1,545 research outputs found

    AN FLC-PSO ALGORITHM-CONTROLLED MOBILE ROBOT

    Get PDF
    The ineffectiveness of the wall-following robot (WFR) performance indicated by its surging movement has been a concerning issue. The use of a Fuzzy Logic Controller (FLC) has been considered to be an option to mitigate this problem. However, the determination of the membership function of the input value precisely adds to this problem. For this reason, a particular manner is recommended to improve the performance of FLC. This paper describes an optimization method, Particle Swarm Optimization (PSO), used to automatically determinate and arrange the FLC’s input membership function. The proposed method is simulated and validated by using MATLAB. The results are compared in terms of accumulative error. According to all the comparative results, the stability and effectiveness of the proposed method have been significantly satisfied

    Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics

    Get PDF
    This researchwas funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.In this work, we propose, through the use of population-based metaheuristics, an optimization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic controller. This approach enables the design of controllers using rules that are linguistically familiar to human users. Moreover, a new technique that uses three different paths to validate the performance of each candidate configuration is presented. We extend on our previous work by adding two more membership functions to the previous fuzzy model, intending to have a finer-grained adjustment. We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), GreyWolf Optimizer (GWO), Harmony Search (HS), and the recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that, compared to published results, the proposed fuzzy controllers have better RMSE-measured performance. Nevertheless, experiments also highlight problems with the common practice of evaluating the performance of fuzzy controllers with a single problem case and performance metric, resulting in controllers that tend to be overtrained.TecNM-5654.19-PDemocratAI PID2020-115570GB-C2

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Navigational control of multiple mobile robots in various environments

    Get PDF
    The thesis addresses the problem of mobile robots navigation in various cluttered environments and proposes methodologies based on a soft computing approach, concerning to three main techniques: Potential Field technique, Genetic Algorithm technique and Fuzzy Logic technique. The selected techniques along with their hybrid models, based on a mathematical support, solve the three main issues of path planning of robots such as environment representation, localization and navigation. The motivation of the thesis is based on some cutting edge issues for path planning and navigation capabilities, that retrieve the essential for various situations found in day-to-day life. For this purpose, complete algorithms are developed and analysed for standalone techniques and their hybrid models. In the potential field technique the local minima due to existence of dead cycle problem has been addressed and the possible solution for different situations has been carried out. In fuzzy logic technique the different controllers have been designed and their performance analysis has been done during their navigational control in various environments. Firstly, the fuzzy controller having all triangular members with five membership functions have been considered. Subsequently the membership functions are changed from Triangular to other functions, e.g. Trapezoidal, Gaussian functions and combinational form to have a more smooth and optimised control response. It has been found that the fuzzy controller with all Gaussian membership function works better compared to other chosen membership functions. Similarly the proposed Genetic algorithm is based on the suitable population size and fitness functions for finding out the robot steering angle in various cluttered field. At the end hybrid approaches e.g. Potential-Fuzzy, otential-Genetic, Fuzzy-Genetic and Potential-Fuzzy-Genetic are considered for navigation of multiple mobile robots. Initially the combination of two techniques has been selected in order to model the controllers and then all the techniques have been hybridized to get a better controller. These hybrid controllers are first designed and analysed for possible solutions for various situations provided by human intelligence. Then computer simulations have been executed extensively for various known and unknown environments. The proposed hybrid algorithms are embedded in the controllers of the real robots and tested in realistic scenarios to demonstrate the effectiveness of the developed controllers. Finally, the thesis concludes in a chapter describing the comparison of results acquired from various environments, showing that the developed algorithms achieve the main goals proposed by different approaches with a high level of simulations. The main contribution provided in the thesis is the definition and demonstration of the applicability of multiple mobile robots navigations with multiple targets in various environments based on the strategy of path optimisation

    Intelligent control of mobile robot with redundant manipulator & stereovision: quantum / soft computing toolkit

    Get PDF
    The task of an intelligent control system design applying soft and quantum computational intelligence technologies discussed. An example of a control object as a mobile robot with redundant robotic manipulator and stereovision introduced. Design of robust knowledge bases is performed using a developed computational intelligence – quantum / soft computing toolkit (QC/SCOptKBTM). The knowledge base self-organization process of fuzzy homogeneous regulators through the application of end-to-end IT of quantum computing described. The coordination control between the mobile robot and redundant manipulator with stereovision based on soft computing described. The general design methodology of a generalizing control unit based on the physical laws of quantum computing (quantum information-thermodynamic trade-off of control quality distribution and knowledge base self-organization goal) is considered. The modernization of the pattern recognition system based on stereo vision technology presented. The effectiveness of the proposed methodology is demonstrated in comparison with the structures of control systems based on soft computing for unforeseen control situations with sensor system

    Multiple mobile robots - Fuzzy behavior based architecture and behavior evolution

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore