
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

TweeProfiles4: a weighted
multidimensional stream clustering

algorithm

Luís Miguel Azevedo Pereira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: Carlos Soares (PhD)

July 30, 2015

TweeProfiles4: a weighted multidimensional stream
clustering algorithm

Luís Miguel Azevedo Pereira

Mestrado Integrado em Engenharia Informática e Computação

July 30, 2015

Abstract

The emergence of social media made it possible for users to easily share their thoughts on different
topics, which constitutes a rich source of information for many fields. Microblogging platforms
experienced a large and steady growth over the last few years. Twitter is the most popular mi-
croblogging site, making it an interesting source of data for pattern extraction. One of the main
challenges of analyzing social media data is its continuous nature, which makes it hard to use tra-
ditional data mining approaches. Therefore, mining stream data has also received a lot of attention
recently.

TweeProfiles is a data mining tool for analyzing and visualizing Twitter data over four dimen-
sions: spatial (the location of the tweet), temporal (the timestamp of the tweet), content (the text
of the tweet) and social (relationships graph). This is an ongoing project with many interesting
challenges. For instance, it was recently improved by replacing the original clustering algorithm
which could not handle the continuous flow of data with a streaming method.

The goal of this dissertation is to continue the development of TweeProfiles. First, the stream
clustering process is improved by proposing a new algorithm. The new algorithm is incremen-
tal and supports multi-dimensional streaming data. Moreover, it allows the user to dynamically
change the relative importance of each dimension in the clustering. Additionally, a more thorough
empirical evaluation is carried out using suitable measures to evaluate the extracted patterns.

The proposed algorithm has been applied in the context of Twitter data and has been evaluated
in both quantitative and qualitative terms. Its performance has also been measured and compared
to the approach used in the previous version of the project.

i

ii

Resumo

O aparecimento das redes sociais abriu aos utilizadores a possibilidade de facilmente partilharem
as suas ideias a respeito de diferentes temas, o que constitui uma fonte de informação enriquece-
dora para diversos campos. As plataformas de microblogging sofreram um grande crescimento e
de forma constante nos últimos anos. O Twitter é o site de microblogging mais popular, tornando-
se uma fonte de dados interessante para extração de conhecimento. Um dos principais desafios na
análise de dados provenientes de redes sociais é o seu fluxo, o que dificulta a aplicação de proces-
sos tradicionais de data mining. Neste sentido, a extração de conhecimento sobre fluxos de dados
tem recebido um foco significativo recentemente.

O TweeProfiles é a uma ferramenta de data mining para análise e visualização de dados do
Twitter sobre quatro dimensões: espacial (a localização geográfica do tweet), temporal (a data de
publicação do tweet), de conteúdo (o texto do tweet) e social (o grafo dos relacionamentos). Este
é um projeto em desenvolvimento com muitos desafios interessantes. Uma das recentes melhorias
inclui a substituição do algoritmo de clustering original, o qual não suportava o fluxo contínuo dos
dados, por um método de streaming.

O objetivo desta dissertação passa pela continuação do desenvolvimento do TweeProfiles. Em
primeiro lugar, é proposto um novo algoritmo de clustering para fluxos de dados com o obje-
tivo de melhorar o existente. O novo algoritmo é incremental e suporta fluxos de dados multi-
dimensionais. Esta abordagem permite ao utilizador alterar dinamicamente a importância relativa
de cada dimensão do processo de clustering. Adicionalmente, é feita uma avaliação empírica
dos resultados mais completa através da identificação e implementação de medidas adequadas de
avaliação dos padrões extraídos.

O algoritmo proposto foi aplicado no contexto do Twitter e foi avaliado tanto em termos quan-
titativos como qualitativos. O desempenho do mesmo também foi medido e comparado com a
abordagem utilizada na versão anterior do projeto.

iii

iv

Acknowledgements

I would like to thank Prof. Carlos Soares for his supervision in this project. His ideas and guidance
enabled the accomplishment of the goals of this dissertation.

I also thank Tiago Cunha and André Maia for their support and insights on the theme, which
promoted a leaner integration and development process.

I would like to thank my family, specially my parents, for all their support, motivation and for
believing in my success during the development of this work.

Finally, I thank my girlfriend, Inês de Sá, and my friends with a special remark for those from
college. All of you made this journey a better experience and it would not have been the same
without you.

Luís Miguel Azevedo Pereira

v

vi

Contents

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Document Structure . 2

2 State of the art 3
2.1 Clustering . 3

2.1.1 Stream Clustering . 5
2.1.2 Consensus Clustering . 15
2.1.3 Clustering Evaluation . 16

2.2 Distance Measures . 18
2.2.1 Numerical Distance . 18
2.2.2 Textual Distance . 19
2.2.3 Social Distance . 21

2.3 Twitter . 22
2.3.1 Description . 23
2.3.2 SocialBus . 23
2.3.3 Research using Twitter . 23

2.4 TweeProfiles2 . 26
2.4.1 System Architecture . 26
2.4.2 Operation . 27

2.5 TweeProfiles3 . 28
2.5.1 System Architecture . 29

3 TweeProfiles4 31
3.1 Introduction . 31
3.2 System Architecture . 31
3.3 Data Processing . 32
3.4 Distance Functions . 33
3.5 Clustering . 34

3.5.1 Clustering Mechanism . 34
3.5.2 Solution A . 38
3.5.3 Solution B . 38

3.6 Evaluation . 38
3.7 Visualization . 41

3.7.1 Clustering . 41
3.7.2 Evaluation . 42

vii

CONTENTS

4 Results 45
4.1 Exploratory Analysis . 45
4.2 Experimental Setup . 47
4.3 Results . 48

4.3.1 Clustering . 48
4.3.2 Evaluation . 61
4.3.3 Performance . 62

5 Conclusions and Future Work 65
5.1 Summary . 65
5.2 Discussion . 66
5.3 Future Work . 66

References 69

viii

List of Figures

2.1 Window models in clustering data streams [AWS14] 6
2.2 Density-based data stream clustering algorithms’ categorization [AWS14] 10
2.3 Density-Based Clustering Algorithms and Challenging Issues [AWS14] 10
2.4 SocialBus system architecture [REA15] . 24
2.5 TweeProfiles2 system architecture [Per14] . 27
2.6 TweeProfiles3 visualization interface [Mai15] 29
2.7 TweeProfiles3 system architecture [Mai15] . 29

3.1 TweeProfiles4 system architecture . 32
3.2 Online phase diagram . 35
3.3 Offline phase diagram . 36
3.4 Dimension weighting preferences interface . 41
3.5 Clustering evaluation visualization . 42
3.6 Clustering evaluation visualization with detailed information 43

4.1 Test dataset monthly distribution . 45
4.2 Test dataset spatial distribution . 46
4.3 Test dataset weekday distribution . 46
4.4 Test dataset hourly distribution . 47
4.5 Spatial view of the macroclusters for Execution 1 49
4.6 Temporal view of the macroclusters for Execution 1 50
4.7 Content view of the macroclusters for Execution 1 51
4.8 Spatial view of the macroclusters for Execution 2 52
4.9 Temporal view of the macroclusters for Execution 2 53
4.10 Content view of the macroclusters for Execution 2 54
4.11 Spatial view of the macroclusters for Execution 3 55
4.12 Temporal view of the macroclusters for Execution 3 56
4.13 Content view of the macroclusters for Execution 3 57
4.14 Spatial view of the macroclusters for Execution 4 58
4.15 Temporal view of the macroclusters for Execution 4 59
4.16 Content view of the macroclusters for Execution 4 60
4.17 Spatial view of the macroclusters . 62

ix

LIST OF FIGURES

x

List of Tables

2.1 Clustering Evaluation Measures . 18
2.2 Twitter concepts . 23
2.3 Distance function by attribute type [Per14] . 27

3.1 Distance functions and normalization per dimension 33
3.2 Clustering process . 34
3.3 Evaluation measures and their optimal index value 38

4.1 Clustering algorithms fixed parameters . 48
4.2 Clustering algorithms variable parameters . 48
4.3 Weighting parameters . 48
4.4 Clustering results for Execution 1 . 49
4.5 Clustering results for Execution 2 . 52
4.6 Clustering results for Execution 3 . 54
4.7 Clustering results for Execution 4 . 58
4.8 Clustering results per weight combination . 61
4.9 Clustering evaluation per weight combination I 61
4.10 Clustering evaluation per weight combination II 61
4.11 Performance results . 63

xi

LIST OF TABLES

xii

Abbreviations

HMC Hybrid micro cluster
MC Micro cluster
PMC Potential micro cluster
OMC Outlier micro cluster
DBSCAN Density-Based Spatial Clustering of Applications with Noise
OPTICS Ordering Points to Identify the Clustering Structure
REST Representational state transfer
API Application programming interface
HTTP Hypertext Transfer Protocol
NMI Normalized Mutual Information
TFIDF Term frequency-inverse document frequency
IDF Inverse document frequency

xiii

Chapter 1

Introduction

Social networks are a source of ever growing data being used by many people to share firsthand

information. As such, they are regarded as timely and cost-effective source of spatio-temporal

information [Lee12]. These social media services not only influence how individuals communicate

from a personal perspective, but also how companies define their marketing strategies.

Twitter is one of the most popular social networking sites. It has not only gained world-

wide popularity but has also been increasing its user activity with over 300 million monthly

active users generating 500 million tweets per day [Twi15]. It is considered a microblogging

platform for its short message broadcasting features, which allied to the proliferation of this

service, makes it an interesting instrument for research studies. These include topic summa-

rization [YZF12, SWCC13], event detection [BF10, BHP11, KBQ14] and sentiment analysis

[Cor12, Lee12, BNG11, BL12, CTB+12]. Journalism is one of the most affected businesses,

taking advantage of social networks to follow trending topics, information spreading and public

opinion on several affairs.

TweeProfiles [Cun13] is a data mining tool which allows the analysis and visualization of

patterns extracted from Twitter data. The initial version used an offline clustering algorithm to

identify patterns over four dimensions: spatial, temporal, social and content. However, it had the

shortcoming of only supporting static data and, as such, it was unable to capture emerging trends

from a data stream. It was further extended in TweeProfiles2 [Per14], Olhó-Passarinho [Mot14]

and TweeProfiles3 [Mai15]. TweeProfiles2 improved the clustering process by introducing an

algorithm capable of handling streaming data. Olhó-Passarinho extended the clustering process

to consider images as part of the content a tweet, besides the text. TweeProfiles3 focused on

improving the visualization of the results and on the integration with SocialBus [BOM+12], a

platform for collecting and processing data from social networks for helping researchers build

social network datasets.

1

Introduction

1.1 Motivation and Objectives

In spite of the progress, some aspects of TweeProfiles can still be improved. As it evolves, it

becomes necessary to evaluate the produced results. This is not only important for the ability to

validate the clustering approaches, but also because it facilitates tuning the parameters required by

the algorithms. Moreover, the user is currently unable to dynamically change the relative impor-

tance given to each dimension, since this parametrization is only allowed in the beginning of the

process. This makes it difficult for the user to perform sensitivity analysis regarding the weighted

combination of the dimensions. Whenever a different combination is required, the clustering al-

gorithm must be restarted from the beginning of the stream, which is not practical.

This dissertation aims to continue the development of TweeProfiles by improving several as-

pects. The first will be the proposal and implementation of a new algorithm for clustering multi-

dimensional streaming data. This novel approach will allow the user to alter the relative weight of

each dimension in the clustering process and have results in real-time. The second goal involves

the identification and implementation of suitable measures for the evaluation of the resulting clus-

terings.

An empirical methodology will be performed based on the extracted patterns obtained from

the developed platform. The platform will be served input data as tweets acquired from a Twitter

data collector.

1.2 Document Structure

This document is organized as follows: Chapter 2 summarizes the state of the art of the scientific

fields related to this project, namely: stream clustering algorithms, distance measures, evaluation

measures and research done using Twitter. Chapter 3 describes the developed tool in terms of the

architecture and explains the clustering and evaluation tasks. Chapter 4 presents the experimental

setup and analyzes the obtained results. Chapter 5 concludes the achievements and discusses the

work to be done.

2

Chapter 2

State of the art

In this chapter, the state of the art in the domain of the project is reviewed. Section 2.1 details

technical aspects of the clustering process with focus on the streaming paradigm and on the eval-

uation measures. In Section 2.2, an overview of the similarity functions is provided in the context

of multidimensional clustering. Twitter is described in Section 2.3 and an overview of data mining

research done on this microblogging platform is covered in section 2.3.3. The current state of

TweeProfiles is described in sections 2.4 and 2.5 with focus on the relevant parts for this work.

2.1 Clustering

Data mining is the process of discovering interesting patterns from massive amounts of data

[HK06]. This knowledge discovery process comprises the following steps [HK06]:

1. Data cleaning

2. Data integration

3. Data selection

4. Data transformation

5. Data mining

6. Pattern evaluation

7. Knowledge presentation

The first four steps are data preparation tasks which are responsible for making the data for

being mined. This process is followed by the application of appropriate algorithms to the data so

as to retrieve interesting patterns. These patterns are then assessed based on evaluation measures

and, finally, a representation of the mined knowledge is constructed for visualization and decision

support purposes.

3

State of the art

Clustering is an unsupervised data mining task, whose goal is to group unlabeled data into

meaningful groups [JMF99]. The data is partitioned by maximizing the similarity between objects

in the same cluster, while minimizing the similarity between objects from distinct clusters. The

assessment of the similarity is computed using distance functions, which are explained in more

detail in section 2.2. Clustering methods can be classified into five categories [HK06]: partition-

ing, hierarchical, density-based, grid-based and model-based. In section 2.1.1, stream clustering

algorithms are presented according to these categories.

K-Means is one of the most common clustering algorithms, which fits in the partitioning cat-

egory. This algorithm tries to find partitions such that the squared error between the points in a

cluster and its center is minimized. This is known to be a NP-hard problem. Let us consider a

dataset X of d-dimensional data points Xi, K clusters Ci with centroids ci. The squared error is

defined as:

E =
K

∑
i=1

∑
x∈Ci

dist(x,ci)
2 (2.1)

The main steps of the algorithm are the following [Jai10]:

1. Arbitrarily select an initial partition with K clusters.

2. Generate a new partition by assigning each object to its closest cluster center (most similar

cluster)

3. Update the cluster centers

Steps 1 and 2 are repeated until a predefined limit number of iterations is reached or until the

partitioning does not change in two consecutive iterations. One drawback of the algorithm is the

fact that is requires the user to establish the number of clusters K. The minimization of the squared

error can only be applied for a fixed number of clusters since the error is inversely proportional

to it. As the algorithm only converges to a local minima, it is very sensitive to the initialization

performed, which is another disadvantage of this approach.

DBSCAN [EKSX96] is a density-based algorithm. It needs to be supplied two parameters,

which are the minimum number of points, minPts, and the radius, ε . The algorithm defines core

points as those with a dense neighbourhood, which is considered as such when the number of

points in the region is greater than minPts. These points are iteratively connected to their neigh-

bours whenever the latter are in the core point’s ε-neighbourhood. The ε-neighbourhood depends

on the ε parameter, since a point is considered to be in the core point’s ε-neighbourhood if it is

within the user-defined radius. DBSCAN is presented in algorithm 1.

4

State of the art

Algorithm 1 DBSCAN
1: procedure DBSCAN(minPts : neighbourhood_threshold,D : dataset,ε : radius)

2: Mark all objects as unvisited

3: repeat
4: Randomly select an unvisited object x

5: Mark x as visited

6: if ε-neighborhood of x has at least minPts objects then
7: Create a new cluster C and add x to C

8: Let N be the set of objects in the ε-neighborhood of x

9: for each point x′ in N do
10: if x′ is unvisited then
11: Mark x′ as visited

12: if ε-neighborhood of x′ has at least minPts objects then
13: Add those points to N

14: end if
15: end if
16: if x′ is not a member of any cluster then
17: add x′ to C

18: end if
19: end for
20: else
21: Mark x as noise

22: end if
23: until all points are visited

24: end procedure

2.1.1 Stream Clustering

In contrast with static data, continuously arriving data streams bring along some challenges given

its continuous and dynamic behaviour. These include the volume of the data, its speed and evo-

lution, the existence of noise and outliers and its eventual high-dimensionality, uncertainty and

heterogeneous character. In order to address this challenges, stream clustering algorithms need to

meet certain requirements. [Bar02] identifies the following requirements:

• Compactness of representation: The clusters must be represented in a compact form, so

that the memory resources are not exhausted by the increasing number of points processed.

