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Summary

Under the category of soft computing, fuzzy logic and genetic algorithms have

been extensively developed in the past several decades and successfully applied to

various kinds of problems, both academic and industrial. Developments in these

two fields, as well as achievements on other technologies, enable robotic systems to

play an important role in our world. In this thesis, interdisciplinary research works

involving the fuzzy logic control (FLC), robotic system and genetic algorithms

(GAs) are presented.

The thesis comprises of two parts focused on the fuzzy logic control of robotic

behaviors and evolutionary fuzzy systems.

At first, a comprehensive fuzzy behavior based architecture is proposed to con-

trol multiple robots in a robot soccer system. The architecture sets up a hierarchical

system to decompose the system into modules of roles, behaviors and actions, ac-

cording to their complexity. Fuzzy logic is employed to realize all these modular

behaviors, as well as the behavior coordination. In this architecture, both the

behaviors and related fuzzy logic controllers are simple enough to develop. The

successful implementation in a robot soccer system in the real-world environment

demonstrates the effectiveness of the proposed architecture.

To further improve the system, an adaptive tuning methodology for the fuzzy

behavior based architecture is proposed. The tuning method focuses on the ad-

justments of fuzzy membership functions. The methodology is suitable for off-line

tuning of the fuzzy behaviors in a robot soccer system, helping the system to handle

unpredictable system changes. Experimental results demonstrate the effectiveness
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of this method.

With the help of a robot soccer simulator, genetic algorithm is used to evolve

the fuzzy behaviors at different levels of the fuzzy behavior based architecture.

Both the membership function tuning and rule base learning are utilized in the

evolutionary fuzzy system. Fuzzy behaviors at different levels of the hierarchy

architecture are evolved, resulting in performance improvements observed both in

the simulation and real-world environments.

Associated with the work on evolutionary fuzzy system, DNA like coding meth-

ods for genetic algorithms are also developed and explored. Such coding methods

are context dependent, redundant and allow variable lengths of individual strings.

The proposed coding methods are applied to GA in rule base learning for role as-

signment in a robot soccer system. Two different DNA coding methods and the

integer coding are used for the same application and comparisons are made. The

context dependent DNA coding method shows advantages over position dependent

coding methods in handling the negative effects of epistasis. The intron parts in

DNA coding decease the chances of good schemata being destructed, while the

redundancy increases the population diversity. Furthermore, the variable string

length makes it possible for GA to optimize the size and structure of fuzzy rule

base at the same time.
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Chapter 1

Introduction

This thesis comprises of research on fuzzy logic controller (FLC), multiple robotic

systems and genetic algorithms (GAs). A comprehensive fuzzy behavior based

architecture is developed to control a multiple robotic system. The architecture is

realized on a real world robot soccer system. To further improve this architecture,

adaptive tuning is incorporated. Furthermore, DNA like coding genetic algorithms

are developed and explored.

1.1 Background and Motivations

1.1.1 Fuzzy Logic

The concept of “fuzzy logic” is introduced by Prof. Lotfi A. Zadeh of University of

California at Berkley in the 1960’s as a means to model the uncertainty in natural

language [1]. There are two ways of understanding the notion of fuzzy logic [2].

In a narrow sense, fuzzy logic is an extension of classic Boolean logic aiming to

work with imprecise or vague data. It is a branch of multi-valued logic based on

the paradigm of inference under vagueness [3, 4, 5]. On the other hand, fuzzy

logic in the broad sense serves mainly as an apparatus for fuzzy control, analysis

of vagueness in natural language and several other application domains [6, 7]. It

is an important member of the class of techniques named as soft-computing, i.e.
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computational methods tolerant to sub-optimality and impreciseness (vagueness)

and providing quick, simple and sufficiently good solutions.

Solving problems using classical logic often requires a deep understanding of the

system, exact equations, and precise parametric values. Fuzzy logic incorporates

an alternative way of thinking, which allows complex systems to be modeled using

a higher level of abstraction originating from human’s knowledge and experience.

Fuzzy Logic allows expressing this knowledge with natural linguistic concepts such

as very hot, bright red, and a long time, which are mapped into numeric ranges.

In this way, fuzzy logic resembles human decision making with its ability to handle

approximate data.

Fuzzy logic has been successfully applied to control systems in the past decades.

Starting form the first industrial application on the control of cement kiln [8], there

are over thousands of commercial and industrial applications of fuzzy logic, ranging

from domestic electronic products, high speed train to aeroplanes and missiles

[9, 10, 11]. Other application areas of fuzzy logic include expert system [12, 13]

and information retrieval system [14].

1.1.2 Genetic Algorithm

Genetic algorithm (GA) [15, 16, 17] belongs to the research field of evolutionary

algorithm, which is a class of algorithms inspired by the biological evolution. Stimu-

lated by the studies of cellular automata, GA directly mimics the natural processes

driving the evolution.

In GA, the biological DNA chromosomes are modeled as strings of parameters

representing trial solutions to certain problem. Each solution is evaluated and as-

signed a numerical value named as fitness, according to a fitness function. During

successive iterations, the population of strings undergoes a process of fitness-based

selection and parameter recombination in pairs. Such a process simulates the Dar-

win’s principle of “survival of the fittest” in natural selection and the sexual re-

combination of genetic materials. As a result, a better population is supposed to
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appear, and some characteristics of parent strings are inherited by offspring strings.

The evolution process of population goes on until some criterion of fitness or time

is satisfied.

The inception of the genetic algorithm is dated to 1975 when John Holland’s

Adaption in Natural and Artificial Systems [16] is published. Holland’s prototype

of GA is usually referred as the “Simple GA” (SGA). Different spinoffs of SGA are

developed with modifications and enhancements on all aspects of GA: the represen-

tation, operators, evaluation, etc. Some important variants include the messy GA

[18, 19, 20], parallel GA [21, 22, 23], distributed GA [24, 25, 26] and multi-objective

GA [27, 28, 29]. The specific characteristics of GAs are quite dependant on the

applications. However, the fundamental mechanism is the same, which consists of

the evaluation of individual fitness, formation of a gene pool through selection and,

recombination through crossover and mutation operations.

It is literally possible for GAs to operate on a problem without any knowledge

of the task domain but utilizing only the fitness of the evaluated solutions. The

applications of GA span a wide range of problems including industrial optimization

and design [30, 31], neural network design [32, 33], management and financial

systems [34, 35], communication network [36, 37] and many others.

1.1.3 Robots and Behaviors

The word “robot” originated from the Czech word robota for “forced labor”, or

“serf”. It was firstly introduced by Czech playwright Karel Capek in his 1920 play

R.U.R. (Rossum’s Universal Robots). There is no standard definition for a robot.

However, basically a robot consists of:

• A mechanical device, such as a wheeled platform, arm, or other construction,

capable of interacting with its environment

• Sensors on or around the device which are able to sense the environment and

provide useful feedback to the device
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• Control systems that process the sensory input in the context of the device’s

current situation and instruct the device to perform actions in response to

the situation

• Power unit to supply energy to the components of robot for its normal oper-

ation.

Robots often function to relieve human beings from dangerous and tedious works.

They are also suitable for the jobs characterized by repetition and precision. Nowa-

days, robots are extensively used in fields like manufacturing, military operations

and space explorations [38, 39].

Sometimes, a self-reliant robot like the planetary rover has to modify its ac-

tions to respond to a changing environment [39]. The need to sense and adapt to a

partially unknown environment require intelligence. Thus, the research on robotics

is closely associated with the Artificial Intelligence (AI). Knowledge based systems

(KBS) was initially developed to simulate the human intelligence. KBS is effective

in simulating abstract ways of exhibiting intelligence, for successfully solving prob-

lems or playing chess [40, 41]. It is difficult for KBS to simulate successfully “very

simple” tasks (from an intellectual point of view), such as cleaning and parking

a car. Basically, these tasks do not demand much intellectual efforts, but require

a lot of coordinations and complex interactions with the environment. It is clear

that modeling “simple” intelligence by KBS is neither easy, nor computationally

efficient. To handle this issue, researchers began to model intelligence based on

behaviors, instead of on knowledge.

The notion of behavior is subject to different forms of interpretations. A be-

havior can be a reaction to some stimulus from the environment. Meanwhile, a

behavior can also be an exhibition of an action based on some inherent needs of

the system to achieve a certain goal. These actions and reactions are primitive and

reflexive by themselves. However, very complicated behaviors can emerge based

on them, enabling the system to achieve its objectives [42]. The concept of behav-

ior based robotics was popularized by Rodney Brooks in the mid-1980s [43]. The
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behavior of robot can be certain loosely defined actions, which may be at a vari-

ety of levels of complexity and competence. For instance, both the actions “move

backward” and “avoid obstacle” are behaviors, while the latter is obviously more

complicated than the former.

1.2 Previous Works

1.2.1 Fuzzy behavior based robotic system

Together with the robotic behavior, Brooks also introduced the idea of behavior

based system (BBS) [43]. Inspired by the field of ethology, which studies animal

behaviors, Brooks proposed a layered behavior based subsumption architecture

which decomposes the overall control systems into a set of reactive behaviors. The

reactive behaviors represent the system’s ability to interact with the environment.

Different layers work on individual goals concurrently or asynchronously. Low

level behaviors are able to run in real-time since they require less computation. It

is observed that many systems consisting of a few simple components are capable

of exhibiting highly complex behaviors.

The behavior based robotic system exploits such kind of inherent complexity.

The basic idea is that a simple controller, carefully designed with particular atten-

tion to possible interactions with the environment, can display a surprising level of

complexity and sophistication. On the other hand, the decomposition of a compli-

cated system into various simpler behavioral modules seems to be an effective way

of implementing large scale control systems.

Brook’s subsumption architecture adopts a purely reactive behavior based ap-

proach. Behavior coordination in subsumption architecture is mainly accomplished

by inhibition and suppression mechanisms, which are usually predefined and fixed.

Only one behavior dominates at any time. Extensions to this architecture enable

the system to handle more complex tasks [42]. For instance, the mission planner,

spatial planner and plan sequencer can be used to advise a reactive component [44].
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A planner can also acknowledge failure and adapt the reactive controller accord-

ingly [45], or even produce continuous modification of a reactive system according

to the high-level goal [46]. In general, the system incorporated with deliberative

behaviors and enhanced coordination mechanism is capable of achieving multiple

and conflicting objectives.

One of the major extensions to the behavior architecture is the incorporation of

fuzzy logic. Being capable of inferencing and reasoning under uncertainty [47, 48],

fuzzy logic makes itself favorable in the behavior architecture [49, 50, 51, 52, 53].

Meanwhile, fuzzy control can be adopted to coordinate the various behaviors of the

system in response to the environment, just as how human beings manage their

multitudes of behaviors and mannerisms while negotiating with reality. Further-

more, the combined usage of fuzzy control with behavior based architecture has

the additional advantage of having a distributed fuzzy control system with smaller

fuzzy sub-systems, instead of a big and centralized one. Such an approach saves a

lot of computational expenses and sometimes this is the only way out to control

very complex systems.

The study of fuzzy behavior based decision control in mobile robots can be

considered at several levels. Simple behaviors of individual robot are realizable by

fuzzy logic controller [54, 55, 56, 57, 58]. These fuzzy behaviors include robotic

navigation, obstacle avoidance and objective seeking. When primitive behaviors

are combined to generate more complex ones, the mechanism of behavior fusion

and selection can also be fulfilled by fuzzy logic [59, 60, 61, 62, 63]. With coordina-

tion mechanism between individual robots, the concept of behavioral architecture

implemented by fuzzy logic has been further extended to the multiple robot sce-

narios [64, 65, 66, 67]. Individual robot agents can display a certain behavioral

aspect of the group, and together, they exhibit collective behaviors of the whole

organization.
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1.2.2 Evolutionary fuzzy system

Fuzzy logic system has been successful in a considerable number of applications. In

most cases, the success of the fuzzy system is highly dependent on the availability

of human expert’s knowledge. Meanwhile, the construction of fuzzy membership

functions appears to be the most time consuming aspect of fuzzy system design.

The lack of learning and adaptation ability of fuzzy system has motivated research

activities on combining the fuzzy systems with other techniques since the 1990’s.

One of the most successful approaches are the hybridization with genetic algorithms

[68, 69], leading to evolutionary fuzzy systems.

Literature survey suggests that the prominent types of evolutionary fuzzy sys-

tems involve genetic learning or tuning of various components of a fuzzy rule-based

system [68]. Genetic algorithms are applied at different levels of complexity [70],

from membership function tuning to fuzzy rule generation, that is, adaptation and

learning.

The first article addressing the union of GAs and fuzzy appeared in 1989 by

Karr [71]. The article acknowledges the difficulty of selecting membership functions

for an efficient fuzzy logic controller and describes an approach for membership

function tuning involving the use of GA. It does not take a long time for the

GA membership tuning to become popular and be widely applied to various fuzzy

systems [72, 73].

In the tuning of membership functions, the membership functions associated

to linguistic variables are parameterized and encoded as chromosome strings. The

most common shapes for the membership functions are triangular (either isosceles

[72, 74] or asymmetric [75]), trapezoidal [73] and Gaussian [76]. Accordingly, the

number of parameters per membership function usually ranges from one to four,

each parameter being either binary [77] or real coded [78].

Following Karr’s works, other researchers soon extended the use of GA in the

development of FLCs. Thrift suggested the use of GAs both for selecting the rule

set and for tuning membership functions [79]. Thrift applied such an approach to
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a simulated translating cart and the results indicate that the GA-designed FLC

had the performance of an optimal controller.

Three major approaches are considered dominant in the genetic learning of rule

bases: Pittsburgh [79, 80, 81], Michigan [82, 83, 84] and iterative rule learning

[85, 86, 87].

