application domain –

identifiable phenotyping using Electronic Health Records (EHRs). Evaluation

by domain experts reveals that the proposed models are indeed more clinically

relevant (and hence more interpretable) than existing counterparts. The work

also demonstrates that while there may be inherent trade–offs between con-

straining models to encourage interpretability, the quantitative performance

of downstream tasks remains competitive.

We then focus on constraint based mechanisms to explain decisions or

outcomes of supervised black-box models. We propose an explanation model

based on generating examples where the nature of the examples is constrained

i.e. they have to be sampled from the underlying data domain. To do so,

we train a generative model to characterize the data manifold in a high di-

mensional ambient space. Constrained sampling then allows us to generate

naturalistic examples that lie along the data manifold. We propose ways to

summarize model behavior using such constrained examples.

In the last part of the contributions, we argue that heterogeneity of data

sources is useful in situations where very little to no supervision is available.

This thesis leverages such heterogeneity (via constraints) for two critical but

widely different machine learning algorithms. In each case, a novel algorithm

in the sub-class of co–regularization is developed to combine information from

heterogeneous sources. Co–regularization is a framework of constraining latent

variables and/or latent distributions in order to leverage heterogeneity. The

proposed algorithms are utilized for clustering, where the intent is to generate a

partition or grouping of observed samples, and for Learning to Rank algorithms
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– used to rank a set of observed samples in order of preference with respect

to a specific search query. The proposed methods are evaluated on clustering

web documents, social network users, and information retrieval applications

for ranking search queries.
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Chapter 1

Introduction

With wider applications of machine learning in e–commerce, web search,

clinical healthcare, criminal justice platforms and systems, a few critical prac-

tical challenges have come to the fore. These challenges remain a primary

reason for a lack of trust as well as a hindrance to wider acceptance of machine

learning based algorithms in practice. We discuss three of these challenges in

the following and discuss how mechanisms formulated in this dissertation can

be used to address them.

1.1 Interpretable machine learning

For application domains like clinical healthcare and criminal justice sys-

tems, interpretability of machine learning algorithms is critical. Interpretabil-

ity refers to designing learning and inference mechanisms to generate outcomes

that are understandable to human or domain experts and are at acceptable

levels of abstractions.

1.2 Explainable machine learning

Certain state of the art machine learning models, like deep learning

methods, involve learning millions of parameters. Understanding such com-

plex models requires a sophisticated understanding of model behavior and is
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therefore inaccessible to a consumer of the model. Such models have become

black-box models. It is therefore necessary to develop equally sophisticated

mechanisms that probe such models to understand and summarize their be-

havior using abstractions that are accessible to non–experts.

1.3 Semisupervised machine learning

Typically, supervised learning algorithms learn a functional mapping

from attributes over samples to a known target score or categorical label. Col-

lecting the target score/labels is called annotation. This requires expensive

human as well as engineering resources for large datasets. Semisupervised

learning refers to learning reliably in the absence of reliable and/or limited

expert annotation. For instance, it is desirable to rank patients at a caregiv-

ing facility in order of their risk of outcome like mortality. It is increasingly

difficult to get such subjective scores as it requires expensive clinical exper-

tise. However, heterogeneous sources of information are sometimes available

to describe a single data point. For instance, patients in a hospital can be

described by their prescription information, claim information, as well as lab

test information.

1.4 A Constraint Based Framework

This dissertation focuses on developing a common framework to build

interpretable, explainable models as well as to learn reliably when little to no

annotation is available. We rely on a framework that assumes such observa-

tions can be represented in an unobserved low–dimensional space. This space

is called the latent space and the corresponding class of models are known
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as latent variable models. Characterizing such a latent space, the distribu-

tions over the latent space, as well as the realizations corresponding to the

observed samples are the main tasks of an associated learning algorithm. We

demonstrate that constraining different aspects of the latent space allows one

to (i) encourage models to satisfy specific interpretability criterion (ii) probe

complex black-box models to summarize model behavior, and (iii) leverage

heterogeneous data sources in lieu of expert annotation to learn reliably at

scale.

The first part of the dissertation demonstrates a framework that con-

strains realizations of latent variables. The corresponding learning algorithms

are augmented to impose these constraints during training. Tractable ap-

proximations are used when exact imposition of constraints is infeasible. We

demonstrate the utility of our mechanism on our working application – au-

tomated phenotyping of chronic conditions from Electronic Health Records

(EHRs). We rely on two existing latent variable frameworks, namely, prob-

abilistic graphical models (Wainwright and Jordan, 2008) and non–negative

matrix factorization (Lee and Seung, 1999) to demonstrate our constraining

formulation. Next, we demonstrate how a constrained generative model can be

used to probe complex supervised black-box models to generate explanations

or summaries of model behavior. Finally, we demonstrate how distributions

over latent variables can be constrained as a means to leverage heterogeneity of

data sources. This mechanism allows us to leverage multi–modal data sources

to learn without expensive supervision. This is applied using co–regularization

for clustering as well as for learning to rank (LeTOR) (Trotman, 2005) algo-

rithms.

This dissertation is organized as follows. Chapter 2 defines necessary
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mathematical constructs used to propose the constraining mechanisms. In

particular, the latent variable models used to demonstrate the explainabil-

ity mechanisms are variational auto–encoders (VAEs) (Kingma and Welling,

2013), probabilistic graphical models (Koller and Friedman, 2009), and latent

factor models, specifically non–negative matrix factorization (NMF) (Lee and

Seung, 2001). These modeling paradigms are introduced in detail. We intro-

duce a latent variable paradigm for clustering, called mixture models. Finally,

a learning to rank (LeTOR) framework based on Generalized Linear Mod-

els (McCullagh, 1984) is introduced. All models and associated training and

inference mechanisms are substantially generalized in the following chapters

to incorporate appropriate constraints.

Chapter 3 details the paradigm of learning interpretable latent variable

models using constraints. To do so, we first review existing literature toward

developing interpretable and explainable machine learning. We contextualize

the proposed formulation’s relevance to existing literature on interpretability

and explainability models. The chapter focuses on introducing conditions that

could be imposed on a machine learning model to encourage it to be inherently

interpertable given the application domain and an abstraction level. Next, the

general mechanism of constraining individual realizations of latent variables is

described for latent space models (to specifically encourage interpretability),

including augmenting the learning and inference mechanisms. Finally, we pro-

pose an instance of such constraints (called grounding) that are relevant to our

application for phenotyping chronic conditions using EHR data. We discuss

some inherent trade-offs of these constraints in terms of model performance

and/or interpretability.

Chapter 4 defines the application task of generating interpretable phe-
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notypes for chronic conditions of an ICU population using Electronic Health

Records. This is our working example to demonstrate the utility of our con-

straining formulation for enhancing interpretability of ML models. We review

existing phenotyping algorithms, and discuss how the proposed formulation

addresses existing issues of identifiability and interpretability for phenotyping.

We further discuss how EHRs, specifically clinical notes are pre–processed to

generate observations as well as weak diagnoses required to impose grounding

constraints discussed in Chapter 3.

Chapter 5 demonstrates how the grounding framework is applied to –

(i) a NMF framework, and (ii) admixture of PMRFs (Inouye et al., 2014a) . A

new algorithm for learning as well as inference is proposed in each case drawing

on Maximum-a-Posteriori estimator, and an Alternating-Minimization frame-

work (Koren et al., 2009). The proposed models are evaluated qualitatively

and quantitatively. Qualitatively, domain experts (clinicians) were asked to

evaluate the quality of the learned phenotype representations based on their

relevance of the target conditions as well as their discriminative ability relative

to well known baselines. Finally, the phenotype representations are evaluated

for their predictive power in determining patient outcomes (30-day mortality

outcomes) as a quantitative evaluation of their utility on a down-stream eval-

uation. We conclude this chapter by discussing some limitations of learning

phenotypes without accounting for interventional information.

Chapter 6 proposes xGEMs or manifold constrained exemplars, a frame-

work to understand black–box classifier behavior by exploring the landscape

of the underlying data manifold as data points cross decision boundaries. To

do so, we train an unsupervised generative model – treated as a proxy to the

data manifold. We summarize black-box model behavior quantitatively by
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generating perturbations of existing samples constrained along the data mani-

fold. Constraining these perturbations requires restricting the latent variables

by transforming them using the generative function mapping. We demon-

strate xGEMs’ ability to detect and quantify observed attribute confounding

in model learning and also for understanding the changes in model behavior

as training progresses.

Chapter 7 is devoted to leveraging heterogeneous data sources using

constraints, in order to effectively learn in the absence of annotation. We do

so by effectively constraining distributions over latent spaces and/or latent

variables themselves. The first part of the chapter develops a latent variable

framework specifically for clustering. In particular, we demonstrate that an

effective choice of divergence function to constrain the distributions over the

latent variables across heterogeneous data sources can help to learn a parti-

tioning even when the individual data sources may be slightly biased w.r.t. the

true clustering distribution. Two algorithms are proposed utilizing this choice

of divergence based on variational inference (Wainwright and Jordan, 2008)

for estimation. The proposed algorithms have been extensively evaluated on

clustering document and social network data. The latter half of Chapter 7 pro-

poses to use heterogeneous sources to learn reliable ranking models when rank

ordering is only available for a very few queries. This requires us to substan-

tially generalize an existing listwise ranking framework known as Monotone

Retargeting (Acharyya et al., 2012; Acharyya and Ghosh, 2014). We develop

novel constraints to enforce agreement across rank–orderings generated by het-

erogeneous data sources, specifically those of unlabeled queries. Consequently,

this ranking framework is evaluated on semi–supervised LeTOR tasks for in-

formation retrieval applications.
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We conclude in Chapter 8 with some directions for future work fo-

cusing on incorporating structural and domain constraints that inform causal

influences for generating interpretable and explainable models.
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Chapter 2

Background

We first introduce necessary notation that will be used throughout this

dissertation.

2.1 Notation

A vector of dimension d is denoted by x ∈ Rd. A matrix of dimensions

d × k is denoted by a bold caps letter, e.g. X ∈ Rd×k. The space of non-

negative reals is denoted by Rd×k
+ . xj is the jth column of matrix X while x(i)

denotes the ith row of matrix X. xij is the entry in the ith row and the jth

column of X.

The set of indices {1, 2, · · · ,m} is denoted by [m]. ∆d−1 is the Simplex

in dimension d, ∆d−1 = {x ∈ Rd
+ :
∑
xi = 1}. Similarly, a λ–∆d−1 (called the

lambda-Simplex) in dimension d is the set λ–∆d−1 = {x ∈ Rd
+ :
∑
xi = λ}.

supp(x) is the support of vector x. That is, supp(x) = {i : xi 6= 0}. A generic

set is denoted by sans–serif letter C. The set of all vectors isotonic to a vector

y is denoted by R↓y , i.e. it denotes the set of all vectors that result in the

same rank order as y.

We focus on the class of latent variable and latent factor models in

order to demonstrate the utility of our constrained based algorithms for inter-

pretability, explainability, and semi–supervised learning. The following builds
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the necessary background to formulate our models.

2.2 Non-Negative Matrix Factorization

Non–negative matrix factorization (NMF) is a latent factor model.

NMF approximates observational data (represented in non–negative matrix

form) as a factorization of two low–rank non–negative matrices. The quality

of the approximation is measured using a divergence function defined below.

2.2.1 Bregman divergences

Bregman Divergences is a class of divergence functions closely related

to the exponential family distributions, that is, there is a one–to–one map-

ping between regular exponential family distributions and the class of regular

Bregman Divergences (Banerjee et al., 2005b).

Definition 2.2.1. Let f : dom(f) → R be a continuously differentiable

strictly convex function defined on the closed convex set dom(f). The Bregman

Divergence between x, y ∈ dom(f) is defined as:

Bf (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 (2.1)

For two matrices X,Y ∈ RN×d
+ , the divergence D(X,Y) is given by:

D(X,Y) =
∑
ij

B(xij, yij) (2.2)

We restrict the class of divergence functions to belong to Bregman di-

vergences (Definition 2.2.1) for formulating non–negative matrix factorization

for interpretability given their attractive properties like convexity and associ-

ations with the exponential family distributions.
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2.2.2 Non–negative matrix factorization

Let X ∈ RN×d
+ be a matrix with non–negative entries. Non–negative

matrix factorization approximates the observation matrix as a factorization of

two low–rank non–negative matrices. Let A ∈ RN×K
+ and W ∈ Rd×K

+ be two

rank K matrices. Then generalized non–negative matrix factorization aims to

find estimates Ã and W̃ via constrained minimization of the following cost

function:

Ã,W̃ = arg min
A∈RN×K

+ ,W∈Rd×K
+

D(X,AWT ) (2.3)

where CA and CW denote appropriate constraints on the non–negative

factors, either obtained via supervision or appropriate domain constraints. The

choice of the divergence function D(X,Y) is determined by the type of data

comprising the observation matrix X and the probabilistic assumptions made

for data generation. The choice of K is determined by empirical evaluation on

a validation set or can be determined from the application domain.

2.2.3 Alternating–Minimization algorithm

In order to estimate the low–rank factor matrices A and W, an effec-

tive and scaleable algorithm is called Alternating Minimization (Koren et al.,

2009). Without any constraints on the estimates of A and W other than

non–negativity, Algorithm 1 can be used to obtain the estimates.

2.3 Admixtures of Markov Random Fields

We demonstrate the utility of our domain specific interpretable models

by applying it to a probabilistic latent variable model. In particular, we restrict

to the class of admixture of Markov Random Fields, detailed in the following.
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Algorithm 1 Alt-Min for NMF
Input: X. Initialization: A(0)

while Not converged do
W(t) ← arg minW∈Rd×K

+
D(X,A(t−1)W)

A(t) ← arg minA∈RN×K
+

D(X,AW(t))

end while

2.3.1 Admixture models

Admixture models were primarily introduced to model heterogeneity

in genetic linkage analysis data. The probabilistic assumptions underlying ad-

mixture models is as follows. Let K be the number of populations (or generally

mixture components). Let 0 ≤ wk ≤ 1 be the proportion with which mixture

k contributes to the observed population and let Θk parametrize the probabil-

ity of observing a sample from the kth component of the mixture (denoted by

p(x; Θk)). Let x ∈ Rd
+ be the random variable representing observation. Then

an admixture model is represented by the following generative process:

xm ∼ p(x;
∑
k

wmkΘk)∀m ∈ [N ] (2.4)

where N is the total number of samples in the observation.

2.3.2 Poisson Markov Random Fields (PMRFs)

Poisson Markov Random Fields (PMRFs) (Yang et al., 2013), are markov

random fields defined in order to incorporate correlation between multivari-

ate Poisson random variables. Let x ∈ RV be a V dimensional count vector

drawn from a PMRF. The distribution of x can be parametrized by θ ∈ RV
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and Θ ∈ RV×V and is given by1:

p(x|θ,Θ) ∝ exp {θTx + xTΘx−
V∑
v=1

ln(xv!)} (2.5)

As can be seen from Equation (2.5), a PMRF explicitly accounts for

potential correlation between the xv vectors. Θ plays a similar role as the

precision matrix as in a multivariate Gaussian distribution i.e. encoding con-

ditional independence structure. Note that (Inouye et al., 2014a) use a slightly

modified distribution to account for positive correlations based on (Yang et al.,

2013). An important distinction here is that in comparison to the multinomial

distribution, used in LDA (Blei et al., 2003), PMRFs allow to model positive as

well as negative correlations between words in the vocabulary. A multinomial

distribution accounts for weak negative correlations by fixing the total count

of trials and does not model correlations explicitly (Inouye et al., 2014a).

2.3.3 Admixtures of PMRFs (APM)

APM may be considered to be an undirected graphical model based

analogue of LDA. Both model a document as a bag-of-words. Each document

is represented as a vector, so each dimension counts the number of times a

given word appears in the document. APMs are based on Poisson Markov

Random Fields (PMRFs) (Inouye et al., 2014a), to incorporate correlation

between multivariate Poisson random variables.

Consider K PMRFs - one for each topic, with parameters {θk,Θk}.

Topic models assume that a document is composed of words from multiple

1Note that proportionality signs imply appropriate normalization so that the distribution
sums to 1.
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topics. Therefore, to generate each document n in a corpus of N documents,

each consisting of one or more of K topics, one can follow the following gen-

erative procedure using PMRFs:

For each n ∈ N ,

• Sample wn ∈ ∆K according to a Dirichlet distribution p(w|α), where

α ∈ RK , α > 0 and ∆K indicates the K−1 dimensional simplex (see 2.1).

These are known as the admixing weights.

• Let θn =
∑K

k=1wnkθk and Θn =
∑K

k=1wnkΘk. Since the ‘weight’ vector

wn lies on the simplex, θn and Θn are convex combinations of the topic

parameters.

• The document xn is generated by sampling from a new PMRF with

parameters {θn,Θn}.

The complete distribution of the corpus X consisting of independent document

samples xn, each drawn from a PMRF, is given by,

p(X|θk,Θk) ∝
N∏
n=1

p(xn|θn =
K∑
k=1

wnkθk,Θn =
K∑
k=1

wnkΘk)
(2.6)

where each entity in the product on the right hand side can be modeled ac-

cording to Equation (1). In addition, prior probabilities p(θk,Θk|β) may be

imposed on the parameters θk and Θk, ∀ k ∈ {1, 2, ..., K} (Inouye et al.,

2014a). β can thus be considered as a tuneable hyperparameter.

2.3.4 Maximum-a-Posteriori algorithm for PMRFs

Inouye et al. (2014a) propose to obtain a Maximum-a-Posteriori (MAP)

estimate of the parameters θk and Θk, ∀ k = {1, 2, ..., K}, and an improved
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scaleable approach for the MAP estimation procedure is proposed in Inouye

et al. (2014b). We build upon this procedure for incorporating topic–level su-

pervision. The unsupervised MAP estimation procedure involves alternating

co–ordinate descent type optimization. One equation updates parameters of

the topics i.e. the PMRF parameters with constant admixing weights and the

other equations updates the admixing weights with constant topic parameters.

Let zi = [1, xTi ]T , φkv = [θkv, Θkv] where v indexes the vth row of θk and

Θk ∀ k ∈ {1, 2, ..., K}. In addition let Φv = [φ1v, φ2v, ...φKv]. The optimization

problem is given by the following two equations optimized in an alternating

manner.

arg min
Φv

− 1

n

V∑
v=1

[tr(ΨvΦv)−
N∑
i=1

exp (zTi Φvwi)]+

λ
V∑
v=1

‖vec(Φv)−i‖1

(2.7)

arg min
w1,...wn∈∆K

− 1

n

N∑
i=1

[ΨT
i wi −

V∑
v=1

exp zTi Φvwi] (2.8)

where Ψv and Ψv can be calculated from observations X. The subscript −i

indexes the ith subvector of the vectorized form of Φv. The above equations are

iteratively minimized to obtain a local optimum over the PMRF parameters

Φv and the admixing weights w1, ..., wn. Equation (2.7) updates the PMRF

parameters when the admixing weights are fixed and the admixing weights are

updated in Equation (2.8) with PMRF parameters fixed from latest estimates

of (2.7).
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2.4 Deep Generative Models

Generative Models can be described as stochastic procedures that gen-

erate samples (denoted by the random variable x ∈ Xd) from the data distri-

bution p(x) without explicitly parameterizing p(x). The two most significant

types are the Variational Auto–Encoders (VAEs) (Kingma and Welling, 2013)

and Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a). Im-

plicit generative models generally assume an underlying latent dimension z ∈
Rk that is mapped to the ambient data domain x ∈ Rd using a deterministic

function Gθ parametrized by θ, usually as a deep neural network. The primary

difference between GANs and VAEs is the training mechanism employed to

learn function Gθ. GANs employ an adversarial framework by employing a

discriminator that tries to classify generated samples from the deterministic

function versus original samples and VAEs maximize an approximation to the

data likelihood. The approximation thus obtained has an encoder-decoder

structure of conventional autoencoders. We use VAEs for our explainabil-

ity experiments. One can obtain a latent representation of any data sample

within the latent embedding using the trained encoder network. While GANs

do not train an associated encoder, recent advances in adversarially learned

inference like BiGANs (Dumoulin et al., 2016; Donahue et al., 2016) can be

utilized to obtain the latent embedding. In this work, we assume access to an

implicit generative model that allows us to obtain the latent embedding of a

data point.

2.5 Learning to Rank (LeTOR)

Learning to Rank or LeTOR models consider the problem of estimating

a preference order over a set of items (Liu, 2009). For instance, ranking a fixed
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set of web documents in order of relevance to a search query. Listwise ranking

requires to rank order a list of objects in order of preference or relevance. We

briefly discuss the listwise LeTOR algorithm used in this work below.

2.5.1 LeTOR using Monotone Retargeting (MR)

MR is a supervised listwise ranking technique that learns a General-

ized Linear Model (GLM) on scores/ranks over a set of objects. MR leverages

the idea that only the ordering induced by the scores over items are of con-

sequence in a LeTOR framework. MR thus searches for parameter estimates

over all monotonic transformations of the scores. That is, Acharyya et al.

(2012) observe that listwise ranking only aims to learn an appropriate permu-

tation over items in a query which can be interpreted as learning a scoring

function on any monotonic transformation of the original scores to preserve

order over items. This allows for parameter estimation of the GLM based cost

function by fitting over target score vectors in addition to all scores isotonic

to the original – called retargeting. Allowing such a retargeting has signifi-

cant advantages under model–misspecification by providing more flexibility to

under–specified models. For instance, linear GLMs can be used to fit integer

scores (most commonly used in practice for annotating) by searching for an

appropriately retargeted set of scores. Further, MR exploits the fact that the

set of all vectors isotonic with the scores associated with a group of items in

a query is a convex cone. Thus, the listwise ranking can be formulated as a

biconvex optimization problem that alternately estimates the scoring function

parameter and retargets the scores within the appropriate convex cone.

Specifically (notation is consistent with that of Acharyya et al. (2012)),

let Q = {q1, q2, · · · , qt} be a set of queries each consisting of items Vqi ⊂ V, i ∈
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Algorithm 2 Monotone Retargeting (MR)
Input: Xq ∈ R|Vq |×d,yq, q ∈ Q;φ

Initialize w, rq, q ∈ Q:
while Not converged do

Solve using parameter estimation for GLMs:
w = arg minw∈Rd

∑
q∈QDφ(rq‖∇φ−1(Xqw))

Retargeting step:
rq = arg minrq∈R↓yq

Dφ(rq‖∇φ−1(Xqw)) ∀q ∈ Q in parallel

end while

[t] to be ranked. Let Xq ∈ R|Vq |×d, q ∈ Q be the feature matrix associated

with these items and let yq be scores representing the ranking permutation.

Let Dφ(x,y) be an appropriate2 distance like function between two vectors

x,y ∈ Rd. Finally let R↓yq represent the convex cone of all vectors that are

isotonic to yq, i.e. all vectors that result in the same rank order as yq. Then

MR for listwise ranking can be formulated to estimate a function parametrized

by w ∈ Rd that fits any monotonic transformation of the score vector. That

is,

w̃ = arg min
w∈Rd,rq∈R↓yq ,q∈Q

∑
q∈Q

Dφ(rq,∇φ−1(Xqw)) (2.9)

MR uses Bregman Divergences (see Definition 2.2.1) in order to mea-

sure the quality of the fit to the rank scores. The estimation algorithm is an

alternating minimization procedure comprising of a standard parameter esti-

mation step as that of Generalized Linear Models (GLMs) and a ‘Retargeting

Step’ solved using the Pool-Adjacent Violators (PAV) algorithm (Best and

Chakravarti, 1990). The retargeting step allows to fit the GLM over any vec-

tor isotonic to the target scores and hence have to be recomputed every time

2Bregman Divergence
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Figure 2.1: Latent Variable Model for Clustering

the GLM parameter estimate updates. The complete algorithm for LeTOR

using MR is summarized in Algorithm 2. The formulation easily allows to

account for partial ordering by augmenting the algorithm with a simple per-

mutation step (Acharyya et al., 2012).

Extensions of MR, called Margin Equipped MR (MEMR) mitigate is-

sues like degeneracy of solutions by allowing to add margins within the ranking

scores and augmenting the cost function using `2–regularization to ensure joint

convexity.

2.6 Clustering

Clustering is the task of estimating a partition of the data given finite

samples from the data distribution. Without further assumptions, this prob-

lem is ill–posed. We formulate our clustering problem using a probabilistic

latent variable framework. Figure 2.1 show the corresponding graphical model

that induces appropriate probabilistic dependencies to describe the generative

process of the clustering formulation. Specifically, z is the latent (unobserved)

random variable representing cluster membership for any sample. πn is the

prior probability of a sample n belonging to one of K clusters. xn is the ob-

served sample that is generated as follows: 1. zn ∼ p(z; πn) 2. xn ∼ p(x; Ψzn)

where Ψk parametrizes the probability corresponding to the kth cluster.
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A categorical distribution is a discrete distribution over outcomes ω ∈

[K] parameterized by θ ∈ ∆K so that Pr(ω = k) = θk. It is a member of

the exponential family of distributions. The natural parameters of categorical

distribution are log θ = (log θk)k∈[K] and sufficient statistics are given by the

vector of indicator functions for each outcome ω ∈ [K], denoted by z(ω) ∈

{0, 1}K with:

zk(ω) =

{
1, if ω = k,

0, otherwise.

In the proposed generative model, z is modeled as a categorical variable.

Given two categorical distributions p(ω) and q(ω), describing the dis-

tribution over the categorical random variable ω, the divergence of p(ω) from

q(ω), denoted D(p(ω)‖q(ω)), is a non-symmetric measure of the difference be-

tween the two probability distributions. The Kullback-Leibler or KL-divergence

is a specific divergence denoted by KL(p(ω)‖q(ω)) and is defined as follows.

KL-divergence of p(ω) from q(ω) is given by:

KL(p(ω)‖q(ω)) = Ep(ω) [ log p(ω)− log q(ω) ] (2.10)

This is also known as the relative entropy between p(ω) and q(ω). The relative

entropy is non-negative and jointly convex with respect to both arguments.

Further, we have that KL(p(ω)‖q(ω)) = 0 iff p(ω) = q(ω), for all ω. Note that

the KL–divergence is a special case of the Bregman Divergence 2.2.1.

The Rényi divergences (Rényi, 1960) are a parametric family of diver-

gences with many similar properties to the KL-divergence. Since our focus

is on using these divergences to measure distances of distributions over clus-

ter labels, we will focus on Rényi divergences for distributions over discrete

random variables.
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Definition 2.6.1. (van Erven and Harremoës, 2012) Let p, q be two dis-

tributions for a random variable ω ∈ [K]. The Rényi divergence of order

γ ∈ (0, 1) ∪ (1,∞) of p(ω) from q(ω) is,

Dγ(p(ω)‖q(ω)) =
1

γ − 1
log
( K∑
ω=1

p(ω)γq(ω)(1−γ)
)

(2.11)

The definition may been extended for divergences of other orders like

γ = 0, γ → 1, and γ → ∞ (van Erven and Harremoës, 2012). Rényi di-

vergences are non-negative ∀γ ∈ [0,∞]. In addition, they are jointly convex

in (p, q) ∀γ ∈ [0, 1] and convex in the second argument q ∀γ ∈ [0,∞]. As

discussed in the comprehensive survey of Rényi divergences by van Erven and

Harremoës (2012), many special cases of other commonly used divergences are

recovered for specific choices of γ. For example, γ = 1
2

and γ = 2 give Rényi

divergences which are closely related to the Hellinger and χ2 divergences, re-

spectively, and the KL-divergence is recovered as a limiting case when γ→ 1.