• Fast, incremental processing of new data points: Processing new points has to be an

efficient task, which means that it cannot be based on comparisons with all the previously

considered points.

5

State of the art

• Clear and fast identification of outliers: Since noise has a great influence on the clusters,

it is essential to have an efficient outlier handling mechanism.

The evolution of the data points over time also plays an important role in stream clustering

algorithms. In this sense, these algorithms can be classified according to the kind of window

model followed. There are three which are commonly used [ZS02]: landmark window model,

sliding window model and damped window model. Figure 2.1 [AWS14] presents an overview of

these models.

Figure 2.1: Window models in clustering data streams [AWS14]

In the context of stream clustering, several algorithms have been proposed and some surveys

have been conducted [Mah09, SFB+13, Agg13, WHT13]. In the following subsections, some of

these algorithms are described. The major algorithms are explained in more detail and an overview

of their derivations is provided.

2.1.1.1 Partitioning Clustering

Partitioning clustering algorithms attempt to find mutually exclusive clusters of spherical shape.

The grouping is achieved by using distance-based functions and a mean or medoid to represent

clusters centers. This type of clustering methods are considered effective for small to medium-

sized data sets [HK06]. STREAM [GMM+03] is one of the most popular partitioning algorithms

for streaming data. It is a single-pass algorithm, which is based on the k-median problem. The

main steps of the algorithm are as follows:

1. Divide the data stream into chunks of m data points each. The value of m is defined accord-

ing to memory restrictions.

2. A set of k representatives is picked from each chunk so that each data point is assigned to

the nearest representative. The representatives are chosen with the goal of minimizing the

sum of squared distances of the assigned data points.

6

State of the art

3. After each chunk is processed, the set of k medians is stored along with their weights and

the data points are discarded. The weight corresponds to the number of points assigned to

the representative. These representatives are considered level-1 representatives.

4. When the number of representatives exceeds m, these are clustered by taking into account

their weights. The representatives that result from this clustering process are considered

level-2 representatives.

5. When all the original data points are processed or a clustering result is demanded, the re-

maining representatives of every level are clustered together.

A divide and conquer algorithm is proposed in [GMMO00] and uses a similar approach also

based on the k-median problem. The data is divided into chunks and their size is determined so

that they can fit in memory. When the data stream is too large, the algorithm recursively calls itself

on a smaller set of weighted centers.

CluStream [AWC+03] is a stream clustering algorithm, whose process is divided into two

components: online and offline. The former phase clusters data and summarizes it using mi-

croclusters, while the latter performs another clustering using the stored summary statistics. A

pyramidal time frame is used for storing microclusters at snapshots in time at different levels of

granularity depending upon the recency. A microcluster, for a group of points Xi1 . . .Xin , with

timestamps Ti1 . . .Tin , is defined by the tuple (CF2x,CF1x,CF2t ,CF1t ,n), with [AWC+03]:

• n is the number of data points maintained in the microcluster;

• CF1x = ∑
n
j=1 Xi j is the linear sum of the points;

• CF2x = ∑
n
j=1 X2

i j
is the squared sum of the points;

• CF1t = ∑
n
j=1 Ti j is the linear sum of the timestamps;

• CF2t = ∑
n
j=1 T 2

i j
is the squared sum of the timestamps;

The microclusters are maintained incrementally, since they have additive and subtractive prop-

erties. Besides, they can be merged by simply adding their respective features. In the online phase,

when a new point arrives, it is either added to an existing cluster or to a new one. This decision

depends on the maximum boundary defined for each cluster. If the point falls within the boundary

of a cluster, it is merged to that cluster, otherwise it is put in its own cluster. Since the number

of microclusters is to be kept constant, the creation of a new cluster requires one of the existing

clusters to be removed or merged into another. This is decided according to certain criteria which

takes into account the time recency. The offline phase applies a macroclustering process based on

k-means, according to user-specified parameters. These are constituted by the time horizon and by

the number of desired macroclusters. The macroclusters correspond to high-level clusters, which

are computed using the summarized information of the microclusters obtained in the previous

phase.

SWClustering is proposed in [ZCQJ08] and uses a cluster feature vector similar to CluS-

tream’s. In this vector, the timestamp of the most recent object is also included and a new data

7

State of the art

structure, which is distributed in levels, is defined as a collection of these vectors. StreamKM++

[AMR+12] is a k-means algorithm for data streams which is computed in two steps: merge and re-

duce. The merge step is performed on a data structure which contains sets of object holders, where

the data points are inserted as they arrive. The reduce step is performed to reduce the number of

objects that result from the previous step, with the information being summarized in a tree-like

structure.

HPStream [AHWY04] is proposed as an improvement of CluStream for the context of clus-

tering high-dimensional data. This is achieved based on a projected clustering approach, which is

a technique that determines clusters for specific subsets of dimensions. A fading concept is also

utilized with the inclusion of decay-based statistics on the microclusters. Proposed in [YZ06],

HCluStream is an improvement of CluStream for clustering over heterogeneous data. It adds sup-

port for categorical data by adapting the cluster feature vector to include an histogram of the dis-

crete attributes. Moreover, CluStream’s clustering algorithm, k-means, is replaced by k-prototype

[Hua97], which supports heterogeneous attributes. Similarly, in [RHM10], HCluWin is presented

as an extension of CluWin [CCZ07] for clustering on both numerical and categorical data over

sliding windows. With the same motivation as HCluStream, [HW10] proposes MCStream as an

improvement of CluStream for heterogeneous data. It solves CluStream’s shortcoming based on

the idea of dimension-oriented distance. In [HLRH10] SWCUStreams is proposed for cluster-

ing data streams with uncertainty by improving CluStream. The uncertainty is considered at the

attribute level and it is used to quantify the information on each dimension. In the context of

data streams with uncertainty, another proposal is presented in [AY08], which introduces the un-

certain clustering feature for summarizing the data. This algorithm is termed as UMicro. With

the same motivation, LuMicro is proposed in [ZGZ09], introducing a two-phase stream cluster-

ing mechanism, which takes into account the uncertainty of the records. Motivated by the fact

that the uncertainty aggravates the sparsity property of high-dimensional data, UPStream is pro-

posed in [Agg09]. The presented algorithm’s design allows clustering of uncertain data streams

with projected clustering, while also considering the evolution of the stream by a decay factor. In

[HLHR10], HU-Clustering is proposed for clustering heterogeneous data streams with uncertainty.

With a similar approach as HCluStream with respect to the support of heterogeneous data, HU-

Clustering improves LuMicro by including a frequency histogram for the categorical attributes.

2.1.1.2 Hierarchical Clustering

Hierarchical algorithms decompose the data in a hierarchy of clusters. These methods can be

either agglomerative or divisive. The first approach begins with small clusters and iteratively

merges them until a final cluster is obtained which groups all the data. In contrast, the second

approach begins with a single cluster and performs splits iteratively in order to obtain groups with

more granularity.

BIRCH [ZRL96] is an incremental clustering algorithm which uses an hierarchical data struc-

ture, in the form of a height-balanced tree. Each tree node is defined by a cluster feature vector

(CF), defined by the tuple (n,LS,SS), with [ZRL96]:

8

State of the art

• n is the number of data points;

• LS = ∑
n
j=1 Xi j is the linear sum of the points;

• SS = ∑
n
j=1 X2

i j
is the squared sum of the points;

for a group of data points Xi1 . . .Xin . These structures allow the computation of the cluster center,

radius and diameter:

• c = LS
N is the centroid;

• r =
√(

SS
N −

(LS
N

)2
)

is the radius;

• d =

√(
2N·SS−2·LS2

N(N−1)

)
is the diameter;

These structures have incremental and additive properties, which allow not only an object but

also two disjoint vectors to be easily merged.

The algorithm starts by building a tree structure with the CF vectors, loading the data into

memory. When a new object arrives, it chooses the nearest non-leaf CF entry node, in terms of

Euclidean distance, by traversing the tree from the root to the leaves. If the closest leaf is able to

absorb the new entry, given a certain size threshold, the CF vector is updated. If merging is not

possible, a new CF entry is created.

COBWEB [Fis96] is an incremental clustering algorithm, which uses a category function to

build a tree. Each node of the tree contains a probabilistic description that summarizes the objects

maintained by it. When a new point arrives, the algorithm descends the tree from the root along a

given path and updates the counts in the nodes traversed. It tries to find the best node to assign the

new point using the category utility function.

ClusTree [KABS11] is a clustering algorithm that builds a tree with weighted CF vectors.

The algorithm performs merge and split operations automatically to adjust the size of the tree.

Furthermore, it is able to adapt itself to different stream speeds.

Doubling [CCFM97] is an incremental hierarchical algorithm based on the k-center optimiza-

tion, which tries to minimize intra-cluster distance. Guided by a lower bound parameter that de-

fines the optimal diameter for the clustering, the algorithm creates and merges clusters in different

phases.

2.1.1.3 Density-based Clustering

Density-based algorithms overcome the issue of partitioning algorithms in the sense that the num-

ber of clusters does not need to be defined in advance. Besides, this approach allows arbitrarily-

shaped clusters, which the latter lack as they only support convex-shaped cluster structures. Outlier

detection is another feature that this category of algorithms support.

A comprehensive review on density-based algorithms is done in [AWS14], exploring nineteen

approaches as shown in Figure 2.2 [AWS14]. These are divided into microclustering algorithms

and grid-based algorithms. The first category summarizes information in microclusters (similarly

9

State of the art

to CluStream [AWC+03]), performing the final clustering on this summarized data (offline step).

The second group of algorithms maps data points to grids which are created beforehand and which

constitute the basis of the final clustering. A review of the latter has been conducted in [AWSY11].

In the survey [AWS14], the merits and limitations of each algorithm are presented and also their

ability to overcome some identified challenges, as illustrated in Figure 2.3 [AWS14].

Figure 2.2: Density-based data stream clustering algorithms’ categorization [AWS14]

Figure 2.3: Density-Based Clustering Algorithms and Challenging Issues [AWS14]

An empirical evaluation is also conducted. The following evaluation measures were used:

Purity [ZK04], SSQ [HK06], Rand Index [WXC09, Ran71] and NMI [MRS08]. The performance

is also compared by taking into account the execution time.

DenStream [CEQZ06] is a two-phase stream clustering algorithm which forms clusters based

on dense regions. It defines the concept of a core-micro-cluster, at time t, as CMC(w,c,r) for a

group of close points Xi1 . . .Xin with time stamps Ti1 . . .Tin [CEQZ06]:

• w = ∑
n
j=1 f (t−Ti j),w > µ is the weight;

• c =
∑

n
j=1 f (t−Ti j)Xi j

w is the center;

10

State of the art

• r =
∑

n
j=1 f (t−Ti j)dist(Xi j ,c)

w ,r ≤ ε is the radius, where dist(Xi j ,c) denotes the Eu-

clidean distance between the point Xi and the center c;

A damped window model is used by taking into account a fading function given as:

f (t) = 2−λ ·t ,λ > 0 (2.2)

This temporal decay is applied on the microclusters and it gives more weight to newer points.

The concepts of potential core-micro-cluster and outlier microcluster are also defined. They

only differ from regular core-micro-clusters in their weight constraint, which affects the merging

of points into microclusters. For p-micro-clusters, this constraint is w ≥ β · µ , and for o-micro-

clusters it is w < β ·µ , with 0 < β < 1.

A p-micro-cluster, at time t, is defined as PMC(CF1,CF2,w) for a group of close points

Xi1 . . .Xin with time stamps Ti1 . . .Tin [CEQZ06]:

• w = ∑
n
j=1 f (t−Ti j),w > β µ is the weight;

• CF1 = ∑
n
j=1 f (t−Ti j)Xi j is the linear sum of the points;

• CF2 = ∑
n
j=1 f (t−Ti j)X

2
i j

is the squared sum of the points;

• c = CF1

w is the center;

• r =

√
CF2

w −
(

CF1

w

)2
,r ≤ ε is the radius;

The microclusters are maintained incrementally by updating CF1, CF2 and w. If no points are

merged on the cluster for time interval δ t, PMC = (f (δ t)CF1, f (δ t)CF2, f (δ t)ẇ). If a point X is

merged on the cluster, PMC = (CF1 + p,CF2 + p2,w+1).

The pseudo-code of DenStream is presented in algorithm 2. The offline phase generates macro

clusters using a variant of DBSCAN. It connects the density regions represented by the microclus-

ters obtained from the online phase.

Several algorithms were proposed as an improvement of DenStream on different aspects.

[TRA07] proposed StreamOptics, which extends OPTICS [ABpKS99] and improves DenStream

with the goal of allowing the visualization of the cluster structures in data streams. C-DenStream,

proposed in [RMS09], improves DenStream by introducing application constraints. These con-

straints restrict the clustering by establishing data points that must co-exist in a cluster, as well as

data points that must be assigned to separate clusters. rDenStream [LxHYfFc09] improves Den-

Stream’s outlier handling mechanism for applications where a large amount of these are present.

For this purpose, a classifier is applied to the outlier microclusters, allowing discarded data points

to be re-learned in an attempt to avoid knowledge points being lost. [RM09] also proposes an

improvement over DenStream named SDStream by replacing the damped model of the former

with a sliding window model. This is done with the goal of keeping only recent data, while dis-

carding the data points that do not fit in the window’s length. HDenStream, proposed in [JH09]

improves DenStream by adding support for both numerical and categorical data, since the extended

11

State of the art

Algorithm 2 DenStream

1: procedure DENSTREAM(D,ε ,β ,µ ,λ)
2: Tp =

1
λ

log(β µ

β µ−1)
3: Get the next point X at current time t from data stream D;
4: Try to merge X into its nearest p-micro-cluster cp;
5: if rp ≤ ε then
6: Merge X into cp;
7: else
8: Try to merge X into its nearest o-micro-cluster co;
9: if ro ≤ ε then

10: Merge X into co;
11: if wo > β µ then
12: Remove co from outlier-buffer and create a new p-micro-cluster by co;
13: end if
14: else
15: Create a new o-micro-cluster by X and insert into the outlier-buffer;
16: end if
17: end if
18: if (t mod Tp) = 0 then
19: for each p-micro-cluster cp do
20: if wp < β µ then
21: Delete cp;
22: end if
23: end for
24: for each o-micro-cluster co do
25: ξ = 2−λ (t−to+Tp)−1

2−λTp−1
26: if wo < ξ then
27: Delete co;
28: end if
29: end for
30: end if
31: if clustering request arrives then
32: Generate clusters;
33: end if
34: end procedure

12

State of the art

algorithm only supports the former type. The data structure was adapted with the addition of a

two-dimensional array that keeps the frequency of the categorical data. This approach is similar to

the process that HCluStream used to extend CluStream. MStream, proposed in [WW10], also fol-

lows this line of thought, being an algorithm for clustering evolving heterogeneous data streams.

Despite being compared to HCluStream and CluStream, it is very similar to HDenStream. This ap-

proach also comprises a normalization process on every dimension, which is run at the beginning

of the clustering process. DenStream is also improved by SOStream [IDH12], an algorithm devel-

oped with the objective of automatically adapting the threshold on density-based clustering. This

is achieved by adopting the concept of competitive learning [Koh82]. Both HDDStream [NZP+12]

and PreDeConStream [HSGS12] improve DenStream in the context of high-dimensional data by

applying the concept of projected clustering. FlockStream [FPS09] proposes an algorithm based

on a bio-inspired model with the objective of improving the efficiency of the algorithm by reduc-

ing the number of computations performed. LeaDen-Stream [AW13] is an algorithm proposed as

an improvement of DenStream for reducing the time complexity of the process. It introduces the

concept of mini-micro and micro cluster leaders, which are dependent on the distribution of the

data points inside each microcluster. This is motivated by the fact that existing microclustering

algorithms ignore the inner distribution, which leads to less accuracy since only the microcluster’s

centers are sent to the offline phase.

Density grid-based clustering algorithms partition the data space into cells. These cells form

grids, which are then clustered according to their density. In this context, several approaches

have been proposed, motivated by the ability to merge the advantages of both the density-based

algorithms as the ability to detect outliers and provide arbitrarily-shaped clusters, and the grid-

based algorithms with the processing time only dependent on the number of grid cells.

In [GLZT05] DUCstream is proposed as a single-pass algorithm for clustering data streams

using dense unit detection. The data is processed in chunks and its data points are mapped to

dense units, with the clusters being formed based on those which have a larger number of records.

The resulting clusters are connected components of a graph composed by the dense units and their

relations.

D-Stream is proposed in [CT07], having an online and an offline phase similar to CluStream’s,

while also handling outliers by means of sporadic grids. These are grids with few objects, which

are periodically removed. The online phase is responsible for mapping new data points into the

grid and, consequently, updating its characteristic vector [CT07]. This vector keeps information

related to the grid such as the update time, grid density and grid status (normal or sporadic). In the

offline phase, clusters are adjusted based on the density of the grids according to a certain thresh-

old. Neighboring dense grids are merged to form clusters while the sparse grids are removed from

the clusters. The dynamic evolution of the data stream is captured by applying a decay factor to

the density of the grids. In [HGRC11], DGTSstream is proposed as an improvement of previ-

ous algorithms for better dealing with boundary points, by adopting a method based on similarity.

Moreover, a grid-tree structure is used for storing the summary information and a density threshold

is adopted based on the average density. DD-Stream [JTY08] is one of the extensions of D-Stream,

13

State of the art

which improves the quality of the clusters by extracting boundary points in the grids. This process

occurs in the offline phase and the border points are assigned by taking into account the distances

from the center of the grids. With the goal of improving the performance of the offline compo-

nent, [WND+09] proposes an algorithm termed as MR-Stream. This algorithm keeps a tree-like

structure for the space partitioning, which allows clustering at multiple resolutions. During the of-

fline phase the clusters are generated by determining the reachable cells at a user-defined distance.

DCU-Stream [YLZY12] improves D-Stream by adapting the latter for the context of uncertain

data streams, where the data is incomplete or imprecise. This is achieved by considering an uncer-

tain tense weight for each data point that is mapped into the grid. This is assigned by considering

the arrival time of the data and also its existence probability. Also in the context of uncertain data,

[TCT13] proposes Clu-US. It uses the existence probabilities of the data tuples in the calculation

of the distance between adjacent grids, instead of being calculated through the traditional geomet-

ric centers. PDG-OCUStream [HCRG11] is another density grid-based approach for clustering

uncertain data streams. This algorithm is based on a sliding window model and uses a thresh-

old for the probability density in order to control the cluster quality. In the context of uncertain

data streams and motivated by the fact that existing algorithms are sensitive to the user-specified

threshold, UG-Stream is proposed in [HZ14]. UG-Stream defines a dynamic threshold, which is

computed together with the probability variance of the grid in order to distinguish between dense

and sparse grids. With a similar goal as SDStream, DENGRIS-Stream [AW12] is proposed as

an improvement of D-Stream for clustering over sliding windows. This approach discards grids

whose timestamps are older than the beginning of the window. In [BKC13], an algorithm termed

as ExCC is proposed for clustering heterogeneous data. As D-Stream, it also has an online and an

offline phase. The numerical data is mapped to the grid, while for the categorical data, granular-

ities are defined based on the unique values in the domain. Unlike D-Stream, a window model is

not used, since the pruning is performed by taking the speed of the data stream into account.

In [TC09], an extension of D-Stream is proposed for clustering data streams taking into ac-

count the positional information of data in the grid. It uses the correlation between neighboring

grids to merge them when this factor exceeds a certain threshold. Motivated by the fact that the

sparsity of the grids is aggravated in the context of high-dimensional data, [RCH11] proposes

PKS-Stream. This algorithm improves [TC09] and uses PKS-trees for keeping both the non-

empty cells and their relations. The removal of the sparse grids occurs in the offline phase when

the PKS-tree is adjusted. In [DCHR11], GDH-Stream is also proposed in the context of clustering

high-dimensional data. It is based on subspace clustering, which means that the clustering algo-

rithm is performed on a subset of the dimensions, therefore reducing the spatial complexity. The

subspace is generated by ranking the dimensions according to their ability to separate projected

clusters. This approach is improved by GDRH-Stream as proposed in [HMR12]. This algorithm

considers the relative entropy of attributes in order to filter redundant features. They define a

weighted attribute relativity measure, which is used to determine the subspace by computing it for

the relevant attributes.

14

State of the art

2.1.1.4 Model-based Clustering

Modelling techniques try to optimize the data fitness through probabilistic models. The parameters

of the model are determined by ensuring a maximum fit of the underlying clusters. EM (Expec-

tation Maximization) [DLR77] is a popular method to determine these parameters by clustering

objects based on a membership probability. In the context of data streams, [DLN+09] proposes

SWEM as an improvement of EM.

2.1.2 Consensus Clustering

Consensus clustering addresses the problem of reconciling multiple clusters of the same dataset

without having access to the underlying features of the data. Different clusters can be obtained by

varying selections of attributes or by multiple runs of the same non-deterministic clustering algo-

rithm. The objective is to find an agreement with the multiple clusterings, which highlights their

commonalities. A survey of ensemble techniques for clustering has been conducted in [GSIM09]

and more recently in [SSVS14] in the context of mixed data clustering. This is an interesting

approach for this problem, considering that each dimension can be clustered independently and

then merged to reach a final consensus clustering. This process contemplates several approaches

[NC07]: Pairwise Similarity, Graph-based, Mutual Information, Mixture Model and Cluster Cor-

respondence.

Pairwise similarity measures similarity between data points based on their shared member-

ship to the ensemble clusters. These measures are applied to a similarity-based algorithm in order

to obtain the consensus clustering of the ensemble. Graph-based approaches adapt the ensemble

of clusterings to a graph representation, while the consensus is obtained by the application onto

a graph-based clustering algorithm. Mutual Information formulates an objective function to be

maximized, which is based on the commonalities between the ensemble and the final consen-

sus clustering. The Mixture Model approach is based on the generation of probabilistic models

from a finite mixture of distributions. The final solution is obtained by solving the correspond-

ing maximum likelihood problem. Cluster correspondence obtains the consensus clustering by

optimization of a linear programming formulation combined with a voting procedure.

Several proposals have been made to adapt traditional consensus clustering approaches for

massive datasets and streaming data.

[Eze13] scales an existing consensus clustering algorithm [TJ04], which relies on the Expected

Maximization algorithm for mixture models. A strategy for distributing the EM algorithm is

developed so as to be run on a cloud, which allows processing large amounts of data. This is done

in the context of knowledge mining of large-scale medical data. In this work, multiple clusters are

generated by projecting the data to random subspaces.

[Hor07] proposes scalable algorithms for merging cluster ensembles of large data sets and

data streams. Different clusters are obtained by clustering disjoint subsets of the data. A global

consensus is obtained by partitioning the clusters into consensus chains or groups and computing

the weighted mean of the corresponding centroids of each one. The problem is approached in a

15

State of the art

graph formulation in which the centroids of each partition are represented as vertices of a graph

and the dissimilarity between them as weighted edges. The goal is to partition the r-partite graph,

where r is the number of partitions to combine, into k target clusters by grouping similar centroids

together. Since the partitioning is an NP-hard problem, two heuristics are used: Bipartite Merger

and Metis Merger. The first finds the global consensus clustering by partitioning the ensembles

into k equally sized clusters (consensus chains) with one to one centroid mapping between two

partitions . The second partitions the ensembles into k centroid groups (consensus groups), but the

group sizes are not guaranteed to be the same.

[YC11] proposes a weighted consensus clustering algorithm in a two-stage process. Differ-

ent representations are extracted from the full temporal dataset, generating partitions which are

clustered independently. A weighted consensus function is applied to reconcile these partitions to

candidate consensus partitions. The weighting scheme is based on the evaluation of the clusterings

of this phase according to three evaluation measures. The resulting candidate consensus clusters

are further reconciled by an agreement function to yield a final consensus cluster.

In [ZZTG10] ensemble learning is applied for combining classifiers and clusters for mining

data streams. The data stream is partitioned in chunks and a weighting scheme is applied on the

ensemble according to the consistency between the base models and the up-to-date model. This is

done in order to address the concept drifting problem.

[DAR09] addresses the problem of reconciling multiple clusters from different subspaces by

means of a weighting scheme. The weighted clusters are obtained by a locally adaptive algo-

rithm, which are further combined by a consensus function. Two functions are introduced for the

weighted clustering ensembles, which approach the problem as a graph partitioning resolution:

Weighted Similarity Partition Algorithm and Weighted Bipartite Algorithm. The first algorithm

constructs similarities between data points based on the membership probabilities to each weighted

cluster. The data points and their respective similarities are then mapped to a graph and a k-way

partitioning, where k is the final number of clusters, is computed by minimizing the edge weight-

cut. The second approach differs from the first in the sense that the problem is approached as a

bipartite graph partitioning problem. In this case, the graph models both data points and clusters,

which forms a bipartite graph, where the edges are weighted based on the cluster membership

probabilities.

2.1.3 Clustering Evaluation

Clustering evaluation assesses the clustering analysis and the quality of the results generated by

the process. This task includes the assessment of clustering tendency, the determination of the

number of clusters and measurement of the clustering quality [HK06]. Clustering tendency verifies

whether a nonrandom structure exists in the data. This is done to guarantee that the clustering

analysis is meaningful for a dataset, since methods for pattern extraction may return misleading

clusters. Assessing the clustering tendency can be achieved by using statistical tests for spatial

16

State of the art

randomness as the Hopkins Statistic, given as:

H =
∑

n
i=1 yi

∑
n
i=1 xi +∑

n
i=1 yi

(2.3)

xi = minv∈D{dist(pi,v)} (2.4)

yi = minv∈D,v 6=qi{dist(pi,v)} (2.5)

with pi data points uniformly sampled from the dataset. dist(pi,v) represents the distance

between a data point and the neighbouring points. For a highly skewed dataset, the value of H is

closer to 0.

Determining the number of clusters is a difficult task, since it depends on the shape and scale

of the distribution and also on the granularity demanded by the user. An estimate can be obtained

from several methods. A rule of thumb is to set the number of clusters to
√

n/2 for a dataset of

n points. The elbow method takes into account the fact that the sum of within-cluster variance

of each cluster is reduced with the increase of the number of clusters. Even though this increase

allows for finer groupings, at some point the reduction on the variance is not significant and does

not compensate the performance costs. The optimal number of clusters is, therefore, considered

as the turning point. This point can be obtained by plotting the curve of the sum of within-

cluster variance against the number of clusters. Another known method for estimating the optimal

number of clusters is cross-validation. It divides the dataset into m parts, using m - 1 parts to build

a clustering model and the remaining to assess the quality of the previously obtained model.

In order to measure the quality of the clustering several methods can be applied. These meth-

ods can be categorized as extrinsic, if a ground truth is available, or intrinsic otherwise. Extrin-

sic methods evaluate the resulting clusters with respect to the ground truth. Recent studies for

this measures are found in [SZ08, WXC09]. Intrinsic methods measure the quality of the clus-

ters by considering their separation. In [Mil81], thirty intrinsic measures are examined. Table

2.1 presents a list of evaluation measures according to their respective category, adapted from

[KKJ+10, KKJ+11].

[Mil81] identifies a subset of the thirty internal measures examined by their correlation to the

Rand statistic and Jaccard criterion. These six measures are Gamma, C Index, Point-Biserial, Tau,

W/B statistics and G(+) index. [SZ08] examines seven external measures for clustering representa-

tions on data stream clustering: Purity, Cluster-based entropy, Class-based entropy, Homogeneity,

Completeness, V-measure and Variation of Information. CMM (cluster mapping measure) is an-

other evaluation measure, proposed in [KKJ+11] for the context of evolving data streams. Sixteen

external measures are studied in [SZ08] for K-means clustering. This number is then narrowed

down to thirteen by discarding some equivalent measures. These include the Purity, F-Measure,

Mutual Information, Variation of Information, Rand statistic, Jaccard coefficient, Fowlkes and

Mallows Index, Hubert’s statistics, Minkowski score, classification error and van Dongen crite-

17

State of the art

Table 2.1: Clustering Evaluation Measures

Internal Measures External Measures
Gamma Rand statistic
C Index Jaccard coefficient
Point-Biserial Folkes and Mallow Index
Log Likelihood Hubert Γ statistics
Dunn’s Index Minkowski score
Tau Purity
Tau A van Dongen criterion
Tau C V-measure
Somer’s Gamma Completeness
Ratio of Repetition Homogeneity
Sum squared distances (SSQ) Variation of Information
Adjusted Ratio of Clustering Mutual Information
Fagan’s Index Class-based entropy
Deviation Index Cluster-based entropy
Z-Score Index Precision
D Index Recall
Silhouette Coefficient F-measure
W/B Kappa
G(+) Classification Error

rion. In the context of density-based stream clustering the most common evaluation measures are

[AWS14]: SSQ, Purity and Rand Index.

2.2 Distance Measures

Clustering requires the computation of the similarities between objects and so different distance

functions are used for this task, depending on the nature of the dimensions. The dissimilarity

between two d-dimensional objects xA and xB is defined as dist(xA,xB).

2.2.1 Numerical Distance

[HK06] refers the following as the most common for numeric data: Euclidean distance, Manhattan

distance and the Minkowski distance. The Supremum (or Chebyshev) and the Mahalanobis dis-

tances are also mentioned. The Euclidean distance is measured as a straight line and the formula

is given as:

dist(xA,xB) =
√

(xA1− xB1)
2 + · · ·+(xAd − xBd)

2 (2.6)

If an importance is given to each dimension or attribute as a weight w, the Weighted Euclidean

distance can be formulated as:

dist(xA,xB) =
√

w1(xA1− xB1)
2 + · · ·+wd(xAd − xBd)

2 (2.7)

18

State of the art

The Manhattan distance is measured in blocks by summing the vertical and horizontal dis-

tances independently. It is defined as:

dist(xA,xB) = |xA1− xB1 |+ · · ·+ |xAd − xBd | (2.8)

The Minkowski distance generalizes both the Euclidean and the Manhattan distance and it is

defined as:

dist(xA,xB) =
h
√
|xA1− xB1 |h + · · ·+ |xAd − xBd |h,h≥ 1 (2.9)

When h = 1, the formula corresponds to Manhattan’s and when h = 2, it corresponds to Eu-

clidean’s.

As for the Mahalanobis distance, it takes into account the correlations of the data and includes

a covariance matrix S−1 being defined as:

dist(xA,xB) =
√
(xA− xB)S−1(xA− xB)T (2.10)

The supremum distance generalizes the Minkowski distance for h = ∞, giving the maximum

difference in values between both objects. It is defined as:

dist(xA,xB) = lim
h→∞

(
d

∑
j=1
|xA j − xB j |d)

1
d = max j|xA j − xB j | (2.11)

For the specific case of geographical coordinates, the Haversine formula [MK10] can be used.

It measures the great-circle distance between points and so the Earth’s shape is considered as a

perfect sphere. The formula is given as:

dist(xASp ,xBSp) = 2Rsin−1

([
sin2

(
xAlat − xBlat

2

)
+ cosxAlat cosxBlat sin2

(
xAlng− xBlng

2

)]0.5
)

(2.12)

where R is the radius of the Earth and xAlat ,xAlng ,xBlat ,xBlng are the geographical coordinates

(latitude,longitude) of both points respectively. The resulting distance is in the same unit as R.

2.2.2 Textual Distance

For measuring the similarity between documents or textual data, [HK06] defines the cosine sim-

ilarity and the Tanimono distance, which is a variation of the former. In order to compare two

documents, they must first be represented as term-frequency vectors. The vector may correspond

to the absolute frequency or it may be weighted as T FIDF [MRS08].

The idea of T FIDF is to overcome the fact that the absolute frequency considers all terms

as equally important. This improvement is achieved by a weighting technique, which reduces the

relevance of common terms. For a tweet t, let α be its textual content and αi a term in that content.

19

State of the art

T FIDF defines the weight of a term as:

T FIDF = T F(αi) · IDF(αi) (2.13)

where T F(αi) is the term-frequency of the term and IDF the relevance of the term. IDF is given

as:

IDF(αi) = log(
N

d f (αi)
) (2.14)

where N is the size of the text collection and d f (αi) the frequency of the term in the documents.

The IDF measure is high for rare terms and low for frequent terms.