The Pittsburgh approach is characterized by encoding the entire rule base as an

individual string. The population is a pool of candidate rule bases manipulated by

GA operations. The Michigan approach, on the other hand, represents the whole

population as one rule base while each individual stands for a single fuzzy rule.

Pittsburgh and Michigan approaches are the most wildly used methods for fuzzy

rule learning. In the iterative rule learning approach, individual strings encode

single rules. In each generation of GA, a new rule is adapted and added to the rule

base in an iterative fashion.

The above works handle the membership tuning and rule learning as two in-

dependent procedures. In 1995, Homaifar and McCormick tried to combine the

two processes into one by simultaneously developing the rule base and tuning the

membership functions with GAs [88]. They argue that the performance of an FLC

is dependent on the coupling of the rule base and the membership functions. Their

results indicate that GAs do have the capability to generate a rule base and tune

membership functions at the same time. However, whether or not the simultaneous

development of the rule base and the membership functions is vital is still unclear.

One important milestone in the research on evolutionary fuzzy system is the

development of adaptive fuzzy system. Certain fuzzy control systems contain time-

varying parameters which do not always appear directly in the rule base. As a

result, the control system is incapable of compensating the changes on the value

of these parameters. Researchers have been successful in using GA tuning and

adaptation of fuzzy systems on-line in response to the parameter variation that do

not appear explicitly in the fuzzy rule base [73, 89, 90, 91].
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1.3 Thesis Outline and Contributions

Chapter 2 contains background materials on fuzzy logic, including a brief intro-

duction to fuzzy set theory and the fuzzy inference procedure. As a case study, a

fuzzy logic controller is designed to control a two-wheeled mobile robot. The cas-

cading of fuzzy rule bases helps to reduce the number of fuzzy rules which increases

exponentially with the number of inputs. The experimental results from both the

simulation and real world environments are provided.

Chapter 3 explains the basic components of the genetic algorithms. The struc-

ture of a simple genetic algorithm is analyzed, while the schemata theorem is briefly

introduced. The GA is then applied to optimize the rule base of a fuzzy logic con-

troller for a two-wheeled robot performing obstacle avoidance task.

The Chapter 4 is dedicated to the robot soccer system, which is utilized through-

out the thesis as an experimental setup. The introduction covers the history of

robotic soccer, the hardware setting, the architectures of the system and the soccer

robot. A mathematical model of the soccer robot is developed, that is crucial in

the development of a robot soccer simulator outlined in Chapter 7.

In Chapter 5, an extensive fuzzy behavior based architecture is proposed for the

control of multiple mobile robots. Such an architecture decomposes the complex

system into modules of roles, behaviors and actions, which are more easily and

efficiently controlled. Fuzzy logic is used to realize those behaviors at different

complexity levels, as well as for behavior coordination. The proposed architecture

is then implemented on the robot soccer system in a real-world environment.

Chapter 6 discusses an adaptive tuning methodology for the fuzzy behavior

based architecture proposed in Chapter 5. The tuning methods focus on the auto-

matic adjustment of fuzzy membership functions. The methodology is suitable for

tuning the fuzzy behavior system.

Chapter 7 deals with the evolutionary fuzzy behavior based architecture for a

multi-robotic system. With the help of a simulator for robot soccer system, genetic
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algorithm is used to evolve the fuzzy behaviors at different levels of the behavior

architecture. Both the membership function tuning and rule base learning are

explored. The effectiveness of such an approach is justified through simulation

study and validated with real-world experimentations.

Chapter 8 is devoted to the novel DNA like coding methods for evolutionary

algorithm. Such coding methods are context dependent and allow variable lengths

for individual strings. To explore the features of the DNA coding methods, the

proposed coding methods are applied to GA rule base learning for role assignment

in the robot soccer system. Two different DNA coding methods and the integer

coding are compared.

Finally the thesis concludes in Chapter 9 with a brief on the major results

obtained and an outline of possible directions for future research.

The contribution of this thesis is summarized as follows:

• An fuzzy behavior based architecture for multiple robotic system is proposed.

• The proposed architecture is applied to a real world robot soccer system.

• An adaptive tuning method is applied to the fuzzy behavior based robot

soccer system.

• Evolution of the fuzzy behaviors are realized on simulator developed in house.

• The DNA coding methods for GA are projected in a general scheme and their

specific features are explored.
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Chapter 2

Fuzzy Logic Systems

It has been 40 years since the concept of fuzzy logic is conceived by Lotfi A. Zadeh,

a professor of the University of California at Berkley, in the 1960s [1]. Fuzzy

technology is first developed in the United States and it has bloomed into a billion

dollar industry in Europe and Japan. Fuzzy systems have demonstrated their

ability by successful applications on different kinds of problems in various domains,

from the control of washing machine to the medical diagnosis for patients.

This chapter begins with an introduction to the definition and origin of fuzzy

logic. The fundamental fuzzy set theory is then outlined, followed by a section

describing the structure of the fuzzy control system. Some of the complex issues

related to fuzzy logic are further discussed. The chapter ends with a detailed

example of applying fuzzy logic on a two-wheeled mobile robotic system.

2.1 Introduction to Fuzzy Logic

2.1.1 What is fuzzy logic?

Fuzzy logic is a mathematical problem-solving methodology which provides rules

and functions to deal with natural language queries. Natural language abounds

with vague and imprecise concepts, such as “It is very hot today.” Such statements

are difficult to translate into more precise language without losing some of their
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semantic values. At how many degrees of temperature the weather can be called as

“hot” and at which instant it changes from “cold” to “hot”? It is hard to provide

precise and exact answers to these questions. In fact, there are some stages when

it is both “cold” and “hot” to some extent . Conventional logic, which is by nature

related to the Boolean conditions (true/false), is not suitable for such ambiguous

statements. There is a loss of richness of meaning when one tries to translate

natural language into conventional logic.

In the viewpoint of set theory, fuzzy logic is a super set of the conventional (or

Boolean) logic which has been extended to handle the partial truth - truth value

between the absolute truth and absolute false. Fuzzy logic differs from conventional

logic in that the statements are no longer black or white, true or false, on or off.

In traditional logic, an object takes on a value of either zero or one; in fuzzy logic,

a statement can assume any real value between 0 and 1, representing the degree of

truth. Fuzzy logic provides a simple way to draw a definite conclusion based upon

vague, ambiguous, or even missing input information.

Fuzzy logic lends itself to implementations in systems ranging from simple,

small, embedded micro-controllers to large, networked, multi-channel PC or work-

station based data acquisition and control systems. It can be implemented in

hardware, software, or a combination of both. Human beings can reason with

uncertainties and vagueness, and they are capable of highly adaptive and efficient

control. Fuzzy approach to control problems mimics how a person makes decisions.

With the tolerance to noisy and imprecise input, fuzzy logic based controllers are

more effective and perhaps easier to implement.

2.1.2 Where did fuzzy logic come from?

Throughout the history, true and false relationships have been the primary focus in

the logic development. Back to 500 B.C., Buddha in India developed his philosophy

based on the thoughts that the world is filled with contradictions. He claims that

almost everything contains some of its opposites, or in other words, that things can
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be A and not-A at the same time. There is a clear connection between Buddha’s

philosophy and modern fuzzy logic.

In Europe, for several hundred years, philosophers such as Parminedes, Plato,

and Aristotle, devoted themselves to devise a concise theory of logic, and later

mathematics. Due to their efforts, the so-called “Laws of Thought” were posited.

One of these, the “Law of the Excluded Middle,” states that every proposition

must either be true or false. Even when Parminedes proposed the first version of

this “law of non-contradiction” around 400 B.C., there were strong and immediate

objections. For example, Heraclitus argues that contradictions not only exist but

are essential and the basis of a thing’s identity.

It was the Greek philosopher Plato who laid the foundations for the fuzzy

logic by proposing a third region beyond true and false where the two notions

tumbled together. Other, more modern philosophers echoed his sentiments, notably

Hegel, Marx, and Engels. But it was Lukasiewicz who first proposed a systematic

alternative to the bi-valued logic of Aristotle.

In the early 1900’s, Lukasiewicz described a three-valued logic, along with the

mathematics to accompany it. A new truth value was added to the truth logic 0 and

the false logic 1. This third value was termed possible with a logic value of 1/2.

Eventually, Lukasiewicz proposed an entire notation and axiomatic system from

which he hoped to derive modern mathematics. Later, he explored four-valued

logics, five-valued logics, and then declared that in principle there was nothing

to prevent the derivation of an infinite-valued logic. Lukasiewicz felt that three-

and infinite-valued logics ware the most intriguing, but he ultimately settled on a

four-valued logic because it seemed to be the most easily adaptable to Aristotelian

logic. Unfortunately, the logic of Lukasiewicz never gained wide acceptance and

remained unknown by most people outside of professional logisticians.

It was not until relatively recently that the notion of an infinite-valued logic

took hold. In 1965, using the ideas of multi-valued logic, Lotfi A. Zadeh derived the

multi-valued logic rules in terms of set theory [1]. Zadeh aimed to develop a model

that could more closely describe the natural language process. He defined some of
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the basic terminology associated with fuzzy logic such as: fuzzy set theory, fuzzifi-

cation, fuzzy quantification and fuzzy events. Fuzzy set theory allows function (or

the values False and True) to operate over the range of real numbers [0.0, 1.0]. New

operations for the calculus of logic were proposed, and seemed to be in principle

at least a generalization of classic logic. It took a long time until fuzzy logic got

accepted even though it fascinated some people right from the beginning. Besides

engineers, philosophers, psychologists and sociologists soon became interested in

applying fuzzy logic into their sciences.

2.2 The Fuzzy Set Theory

The rather abstract concept of a set forms a fundamental building block of modern

mathematics and logic. Without exception, the formal basis for the fuzzy logic is

known as fuzzy set theory, originally described by Zadeh.

There is a strong relationship between the traditional (crisp) set and the concept

of fuzzy set.

A traditional or crisp set can formally be defined as the following:

• A subset U of a set S is a mapping from the elements of S to the elements

of the set {0, 1}. This is represented by the notation: U : S → {0, 1}.

• The mapping is represented by one ordered pair for each element S where the

first element is from the set S and the second element is from the set {0, 1}.

The value zero represents non-membership, while the value one represents

membership.

Essentially such a definition means that an element of the set S is either a member

or a non-member of the subset U . There is no partial member in traditional sets,

which is known as the “dichotomy principle”.

For conventional sets, the memberships of the elements are determined by pre-

cise properties. For example, set H is the subsect of the real number set R and,
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Figure 2.1: A traditional set
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Figure 2.2: A fuzzy set

H contains all the real numbers between 6 and 8: H = {r ∈ R |6 ≤ r ≤ 8}.

Equivalently, H is described by its membership function, µH :

µH(r) =







1 : 6 ≤ r ≤ 8,

0 : otherwise.
(2.1)

The membership function µH is depicted in Figure 2.1. In the figure, the in-

terval on the r-axis between 6 and 8 has a membership of 1 which indicates that

any number in this interval is a member of the set H. Any number that has a

membership of 0 is considered to be a non-member of the set H.
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A fuzzy set is a set whose elements have degrees of membership. That is, a

member of a set can be full member (100% membership status) or a partial member

(eg. less than 100% membership and greater than 0% membership). These can

formally be defined as the following:

• A fuzzy subset F of a set S can be defined as a set of ordered pairs. The first

element of the ordered pair is from the set S, and the second element of the

ordered pair is from the interval [0, 1],

• The value zero is used to represent non-membership; the value one is used

to represent complete membership, and the values in between are used to

represent the degrees of membership.

The set S is referred to as the “universe of discourse” for the fuzzy subset F .

Frequently, the mapping between elements of the set S and values in the interval

[0, 1] is described as the membership function of F .

For example, “tallness” of people are described using fuzzy sets. In this case

the set S (the universe of discourse) is the set of people. A fuzzy subset TALL

is defined to answer the question “to what degree the person x is tall?” To each

person in the universe of discourse, a degree of membership is to be assigned in the

fuzzy subset TALL. That is done by a membership function µTALL(x) based on

the person’s height height(x) (Figure 2.2) .

µTALL(x) =



















0 : height(x) < 1.7m,

height(x)−1.7
0.15

: 1.7m ≤ height(x) < 1.85m

1 : height(x) ≥ 1.85m.

(2.2)

Given this definition, if Sean’s height is 1.73m, the degree of truth of the state-

ment “Sean is TALL” is 0.20.

16



2.3. Operations of Fuzzy Set

2.3 Operations of Fuzzy Set

The traditional set theory developed by Cantor contains some fundamental opera-

tions on sets: the complement, intersection and union operations. Zadah formally

defines the counterparts of these operations for the fuzzy sets.

2.3.1 Complement

Given a fuzzy set A with membership function µA, the membership function of the

complement set Ā is defined as follows (Figure 2.3).

µĀ = 1 − µA
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Figure 2.3: The complement operation on fuzzy set

The complement operation in fuzzy set theory is the equivalent of the NOT

operation in Boolean algebra.

2.3.2 Intersection

Under classical set theory, the intersection of two sets is that set which satisfies the

conjunction of both the concepts represented by the two sets. However, under fuzzy

set theory, an item may belong to both sets with differing memberships without

17



2.3. Operations of Fuzzy Set

having to be in the intersection. The membership function of the intersection of two

fuzzy sets A and B with membership functions µA and µB respectively is defined

as the minimum of the two individual membership functions (Figure 2.4). This is

called the minimum criterion.

µA∩B = min(µA, µB)
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Figure 2.4: The intersection operation on fuzzy set

The intersection operation in fuzzy set theory is the equivalent of the AND

operation in Boolean algebra.

2.3.3 Union

The membership function of the union of two fuzzy sets A and B with membership

functions µA and µB respectively is defined as the maximum of the two individual

membership functions (Figure 2.5). This is called the maximum criterion.

µA∪B = max(µA, µB)

The Union operation in fuzzy set theory is the equivalent of the OR operation

in Boolean algebra.

It worths mention that the last two operations, Intersection (AND) and Union

(OR), represent the clearest point of departure from a probabilistic theory for sets

to fuzzy sets.
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Figure 2.5: The union operation on fuzzy set

2.3.4 Algebraic Symmetries

The fuzzy set operations obey the same algebraic symmetries as crisp sets. The

following rules which are common in crisp set theory also apply to fuzzy set theory.

Associativity

(A ∩ B) ∩ C = A ∩ (B ∩ C)

(A ∪ B) ∪ C = A ∪ (B ∪ C)

Commutativity

A ∩ B = B ∩ A, A ∪ B = B ∪ A

Distributivity

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

De Morgan’s law

(A ∩ B) = A ∪ B, (A ∪ B) = A ∩ B

19



2.4. Linguistic Variables

2.4 Linguistic Variables

One of the most important tools in applications of fuzzy set theory is the concept

of linguistic variables. The linguistic variables play a central role in the modeling

of approximate reasoning by fuzzy sets. Just as numerical variables take numerical

values, in fuzzy logic, linguistic variables take on linguistic values which are words

(linguistic terms) with associated degrees of membership in the set.

Zadeh’s original definition of a linguistic variable is rather inspired by compu-

tational linguistics and classical artificial intelligence. The formal definition is very

sophisticated and general. The linguistic variable is a quintuple (N,G, T,X, S),

where N , T , X, G, and S are defined as follows:

1. N is the name of the linguistic variable.

2. G is a grammar.

3. T is the term-set.

4. X is the universe of discourse.

5. S is a T → f(X) mapping which defines the semantics - a fuzzy set on X -

of each linguistic expression in T .

The motivation for such a sophisticated structure is to provide the freedom and

integrality. In practice, only three of these elements are important. At first, there

is the name N of the linguistic variable itself, such as “Hight”. The second impor-

tant element is the term-set T , which lists the possible members of the linguistic

variable. The members of the linguistic variable are sometimes called “linguistic

terms” or “linguistic values”. For instance, the linguistic variable “Speed” may be

a discrete fuzzy set whose members (term-set) are “Low”, “Medium” and “Tall”.

The third important element of a linguistic variable is the membership function S.

These functions map an input number onto grades of membership of the linguistic

terms. Membership functions are almost always continuous fuzzy sets. Sometimes,

especially in engineering-oriented domains like fuzzy control, the name of a member
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Key Word Effect on set characteristics

• about

Approximate the set
• near

• close to

• approximately

• not Complement the set

• somewhat

Dilute the set• rather

• quite

• very
Intensify the set

• extremely

Table 2.1: Linguistic effects of hedges

of a linguistic variable is also used to denote its membership function. For instance,

“Low” is a member of the discrete fuzzy set “Height”, but “Low” is also used to

denote its membership function.

An important concept relating to the linguistic variable is hedging. Hedges

are a common set of operations on linguistic variables. Just as in the English

language, hedges can be described as modifier for linguistic variables which are not

only adjectives, but also verbs, adverbs and certain complete statements. Hedges

modify a linguistic variable’s shape, or membership function, to reflect the variation

on its semantics.

When referring to a fuzzy set, hedges are used to adjust the characteristics of

that fuzzy set by either: approximating, complementing, diluting or intensifying.

Some specific words and their effects on the fuzzy set are shown in Table 2.1.

In general, when a hedge is used to dilute a set, the set is expanded. When

a set is intensified with a hedge, the set is compressed. Figure 2.6 visualizes the

effect of hedges on membership functions for the “very”, “somewhat” and “indeed.”

The overlap between sets, such as the Medium and Tall sets, is not an error. It

is in this region that a variable can have multiple memberships, overcoming the
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Figure 2.6: The effect of the hedges on the membership function

shortcomings of the binary logic.

2.5 Fuzzy Inference

Armed with the theoretical foundations of fuzzy set theory, it is possible to manip-

ulate information represented as degrees of membership of fuzzy sets through the

fuzzy inference system. Fuzzy inference is the process of formulating the mapping

from a given input to an output, in the form of if-then rules, using fuzzy logic.

2.5.1 Fuzzy if-then rules

With the linguistic variables and fuzzy operators, one can construct if-then rule

statements to formulate the conditional statements that comprise fuzzy logic. A

single fuzzy if-then rule assumes the form “IF X is a, THEN Y is b”, where X and

Y are linguistic variables, with a and b as linguistic values.

The IF condition of the rule is called the antecedent or premise, while the THEN

implication is known as the consequent or conclusion.
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Interpreting an if-then rule involves two distinct parts: a) evaluating the an-

tecedent (which involves fuzzifying the input and applying any necessary fuzzy

operators); and b) applying that result to the consequent. In the case of two-

valued or binary logic, if the premise is true, then the conclusion is true. For

fuzzy rules, the consequent is set to be true to the same degree as the antecedent.

In other words, if the antecedent is true to some degree of membership, then the

consequent is also true to that same degree.

Both the antecedent and consequent of a rule can have multiple statements.

“IF X is a AND Y is b, THEN U is c AND V is d.”

In such cases, all parts of the antecedent are calculated simultaneously and resolved

to a single number using the logical operators like fuzzy union (OR) and intersection

(AND). The resultant antecedent membership is equally applied to all parts of the

consequent.

2.5.2 The process of fuzzy inference system

Fuzzification

Real-world crisp data, such as the statistics over a digital image, must be fuzzified

before it can be subject to fuzzy rules. Fuzzification is process of determining the

degree of membership of data. It makes the translation from real-world values to

fuzzy values using membership functions. The essence of this step is therefore in

the determination of the form of the fuzzy sets. This can be derived from empirical

results or from expert domain knowledge.

Fuzzy rule evaluation

Using the fuzzified data, the fuzzy rules are evaluated as described above. In some

applications, it is desirable to use modified fuzzy rules for the union and the inter-

section. The application of the antecedent evaluation to the consequents is com-

monly achieved either by clipping or scaling the consequent membership functions.
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2.5. Fuzzy Inference

Clipping simply places an upper threshold on the consequent membership functions

at the level of the antecedent evaluation. Some information about the consequent

fuzzy sets is lost during this clipping, but it is used for its computational simplicity.

Scaling adjusts the consequent membership functions by multiplying them by the

antecedent evaluation result. Although it is used less often, scaling does preserve

the forms of the consequent membership functions.

Combination of rule implications

The membership functions of the clipped or scaled consequents are aggregated

into a single fuzzy set. Almost without exception, the membership functions are

summed to provide the final fuzzy set.

Defuzzification

After computing the fuzzy rules and evaluating the fuzzy variables, it is necessary

to translate the results back to the real world, in other words, the crisp value.

As the result, the final fuzzy set is defuzzified. There are a variety of differing

methods for defuzzification. The most intuitive and common one is the “center of

area” (CoA) method. The center of area of the final fuzzy set is

x =

∫

µA(x) · xdx
∫

µA(x)dx
,

which is evaluated over the universe of discourse for the fuzzy set. To simplify the

computation, the integrals can be discretised sums.

x =

∑n

i=1 µA(xi) · xi
∑n

i=1 µA(xi)

The total procedure is summarized in Figure 2.7.

Mamdani and Sugeno inference

There are two types of fuzzy inference systems: Mamdani-style and Sugeno-style.

The system introduced so far is the Mamdani inference [92]. A computationally
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Figure 2.7: Summary of Mamdani fuzzy inference system

cheaper alternative is the Sugeno inference [93], which differs from the Mamdani

inference in the way of determining the outputs. Sugeno replaces the membership

degree resulting from the antecedents with a singleton, a membership function

with a value of zero everywhere except at one chosen point where its value is One.

The aggregation therefore leads to a sum of scaled singletons. This leaves the

defuzzification as a very simple weighted average:

x =

∑n

i=1 wi · xi
∑n

i=1 wi

In practise, Mamdani inference is used when a system aims to emulate the

intuitive human expert thought process. Sugeno inference is used in optimization

and adaptive algorithms, particularly for control systems. The following case study

presents more details on Sugeno inference.

2.6 Case Study: Fuzzy Sensor Fusion for Reac-

tive Navigation of Mobile Robot

Fuzzy logic has been applied in many areas. Fuzzy control system is one of the

first practical applications. There have been successful commercial applications,

from self-focusing cameras, washing machines to braking control on the subway

system. In the artificial intelligence (AI) field, decision making and expert systems

are developed, such as the fuzzy medical diagnosis and finance analysis systems.
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This section will demonstrate the usage of fuzzy logic with a case study of

application in robotics, which is an overlapped field of AI and control. Fuzzy logic

controllers are designed to provide the two-wheeled mobile robot with obstacle

avoidance behavior. The cascading of fuzzy rule bases reduces the explosion in the

number of rules resulted from the increase in the number of inputs. The algorithm

is tested within the Webots simulation package [94, 95] and with a real world

Khepera robot [96].

2.6.1 Introduction

In recent years, there is an increasing interest in the area of autonomous mobile

robots [97, 98]. Autonomous robots typically have some means of propulsion (usu-

ally wheels or tracks), sensor array, on-board power supply, and sufficient on-board

processing capacity to analyze the sensory inputs and make decisions in accordance

with its functional objectives. While traditional industrial robots perform repeti-

tive pre-programmed tasks in a well defined environment, autonomous robots are

expected to deal with uncertain environments.

In real world environments, a large degree of uncertainty is present. The ro-

bot may be expected to operate in an environment where no prior knowledge of

the layout (map) is available. Even if a map is available, several factors limit its

usefulness [98, 99]: some details of the environment may have been omitted from

the map; data acquired by the robot for navigational purposes through the sen-

sors may be inaccurate; inclement observation conditions or noise in the sampling.

Furthermore, real world environments are usually dynamic and subject to change

by other agents operating within.

One approach to tackle the uncertainty is to focus on the engineering of the

robot and environment. However, such a solution increases the costs, limits au-

tonomy and restricts the range of environments that the robot can operate within

[98]. A better alternative is to make use of a suitable control approach to deal with

the uncertainty. Fuzzy logic allows for situations where the available data is vague,
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imprecise or uncertain [100, 101]. Being not dependent on precise data, fuzzy logic

controllers are robust in uncertain environments.

Among the typical functions that an autonomous robot need to perform, ob-

stacle avoidance is considered as an elementary or instinctive behavior and is one

of the most representative type of reactive behaviors [97]. In the ALLIANCE ar-

chitecture [102], a behavior based framework is implemented and is divided into

higher-level behaviors such as map building and exploring, and lower-level behav-

iors such as obstacle avoidance. The higher-level is capable of inhibiting the lower

level behaviors when necessary. As a large amount of environmental uncertainty

is involved, fuzzy logic is a suitable candidate to realize the obstacle avoidance

behavior.

For a fully autonomous robot, with limitations on on-board processing power,

the obstacle avoidance component of the controller should consume as little process-

ing power as possible. However, in a fuzzy logic controller the number of rules

exponentially increases with the number of inputs and so the processing power

required. Cascading method [103, 104, 105] is employed to handle this problem.

This work addresses the design of a fuzzy logic controller for the autonomous

Khepera mobile robot [96]. The robot has eight IR/light sensors and two wheel

encoders. The 6 front-sensor readings constitute the controller inputs. In order to

reduce the complexity associated with a large number of fuzzy inputs, the fuzzy

controller rule bases are cascaded.

Khepera robot and Webots software

The Khepera robot [96] is widely used in research laboratories. The Khepera mobile

robot is 30mm in height, 55mm in diameter and weigh 70g (Figure 2.8). Khepera

supports a large number of hardware extension modules, such as gripper, vision

turret and radio turret. At the software level, it has a very efficient library of

on-board applications. Programs for Khepera can be developed in standard and

well known tools, such as C/C++ and Matlab. With the program downloaded to
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Figure 2.8: The Khepera robot

Figure 2.9: The eight infra-red sensors on Khepera robots

its memory, Khepera can run independently.

The detecting system of Khepera robot includes eight infrared proximity and

ambient light sensors. Sensors are deployed around the robot (Figure 2.9). Each

sensor can return a value between 0 to 512 for ambient light (higher values refer

to darker regions) and 0 to 1023 for proximity to obstacles (higher values refer to

being closer to obstacles).

Khepera’s motion system consists of two wheels, each controlled by a DC motor

with an incremental encoder. The maximum speed of Khepera robot is 60 cm/s.

For safety reasons, the speed range is set between -20 and 20 units, where the unit

of speed is 8 mm/s.
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Figure 2.10: The Webots simulation environment

Khepera supports many simulation softwares. Among the softwares, Webots

[94, 95] is the most powerful 3D mobile robotics simulator available. It supports

the Khepera robot as well as other robots such as Alice and Koala [94, 95]. The

user can program virtual robots using C/C++ libraries. The 3D environment

editor (Figure 2.10) allows the user to customize the simulation world. Objects

such as walls, balls, cans and lamps can be added into the world. The properties

such as the size, color, position and orientation of the objects, can be user-defined.

Supervisor program allows the programmer to create a supervisor controlling the

process of an experimentation.

Webots also provides serial port communication facility to control the real Khep-

era robot directly. It is also possible to recompile the source code developed using

the Khepera cross-compiler and download the resultant program onto the real robot

via the serial interface.
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Figure 2.11: Sugeno’s method for evaluating rule truth value

2.6.2 Cascaded fuzzy logic controller

Inference engine

The two commonly used methods in the inference process of fuzzy controllers are

Mamdani–style and Sugeno–style. The most significant distinction between them

is that, all output membership functions are singleton spikes in Sugeno’s method,

whereas they are distributed fuzzy sets in Mamdani’s method.

In this work, the Sugeno’s method of determining the rule’s truth value is used

due to its simplicity and efficiency within the cascaded structure followed. The

evaluation of each rule’s truth value is based on the minimum of the peak fuzzy

membership values of the inputs (Figure 2.11). The truth value is regarded as the

rule’s strength.

In the early stages of the cascaded fuzzy controller, the truth value and the

consequence of each rule are collated and passed on to the subsequent stage as

inputs. In the final stage, the rule with maximum truth value is identified and

triggered to decide the output action.

Cascaded fuzzy controller for the Khepera Robot

A simple two-input and single-output fuzzy controller is considered, with each

input having three linguistic values (high, medium, low). Defining a rule for each

combination of the input linguistic values requires nine (3× 3) rules. If each input
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now has five linguistic values, then twenty-five (5 × 5) rules are needed, almost

three times as many. If there are four inputs instead of two, and all combinations

of linguistic values are considered at once, eighty-one (34) rules are required.

The Khepera’s six front sensor readings form the inputs to the fuzzy logic

controller. With three linguistic values for each of the six sensor readings, the

possible combinations require 36 = 729 rules. As a result, the evaluation of the rule

strengths in each cycle of the controller operation demands considerable processing

power.

The cascaded fuzzy controller is utilized to bring down the number of rules,

without neglecting any of the sensor readings. Instead of considering all possible

combinations of linguistic variables in one stage, the sensors are considered in

pairs in different stages. The output of one stage is collated and passed on to the

following, which in turn is either evaluated against another input or against the

output from a parallel stage.

The cascaded approach has two advantages. The first and most obvious one

is that it greatly reduces the number of rules need to be defined and evaluated.

Four sensor readings, each with three linguistic values, result in eighty-one rules.

However, by taking the sensor inputs in pairs in the first stage, and collating the

outputs of each pairs to five output actions, the second stage would need only

twenty-five (5× 5) rules. This results in forty-three rules, which is almost one half

of the rules with all possible input combinations considered. The reduction of rules

provides even better returns as the number of inputs or linguistic values per input

increases. The second advantage of the cascaded approach is that in a scenario

where there is some sort of symmetry (a left pair and a right pair of sensors), the

designer may only need to define one set of rules for one pair, and apply a mirror

image of those rules to the other, which further simplifies the design.
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Low Medium High

Sensor Value 0 306 206 512 818 717 1023

Membership Value 1 0 0 1 0 0 1

Table 2.2: Parameters of the membership functions

Output Vector Signal to Left motor Signal to Right Motor

Forward 15 15

Forward 1/2 speed 10 10

Forward Left -5 10

Hard Left -10 5

Forward Right 10 -5

Hard Right 5 -10

U-Turn 20 -20

Table 2.3: Finalized settings for output actions

Membership functions and motor parameters

Triangular membership functions are used and their parameters are tabulated in

Table 2.2. The settings of the motor parameters for each output action are in

Table 2.3. The fuzzy controller’s inference system is of the standard Sugeno type

as discussed in Section 2.5. Thus, the details of membership functions and inference

engines are not provided here. The focus of this work is the development of the

rule base, especially, the cascaded structure.

The two rear sensors are not utilized and the robot is expected to move forward,

rotate or perform a combination of forward motion and rotation. Two types of

controllers are designed and tested. Firstly, four sensors, two sensors each from the

left and right sides, are used. Afterward, the two front sensors are also utilized in

addition to the four left and right sensors.
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Figure 2.12: Standard test setup

Experimental setup and testing

Two controllers, with four and six sensory inputs respectively, are tested in the

same simulation testing ground (Figure 2.12). The setup contains obstacles with

various features designed to observe the robot’s response in different scenarios. The

algorithm is also tested on the Khepera robot in a real world setup.

The various positions of interest in the test field are labeled in Figure 2.12.

The Khepera robot’s default starting point is the center (the small circular object

at point 1© of the testing ground. The Khepera is pointed upward, and the first

obstacle it encounters is at point 2©, which is a narrowing dead end. The purpose

of such an obstacle is to check how the robot reacts when it enters a channel of

narrowing width. The square dead end at point 3© tests the robot’s ability to deal

with a dead end similar to encountering a wall head on. A curved surface at point 4©

is useful to observe the reaction of the robot to an obstacle that triggers mainly the

side sensors. This path leads to the narrowing channel at point 5©. The narrowing

channel tests the ability of the Khepera to opt for a path between obstacles on

either sides. A collection of cylindrical objects is at point 6©, each approximately

twice the size (in terms of area) of the Khepera robot. These cylinders provide
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Figure 2.13: Cascaded flow for four-sensor input controller

an environment which is full of sensory input for the Khepera to explore its way

through.

Real world testing environment (Figure 2.16) for the Khepera is constructed

with obstacles crafted out of grey mounting board. Obstacles are designed to

replicate the specific scenarios in simulation (points 2©, 3©, 4© and 5©). Scenarios

different from those in simulation are also set up to observe the controller’s response

to new situations, such as a continuously narrowing channel with the end just wide

enough for the Khepera to pass (Figure 2.16.(f)) through without the need for a

U-turn.

2.6.3 Four-sensor input controller

Cascaded flow and rule set

The cascaded flow for the four-sensor input controller is shown in Figure 2.13. The

circles in parallel are inference engines at the same stage. The items described in

the circles are inputs to the corresponding inference engine. Among the rules with

the same consequent output action, the maximum truth value is identified. Such

a maximum value is determined for every possible output action. The maximum

truth values for each action are passed as fuzzified input values to the subsequent

stage, while the corresponding output actions of that stage are the input variables
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to the following stage. The label next to the circle is the name of the rule set

associated with that inference engine. The labels are also used as identifiers of the

inputs to the following stage.

In Figure 2.13, there are three sets of rules: “Left” for sensors 0 and 1, “Right”

for sensors 4 and 5, and “Final” for inputs “Left” and “Right”. These rule sets

are listed in Tables 2.4, 2.5 and 2.6 respectively. It should be noted that the tables

for “Right” and “Left” are identical except that all the right-turns are replaced

by left-turns and visa-versa. In fact, only one rule set is designed and the other

is derived from it as a mirrored rule base. A total of 27 rules are evaluated when

the controller is in operation, that is 33.3% of a conventional rule set with four

sensors inputs (34 = 81 rules). Furthermore, since the rules for the “Left” and

“Right” stages are mirrored rule bases, only 18 rules need be generated (22.2% of

a conventional rule set).

Left
Sensor 1 (45◦ Left)

Low Medium High

Low Forward Forward Right Forward Right

Sensor 0 Medium Forward Forward Right Hard Right

(Extreme Left) High Forward Right Hard Right Hard Right

Table 2.4: Rule set for stage “Left”

Right
Sensor 4 (45◦ Right)

Low Medium High

Low Forward Forward Left Forward Left

Sensor 5 Medium Forward Forward Left Hard Left

(Extreme Right) High Forward Left Hard Left Hard Left

Table 2.5: Rule set for stage “Right”
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Final
Right

Forward Forward Left Hard Left

Forward Forward Forward Left Hard Left

Left Forward Right Forward Right Forward 1/2 Speed Forward Left

Hard Right Hard Right Forward Right U-Turn

Table 2.6: Rule set for stage “Final” – the four-sensor case

Testing and observations

The controller performed poorly in the beginning. The robot made a “U-turn”

almost every time when an obstacle is encountered. This issue is taken care of by

reducing the number of rules at the “Final” stage whose output action is “U-turn”.