For the rest of the manuscript, we will abuse notation slightly and use p(ω) and

p(z) interchangeably to denote the same categorical distribution over outcomes

in [K].

2.7 Discussion

The following chapters unify all models under the latent variable frame-

work and discusses how different aspects of these models can be constrained

for improved interpretability, explainability and semisupervised learning.
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Chapter 3

Interpretable Latent Variable Models

Interpretability and Explainability of machine learning models are be-

coming increasingly imperative as they become widely applied to domains like

the criminal justice system (Angwin et al., 2016), clinical healthcare (Calla-

han and Shah, 2017), etc. The COMPAS (Angwin et al., 2016) system learns

recidivism scores to determine pre–trial bail and detention. Clinical interven-

tions determined using machine learning algorithms can affect patient lives,

thus making it important for caregivers to provide explanations for such in-

terventions. Such applications that substantially impact human lives have

motivated regulatory agencies like the EU Parliament1 to codify a right to

data protection and “obtain an explanation of the decision reached using such

automated systems2”.

Challenges in this domain are compounded by a lack of characterization

of what constitutes a sufficient explanation (Lipton, 2016). Additionally, differ-

ent levels of abstractions are necessary depending on the stakeholders (Miller,

2017). For instance, explanations of interesting behaviors that may assist a

data science practitioner are vastly different from those that help caregivers

and/or patients make better interventional choices. Doshi-Velez (2017); Miller

(2017) have recently attempted to characterize such abstractions from the

1in collaboration with the EU Commission and the Council of the Eurpean Union
2https://www.privacy-regulation.eu/en/r71.htm
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perspective of the desired outcome as well as drawing from extensive social

scientific literature on how humans process explanations. Generally, there is

ground to believe that such a suite of methods can be useful not only help im-

prove understanding of opaque models3 (Higgins et al., 2016; Karpathy et al.,

2015) but can also uncover biases (inherent in the data) that models pick up

on e.g. learned gender and racial biases (Bolukbasi et al., 2016).

3.1 Related Work

While generally referred to interchangeably, we distinguish interpretable

machine learning models as those that learn easily understandable outcomes

to a target user. On the other hand, explainability tools refer to models that

can be used to provide post–hoc explanations of pre–trained complex models.

Some models have been exclusively developed in order to serve as diagnostic

tools to ‘explain’ existing or pre–trained models. Notable ones are described in

the following. We describe existing work relevant to developing interpretable

models, as well as explainable models in the following. The rest of the chapter

is thereafter devoted to exposing the utility of interpretable machine learning

using constraints in latent variable models. The explainability exposition is

relegated to Chapter 6.

3.1.1 Interpretable machine learning

Interpretable ML methods focus on developing machine learning mod-

els whose outcomes inherently satisfy a specific interpretability criterion. Usu-

ally, such criterion tend to be domain as well as application specific. Notable

3https://distill.pub/2018/building-blocks/
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among these are methods that use tools based on model distillation (Hinton

et al., 2015) and attention based mechanisms (Ba et al., 2014). As a work-

ing example, we focus on interpretable models that have been developed for

clinical healthcare. The main goal of interpretability of ML models in clinical

decision making is to expect the model to learn clinically relevant, physiolog-

ically plausible, and represented in a form or abstraction that is understand-

able to clinical experts. For instance, Choi et al. (2016) use attention based

mechanism for time series data for training explainable models for outcome

prediction, while Che et al. (2016) use model compression and distillation, sim-

ilarly for outcome prediction for an ICU patient population. This dissertation

focuses on phenotyping (Pathak et al., 2013) of co-occurring chronic condi-

tions for ICU patients as the working application for developing inherently

interpretable models. EHR driven phenotypes are concise representations of

observable clinical traits that can facilitate reliable querying of individuals

from the EHRs (NIH Health Care Systems Research Collaboratory, 2014).

While most interpretability mechanisms described above focus on supervised

models, EHR driven phenotype has to be posed as an unsupervised learning

problem with availability of weak or noisy supervision.

3.1.2 Explainable machine learning

Stock and Cisse (2017); Kim et al. (2016); Gupta et al. (2016); Lund-

berg and Lee (2017) develop models specifically to explain classifier decision

and behavior. Different methodologies are used in order to provide such post-

hoc explanations. For instance Elenberg et al. (2017); Kim et al. (2016) se-

lect prototypes/examples and/or groups or semantically relevant features from

the training dataset as a means to detect failure cases of supervised models.
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It may happen that points that explain a model according to the predeter-

mined criterion may not exist in the dataset. In order to solve this problem

we propose a method to generate samples by approximating the data man-

ifold using a generative model like a GAN (Goodfellow et al., 2014a) or a

VAE (Kingma and Welling, 2013). Stock and Cisse (2017) use the adversarial

attack paradigm (Goodfellow et al., 2014b) to generate prototypes and/or ex-

amples where the classifier shows interesting failure cases (called criticisms).

Another class of methods locally approximate complex classifiers with a sim-

pler model class (e.g. linear) in order to generate explanations (Lundberg and

Lee, 2016; Ribeiro et al., 2016; Shrikumar et al., 2016; Bach et al., 2015). These

methods inherently assume a trade–off between model complexity and explain-

ability. Empirically, it is observed that simpler model classes also tend to be

empirically sub–par. Thus such models inherently assume a trade-off between

model performance and explainability. Li et al. (2015); Selvaraju et al. (2016)

focus on understanding the workings of different layers of a deep network and

studying saliency maps for feature attribution (Simonyan et al., 2013; Smilkov

et al., 2017; Sundararajan et al., 2017). Saliency methods, while powerful, can

be demonstrated to be unreliable without stronger conditions over the saliency

model (Kindermans et al., 2017; Adebayo et al., 2018). Koh and Liang (2017)

use influence functions, motivated by robust statistics (Cook and Weisberg,

1980) to determine importance of each training sample for model predictions.

3.2 Latent Variable Models for Interpretability

This dissertation focuses on the class of latent variable models to pro-

pose the interpretability and explainability framework. We posit that con-

straining latent variable models appropriately can allow to learn models that
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generate interpretable outcomes and to explain existing ML models in a post–hoc

manner. Probabilistic graphical models, latent factor models like matrix fac-

torization, and implicit generative models are a few well known examples

within this class. In particular, this framework offers the following advan-

tages in terms of its amenability to formulating explainable and interpertable

machine learning models:

• Latent variable models induce an associated probabilistic generative pro-

cedure for the observed data. Constraining the generative process allows

to easily encode constraints that make the model (say physiologically)

plausible and therefore more interpretable.

• In particular, constraints on the model class, parameters of the model

class, as well as the generative procedure itself can be imposed for indi-

vidual observational samples, lending the model to be more amenable to

generating individualized/personalized explanations whenever necessary.

• Scaleable learning and inference procedures can be non–trivially ex-

tended for this class of models that can be augmented seamlessly to

incorporate any relevant constraints.

• Specifically for the working example of phenotyping chronic conditions,

this framework allows to learn phenotypes for all chronic conditions si-

multaneously (a modeling requirement since such chronic conditions tend

to co-occur or are comorbidities (Elixhauser et al., 1998)).

The following describes a general framework to formulate interpretable

latent variable models by constraining latent variable models. A detailed mo-

tivation for constrained based models to (post-hoc) explain black-box models

is deferred to Chapter 6.
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3.3 Constraint Based Framework for Interpretability

Let x ∈ Rd be the random variable representing observations. Let

z ∈ Rk, k << d represent the set latent (unobserved) variables that can well

approximate the observation x via function fθ. That is, let fθ : Rk → Rd define

an approximation to the observations as a function of unobserved variables z.

Let L : Rd×d → R+ determine the quality of such an approximation. A few

examples making this framework concrete in different settings are given below:

(a) Directed Graphical Model (b) Undirected Graphical Model

1. Probabilistic Graphical Models: A probabilistic graphical model

is a framework to encode dependencies between a set of random variables and

an associated realizable probabilistic distribution. Figure 3.1(a) shows a graph-

ical model that demonstrates the dependency between the latent variables z

and the observational data x, while Figure 3.1(b) shows an undirected graph-

ical model analogue encoding the dependency structure between latents z and

observed variables x.

2. Latent Factor Models: Latent factor models is a class of models

that expresses observations a linear combination of shared ‘factors’ or vari-

ables, where both, the shared factors as well as the strength of the linear

combinations are unknown (latent). We restrict to the class of non–negative

matrix factorization in this study. Refer to background in Sec 2.2 for details.
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In particular, the probabilistic assumptions induced in NMF can be repre-

sented as the following. Let w ∈ Rk
+ be the latent variable representing the

unknown linear combinations or loadings while let the columns of the matrix

A ∈ Rd×K
+ (denoted by a(k)) represent the common or shared factors across

observed samples. Then,

E[x|w] =
∑

k∈[K] a(k)wk (3.1)

3. Implicit Generative Models: Implicit Generative Models are

generative models that map latent variable z to observed data x via a deter-

ministic function Gθ without parametrizing the underlying stochastic process.

Examples of such a deterministic function can be a deep neural network. Such

models are usually trained either via a maximum likelihood procedure or an

adversarial training procedure (see Sec 2.4) for more details.

To formulate interpretable models, we propose to impose model con-

straints on 1. latent variables 2. model parameters 3. generative procedure or

a combination thereof. We represent constraints on the latent variables as

Cz. Constraints on model parameters are represented as Cθ and that on the

generative process can be described as part of model assumptions. In general,

the optimization process can be formulated as the following:

z̃, θ̃ = arg min
z,θ

E[L(x, fθ(z))]

s. t. z ∈ Cz,θ ∈ Cθ

(3.2)

3.3.1 Augmented training

Without interpretability requirements, the loss function determining

the quality of the approximation can be optimized with respect to model pa-

27



rameters without additional constraints. Specifically, in the absence of con-

straints on latent variables, out-of-the-box training algorithms can be utilized

for learning model parameters, which are of primary interest in general. How-

ever, interpretability constraints on latent variables can be imposed by al-

gorithms that allow to interleave model parameter estimation with imposing

required constraints. Thus, we suggest that the class of algorithms that rely on

model parameter estimation without marginalizing latent variables are more

amenable to developing interpretable models via constraints. Typically such a

class of algorithms follow the prescription of majorization–maximization (Hunter

and Lange, 2000) construct of algorithms and leverage the latent variable in-

ference framework to achieve tractability of an otherwise complex optimiza-

tion algorithm. Examples of algorithms used in this dissertation for imposing

interpretability constraints are 1. Expectation-Maximization 2. Variational In-

ference (Wainwright and Jordan, 2008) for the class of probabilistic graphical

models, 1. Alternating–Minimization for latent factor analysis.

3.3.2 Grounding mechanism

One way to impose constraints, that is specifically useful for the phe-

notyping application is described in the following. The mechanism, called

grounding, is extensively evaluated for different models in the following chap-

ters. The mechanism involves enforcing constraints on the latent variables

and/or on the model parameters.

1. Support Constraints: This set of constraints is imposed on the sup-

port of individual samples of the latent variable z. Let j ∈ [N ] index individual

sample observations. We assume a set Cj can be determined from side informa-

tion such that an interpretable model would only allow for estimates satisfying:
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supp(z(j)) = Cj. We motivate this using the non-negative matrix factorization

setting in the context of phenotyping. The non-negative rank–K factorization

of X is said to be ‘grounded’ to K target comorbidities by constraining the

support of loadings w(j) corresponding to patient j using weak diagnosis Cj

that can be easily computed from administrative patient data. This amounts

to restricting the set of allowable linear combinations that can describe an

observed phenotype for any patient sample. As we shall see in Chapter 5, if

Cj are accurate, then this constraint follows from the definition of phenotypes.

2. Sparsity Constraints: In many applications, model parameter esti-

mates are eventually consumed by domain experts for final decision making.

Thus, it is desirable that the phenotype representations be easily interpretable

for human experts. Sparsity of the model parameter θ is used as a mea-

sure of domain specific interpretability. For the case of phenotyping using

non–negative matrix factorization, sparsity is induced using the scaled sim-

plex constraints on the columns of A. Associated with the constraint is a

tuneable parameter λ > 0 to encourage sparsity of phenotypes.

3.4 Discussion

Advantages of such constraints are 1. they follow easily from generative

assumptions made on the data, 2. convexity and tractability – allowing to im-

pose exact constraints during training. This dissertation further demonstrates

the empirical advantages of such a grounding mechanism for phenotyping (over

competitive models) as well as for downstream applications like mortality or

risk prediction.
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Chapter 4

Applications to Interpretable Phenotyping

Raw EHR data has demonstrated great potential in determining pa-

tient outcomes as well the possibility of providing individualized or precision

medical care (Callahan and Shah, 2017). While predicting outcome and mod-

eling disease progression have been identified as important tasks that can

benefit from Machine Learning techniques, a few requirements remain fun-

damental across all clinical applications. Specifically, it is important that such

models satisfy certain interpretability requirements. An instance of an inter-

pretable model is one that provides physiologically plausible outcomes. Typi-

cally, interpretability of models in clinical healthcare refers to the availability

of abstractions to non-experts in a manner suitable to make reliable decisions.

Machine Learning models generally do not satisfy these criteria without ad-

ditional constraints. This chapter motivates the need for interpretable and

automated phenotyping using Electronic Health Records (EHRs). We also

describe the data pre–processing that served as a precursor to evaluating our

grounding procedure for unsupervised phenotyping of chronic conditions for

an ICU population. The preprocessing procedures described here are detailed

further in Joshi et al. (2015, 2016b).

This chapter is based on content pubished in Joshi et al. (2015, 2016b). The author of
this dissertation contributed to problem formulation, and the data preprocessing detailed
in the chapter.
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4.1 Automated EHR based Phenotyping

Reliably querying for patients with specific medical conditions across

multiple organizations facilitates many large scale healthcare applications such

as cohort selection, multi-site clinical trials, epidemiology studies etc. (Riches-

son et al., 2013; Hripcsak and Albers, 2013; Pathak et al., 2013). However, raw

EHR data collected across diverse populations and multiple caregivers can be

extremely high dimensional, unstructured, heterogeneous, and noisy. Manu-

ally querying such data is a formidable challenge for healthcare professionals.

EHR driven phenotypes are concise representations of medical concepts

composed of clinical features, conditions, and other observable traits facilitat-

ing accurate querying of individuals from EHRs. Efforts like eMerge Network1

and PheKB2 are well known examples of EHR driven phenotyping. Tradition-

ally used rule–based composing methods for phenotyping require substantial

time and expert knowledge and have little scope for exploratory analyses.

This motivates automated EHR driven phenotyping using machine learning

with limited expert intervention.

4.1.1 Prognosis of Comorbidities

Our working example focuses on phenotyping 30 co–occurring condi-

tions (comorbidities) observed in intensive care unit (ICU) patients. Comor-

bidities are a set of co-occurring conditions in a patient at the time of admission

that are not directly related to the primary diagnosis for hospitalization (Elix-

hauser et al., 1998). Phenotypes for the 30 comorbidities listed in Table 4.1 are

1http://emerge.mc.vanderbilt.edu/
2http://phekb.org/
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derived using text-based features from clinical notes in a publicly accessible

MIMIC-III EHR database (Saeed et al., 2011).

The following aspects of our model distinguish our work from prior

efforts in phenotyping:

1. Identifiability: A key shortcoming of standard unsupervised la-

tent factor models such as NMF (Lee and Seung, 2001) and Latent Dirichlet

Allocation (LDA) (Blei et al., 2003) for phenotyping is that, the estimated

latent factors learnt are interchangeable and unidentifiable as phenotypes for

specific conditions of interest. We tackle identifiability by incorporating weak

(noisy) but inexpensive supervision as constraints our framework. Specifi-

cally, we obtain weak supervision for the target conditions in Table 4.1 using

the Elixhauser Comorbidity Index (ECI) (Elixhauser et al., 1998) computed

solely from patient administrative data (without human intervention). We

then ground the latent factors to have a one-to-one mapping with conditions

of interest by incorporating the comorbidities predicted by ECI as support

constraints on the patient loadings along the latent factors.

2. Simultaneous modeling of comorbidities: ICU patients stud-

ied in this work are frequently afflicted with multiple co–occurring conditions

besides the primary cause for admission. In the proposed NMF model, pheno-

types for such co–occurring conditions jointly modeled to capture the resulting

correlations.

3. Interpretability: For wider applicability of EHR driven pheno-

typing for advance clinical decision making, it is desirable that these phenotype

definitions be clinically interpretable and represented as a concise set of rules.

We consider the sparsity in the representations as a proxy for interpretability

32



and explicitly encourage conciseness of phenotypes using tuneable sparsity–

inducing soft constraints.

4.1.2 Data Pre-Processing

We describe data pre–processing for our phenotyping application as the

processing can be significantly inter-leaved with the mechanisms used to im-

pose grounding to develop interpretable models. In the following, we describe

the pre–processing for each of the models that will be described in chapter 5.

4.1.2.1 Phenotyping using grounded NMF

MIMIC-III (Saeed et al., 2011) was used for phenotyping using con-

strained non–negative matrix factorization (see 5.1). The MIMIC-III dataset

consists of de-identified EHRs for ∼ 38, 000 adult ICU patients at the Beth

Isreal Deaconess Medical Center, Boston, Massachusetts from 2001–2012. For

all ICU stays within each admission, clinical notes including nursing progress

reports, physician notes, discharge summaries, ECG, etc. are available. We

analyze patients who have stayed in the ICU for at least 48 hours (∼ 17000

patients). We derive phenotypes using clinical notes collected within the first

48 hours of patients’ ICU stay to evaluate the quality of phenotypes when

limited patient data is available. Further, we evaluate the phenotypes on a

30 day mortality prediction problem. To avoid obvious indicators of mortal-

ity and comorbidities, apart from restricted to first 48 hour data, we exclude

discharge summaries as they explicitly mention patient outcomes (including

mortality).

1. Clinically relevant bag-of-words features: Aggregated clinical

notes from all sources are represented as a single bag-of-words features. To
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Table 4.1: Target comorbidities
Congestive Heart Failure Cardiac Arrhythmias Valvular Disease Pulmonary Circulation Disorder Peripheral Vascular Disorder
Hypertension Paralysis Other Neurological Disorders Chronic Pulmonary Diseases Diabetes Uncomplicated
Diabetes Complicated Hypothyroidism Renal Failure Liver Disease (excluding bleeding) Peptic Ulcer
AIDS Lymphoma Metastatic Cancer Solid Tumor (without metastasis) Rheumatoid Arthritis
Coagulopathy Obesity Weight loss Fluid Electrolyte Disorder Blood Loss Anemia
Deficiency Anemia Alcohol abuse Drug abuse Psychoses Depression

enhance clinical relevance, we create a custom vocabulary containing clini-

cal terms from two sources (a) the Systematized Nomenclature of Medicine-

Clinical Terms (SNOMED CT), and (b) the level-0 terms provided by the

Unified Medical Language System (UMLS), consolidated into a standard vo-

cabulary format using MetamorphoSys — an application provided by UMLS

for custom vocabulary creation.3 To extract clinical terms from the raw text,

the notes were tagged for chunking using a conditional random field tagger4.

The tags are looked up against the custom vocabulary (generated from Meta-

morphoSys) to obtain the bag-of-words representation. Our final vocabulary

has ∼3600 clinical terms.

2. Computable weak diagnosis: We incorporate domain constraints

from weak supervision to ground the latent factors to have a one-to-one map-

ping with the conditions of interest. This is enforced by constraining the non-

zero entries on patient loading along the latent factors using a weak diagnosis

for comorbidities. The weak diagnoses of target comorbidities in Table 4.1

are obtained using ECI5, computed solely from patient administrative data

without human annotation. We refer to this index as weak diagnoses as it is

not a physician’s exact diagnosis and is subject to noise and misspecification.

Note that ECI ignores diagnoses code related to the primary diagnoses of ad-

3See https://www.nlm.nih.gov/healthit/snomedct/ and https://www.nlm.nih.

gov/research/umls/
4https://taku910.github.io/crfpp/
5https://git.io/v6e7q
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mission. Thus, ECI models presence and absence of conditions other than

the primary reason for admission (comorbidities). The phenotype candidates

from the proposed model can be considered as concise representations of such

comorbidities.

4.1.2.2 Phenotyping using grounded APM

The data pre–processing is similar for the algorithm described in 4.1.2.1

except that the clinical bag-of-words are generated from a standard English

vocabulary and instead of restricting to first 48 hours of patient data, we use

all available clinical notes (except discharge data) to generate our observation

matrix.

4.2 Discussion

The bag-of-words clinical features extracted above are represented in a

matrix form and determine the phenotype representation in conjunction with

the associated learning algorithm and constraints. For grounded NMF, the

phenotype representation is a collection of (a few) relevant terms (from the

clinical vocabulary) associated with the target conditions. For the admixture

model based on APM, a graph representation of a phenotype is learned, where

the nodes of the graph are relevant terms associated with a chronic condition

of interest and the edges between the terms represent co-occurrence structure.

The target conditions are determined by the derived computational weak di-

agnoses that inform the grounding constraints. In the following chapters, we

describe both models in detail.
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Chapter 5

Identifiable Phenotyping of Chronic

Conditions

This chapter explains how the aforementioned Grounding mechanism

(see Chapter 3) is applied to phenotyping in two distinct machine learning

models. Each section in the following describes the model in conjunction with

its learning and inference procedure as well as results that compare the quality

of the learned phenotypes. Additionally, we evaluate the predictive ability of

the phenotype representations on patient outcomes like mortality and disease

classification. The learning algorithms and evaluations detailed here appeared

in Joshi et al. (2015, 2016b).

5.1 Grounded Non–Negative Matrix Factorization

We present a constrained non–negative matrix factorization (CNMF)

for the EHR matrix that uses grounding to align the factors with target co-

morbidities yielding sparse, interpretable, and identifiable phenotypes. The

method is evaluated for its efficacy toward learning interpretable, clinical rel-

evant, and predictive phenotypes on EHR data from MIMIC-III. Although

we focus on ICU patients using clinical notes, the proposed model and algo-

This chapter is based on content published in Joshi et al. (2015, 2016b). The author of
the dissertation contributed to model formulation, implementation, and empirical evaluation
described in this chapter.
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Notation Description

Observations
N , d Number of patients (∼ 17000) and features (∼ 3600), respectively.

X ∈ Rd×N+ EHR matrix from MIMIC III: Clinically relevant bag-of-words fea-
tures from notes in first 48 hours of ICU stay for N patients.

k = 1, 2, . . . ,K Indices for K = 30 comorbidities in Table 4.1.
Cj ⊆ [K] for j ∈ [N ] Set of comorbidities patient j is diagnosed with using ECI .
Factor matrices

W̃ ∈ [0, 1]K×N Estimate of patients’ risk for the K conditions.

Ã ∈ Rd×K+ , b̃ ∈ Rd+ Estimate of phenotype factor matrix and feature bias vector.

Table 5.1: Additional notation used in this chapter

rithm are general and can be applied on any non-negative EHR data from any

population group.

5.1.1 Identifiable high–throughput phenotyping

Additional notation used in this work are enumerated in Table 5.1 and

in the following.

For each patient j ∈ [N ], (a) the bag-of-words features from clinical

notes is represented as column x(j) of EHR matrix X ∈ Rd×N
+ , and (b) the list

of comorbidities diagnosed using ECI is denoted as Cj ⊆ [K].

Let an unknown W∗ ∈ [0, 1]K×N represent the risk of N patients for K

comorbidities of interest; each entry w∗kj lies in the interval [0, 1], with 0 and 1

indicating no-risk and maximum-risk, respectively, of patient j being afflicted

with condition k. If C∗j ⊆ [K] denotes an accurate diagnosis for patient j,

then w∗(j) satisfies supp(w∗(j)) ⊆ C∗j .

Definition 5.1.1 (EHR driven phenotype). EHR driven phenotypes for K

co–occurring conditions are a set of vectors {a∗(k) ∈ Rd
+ : k ∈ [K]}, such that
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for a patient j afflicted with conditions C∗j ⊆ [K],

E[x(j)|w∗(j)] =
∑

k∈C∗j
w∗kja

∗(k) + b∗, (5.1)

where b∗ is a bias representing the feature component observed independent

of the K target conditions. A∗ ∈ Rd×K with a∗(k) as columns is referred as

the phenotype factor matrix.

Note that we explicitly model a feature bias b∗ to capture frequently

occurring terms that are not discriminative of the target conditions, e.g., tem-

perature, pain, etc. The choice of K is known and determined by the target

latent topics we wish to model (can be determined from noisy supervision).

5.1.2 Incorporating grounding using convex constraints

Cost Function The bag-of-words features are represented as counts in the

EHR matrix X. We consider a factorized approximation of X parametrized

by matrices A ∈ Rd×K
+ , W ∈ RK×N

+ and b ∈ Rd
+ as Y = AW + b1>, where

1 denotes a vector of all ones of appropriate dimension. The approximation

error of the estimate is measured using the I–divergence defined as follows:

D(X,Y) =
∑

ij yij − xij − xij log
yij
xij
. (5.2)

Minimizing the I–divergence is equivalent to maximum likelihood estimation

under a Poisson distributional assumption on individual entries of the EHR

matrix parameterized by Y = AW + b1> (Banerjee et al., 2005a).

Phenotypes For the K comorbidities, columns of A, {a(k)}k∈[K] are pro-

posed as candidate phenotypes derived from the EHR X, i.e. approximations

to {a∗(k)}k∈[K].
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The following grounding constraints are incorporated in learning A and

W.

1. Support Constraints: The non-negative rank–K factorization of X

is ‘grounded’ to K target comorbidities by constraining the support of risk

w(j) corresponding to patient j using weak diagnosis Cj from ECI as an ap-

proximation of the conditions in Definition 5.1.1.

2. Sparsity Constraints: Scaled simplex constraints are imposed on

the columns of A with a tuneable parameter λ > 0 to encourage sparsity of

phenotypes. Restricting the patient loadings matrix as W ∈ [0, 1]K×N not only

allows to interpret the loadings as the patients’ risk, but also makes simplex

constraints effective in a bilinear optimization.

5.1.3 λ-CNMF

Simultaneous phenotyping of comorbidities using constrained NMF is

posed as follows:

Ã,W̃, b̃ =argminA≥0,W≥0,b≥0 D(X,AW + b1>)

s.t. supp(w(j)) = Cj ∀j ∈ [N ], W ∈ [0, 1]K×N ,

a(k) ∈ λ∆d−1 ∀j ∈ [K],
(5.3)

The optimization in (5.3) is convex in either factor with the other factor

fixed. It is solved using alternating minimization with projected gradient de-

scent (Parikh and Boyd, 2014; Lin, 2007). See complete algorithm in Algo-

rithm 3. The proposed model in general can incorporate any weak diagnosis of

medical conditions. In this work, we note that, since we use ECI, the results

are not representative of the primary diagnoses at admission.
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Algorithm 3 Phenotyping using constrained NMF.
Input: X, {Cj : j ∈ [N ]} and paramter λ. Initialization: A(0), b(0).

while Not converged do

W(t) ← arg min
W

D(X,A(t−1)W + b(t−1)1
>)

s.t. W ∈ [0, 1]K×N , supp(wj) = Cj, ∀j
(5.4)

A(t), b(t) ← arg min
A,b≥0

D(X,AW(t) + b1>)

s.t. a
(k)
j ∈ λ∆d−1,∀k

(5.5)

end while
Return A(t),W(t)

5.1.4 Learned phenotypes and predictive analyses

The estimated phenotypes are evaluated on various metrics. We denote

the model learned using Algorithm 3 with a given parameter λ > 0 as λ–

CNMF. The following baselines are used for comparison:

1. Labeled LDA (LLDA): LLDA (Ramage et al., 2009) is the super-

vised counterpart of LDA, a probabilistic model to estimate topic distribution

of a corpus. It assumes that word counts of documents arise from multinomial

distributions. It incorporates supervision on topics contained in a document

and can be naturally adapted for phenotyping from bag-of-words clinical fea-

tures, where the topic–word distributions form candidate phenotypes. While

LLDA assumes that the topic loadings of a document lie on the probability

simplex ∆K−1, λ–CNMF allows each patient–condition wkj loading to lie in

[0, 1]. In interpreting the patient loading as a disease risk, the latter allows

patients to have varying levels of disease prevalence. Also, LLDA can induce

sparsity only indirectly via a hyperparameter β of the informative prior on the
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topic–word distributions. While this does not guarantee sparse estimates, we

obtain reasonable sparsity on LLDA estimates. We use the Gibbs sampling

code from MALLET (McCallum, 2002) for inference. For a fair comparison

to CNMF which uses an extra bias factor, we allow LLDA to model an extra

topic shared by all documents in the corpus.

2. NMF with support constraints (NMF+support): This NMF

model incorporates non–negativity and support constraints from weak super-

vision but not the sparsity inducing constraints on the phenotype matrix. This

allows to study the effect of sparsity inducing constraints for interpretability.

On the other hand, imposing sparsity without our grounding technique does

not yield identifiable topics and hence is not studied as a baseline.

3. Multi-label Classification (MLC): This baseline treats weak su-

pervision (from ECI) as accurate labels in a fully supervised model. A sparsity

inducing `1 regularized logistic regression classifier is learned for each condi-

tion independently. The learned weight vector for each condition k determines

importance of clinical terms towards discriminating patients with condition k

and are treated as candidate phenotypes for condition k.

The weak supervision does not account for the primary diagnosis for

admission in the ICU population as the ECI ignores primary diagnoses at

admission (Elixhauser et al., 1998). However, the learning algorithm can be

easily modified to account for the primary diagnoses, if required by using a

modified form of supervision or absorbing the effects in an additional additive

term appended to the model. Nevertheless, the proposed model generates

highly interpretable phenotypes for comorbidities. Finally, to mitigate the

effect of local minima, whenever applicable, for each model, the corresponding

algorithm was run with 5 random initializations and results providing the
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lowest divergence were chosen for comparison.

5.1.4.1 Interpretability–accuracy trade–off

Sparsity of the latent factors is used as a proxy for interpretability

of phenotypes. Sparsity is measured as the median of the number of non–

zero entries in columns of the phenotype matrix A (lower is better). The

λ parameter in λ–CNMF controls the sparsity by imposing scaled simplex

constraints on A. CNMF was trained on multiple λ in the range of 0.1 to 1.

Stronger sparsity-inducing constraints results in worse fit to the cost function.

This trade–off is indeed observed in all models (see A.1 for details). For all

models, we pick estimates with lowest median sparsity while ensuring that the

phenotype candidate for every condition is represented by at least 5 non-zero

clinical terms.

5.1.4.2 Clinical relevance of phenotypes

We requested two clinicians to evaluate the candidate phenotypes based

on the top 15 terms learned by each model. The ratings were requested on

a scale of 1 (poor) to 4 (excellent). The experts were asked to rate based

on whether the terms are relevant towards the corresponding condition and

whether the terms are jointly discriminative of the condition. Figure 5.1 shows

the summary of qualitative ratings obtained for all models. For each model,

we show two columns (corresponding to two experts). The stacked bars show

the histogram of the ratings for the models. Nearly 50% of the phenotypes

learned from our model were rated ‘good’ or better by both annotators. In con-

trast, NMF with support constraints but without sparsity inducing constraints

hardly learns clinically relevant phenotypes. The proposed model 0.4–CNMF
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Figure 5.1: Qualitative Ratings from Annotation: The two bars represent the
ratings provided by the two annotators. Each bar is a histogram of the scores
for the 30 comorbidities sorted by scores.

0.4–CNMF LLDA MLC NMF

0.4–CNMF 0 28 20 44

LLDA 7 0 12 35

MLC 6 21 0 42

NMF+support 1 0 1 0

Table 5.2: Relative Rankings Matrix: Each row of the table is the number of
times the model along the row was rated strictly better than the model along
the column by clinical experts, e.g., column 3 in row 2 implies that LLDA was
rated better than MLC 12 times over all conditions by all experts.

also received significantly higher number of ‘excellent’ and ‘good’ ratings from

both experts. Although LLDA and MLC estimate sparse phenotypes, they

are not at par with λ–CNMF. Table 5.2 shows a summary of relative rankings

for all models. Each cell entry shows the number of times the model along

the corresponding row was rated strictly better than that along the column.

0.4–CNMF is better than all three baselines. The supervised baseline MLC

outperforms LLDA even though LLDA learns comorbidities jointly suggesting

43



schizophrenia
bipolar_disorder
overdose
schizoaffective_disorder
paranoia
psychosis
lithium_toxicity
poisoning
personality
serotonin_syndrome
paranoid_schizophrenia
mental_retardation
suicide
psychiatric_disease
suicide_attempt

0.4-CNMF
altered_mental_status
fever
agitated
schizophrenia
agitation
stress_ulcer
overdose
bipolar_disorder
delirium
mental_status
aspiration
depression
hyponatremia
unresponsive
leukocytosis

LLDA
bipolar_disorder
schizophrenia
flat_affect
overdose
schizoaffective_disorder
hematomas
psychosis
lvh
metastatic_prostate_cancer
diastolic_dysfunction
agitated
lethargy
suicidal_ideation
ileus
acquired_immunodeficiency_syndrome

MLC
pain
pneumothorax
agitated
edema
atelectasis
anxiety
confused
aspiration
opacity
pleural_effusion
agitation
trauma
schizophrenia
stress_ulcer
bipolar_disorder

NMF+support

Figure 5.2: Phenotypes learned for ‘Psychoses’ (words are listed in order of
importance)

that the simplex constraint imposed by LLDA may be restrictive.

Figure 5.2 is an example of a phenotype (top 15 terms) learned by all

models for psychoses. For this condition, the proposed model was rated “ex-

cellent” and strictly better than both LLDA and MLC by both annotators

while LLDA and MLC ratings were tied. However, the phenotype for Hy-

pertension (in Figure 5.3) learned by 0.4–CNMF has more terms related to

‘Renal Failure’ or ‘End Stage Renal Disease’ rather than hypertension. One of

our annotators pointed out that “Candidate 1 is a fairly good description of

renal disease, which is an end organ complication of hypertension”, where the

anonymized Candidate 1 refers to 0.4–CNMF. Exploratory analysis suggests

that hypertension and renal failure are the most commonly co-occurring set of

conditions. Over 93% of patients that have hypertension (according to ECI)

also suffer from Renal Failure. Thus, our model is unable to distinguish be-

tween highly co-occurring conditions. Other baselines were also rated poorly

for hypertension, while LLDA was rated only slightly better. More examples

of phenotypes are provided in A.2.
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esrd
cri
ckd
chronic_renal_insufficiency
chronic_renal_failure
end_stage_renal_disease
acute_on_chronic_renal_failure
chronic_kidney_disease
cns_lymphoma
jaw_pain
amyloidosis
skin_impairment
glomerulonephritis
hyperparathyroidism
holosystolic_murmur

0.4-CNMF
chf
htn
hypertension
chest_pain
cad
crackles
sob
cp
pulmonary_edema
ischemia
stress_ulcer
heart_failure
gib
dyspnea
nausea

LLDA
cri
av_fistula
chronic_renal_insufficiency
ckd
left_ventricular_hypertrophy
renal_insufficiency
esrd
chronic_renal_failure
acute_on_chronic_renal_failure
sinus_rhythm
cardiomegaly
left_atrial_abnormality
jaw_pain
htn
renal_failure

MLC
htn
pain
intraventricular_hemorrhage
pulmonary_edema
hypoxia
hydrocephalus
hypotension
cough
acute_renal_failure
sob
confused
stenosis
herniation
bleed
hemorrhage

NMF+support

Figure 5.3: Phenotypes learned for ‘Hypertension’

5.1.4.3 Mortality prediction

To quantitatively evaluate the utility of the learned phenotypes, we

consider the 30 day mortality prediction task. We divide the EHR into 5

cross-validation folds of 80% training and 20% test patients. As this is an

imbalanced class problem, the training–test splits are stratified by mortality

labels. For each split, all models were applied on the training data to obtain

phenotype candidates Ã and feature biases b̃. For each model, the patient

loadings W̃ along the respective phenotype space (Ã, b̃) are used as features

to train a logistic regression classifier for mortality prediction. For CNMF and

NMF+support, these are obtained as Wtrain/test = argminW∈[0,1]K×ND(ÃW +

b̃1>,Xtrain/test) for fixed (Ã, b̃). For LLDA, these are obtained using Gibbs

sampling with fixed topic–word distributions. For MLC, the predicted class

probabilities of the comorbidities are used as features. Additionally, we train

a logistic regression classifier using the full EHR matrix as features.

We clarify the following points on the methodology: (1) Ã is learned

on the patients in the training dataset only, hence there is no information leak

from test patients into training. (2) Test patients’ comorbidities from ECI

are not used as support constraints on their loadings. (3) Regularized logistic

regression classifiers are used to learn models for mortality prediction. The
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Model AUROC Sensitivity Specificity

1. 0.4–CNMF 0.63(0.02) 0.59(0.04) 0.62(0.03)
2. NMF+support 0.52(0.02) 0.56(0.13) 0.51(0.14)
3. LLDA 0.64(0.02) 0.62(0.03) 0.61(0.05)
4. MLC 0.66(0.01) 0.62(0.06) 0.62(0.05)
5. Full EHR 0.72(0.02) 0.69(0.02) 0.63(0.04)

6. CNMF+Full EHR (`1, C = 0.1) 0.72(0.02) 0.61(0.09) 0.71(0.07)

Table 5.3: 30 day mortality prediction: 5–fold cross-validation performance
of logistic regression classifiers. Classifiers for 0.4–CNMF and competing
baselines (NMF+support, LLDA, MLC) were trained on the 30 dimensional
phenotype loadings as features. Full EHR denotes the baseline classifier (`1-
regularized logistic regression) using full ∼ 3500 dimensional EHR as fea-
tures. CNMF+Full EHR denotes the performance of the `1-regularized clas-
sifier learned on Full EHR augmented with CNMF features (hyperparameter
was manually tuned to match performance of the Full EHR model).

regularization parameters are chosen via grid-search.

The performance of the above baselines trained on `2 regularized logistic

regression over a 5-fold cross-validation is reported in Table 5.3: rows 1–5. The

classifier trained on the full EHR unsurprisingly outperforms all baselines as

it uses richer high dimensional information. All phenotyping baselines, except

NMF+support, show comparable performance on mortality prediction which

in spite of learning on a small number of 30 features, is only slightly worse

than predictive performance of full EHR with ∼ 3500 features.

Augmented features for mortality prediction (CNMF+Full EHR)

Unsurprisingly, Table 5.3 suggests that the high dimensional EHR data has

additional information towards mortality prediction which are lacking in the

30 dimensional features generated via phenotyping. To evaluate whether this

additional information can be captured by CNMF if augmented with a small

number of raw EHR features, we train a mortality prediction classifier using
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`1 regularized logistic regression on CNMF features/loadings combined with

raw bag–of–words features, with parameters tuned to match the performance

of the full EHR model. The results are reported in the final row of Table 5.3.

In exploring the weights learned by the classifier for all features, we

observe that only 8.3% of the features corresponding to raw EHR based bag-

of-words features have non–zero weights. This suggests that comorbidities

capture significant amount of predictive information on mortality and achieve

comparable performance to full EHR model with a small number of additional

terms. See Figure A.31 in Appendix showing the weights learned by the clas-

sifier for all features. Figure 5.4 shows comorbidities and EHR terms with top

magnitude weights learned by the CNMF+full EHR classifier. For example,

it is interesting to note that the top weighted EHR term – dnr or ‘Do Not

Resuscitate’ is not indicative of any comorbidity but is predictive of patient

mortality.

5.2 Grounded Admixtures of PMRFs

This work introduces Labeled Admixtures of Poisson Markov Random

Fields (Labeled APM ), which is inspired by APM but is able to incorporate

topic-level supervision via grounding. To this end, we impose a one-to-one

mapping between chronic conditions and topics to encourage the model to

estimate parameters in the context of comorbidities. The model is therefore

able to jointly predict presence or absence of the set of chronic conditions in a

patient given the estimated parameters. We compare the proposed method to

current state-of-the-art methods, namely Labeled LDA and multilabel SVMs

to demonstrate that modeling correlations between terms given each chronic

conditions allows better representation of documents leading to better predic-
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Figure 5.4: Top magnitude weights on (a) EHR and (b) CNMF features in
CNMF+Full EHR classifier

tion of chronic conditions. We also discuss trade-offs between computational

costs, interpretability and predictive abilities of all methods in context of use-

fulness to healthcare providers. Our main contributions can be summarized

as follows:

• We propose a new method (called Labeled APM) that incorporates topic-

level supervision via grounding into the Admixture of Poisson Markov

Random Field (MRF) model.

• Labeled APM is used to model multiple chronic conditions among pa-

tients using clinical notes available in EHRs (see data-processing in 4.1.2.2).

• We analyze quantitative performance of Labeled APM compared to exist-

ing state-of-the-art baselines, namely, Labeled LDA and multilabel SVM

for diagnosing chronic illnesses.
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• We interpret results from Labeled APM to explore whether Labeled APM

has particular advantages over Labeled LDA for analyzing clinical notes

in the context of comorbidities. In particular, each chronic condition can

be visualized as a graph over terms via APMs, while LDA will only pro-

vide a ranked list of the most probable terms or the most discriminative

terms. Thus, the interpretation and visualization capabilities of Labeled

LDA are limited. This feature yields a novel and powerful exploratory

tool that can be used by clinicians to further understand the interaction

of different terms associated with each comorbidity.

Recall that the topics represent chronic conditions and the training data

includes information about whether a patient is diagnosed with a given chronic

condition or not. Thus for each patient’s note or document n, our MIMIC-

II database includes a vector Cn ∈ {0, 1}K , such that its kth element is 1, if

comorbidity k is diagnosed in the patient and 0 otherwise. Our model assumes

that a patient’s clinical notes are composed only from the topics corresponding

to the conditions he/she is diagnosed with. However, the degree of severity

of disease is unknown. In other words, the contribution of the topic towards

generating the clinical note is unknown.

In order to add topic-level supervision to APM, we define a support

set Sn ∀n ∈ {1, 2, ..., N}. Let K be the total number of topics for which

supervision is available. This is equal to the total number of comorbidity

conditions that have been diagnosed for all patients whose clinical notes are to

be analyzed. Let Sn be the set of all comorbidities that patient n is diagnosed

with i.e. the set of all indices of vector Cn that are 1.

If for a given sample n, condition/disease k /∈ Sn, we fix the correspond-

ing weight to 0. Let wSn be the subvector of wn of all indices in Sn. Thus
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wSn,k >= 0 ∀ k ∈ Sn. This subvector lies on a simplex of dimension |Sn| − 1.

Thus, the dual coordinate descent of Inouye et al. (2014b) can be modified to

update only the subvector wSn subject to simplex constraints. Equation (2.8)

remains convex in the admixing weights for fixed estimates of parameters, as

before, guaranteeing convergence to local minima of the complete MAP esti-

mation problem even after incorporating supervision. It is important to note

the Equations (2.7) and (2.8) are separately convex in Φv and w1, ..., wn re-

spectively. However, the overall MAP estimation problem is not jointly convex

in Φv and the admixing weights. Thus only convergence to local minima can

be guaranteed.

5.2.1 Inference in PMRFs for comorbidity prognosis

Let θ∗k and Θ∗k, for all k ∈ {1, 2, ..., K} topics, be the set of learned

parameters once the above learning procedure converges. Then for any new

test document xtest, the existence of comorbidities can be predicted by solving

Equation (2.8), with the rest of the parameters fixed to θ∗k and Θ∗k. Note

that for prediction, no supervision is available, hence (2.8) is computed as in

standard APM. The resulting weight vector can be thresholded by a parameter

δ∗ s.t. wtest,k = 1 if wtest,k > δ∗ else wtest,k = 0. The threshold δ∗ can be learned

via cross-validation.

5.2.2 Empirical evaluation

The empirical evaluation is designed to determine how well the latent

representations captured using grounding can classify whether or not a patient

has any of the target chronic conditions on a set of held-out ICU patient

population. The following presents these results in comparison to important
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Table 5.4: Average F1-scores for Chronic Disease Prediction on MIMIC-II

Model Micro-F1 Micro-Precision Micro-Recall Instance-Averaged F1 Instance-Avg. Precision Instance-Avg. Recall

Labeled APM 0.2972 ( 0.0060 ) 0.4361 ( 0.0059 ) 0.3763 ( 0.0062 ) 0.2792 ( 0.0057) 0.3292 ( 0.0034 ) 0.2993 ( 0.0093 )

Labeled LDA 0.2008 ( 0.0033 ) 0.3317 ( 0.0020 ) 1.0 ( 0.0080 ) 0.1545 ( 0.0025 ) 0.3292 ( 0.0034 ) 0.2818 ( 0.0118 )

ML-SVM 0.2792 ( 0.0057 ) 0.1843 ( 0.0040 ) 0.3025 ( 0.0087 ) 0.2063 ( 0.0047 ) 0.1819 ( 0.0041 ) 0.3067 ( 0.0085 )

Table 5.5: Average F1-scores on low risk patients from MIMIC-II

Model Micro-F1 Micro-Precision Micro-Recall Instance-Averaged F1 Instance-Avg Precision Instance-Avg Recall

Labeled APM 0.2925 ( 0.0135 ) 0.3129 ( 0.0157 ) 0.2748 ( 0.0133 ) 0.2765 ( 0.0109 ) 0.3288 ( 0.0168 ) 0.2927 ( 0.0126 )

Labeled LDA 0.2078 ( 0.0056 ) 0.1647 ( 0.0049 ) 0.2815 ( 0.0071 ) 0.1903 ( 0.0050 ) 0.1734 ( 0.0038 ) 0.2835 ( 0.0126 )

ML-SVM 0.2341 ( 0.0106 ) 0.1895 ( 0.0099 ) 0.3067 ( 0.0142 ) 0.2067 ( 0.0087 ) 0.1835 ( 0.0089 ) 0.3096 ( 0.0159 )

Table 5.6: Average F1-scores on high risk patients from MIMIC-II

Model Micro-F1 Micro-Precision Micro-Recall Instance-Averaged F1 Instance-Avg Precision Instance-Avg Recall

Labeled APM 0.3295 ( 0.0158 ) 0.3349 ( 0.0116 ) 0.3244 ( 0.0204 ) 0.3088 ( 0.0212 ) 0.3489 ( 0.0230 ) 0.3309 ( 0.0246 )

Labeled LDA 0.1966 ( 0.0193 ) 0.1554 ( 0.0162 ) 0.2685 ( 0.0282 ) 0.1832 ( 0.0196 ) 0.1596 ( 0.0166 ) 0.2903 ( 0.0398 )

ML-SVM 0.2255 ( 0.0073 ) 0.1767 ( 0.0053 ) 0.3121 ( 0.0161 ) 0.1972 ( 0.0152 ) 0.1718 ( 0.0092 ) 0.2986 ( 0.0333 )

baselines at different levels of patient risk.

We evaluated model performance using 5-fold cross-validation to test

for stability of the results across variations in the data. The data was split

the data into training (80%) and test (20 %) sets in each fold. Primarily, two

parameters (λ, δ∗) need to be set. The parameter λ regulates the sparsity of θk

and Θk∀k ∈ [K] using the `1 regularization of the vectorized form of Φv (see

Equation (2.7)) and the threshold δ∗ is used to obtain a hard cluster mem-

bership. We predict that the patient n suffers from condition k if wn,k > δ∗.

The regularization for the correlation like matrix in each topic PMRF is fixed

to λ = 0.0001 based on preliminary experiments. The weight vectors are

initialized uniformly over the support set provided by the supervision. The

best threshold parameter δ∗ for Labeled LDA ∈ [0, 1] is obtained as the δ that

provides the best Micro-F1 measure on the test set, and we fixed δ∗ = 0 for

Labeled APM. The objective of multiple chronic disease prognosis is to obtain

best predictive performance for a given patient. In particular, a model with

better instance level predictions demonstrates better predictive abilities for
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a new patient. Thus for chronic disease prognosis, instance based decisions

and the corresponding metrics (Instance-Averaged F1, Precision and Recall)

are the most clinically relevant. While less clinically relevant, we also provide

the Micro-F1 score (Lewis et al., 2004) for completeness and comparison with

the baselines. Micro-F1 scores measures the overall performance of the model

averaged across patients and diseases. Note that precision and recall have also

been provided in each case for completeness but should not interpreted inde-

pendently. This is because there is a fundamental trade-off between precision

and recall, and each can be separately tuned at the cost of another.

The resulting performance for each method is demonstrated in Ta-

ble 5.4. The performance shows that the proposed model outperforms the

baselines approaches in terms of both Micro-F1 scores and Instance-Averaged

F1. The Instance-Averaged F1 performance suggests that the per patient dis-

ease prediction performance is better than the baselines. Thus the model is

the best predictor of potential chronic diseases for a new patient among all

compared. In addition, the trends are consistent for low risk and high risk

patients as shown in Table 5.5 and Table 5.6 respectively. The Micro-F1 score

and Instance-Averaged F1 are significantly better using Labeled APM suggest-

ing the model is overall better in terms of per-patient performance especially

if the patient is significantly at risk. The proposed model performs better on

Precision and Recall for high risk patients compared to both baselines sug-

gesting the proposed model’s efficacy in identifying a high risk patients. If

any condition is currently undiagnosed by physicians, necessary steps can be

undertaken to verify the prognosis obtained using Labeled APM. It is also im-

perative that unnecessary health-care costs are prevented for the healthcare

facility and the patient. Thus a better precision per patient, as obtained using
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(a) Drug Abuse (b) Solid (Brain) Tumor

Figure 5.5: Graph visualization of chronic conditions learned by the Labeled
APM model

Labeled APM is useful for providing guidance towards avoiding unnecessary

expenditure.

An additional advantage of the proposed model is the ability to explore

most relevant symptoms, treatments, medications associated with each disease.

Although Labeled LDA can also provide the most relevant term per disease,

Labeled APM has an added advantage of visualizing the relationship among

the most relevant terms. This provides a previously unavailable exploratory

tool to clinical experts for discovering new associations or the most relevant

day-to-day behavior of patients likely for each chronic condition. We explore

a sample of these visualizations for a few diseases in the following.

The graphs estimated by Labeled APM were plotted using gephi1, then

analyzed by a medical expert to investigate the correlations learned by the

model between the few terms with highest marginal probability. In each of

1http://gephi.github.io/
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the graphs, the relative size of each node/term reflects the importance of the

term for the corresponding topic. This is based on the estimates of θk. A

higher value of the ith element of θk compared to any other word implies that

the ith term in the vocabulary is more relevant to topic k than other terms in

the vocabulary. In addition, the strength of any off-diagonal elements Θk, say

the {i, j}th element models the correlation between the ith and jth terms from

the vocabulary in topic k. The edges in the graphs between the words denotes

this correlation. In particular, the thickness of the connections between nodes

reflects the strength of the positive correlations learned between the terms.

Some preliminary interpretation based on this investigation is presented.

• Drug Abuse: According to (Kowalchuk and Reed, 2011; Volkow, 2014;

MM, 2012; RD, 2012)2, substance use disorder occurs when a person

needs alcohol or another substance (drug) to function normally. Abruptly

stopping the substance leads to withdrawal symptoms. Certain drugs

cause increase or decrease in blood pressure and affect neurological sta-

tus i.e. alters mental state so patient is confused, belligerent or may even

be comatose. A decrease in respiratory drive may be observed affecting

the pulmonary system. Blood gases (abg’s) are often checked as part of

diagnosis. Decreased respiratory drive may cause respiratory failure thus

requiring intubation and medication (often propofol). Certain drugs also

affect skin integrity. Fig. 5.5(a) shows that the recovered graph captures

many of the relationships between these terms. In addition, the graph

recovers correlations like ‘skin’ and ‘dry’ which may be associated with

drug abuse and do not occur in other disease graphs. Other disease spe-

2http://www.nlm.nih.gov/medlineplus/ency/article/001522.htm
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cific words such as ‘rehab’, ‘propofol’, ‘pulm’ are among the few terms

observed in the graph.

• Solid Brain Tumor : According to (bra, 2014), a brain tumor is a growth

of abnormal cells in the tissues of the brain. A tumor in the brain

can affect (neurological) status and, depending on the location of the

tumor, (respiratory and cardiovascular) status may decline. Signs and

symptoms of respiratory decline include decreased oxygen saturation in

the blood (sat), thus affecting perfusion and distribution of hemoglobin

(hgb) and hematocrit (hct). Brain stem tumors may also alter the func-

tions of the autonomic centers of the brain stem, e.g. auto regulation

of the cardiovascular system - resulting in abnormal heart rhythms (ec-

topy) and effects on blood pressure (BP). Cardiac monitors are utilized

to monitor these symptoms. Fig. 5.5(b) shows that the recovered graph

captures many of the relationships between these terms.

• Renal failure: According to (Ren, 2015), kidney failure, also known as

renal failure, is a term used to describe a situation in which the kidneys

are no longer able to function effectively, to maintain proper fluid balance

in the body, remove waste and eliminate toxins from the blood. Kidney

dysfunction can affect the neurological (neuro), pulmonary (resp), car-

diovascular (cv) and gastrointestinal (gi) systems of a patient. Due to

the kidney’s diminished ability to remove toxins, renal failure may pre-

dispose patients to infectious diseases (id), pain, respiratory failure and

electrolyte (lyte) imbalances. Standard practice is for a nurse to rou-

tinely monitor electrolytes and (due to fluid imbalances) lasix is given

to the patient to assist with urination and decrease hypertension (htn)
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or blood pressure (bp). These terms are among the most frequently

occurring as can be seen from Fig. A.11.

5.3 Conclusion

This chapter presents two constrained based latent variable algorithms

to learn interpretable models. We focus on phenotyping chronic conditions

for an ICU patient population. Specifically, we study two phenotype repre-

sentations, each of which can be learned using specific latent variable models.

In both cases, the grounding framework, introduced in Chapter 3 is demon-

strated to be effective in generating clinically relevant (and therefore inter-

pretable) phenotypes. Specifically, all methods were evaluated by clinicians

and compared to existing phenotyping baselines. Further, the effectiveness

of the phenotypes is used for personalized outcome prediction of the patient

population. In each case, the proposed method has been found to be com-

parable or better at predicting patient mortality compared to the baselines.

The results demonstrate that weak supervision can be effectively leveraged

as constraints to develop models that generate interpretable outcomes. Our

proposed framework as well as the training and inference mechanisms can be

generalized to other applications where weak supervision can be leveraged to

constrain latent variable models for interpretability.
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Chapter 6

Explainability using Manifold Constrained

Examples

This chapter proposes a tool designed to explain outcomes of super-

vised black-box models. We generate explanations using examples and their

summary statistics. Demonstrating model behavior via examples is known

to be beneficial for improving and understanding the decision making pro-

cess (Aamodt and Plaza, 1994). The examples are generated in a constrained

manner to allow for insightful explanations. Specifically, we assume that the

data lies within a lower dimensional manifold in a high dimensional ambient

space. We design a mechanism to perturb existing data points by constrain-

ing the perturbations along the data manifold as well as in a manner that is

most likely to change the decision of the black–box. Parts of the algorithm

described here have appeared in Joshi et al. (2018b).

To do so, we learn an approximate manifold of the data distribution us-

ing recent advances in implicit generative models (Kingma and Welling, 2013;

Goodfellow et al., 2014a). Thus we can explore model behavior in the range

of this generator function. We note that this generative model is learned in an

unsupervised way assuming access to the training samples (without label in-

This chapter is based on content published in Joshi et al. (2018b). The author of the
dissertation contributed to model formulation, implementation and experimental evaluation
described in this chapter.

57



formation) used to train the target black-box classifier. The proposed method

can be utilized as a diagnostic tool to analyze training progression, compare

classifier performance, and/or uncover inherent biases the classifier may have

learned.

6.1 Related Work

Most closely related works to our approach are those that provide ex-

planations by sub-selecting meaningful samples and/or semantically relevant

features (like super-pixels) that highlight undesirable model behavior (Elen-

berg et al., 2017; Kim et al., 2016). Most of these methods require the se-

lected samples to be part of training/test dataset. This means that if the

training/test set did not include the instance that best explains a specific de-

cision, we would have to settle for a suboptimal choice. Our method aims to

relax this constraint by generating new examples that are better suited for

this purpose. In terms of generating examples, adversarial criticisms (Stock

and Cisse, 2017) and the class of generative networks like GANs are relevant

approaches. Specifically, (Stock and Cisse, 2017) use the adversarial attack

paradigm as a means to select examples from existing training data to explain

model behavior, similar to Kim et al. (2016). However note that the goal of

generating adversarial examples and our explanations are fundamentally dif-

ferent. The primary goal of adversarial examples is to focus on exploiting the

worst case confounding scenario given a decision boundary, while our work

focuses on generating an example that lies on the data manifold as it crosses

a decision boundary. See Figure 6.1 for a more intuitive explanation. We

posit that it is important to uncover classifier behavior when data points are

constrained to the data manifold. Such data instances are more ‘realistic’ and

58



likely to be created by the underlying phenomenon that led to the training

data. They provide an alternative method to probe a black-box, specially in

non-adversarial settings. They also characterize the residual vulnerabilities of

a model that defends itself against adversarial attacks by detecting directed

“noise” that is orthogonal to the manifold of the data or of an associated latent

space.

We position our work as a diagnostic framework for understanding

model behavior at an abstraction that may be most useful to a data sci-

ence practitioner and/or a machine learning expert. However, as suggested

before, explainable models focus on different notions of explainability. For

example, Koh and Liang (2017) use influence functions, motivated by robust

statistics Cook and Weisberg (1980) to determine importance of each training

sample for model predictions. Li et al. (2015); Selvaraju et al. (2016) focus on

understanding the workings of different layers of a deep network and studying

saliency maps for feature attribution (Simonyan et al., 2013; Smilkov et al.,

2017; Sundararajan et al., 2017). Saliency methods, while powerful, can be

demonstrated to be unreliable without stronger conditions over the saliency

model (Kindermans et al., 2017; Adebayo et al., 2018). Other paradigms of

explainable models focus on locally approximating complex models using a

simpler functional form to approximate the (local) decision boundary. For in-

stance, LIME based approaches (Ribeiro et al., 2016; Shrikumar et al., 2016;

Bach et al., 2015) locally approximate complex models with linear fits. De-

cision Trees are also considered more explainable if they are not too large.

These approaches inherently assume a trade off between model performance

and explanability, as less complex model classes tend to be empirically sub-

par in performance relative to the success of the target black-box models they
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endeavor to explain. The proposed framework, however, does not rely on local

approximations to provide explanations or assume such a trade-off.

We summarize our key contributions as follows: 1. We introduce xGEMs,

a framework for explaining supervised black-box models via examples con-

strained along the underlying data manifold. 2. We demonstrate the utility

of xGEMS in (a) detecting confounding bias in learned models, (b) character-

izing the probabilistic decision manifold w.r.t. examples, and (c) facilitating

model comparison beyond standard performance metrics.

6.2 Additional Notation

Implicit Generative Models can be described as stochastic procedures

that generate samples (denoted by the random variable x ∈ Xd) from the

data distribution p(x) without explicitly parameterizing p(x). Assume an un-

derlying latent space z ∈ Rk that is mapped to the ambient data domain

x ∈ Rd using a deterministic function Gθ parametrized by θ, usually as a

deep neural network. The primary difference between GANs and VAEs is the

training mechanism employed to learn function Gθ. GANs employ an adver-

sarial framework by employing a discriminator that tries to classify generated

samples from the deterministic function versus original samples and VAEs

maximize an approximation to the data likelihood. The approximation thus

obtained has an encoder-decoder structure of conventional autoencoders (Do-

ersch, 2016). One can obtain a latent representation of any data sample within

the latent embedding using the trained encoder network. While GANs do not

train an associated encoder, recent advances in adversarially learned inference

like BiGANs (Dumoulin et al., 2016; Donahue et al., 2016) can be utilized to

obtain the latent embedding. In this work, we assume access to a generative
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model such as a GAN or a VAE that allows us to obtain the latent embedding

of a data point.

Let Fψ : Rd → Rk (parametrized by ψ) be the inverse mapping function

that provides the latent representation for a given data sample. Let L : Rd ×

Rd → R+ be the analogous loss function such that for a given data sample x̃:

z̃ = arg min
z

L(x̃,Gθ(z)) , Fψ(x̃) (6.1)

Examples of Fψ are the encoder in a VAE, or an inference network in a BiGAN.

An appropriate distance function in the data domain can be used as the loss

L.

Without loss of generality, we assume that we would like to provide

explanations for a binary classifier. Let y ∈ {−1, 1} be the target label. Let

fφ : Rd → {−1, 1} be the target black-box classifier to be ‘explained’ and

`(fφ(x), y) be the loss function used to train the black-box classifier.

Adversarial criticisms Adversarial criticisms to explain black-box classi-

fiers look for perturbations δx to data samples x such that the perturbations

maximize the loss `(fφ(x+δx), y) or change the predicted label. These pertur-

bations are invisible to the human eye. That is, if x̃ is the target adversarial

sample, an adversarial attack solves a Taylor approximation to the following:

x̃ = arg maxx̃:‖x̃−x‖p<ε`(fφ(x̃), y) (6.2)

6.3 Generating xGEMs

To provide explanations via examples over more naturalistic perturba-

tions, we introduce a new set of examples, called manifold constrained examples
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Algorithm 4 Find (x∗, y∗)–xGEM
Input: (x∗, y∗) ∈ Rd × {−1, 1}, ytar,Gθ,Fψ, fφ, λ, η > 0

Initialize z = Fψ(x∗)
while Not converged do

z̃← z̃ + η∇z̃(L(x∗,Gθ(z)) + λ`(fφ(Gθ(z)), ytar))
end while
x̃ = Gθ(z̃)
Return x̃

or xGEMs. First, we train an implicit generative model Gθ and an encoder

network Fψ.

x̃ = Gθ(arg minz∈RkL(x∗,Gθ(z)) + λ`(fφ(Gθ(z)), ytar)) (6.3)

A manifold constrained example is defined w.r.t. a given data sample x∗.

Definition 6.3.1 (x∗, y∗-xGEM). An xGEM corresponding to a data point

(x∗, y∗) and a target label ytar 6= y∗, refers to the solution of Equation (6.3)

for a fixed and known λ > 0. The xGEM is denoted by x̃.

We propose Algorithm 4 to estimate a manifold constrained exampleor

xGEM for any data point x∗. Intuitively, for a point x∗, we first determine

its latent representation using Fψ. This allows us to explain model behavior

from a common latent representation across all black-boxes. Then we look

for the closest point to x∗ along the data manifold that changes the outcome

of the classifier. To do so, we take gradient steps along the latent space of

the generator Gθ (our proxy for the data manifold) until the label switches to

the desired target label ytar. That is we take the shortest path along the data

manifold to change the decision outcome of a given data point and analyze the

corresponding perturbed sample to provide explanations. The desired mani-

fold constrained example or xGEM is the sample generated at the switch point
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in the latent embedding. We empirically highlight the benefits of the discover-

ing manifold constrained examples in different contexts and abstractions that

provide insights into model behavior.

6.4 Explanations using xGEMs

We first use a simple setting with simulated data to highlight the dif-

ferences between the proposed explanation tool compared to criticisms and

prototypes derived from adversarial attacks (Stock and Cisse, 2017).

Figure 6.1: xGEMs versus Adversarial criticisms (Stock and Cisse, 2017), for
a parabolic manifold (shown in blue). Green points belong to class 1 and
red points to class -1. The black trajectories in all figures are gradient steps
taken by Algorithm 4 while the magenta trajectories correspond to adversarial
trajectories determined by Equation 6.2 with p = ∞. Note that all decision
boundaries in Figures (a) and (b) separate the data. The decision bound-
ary is trained by optimizing a softmax regression using the cross-entropy loss
function.
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6.4.1 An alternative view to adversarial criticisms

Figure 6.1 demonstrates a linear decision boundary trained on data with

ambient dimension equal to 2. The one-dimensional data manifold is parabolic

as shown by the blue curve. The green points are in class 1 and red points are

samples belonging to class label -1. The figure illustrates manifold constrained

examples as well as the trajectory taken by the gradient steps of Algorithm 4.

The trajectory to generate an adversarial criticism stems from Equation (6.2).

A generative model maps from a 1d latent dimension to the data manifold

shown by the blue curve. A single layer (softmax) neural network with out-

put dimension=2 is trained on points sampled from this manifold (the yellow

decision boundary separates the two classes – regions marked by the pink and

green regions). As demonstrated by the figure, navigating along the latent

dimension of the generator encourages the xGEM trajectory to be constrained

along the data manifold, while adversarial criticisms may lie well outside the

manifold. Thus manifold constrained examples offer alternative view of clas-

sifier behavior via examples. We defer examples of xGEM evaluated for the

MNIST dataset to the Appendix in the interest of space.

6.4.2 Towards attribute confounding detection

We demonstrate the utility of generating manifold constrained exam-

ples to detect if a target classifier is confounded w.r.t. a given attribute of

interest. In particular, we wish to determine whether a black-box is differen-

tiating among the target labels using spurious correlations in the data. For

instance, a classifier trained to determine a gender neutral label like hair color

may be inadvertently relying on an attribute like gender to predict the label. It

is desirable to have an automated mechanism to detect such behavior. We use
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Figure 6.2: Example of bias detection. Target black-boxes:f 1
φ and f 2

φ. g∗

classifies points w.r.t. a. x̃1 and x̃2 are xGEMs corresponding to x∗ for f 1
φ and

f 2
φ resp. x̃2’s attribute prediction (w.r.t g∗) is the same as that of x∗ while

that of x̃2 is different. Thus we say that f 1
φ is biased w.r.t. attribute a for

sample x∗.
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the proposed framework to detect if a black-box is confounding an attribute of

interest a with the target decision task. We demonstrate how to achieve this

in a concrete manner within our framework below.

Target black-box label

Attribute (a)
Classifier

Black Hair Blond Hair

ĝ (orig) FP:0.003 FP:0.000
FN:0.002 FN:0.018
Acc: 0.997 Acc:0.999

ĝ (recali-
brated)

FP:0.003 FP:0.003

FN:0.018 FN:0.018
Acc:0.989 Acc:0.996

Table 6.1: Recalibrated Gender Classifier.

Without loss of generality let a ∈ {−1, 1} be the (potentially protected)

binary attribute of interest. We wish to examine whether the target classifier

estimate f̂φ is biased/confounded by a. Intuitively, we hope that attribute a of

an xGEM should be the same as that of the original point. In order to detect

this, we assume there exists an oracle g∗ : Rd → {−1, 1} that perfectly classifies

the confounding attribute a when considered as the dependent variable, based

on the other (d) independent variables. Additionally, we assume that g∗ is

not confounded by the target label of the black-box y and is not used by g∗

to predict a. Let Rd × {−1, 1} × {−1, 1} ⊃ D , {(xi, yi, ai) , i ∈ [N ]} be the

training data where i indexes a given point. Let x̃i be the xGEM of xi w.r.t.

f̂φ as returned by Algorithm 4. We argue that classifier f̂φ is confounded by

the attribute a if equation (6.4) holds for a given δ > 0.

ED[1(g∗(x̃) 6= a)] > δ (6.4)
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Black-box
Classifier

Accuracy Confounding metric

f̂ 1
φ 0.9933 0.1704

f̂ 2
φ 0.9155 0.4323

Table 6.2: Confounding metric

In practice, access to a perfect oracle g∗ is infeasible or prohibitively

expensive. In some cases, such a classifier may be provided by regulatory

bodies, thereby adhering to predetermined criterion as to what accounts for a

reliable proxy oracle. For this case study, we assume it is sufficient that the

proxy oracle has the same false positive and false negative error rates w.r.t.

the target label, which is a fairness condition known as the Equalized Odds

Criterion (Hardt et al., 2016). To demonstrate our algorithm, we assume access

to a proxy oracle ĝ : Rd → {−1, 1} that satisfies the following conditions, given

a 0.5� τ < 1:

(i) ED[(1(ĝ) = a)] > τ (ii) ĝ satisfies the Equalized Odds (Hardt et al., 2016)

criterion w.r.t. the target label y.

Target label

Black-box Black Hair Blond Hair

f̂ 1
φ Male:0.4550 Male:0.1432

Female:0.0159 Female:0.0484
Overall:0.2430 Overall:0.0539

f̂ 2
φ Male:0.7716 Male:0.1475

Female:0.0045 Female:0.5024
Overall:0.4012 Overall:0.4821

Table 6.3: Confounding metric by gender
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Note that while we consider ĝ as an inexpensive proxy for g∗, we pre-

scribe that the experiment be carried out with g∗. Figure 6.2 demonstrates

how such confounding could be detected, as well as used for model comparison

w.r.t. their biases. As shown in the figure, f̂ 1
φ and f̂ 2

φ are the classification

boundaries of two black-box models classifying a target label of interest. g∗

is a classifier that classifies the data according to attribute a. Consider the

sample x∗ and let x̃1 and x̃2 be the manifold constrained examples of x∗ cor-

responding to classifiers f̂ 1
φ and f̂ 2

φ respectively. As shown in the figure, the

attribute a of the xGEM x̃1 is different from that of x∗ while that of x̃2 is not.

We conclude that a black-box f̂ 1
φ is confounded if the fraction of points whose

manifold constrained examples or xGEMs that change attribute a is greater

than δ. Thus an empirical estimate of Equation (6.4) gives a metric that can

quantify the amount of confounding in a given black-box, while also allowing

to compare different black-boxes w.r.t. the target attribute a.

We evaluate our framework for confounding detection in facial images

using the CelebA (Liu et al., 2015) dataset. The target black-box classifier

predicts the binary facial attribute – hair color (black or blond). We deter-

mine whether or not the black-box is confounded with gender. We restrict to

two genders, male and female, based on annotations available in CelebA. In

particular, ĝ is a ResNet model (He et al., 2016)1 that classifies celebA faces

by gender . ĝ is recalibrated to satisfy the two conditions mentioned earlier.

Details of ĝ’s performance and recalibration are provided in Table 6.1.

Two ResNet models f̂ 1
φ and f̂ 2

φ are trained to detect the hair color

attribute (black hair vs blond hair) using two different datasets. f̂ 1
φ is trained

1https://github.com/tensorflow/models/tree/master/tutorials/image/

cifar10_estimator
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on all face samples with either black or blond hair whereas f̂ 2
φ is trained such

that all black hair samples are male while blond haired samples are all female.

Table 6.2 gives the overall validation accuracy of both classifiers. Note that

the validation set used for f̂ 1
φ and f̂ 2

φ are the same.

Table 6.2 also shows the fraction of samples whose manifold constrained

examples’ predicted attribute a (in this case gender) is different from the

original training sample w.r.t. ĝ. The fraction of confounded samples is

clearly much larger for the classifier trained on a biased dataset as determined

by the proxy oracle ĝ. Additionally, Table 6.3 suggests a 10–fold increase in

the fraction of confounding for blond haired females with the biased classifier

f̂ 2
φ. Notice the decrease in the amount of confounding for black haired females

while a general increase in confounding for all black haired faces. As an aside,

the biased model f̂ 2
φ also changes the background more than hair color in order

to change the hair color label (see Figure 6.3). This suggests that quantifying

such confounding using manifold constrained examplesallows us to characterize

biases w.r.t. any attribute of interest.

Figure 6.3 shows a few examples of such confounded images for the

two black-boxes. In particular, we show examples where the black-box trained

on biased data for hair color classification changes gender of the sample as it

crosses the decision boundary whereas the black-box trained on unbiased data

does not2.
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30000(correct)     
40000(correct)     

30000(correct)     
40000(correct)     

Figure 6.3: We test whether ResNet models f̂ 1
φ and f̂ 2

φ, both trained to detect
hair color but on different data distributions are confounded with gender.
Two samples for classifiers f̂ 1

φ (first sub row) and f̂ 2
φ (second sub row) are

shown. The leftmost image is the original figure, followed by its reconstruction
from the encoder Fψ. Reconstructions are plotted as Algorithm 4 (with λ =
0.01) progresses toward crossing the decision boundary. The red bar indicates
change in hair color label indicated at the top of each image along with the
confidence of prediction. The label at the bottom indicates gender as predicted
by ĝ. For both samples, classifier f̂ 1

φ, trained on biased data changes the

gender (1st and 3rd rows) while crossing the decision boundary whereas the
other black-box does not.

6.4.3 Case Study: Model assessment

An important aspect of black-box analyses is to study the progression

of training complex models. Specifically, observing manifold constrained ex-

amples allows us to consider model behavior in the following aspects: 1) Dis-

cerning shifts in features relied on by the black-box to differentiate between

2All qualitative figures were chosen based on the confidence of the prediction from the
black-box and confidence of the reconstructed image
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Figure 6.4: Confidence manifolds for a few data samples for black-box models
1 and 2. In each inset, this confidence manifold is traced during different stages
of training the black-box. In each inset, the legends denote: global training
step (accuracy, parameter k, x0) denoting the global step at which the con-
fidence manifolds are plotted, and their corresponding logistic curve estimates
and the overall black-box accuracy at that stage of training. Additionally, the
curve shows whether the sample is misclassified at that training step. The top
left and bottom left inset denote curves for a single sample – Sample 1 for the
first and the second black-box respectively at different training stages. The
true label for Sample 1 is ‘Black Hair’). The top right and bottom right curves
show similar curves for black-box 1 and 2 respectively for Sample 2. The true
label for Sample 2 is ‘Blond Hair’.

classes during training. 2) Characterizing the probabilistic manifolds of mani-

fold constrained examples as training progresses and its relation to calibration

of complex networks (DeGroot and Fienberg, 1983). 3) Qualitative trade-offs

and/or mistakes made by the classifier for prototypical examples.

Reliability Diagrams have been used as a summary statistic to evaluate

model calibration (DeGroot and Fienberg, 1983) that aims to study whether

the confidence of a prediction matches the ground truth likelihood of the pre-

diction. It has been observed that while model performance has improved sub-
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stantially in recent years because of deep networks, such models are typically

more prone to mis-calibration (Guo et al., 2017). We provide a complementary

statistic to Reliability Diagrams to assist model assessment/comparison.

For this study we train two deep networks f̂φ
1

(a ResNet model) and

f̂χ
2

(a four layer CNN with local response normalization (lrn) 3) with CelebA

face images for the hair color (black/blond) binary classification task. For

a given face, we evaluate the corresponding xGEM at multiple incremental

training steps. We plot the confidence of labeling a point to have black hair

with respect to the distance of the original reconstruction and its xGEM in-

cluding all intermediate points from the decision boundary (called ‘confidence

manifold’). Thus, all samples originally labeled black should have high confi-

dence of being labeled and the confidence decreases as the sample crosses the

decision boundary (vice-versa for blond haired faces). Figure 6.4 shows the

confidence manifolds for two samples (one in each column).

The top and bottom rows represent the manifolds obtained during

training for model 1 (f̂φ
1
) and model 2 (f̂χ

2
) respectively. Sample 1(column

1) is a face with black hair while Sample 2 (column 2) has blond hair. Leg-

ends show the distance of reconstructions from the original sample along the

gradient steps, followed by overall classifier performance. Additionally, we fit

a logistic function f(x) = 1
1+exp−k(x−x0)

to each curve. All curves have been

aligned such that the decision boundary lies at 0 along the x-axis (denoting

x0) in Figure 6.4. Specifically, for a single sample, as the manifold is traversed

to generate its corresponding xGEM, we estimate the classifier’s confidence for

the label ’Black Hair’ and plot the entire probability curve (called confidence

3https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10
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manifold). For each curve, a logistic curve is fit to estimate two parameters k

and x0 that specify the curve. These curves are shown in each subplot. In each

inset, this confidence manifold is traced during different stages of training the

black-box. In each inset of Figure 6.4, the legends denote: global training

step (accuracy, parameter k, x0) denoting the global step at which the con-

fidence manifolds are plotted, and their corresponding logistic curve estimates

and the overall black-box accuracy at that stage of training. Additionally, the

curve shows whether the sample is misclassified at that training step. The

top left and bottom left inset denote curves for a single sample – Sample 1

for the first and the second black-box respectively at different training stages.

The true label for Sample 1 is ’Black Hair’). The top right and bottom right

curves show similar curves for black-box 1 and 2 respectively for Sample 2.

The true label for Sample 2 is ’Blond Hair’. The confidence manifold for the

same instance is fairly different across each model. As expected, the overall

steepness increases as model trains to better discriminate samples. Intuitively,

higher x0 suggests that the classifier can easily discriminate the label with

high confidence. For instance, for comparable overall accuracy, the manifolds

suggest that model 2 has trained a decision boundary such that a manifold

constrained example is relatively close in image distance (compared to that

of model 1). In the case of Sample 2, it is clear that model 2 mis-labels the

data point with high confidence initially while learning to predict the correct

label eventually. However, a decrease in x0 as training progresses for both

models suggests a significant shift of the decision boundary to be closer to

Sample 2. Qualitative images corresponding to these manifolds are shown in

the Appendix.

Figures 6.5(a) and 6.5(b) show the 2d histogram of the logistic function
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Figure 6.5: (a) and (b): 2d-Histograms of the parameters of the logistic func-
tion fits to the confidence manifolds for a ∼ 4000 samples.
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Figure 6.6: Reliability Diagram for Calibration stratified by (potentially pro-
tected) attributes of interest (gender): A perfectly calibrated classifier should
manifest an identity function. Deviation from the identity function suggests
mis-calibration and can be used for model comparison when accuracy and
other metrics are comparable.

parameter estimates stratified by the target label and the attribute of interest

(gender). This allows to summarize the confidence manifolds across groups

of interest for overall model comparison. For reference, Figure 6.6 shows the

Reliability Diagram for both black-boxes. The ResNet model generally demon-

strates more uniform steepness across samples at different distances from the

decision boundary compared to the CNN+lrn model. Both models have a rela-

tively small x0 for blond haired males suggesting lower confidence in their pre-

dictions. Thus, summarizing confidence manifolds provides additional insight

that may not be characterized by Reliability Diagrams for model comparison.

6.5 Discussion

This chapter presents a novel approach to characterizing and explaining

black-box supervised models via examples. An unsupervised implicit gener-

ative model is used as to approximate the data manifold, and subsequently

used to guide the generation of increasingly confounding examples given a

starting point. These examples are used to probe the target black-box in sev-

eral ways. In particular, we demonstrate the utility of manifold constrained
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examples in automatically detecting bias in black-box learning w.r.t. a (po-

tentially protected) attribute as well as for model comparison. The proposed

method also allows one to visualize training progression and provides insights

complementary to notions of calibration of the black-box model. Limitations

of the proposed method include reliance on the implicit generator as a proxy of

the data manifold. However, we note that we do not rely on specific architec-

tures and/or training mechanisms for the generative model. We used images

as they are easy to visualize even in high-dimensions. However extending our

studies to complex datasets beyond images is a compelling future extension.

Thus constraining generative models allows one to probe complex black-

boxes for providing explanations of model outcomes, evaluating training pro-

gression, and providing complementary methods of model comparison when

conventional metrics may be similar.
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Chapter 7

Leveraging Heterogeneity via Constraints

This chapter focuses on leveraging constraints for semi-supervised learn-

ing. We demonstrate the use on constraints in two different machine learning

paradigms in which heterogeneity in data sources can be leveraged in lieu of

lack of expert annotation. To objective is to learn effectively with limited an-

notation with respect to the specified criterion in each framework. The first

section applies this framework to a listwise LeTOR framework while the latter

focuses on a clustering task.

7.1 Heterogeneous Sources as Views

Lack of expert annotation is a significant practical problem in machine

learning. In order to learn effectively in this regime, we propose to lever-

age heterogeneity in data sources (called views). Complementary information

available in these views can be better harnessed to improve over conventional

machine learning algorithms. In particular, this chapter demonstrates how to

leverage multiview information using constraints.

This chapter is based on content published in (Joshi et al., 2016a, 2018a). The au-
thor of this dissertation contributed to model formulation, implementation, and empirical
evaluation described in this chapter.
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7.2 Constrained Semi-Supervised LeTOR

Most LeTOR methods can be considered to be developed for three

practical scenarios where estimating a preference order is desirable: point-

wise, pairwise and listwise. These paradigms are primarily determined by the

type of supervision available to the learning algorithm. Specifically, pointwise

methods like McRank (Li et al., 2007) require a score (indicating some no-

tion of preference) associated with the entities to be ranked and the learning

algorithm in turn learns a mapping from entities to associated scores. The

scores can then be interpreted to provide a preference order over the entities.

Pairwise methods, as the name suggests, use preferences provided over pairs

of objects, for example, rank-SVM (Elisseeff et al., 2001), rankBoost (Freund

et al., 2003) etc. and learn a preference order over the pairs of target entities.

This remains the most popular form of supervision due to the ease of collecting

pairwise preferences over ordinal scores or permutations over a large number

of entities. Finally, listwise LeTOR methods (Xia et al., 2008; Acharyya et al.,

2012; Acharyya and Ghosh, 2014) are the most general and require a prefer-

ence order provided for entities and is then able to provide a ranking over a

new set of objects.

Training listwise LeTOR models in a supervised manner poses practi-

cal problems like the prohibitive cost associated with collecting reliable prefer-

ences for entities from human annotators. Additionally, preference learning is

a combinatorial problem as the target variables are jointly learned as permu-

tations over the data samples. Costly human annotations naturally motivate

us to consider whether data samples with unknown preferences via annota-

tions (unlabeled samples) can be harnessed intelligibly to augment supervised

LeTOR counterparts to improve their performance as measured by well stud-
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ied metrics like the Normalized Discounted Cumulative Gain (Järvelin and

Kekäläinen, 2000), Kendall’s Tau correlation (Kendall, 1938) etc.

In this work, we focus on listwise ranking methods. We posit that

there are several advantages of augmenting LeTOR models with entities for

whom no preference order is provided, specifically in the listwise setting. First,

given that supervision in a listwise form is the most difficult to obtain, in

practice, it is only natural to leverage any unlabeled data available. When

very few entities have a preference graph available for learning, such semi-

supervision can help improve generalization performance over unseen or new

entities. For example, in a healthcare institution, clinicians may be extremely

busy to score patients according to disease risk, but it is required to rank a set

of newly admitted patients by disease severity. The algorithm detailed here

have appeared in Joshi et al. (2018a).

Most existing methods for semi–supervised ranking operate under trans-

ductive settings (Joachims, 1999; Amini et al., 2008). Transductive methods

assume that test samples are known at training time and can be used as un-

labeled samples. While this assumption is reasonable, it may not always be

practical, especially in predictive settings. For instance, patients to be ranked

by disease risk may be admitted at a future time and are unavailable dur-

ing training. Inductive semi–supervised ranking methods that can estimate

rank order on entities not used for training have been explored for pairwise

and listwise ranking settings (Szummer and Yilmaz, 2011; Gao and Yang,

2014). Thus inductive methods, such as that proposed here, are significantly

more applicable in novel clinical applications. Among such methods, Szum-

mer and Yilmaz (2011) require pairwise preferences over the labeled samples.

Converting listwise preferences to pairwise ones scales the set of constraints
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quadratically in the number of entities to be ranked. The constraints thus aris-

ing are pruned for computational reasons using heuristics such as considering

only K-nearest neighbors (Szummer and Yilmaz, 2011). On the other hand,

our proposed model only requires a listwise preference order for the labeled

entities. While probabilistic models like Gao and Yang (2014) based on the

listwise Plackett-Luce model (Marden, 1996) mitigate this issue, they rely on

co–training (Blum and Mitchell, 1998b) to train an inductive ranking model.

Co–training models, conventionally developed for classification or regression

use multiple views of data samples to train the models. A view is a partition

of features assumed to be sufficient to learn a classifier independently given

enough samples. Co–training iteratively enhances the training set by labeling

a subset of the unlabeled samples where they are chosen to minimize disagree-

ment between labels learned by each view (Li et al., 2009). In the ranking

setting, however, such a ‘disagreement’ has to be measured over a complete

Directed Acyclic Graph structure or permutations over the unlabeled samples,

a combinatorial problem in itself. Gao and Yang (2014), therefore approximate

the level of disagreement across views using a probabilistic surrogate.

The proposed method is an inductive ranking model that uses co-

regularization in order to encourage different views to agree over the preference

order of unlabeled samples. In particular, we substantially generalize an ex-

isting listwise LeTOR method, called Monotone Retargeting (MR) (Acharyya

et al., 2012; Acharyya and Ghosh, 2014) to a multiview setting (Blum and

Mitchell, 1998b) and then propose to augment it with unlabeled data using

co–regularization. MR is an efficient listwise LeTOR algorithm that leverages

the simplicity of training conventional Generalized Linear Models (GLMs) for

ranking. In particular, observing that the rank scores need not be regressed to
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exactly so long as the ordering is preserved, MR searches over all monotonic

transformations of the rank scores that may be easier for GLM estimates to

fit to. MR also develops an efficient technique to search over such transfor-

mations. Co–regularization has been previously explored for regression and

classification for semi-supervised learning. Our co–regularization technique is

novel, in that it exploits the geometric structure of a preference order. This

allows to explicitly impose/encourage agreement across views over the rank

ordering estimated by each view of the unlabeled input items. Our key con-

tributions can be summarized as follows:

1. We propose a novel inductive semi–supervised listwise LeTOR algo-

rithm.

2. A novel co–regularization method is developed in order to leverage

unlabeled data.

3. We exhaustively evaluate our algorithm in three settings (includ-

ing comparisons to inductive and transductive models) commonly observed in

practice and demonstrate the effectiveness of the proposed algorithm.

7.2.1 Co–regularization in LeTOR

We first introduce the paradigm of multi–view classification where co–

regularization was first introduced. Multiview learning assumes that there

exist two or more views or input spaces of samples such that they also agree

on the class labels of the samples and are independent conditioned on the class

labels. Each view can learn a classifier independently given enough samples.

This ‘multi–view’ assumption allows one to augment supervised methods with

unlabeled data. Specifically, co–regularized multi–view algorithms allow to

explicitly minimize disagreement between views over the label assigned to
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unlabeled samples – generally imposed via some form of regularization. In

practice, an example of such views could be (a) Physiological measurements

of patients that need to be ranked on disease severity or mortality risk and

(b) Prescription data corresponding to the same set of patients .

In order to extend this notion to the listwise LeTOR setting, we make

the following assumptions:

1. Each view agrees on the rank order assigned to a set of items within

the query.

2. Each view is conditionally independent given the rank ordering as-

signed to items in the query.

Without loss of generality, we now present a co–regularized multiview

LeTOR method assuming our data consists of two views. The MR model is

first generalized to a multiview supervised setting. To incorporate unlabeled

data, we leverage the fact that the set of all isotonic vectors to a given vector

is a convex cone and formulate a novel co–regularization over the unlabeled

samples. The multiview MR cost function can be easily augmented using such

a co–regularization for which a coordinate descent based algorithm is proposed

and evaluated.

7.2.2 MR-CORE: Algorithm for semi-supervised LeTOR

X(l) ∈ Rn×d denotes the subset of (n) labeled samples in the dataset

while X(u) ∈ Rm×d denotes (m) unlabeled samples. Let V be the number of

views available that are required to be ranked according to target preferences.

The subscript v is hereafter used to denote a view Xv. Let X
(l)
v ∈ Rn×dv , v ∈

[V ] denote the vth view of the labeled samples and X
(u)
v ∈ Rm×dv , v ∈ [V ] the
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(a) Retargeting step on scores of
a labeled query

(b) Co–regularization on unlabeled queries
across time

Figure 7.1: Visual representation of the proposed MR-CORE algorithm

vth view of the unlabeled samples. Let y(l) be the scores denoting the rank

or a permutation of the labeled samples. Let wv ∈ Rdv parametrize the GLM

to be learned for view v. In the absence of any unlabeled data, a multiview

LeTOR task entails learning view–specific models such that all views rank the

labeled documents similarly, i.e. the learned rank estimates are isotonic to

y(l) in all views. Let r
(l)
v , v ∈ [V ] be the retargeted scores learned for view v.

That is, the GLM in view v will estimate a model with r
(l)
v as targets where

r
(l)
v are isotonic to y(l). Let Q(l) be the set of labeled queries and Q(u), the set

of unlabeled queries. As before, let q be the subscript used for each query.

Supervised LeTOR using Multiview Monotone Retargeting can formulated as

the following estimation:

arg min
wv∈Cv ,v∈[V ]

r
(l)
v,q∈R↓

y
(l)
q

∑
v∈[V ]

q∈Q(l)

Dφ(r(l)
v,q‖∇φ−1(X(l)

v,qwv))
(7.1)

where Cv are (convex) constraints imposed on the parameters to avoid

degeneracy (like the s–Simplex). Note that the parameters are view–specific
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but shared across all queries. The estimation procedure to solve Equation (7.1)

is an extension to Algorithm 2 where the GLM parameters for each view are

updated in parallel. The retargeting step involves re-estimating the target

scores to lie in the set of all vectors isotonic to y(l). Figure 7.1 visually demon-

strates the proposed algorithm. Specifically, Figure 7.1(a) demonstrates the

first retargeting step. Consequent retargeting steps in each view will search

for a target score closest in distance to ∇φ−1(X
(l)
v wv) within the same con-

vex cone Ry(l) . Incorporating unlabeled data in a ranking framework poses

multiple challenges. For example, co–regularization requires to explicitly min-

imize the disagreement between the preference order of items in a query across

views – an inherently combinatorial problem. For instance (Gao and Yang,

2014) rely on surrogate measures of rank–based disagreements across views.

Further, relying on regularization methods based solely on similarities of the

documents (Szummer and Yilmaz, 2011) may inherently produce a ranking

without harnessing the discriminative powers of the rank scores themselves.

The fact that the set of all vectors isotonic to a given score vector is a

convex cone (Acharyya et al., 2012) allows us to augment the Multiview MR

framework to incorporate unlabeled samples. Specifically, we maintain view–

specifc rank scores r
(u)
v,q for unlabeled items in each query q and each view v.

Explicitly measuring disagreement between rank scores is, as suggested before,

a combinatorial problem. Instead, we constrain the rank scores estimated by

a given view to lie in the convex cone determined by the parametric estimates

of the second view. That is, consider the case of two views and let r
(u)
1,q and r

(u)
2,q

be the rank scores assigned to the unlabeled items in the qth query. We impose

the following constraints on each of the target scores: (a) r
(u)
1,q ∈ R↓

X
(u)
2,qw2

and

(b) r
(u)
2,q ∈ R↓

r
(u)
1,qw1
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arg min
w1∈C1,w2∈C2

r
(l)
v,q∈R↓

y
(l)
q

,v∈[2]

r
(u)
1,q∈R↓

X
(u)
2,qw2

r
(u)
2,q∈R↓

X
(u)
1,qw1

[ ∑
v∈[2]

q∈Q(l)

Dφ(r(l)
v,q‖∇φ−1(X(l)

v,qwv)) + λ
∑
v∈[2]

q∈Q(u)

Dφ(r(u)
v,q‖∇φ−1(X(u)

v,qwv))

]

(7.2)

Thus the LeTOR MR estimator that imposes such co–regularization

is given by the cost function in Equation 7.2, where λ > 0 determines the

relative importance of the unlabeled queries. Note that the convex cones

defined by the scores on unlabeled queries, i.e. R↓
X

(u)
v,qwv

, v ∈ [2], q ∈ Q(u) shift

every time the GLM parameter estimates are updated. Hence estimating all

parameters jointly is not feasible. Further, this shifting property is desirable

because this allows to iteratively update the region where both views agree

on the rank scores of unlabeled samples. In order to ease the optimization

procedure, a coordinate descent method (with line search) is developed for

solving Equation (7.2). The proposed algorithm iteratively estimates r
(l)
v , r

(u)
v

and wv, v ∈ [2] in each descent step (we have dropped the subscript for queries

for brevity). Note that when r
(l)
v , r

(u)
v ,∀v ∈ [2] are held constant, the updates

for wv, v ∈ [2] can occur in parallel. For experimentation, we interleave update

to all parameters associated with views 1 and 2. Figure 7.1(b) demonstrates

the shifting cone behavior across iterations and the dynamic co–regularization

for each view. The complete coordinate descent algorithm is described in

Algorithm 5.
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Algorithm 5 MRCORE
Input: X

(l)
v,q,X

(u)
v,q ∈ R|V|×dv , v, q ∈ [2]× Q; y

(l)
q , q ∈ Q(l); λ > 0; φ

Initialize wv, v ∈ [2]; r
(l)
v,q, v, q ∈ [2]× Q(l) and r

(u)
v,q , v, q ∈ [2]× Q(u):

while Not converged do
Update GLM parameters of view 1:

w1 = arg min
w∈Rd

∑
q∈Q(l)

Dφ(r
(l)
1,q‖∇φ−1(X

(l)
1,qw)) + λ

∑
q∈Q(u)

Dφ(r
(u)
1,q‖∇φ−1(X

(u)
1,qw))

Retargeting step for view 1, i.e. r
(l)
1,q, q ∈ Q(l):

r
(l)
1,q = arg min

rq∈R↓
y
(l)
q

Dφ(rq‖∇φ−1(X
(l)
1,qw1))∀q ∈ Q(l) in parallel

Co-regularization step for view 2:

r
(u)
2,q = arg min

rq∈R↓
X

(u)
q w1

Dφ(rq‖∇φ−1(X
(u)
2,qw2))∀q ∈ Q(u)in parallel

Update GLM parameters of view 2:

w2 = arg min
w∈Rd

∑
q∈Q(l)

Dφ(r
(l)
2,q‖∇φ−1(X

(l)
2,qw))+λ

∑
q∈Q(u)

Dφ(r
(u)
2,q‖∇φ−1(X

(u)
2,qw))

Retargeting step for view 2, i.e. r
(l)
2,q, q ∈ Q(l):

r
(l)
2,q = arg min

rq∈R↓
y
(l)
q

Dφ(rq‖∇φ−1(X
(l)
2,qw2))∀q ∈ Q(l) in parallel

Co-regularization step for view 1

r
(u)
1,q = arg min

rq∈R↓
X

(u)
q w2

Dφ(rq‖∇φ−1(X
(u)
1,qw1))∀q ∈ Q(u) in parallel

end while
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As demonstrated by Algorithm 5 and Figure 7.1(b), the co–regularization

always retargets each view such that it enforces the ranked lists to lie in the

convex cone defined by the other view on unlabeled data, thus enforcing an

iterative agreement on the rank order of unlabeled data. Over iterations, these

convex cones shift as new estimates for wv, v ∈ [V ] are obtained. We call this

phenomenon of dynamic constraints as shifting cones for co–regularization

henceforth.

Adding Margins: Note that for the retargeting step on labeled queries,

adding fixed margins (for total order) (Acharyya and Ghosh, 2014) can lead

to better empirical performance and can be easily added by using a modified

version of the PAV algorithm. Our experiments use this version of PAV for

empirical evaluation. Note that margins cannot be added to ranked scores

over unlabeled data as no information about the ranked scores is known.

Partial Order: In order to extend the above algorithm to handle partial

order, a simple sorting step can be added after each view’s retargeting step for

labeled queries and results in minor book–keeping over the indices.

7.2.3 Consensus ranking & ranking novel queries:

Once the model is learned, for any new query and appropriate views,

we would like to rank documents in the query. Our algorithm does not directly

provide a single rank order across all views for a given query. We therefore

learn a weighted combination of the view–specific scores by holding out a few

queries (as a validation set) during training. Let w̃1 and w̃2 be the estimates

learned using Algorithm 5. Let α and (1− α) be the weights associated with
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view 1 and 2 respectively whose weighted combination is used to obtain a

consensus rank ordering. Then the ranking on a query in the validation set

Q(val) is given by:

r =
∑

q∈Q(val)

α∇φ−1(X1,qw̃1) + (1− α)∇φ−1(X2,qw̃2)

where w̃1 and w̃2 are the weights learned using Algorithm 5. We grid

search over α on the validation queries to estimate the weighted combination

(denoted by α∗) that obtains the best consensus ranking (as measured by any

standard metric of interest like nDCG, Kendall’s tau distance or Spearman’s

rank order correlation) on the validation set. Given a new query X(new), the

rank ordering of items in this query is given by:

r(new) = α∗∇φ−1(X
(new)
1 w̃1) + (1− α∗)∇φ−1(X

(new)
2 w̃2)

The rank order determined by r(new) is thus the desired permutation of

items in the test query.

7.2.4 Incorporating multiple views:

In practice, more than two views may be available. In order to incor-

porate them, we propose to use sequential co–regularization, wherein a single

view is retargeted into the isotonic set defined by all other views. Intuitively,

this may be understood as a single step of an alternating projection algo-

rithm that projects the ranked scores to an intersection of the convex cones

defined by all other views. As before, only one view is updated at a time with

parameters estimated in all other views held fixed.
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7.2.5 Empirical evaluation

(a) Kendall’s Tau (b) nDCG@5 (c) Spearman’s rho

Figure 7.2: Ranking performance on held-out set of MR-Core when augmented
using unlabeled data on MQ-2008. The x-axis sweeps over the percentage of
queries used as labeled data from the training set. MR-Core: proposed
model, PW-Core: pointwise model augmented with unlabeled data, MR:
Supervised MR, PW: Supervised pointwise model.

(a) Kendall’s Tau (b) nDCG@5 (c) Spearman’s rho

Figure 7.3: Ranking performance on held-out data when rank scores are only
available as relevance/ pairwise scores on OHSUMED data.

We evaluate the proposed model for its effectiveness at improving rank-

ing performance when augmented by unlabeled data. Specifically, we evalu-

ate the model performance in a conventional listwise ranking setting. That

is, the model is trained to rank a fixed set of documents in order of pref-

erence or relevance in the context of a query. At test time, a new query is

provided and the documents associated to the query are ranked according

to preference/relevance. The performance of these models is measured using
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(a) Kendall’s Tau (b) nDCG@5 (c) Spearman’s rho

Figure 7.4: Comparison to popular transductive ranking algorithms. The x-
axis sweeps over the number of relevant documents in the labeled set. TSVM:
Transductive SVM, ssRankBoost: Transductive Boosting for LeTOR.

three well known ranking metrics, Normalized Discounted Cumulative Gain or

nDGC (Järvelin and Kekäläinen, 2000), Spearman’s Rank Ordered Correla-

tion (Kendall, 1948) and Kendall’s Tau distance (Kendall, 1938). We evaluate

the model in the following contexts:

1. First, we evaluate the advantage of using unlabeled data in a co–regularized

ranking compared to a completely supervised list-wise setting, especially

when very few queries are labeled or the average number of documents

associated with each query is very small.

2. We evaluate whether the proposed ranking algorithm generalizes bet-

ter than point-wise methods like supervised and inductive regression to

evaluate the advantages of the multiview retargeting mechanism.

3. We further investigate the utility of our algorithm to learn a preference

structure when supervision is provided as pairwise preferences. Note that

this is an inductive setting, i.e. test queries are not observed at training

time. Therefore this setting cannot be compared with transductive semi–

supervised algorithms.
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4. Finally, we also evaluate whether our algorithm performs at par in a

transductive setting. Most existing models in this regime are available

for bipartite ranking (Joachims, 1999; Amini et al., 2008). Note again

that transductive models use test data during training (as unlabeled

samples).

Table 7.1: LETOR Datasets Description

Name #queries |Q| #document features d

OHSUMED 106 46
MQ2008 1692 46
TREC2004 75 44

We consider two standard list-wise datasets OHSUMED and MQ2008

from the LeTOR 4.0 (Qin and Liu, 2013) dataset to evaluate our first two

objectives. OHSUMED is a collection of online articles from the medical infor-

mation database MEDLINE.1 MQ2008 contains query sets called the Million

Query Track2 from the TREC2008 dataset. For comparison to transductive

settings, we use the TD2004 dataset from LeTOR 1.0 (Liu et al., 2007) con-

taining pairwise relevances. Note that all our baseline transductive algorithms

have been primarily designed for bipartite ranking. The details of the datasets

are provided in Table 7.1. For all datasets, two views are generated by splitting

in half, a random permutation of the features indices.

We compare to the following supervised baselines to evaluate the im-

provement in ranking performance when augmented using unlabeled data.

1https://www.nlm.nih.gov/bsd/pmresources.html
2http://ir.cis.udel.edu/million/index.html
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1. Margin-Equipped Monotone Retargeting (MR) (Acharyya

and Ghosh, 2014): This is the supervised list-wise ranking method which

the proposed model MR-Core builds upon. Note that we compare to a multi-

view version of MR without co–regularization over unlabeled data. The final

preference order for any new sample is determined in the same manner as that

of MR-Core, i.e. by learning an appropriate weighting. Note that while MR

can use any of the Bregman divergences, we demonstrate results using the

Euclidean distance (`2-norm).

2. Ridge Regression (a pointwise method – PW): This is a su-

pervised multiview linear regression that estimates exact scores provided by

supervision. The preference order for a new list of documents can be deter-

mined by first estimating scores and sorting them in order of the scores.

3. Co-regularized Linear Regression (PW-Core): This is a mul-

tiview linear regression that incorporates co–regularization by measuring dis-

agreement between the target estimates in each view. The model primarily

differs from co–regularized MR in that the co–regularization can be consid-

ered to be pointwise, i.e. fitting the ranking scores exactly in a semisupervised

manner. Specifically, this is formulated as follows:

argminw1,w2
‖yl −Xl1w1‖2 + ‖yl −Xl2w2‖2

+ λ‖Xu1w1 −Xu2w2‖2
2

s.t. w1,w2 ∈ C

(7.3)

where w1, w2 are the regression weights similar to a linear regression model

and C is a convex set that may be used to avoid any degenerate solutions. We

also add `2–regularization to all methods to avoid over–fitting.

The results evaluating our first and second objectives are provided in

Figure 7.2 on the MQ-2008 dataset. Specifically, we sweep over the percent-
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age of queries used as labeled data. The rest are only incorporated via co–

regularization. Additionally, we also ensure that labeled queries are added in

order of their sizes, i.e. we train on as few total number of documents as pos-

sible. The evaluation suggests that when augmented with unlabeled data, the

retargeting mechanism of MR combined with the proposed co–regularization

improves ranking performance over pointwise algorithms (including those aug-

mented with unlabeled data), especially when very few queries are labeled.

Specifically, in the regime where very few labeled queries are available, su-

pervised MR performs worse than the supervised pointwise method, but out-

performs all baselines when augmented with unlabeled data using our co–

regularization algorithm.

To evaluate performance of MR-Core when supervision is provided as

pairwise preferences, we use the OHSUMED dataset but split the queries to

generate queries with pairwise preferences. That is, consider a partially ranked

list where the documents in a query are rated from 1 to K. Then each query

can be divided into
(
K
2

)
queries generating pairwise preferences. We would like

to evaluate if the deterioration in performance when only pairwise preference

is observed is prohibitive for practical use. Note that the test queries require

a listwise outcome/ranking of all documents opposed to just a relevance score.

This evaluation (shown in Figure 7.3) demonstrates that re–targeting meth-

ods that simply focus on the ordering still perform comparably to pointwise

methods. This demonstrates their utility even if listwise preferences are un-

available.

Finally, we evaluate the model in the context of existing transductive

semi–supervised ranking settings. Note that most transductive algorithms are

primarily designed for bipartite ranking. Specifically we compare the perfor-
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mance to two popular baselines detailed below:

1. ssRankBoost (Amini et al., 2008): This model proposes a boost-

ing algorithm to learn a bipartite ranking on data samples in a transductive

setting. Note that the model has to be learned for each query independently.

2. TSVM (Joachims, 1999): This is a bipartite ranking algorithm

based on Support Vector Machines (Cortes and Vapnik, 1995) augmented to

incorporate unlabeled data.

Note that transductive methods are evaluated on a single query and

tested to evaluate whether they score unranked documents in the query desir-

ably. To this end, we compare the models in a Relevance Feedback Task (Szum-

mer and Yilmaz, 2011), more suitable for transductive settings. The results

(in Figure 7.4) suggest that the proposed method performs comparably or bet-

ter than other transductive models, again in the regime where the number of

labeled documents is very small.

7.3 Constraints Based Clustering

We propose a new co–regularization framework in order to leverage het-

erogeneity of data to improve a latent variable clustering framework. This is

known as multiview clustering and specifically focuses on unsupervised learn-

ing of cluster membership of entities from all views. Multiview clustering

operates under the assumption that the underlying latent or unknown cluster

membership is the same across different views. Two main principles, namely

co-training (Blum and Mitchell, 1998a) and co-regularization (Sindhwani et al.,

2005), form the basis of algorithms used to impose the multiview assump-

tion for inference and/or learning. Co-training methods iteratively bootstrap
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estimates of a view using learned hypotheses from other views to converge

to a coherent model (Blum and Mitchell, 1998a). Co-regularization meth-

ods minimize disagreement between view-specific hypotheses explicitly during

training (Sindhwani et al., 2005). The two learning and inference procedures

described here along with the following empirical evaluation appeared in Joshi

et al. (2016a)

Multiview methods offer significant theoretical and practical advan-

tages compared to concatenating views. However, model mis-specification,

noisy measurements and/or unknown biases views do not necessarily cluster

data simultaneously in practice. To account for such mis-specification, this

work proposes to explicitly characterize biases across different views. We

maintain view-specific cluster membership distributions but impose coher-

ence by encouraging the learned or posterior distributions to be ‘close’ where

closeness is measured via appropriate divergences. In particular, a weighted

sum of Rényi Divergences between view-specific posterior distributions is min-

imized. Storkey et al. (2014) have shown that when aggregating distributions

from biased agents, Rényi Divergence based aggregation provides a target

distribution with the maximum entropy. Our model therefore does not as-

sume a bias free condition and explores various aggregation strategies most

suited for the data. We recover an existing multiview clustering algorithm,

Co-EM (Bickel and Scheffer, 2005), as a special case of our framework. Co-EM

uses linear aggregation of views which corresponds to the maximum entropy

aggregation when views completely disagree on cluster memberships. We pro-

pose an algorithm that augments the conventional Expectation-Maximization

framework using Rényi Divergence based co-regularization for learning multi-

view mixture models. We also treat a special case of this algorithm separately
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as Co-EM can be recovered as a special case of this algorithm for a particular

choice of the Rényi Divergence.

The proposed algorithms have been extensively evaluated and com-

pared not only with existing multiview clustering techniques, but also with re-

lated methods that deal with modeling multiple views jointly. A few instances

of such relevant techniques are consensus clustering models, collective matrix

factorization, joint latent variable models where the latent cluster member-

ships are exactly the same across views. The following section provides details

on the proposed algorithms to learn multiview mixture models using Rényi

Divergence based co-regularization.

Generative Model

Assume the generative model of the data as noted in Figure 2.1. Let

N denote the number of samples and V denote the number of views. Let

n ∈ [N ] index samples and v ∈ [V ] index views. Let xvn represent the observed

features for sample n in view v. Let the total number of clusters be K. Let

zvn ∈ {0, 1}K be the latent cluster membership of sample n in view v such that

only one element of the vector is 1. Thus if sample n belongs to cluster k in

view v, then the kth element of view v, i.e. zvn,k is 1 and the rest are 0. Let

πn ∈ ∆K be the prior probability of cluster membership zvn∀v ∈ [V ] for sample

n. Let Ψv = {Ψv
k} denote the set of all parameters of the mixture model for

view v. The generative procedure is briefly described here:

• For each sample n

– For each view v
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∗ Sample cluster membership indicator zvn ∼ p(z;πn) from a cat-

egorical distribution independently.

∗ Sample feature xvn ∼ p(x; zvn,Ψ
v) independently.

7.3.1 Alternating co-regularization and aggregation

Without co-regularization, the parameters πn and Ψv can be estimated

using Expectation-Maximization (Dempster et al., 1977) or EM that max-

imizes the expected log-likelihood of the data (
∑

n

∑
v log p(xvn, z

v
n;π,Ψv)).

Our proposed method augments the EM procedure to incorporate co-regularization

using Rényi divergences and is briefly described below.

7.3.2 GRECO and LYRIC: Algorithms for multiview clustering

Our first strategy, called global co-regularization estimates a global

posterior distribution g(zn) from per-view posteriors p(zvn|xvn,Ψv) as given by

minimizing (7.4)

g∗t (zn) = arg min
g(zn)

∑
i∈[V ]

wi
γ
Dγ(p(z

i
n|xin,Ψi

t)||g(zn)) (7.4)

where w , {wi} ∈ ∆V weighs each view appropriately and Dγ is an appropri-

ate Rényi divergence parametrized by view v. Indexing by t suggests estimates

of parameters at iteration t. Further, for any given view, we expect its poste-

rior estimates to be a trade-off between the current global estimate as well as

the view-specific cluster membership distribution. Thus, we estimate a new

posterior q(zvn) using the global estimate g∗t (zn) and the view-specific posterior

estimate p(zvn|xvn,Ψv
t ) by minimizing (7.5)

qt(z
v
n) = arg minq(zvn)

wg
γ
Dγ(g

∗
t(zn)||q(zvn)) +

(1− wg)
γ

Dγ(p(z
v
n|xvn,Ψv

t )||q(zvn))

(7.5)
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Algorithm 6 GRECO

Given data {xvn}, γ, w, Initialize πn, Ψv ∀v ∈ [V ], t = 0
repeat

for all v ∈ [V ] do
//View specific E-step with the latest estimates of Ψis
for all i ∈ [V ] do
p(zin|xin,Ψi

t) ∝ p(xin|zin,Ψi
t)p(z

i
n;πn) ∀n ∈ [N ] in parallel

end for
//Coherence enforcing steps for current view v:
Estimate g∗t (zn) by solving equation (7.4) using Algorithm 7 ∀n ∈ [N ]
in parallel
Estimate qt(z

v
n) by solving equation (7.5) using Algorithm 8 ∀n ∈ [N ]

in parallel
//M-step for current view v:
Using fixed responsibilities qt(z

v
n),

Ψv
t+1 ← arg maxΨv

∑
n∈[N ]

∑
k∈[K] qt(z

v
n,k) log p(xvn, z

v
n,k = 1; Ψv)

end for
t← t+ 1

until converged

The M-step is now executed for each view independently following standard es-

timation EM procedure albeit with the co-regularized estimates of posteriors.

Note that while inter-leaving expectation, co-regularization and maximization

steps, we update only a single view in any iteration to avoid co-regularization

against old and potentially disparaging posterior estimates. This, we believe

helps the algorithm avoid convergence to local minima providing improved em-

pirical performance on convergence. The complete algorithm is called GRECO

(Global REnyi divergence based CO-regularization) and is provided as Algo-

rithm 6:

Specific variational procedure to solve (7.4) and (7.5) are provided in

Algorithms 7 and 8.
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Algorithm 7 Variational Update to solve (7.4)

Given w ∈ ∆V , γ and Ψi
t ∀i ∈ [V ]

repeat
κi(zn) ∝ p(zin|xin,Ψi

t)
γg(zn)(1−γ) ∀i ∈ [V ]

g(zn) ∝
∑

i∈[V ] wiκ
i(zn)

until converged

Algorithm 8 Variational Update to solve (7.5)

Given wg, wv, γ, g∗(zn) and current parameter estimates, Ψv
t

repeat
κ∗(zn) ∝ g∗(zn)γq(zvn)(1−γ)

κv(zvn) ∝ p(zvn|xvn,Ψv
t )
γq(zvn)(1−γ)

q(zvn) ∝ wgκ
∗(zn) + wvκ

v(zvn)
until converged

A special case that we study separately is when wg = 1. Thus, we do not

have the additional trade-off between the view-specific posterior and the global

co-regularized posterior given by (7.5). In the absence of such regularization,

every iteration designates q(zvn) to be equal to g(zvn). This procedure, is called

LYRIC (LocallY weighted Rényi divergence Co-regularization) and is provided

as Algorithm 9. Note that this produces different co-regularized estimates per

iteration and hence may converge to different local minima.

A few other special cases that are noteworthy are briefly included here.

Special case I: γ → 1

Rényi divergence corresponding to the γ → 1 reduces the cost to a

weighted sum of KL-divergences with the target distribution on the right

hand side of KL-divergence (Storkey et al., 2014). Let the per-view poste-

rior, p(zi|xi,Ψi) be parametrized by θi ∈ ∆K . Let the target distribution
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Algorithm 9 LYRIC

Given data {xvn}, γ, w, Initialize πn, Ψv ∀v ∈ [V ], t = 0
repeat

for all v ∈ [V ] do
//View specific E-steps with the latest parameter estimates of
Ψis
for all i ∈ [V ] do
p(zin|xin,Ψi

t) ∝ p(xin|zin,Ψi
t)p(z

i
n;πn) ∀n ∈ [N ] in parallel

end for
//Coherence enforcing step for current view v:
Estimate qt(z

v
n) with equation 7.6 using Algorithm (8) ∀n ∈ [N ] in

parallel
//M-step for current view v:
Using fixed responsibilities qt(z

v
n),

Ψv
t+1 ← arg maxΨv

∑
n∈[N ]

∑
k∈[K] qt(z

v
n,k) log p(xvn, z

v
n,k = 1; Ψv)

end for
t← t+ 1

until converged

q(zvn), be parametrized by φv ∈ ∆K . The cost function given by (7.6)

qt(z
v
n) = arg min

q(zvn)

∑
i∈[V ]

wi
γ
Dγ(p(z

i
n|xin,Ψi

t)||q(zvn)) (7.6)

can be simplified to (7.7).

q(zv) = arg min
q(zv)

∑
i∈[V ]

wiKL
(
p(zi|xi,Ψi)‖q(zv)

)
(7.7)

For categorical distributions, the closed form solution of (7.7) is given by (7.8)

as was derived by Garg et al. (2004).

φv =
∑
i∈[V ]

wiθ
i (7.8)

The linear aggregation closed form solution is not specific to LYRIC and can be

generalized to GRECO for the choice of γ → 1 as well. Further, if wv = (1−α)
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for the view v currently being updated, and wi = α
V−1

, where 0 ≤ α ≤ 1 for

i 6= v, i ∈ [V ], the LYRIC algorithm recovers Co-EM when γ → 1. Thus we

recover that Co-EM is a special case of LYRIC.

Special case II: γ → 0

When γ → 0, (7.6) has been shown by Storkey et al. (2014) to be

equivalent to a minimization over a weighted sum of the KL-divergences with

the target distribution as the argument on the left-hand side of KL-terms. The

closed form solution in this case is an averaging of the parameters θi ∀i ∈ [V ]

in the log-space weighted by wi ∀i ∈ [V ] (Garg et al., 2004) as shown in (7.9).

The proof is detailed in Appendix C.

logφv =
∑
i∈[V ]

wi log θi (7.9)

This result is also general and applicable to (7.4) and (7.5) with ap-

propriate weighting. Conventionally, a product of experts (or equivalently

log-aggregation) model (Hinton, 2002; Storkey et al., 2014) uses such a prod-

uct to combine beliefs from independently trained models, for example in an

ensemble setting.

Computational Complexity

Co-regularization in each GRECO and LYRIC adds an additional com-

plexity of O(NKV 2) per iteration where N is the sample size, K is the num-

ber of clusters and V is the number of views, compared to the unregularized

method. These operations, however, can be trivially parallelized over data

samples as well as for calculations required to estimate unnormalized varia-

tional parameters for each cluster. For the case where all views are Gaus-
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sian mixtures, the complexity per outer iteration is O(NKV 2Tinner +NKV +∑
v∈[V ] d

2
vK) where Tinner is the number of inner iterations for variational es-

timation of co-regularized posteriors, dv is the dimension of view v. In each of

the special cases described earlier, i.e. when γ → 0 and γ → 1, the complexity

reduces to O(NKV +
∑

v∈[V ] d
2
vK) per iteration, same as that of Co-EM, due

to closed form solutions available for co-regularization.

7.3.3 Choice of weights and Rényi Divergences

The choice of γ and weights for both LYRIC and GRECO can be de-

termined using cross-validation w.r.t. a desired metric. For empirical studies,

we parametrize the weights for easy cross-validation. Let 0 ≤ α ≤ 1 be a

scalar. For every view v ∈ [V ] being updated, wv = 1−α. For all other views,

wi = α
V−1
∀ i ∈ [V ], i 6= v. At every stage in the outer loop of either GRECO

or LYRIC, the current view being updated is weighted by 1− α and the rest

are weighted equally α
V−1

. This also ensures fair comparison with Co-EM by

maintaining the same parametrization of weights. All experiments therefore

demonstrate that the choice of Rényi Divergences has a significant boost in

clustering performance.

7.3.4 Prediction on hold-out samples

For out-of sample cluster prediction, the conventional E-step with the

learned parameters is used to obtain per-view posteriors for a test sample

for all views independently. It is now desirable to obtain a single aggregate

posterior for each sample.

q(z) = arg min
q(z)

∑
v∈[V ]

w∗Dγ∗(p(z|xv,Ψv∗)||q(z)) (7.10)
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For LYRIC, a global posterior can then be obtained using (7.10), where γ∗ and

w∗ are chosen during training via cross-validation as described in Sec. (7.3.3)

and Ψv∗ is the set of learned parameters from LYRIC. Similarly for GRECO,

the E-step is run for all views independently followed by executing (7.10) to

obtain a global posterior. A hard clustering is simply the MAP assignment of

q(z).

7.3.5 Empirical evaluation

The proposed methods have been extensively compared with existing

multiview clustering models to show that the choice of divergence obtained

by tuning γ is of significance, as well as to demonstrate that Rényi diver-

gence is a reasonable choice for co-regularization. All datasets were trained

using both LYRIC and GRECO algorithms for different values of γ ∈ [0, 1]

discretized in the corresponding log-space. Very high values of Rényi diver-

gences did not matter significantly affect the performance. For all datasets,

ground-truth cluster labels are known and utilized for objective evaluation

and comparison to baselines. All models and baselines were trained on the

same training and hold-out data for five trials with best performing models

chosen based on average clustering accuracy for comparison purposes. The

mapping between cluster labels to ground truth labels is solved using Hun-

garian matching (Kuhn, 1955). For comparison to baselines, we only report

the best performance obtained across different choices of w and γ. Hold-

out assignment results have only been compared to baselines that explicitly

mention a mechanism to obtain hold-out cluster assignment and empirically

test the same. We report Clustering Accuracy, Precision, Recall, F-measure,

NMI (Strehl and Ghosh, 2003) and Entropy (Bickel and Scheffer, 2005) for
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our evaluation. Lower entropy is better while higher values of other metrics

show a better performing algorithm. All metrics are defined in Appendix E.

Note that the empirical evaluation here maintains prior cluster distribution πn

to be equal for all samples n for all probabilistic models, including GRECO

and LYRIC without loss of generality. Empirical convergence for a sample

fold with multiple initializations (in negative log-likelihood) of GRECO and

LYRIC have been included in Appendix F3. To the best of our knowledge, our

empirical evaluation is the most extensive evaluation of multiview clustering

methods compared to prior work in terms of the number of datasets, number

of views and comparison to existing baselines.

7.3.5.1 Baselines

The proposed methods are compared to an extensive set of baselines.

The baselines are briefly described here.

• Shared Latent Variable Model (Joint): An alternative way of mod-

eling multiple views is to have one latent variable that denotes the cluster

membership across all views. This is called the ‘Joint’ model. This model

is equivalent to concatenating views especially in the most commonly

assumed scenario i.e. all views are Gaussian mixtures with diagonal

covariances.

• Ensemble Clustering Model (Ensemble) (Strehl and Ghosh,

2003): This model trains each view independently followed by a consen-

sus evaluation. To predict the hard clustering assignment, the label cor-

3For the CUB dataset, we only have results with a single initialization for a single train-
test split. However, average over different splits shows the same trend.
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respondence among views is obtained using Hungarian matching (Kuhn,

1955). A single posterior is obtained using the same equation as (7.10)

with KL-divergence (log-aggregation), followed by a MAP assignment.

This method is compared to only when at most two views are available.

• Co-EM (Bickel and Scheffer, 2005): Co-EM estimates a mixture

model per view subject to cross-entropy constraints. The weights for

each view are parametrized by η ∈ [0, 1] and the results corresponding

to the best performing η are reported.

• Co-regularized Spectral Clustering (Co-reg(Sp)) (Kumar et al.,

2011): This is the state-of-the-art spectral multiview clustering. The re-

sults corresponding to the best performing λ parameter (between 0.01 to

0.1 as suggested by authors) are reported. The implementation provided

by the authors is used.4.

• Minimizing Disagreement (Min-dis(Sp)) (Sa, 2005): This is an-

other spectral clustering technique proposed by (Sa, 2005) for 2 views

only. The implementation used was implemented and compared to by Ku-

mar et al. (2011).

• CCA for Mixture Models (CCA-mvc) (Chaudhuri et al., 2009):

This method uses Canonical Correlation Analysis to project views on a

lower dimensional space. This model can be used for 2 views only.

• NMF based Multiview Clustering (NMF-mvc)(Liu et al., 2013):

This method uses non-negative matrix factorization for multiview clus-

4http://www.umiacs.umd.edu/~abhishek/papers.html
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tering. The original implementation provided by the authors was used

for empirical evaluation5.

A k-means clustering algorithm is used independently for each view to ini-

tialize distribution parameters for all probabilistic models. An approximate

Hungarian matching problem is solved using the k-means cluster assignments

for initialization.

7.3.5.2 Datasets

The datasets are chosen referencing prior work in multiview clustering.

Details of the datasets are provided in the following.

• Twitter multiview6(Greene and Cunningham, 2013): This is a

collection of twitter datasets in five topical areas (politics-UK, politics-

Ireland, Football etc.). Each user has views corresponding to users they

follow, their followers, mentions, tweet content etc. We use the politics-

uk dataset with three views (mentions, re-tweets and follows). The labels

correspond to one of five party memberships of each user. Each view is

a bag-of-words vector and modeled as a mixture of multinomials for the

probabilistic models.

• WebKB7: This dataset consists of web page information from four uni-

versity websites: Cornell, Texas, Washington and Wisconsin. We show

results for the Cornell dataset. Each sample is a web page with two

views, one view of which is the text content (bag-of-words) format and

5http://jialu.cs.illinois.edu/
6http://mlg.ucd.ie/aggregation/
7http://lig-membres.imag.fr/grimal/data.html
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web-links into and out of the web page (binary bag-of-words vector).

Each web page can be clustered into one of five topics. Each view is

modeled as a mixture of multinomials.

• NUS Wide Object8(Chua et al., 2009): This dataset consists of

31 object classes. Of these, we sub-sample in a balanced manner for

10 classes, with 50 samples belonging to each class. We use 6 views,

namely edge histograms (mixture of Gaussians), bag-of-visual words of

SIFT features (mixture of multinomial distributions) and normalized

correlogram (mixture of Gaussians), color histogram (mixture of multi-

nomials), wavelet texture (mixture of Gaussians) and block-wise color

moments (mixture of Gaussians).

• CUB-200-20119(Wah et al., 2011): This dataset consists of 200

classes and 11,800 data samples. We use the binary attributes and Fisher

Vector representations of images as our views. The binary attributes are

modeled as mixture-of-multinomials and the Fisher vectors as Gaussian

mixtures. We assume diagonal covariances for all views modeled as a

mixture of Gaussians in all datasets.

7.3.5.3 Results

Tables 7.2, 7.3, 7.4 and 7.5 show clustering and out-of-sample cluster

assignment results for the datasets mentioned in Section 7.3.5.2 in that or-

der. Note that results are marked NA if any of the baseline methods were not

extendable to more than two views or could not be compared due to limit-

8http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
9http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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ing model assumptions e.g. non-negativity required by NMF-mvc (Liu et al.,

2013). The tables only consist of results corresponding to the γ parameter that

provided the best results across different choices of γ for both GRECO and

LYRIC on a hold-out dataset. Additionally, Figure 7.5 shows performance

of GRECO and LYRIC using different Rényi divergences parametrized by

log (γ) in comparison with Co-EM, that uses linear aggregation, correspond-

ing to γ → 1. The performance across different γ provides further insights

into performance of the proposed co-regularization method.

The proposed methods outperform almost all the baselines consistently

across different datasets. In addition, hold-out cluster assignment performance

is better for both models across most datasets. Improved performance over

ensemble methods suggests co-regularization improves on the view-wise clus-

tering approaches. In addition, results also suggest that sharing a single la-

tent variable (see Joint Model) across views is restrictive. In the low bias

regime, GRECO has particular advantages over LYRIC because of the ad-

ditional trade-off in regularization. When the bias across views is low, the

additional regularization potentially accelerates convergence by restricting the

deviation from view-specific unregularized posteriors, especially when initial

model parameters may be noisy. In the high bias case, LYRIC shows some

advantage (see Table 7.3-WebKB data). It is important to note that overall,

the general trend of performance of both GRECO and LYRIC is consistent

for each dataset (see Figure 7.5). In particular, the performance peaks for the

most appropriate choice of γ that best captures inherent biases across views

for both algorithms for all datasets and this choice of divergence is the same

for GRECO as well as LYRIC.

For Twitter data, the γ parameter of 0.01 resulted in the best clustering
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accuracy as measured on hold-out set (see Table 7.2). This provides further

insight that the views do have some bias in the latent clustering distribution.

In the absence of such a bias, the best clustering parameter should have cor-

responded to γ → 0. Thus the value of the divergence parameter γ provides

an intuitive understanding of inherent incoherence in clustering beliefs in the

data. It is notable that characterizing this bias has resulted in almost an order

of magnitude increase in clustering accuracy compared to baselines like mul-

tiview NMF and spectral clustering methods. To the best of our knowledge,

there is little work in terms of designing robust learning models when underly-

ing model assumptions may be violated. The results on Twitter data strongly

highlight the significance of such an approach.

Similar observations on the WebKB data suggests a high degree of inco-

herence across views on the clustering distributions, suggested by the fact that

linear aggregation (γ → 1) provides the best results on the hold-out dataset.

Note that in such a scenario, i.e. when views completely disagree (in terms

of the MAP estimate of the clustering) across views, learning each view inde-

pendently is equally useful, as demonstrated by competitive performance of

Ensemble methods relative to GRECO and LYRIC. Again, this further rein-

forces the advantage of our model in terms of robustness to violations of model

assumptions. Figure 7.5 also suggests that as the underlying bias is assumed

increase, the model performance in both LYRIC and GRECO consistently im-

proves. In addition, the improvement over Co-EM at γ → 1 suggests that the

method proposed to estimate a hold-out clustering assignment using (7.10)

is better or comparable to that of Co-EM. Note that although GRECO and

LYRIC do not perform the best on training data in terms of NMI and Entropy,

the results on hold-out set are competitive - suggesting that the models do not
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overfit the training data.

From the results of NUS Wide Object dataset, where 6 views are mod-

eled jointly, the improvement in performance is significant when an appropriate

divergence parameter γ is used, as compared to Co-EM, which enforces linear

aggregation and the joint model that estimates a single clustering posterior

across all views. This further suggests advantages of GRECO and LYRIC

when the number of views available is large. The best performing divergence

parameter is relatively high (γ = 0.1). This also suggests that as the number of

views being modeled increases, the views are likely to be more incoherent and

an assumption of a high bias (higher γ) is a better modeling assumption. This

is also apparent from the deteriorated performance of the joint model. Both

GRECO and LYRIC perform the best at the limiting case wg = 1 as expected

in a slightly high bias case, when additional regularization of GRECO is not

necessarily advantageous. Figure 7.5 also suggests that at lower values of γ

both LYRIC and GRECO may be getting stuck in local minima (suggested

by the high observed variance at γ = 0.01) potentially reflecting sensitivity to

choice of γ for this data.

For a large dataset like CUB-200-2011 with 200 clusters and ∼11,000

samples and high dimensionality (∼8000), the improvement in unsupervised

learning performance of GRECO and LYRIC is more pronounced compared

to Co-EM even though the best performance is obtained at γ → 1. This sug-

gests that our inference on hold-out set works better than Co-EM. Further,

the best performance divergence parameter γ → 1 suggests the attribute view

and the Fisher vector views, used from the CUB 200 2011 data, are poten-

tially incoherent in terms of the latent clustering distribution. Comparison to

other probabilistic methods, i.e. Joint model and Ensemble model, suggest
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Table 7.2: Twitter data (politics-uk, 3 views), best results obtained for γ =
0.01 for GRECO and LYRIC. Ensemble model, CCA-mvc, Min-dis(Sp) can
cluster at most two views and marked NA otherwise. Co-reg(Sp), Min-dis(Sp)
and NMF-mvc do not explicitly compare hold-out cluster assignment results
and have not been compared to for hold-out assignment performance. Top
two methods w.r.t. each metric are highlighted.

Clustering Results

Method Accuracy Precision Recall F-measure NMI Entropy Time (sec.)

GRECO 0.9075(0.0201) 0.9403(0.0316) 0.8713(0.0366) 0.9039(0.0217) 0.7887(0.0478) 0.2971(0.1001) 7.1241(1.0122)
LYRIC 0.886(0.0284) 0.9601(0.01) 0.8441(0.0596) 0.8976(0.0372) 0.8045(0.0403) 0.2434(0.0431) 7.0888(0.9755)
Co-EM 0.8346(0.0488) 0.8973(0.0346) 0.7559(0.0757) 0.8197(0.0566) 0.7058(0.0406) 0.3876(0.0536) 2.3714(0.9746)
Joint 0.7893(0.0491) 0.7737(0.0792) 0.7167(0.0679) 0.7413(0.0535) 0.5806(0.053) 0.6497(0.11) 0.3623(0.1047)
Ensemble NA NA NA NA NA NA NA
Co-reg(Sp) 0.557(0.0221) 0.7122(0.0215) 0.4326(0.0197) 0.5382(0.0213) 0.5079(0.018) 0.6329(0.0293) 1.6324(0.1538)
CCA-mvc NA NA NA NA NA NA NA
Min-dis(Sp) NA NA NA NA NA NA NA
NMF-mvc 0.4418(0) 0.3802(0) 0.972(0) 0.5466(0) 0.0161(0) 1.5769(0) 6.0709(0.0895)

Hold-out Cluster Assignment Results

GRECO 0.9238(0.0136) 0.9047(0.0384) 0.9021(0.0559) 0.9022(0.0307) 0.7784(0.0418) 0.3417(0.0703) NA
LYRIC 0.8452(0.0854) 0.8537(0.0283) 0.8123(0.1353) 0.8291(0.0888) 0.6803(0.0635) 0.4438(0.0697) NA
Co-EM 0.781(0.0287) 0.8282(0.0406) 0.6735(0.0425) 0.7425(0.0379) 0.5916(0.0566) 0.4988(0.1454) NA
Joint 0.769(0.0644) 0.6629(0.064) 0.7093(0.1399) 0.6797(0.0828) 0.4916(0.0829) 0.7895(0.1495) NA
Ensemble NA NA NA NA NA NA NA
CCA-mvc NA NA NA NA NA NA NA

restrictive model assumptions may fail and general methods like GRECO and

LYRIC may be more reliable in large scale settings. Ensemble model also

relies on Hungarian matching to solve the correspondence problem between

cluster indices (200 clusters) across views. Improved performance in GRECO

and LYRIC is obtained at a significant computational cost compared to CCA-

mvc which provides comparable performance very fast. This corroborates the

model assumptions made by CCA-mvc, namely that views of a sample are un-

correlated conditioned on cluster identity of sample (weaker assumptions than

those made by the Joint model) can provide improvement in unsupervised

learning performance. Faster inference for GRECO/LYRIC in such settings

can be obtained by parallelization and/or any improvements to the variational

inference procedure used to impose co-regularization.

Overall, the best Rényi divergence suitable for a particular dataset
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Figure 7.5: Clustering Accuracy of GRECO and LYRIC w.r.t. log γ on (a)
Twitter data (b) WebKB data (c) NUSWideObj data and (d) CUB 200 2011
data

differs, indicating that GRECO and LYRIC capture potential differences in

coherence between views with respect to cluster memberships significantly

better than comparable methods. The biases between views demonstrably af-

fect clustering performance. This also suggests that the multiview assumption

of a single underlying cluster membership distribution is not always satisfied

in real data. Thus flexible models such as GRECO and LYRIC are preferable.

All results further show that the choice of the class of Rényi divergences is

beneficial for improving multiview clustering performance and both methods
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Table 7.3: Cornell (WebKB 2-views), best results obtained for γ = 0.1 for
GRECO and γ → 1 for LYRIC

Clustering Results

Method Accuracy Precision Recall F-measure NMI Entropy Time(sec.)

GRECO 0.5859(0.0148) 0.431(0.0385) 0.617(0.0451) 0.5066(0.0327) 0.2747(0.0145) 1.5578(0.0379) 0.3404(0.0323)
LYRIC 0.5885(0.0254) 0.4135(0.0351) 0.6591(0.0292) 0.5075(0.0295) 0.2771(0.024) 1.5697(0.0489) 0.3174(0.03)
Co-EM 0.5269(0.0325) 0.3753(0.0324) 0.5485(0.0777) 0.4432(0.0374) 0.1908(0.0187) 1.7216(0.0366) 0.8036(0.1299)
Joint 0.4179(0.025) 0.3232(0.0184) 0.4805(0.0849) 0.3846(0.0334) 0.1405(0.0084) 1.8257(0.0051) 0.1855(0.0178)
Ensemble 0.5064(0.0304) 0.3535(0.0199) 0.6008(0.1335) 0.4376(0.0326) 0.2099(0.0352) 1.7026(0.0592) 0.0341(0.0011)
Co-reg(Sp) 0.5551(0.0494) 0.5083(0.0157) 0.4596(0.0354) 0.4824(0.0252) 0.3929(0.0167) 1.2719(0.0386) 2.065(0.0201)
CCA-mvc 0.4526(0.014) 0.3118(7e-04) 0.4751(0.0304) 0.3762(0.0095) 0.1665(0.0019) 1.2664(0.0903) 0.0786(0.0188)
Min-dis(Sp) 0.3756(0.0154) 0.32(0.0023) 0.3116(0.0524) 0.3139(0.0251) 0.1614(0.0048) 1.7744(0.0207) 0.0904(0.0366)
NMF-mvc 0.4103(0) 0.2606(0) 0.9605(0) 0.41(0) 0.0569(0) 2.0497(0) 5.6911(0)

Hold-out Cluster Assignment Results

GRECO 0.4513(0.0739) 0.2995(0.051) 0.5782(0.1985) 0.3872(0.0795) 0.1777(0.0573) 1.7211(0.147) NA
LYRIC 0.5026(0.0693) 0.3493(0.0683) 0.5541(0.2054) 0.4238(0.1034) 0.2223(0.1096) 1.63(0.2153) NA
Co-EM 0.4205(0.0862) 0.2788(0.0606) 0.538(0.1851) 0.3626(0.0908) 0.1762(0.035) 1.7269(0.0966) NA
Joint 0.4564(0.0585) 0.2861(0.0344) 0.6214(0.0806) 0.39(0.0391) 0.1934(0.0583) 1.7096(0.0844) NA
Ensemble 0.5487(0.1082) 0.4123(0.1742) 0.7356(0.107) 0.5016(0.1051) 0.2981(0.1633) 1.5027(0.407) NA
CCA-mvc 0.4103(0) 0.3103(0.007) 0.4(0.0123) 0.3494(0.0074) 0.1192(0.0191) 1.7107(0.0361) NA

Table 7.4: NUSWideObj Dataset (6 views), best results obtained for γ= 0.1
for GRECO and LYRIC. Since this data has three views that take negative
values, we do not compare against NMF-mvc. CCA-mvc and Min-dis(Sp)
cannot be extended for more than two views.

Clustering Results

Method Accuracy Precision Recall F-measure NMI Entropy Time (sec.)

GRECO 0.3805(0.0089) 0.245(0.0058) 0.3362(0.0347) 0.2829(0.0146) 0.3276(0.0199) 2.2687(0.0574) 8.0385 (1.2579)
LYRIC 0.3805(0.0089) 0.245(0.0058) 0.3362(0.0347) 0.2829(0.0146) 0.3276(0.0199) 2.2687(0.0574) 8.0099(1.2586)
Co-EM 0.347(0.0118) 0.2171(0.011) 0.3006(0.0184) 0.2518(0.0092) 0.2903(0.0089) 2.3918(0.0319) 4.3041(0.7188)
Joint 0.3115(0.0151) 0.1882(0.016) 0.346(0.0303) 0.2437(0.0202) 0.2454(0.0157) 2.5884(0.0481) 2.8231(0.7605)
Ensemble NA NA NA NA NA NA NA
Co-reg(Sp) 0.3785(0.0202) 0.2629(0.0128) 0.2816(0.0196) 0.2718(0.0153) 0.318(0.0162) 2.273(0.0531) 2.5275(0.0541)
CCA-mvc NA NA NA NA NA NA NA
Min-dis(Sp) NA NA NA NA NA NA NA
NMF-mvc NA NA NA NA NA NA NA

Hold-out Cluster Assignment Results

GRECO 0.412(0.0409) 0.225(0.0228) 0.3369(0.0177) 0.2691(0.017) 0.4178(0.0246) 1.9934(0.0893) NA
LYRIC 0.412(0.0409) 0.225(0.0228) 0.3369(0.0177) 0.2691(0.017) 0.4178(0.0246) 1.9934(0.0893) NA
Co-EM 0.372(0.0217) 0.2074(0.0232) 0.2964(0.0405) 0.2437(0.0289) 0.3975(0.026) 2.052(0.0856) NA
Joint 0.334(0.0241) 0.1806(0.019) 0.352(0.0374) 0.2387(0.0248) 0.329(0.0294) 2.3533(0.092) NA
Ensemble NA NA NA NA NA NA NA
CCA-mvc NA NA NA NA NA NA NA

generalize better to unseen data compared to baselines.

A comparison of training time suggests that the increased accuracy of

GRECO and LYRIC is obtained at the cost of increased training time. How-

ever, the variational update required for co-regularization is the major con-
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Table 7.5: CUB-200-2011 (2 views), best results obtained for γ → 1 for
GRECO and LYRIC. Since this data has a view that takes negative values,
we do not compare against NMF-mvc.

Clustering Results

Method Accuracy Precision Recall F-measure NMI Entropy Time (sec.)

GRECO 0.2231(0.0039) 0.1052(0.0034) 0.1757(0.005) 0.1316(0.0038) 0.5109(0.006) 3.8498(0.0508) 2255.5(169.34)
LYRIC 0.2189(0.0061) 0.099(0.004) 0.1748(0.005) 0.1264(0.0036) 0.5071(0.0051) 3.8867(0.045) 2069.6(143.74)
Co-EM 0.0939(0.0104) 0.0111(0.0014) 0.0891(0.0135) 0.0197(0.0019) 0.301(0.0146) 5.5905(0.1318) 3355.9(2382.4)
Joint 0.0715(0.0035) 0.0109(2e-04) 0.0582(0.0035) 0.0183(2e-04) 0.2473(0.0063) 5.9822(0.0511) 2004.1(124.85)
Ensemble 0.0432(9e-04) 0.0084(3e-04) 0.0809(0.0119) 0.0151(3e-04) 0.1756(0.0067) 6.5442(0.0589) 767.78(56.32)
Co-reg(Sp) 0.2118(0.0081) 0.1031(0.0042) 0.118(0.0053) 0.11(0.0046) 0.4896(0.0059) 3.9224(0.0431) 901.21(11.716)
CCA-mvc 0.2213(0.007) 0.0759(0.0066) 0.1527(0.0069) 0.1012(0.006) 0.5003(0.0038) 3.4551(0.0454) 4.8814(0.1651)
Min-dis(Sp) 0.1994(0.0093) 0.0795(0.0043) 0.1214(0.0077) 0.0961(0.0054) 0.4691(0.0055) 4.1377(0.0408) 594.78(20.514)
NMF-mvc NA NA NA NA NA NA NA

Hold-out Cluster Assignment Results

GRECO 0.2133(0.0078) 0.0601(0.0046) 0.1304(0.008) 0.0822(0.0057) 0.57(0.0048) 3.4714(0.0417) NA
LYRIC 0.2066(0.0085) 0.0531(0.0027) 0.1284(0.0045) 0.0751(0.0025) 0.5644(0.0043) 3.5276(0.0417) NA
Co-EM 0.0712(0.0712) 0.0086(0.0086) 0.1208(0.1208) 0.0159(0.0159) 0.3347(0.02) 5.5129(0.1822) NA
Joint 0.0603(0.0603) 0.0093(0.0093) 0.0671(0.0671) 0.0163(0.0163) 0.3259(0.0116) 5.5296(0.0935) NA
Ensemble 0.0508(0.0508) 0.0088(0.0088) 0.09(0.09) 0.016(0.016) 0.2808(0.0182) 5.8884(0.1399) NA
CCA-mvc 0.2512(0.0064) 0.0727(0.0048) 0.1444(0.0081) 0.0965(0.004) 0.6043(0.0023) 3.158(0.0248) NA

tributing factor to training time. Since these updates can be trivially executed

in a distributed setting across samples as well as for estimating unnormalized

cluster membership distributions, the training time can be easily improved.

Further, any alternative inference procedure to solve the co-regularization con-

straint will directly improve training times for the proposed method. Also note

that training times are comparable to Co-EM and other baselines for special

cases (see Tables 7.3 and 7.5).

Additional advantages of GRECO and LYRIC compared to other meth-

ods are noteworthy. Both Twitter and WebKB datasets consist of at least one

view with relational data. The twitter data is sparse (as is the case with so-

cial network data), i.e., a lot of the entries are 0. In these cases probabilistic

methods outperform other methods suggesting the importance of probabilistic

models in general. The NUS Wide Object dataset and CUB datasets have

mixed views, i.e. bag-of-words as well as numeric features (e.g. Fisher vector
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representations). Empirical evaluation also demonstrates that our methods

handle mixed data well.

Some limitations of the proposed methods arise in selecting an appro-

priate choice of weights and the best suited Rényi divergence parameter for a

given dataset. Storkey et al. (2014) have proposed a method for automatic

selection of weights which can be easily incorporated in GRECO or LYRIC

via minor changes to the variational procedures described in Appendix A.

However, we chose to use manual selection of weights in order to highlight

significance of the choice of Rényi divergences as opposed to a finer choice

of weights, especially to highlight the generalization over Co-EM. Note that

automatic selection or learning the best divergence parameter in an unsuper-

vised setting suitable for a given data is a challenging and novel problem that

we expose. Particularly, conventional model selection methods that trade-off

model complexity and likelihood are not applicable in this scenario as model

complexity does not change w.r.t. different γ. Automatic selection of such

a model parameter is deferred to future work. However, we point out that

both GRECO and LYRIC provide better performance compared to all exist-

ing baselines for all choices of γ that we tested. A more appropriate choice of

γ further boosts performance.

7.4 Conclusion

This chapter proposes a constraint based method for semi-supervised

learning. We propose algorithms for LeTOR as well as clustering domain.

We assume the existence of heterogeneous data sources or views, as is quite

common in practice. To leverage these views in lieu of expert annotation,

we constrain the view specific model parameters to agree on the target rank
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ordering for the ranking task or the distributions over the latent cluster mem-

berships for the clustering task. We propose a co–regularization technique

to constrain the views to encourage such agreement across views. The pro-

posed method demonstrated competitive and/or state of the art performance

with respective baselines for both the ranking as well as the clustering task on

multiple datasets. Thus, constraint based methods like co-regularization are

useful in leveraging additional information to learn reliably in the absence of

expert annotation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation addresses the task of developing interpretable, ex-

plainable, and semi-supervised machine learning models. We develop our

framework using latent variable models. We argue that constraining different

aspects of latent variable models in novel ways allows to address the aforemen-

tioned practical machine learning challenges. The constraints can be applied to

realizations of sample specific latent representations, model parameters and/or

as probabilistic generative assumptions on the data.

In particular, we motivate interpretable models as a class of models

that generate outcomes that satisfy specific interpretability criterion. For this

class of models, interpretability is encouraged by constraining individual real-

izations of latent variables. In order to constrain the latent variables, we show

that algorithms under the class of Majorization–Maximization, i.e. those that

do not marginalize our the latent variables as the most amenable class of al-

gorithms. Chapter 3 discusses a general abstraction of such an interpretable

machine learning framework, including potential advantages and/or disadvan-

tages.

The proposed framework is evaluated on clinical healthcare, our pri-

mary application domain. We focus on phenotyping for chronic conditions

of an ICU patient population using clinical notes. A grounding framework is
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proposed in Chapter 3 as a means to ensure the proposed phenotyping models

are physiologically relevant to the target chronic conditions. Chapter 4 dis-

cusses how the grounding framework can be incorporated in our model using

computable weak diagnoses that are easily available in administrative clinical

data. This suggests that expensive human annotations is not a requirement to

make these models inherently interpretable. Chapter 4 also discuss in detail

how such weak diagnoses can be extracted from clinical data and the proce-

dure for extracting clinical notes to generate observational data. We discuss

this in the context each of the proposed models, namely, 1. Grounded NMF

(see 5.1) and 2. Grounded admixtures of PMRFs (see 5.2) .

Chapter 5 discusses each of the proposed models in detail. In particular,

for each model, the interpretability constraints are represented as constraints

on latent realizations as well as model parameters within each framework. An

algorithm is proposed in each case to tractably learn model parameters. An

updated inference procedure is proposed, if necessary. Each model is learned

to recover phenotypes for chronic conditions for ICU patients as represented

by the data processing detailed in Chapter 4. Each model is extensively eval-

uated in terms of two main criteria: (a) The quality of learned phenotypes in

terms of their clinical relevance in comparison to competitive baselines, thereby

evaluating the potential of the proposed grounding framework, and (b) The

predictive power of the learned phenotype representations in determining pa-

tient outcome, thereby quantitatively evaluating how model performance is

affected by the proposed interpretability criteria . The evaluation demon-

strates that the learned phenotypic representations are qualitatively better as

well as competitive in terms of predicting patient outcome and/or diagnoses.

Explainable Machine Learning refers to models that explain decisions of

118



existing complex models at a desirable abstraction. We demonstrate a method

to provide such explanations using examples. The proposed method relies on

constraining the generation of examples so that the manifold around the deci-

sion boundary can be explored in novel ways. Chapter 6 details the algorithm

used to constrain sample generation by characterizing the data manifold. We

demonstrate how this procedure can be used to provide explanations for com-

plex black-box models, like deep learning models, when other performance

metrics may be comparable.

In Chapter 7, we discuss how constraints can be used to learn ranking

models as well as clustering models in the presence of little to no supervision.

In particular, we leverage the available heterogeneous data sources for semi-

supervised learning. We encourage models to agree on solutions across all data

sources over samples where annotation is not available via constraints. These

constraints, when imposed during training, is known as co–regularization. We

design novel clustering and a listwise LeTOR models using this general frame-

work. The proposed methods are extensively compared to existing baselines,

in each case to demonstrate reliable performance on web-document clustering,

social media, as well as information retrieval applications.

8.2 Future Work

One can also generalize the interpretability framework to not only apply

the proposed framework to other relevant class of models, but also to appli-

cations beyond clinical healthcare (like fMRI, climate science data, etc.). In

particular, this requires generalizing the grounding framework in order to in-

corporate other application specific domains. However, the general abstraction

as well as the general insight remains the same. An interesting and compelling
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direction of theoretical research is to analyze the identifiability of grounding

framework in all the proposed latent variable models.

One can also formulate a representation of explanations for black-box

models in multiple ways. Particularly, we could extend the explanations frame-

work beyond relying on individual examples. Additionally, drawing from Miller

(2017), we can develop explanations using counterfactuals using the causal in-

ference framework (Pearl, 2009). In general, we posit that these framework are

amenable to personalized explanations, especially relevant for clinical health-

care.

Finally, theoretically analyzing the class of multiview models, partic-

ularly clustering as well as LeTOR models (proposed in Chapter 7) remains

a challenging problem. In particular, as observed in 7.3, the choice of Breg-

man Divergences crucially affects clustering performance. We conjecture that

this may be associated in the amount of bias views may have with respect

to the underlying clustering distribution. Similarly, while supervised listwise

LeTOR using Monotone Retargeting has been theoretically analyzed for con-

vergence by Acharyya et al. (2012); Acharyya and Ghosh (2014), analyzing

the semi–supervised version as proposed in Chapter 7 has not, in part due to

what we call the dynamic shifting problem of the conic set of isotonic vectors

as model training progresses. Further, generalizing MR-CORE to other diver-

gence functions as well as scaling the method to large scale web dataset is a

compelling future direction.
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Appendix A

Phenotyping using Grounded NMF

Additional Results for Phenotyping using Grounded NMF (Chapter 5)

are provided in the following.

A.1 Phenotype sparsity

As suggested in Section 5.1.4.1, there is an inherent trade off between

fit to the cost function and desired sparsity. The trade-off is made explicit

for λ–CNMF in Figure A.1. The sparsity of LLDA is controlled by tuning

the hyperparameter (β) of the word-topic multinomial parameters (Blei et al.,

2003) and for MLC via the `1 regularization parameter η. A smaller value of

β ensures that the word-topic probabilities are sparse. As the value of β is

increased, sparsity decreases (i.e. number of non-zero elements increases). For

logistic regression (used by MLC), as the `1 regularization parameter increases,

sparsity increases. Figure A.2(a) demonstrates the sparsity of the estimated

phenotypes for LLDA and Figure A.2(b) shows that of logistic regression. We

choose phenotypes obtained at β = 1 × 10−8 and η = 100 for qualitative an-

notation. The parameters were chosen to achieve the lowest median sparsity

while ensuring that for each chronic condition, the corresponding phenotype

candidate is represented by at least 5 non-zero clinical terms. Our fourth

baseline (NMF + support) did not estimate sparse phenotypes and does not

have a tuneable sparsity parameter (but were nevertheless annotated for qual-
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itative evaluation). The proposed model provides the best sparsity among all

baselines.
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Figure A.1: Sparsity–Accuracy Trade–off. Sparsity of the model is measured
as the median of the number of non-zero entries in columns of the phenotype
matrix A. (a) shows a box plots of the median sparsity across the 30 chronic
conditions for varying λ values. The median and third–quartile values are
explicitly noted on the plots. (b) divergence function value of the estimate
from Algorithm 3 plotted against λ parameter.

A.2 Sample phenotypes for baseline models

Figures A.3–A.29 show the top 15 terms learned for all target chronic

conditions for the proposed model and baselines. The sparsity level chosen

is based on the criterion described in Section 5.1.4.1. For all conditions, the

terms are ordered in decreasing order of importance as learned by the models.
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Figure A.2: Phenotype sparsity for baseline models
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Figure A.3: Learned Phenotypes for Liver Disease
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glioblastoma
brain_tumor
nsclc
neoplasm
abdominal_mass
hepatocellular_carcinoma
bladder_ca
chemoradiation
mets
bronchopleural_fistula
partial_obstruction

0.4-CNMF
bleeding
pain
pericardial_effusion
mass
hypotension
stress_ulcer
dvt
abdominal_pain
edema
hemoptysis
malignant_neoplasm
cancer
sob
chest_pain
pe

LLDA
hepatocellular_carcinoma
thyroid_ca
brain_tumor
glioblastoma
end_stage_liver_disease
calcifications
prostate_cancer
cancer
bladder_ca
ovarian_cancer
pancreatic_cancer
incisional_pain
colon_cancer
lung_cancer
tumor

MLC
bleeding
pain
nausea
dvt
chest_pain
edema
gi_bleed
cad
gib
vomiting
diverticulosis
hypotension
stress_ulcer
abdominal_pain
bleed

NMF+support

Figure A.4: Learned Phenotypes for Solid Tumor
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metastatic
metastatic_melanoma
metastatic_disease
metastatic_prostate_cancer
metastatic_renal_cell_carcinoma
melanoma
metastases
metastasis
mets
pancreatic_cancer
lung_mass
metastatic_colon_cancer
metastatic_cancer
metastatic_renal_cell_cancer
ovarian_ca

0.4-CNMF
pain
mass
hypotension
malignant_neoplasm
metastatic
stress_ulcer
tumor
sob
cancer
metastatic_disease
nausea
dyspnea
pe
pleural_effusion
respiratory_failure

LLDA
metastatic
metastatic_disease
lung_cancer
metastatic_melanoma
tumor
metastasis
metastatic_renal_cell_carcinoma
metastases
mets
metastatic_prostate_cancer
ovarian_ca
lung_mass
pancreatic_cancer
lung_nodules
hypovolemia

MLC
pain
edema
mass
fever
pneumothorax
respiratory_failure
dvt
atelectasis
pleural_effusion
hypoxia
stress_ulcer
sob
cough
pneumonia
crackles
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Figure A.5: Learned Phenotypes for Metastatic Cancer

copd
asthma
chronic_obstructive_pulmonary_disease
emphysema
bronchitis
asbestosis
copd_exacerbation
obstructive_lung_disease
personality_disorders
pulmonary_infarct

0.4-CNMF
copd
respiratory_failure
asthma
pneumonia
sob
emphysema
pna
dyspnea
stress_ulcer
chf
htn
hypotension
respiratory_distress
cad
cough

LLDA
copd
asthma
emphysema
wheezes
bronchiectasis
asbestosis
aaa
wheezing
lung_cancer
respiratory_failure
resp_status
colon_ca
hives
lesion
pneumothorax

MLC
pain
edema
copd
chest_pain
pneumothorax
sob
stress_ulcer
cad
chf
nausea
cough
hypotension
pneumonia
asthma
atelectasis
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Figure A.6: Learned Phenotypes for Chronic Pulmonary Disorder

etoh_abuse
alcohol_abuse
alcohol_withdrawal
alcoholic_cirrhosis
alcoholism
delirium_tremens
alcoholic_hepatitis
withdrawal_symptoms
neuroleptic_malignant_syndrome
pancreatic_necrosis
dts
hepatorenal_failure
thiamine_deficiency
dt
alcoholic_cardiomyopathy

0.4-CNMF
pancreatitis
etoh_abuse
agitation
agitated
seizures
seizure
alcohol_withdrawal
pain
alcohol_abuse
stress_ulcer
edema
withdrawal
fall
altered_mental_status
htn

LLDA
etoh_abuse
alcoholic_cirrhosis
tremors
alcohol_abuse
alcoholism
withdrawal
cirrhosis
alcoholic_hepatitis
fracture
malaise
upper_gi_bleed
obstructive_sleep_apnea
agitated
liver_failure
pancreatitis

MLC
pain
edema
pneumothorax
hemorrhage
agitation
stress_ulcer
agitated
cough
fall
fever
stroke
seizure
subarachnoid_hemorrhage
hematoma
fracture
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Figure A.7: Learned Phenotypes for Alcohol Abuse

125



dm
dm2
diabetes_mellitus
niddm
type_2_diabetes
type_ii_diabetes
diabetes
diabetes_type_ii
type_2_diabetes_mellitus
convulsive_status_epilepticus
diabetes_type_2
diabetes_mellitus_type_2
skin_ulcers
hypercoagulable
chest_pains

0.4-CNMF
pain
dm
htn
edema
cad
stress_ulcer
diabetes_mellitus
chest_pain
hypertension
dm2
chf
diabetes
hypotension
sob
bleeding

LLDA
niddm
dm2
diabetes
dm
obese
sinus_rhythm
coronary_artery_disease
facial_droop
cardiomegaly
pseudocyst
pulm_edema
tachypnea
hyperglycemia
delirium
necrotizing_pancreatitis

MLC
pain
pneumothorax
edema
atelectasis
pleural_effusion
dm
stroke
cough
htn
stress_ulcer
nausea
bleeding
chest_pain
sob
hematoma
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Figure A.8: Learned Phenotypes for Diabetes Uncomplicated

dm
hypoglycemia
retinopathy
gastroparesis
neuropathy
diabetes_mellitus
esrd
foot_infection
end_stage_renal_disease
hypoglycemic
cerebritis
diabetic_neuropathy
foot_ulcer
nephropathy
mastoiditis

0.4-CNMF
dm
htn
hypoglycemia
diabetes_mellitus
cad
pain
hyperkalemia
diabetes
dm2
hypertension
stress_ulcer
hyperglycemia
chest_pain
wound
anemia

LLDA
neuropathy
retinopathy
peripheral_neuropathy
av_fistula
dm
hypoglycemia
osteomyelitis
gastroparesis
cardiomegaly
diabetes
cri
congestive_heart_failure
sinus_rhythm
esrd
dm2

MLC
pain
dm
chest_pain
edema
cerebritis
pneumothorax
htn
atelectasis
mastoiditis
hypertension
stress_ulcer
pleural_effusion
hematoma
cad
seizure
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Figure A.9: Learned Phenotypes for Diabetes Complicated

pvd
peripheral_vascular_disease
aaa
aortic_aneurysm
rupture
claudication
induration
heel_ulcer
type_a_aortic_dissection
leg_ulcer
carotid_artery_stenosis
dural_tear
endoleak
vascular_disease
eschar

0.4-CNMF
pain
pvd
edema
cad
aaa
htn
hematoma
nausea
peripheral_vascular_disease
ischemia
atelectasis
coronary_artery_disease
stress_ulcer
afib
hypotension

LLDA
pvd
peripheral_vascular_disease
pseudoaneurysm
aaa
coronary_artery_disease
carotid_stenosis
aortic_dissection
ptx
cardiomegaly
aortic_aneurysm
renal_artery_stenosis
mesenteric_ischemia
complaints
vegetation
calcifications

MLC
pain
pneumothorax
atelectasis
edema
nausea
pleural_effusion
hematoma
bleeding
afib
htn
sob
cough
acute_pain
cad
chronic_pain
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Figure A.10: Learned Phenotypes for Peripheral Vascular Disorder
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esrd
chronic_kidney_disease
chronic_renal_failure
ckd
end_stage_renal_disease
acute_on_chronic_renal_failure
thrill
cri
atrophic_kidneys
crf
pulmonary_artery_hypertension
diverticular_disease
non_reactive

0.4-CNMF
hypotension
esrd
renal_failure
sepsis
chronic_renal_failure
cad
chronic_kidney_disease
hypotensive
acute_renal_failure
afib
arf
infection
end_stage_renal_disease
chf
atrial_fibrillation

LLDA
cri
av_fistula
esrd
ckd
chronic_renal_insufficiency
acute_on_chronic_renal_failure
chronic_renal_failure
renal_insufficiency
left_ventricular_hypertrophy
gout
cardiomegaly
sinus_rhythm
jaw_pain
hydronephrosis
renal_failure

MLC
pain
cp
nausea
esrd
chest_pain
cad
chronic_pain
hypertension
emesis
gib
sob
acute_pain
bleeding
obese
stress_ulcer
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Figure A.11: Learned Phenotypes for Renal Failure

seizure
seizure_disorder
status_epilepticus
mental_retardation
seizures
restless_leg_syndrome
epilepsy
multiple_sclerosis
tonic_clonic_seizure
cns_infection
trigeminal_neuralgia
parkinsons_disease
grand_mal_seizure
generalized_seizure
facial_twitching

0.4-CNMF
seizure
seizures
aspiration
altered_mental_status
fever
unresponsive
stress_ulcer
infection
pneumonia
hypotension
agitated
status_epilepticus
seizure_disorder
mental_status
dementia

LLDA
seizure_disorder
restless_leg_syndrome
ms
seizure
dementia
hemothorax
retropulsion
multiple_sclerosis
epilepsy
hydrocephalus
lethargic
hypoxemia
overdose
shortness_of_breath
infarction

MLC
pain
seizure
edema
atelectasis
fever
pneumothorax
cough
seizures
htn
pneumonia
stress_ulcer
hypotension
confused
agitated
hemorrhage
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Figure A.12: Learned Phenotypes for Other Neurological Disorders

afib
atrial_fibrillation
rvr
af
chronic_atrial_fibrillation
crush_injury
babesiosis
non_reactive

0.4-CNMF
afib
atrial_fibrillation
af
pain
stress_ulcer
htn
stroke
edema
bleeding
hypotension
cva
gi_bleed
altered_mental_status
aspiration
bleed

LLDA
rapid_ventricular_response
afib
cardiomegaly
atrial_fibrillation
acute_cholecystitis
calcifications
acute_coronary_syndrome
subdural_hematoma
acute_on_chronic_renal_failure
ischemic_heart_disease
stroke
atrial_flutter
tachycardia
hip_fracture
narrowing

MLC
pain
afib
edema
hemorrhage
atelectasis
atrial_fibrillation
stroke
pneumothorax
htn
cough
stress_ulcer
pleural_effusion
intracranial_hemorrhage
sob
nausea
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Figure A.13: Learned Phenotypes for Cardiac Arrhythmias
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polysubstance_abuse
substance_abuse
cocaine_abuse
overdose
addiction
poisoning
rhabdomyolysis
assault
heroin_abuse
hep_c
multiple_stab_wounds
bile_leak
bipolar_disorder
esophageal_injury
hep

0.4-CNMF
pain
stress_ulcer
polysubstance_abuse
agitated
asthma
chronic_pain
pneumonia
anxiety
fever
agitation
substance_abuse
respiratory_distress
aspiration
overdose
infection

LLDA
substance_abuse
polysubstance_abuse
overdose
chest_pressure
cocaine_abuse
withdrawal
skin_warm
fracture
epidural_abscess
tamponade
hep_c
chronic_renal_failure
hepatitis_c
hiv
trauma

MLC
pain
edema
pneumothorax
headache
aneurysm
cough
subarachnoid_hemorrhage
hemorrhage
dyspnea
sob
hiv
fracture
afebrile
atelectasis
stress_ulcer

NMF+support

Figure A.14: Learned Phenotypes for Drug Abuse

hemiparesis
stroke
paraplegia
cerebral_palsy
decubitus_ulcers
ischemic_attack
lower_extremity_weakness
quadriplegia
expressive_aphasia
right_hemiplegia
cerebral_infarction
quadraplegia
contractures
thalamic_hemorrhage
mca_infarct

0.4-CNMF
stroke
edema
cva
hemorrhage
seizure
weakness
intracranial_hemorrhage
infarct
movement
aspiration
stress_ulcer
cerebral_infarction
infarction
htn
mass

LLDA
movement
hemiparesis
paraplegia
cerebral_palsy
cva
infarction
quadriplegia
brain
expressive_aphasia
pneumocephalus
lower_extremity_weakness
intracranial_hemorrhage
constipation
ischemic_attack
lung_collapse

MLC
pain
hemorrhage
edema
seizure
seizures
mass
stroke
subarachnoid_hemorrhage
aneurysm
aspiration
stress_ulcer
atelectasis
nausea
subdural_hematoma
headache
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Figure A.15: Learned Phenotypes for Paralysis

hiv
bacterial_meningitis
epidural_hematoma
cryptogenic_cirrhosis
occipital_fracture
orthostasis
human_immunodeficiency_virus
aids
acquired_immunodeficiency_syndrome
temporal_bone_fracture
syncope
hiv_positive
memory_loss
acute_liver_failure
conjunctiva

0.4-CNMF
hiv
aids
pneumonia
hypotension
fever
syncope
fall
edema
respiratory_distress
bleeding
epidural_hematoma
bradycardia
aspiration
cough
human_immunodeficiency_virus

LLDA
hiv
scalp_laceration
nsr
posturing
varix
sinus_tachycardia
necrosis
loose_stool
subcutaneous_air
afebrile
lower_gi_bleed
abd
ascites
lung_cancer
aneurysm

MLC
pain
pneumothorax
subarachnoid_hemorrhage
ascites
hiv
appendicitis
afebrile
chf
nausea
bm
aneurysm
opacities
sepsis
abdominal_distension
abdominal_distention
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Figure A.16: Learned Phenotypes for AIDS

128



hypotension
lactic_acidosis
hyperkalemia
hypernatremia
respiratory_failure
renal_failure
hyponatremia
hyperpotassemia
acute_renal_failure
hyposmolality
leukopenia
arf
rhabdomyolysis
chronic_low_back_pain
viral_gastroenteritis

0.4-CNMF
hypotension
respiratory_failure
sepsis
acute_renal_failure
stress_ulcer
altered_mental_status
arf
renal_failure
infection
ards
pneumonia
fever
aspiration
hypotensive
nausea

LLDA
metabolic_acidosis
hydronephrosis
hypernatremia
hyperkalemia
hyponatremia
opacities
acidosis
respiratory_acidosis
opacification
complications
obstruction
lactic_acidosis
dehydration
chronic_pain
hypovolemia

MLC
pain
edema
pneumothorax
hypotension
stress_ulcer
nausea
aspiration
atelectasis
cough
pleural_effusion
hematoma
bleeding
pneumonia
htn
subarachnoid_hemorrhage
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Figure A.17: Learned Phenotypes for Fluid Electrolyte Disorders

rheumatoid_arthritis
lupus
scleroderma
polymyalgia_rheumatica
hip_fracture
absent_bowel_sounds
ankylosing_spondylitis
imi
myelodysplastic_syndrome
exertional_dyspnea
eye_pain
interstitial_lung_disease
amyloid_angiopathy
femoral_neck_fracture
liver_hematoma

0.4-CNMF
pain
fever
hypotension
infection
sepsis
chronic_pain
rheumatoid_arthritis
cad
chf
afebrile
pna
hip_fracture
stress_ulcer
hypotensive
crackles

LLDA
rheumatoid_arthritis
lupus
polymyalgia_rheumatica
ankylosing_spondylitis
interstitial_lung_disease
svt
chronic_renal_insufficiency
scleroderma
diverticulitis
reflux
feeling_weak
primary_biliary_cirrhosis
occlusion
exertional_dyspnea
tamponade

MLC
fever
cad
pain
pna
chf
sob
coronary_artery_disease
bleeding
mi
cp
crackles
pulmonary_edema
edema
dementia
ischemic_heart_disease
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Figure A.18: Learned Phenotypes for Rheumatoid Arthritis

multiple_myeloma
myeloma
lymphoma
hodgkins_lymphoma
achalasia
amyloidosis
remission
hemochromatosis
foot_pain
barotrauma
neutropenic_fever
mm
shingles
fungemia
hypoxic_brain_injury

0.4-CNMF
lymphoma
multiple_myeloma
fever
hypotension
fevers
pneumonia
sob
myeloma
hypercalcemia
hypoxia
chest_pain
anemia
pna
renal_failure
stress_ulcer

LLDA
lymphoma
hodgkins_lymphoma
multiple_myeloma
myeloma
esophagitis
opacities
edematous
remission
sah
orthopnea
discomfort
hypercalcemia
febrile_neutropenia
subcutaneous_emphysema
infection

MLC
lesion
pain
afib
dementia
edema
atrial_fibrillation
proptosis
periorbital_swelling
infection
htn
seizure
pneumothorax
abscess
laceration
subdural_hematoma
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Figure A.19: Learned Phenotypes for Lymphoma
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thrombocytopenia
hit
coagulopathy
hepatic_encephalopathy
hepatorenal_syndrome
cirrhosis_of_liver
schistocytes
low_fibrinogen
splenic_sequestration
fulminant_hepatic_failure
hepatic_dysfunction
polysubstance_abuse
liver_cirrhosis
dic
kidney_failure

0.4-CNMF
sepsis
thrombocytopenia
hypotension
bleeding
fever
acute_renal_failure
ascites
renal_failure
arf
infection
stress_ulcer
coagulopathy
fevers
ards
cirrhosis

LLDA
thrombocytopenia
hit
coagulopathy
liver_failure
ascites
edematous
generalized_edema
fatigue
cirrhosis
splenomegaly
transaminitis
pulmonary_edema
pulmonary_hypertension
hepatitis_c
sinus_tachycardia

MLC
pain
pneumothorax
hypotension
edema
pleural_effusion
bleeding
atelectasis
fever
hypotensive
stress_ulcer
fevers
cough
sepsis
hemorrhage
hematoma
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Figure A.20: Learned Phenotypes for Coagulopathy

morbid_obesity
obesity
osa
tracheobronchomalacia
obesity_hypoventilation_syndrome
obstructive_sleep_apnea
bronchomalacia
tracheomalacia
pannus
obese
pancreatic_pseudocyst
venous_stasis_ulcers
eeg
daytime_somnolence
group_a_strep

0.4-CNMF
obese
pain
obesity
respiratory_failure
edema
morbid_obesity
wound
htn
stress_ulcer
hypotension
osa
fever
sob
anxiety
dyspnea

LLDA
obesity
obese
morbid_obesity
cardiomegaly
hypoxemia
myalgias
respiratory_arrest
respiratory_status
pulmonary_embolism
tamponade
hypoxic
osa
pulmonary_edema
sleep_apnea
diaphoresis

MLC
pain
edema
cad
htn
stress_ulcer
fever
pericardial_effusion
hypotension
bleeding
pleural_effusion
hyperlipidemia
pneumothorax
afib
obese
morbid_obesity
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Figure A.21: Learned Phenotypes for Obesity

hip_fracture
pulmonary_hypertension
polycythemia
femoral_neck_fracture
pulmonary_infarct
mediastinal_mass
pseudocyst
mucositis
stasis
pulmonary_embolism
chest_tightness
pe
pca_infarct
acute_pulmonary_embolism
myeloma

0.4-CNMF
pe
dyspnea
pain
hypoxia
pneumonia
dvt
pulmonary_embolism
pulmonary_hypertension
shortness_of_breath
fever
stress_ulcer
sob
cough
respiratory_failure
sinus_tachycardia

LLDA
ischemic_heart_disease
pulmonary_hypertension
cardiomegaly
chest_tightness
pulmonary_embolism
pe
hip_fracture
osa
dvt
substance_abuse
diaphoresis
peripheral_neuropathy
systolic_hypertension
infectious_process
hypovolemia

MLC
pain
hemoptysis
pneumothorax
mass
seizure
atelectasis
pe
pleural_effusion
bleeding
edema
pulmonary_embolus
pulmonary_embolism
dvt
seizures
stress_ulcer
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Figure A.22: Learned Phenotypes for Pulmonary Circulation Disorder
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aortic_stenosis
gout_flare
acute_on_chronic_renal_failure
diverticulum
valvular_heart_disease
alcoholic_hepatitis
thoracic_aortic_aneurysm
vegetation
leg_ulcers
septic_arthritis
guaiac_positive_stools
systolic_ejection_murmur
hearing_loss
gurgling
benign_prostatic_hypertrophy

0.4-CNMF
pain
bleeding
hypotension
aortic_stenosis
gi_bleed
htn
gib
hematoma
cad
anemia
bleed
ischemia
stress_ulcer
hypotensive
melena

LLDA
cardiomegaly
aortic_stenosis
tr
diverticulitis
wound_infection
subdural_hematoma
mitral_regurgitation
aortic_dissection
bm
afebrile
systolic_murmur
sleep_apnea
atrial_fibrillation
left_ventricular_hypertrophy
pna

MLC
pain
hemorrhage
pneumothorax
htn
atelectasis
edema
cough
stroke
subarachnoid_hemorrhage
bleed
hematoma
nausea
afebrile
bm
subdural_hematoma
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Figure A.23: Learned Phenotypes for Valvular Disease

celiac_disease
mrsa_bacteremia
kyphosis
cyst
ulcerations
convulsive_status_epilepticus
cmv
intussusception
hemochromatosis
gastric_ulcer
colitis
rigid
intestinal_obstruction
kidney_stones
vegetations

0.4-CNMF
pain
colitis
gi_bleed
kyphosis
bleeding
fever
chronic_pain
endocarditis
gastrointestinal_bleed
cyst
falls
mrsa_bacteremia
htn
osteoporosis
diarrhea

LLDA
engorgement
cough_nonproductive
hemorrhagic_stroke
metastatic_renal_cell_carcinoma
pancreatic_necrosis
discomfort
ischemic_bowel
infiltrate
foot_pain
effusion
hypoglycemia
breakdown
dilatation
calcification
tremors

MLC
pain
discomfort
afib
tremors
anxious
bm
afebrile
productive_cough
cough_nonproductive
incision
incisional_pain
complaints
ls
sr
mrsa_bacteremia
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Figure A.24: Learned Phenotypes for Peptic Ulcer

chf
diastolic_heart_failure
hypotension
pancolitis
mrsa_pneumonia
cad
jaw_pain
black_tarry_stools
chronic_respiratory_failure
facial_flushing
femoral_fracture
subglottic_stenosis
gout_flare
chronic_inflammation
tumor_lysis_syndrome

0.4-CNMF
chf
pneumonia
pulmonary_edema
pleural_effusion
sepsis
pna
hypoxia
sob
crackles
respiratory_failure
atelectasis
cad
aspiration
congestive_heart_failure
fever

LLDA
cardiomegaly
congestive_heart_failure
chf
pulmonary_edema
calcifications
hip_fracture
obstruction
dnr
rheumatoid_arthritis
cad
bm
crackles
afebrile
pleural_effusion
obese

MLC
pain
pneumothorax
edema
atelectasis
pleural_effusion
sepsis
cough
pneumonia
chf
pulmonary_edema
sob
crackles
afebrile
bleeding
subarachnoid_hemorrhage
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Figure A.25: Learned Phenotypes for Congestive Heart Failure
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hypothyroidism
hypothyroid
sick_sinus_syndrome
thyroid_ca
respiratory_infection
essential_tremor
pancreatic_duct
first_degree_heart_block
straining
insulin_dependent_diabetes
aplastic_anemia
acute_delirium
pulm_hypertension
stimulus
block

0.4-CNMF
pain
hypothyroidism
hypotension
stress_ulcer
edema
pneumonia
hypothyroid
bleeding
nausea
htn
sob
chronic_pain
anemia
acute_pain
pericardial_effusion

LLDA
hypothyroidism
hypothyroid
endometrial_ca
infection
hypoglycemia
hypoxia
hip_fracture
cardiomegaly
aortic_stenosis
encephalopathy
atelectasis
hypovolemic
meningioma
pleural_effusions
respiratory_distress

MLC
pain
pneumothorax
edema
atelectasis
hypothyroidism
stress_ulcer
nausea
hypotension
htn
sob
pleural_effusion
bleeding
afebrile
cough
hypertension
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Figure A.26: Learned Phenotypes for Hypothyroidism

malnutrition
ulcerative_colitis
failure_to_thrive
hepatic_cirrhosis
hydrothorax
pancreatic_pseudocyst
volvulus
esophageal_varices
gastroparesis
bloody_diarrhea
hemochromatosis
necrotizing_fascitis
malnourished
diverticulum
gastric_cancer

0.4-CNMF
respiratory_failure
pneumonia
wound
ascites
aspiration
bleeding
pleural_effusion
fever
stress_ulcer
hypoxia
sepsis
pna
dvt
atelectasis
malnutrition

LLDA
malnutrition
weight_loss
poor_dentition
failure_to_thrive
calcifications
anasarca
ulcerative_colitis
pneumocephalus
volvulus
neutropenic_fever
upper_gastrointestinal_bleed
glaucoma
subdural_hematoma
lesion
epidural_abscess

MLC
pain
edema
hemorrhage
stroke
fever
pneumothorax
subdural_hemorrhage
stress_ulcer
facial_fractures
cough
atelectasis
pneumonia
fracture
intracranial_hemorrhage
necrotizing_fascitis
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Figure A.27: Learned Phenotypes for Weight loss

hypotension
pain
anemia_of_chronic_disease
pyelonephritis
end_stage_renal_disease
iron_deficiency_anemia
hypercalcemia
anemia
chronic_anemia
esrd
pancolitis
babesiosis
microcytic_anemia
guaiac_stools
dry_gangrene

0.4-CNMF
pain
fever
hypotension
pneumonia
anemia
sepsis
sob
stress_ulcer
nausea
cough
infection
edema
fevers
chest_pain
pna

LLDA
anemia
iron_deficiency_anemia
sinus_rhythm
esrd
chronic_renal_failure
hydronephrosis
mitral_regurgitation
endocarditis
hip_fracture
vomiting
pulmonary_edema
shortness_of_breath
pyelonephritis
gerd
uti

MLC
pain
pneumothorax
edema
nausea
sob
fever
pleural_effusion
stress_ulcer
atelectasis
hypotension
cough
pneumonia
afebrile
chest_pain
anemia
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Figure A.28: Learned Phenotypes for Deficiency Anemias
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cryptogenic_cirrhosis
squamous_cell_carcinoma
heel_ulcer
diverticular_disease
lactate_levels
anastomotic_leak
dark_stools
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Figure A.29: Learned Phenotypes for Blood Loss Anemia
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Figure A.30: Learned Phenotypes for Depression
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A.3 Augmented mortality prediction

Figure A.31 shows weights learned by the classifier for all features. The

weights shaded red correspond to phenotypes and are relatively high compared

to raw notes based features (shaded blue), indicating that comorbidities cap-

ture significant amount of predictive information on mortality and achieve

comparable performance to full EHR model when augmented with additional

raw clinical terms.
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Figure A.31: Weights learned by the CNMF+Full EHR classifier for all fea-
tures. The weights shaded red correspond to phenotypes.
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Appendix B

Explainability Using Manifold Constrained

Examples

Additional explainability results for Chapter 6 are provided in the fol-

lowing.

B.1 xGEMs for MNIST

Figure B.1: xGEMs for MNIST data. Gθ : R100 → R28×28 is a VAE while the
target black-box is a softmax classifier. Each row shows a manifold constrained
exampletransition for a single digit (labeled ‘orig’). The gray vertical bars
indicate transition to the target label ytar. Reconstructions in each row are
intermediate reconstructions obtained using Algorithm 4. The confidence of
the clas prediction is shown in parentheses for each reconstruction.

Figure B.1 shows manifold constrained examples generated for a (multi-
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Figure B.2: Training progression for celebA face image for the CNN+lrn
model.

class) softmax classifier for MNIST1 digit data. The first row in Figure B.1

shows manifold constrained examplefor digit 5 if ytar = 7, while second and

third row show manifold constrained examplesfor digits 1 and 7 with ytar = 2

and ytar = 6 respectively. Notice how while traversing the manifold, the

classifier switches decision from 5 to 8 and then to the target label 7 (row 1).

While the intermediate samples look like 7 to human eye, the classifier is biased

toward predicting 8. Row 2 suggests a bias toward predicting 1 as 8 for a minor

smudging (visible to human eye). Finally, the third row demonstrates how the

manifold constrained examplefor 7 suggests that the classifier considers a 0 to

be labeled as 6. Thus manifold constrained examples can provide insight into

the decision boundary of the classifier for each pair of digits.

1http://yann.lecun.com/exdb/mnist/
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B.2 Case Study: Evaluating Model Training Progres-
sion

Figure B.3: Training progression for celebA face image for the ResNet model.

Figures B.2 and B.3 show xGEMs for the face corresponding to Sample

1 in Figure 6.4 for models CNN+lrn and ResNet respectively. Notice significant

differences in the xGEMs and their trajectories even at comparable overall

performance.
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Appendix C

Constraints based Clustering

This chapter contains supplementary material for the mode proposed

in Section 7.3.

C.1 Derivation of Variational Inference for Weighted
Sum of Divergence Minimization

We wish to minimize the weighted sum of divergence between M dis-

tributions pm(z). Let q∗(z) be the corresponding minimizing distribution. Let

w ∈ ∆M be the weight vector determining how important a given distribution

is. The specific cost function is provided in (C.1). We only consider the case

when each of the distributions are categorical distributions over clusters [K]

and z ∈ {0, 1}K such that only one of the elements is 1.

q∗(z) = arg minq(z)

∑
i∈[M ]

wiDγ(p
m(z)‖q(z)) (C.1)

Let κi(z) be a variational distribution corresponding to pi(z). Using the log-

sum inequality, we have a lower on (C.1) given by (C.2).∑
i∈[M ]

wi
γ
Dγ(p

i(z)||q(z)) ≥

∑
m∈[M ]

wi
γ(γ − 1)

∑
k∈K

κi(zk = 1)(log [pi(z)γq(z)(1−γ)]− log κi(zk = 1))
(C.2)
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Algorithm 10 Variational Update to solve (C.2)

Given w, γ and initial estimates of q(z),
repeat
κi(z) ∝ pi(z)γq(z)(1−γ) ∀ i ∈ [M ]
q(z) ∝

∑
i∈[M ] wiκ

i(z)
until Converged

We optimize the lower bound by iteratively optimizing κi(z)’s and q(z). To

update κi(z), κj(z)∀ j ∈ [M ], j 6= i and q(z) are held fixed. Then update for

κi(z) ∝ pi(z)γq(z)(1−γ). When all κi(z) are held fixed, q(z) is again obtained

by setting the gradient of the bound w.r.t. q(z) to 0. The iterative update is

described by algorithm (10).

q(z) ∝
∑
i∈[M ]

wiκ
i(zn) (C.3)

C.2 Proof that aggregation in E-step can be solved in
parallel over samples

Let zi = {zin : n ∈ [N ]} and xi = {xin : n ∈ [N ]}. Let z = {zi : i ∈
[V ]}, x = {xi : i ∈ [V ]} and Ψ = {Ψi : i ∈ [V ]}. Let g(z) be the target

posterior for GRECO is obtained by solving (C.4).

g(z) = arg min
q(z)

∑
i∈[V ]

wiDγ(p(z
i|xi,Ψi)‖g(z))

= arg min
q(z)

∑
i∈[V ]

wi
γ(γ − 1)

logEp(z|x,Ψ)

[(
g(z)

p(zi|xi,Ψ)

)(1−γ)] (C.4)

We wish to estimate the complete posterior g(z) such that it is independent

across all samples, i.e. g(z) =
∏

n∈[N ] g(zn). By the IID assumption on the log-

likelihood, the posterior p(z|x,Ψ) can be factored into per-view, per-sample
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posteriors as in (C.5)

p(z|x,Ψ) =
∏
n∈[N ]

∏
i∈[V ]

p(zin|xin,Ψi) (C.5)

Equation (C.4) can be simplified as in (C.6)

g(z) = arg min
g(z)

∑
i∈[V ]

wi logE∏
n∈[N ]

∏
i∈[V ] p(z

i
n|xi

n,Ψ
i)

[ ∏
n∈[N ]

(
g(zn)

p(zin|xin,Ψi)

)(1−γ)]

= arg min
g(z)

∑
i∈[V ]

wi log
∏
n∈[N ]

Ep(zin|xi
n,Ψ

i)

[(
g(zn)

p(zin|xin,Ψi)

)1−γ]

= arg min
g(z)

∑
i∈[V ]

wi
∑
n∈[N ]

logEp(zin|xi
n,Ψ

i)

[(
g(zn)

p(zin|xin,Ψi)

)1−γ]
= arg min∏

n∈[N ] g(zn)

∑
n∈[N ]

∑
i∈[V ]

wiDγ(p(z
i
n|xin,Ψi)‖g(zn))

∴ g(zn) = arg ming(zn)

∑
i∈[V ]

wiDγ(p(z
i
n|xin,Ψi)‖g(zn))

(C.6)

Equation (C.6) can be solved in parallel for each sample n to obtain

g(z) =
∏

n∈[N ] g(zn). This completes the proof and can be analogously proved

for LYRIC and view-specific updates.

C.3 M-step for Standard Mixture Models

Let N be the total number of samples in a mixture model with K

classes. Let at any iteration t, q(zn) be the posterior responsibilities calculated

using current model parameters of the mixture model. Let xn ∈ RD represent

the observed features e.g. numeric data modeled as a gaussian mixture or

count data that can be modeled as a mixture of multinomials.

140



• Gaussian Mixture Models: If the mixture model is a gaussian mix-

ture with parameters µk and Σk∀ k ∈ [K], the mean µk and Covariance

Σk are updated using (C.7) and (C.8) respectively.

µt+1,k =

∑
n∈[N ] q(zn,k)xn∑
n∈[N ] q(zn,k)

(C.7)

Σt+1,k =

∑
n∈[N ] q(zn,k)(xn − µt+1,k)(xn − µt+1,k)

T∑
n∈[N ] q(zn,k)

(C.8)

• Multinomial Mixture Models: Let Multinomial distribution param-

eters for each cluster θk ∀ k ∈ [K] can be updated using (C.9)

θt+1,k =

∑
n∈[N ] q(zn,k)xn∑

n∈[N ] q(zn,k)
∑

d∈[D] xn,d
(C.9)

C.4 Formulae of Evaluation Metrics:

All evaluation metrics assume that ground-truth cluster memberships

are known. We assume that correspondence between clustering labels and

ground-truth labels is already estimated using Hungarian matching Kuhn

(1955) and the number of learned clusters is the same as number of ground-

truth clusters, specifically for the metrics clustering accuracy, precision, recall

and F-measure.

Definition C.4.1. If Cn represents the cluster label determined by the learn-

ing algorithm and ωn represents the ground-truth clustering, the clustering

accuracy for a dataset with N samples and K clusters is given by,

Accuracy =

∑
n∈[K]

∑
k∈[K] 1(Cn == ωn)

N
(C.10)
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where,

1(Cn == ωn) =

{
1, if Cn = ωn,

0, otherwise.

Following terms are defined per cluster k ∈ [K]

• True Positives (TPk): This is the number of samples that were clustered

correctly by the learning model.

• False Positives (FPk): It is the number of samples assigned to a cluster

they do not belong to.

• True Negatives (TNk): This is defined per cluster label i.e. total number

of samples not belonging to a given cluster and is clustered correctly

i.e. clustered into a different cluster than for which true negatives are

measured.

• False Negatives (FNk): This is also defined per cluster label i.e. total

number of samples belonging to a given cluster that were not actually

assigned to the cluster by the learning algorithm.

Definition C.4.2.

Precision =

∑
k∈[K] TPk∑

k∈[K] TPk + FPk
(C.11)

Definition C.4.3.

Recall =

∑
k∈[K] TPk∑

k∈[K] TPk + FNk

(C.12)

Definition C.4.4.

F-measure =
2× Precision×Recall
Precision+Recall

(C.13)

142



The following metrics do not assume a correspondence between ground-

truth labels and learned cluster labels. These metrics are based on measures

of information, namely Mutual Information and Entropy.

Definition C.4.5. Let C be the categorical random variable over K clusters

with a distribution obtained from clustering i.e. Pr(C = k) is the fraction

of samples clustered into k by the learning algorithm. Let ω represent the

categorical variable with a distribution obtained from true clustering. The

joint distribution p(C, ω) is the fraction of samples clustered as C and lie in

ground-truth cluster ω. The mutual information I(C, ω) is given by,

I(C, ω) =
∑
k∈[K]

∑
j∈[K]

p(C = k, ω = j) log
p(C = k, ω = j)

p(C = k)p(ω = j)
(C.14)

The Entropy of H(C) =
∑

k∈[K] p(C = k) log p(C = k) and analogously for

H(ω). Normalized Mutual Information (NMI) Strehl and Ghosh

(2003) is the symmetrized and normalized mutual information between C

and ω.

NMI(C, ω) =
I(C, ω)
H(C)+H(ω)

2

(C.15)

Definition C.4.6.

Average Entropy = −
∑
j∈[K]

p(C = j)
∑
k∈[K]

p(C = j, ω = k) log p(C = j, ω = k)

(C.16)
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