[SHK10] proposes an hybrid T FIDF in the context of microblogging summarization. This

approach aims to overcome the sensitivity of T FIDF formula to the document length, which

poses a problem when generating summaries from multiple documents. Considering a sentence S

with n words, the weight assigned to it is given as:

W (S) =
∑

n
i=0 T FIDF(αi)

n f (S)
(2.15)

where n f is a normalization factor given by the equation:

n f (S) = max(minimumT hreshold,n) (2.16)

Another weighting scheme named T FPDF is proposed in [BI02] with the goal of extracting

hot terms which are discussed most often in channels. In this approach, an higher weight is given

to a term when its frequency within a channel is also high. Besides, it grows exponentially with the

increase of the ratio between the number of documents containing the term and the total number

of documents. The formula of T FPDF is given as follows

T FPDF =
C

∑
c=1
|Fc(αi)|exp

(
Nc

d fc(αi)

)
(2.17)

|Fc(αi)|=
Fc(αi)√

∑
K
k=1 Fc(αk)2

(2.18)

where C is the number of channels, K the total number of terms in a channel, Fc the frequency

of a term in channel c, Nc the number of documents in channel c and d fc the frequency of the term

in the documents.

The formula for measuring the similarity using the cosine measure is given as:

dist(xAC ,xBC) =
βA ·βB

‖βA‖‖βB‖
(2.19)

where βA and βB are two term-frequency vectors. ‖βA‖ and ‖βB‖ correspond to the Euclidean

norm of the aforementioned vectors. The resulting value varies between 0 and 1. The first is

20

State of the art

obtained when both vectors are orthogonal and do not match. A higher value means a greater

match factor between the vectors. The Tanimono distance is a variant of this measure for the case

of binary-valued attributes. In the referred scenario, the cosine similarity can be interpreted in

terms of shared attributes. Its formula is given as:

dist(xAC ,xBC) =
βA ·βB

βA ·βA +βB ·βB−βA ·βB
(2.20)

In [RLW12], a variant of Jaccard’s similarity with Dice’s coefficient is used to compute simi-

larity between documents:

dist(xAC ,xBC) =
|βA∩βB|

min(|βA|, |βB|)
(2.21)

[RKT11] proposes a variation of Cosine similarity and also of Jaccard similarity in the context

of short text clustering. The equations of the variations are as follows, respectively:

dist(xAC ,xBC) = 1− ∑
D
d=1 β d

A ·β d
B

‖βA‖ · ‖βB‖
(2.22)

dist(xAC ,xBC) = 1− |βA∩βB|
|βA∪βB|

(2.23)

2.2.3 Social Distance

A social graph can be inferred from the relationship between users in Twitter. If we consider the

users as vertices and the relationships as edges, the social distance is obtained from the distance

between the vertices of the graph, which are mapped to tweets’ authors. [HK06] defines two

distance measures for graphs: Geodesic Distance and SimRank.

Geodesic distance is a simple measure defined as the number of edges which compose the

shortest path between the vertices. A shortest path algorithm must be applied, such as Dijkstra’s

[Dij59]. SimRank is a similarity measure based on random walk and structural context. It con-

siders two vertices as being similar if they have similar neighbours. The concept of individual

in-neighbourhood of a vertex is introduced, as given by the equation 2.24.

I(v) = {u|(u,v) ∈ E} (2.24)

for a directed graph G = (V,E), where V is the set of vertices and E the set of edges, such that

E ⊆V xV . For two distinct vertices u,v ∈V , the SimRank distance is given as:

dist(u,v) =

{
0 I(u) = 0∨ I(v) = 0

C
|I(u)||I(v)| ∑x∈I(u) ∑y∈I(y) s(x,y) I(u) 6= 0∧ I(v) 6= 0

(2.25)

where C is a constant between 0 and 1. The result is also between 0 and 1.

In [ACF11], a social distance function named Network Similarity is introduced, which is based

on the mutual friends graph and the friendship graph. The former graph, MFG(u,v) contains the

21

State of the art

mutual friends of the users and their relationships, while the former, FG(u), contains all friends

of a user and their relationships. The Network Similarity function is given as:

dist(u,v) =
log(|MFG(u,v)|
log(2|FG(u)|)

(2.26)

where |G| denotes the number of edges of a graph G.

[Dek06] introduces a social distance function based on link strength, which is weighted based

on the periodicity of the communications. The values are assigned from a discrete scale, which

varies between 0 (less than once per month) to 1 (communication every day).

[SSB05] compares the performance of six network similarity measures in the context of rec-

ommender systems for social networks: L1Norm, Cosine similarity, Pointwise Mutual Information

(positive correlations), Pointwise Mutual Information (positive and negative correlations), T FIDF

and LogOdds. These measures are also used for the work in [ACF13], where a user similarity

measure is proposed for online social networks by combining both network and profile similarity.

Considering two sets of users A and B, the L1Norm is given as:

dist(A,B) =
|A∩B|
|A| · |B|

(2.27)

This measure evaluates to the overlap between the two groups of users, divided by the product

of their sizes. It penalizes larger sets more severely than Cosine similarity.

The Pointwise Mutual Information (positive correlations) is given as:

dist(A,B) =
|A∩B|
|U |

log
(|A∩B| · |U |
|A| · |B|

)
(2.28)

where U represents the whole set of users. The Pointwise Mutual Information (positive and

negative correlations) is given as:

dist(A,B) =
|A∩B|
|U |

log
(|A∩B| · |U |
|A| · |B|

)
+
|A∩B|
|U |

log
(|A∩B| · |U |
|A| · |B|

)
(2.29)

The Pointwise Mutual Information focuses on the correlations between the memberships on

each set.

Finally, LogOdds is given as:

dist(A,B) = log
(|A∩B|
|A∩B|

)
(2.30)

This measure evaluates how membership in one set predicts the membership or absence in

another.

2.3 Twitter

This section will discuss Twitter and also research that has been done on this subject.

22

State of the art

2.3.1 Description

Twitter [Twi14b] is a microblogging service that allows users to publish short text messages,

known as "tweets", with at most 140 characters. It is a social network in the sense that the mes-

sages are broadcast to the each author’s "followers". Therefore, a relationship is defined by the

"follower" or "following" relationship, being that each user is allowed to choose who to follow.

Table 2.2 presents the important concepts associated with a tweet, so as to promote a better

understanding of the social interactions.

Table 2.2: Twitter concepts

Concept Description
Retweet (RT) Share another user’s tweet
Mention (@ + username) Identify a user in a tweet
Reply (@ + username) Answer to a previous user’s tweet
Hashtag (# + topic name) Association of a keyword to a tweet
Localization User’s geo-coordinates when sending the tweet

2.3.2 SocialBus

SocialBus [BOM+12], formerly known as TwitterEcho, is a research platform which supports the

collection and processing of messages from social networks. It currently supports data extraction

from Facebook1 and Twitter, but it is designed to be easily extensible. The current architecture of

SocialBus is presented in Figure 2.4.

The Twitter Consumer retrieves tweets from Twitter using the Twitter Streaming API [Twi14a].

The tweets are sent to a message broker for translation of the data format. The server processes

the tweets, extracts metadata, while also being responsible for indexing and tokenization. The

processed messages are stored in MongoDB 2. After persisting the information, it is subjected to

batch processing for mining different kinds of knowledge.

2.3.3 Research using Twitter

The interest on Twitter for research purposes has been growing in the last few years. This section

will focus on investigations that cluster Twitter data for several purposes, such as topic summa-

rization, event detection and sentiment analysis.

Despite being a rich source of information, the massive amount of tweets makes it difficult

for users to plow through them for contents of interest. Twitter topic summarization attempts

to solve this issue by summarizing tweets while representing them as short text pieces which

cover the most relevant topics. [YZF12] proposes a framework for topic summarization in Twitter

which summarizes topics by sub-topics. For this process, a clustering algorithm is used together

with a graph-based ranking algorithm which takes into account both the social influence and the

1https://www.facebook.com
2http://www.mongodb.org/

23

State of the art

Figure 2.4: SocialBus system architecture [REA15]

content quality of tweets. The content quality is measured by the readability and content richness,

while the social influence takes other metrics into account, which include the number of followers,

messages and lists, the follower/following ratio and the number of mentions and retweets received

by the tweet’s author. [SWCC13] proposes a prototype named Sumblr for topic summarization

over tweet streams. It uses an incremental clustering algorithm and a summarization technique

that generates both online and historical summaries. Embedded in the process is also a ranking

system, which takes into consideration the temporal, content and social dimensions. For the social

dimension an UserRank value is calculated for the tweet’s author as in [CLOW11].

[CLOW11] proposes an adaptive indexing scheme for Twitter data so as to allow real-time

search on tweets, motivated by the high update and query loads inherent to the microblogging

system. It has a ranking system that considers the temporal, content and social dimensions by

composing the user’s PageRank [PBMW99], the popularity of the topics, the term frequency and

the timestamp of the tweet.

Twitter practices have also been studied with focus on retweets. RetweetPatterns [Rod14]

24

State of the art

developed a platform for studying the information spreading on Twitter by extracting patterns

from the retweets. This is achieved with the aid of GetMove, a tool for social media analysis

through moving object pattern mining, in combination with TweeProfiles. [BGL10] examines

retweeting as a conversational practice by studying the reasons and styles of what has become

a convention in the microblogging service. [Bru12] analyzes hashtag and reply networks in the

temporal dimension by extracting data from the Twitter API. It allows the generation of network

visualisations, which cover the different phases of the discussions and the formation of clusters

based on the extraction of patterns from the interaction of the participants.

Sentiment analysis is another topic of interest on the microblogging platform. The goal of this

task is to classify tweets based on the feelings they convey. These can be simply positive or nega-

tive or more granular by adding other categories such as neutral and objective. The work in [BF10]

describes an approach for opinion mining and sentiment analysis on Twitter data streams using a

sliding window model. In this case, the classification target is binary, considering only positive or

negative feelings. An extension of MOA [BHKP10] is proposed in [BHP11] for real-time tweet

mining with adaptation to changes in the stream. It allows classifying tweets in real-time, which is

useful for sentiment analysis. It accesses the Twitter Streaming API and preprocesses the data by

extracting content features using an incremental T FIDF weighting scheme. An opinion mining

framework for Twitter is proposed in [KBQ14]. It aims to overcome the problems related to the

sparsity of the data and identification of sarcasm. The framework processes data from the Twitter

Streaming API and uses a classification algorithm with a hybrid scheme.

Unlike sentiment analysis, data analysis in event detection is not confined to tweets mentioning

only certain keywords, since the events are not known a priori. [Cor12] presents a mechanism

for event detection by analyzing hashtags from the Twitter Streaming API. This is achieved by

using wavelet signal analysis and the topics are inferred by a Latent Dirichlet Allocation [BNJ12]

model. [Lee12] also approaches event detection by performing multidimensional clustering on

Twitter data. It detects real-time event topics by extracting spatio-temporal features from the

microblogging platform using a density-based online clustering method. The results are presented

as a spatial distribution of topics in real-time. In [BNG11], a tool is proposed for real-world

event identification by using multidimensional clustering and classification. The former step of

the process clusters Twitter data in the temporal, social and content dimensions. The classification

step is applied to the resulting clusters, which labels them depending on whether or not they

are considered actual events. Event detection is also the research topic of EventRadar [BL12].

It detects local events from Twitter streaming data by clustering and classification. First, the

proposed scheme tries to find clusters on Twitter data which contain the same subset of words.

This is achieved by applying a density-based clustering algorithm. It then classifies the clusters as

potential events or not by taking into account seven day historic data. A visual analytics approach

for social media is presented in [CTB+12]. It allows interactive data analysis including exploration

of abnormal topics and events. The major topics are extracted from Twitter messages and ranked

using Latent Dirichlet Allocation, while the abnormality within topics is identified by seasonal

trend decomposition.

25

State of the art

Olhó-Passarinho [Mot14] is an extension of TweeProfiles for spatio-temporal analysis of the

images contained in tweets. It replaced the tweet’s textual content representation of the extended

platform with feature vectors of the images. The web application allows the visualization of the

clusterings on the three dimensions: temporal, spatial and content. In [EOSX10], a method is

presented for identifying lexical variation from raw text based on topic and geographical region.

The model is constructed from data collected from the Twitter Streaming API. [RLW12] pro-

poses a tool for discovering and displaying underlying memes in social media. The memes are

formed from clusters of common phrases, which appear in multiple documents. These phrases are

ranked prior to the clustering process in order to identify the most informative to display to the

user. [Li14] proposes methods for mining the online social network data. These methods cover

the topics of textual summarization, event detection, storyline generation and classification. The

influence of the users is also studied and three important dimensions are identified in this context:

Monomorphism vs Polymorphism, High Latency vs Low Latency and Information Inventor vs

Information Spreader. For this purpose, a dynamic influence model is presented to calculate the

current influence of the users, as well as predict their future influence.

2.4 TweeProfiles2

TweeProfiles2 [Per14] is an extension of TweeProfiles [Cun13] and is a data-mining tool that al-

lows clustering Twitter data streams on real-time, taking into account multiple dimensions. More-

over, it enables the visualization of the results of the referred data mining task in each of the three

considered dimensions: spatial, temporal and content. For the analysis of the spatial dimension,

the tweet’s geographical coordinates are used. Considering that not all the retrieved tweets are

geo-located, this aspect poses itself as in import restriction. The temporal dimension is analysed

by means of the tweet’s timestamp. Since a temporal decay is already applied by the clustering

algorithm, this dimension is being implicitly considered, so by this perspective it was decided to

cluster on the hour and weekday of the tweet instead. For the content dimension, the tweet’s text

is used. The fact that the length of a tweet is capped at 140 characters has the drawback of causing

the text similarities to be rather small. The developed clustering algorithm, HybridDenStream,

was adapted from DenStream to allow the process to take into account not only the numerical

dimensions, but all the aforementioned.

2.4.1 System Architecture

Figure 2.5 presents the architecture of the proposed solution for TweeProfiles2. The data stream

is pipelined to a back-end server, where the data is preprocessed and then fed to the microclus-

tering algorithm. The resulting microclustering is stored in a MySQL [MyS14] database, which

is accessed by the macroclustering algorithm whenever a clustering request arrives. The resulting

clusters are then passed to the visualization module, which is responsible for displaying them to

allow the analysis of the results [Per14].

26

State of the art

Figure 2.5: TweeProfiles2 system architecture [Per14]

2.4.2 Operation

The HybridDenStream algorithm, which was adapted from DenStream, applies a piece-wise dis-

tance function to calculate both the tweet-tweet and tweet-cluster distances. The formulas used

for each tweet attribute type is given in Table 2.3 [Per14]. A min-max normalization is applied to

the distance values so as to attenuate the differences in the order of magnitude among the several

dimensions.

Table 2.3: Distance function by attribute type [Per14]

Tweet Attributes Formula
latitude,longitude Haversine Formula
hour,weekday Euclidean Formula
text Cosine Similarity

The concept of Hybrid MicroCluster is also introduced, which is an improvement over Den-

Stream’s microcluster. It enables the summarization of all the information concerning tweets that

it needs for the clustering process.

A hybrid-micro-cluster, at time t is defined as HMC(w,ww,c,r) for a group of similar tweets

(as defined in equation 2.31) TW1 . . .TWn with time stamps T1 . . .Tn, and text vectors W1 . . .Wm

[Per14]:

TW (lat, lng,hou,wkd,date, txt) (2.31)

27

State of the art

w =
n

∑
j=1

f (t−Tj),w > µ is the weight; (2.32)

c =

 ∑
5
j=1 f (t−Ti)TWi j

w
∑

m
k=1 f (t−Ti)Wk

ww

is the center; (2.33)

r =
∑

n
j=1 f (t−Tj)dist(X j,c)

w
,r ≤ ε is the radius; (2.34)

where f (t) is the temporal decay function (as defined in equation 2.2 and dist(Xi j ,c) denotes the

composed distance function between the point Xi and the center c.

The clustering algorithm comprises the following steps [Per14]:

1. When a new point X arrives, the nearest potential-micro-cluster, a, is identified and an at-

tempt is made to add the new point to it;

2. If a (with the new point added) violates the radius constraint (r < ε), X is removed from it,

the nearest outlier-micro-cluster, b, is identified and X is added to it;

3. If b respects the radius constraint, the weight of b is checked to see if it is enough to trans-

form it into a PMC (w > β ∗ µ). If it is, b is removed from the the OMC buffer and it is

added to the PMC buffer;

4. Finally, if b violates the radius constraint, a new OMC, c, is created with only a point X and

then it is added to the OMC buffer.

The macroclustering step applies DBSCAN, which accesses the microclusters stored in the

database, in order to produce the final clustering results.

2.5 TweeProfiles3

TweeProfiles has been further extended in TweeProfiles3 [Mai15]. It aimed to create a visual-

ization tool for TweeProfiles2 capable of displaying tweet profiles based on multiple dimensions

and also to improve the integration of TweeProfiles2 with SocialBus. This integration facilitated

gathering real-time data from Twitter with the possibility of imposing restrictions on the retrieved

tweets. The visual methods integrated have been supported both in theoretical principles as well

as practical by surveying professionals. These visualization improvements also include the imple-

mentation of a search module which assists users with textual analysis.

Figure 2.6 presents the interface which allows the analysis of the results over the spatial,

temporal and content dimensions.

28

State of the art

Figure 2.6: TweeProfiles3 visualization interface [Mai15]

2.5.1 System Architecture

Figure 2.7 presents the architecture of TweeProfiles3. The data collection is performed by Social-

Bus, which handles the extraction and pre-processing methods. This data is saved in MongoDB

and serves as input for the microclustering algorithm. The resulting microclusters are passed to the

macroclustering algorithm, which stores the final clustering in MySQL. The visualization module

then retrieves the clusters from the database and presents them in a user-friendly interface, which

allows the user to analyze the results in the considered dimensions.

Figure 2.7: TweeProfiles3 system architecture [Mai15]

29

State of the art

30

Chapter 3

TweeProfiles4

This chapter describes the composition and the operations of the developed tool, TweeProfiles4.

First, a description of the architecture is provided. Then, the data process and the clustering tasks

are explained, followed by the description of the evaluation process. Finally, an overview of the

visualization interface is given.

3.1 Introduction

TweeProfiles4 was developed as an extension of TweeProfiles [Mai15], which not only allows

clustering data streams in real-time, but also the application of a dynamic weighting scheme re-

garding each dimension. Furthermore, the previous version of the tool has been extended with the

inclusion of a clustering evaluation process.

The clustering is performed over three dimensions: spatial, temporal and content. The spatial

dimension takes into account the geographical coordinates of the tweet. The temporal dimension,

besides taking into account the hour and weekday of the tweet, also has an implicit influence on

the whole clustering process, since a temporal decay is applied. The content dimension refers to

the tweet’s text, which is limited to 140 characters.

In order to allow the user to dynamically changes his preferences during the clustering process,

a consensus clustering approach has been applied, which is explained in greater detail in this

chapter. The evaluation process also involved the adaptation of the clustering algorithms.

3.2 System Architecture

TweeProfiles4 is integrated with SocialBus, whose architecture is depicted in Figure 2.4. So-

cialBus collects the tweets from the Twitter Streaming API, processes them and persists them in

MongoDB, which serves as the data source for the clustering algorithm.

The high-level architecture of the whole platform is represented in Figure 3.1.

31

TweeProfiles4

The online clustering algorithm is responsible for incrementally processing the data by apply-

ing several pre-processing operations (see Section 3.3), mining the data and persisting the results

in a relational database.

These results are used by both the visualization module and the offline clustering algorithm.

The former allows the analysis of the results and is described in detail in Section 3.7. The latter

is triggered by user request, which includes his weighting preferences for each dimension. This

final operation yields the final clustering results, which are also made accessible for the visualiza-

tion module through persistent storage in a relational database. The clustering evaluation is also

performed during the offline phase, after the computation of the final clusterings.

Both the online and offline clustering algorithms are described in detail in Section 3.5.

Figure 3.1: TweeProfiles4 system architecture

3.3 Data Processing

The clustering algorithm receives a tweet data stream as input. Each tweet collected from the

Twitter API is in the JSON format and contains over 30 fields, some of which contain nested

objects. Not all the fields are relevant for the dimensions being studied, so the data is filtered and

only the fields presented in Listing 3.1 are kept.

The next pre-processing step involves extracting the hour of the day (0-23) and the day of

the week (1-7, mapping to Sunday-Monday) from the date field. The final step is responsible for

processing the text of the tweet as enumerated in the following subtasks:

1. Detect the language of the text;

2. Remove any URLs contained in the text;

32

TweeProfiles4

1 {
2 "tweetid":359419233295269888,
3 "username":"PipaOliveira_"
4 "text":"Uns dormem e outros estudam...",
5 "date":"2013-07-22T21:06:37.000Z",
6 "lat":"-71.3553287",
7 "lon":"-40.15760962"
8 }

Listing 3.1: Example of a tweet after filtering irrelevant fields

3. Remove all the punctuation from the text;

4. Tokenize the text;

3.4 Distance Functions

The distance functions applied to the clustering algorithm were those which had been selected for

the previous version of the platform. These are summarized in Table 3.1 (adapted from [Per14]),

which also includes the value used for the min-max normalization.

Table 3.1: Distance functions and normalization per dimension

Formula Dimension Tweet fields Maximum
Haversine spatial latitude, longitude 20.020 (km)
Euclidean temporal hour, weekday

√
565 = 23,77

Cosine Similarity content text 1

The normalization of the distance values is required since the order of magnitude varies de-

pending on the formula applied. These similarity measures are used in the computation of both

tweet-tweet and tweet-cluster distances.

Defining the distance as a piecewise function allows one to perform a weighted combination

of the similarities of each dimension. Considering a dimension D and distD(xA,xB) as the distance

between two entities xA and xB, which may be tweets or centroids, and wD as the relative weight,

the weighted distance measure is given as:

dist(xA,xB) = wC ·distC(xA,xB)+wT ·distT (xA,xB)+wS ·distS(xA,xB) (3.1)

with

wC +wT +wS = 1 (3.2)

The aforementioned weighting scheme is applied both in the macroclustering process per-

formed by DBSCAN and in the evaluation of the final clusterings.

33

TweeProfiles4

3.5 Clustering

We want to allow the user to dynamically change his preferences regarding the importance of each

dimension during the clustering process. Clustering streaming data requires it to be constantly

summarized, so it is not possible to obtain meaningful results by starting the clustering process

with a set of parameters and then change them at later stages. In order to address this problem, the

online clustering process must be agnostic to the weights of each dimension. Moreover, it must

provide the necessary representations to be used when a final clustering request arrives, which

includes the user’s preferences.

Since no assumption can be made on the weights until a final clustering result is demanded,

the developed solution relies on the construction of unidimensional microclusters during the online

phase. Then, when a clustering request arrives with user-defined weights, weighted multidimen-

sional clusters are constructed from the microclusters computed in the previous phase. Afterwards,

the offline phase gives the final clustering from these multidimensional microclusters using DB-

SCAN. Table 3.2 summarizes the clustering process of each phase, both in the proposed solution

and in TweeProfiles2 and TweeProfiles3.

Table 3.2: Clustering process

Unidimensional Clusters Multidimensional Clusters
Online Phase (Micro) TweeProfiles4 TweeProfiles2/3

Offline Phase (Macro) TweeProfiles2/3
TweeProfiles4

Unlike static data clustering, where the data points can be kept in memory, in the streaming

paradigm data is summarized and incrementally updated. So, it is not possible to reconstruct

multidimensional clusters from unidimensional clusters with full accuracy, since data is inevitably

lost. Therefore, the goal is to find a summarization and reconstruction process which gives the

most approximate clustering to the one that would be obtained if the weights were being taken

into account from the beginning of the online phase.

We will explain the clustering mechanism in greater detail in Section 3.5.1, and the two vari-

ants developed for the construction of the muldimensional microclusters in Sections 3.5.2 and

3.5.3.

3.5.1 Clustering Mechanism

The developed algorithm is divided in two phases: online and offline. The online phase is not only

responsible for the incremental maintenance of microclusters, but also of a graph which represents

the overlap between them. The offline phase is responsible for providing the final clusterings by

taking into account the weighting of each dimension defined by the user, the previously obtained

microclusters and their relation in terms of degree of overlapping. A diagram of the offline phase

is presented in Figure 3.3.

34

TweeProfiles4

Figure 3.2: Online phase diagram

For the online phase, we instantiate one unidimensional clusterer per dimension being stud-

ied. In the context of Twitter data, this means we have a spatial clusterer, a temporal clusterer

and a content clusterer. Each of these clusterers corresponds to an independent instance of a mi-

croclustering algorithm extended from HybridDenStream (see Section 2.4.2). We consider them

unidimensional, since each clusterer only extracts patterns taking into account their respective di-

mension. The similarity measures applied for each dimension are described in Section 3.4. The

pseudo-code of our extension of HybridDenStream for the microclustering algorithm is presented

in Algorithm 3. The extension of HybridDenStream also includes changes to the HybridMicro-

Clusters, which had to be modified to keep a sample of the merged tweets, which is used later by

the clustering evaluation process (see Section 3.6).

We consider a point-to-cluster assignment A(X ,MC), where X is a d-dimensional data point

and MC a microcluster, as the relation between a data point and the cluster on which the for-

mer was merged by the microclustering algorithm. During the online phase, every time a data

point arrives from the stream, it is passed to each one of the clusterers, which will merge it into

some microcluster. After merging, each clusterer communicates the corresponding assignment,

A, to an OverlapManager agent. This agent is responsible for collecting the assignments of each

clusterer and updating the OverlapGraph accordingly. The aforementioned graph is a undirected

35

TweeProfiles4

graph, where each vertex, V , is a microcluster and every edge E(V1,V2), which connects two

vertices V 1 and V 2, is weighted according to the overlap between the connected microclusters.

The edge weight measures the number of data points in common that each microcluster pair has

merged. For every assignment pair A(X1,MCA),A(X2,MCB), where X1 = X2, collected by the

OverlapManager, the edge weight Ew(MCA,MCB) is incremented by 1 or set to 1 if no such edge

exists on the OverlapGraph. The communication between each unidimensional clusterer and the

OverlapManager is asynchronous and it was implemented with a producer-consumer pattern for

performance reasons.

The offline phase is triggered on demand by a request which includes the weighting preference

of the user for each dimension. When a clustering request arrives, the microclusters obtained from

each clusterer are collected and another graph is derived from the OverlapGraph. The new graph is

obtained by removing the vertices of the OverlapGraph which correspond to outlier-micro-clusters

and the edge weights are recalculated as follows:

Ew(MCA,MCB) =
2∗Ew(MCA,MCB)

MCAsize +MCBsize

(3.3)

Figure 3.3: Offline phase diagram

The outlier-micro-clusters are only filtered from the OverlapGraph at this stage, since these

may change to potential-micro-clusters over time and maintaining this consistency during the on-

line phase would introduce a communication overhead, which would degrade the performance.

At this point, the unidimensional microclusters and the final OverlapGraph are fed to another

algorithm which is responsible for providing the multidimensional microclusters. Two algorithms

were developed for this task, to which we refer as Solution A (see Section 3.5.2) and Solution B

(see Section 3.5.3).

36

TweeProfiles4

Algorithm 3 HybridDenStream extension

1: procedure HYBRIDDENSTREAM EXTENSION(D,ε ,β ,µ ,λ)
2: Tp =

1
λ

log(β µ

β µ−1)
3: Get the next point X at current time t from data stream D;
4: Try to merge X into its nearest p-micro-cluster cp;
5: if rp ≤ ε then
6: Merge X into cp;
7: Send assignment A(X ,cp) to OverlapManager agent;
8: else
9: Try to merge X into its nearest o-micro-cluster co;

10: if ro ≤ ε then
11: Merge X into co;
12: Send assignment A(X ,co) to OverlapManager agent;
13: if wo > β µ then
14: Remove co from outlier-buffer and create a new p-micro-cluster cpn by co;
15: end if
16: else
17: Create a new o-micro-cluster con by X and insert into the outlier-buffer;
18: Send assignment A(X ,con) to OverlapManager agent;
19: end if
20: end if
21: if (t mod Tp) = 0 then
22: for each p-micro-cluster cp do
23: if wp < β µ then
24: Delete cp;
25: end if
26: end for
27: for each o-micro-cluster co do
28: ξ = 2−λ (t−to+Tp)−1

2−λTp−1
29: if wo < ξ then
30: Delete co;
31: end if
32: end for
33: end if
34: if clustering request arrives then
35: Generate clusters;
36: end if
37: end procedure

After the aforementioned algorithm produces the multidimensional microclusters, a final clus-

tering step is applied to generate the macroclusters using DBSCAN. This macroclustering step has

been adapted to use a weighted combination of the distance functions as explained in Section 3.4.

37

TweeProfiles4

3.5.2 Solution A

In this solution, the OverlapGraph is applied a k-way partition algorithm [KK98], similar to the

approach used in [Hor07], using the METIS [Kar15] package. This outputs arbitrarily-sized parti-

tions, which represent groups of clusters with strong overlapping with each other. The clusters of

each partition are then merged to form multidimensional clusters (one per partition). If multiple

clusters of the same dimension are present on the same partition, their respective centroid is av-

eraged. The execution of the partitioning algorithm requires the number of partitions to be fixed,

which we set to the maximum number of unidimensional microclusters per dimension.

3.5.3 Solution B

The first solution has the drawback that the number of partitions has to be defined a priori. So-

lution B relaxes this constraint and instead tries to group strong overlapping unidimensional mi-

croclusters without the referred parameter definition. For this we cluster the OverlapGraph using

DBSCAN, where the microclusters are the vertices and the distances between each pair is de-

fined by the weight of the edge which connects them. As in Solution A, the multidimensional

clusters are formed by merging the clusters of each partition (one per partition), which the algo-

rithm yields. Again, their respective centroid is averaged if the same partition happens to include

multiple clusters of the same dimension.

3.6 Evaluation

For the evaluation of the extracted patterns, internal measures were selected and implemented.

This decision is supported by the fact that there is no ground truth for the distribution of the

Twitter data, therefore external measures are not applicable. The clustering evaluation measures

implemented are represented in Table 3.3, according to the objective function which provides the

optimal value.

Table 3.3: Evaluation measures and their optimal index value

Maximize Minimize
Silhouette Coefficient SSQ
Dunn’s Index G(+)
Tau Davies-Bouldin Index
Gamma W/B
Point-Biserial C Index

In the following, we denote

n = number of points,

k = number of clusters,

nk = number of points in cluster k,

xi = ith point in cluster Ck,

38

TweeProfiles4

Ck = set of points belonging to cluster k,

Nt = number of distinct pairs of points:

Nt =
n(n−1)

2
, (3.4)

Nw = number of distinct pairs of points belonging to the same cluster:

Nw =
k

∑
i=1

ni(ni−1)
2

, (3.5)

Nb = number of distinct pairs of points belonging to the different clusters:

Nb = Nt −Nw, (3.6)

Sw = sum of the intra-cluster distances:

Sw =
k

∑
c=1

∑
i, j∈Cc

i< j

dist(xi,x j), (3.7)

Sb = sum of the inter-cluster distances:

Sb =
k−1

∑
c=1

k

∑
d=c+1

∑
i∈Cc
j∈Cd

dist(xi,x j) (3.8)

C Index [HL76] is calculated using equation 3.9:

CIndex =
Sw−Smin

Smax−Smin
,Smin 6= Smax (3.9)

where Smin is the sum of the Nw smallest distances between all point pairs and Smax is the sum

of the Nw largest distances between all point pairs.

Gamma [BH75] is calculated using equation 3.10:

Gamma =
s+− s−

s++ s−
(3.10)

where s+ is the number of times an inter-cluster distance is strictly greater than an intra-cluster

distance. s− is the number of times an inter-cluster distance is strictly less than an intra-cluster

distance. The equality cases are not taken into account.

Using the same notation as Gamma, G(+) [Mil81] is calculated using equation 3.11:

G(+) =
2s−

Nt(Nt −1)
(3.11)

39

TweeProfiles4

Using the same notation as Gamma, Tau [Mil81] is computed using equation 3.12:

Tau =
s+− s−√

(Nt(Nt −1)/2− t)(Nt(Nt −1)/2)
(3.12)

where t is the number of comparisons of two point pairs where both represent either intra-

cluster comparisons or inter-cluster comparisons.

Silhouette Coefficient [Rou87] is computed using equation 3.13:

SilhouetteCoe f f icient =
∑

n
i=1

b(i)−a(i)
max{a(i);b(i)}

n
(3.13)

where a(i) is the average dissimilarity of the ith point to the others belonging to the same

cluster. b(i) is the minimum average dissimilarity of the ith point to the others in different clusters.

Dunn’s Index [Dun74] is given in equation 3.14:

Dunn =

min
1≤i< j≤k

dist(Ci,C j)

max
1≤c≤k

max
x,y∈Cc

dist(x,y)
(3.14)

SSQ [HK06] is computed using equation 3.15:

SSQ =
n

∑
i=1

k

∑
c=1

dist(xi,Cc)∗dist(xi,Cc) (3.15)

Davies-Bouldin Index [DB79] is calculated according to equation 3.16:

DB =
1
k

k

∑
c=1

max
c 6=d

(
Swc +Swd

dist(Cc,Cd)

)
(3.16)

where Swc corresponds to the sum of intra-cluster distances for cluster Cc as defined in equation

3.17:

Swc = ∑
i, j∈Cc

i< j

dist(xi,x j) (3.17)

Point-Biserial [Mil81] is computed using equation 3.18:

PB =
(Sb

Nb
− Sw

Nw
)
√

NwNb
N2

t

sd
(3.18)

where sd is the standard deviation of all distances.

W/B [Mil81] is calculated using equation 3.19

W/B =
SwNb

NwSb
(3.19)

40

TweeProfiles4

In order to compute the inter-cluster and intra-cluster distances, as required by the evaluation

measures, it was necessary to keep a sample of the tweets merged by each microcluster. Regarding

the macroclusters, their sample is obtained by merging those of the corresponding microclusters.

A sample is kept instead of every tweet, given the memory constraints inherent to the data stream

clustering task. For performance reasons, we fixed the maximum size of the sample to 100 tweets.

Since there are no dependencies between the computations of each measure, they are all processed

in parallel, which significantly speeds up the overall evaluation task.

The distance functions are calculated as described in Section 3.4, which includes the weighting

scheme to relativize each dimension.

3.7 Visualization

In the following subsections we describe the relevant improvements and the development that has

been conducted in the context of the visualization module of TweeProfiles.

3.7.1 Clustering

The visualization tool has been improved to allow the user to dynamically change the relative

weight of each dimension. As presented in Figure 3.4, the user may change his preferences either

by dragging the corresponding slider or by setting the weight manually. After the modifications, an

offline clustering request is performed and the visualization tool is refreshed automatically with

the latest results. This part of the interface replaces the previous version, which only allowed

predefined (binary) combinations of the dimensions to be chosen.

Figure 3.4: Dimension weighting preferences interface

41

TweeProfiles4

3.7.2 Evaluation

An interface was developed to allow the visualization of the evaluation results regarding the final

clusterings. The results are presented in a time series chart (similar to MOA clustering perfor-

mance interface), which allows dynamically toggling between microcluster evaluation and macro-

clustering evaluation. Moreover, it allows the user to dynamically select the evaluation measures

to be displayed. The chart is updated at frequent and regular intervals from the database, which is

populated by the evaluation module.

An example of the interface with evaluation results from a sample clustering is presented in

Figures 3.5 and 3.6. For the visualization of the chart, the Javascript libraries D3.js1 and C3.js2

were used.

Figure 3.5: Clustering evaluation visualization

1http://d3js.org/
2http://c3js.org/

42

TweeProfiles4

Figure 3.6: Clustering evaluation visualization with detailed information

43

TweeProfiles4

44

Chapter 4

Results

In this chapter we present the test dataset, the experimental setup and we discuss the results ob-

tained.

4.1 Exploratory Analysis

In order to test the proposed algorithms, we used a dataset with 112739 geo-located tweets from

SocialBus, from June 2012 to February 2013. This is a subset of the dataset that has been used in

TweeProfiles [Cun13].

Figure 4.1 shows the distribution of the tweet frequency over the time span of the dataset.

Figure 4.1: Test dataset monthly distribution

45

Results

The reasons for the observed disparity are related to the filtering applied to only include data

from Portuguese users or tweets which were written in Portuguese. Besides, the throughput of the

data stream is dependent on the frequency of the posts and not limited by the system. There were

also limitations regarding system failures and maintenance during some of the periods.

The geographical distribution of the tweets present in the dataset can be observed in Figure

4.2, with Portugal, Spain and Brazil being the most representative countries.

Figure 4.2: Test dataset spatial distribution

Figure 4.3 presents the distribution of the test dataset according to the day of the week. It

reveals Friday and Saturday as the most active days in terms of tweet posting, with Tuesday being

the least active.

Figure 4.3: Test dataset weekday distribution

46

Results

Figure 4.3 presents the distribution of the test dataset according to the hour of posting of

each tweet. There is less activity until noon, unlike the night hours where the frequency of posts

achieves its peak.

Figure 4.4: Test dataset hourly distribution

We generated a data stream from the static dataset using Streamalizer [Per14], a simple tool

to ease the testing of the stream clustering algorithm. It also allows the selection of custom time

periods for the tweets’ retrieval.

4.2 Experimental Setup

In order to assess the proposed algorithms, a series of tests has been conducted with different

conditions. The main goal was to compare our solution with the one proposed and implemented

in TweeProfiles2 [Per14].

First, we ran TweeProfiles2’s algorithm and both our solutions with a set of defined parame-

ters, as shown in Table 4.1 (adapted from [Per14]), while varying the ε parameters for both the

microclustering algorithms and DBSCAN (table 4.2) and the weights of each dimension (table

4.3). For each execution, we gathered the resulting microcluster count and macrocluster count.

After this process, we picked a set of three executions, one per solution, and compared their

results from the perspective of each dimension being studied.

Moreover, we have assessed the quality of the results with the application of the implemented

evaluation measures.

We have also compared the computational performance of our approach against the solution

applied for TweeProfiles2.

47

Results

Table 4.1: Clustering algorithms fixed parameters

Name Abbrev Description Min
Value

Max
Value

Defined
Value

MinPoints mp Defines the minimum num-
ber of points to create a mi-
crocluster/macrocluster

1 ∞ 2

InitPoints ip Number of points for initial-
ization

0 ∞ 50

µ µ Used in the p-micro-
cluster/o-micro-cluster
restriction

1 ∞ 1

Beta β Used in the p-micro-
cluster/o-micro-cluster
restriction

0 1 0.2

Lambda λ Used in the time decay func-
tion; affects the decay rate of
the stream

0 1 0.25

Processing speed s Defines the number of data
points per time unit

1 ∞ 100

Table 4.2: Clustering algorithms variable parameters

Name Abbrev Phase Description Min
Value

Max
Value

Step
Value

Epsilon eps Micro Defines the minimum radius
of a microcluster

0.2 1 0.1

Epsilon eps Macro Defines the minimum radius
of a ε-neighbourhood

0.2 1 0.1

Table 4.3: Weighting parameters

Execution Spatial Temporal Content
1 0.33 0.33 0.33
2 0.5 0.5 0
3 0.5 0 0.5
4 0 0.5 0.5

4.3 Results

4.3.1 Clustering

In this section we present the results of the performed executions as described in Section 4.2.

4.3.1.1 All Dimensions

The following results were obtained using the weight parameters of Table 4.3 for Execution 1,

which takes into account all dimensions.

48

Results

Table 4.4 presents the microcluster and macrocluster count for the original solution and both

developed solutions.

Table 4.4: Clustering results for Execution 1

Solution Micro Macro Macro Outliers
Original 265 17 239
Solution A 125 10 52
Solution B 208 9 126

Regarding the spatial dimension, we can observe the macroclusters obtained in Figures 4.5a,

4.5b and 4.5c.

(a) Original

(b) Solution A (c) Solution B

Figure 4.5: Spatial view of the macroclusters for Execution 1

The temporal dimension is represented in Figures 4.6a, 4.6b and 4.6c.

The content dimension is represented in Figures 4.7a, 4.7b and 4.7c.

The dissimilarity in terms of the number of microclusters is noticeable, particularly between

the original solution and solution A. However the difference is reduced for the macroclusterings.

From a spatial perspective, we observe similar results with the exception of some macroclusters

positioned closer to Africa in the developed solutions when compared to the original. Regarding

the remaining dimensions, we find the results to be very similar.

49

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.6: Temporal view of the macroclusters for Execution 1

50

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.7: Content view of the macroclusters for Execution 1

51

Results

4.3.1.2 Spatial and Temporal Dimensions

This subsection presents the results which were obtained using the weight parameters of Table 4.3

for Execution 2, which comprises the spatial and temporal dimensions.

Table 4.5 presents the microcluster and macrocluster count for the original solution and both

developed solutions.

Table 4.5: Clustering results for Execution 2

Solution Micro Macro Macro Outliers
Original 164 4 4
Solution A 139 4 46
Solution B 167 4 0

Regarding the spatial dimension, we can observe the macroclusters obtained in Figures 4.8a,

4.8b and 4.8c.

(a) Original

(b) Solution A (c) Solution B

Figure 4.8: Spatial view of the macroclusters for Execution 2

The temporal dimension is represented in Figures 4.9a, 4.9b and 4.9c.

Finally, the content dimension is represented in Figures 4.10a, 4.10b and 4.10c.

Despite the variations in the number of microclusters of the solutions, the resulting macro-

clusters are the same in number and very similar in every perspective. The similarities between

the developed solutions are the most noticeable. We can observe some differences between these

solutions and the original, namely on the spatial view (Figure 4.8a), regarding the macrocluster

further south, which is marked above Brazil on the original solution as opposed to a positioning

52

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.9: Temporal view of the macroclusters for Execution 2

more to the east on the others (Figures 4.8b and 4.8c). This macrocluster also affects the content

dimension, causing the differences observed between Figure 4.10a and Figures 4.10b and 4.10c.

However, the variations in the aforementioned dimension are not very relevant, since it is not being

weighted in this execution.

53

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.10: Content view of the macroclusters for Execution 2

4.3.1.3 Spatial and Content Dimensions

In this subsection we present the results which were obtained using the weight parameters of Table

4.3 for Execution 3, which comprises the spatial and content dimensions.

Table 4.6 presents the microcluster and macrocluster count for the original solution and both

developed solutions.

Table 4.6: Clustering results for Execution 3

Solution Micro Macro Macro Outliers
Original 106 3 27
Solution A 110 3 14
Solution B 139 2 20

The macroclustering results from the spatial perspective can be observed in Figures 4.11a,

4.11b and 4.11c.

The temporal dimension is represented in Figures 4.12a, 4.12b and 4.12c.

The results from the content perspective are represented in Figures 4.13a, 4.13b and 4.13c.

Even though the number of microclusters varies for the solutions, the macroclusterings are

very similar, specially between the original solution and solution A. For these solutions, we have

54

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.11: Spatial view of the macroclusters for Execution 3

3 macroclusters as a result of this execution and one less for solution B, which is the macrocluster

further north (Figures 4.11a, 4.11b and 4.11c). From the temporal perspective, we have the same

results on the three solutions. As for the content dimension, we do not observe any significant

differences either, even though solution B considers fewer macroclusters.

55

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.12: Temporal view of the macroclusters for Execution 3

56

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.13: Content view of the macroclusters for Execution 3

57

Results

4.3.1.4 Temporal and Content Dimensions

The following results were obtained using the weight parameters of Table 4.3 for Execution 1,

which takes into account the temporal and content dimensions. Table 4.7 presents the microcluster

and macrocluster count for the original solution and both developed solutions.

Table 4.7: Clustering results for Execution 4

Solution Micro Macro Macro Outliers
Original 164 19 26
Solution A 153 16 0
Solution B 180 15 0

The macroclustering results from the spatial perspective can be observed in Figures 4.14a,

4.14b and 4.14c.

(a) Original

(b) Solution A (c) Solution B

Figure 4.14: Spatial view of the macroclusters for Execution 4

The temporal dimension is represented in Figures 4.15a, 4.15b and 4.15c.

The results from the content perspective are represented in Figures 4.16a, 4.16b and 4.16c.

In this execution, we also observe significant variations regarding the number of microclusters,

even though the difference related to the number of macroclusters is rather small. From the tempo-

ral perspective, the similarities between the results are noticeable, specially between the original

solution and solution B (Figures 4.15a and 4.15c). We observe the same degree of similarity be-

tween all solutions regarding the content dimension. The spatial dimension is the one from which

58

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.15: Temporal view of the macroclusters for Execution 4

more differences can be observed, which is not very significant since this is the dimension being

discarded in the weighting scheme of this execution.

59

Results

(a) Original

(b) Solution A (c) Solution B

Figure 4.16: Content view of the macroclusters for Execution 4

4.3.1.5 Overall Discussion

The first execution was the one which yielded more dissimilarities in terms of the number of

microclusters, even though there was an approximation regarding the macroclustering. It makes

sense that we find more differences in this execution since it considers all the three dimensions,

while the others are considered pairwise. This is also the execution which reveals more differences

from the spatial perspective of the macroclustering results. The second execution provides the

most similar results in terms of the number of macroclusters, which is the same for every solution.

However, it is the one which yields more differences regarding the content dimension. From the

temporal perspective, we found its results to be very similar across all executions.

Overall, we find more similarities between both developed solutions than between each one

and the original, which is not unexpected since they use the same unidimensional microclusters as

basis. Solution A gives a better approximation overall, although the increase is minimal compared

to Solution B.

We consider our results satisfactory and we believe our solutions have the capability of provid-

ing a good approximation to an approach without a dynamic weighting scheme. Although some

60

Results

differences were observed, it’s important to notice that the MinPoints parameter value of the mi-

croclustering algorithm was set to 2, which promotes more variability in terms of both the number

of clusters and their features.

4.3.2 Evaluation

In this section we present the results obtained for one of the solutions in terms of the number of

clusters created, the number of outliers and the clustering evaluation according to the implemented

internal measures. The executions were performed for Solution A using the same weighting pa-

rameters as before (Table 4.2). Table 4.8 presents the number of microclusters and macroclusters

obtained for the different weight combinations for the studied dimensions.

Table 4.8: Clustering results per weight combination

Execution Micro Macro Macro Outliers
1 121 42 1
2 139 4 46
3 110 3 14
4 130 19 56

Tables 4.9 and 4.10 present the weighted evaluations of the obtained macroclusters according

to the implemented internal measures. The former table corresponds to measures whose optimal

value is the greatest of the index, unlike the latter, whose optimal value is the opposite.

Table 4.9: Clustering evaluation per weight combination I

Execution Silhouette Coefficient Dunn’s Index Tau Gamma Point-Biserial
1 0.44 0.018 -2.64E-6 -1 0.029
2 0.49 0.004 -8.73E-7 -1 0.039
3 0.50 0 -5.56E-7 -1 0.053
4 0.45 0.022 -1.36E-5 -0.99 0.05

Table 4.10: Clustering evaluation per weight combination II

Execution SSQ G(+) Davies-Bouldin Index W/B
1 97.21 4.95E-7 1.725 0.965
2 46.65 1.66E-6 1.761 0.808
3 84.88 8.19E-7 1.535 0.946
4 138.68 1.56E-6 4.666 0.918

The second and third clusterings are those which perform better according to the evaluation

measures from both groups. In terms of number of macroclusters, the aforementioned clusterings

are those which have the least. This relates to their evaluation, since the resulting macroclusters are

more concise and suffer an increase in their inter-cluster distance. This reduction is also supported

by figures 4.17a,4.17b,4.17c and 4.17d.

61

Results

We can also observe that including the content dimension results in macroclusters closer to

Portugal (figures 4.17a, 4.17c and 4.17d) which makes sense since the content of the tweets is

similar. This is not only due to the language of the tweets itself, but also because of the topics

being discussed, with the most trending keywords being: lisboa, porto, portugal, coimbra, aveiro,

sintra, oeiras, centro, escola, parque, metro and universidade. Including the spatial dimension

results in macroclusters more distant from each other (figures 4.17a, 4.17b and 4.17c) in terms of

the geolocation of the cluster center.

Regarding the temporal dimension, it is more related with the spatial dimension than the con-

tent dimension. That is the reason why the second clustering (Fig. 4.17b) has fewer macroclusters

than the last (Fig. 4.17d).

(a) clustering 1 (b) clustering 2

(c) clustering 3 (d) clustering 4

Figure 4.17: Spatial view of the macroclusters

4.3.3 Performance

We compared the performance of the developed solution during the online clustering process

against the solution presented in TweeProfiles2. Only one of the proposed solutions was used

for testing, since both share the same logic for the online phase.

Table 4.11 shows the performance results measured in terms of CPU Time, User Time and

Real Time, otherwise known as Wall Clock Time. These correspond to averaged results of ten

62

Results

executions performed for both algorithms. For each execution, we defined a window of 30000

tweets, beginning at a random time point, which were fed to each algorithm as input data.

The tests were performed on a PC with Intel Core 2.5GHz CPU and 8GB RAM, running on

Windows 8.1.

Table 4.11: Performance results

Measure TweeProfiles2 TweeProfiles4
CPU Time 20.88s 101.984s
User Time 20.75s 101.390s
Real Time 21.60s 47.815s

Since our solution is based on a consensus clustering approach, it is inherently more computa-

tionally expensive. The expected elapsed time of running the unidimensional clusterers would be

about three times the original if implemented in a sequential fashion. However, since their compu-

tations are independent, they were implemented in parallel. From a fully parallelizable approach,

we would expect the elapsed time to be the same as the original. Nonetheless, the considered

phase also comprises the computations performed by the OverlapManager, which incurs added

complexity.

From table 4.11, we can see that our solution is nearly five times costlier than the original in

terms of both CPU Time and User Time, but the ratio for the Real Time is only slightly above two.

If implemented sequentially, we would not have this performance gain, since the Real Time would

be close to the CPU Time, as we observe in the results retrieved from the original solution.

It should be noted that the relative performance is very sensitive to the input data, since the

number of microclusters being formed in one aproach may be much different from the other. For

a certain input, the original solution might output 5 multidimensional microclusters, while our

solution could yield 1 microcluster for the spatial dimension, 2 for the temporal dimension and 20

for the content dimension. In this case, the content clusterer would be the bottleneck, potentially

4 times costlier than the original solution alone. This is the reason why we chose to perform ten

executions with randomized tweet windows.

63

Results

64

Chapter 5

Conclusions and Future Work

In this chapter we present a summary of the project, a discussion of the decisions taken and the

limitations regarding the clustering process and the visualization. We finish the chapter with some

suggestions for future work.

5.1 Summary

The goals of this dissertations were the proposal and development of a multidimensional clustering

algorithm with support for a dynamic weighting scheme and the selection and implementation of

a clustering evaluation process.

To accomplish these goals, a consensus clustering approach has been applied, which uses

an extended version of the HybridDenStream clustering algorithm [Per14]. Two variants of the

approach have been implemented, which differ from one another in the process used to generate

the multidimensional microclusters. The first solution relies on a graph partitioning algorithm

[KK98], which requires the number of partitions to be defined. The second solution relaxes this

constraint by obtaining the partitions using DBSCAN [EKSX96].

Regarding the clustering evaluation, several internal evaluation measures have been imple-

mented and adapted to support the multidimensional context of Twitter data. This has been

achieved with the introduction of weighted distance functions for the computation of intra-cluster

and inter-cluster distances.

The visualization tool has also undergone some changes. The first modification includes an

interface to allow the user to dynamically alter his preferences. For this task, three sliders are pro-

vided (one for each dimension), which the user can drag independently to set the corresponding

weight. The second modification comprises an interface to display the clustering evaluation re-

sults. These are presented in a time series chart, which is updated at frequent intervals and allows

a dynamic selection of the evaluation measures to be displayed.

65

Conclusions and Future Work

Several performance optimizations have also been performed including the filtering process

from SocialBus [BOM+12], the data storage on the database, the clustering algorithm and the

visualization tool.

This dissertation has been an extension of the TweeProfiles tool and all the goals have been

met. The focus was on the improvement of the clustering algorithm in order to add more flexibility

for the user to change the weight of each dimension in the clustering process and obtain results on-

the-fly. As the data mining project gained maturity, it also became necessary to provide metrics to

support the user in the analysis of the quality of the results produced by the clustering algorithm. In

this sense, the inclusion of clustering evaluation measures has been another differentiating factor

compared to previous versions.

5.2 Discussion

In the developed platform, there are some debatable aspects which are discussed below.

• Weight Combinations: The number of weight combinations for the experimental setup was

chosen arbitrarily. The main reason for not increasing this number was the time consumed

for running the process on the full dataset for each algorithm.

• Partitioning: For the graph partitioning algorithm applied in the first solution, we defined

the number of partitions as the maximum number of microclusters on each dimension. This

decision is purely arbitrary and its impact should be understood in more detail.

• Evaluation: For the evaluation of the clustering, it was necessary to keep a sample of tweets

for each microcluster and macrocluster. The size of each sample has been capped at a fixed

number, which has been chosen taking into account the performance of the evaluation task.

This limit is a trade-off between a more accurate evaluation and a more efficient one in terms

of computation performance.

• Database: A MySQL database was used to store the results of the mining and evaluation

processes. This approach was chosen to facilitate the integration with the visualization tool

and the adaptation of the clustering algorithm used in previous versions of the project. Even

though the data is structured, the relational nature of this database system negatively affects

the response time, given the current data access pattern.

5.3 Future Work

There are still aspects that could benefit from improvements, namely:

• Clustering Algorithm: The algorithm used for the unidimensional clustering was adapted

from HybridDenStream [Per14], which is based on DenStream [CEQZ06]. Several propos-

als have been made as an improvement of the latter and it would be interesting to study their

suitability in the context of Twitter data.

66

Conclusions and Future Work

• Temporal Distance: For the temporal dimension, an Euclidean distance is used to measure

the similarity between weekdays. As a consequence, Saturday is more similar to Sunday

than to Friday, according to the used mapping. It would be interesting to study the impact of

applying a distance measure which took into account the circular aspect of the days of the

week.

• Social Distance: The social dimension was not included in TweeProfiles4. This is a prob-

lem that has still not been solved in a satisfactory way in the TweeProfiles project. Regard-

ing the social graph, one of the issues is that the Twitter Streaming API does not include

enough information to build one consistently. Although this data could be obtained through

the Twitter REST API, this endpoint imposes rate limiting restrictions, which makes the

process infeasible. Besides, even if the information was fully accessible, it would not be

feasible to maintain the social graph in memory, given its complexity. Normalization of the

distances would also be an issue, since they are unbounded. The problem with formulating

an alternative process for studying the social interactions is that it would have to overcome

the aforementioned matters and also be meaningful to TweeProfiles.

• Performance: Even though an effort was made to parallelize the clustering algorithm where

possible, the workflow distribution might still be improved. For this, one could make use of

an asynchronous message passing model, using a toolkit like Akka.1

• Database: For the storage of the clustering and evaluation results, a document-oriented

database could improve the performance in terms of response time. This would reduce

the detrimental effect of the large number of JOIN operations which are expensive in a

relational database. MongoDB would be a good candidate, since it is already used for the

data collection, therefore reducing the development stack.

1http://akka.io/

67

Conclusions and Future Work

68

References

[ABpKS99] Mihael Ankerst, Markus M. Breunig, Hans peter Kriegel, and Jörg Sander. Optics:
Ordering points to identify the clustering structure. pages 49–60. ACM Press, 1999.

[ACF11] Cuneyt Gurcan Akcora, Barbara Carminati, and Elena Ferrari. Network and profile
based measures for user similarities on social networks. In Proceedings of the 2011
IEEE International Conference on Information Reuse and Integration, IRI 2011,
pages 292–298, 2011.

[ACF13] CuneytGurcan Akcora, Barbara Carminati, and Elena Ferrari. User similarities on
social networks. Social Network Analysis and Mining, 3(3):475–495, 2013.

[Agg09] Charu C. Aggarwal. On High Dimensional Projected Clustering of Uncertain Data
Streams. In 2009 IEEE 25th International Conference on Data Engineering, pages
1152–1154. IEEE, 2009.

[Agg13] CC Aggarwal. A Survey of Stream Clustering Algorithms. pages 229–252, 2013.

[AHWY04] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework
for projected clustering of high dimensional data streams. In Proceedings of the
Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB
’04, pages 852–863. VLDB Endowment, 2004.

[AMR+12] Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. Streamkm++: A clustering algorithm
for data streams. Journal of Experimental Algorithmics, 17, 2012.

[AW12] Amineh Amini and Teh Ying Wah. DENGRIS-Stream: A density-grid based clus-
tering algorithm for evolving data streams over sliding window. In International
Conference on Data Mining and Computer Engineering, pages 206–211, 2012.

[AW13] Amineh Amini and Teh Ying Wah. LeaDen-Stream: A Leader Density-Based
Clustering Algorithm over Evolving Data Stream. Journal of Computer and Com-
munications, 01(05):26–31, 2013.

[AWC+03] Charu C. Aggarwal, T. J. Watson, Resch Ctr, Jiawei Han, Jianyong Wang, and
Philip S. Yu. A Framework for Clustering Evolving Data Streams. 2003.

[AWS14] Amineh Amini, Teh Ying Wah, and Hadi Saboohi. On Density-Based Data Streams
Clustering Algorithms: A Survey. Journal of Computer Science and Technology,
29(1):116–141, 2014.

69

REFERENCES

[AWSY11] Amineh Amini, Teh Ying Wah, Mahmoud Reza Saybani, and Saeed Reza Aghabo-
zorgi Sahaf Yazdi. A study of density-grid based clustering algorithms on data
streams. In 2011 Eighth International Conference on Fuzzy Systems and Knowl-
edge Discovery (FSKD), volume 3, pages 1652–1656. IEEE, 2011.

[AY08] Charu C. Aggarwal and Philip S. Yu. A framework for clustering uncertain data
streams. In Proceedings - International Conference on Data Engineering, pages
150–159, 2008.

[Bar02] D Barbará. Requirements for clustering data streams. ACM SIGKDD Explorations
Newsletter, 3(2):23–27, 2002.

[BF10] Albert Bifet and Eibe Frank. Sentiment knowledge discovery in twitter streaming
data. Discovery Science, 2010.

[BGL10] Danah Boyd, Scott Golder, and Gilad Lotan. Tweet, tweet, retweet: Conversational
aspects of retweeting on twitter. In Proceedings of the Annual Hawaii International
Conference on System Sciences, 2010.

[BH75] Frank B. Baker and Lawrence J. Hubert. Measuring the power of hierarchical
cluster analysis. Journal of the American Statistical Association, 70(349):31–38,
1975.

[BHKP10] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Mas-
sive online analysis. J. Mach. Learn. Res., 11:1601–1604, 2010.

[BHP11] Albert Bifet, Geoffrey Holmes, and Bernhard Pfahringer. MOA-TweetReader:
real-time analysis in twitter streaming data. Discovery Science, pages 46–60, 2011.

[BI02] Khoo Khyou Bun and M. Ishizuka. Topic extraction from news archive using
TF*PDF algorithm. In Proceedings of the Third International Conference on Web
Information Systems Engineering, 2002., pages 73–82. IEEE Comput. Sci, 2002.

[BKC13] Vasudha Bhatnagar, Sharanjit Kaur, and Sharma Chakravarthy. Clustering data
streams using grid-based synopsis. Knowledge and Information Systems, pages
1–26, 2013.

[BL12] Alexander Boettcher and Dongman Lee. EventRadar: A Real-Time Local Event
Detection Scheme Using Twitter Stream. In 2012 IEEE International Conference
on Green Computing and Communications, pages 358–367. IEEE, 2012.

[BNG11] Hila Becker, M Naaman, and Luis Gravano. Beyond Trending Topics: Real-World
Event Identification on Twitter. ICWSM, pages 438–441, 2011.

[BNJ12] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3:993–1022, 2012.

[BOM+12] Matko Bošnjak, Eduardo Oliveira, José Martins, Eduarda Mendes Rodrigues, and
Luís Sarmento. TwitterEcho - A Distributed Focused Crawler to Support Open
Research with Twitter Data. Proceedings of the WWW 2012, the 21st International
Conference Companion on World Wide Web, pages 1233–1239, 2012.

70

REFERENCES

[Bru12] Axel Bruns. How Long Is a Tweet? Mapping Dynamic Conversation Networks on
Twitter Using Gawk and Gephi. Information, Communication & Society, 15:1323–
1351, 2012.

[CCFM97] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental
clustering and dynamic information retrieval. In Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, pages 626–635.
ACM, 1997.

[CCZ07] Jian-Long Chang, Feng Cao, and Ao-Ying Zhou. Clustering evolving data streams
over sliding windows. Ruan Jian Xue Bao(Journal of Software), 18(4):905–918,
2007.

[CEQZ06] Feng Cao, Martin Ester, W Qian, and A Zhou. Density-Based Clustering over an
Evolving Data Stream with Noise. SDM, pages 326–337, 2006.

[CLOW11] Chun Chen, Feng Li, Beng Chin Ooi, and Sai Wu. Ti: An efficient indexing mech-
anism for real-time search on tweets. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’11, pages 649–660.
ACM, 2011.

[Cor12] Mário Cordeiro. Twitter event detection: combining wavelet analysis and topic
inference summarization. Proceedings of Doctoral Symposium on Informatics En-
gineering, 2012.

[CT07] Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’07, pages 133–142. ACM, 2007.

[CTB+12] Junghoon Chae, Dennis Thom, Harald Bosch, Yun Jang, Ross Maciejewski,
David S. Ebert, and Thomas Ertl. Spatiotemporal social media analytics for ab-
normal event detection and examination using seasonal-trend decomposition. In
2012 IEEE Conference on Visual Analytics Science and Technology (VAST), pages
143–152. IEEE, 2012.

[Cun13] Tiago Daniel Sá Cunha. Tweeprofiles: detection of spatio-temporal patterns on
twitter. Master’s thesis, Faculty of Engineering, University of Porto, Portugal,
2013.

[DAR09] Carlotta Domeniconi and Muna Al-Razgan. Weighted cluster ensembles. ACM
Transactions on Knowledge Discovery from Data, 2(4):1–40, 2009.

[DB79] David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE
Trans. Pattern Anal. Mach. Intell., 1(2):224–227, 1979.

[DCHR11] Wuzhou Dong, Jingyan Cui, Haitao He, and Jiadong Ren. Clustering over High-
Dimensional Data Streams Based on Grid Density and Effective Dimension. Inter-
national Journal of Advancements in Computing Technology, 3(8):154–162, 2011.

[Dek06] Anthony Dekker. Conceptual Distance in Social Network Analysis. Science And
Technology, 6:1–34, 2006.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1, 1959.

71

REFERENCES

[DLN+09] XuanHong Dang, Vincent Lee, WeeKeong Ng, Arridhana Ciptadi, and KokLeong
Ong. An em-based algorithm for clustering data streams in sliding windows. In
Xiaofang Zhou, Haruo Yokota, Ke Deng, and Qing Liu, editors, Database Systems
for Advanced Applications, volume 5463 of Lecture Notes in Computer Science,
pages 230–235. Springer Berlin Heidelberg, 2009.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from in-
complete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL
SOCIETY, SERIES B, 39(1):1–38, 1977.

[Dun74] J. C. Dunn†. Well-separated clusters and optimal fuzzy partitions. Journal of
Cybernetics, 4(1):95–104, 1974.

[EKSX96] Martin Ester, HP Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. KDD, 1996.

[EOSX10] Jacob Eisenstein, Brendan O’Connor, Noah A. Smith, and Eric P. Xing. A latent
variable model for geographic lexical variation. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pages 1277–1287,
2010.

[Eze13] Chidube Donald Ezeozue. Large-scale Consensus Clustering and Data Ownership
Considerations for Medical Applications. PhD thesis, 2013.

[Fis96] Doug Fisher. Iterative optimization and simplification of hierarchical clusterings.
J. Artif. Int. Res., 4(1):147–179, 1996.

[FPS09] Agostino Forestiero, Clara Pizzuti, and Giandomenico Spezzano. FlockStream: A
Bio-Inspired Algorithm for Clustering Evolving Data Streams. In 2009 21st IEEE
International Conference on Tools with Artificial Intelligence, pages 1–8. IEEE,
2009.

[GLZT05] Jing Gao, Jianzhong Li, Zhaogong Zhang, and Pang-Ning Tan. An Incremental
Data Stream Clustering Algorithm Based on Dense Units Detection. In Proceed-
ings of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and
Data Mining, PAKDD’05, pages 420–425. Springer-Verlag, 2005.

[GMM+03] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering, 15(3):515–528, 2003.

[GMMO00] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams.
Proceedings 41st Annual Symposium on Foundations of Computer Science, 2000.

[GSIM09] Reza Ghaemi, Nasir Sulaiman, Hamidah Ibrahim, and Norwati Mustapha. A Sur-
vey : Clustering Ensembles Techniques. Engineering and Technology, 38:636–645,
2009.

[HCRG11] Haitao He, Lijuan Chen, Jiadong Ren, and Wenyan Guo. Probability Density Grid-
based Online Clustering for Uncertain Data Streams. Advances in Information
Sciences and Service Sciences, 3(8):204–211, 2011.

72

REFERENCES

[HGRC11] Guoyan Huang, Wenyan Guo, Jiadong Ren, and Lijuan Chen. A Clustering Algo-
rithm for Data Stream based on Grid-Tree and Similarity. International Journal of
Advancements in Computing Technology, 3(9):17–24, 2011.

[HK06] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques, vol-
ume 54. 2006.

[HL76] Lawrence J Hubert and Joel R Levin. A general statistical framework for assess-
ing categorical clustering in free recall. Psychological bulletin, 83(6):1072–1080,
1976.

[HLHR10] Guo-Yan Huang, Da-Peng Liang, Chang-Zhen Hu, and Jia-Dong Ren. An algo-
rithm for clustering heterogeneous data streams with uncertainty. In 2010 Interna-
tional Conference on Machine Learning and Cybernetics, volume 4, pages 2059–
2064. IEEE, 2010.

[HLRH10] Guoyan Huang, Dapeng Liang, Jiadong Ren, and Changzhen Hu. An algorithm for
clustering uncertain data streams over sliding windows. In Digital Content, Multi-
media Technology and its Applications (IDC), 2010 6th International Conference
on, pages 173–177. IEEE, 2010.

[HMR12] Guoyan Huang, Liyun Miao, and Jiadong Ren. Subspace Clustering over High-
Dimensional Data Stream Based On Grid Density and Attribute Relativity. Inter-
national Journal of Advancements in Computing Technology, 4(17):91–99, 2012.

[Hor07] Prodip Hore. Scalable frameworks and algorithms for cluster ensembles and clus-
tering data streams. PhD thesis, University of South Florida, 2007.

[HSGS12] Marwan Hassani, Pascal Spaus, Mohamed Medhat Gaber, and Thomas Seidl.
Density-based projected clustering of data streams. In Scalable Uncertainty Man-
agement, pages 311–324. Springer, 2012.

[Hua97] Zhexue Huang. Clustering large data sets with mixed numeric and categorical
values. Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery
and Data Mining,(PAKDD), pages 21–34, 1997.

[HW10] De-cai HUANG and Tian-hong WU. Density-based clustering algorithm for mix-
ture data sets. Control and Decision, 3:020, 2010.

[HZ14] Haitao He and Jintian Zhao. A Density Grid-based Uncertain Data Stream Clus-
tering Algorithm. 9:3619–3626, 2014.

[IDH12] Charlie Isaksson, Margaret Dunham, and Michael Hahsler. Sostream: Self orga-
nizing density-based clustering over data stream. In Petra Perner, editor, Machine
Learning and Data Mining in Pattern Recognition, volume 7376 of Lecture Notes
in Computer Science, pages 264–278. Springer Berlin Heidelberg, 2012.

[Jai10] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, 31(8):651–666, 2010.

[JH09] Lin Jinxian and Lin Hui. A density-based clustering over evolving heterogeneous
data stream. In 2009 Second ISECS International Colloquium on Computing, Com-
munication, Control, and Management, CCCM 2009, volume 4, pages 275–277,
2009.

73

REFERENCES

[JMF99] A. K. Jain, M. N. Murty, and P J Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, 1999.

[JTY08] Chen Jia, Chengyu Tan, and Ai Yong. A grid and density-based clustering algo-
rithm for processing data stream. In Proceedings - 2nd International Conference
on Genetic and Evolutionary Computing, WGEC 2008, pages 517–521, 2008.

[KABS11] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The clustree:
indexing micro-clusters for anytime stream mining. Knowledge and Information
Systems, 29(2):249–272, 2011.

[Kar15] George Karypis. Family of graph and hypergraph partitioning software, 2015.
[Online; accessed 4-January-2015].

[KBQ14] Farhan Hassan Khan, Saba Bashir, and Usman Qamar. TOM: Twitter opinion
mining framework using hybrid classification scheme. Decision Support Systems,
57:245–257, 2014.

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

[KKJ+10] Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Ge-
off Holmes, and Bernhard Pfahringer. Clustering performance on evolving data
streams: Assessing algorithms and evaluation measures within MOA. In Proceed-
ings - IEEE International Conference on Data Mining, ICDM, pages 1400–1403,
2010.

[KKJ+11] Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff
Holmes, and Bernhard Pfahringer. An effective evaluation measure for clustering
on evolving data streams. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD ’11, pages 868–876.
ACM Press, 2011.

[Koh82] Teuvo Kohonen. Self-organized formation of topologically correct feature maps.
Biological cybernetics, 43(1):59–69, 1982.

[Lee12] Chung-Hong Lee. Mining spatio-temporal information on microblogging streams
using a density-based online clustering method. Expert Systems with Applications,
39(10):9623–9641, 2012.

[Li14] Jingxuan Li. Mining the Online Social Network Data: Influence, Summarization,
and Organization. PhD thesis, 2014.

[LxHYfFc09] Liu Li-xiong, Huang Hai, Guo Yun-fei, and Chen Fu-cai. rDenStream, A Cluster-
ing Algorithm over an Evolving Data Stream. 2009 International Conference on
Information Engineering and Computer Science, 2009.

[Mah09] Alireza Rezaei Mahdiraji. Clustering data stream : A survey of algorithms. Interna-
tional Journal of Knowledge-Based and Intelligent Engineering Systems, 13(2):39–
44, 2009.

[Mai15] André Maia. Tweeprofiles3: visualization of spatio-temporal patterns on twitter.
Master’s thesis, Faculty of Engineering, University of Porto, Portugal, 2015.

74

REFERENCES

[Mil81] Glenn W. Milligan. A monte carlo study of thirty internal criterion measures for
cluster analysis. Psychometrika, 46:187–199, 1981.

[MK10] M. T. Markou and P. Kassomenos. Cluster analysis of five years of back trajectories
arriving in Athens, Greece. Atmospheric Research, 98:438–457, 2010.

[Mot14] Ivo Mota. Olho-passarinho: uma extensao do tweeprofiles para fotografias. Mas-
ter’s thesis, Faculty of Engineering, University of Porto, Portugal, 2014.

[MRS08] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[MyS14] MySQL. Mysql :: The world’s most popular open source database. http://
www.mysql.com/, 2014.

[NC07] Nam Nguyen and Rich Caruana. Consensus Clusterings. In Seventh IEEE Inter-
national Conference on Data Mining (ICDM 2007), pages 607–612. IEEE, 2007.

[NZP+12] Irene Ntoutsi, Arthur Zimek, Themis Palpanas, Peer Kröger, and Hans-Peter
Kriegel. Density-based Projected Clustering over High Dimensional Data Streams.
In Proceedings of the Twelfth {SIAM} International Conference on Data Mining,
Anaheim, California, USA, April 26-28, 2012., pages 987–998. {SIAM} / Omni-
press, 2012.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab,
1999.

[Per14] João Pereira. Tweeprofiles2: real-time detection of spatio-temporal patterns in
twitter. Master’s thesis, Faculty of Engineering, University of Porto, Portugal,
2014.

[Ran71] William M. Rand. Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association, 66(336), 1971.

[RCH11] Jiadong Ren, Binlei Cai, and Changzhen Hu. Clustering over Data Streams Based
on Grid Density and Index Tree. Journal of Convergence Information Technology,
6(1):83–93, 2011.

[REA15] REACTION. Welcome to socialbus — socialbus 2.0 documentation, 2015. [On-
line; accessed 10-June-2015].

[RHM10] Jiadong Ren, Changzhen Hu, and Ruiqing Ma. HCluWin: An algorithm for clus-
tering heterogeneous data streams over sliding windows. International Journal of
Innovative Computing, Information and Control, 6:2171–2179, 2010.

[RKT11] Aniket Rangrej, Sayali Kulkarni, and Ashish V. Tendulkar. Comparative study of
clustering techniques for short text documents. In Proceedings of the 20th inter-
national conference companion on World wide web - WWW ’11, pages 111–112.
ACM Press, 2011.

[RLW12] Hohyon Ryu, Matthew Lease, and Nicholas Woodward. Finding and exploring
memes in social media. Proceedings of the 23rd ACM conference on Hypertext
and social media - HT ’12, page 295, 2012.

75

http://www.mysql.com/
http://www.mysql.com/

REFERENCES

[RM09] Jiadong Ren and Ruiqing Ma. Density-based data streams clustering over slid-
ing windows. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD’09. Sixth
International Conference on, volume 5, pages 248–252. IEEE, 2009.

[RMS09] Carlos Ruiz, Ernestina Menasalvas, and Myra Spiliopoulou. C-denstream: Using
domain knowledge on a data stream. In João Gama, VítorSantos Costa, Alípi-
oMário Jorge, and PavelB. Brazdil, editors, Discovery Science, volume 5808 of
Lecture Notes in Computer Science, pages 287–301. Springer Berlin Heidelberg,
2009.

[Rod14] Tomy Rodrigues. Retweetpatterns: detection of spatio-temporal patterns of
retweets. Master’s thesis, Faculty of Engineering, University of Porto, Portugal,
2014.

[Rou87] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–
65, 1987.

[SFB+13] Jonathan A Silva, Elaine R Faria, Rodrigo C Barros, Eduardo R Hruschka, André
C P L F de Carvalho, and João Gama. Data stream clustering: A survey. ACM
Computing Surveys, 46(1):1–31, 2013.

[SHK10] Beaux Sharifi, Mark-Anthony Hutton, and Jugal K. Kalita. Experiments in Mi-
croblog Summarization. In 2010 IEEE Second International Conference on Social
Computing, pages 49–56. IEEE, 2010.

[SSB05] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. Evaluating similarity
measures: a large-scale study in the Orkut social network. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, pages 678–684, 2005.

[SSVS14] S. Sarumathi, N. Shanthi, S. Vidhya, and M. Sharmila. A Comprehensive Review
on Different Mixed Data Clustering Ensemble Methods. International Journal
of Mathematical, Computational, Physical and Quantum Engineering, 8(8):1117–
1127, 2014.

[SWCC13] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. Sumblr: continuous sum-
marization of evolving tweet streams. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in information retrieval -
SIGIR ’13, page 533, 2013.

[SZ08] Mingzhou Song and Lin Zhang. Comparison of cluster representations from partial
second- to full fourth-order cross moments for data stream clustering. In Proceed-
ings - IEEE International Conference on Data Mining, ICDM, pages 560–569,
2008.

[TC09] Li Tu and Yixin Chen. Stream data clustering based on grid density and attraction.
ACM Transactions on Knowledge Discovery from Data (TKDD), 3(3):12, 2009.

[TCT13] Li Tu, Peng Cui, and Keming Tang. A Density Grid-Based Clustering Algorithm
for Uncertain Data Streams. In 2013 10th Web Information System and Application
Conference, pages 347–350. IEEE, 2013.

76

REFERENCES

[TJ04] a Topchy and Ak Jain. A mixture model for clustering ensembles. Proc. SIAM Int.
Conf. Data Mining, pages 379–390, 2004.

[TRA07] DimitrisK. Tasoulis, Gordon Ross, and NiallM. Adams. Visualising the cluster
structure of data streams. In Michael R. Berthold, John Shawe-Taylor, and Nada
Lavrač, editors, Advances in Intelligent Data Analysis VII, volume 4723 of Lecture
Notes in Computer Science, pages 81–92. Springer Berlin Heidelberg, 2007.

[Twi14a] Twitter. Get statuses/sample | twitter developers, 2014. [Online; accessed 20-
December-2014].

[Twi14b] Twitter. Welcome to twitter - login or sign up. https://www.twitter.com/,
2014.

[Twi15] Twitter. About twitter - https://about.twitter.com/company, 2015. [Online; accessed
10-June-2015].

[WHT13] Kapil Wankhade, Tasneem Hasan, and Ravindra Thool. A survey: Approaches for
handling evolving data streams. In Proceedings - 2013 International Conference on
Communication Systems and Network Technologies, CSNT 2013, pages 621–625,
2013.

[WND+09] Li Wan, Wee Keong Ng, Xuan Hong Dang, Philip S Yu, and Kuan Zhang. Density-
based clustering of data streams at multiple resolutions. ACM Transactions on
Knowledge Discovery from Data (TKDD), 3(3):14, 2009.

[WW10] Renxia Wan and Lixin Wang. Clustering over evolving data stream with mixed
attributes. Journal of Computational Information Systems (June 2010), 5:1555–
1562, 2010.

[WXC09] Junjie Wu, Hui Xiong, and Jian Chen. Adapting the right measures for K-means
clustering. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’09. ACM Press, 2009.

[YC11] Yun Yang and Ke Chen. Temporal data clustering via weighted clustering ensem-
ble with different representations. IEEE Transactions on Knowledge and Data
Engineering, 23:307–320, 2011.

[YLZY12] Yue Yang, Zhuo Liu, Jian-pei Zhang, and Jing Yang. Dynamic density-based clus-
tering algorithm over uncertain data streams. In Fuzzy Systems and Knowledge Dis-
covery (FSKD), 2012 9th International Conference on, pages 2664–2670. IEEE,
2012.

[YZ06] Chunyu Yang and Jie Zhou. HClustream: A Novel Approach for Clustering Evolv-
ing Heterogeneous Data Stream. In Sixth IEEE International Conference on Data
Mining - Workshops (ICDMW’06), pages 682–688. IEEE, 2006.

[YZF12] Duan Yajuan, Chen Zhum, and W Ei Furu. Twitter topic summarization by ranking
tweets using social influence and content quality. Proceedings of COLING 2012:
Technical Papers, 4(96):763–780, 2012.

[ZCQJ08] Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking clusters in
evolving data streams over sliding windows. Knowledge and Information Systems,
15:181–214, 2008.

77

https://www.twitter.com/

REFERENCES

[ZGZ09] Chen Zhang, Ming Gao, and Aoying Zhou. Tracking High Quality Clusters over
Uncertain Data Streams. In 2009 IEEE 25th International Conference on Data
Engineering, pages 1641–1648. IEEE, 2009.

[ZK04] Ying Zhao and George Karypis. Empirical and Theoretical Comparisons of
Selected Criterion Functions for Document Clustering. Machine Learning,
55(3):311–331, 2004.

[ZRL96] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An Efficient Data
Clustering Method for Very Large Databases. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, pages 103–114,
1996.

[ZS02] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands
of data streams in real time. In Proceedings of the 28th international conference
on Very Large Data Bases, pages 358–369. VLDB Endowment, 2002.

[ZZTG10] Peng Zhang, Xingquan Zhu, Jianlong Tan, and Li Guo. Classifier and Cluster
Ensembles for Mining Concept Drifting Data Streams. 2010 IEEE International
Conference on Data Mining, pages 1175–1180, 2010.

78

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Document Structure

	2 State of the art
	2.1 Clustering
	2.1.1 Stream Clustering
	2.1.2 Consensus Clustering
	2.1.3 Clustering Evaluation

	2.2 Distance Measures
	2.2.1 Numerical Distance
	2.2.2 Textual Distance
	2.2.3 Social Distance

	2.3 Twitter
	2.3.1 Description
	2.3.2 SocialBus
	2.3.3 Research using Twitter

	2.4 TweeProfiles2
	2.4.1 System Architecture
	2.4.2 Operation

	2.5 TweeProfiles3
	2.5.1 System Architecture

	3 TweeProfiles4
	3.1 Introduction
	3.2 System Architecture
	3.3 Data Processing
	3.4 Distance Functions
	3.5 Clustering
	3.5.1 Clustering Mechanism
	3.5.2 Solution A
	3.5.3 Solution B

	3.6 Evaluation
	3.7 Visualization
	3.7.1 Clustering
	3.7.2 Evaluation

	4 Results
	4.1 Exploratory Analysis
	4.2 Experimental Setup
	4.3 Results
	4.3.1 Clustering
	4.3.2 Evaluation
	4.3.3 Performance

	5 Conclusions and Future Work
	5.1 Summary
	5.2 Discussion
	5.3 Future Work

	References