Only one rule is included with “U-turn” as output action in Table 2.6. “U-turn”

as an output action is not considered in the rule sets at earlier stages, as it is a

premature decision to make a U-turn at the first stage itself with inputs from one

side of the robot alone.

In both the simulation and real world testing, it is observed that the robot is

able to avoid the straight wall ahead but not the cylindric obstacles. In the later

scenario, the robot is observed to collide with obstacles and not able to move out.

This is the limitation of the four-sensor input controller where the two front sensors

are not utilized. The left and right sensors (sensors 1 and 5 at 45◦ in Figure 2.9)

on either side can detect a straight wall in the front but not the cylindrical objects.

The front sensors (2 and 3) are included in the six-sensor input controller to take

care of such scenarios.

2.6.4 Six-sensor input controller

Cascaded flow and rule set

The first version of six-sensor controller is designed by making use of the previous

four-sensor one. One more stage is added, where the inputs are the output from
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Figure 2.14: Cascaded flow for six-sensor input controller (1st version)

stage “Final” of the four-sensor case, plus the input from the combination of sensors

2 and 3 (Figure 2.14). With the resultant controller the robot got stuck in the

triangular dead end (point 2© in Figure 2.12). It is observed that: to get out of the

trap point, the robot tried to rotate to the left or right. However, in the triangular

end, the robot met obstacle in the other side. The controller made the robot to

turn in a reverse direction, bringing it back to its original orientation. The robot

then repeated these behaviors, falling into a loop.

Modifications on the above controller result in the final version of controller

which maintains a symmetrical information flow throughout the cascade (Figure

2.15). The output of first stage of four-sensor controller is paired with the readings

from sensors 2 and 3 as inputs to the second stage which is “Left 2” and “Right

2”. The following is an example rule for “Left 2”:

If “Left” is Forward and Sensor 2 is High, then output is Hard Left.

The output of this rule appears contrary to all the other outputs in Table 2.7, where

the direction is either straight or to the right. However this rule is a reasonable

one arrived on a “trial and error” basis. In situations where the sensors on the two

sides indicate no obstacles, but the forehead sensor for one side does (Here is left

side), it could be concluded that there are more obstacles on that (left) side of the

robot. Thus the robot should turn back, rather than moving towards it.
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Left2
Sensor 2 (Front Left Sensor)

Low Medium High

Forward Forward Forward Right Hard Left

Left Forward Right Forward Right Hard Right Hard Right

Hard Right Hard Right Hard Right Hard Right

Table 2.7: Rule set for stage “Left2”

Final
Right2

Forward Forward Left Hard Left Hard Right

Left2

Forward Forward Forward Left Hard Left Forward Right

Forward Right Forward Right Forward 1/2 Speed Forward Left Hard Right

Hard Right Hard Right Forward Right U-Turn Hard Right

Hard Left Forward Left Hard Left Hard Left Hard Right

Table 2.8: Rule set for stage “Final” – the six-sensor case

Both simulation and real world testing show that the robot with this controller

has no trouble in navigating through any of the obstacles in the testing environ-

ment. Especially, the triangular dead end obstacle did not trap the robot into a

looping behavior.

The cascaded flow for the final six-sensor input controller is shown in Figure

2.15. Another stage is added at the output of the “Left” and “Right” stages

named “Left2” and “Right2” respectively. The controller attempts to maintain a

symmetrical flow throughout. The output from the “Left” (“Right”) stage and the

reading from “sensor 2” (“sensor 3”) form the inputs to the “Left2” (“Right2”)

rule base. Rule sets for the first stage remain the same as in Tables 2.4 and 2.5.

The related rule sets for the additional and final stages are listed in Tables 2.7 and

2.8. The table for “Right2” is omitted as it is a lateral inversion of Table 2.7.

It is observed that maintaining a high degree of symmetry in the cascaded flow

simplified the development of rule sets, and also increased the efficiency of the

controller. A traditional six sensor fuzzy logic controller needs 36 = 729 rules. The

controller discussed requires the evaluation of just 52 rules (7.1% of 729 rules).
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Left and
Sensor 2

Left & Right

Right and
Sensor 3Left2 Right2

Final

Sensors
0 and 1

Sensors
4 and 5Left Right

Figure 2.15: Cascaded flow for six-sensor input controller (final version)

Furthermore, due to the symmetry in the first two cascaded levels of the controller,

only 34 rules need to be designed (4.7% of 729).

Testing and observations

In the simulation environment, the robot moves smoothly around all the obstacle

points (Figure 2.12). It also performed well in the real world environment, despite

the disturbances in sensor reading and mechanical motion. The trajectories of robot

navigation in the real world environment are depicted in Figure 2.16. Situations

in (a), (b), (c) and (d) are identical to those at the points 3©, 5©, 2© and 4© in the

simulation set-up (Figure 2.12). Two new scenarios are constructed as in (e) and

(f). In situation (e), while the triangular opening is narrow, the robot is able to

turn back. As long as the opening is wide enough for the robot, as in situation (f),

but not much wider than in situation (e), the robot could find its way through.
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(a) Rectangular dead end (b) Rectangular opening

(c) Triangular dead end (d) Round wall

(e) Triangular narrow opening (f) Triangular wide opening

Figure 2.16: Robot trajectories in real world environment
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2.6.5 Conclusion

In Section 2.6.3, a four-sensor input fuzzy logic controller is presented. With the

cascaded-controller approach, the number of rules for the traditionally designed

fuzzy logic controller is reduced to almost one-third. Proper planning of rules at

the lower level of the cascaded controller is necessary to ensure proper behavior

generation at the higher level.

In Section 2.6.4, a six-sensor input controller is discussed. The development of

this controller highlighted the effect of following a symmetrical structure in cas-

caded flow. The controller enables the robot to navigate smoothly in environments

with different kinds of obstacles.

It is found that the manual approach in the development of fuzzy logic controller

has some disadvantages, which is addressed later in this thesis. In the later part

of the thesis, application of evolutionary algorithms to the development and fine

tuning of the rule sets, as well as the membership functions, are discussed in detail.
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Chapter 3

Genetic Algorithms

3.1 Introduction to Genetic Algorithms

3.1.1 Evolutionary algorithms and search types

Evolutionary algorithm is an interdisciplinary research field which has its roots

and application domains in biology, artificial intelligence, numerical optimization,

and decision support systems in almost any engineering discipline. It describes

computer-based techniques which perform the computation by simulating different

aspects of evolution. A variety of techniques are classified as evolutionary algo-

rithms, including:

• Genetic algorithms

• Genetic programming

• Evolutionary programming

• Evolution strategies

The common concept of these algorithms are based on the Darwin’s principle

of “survival of the fittest”. The natural biological evolution is simulated via the

processes of selection, mutation and reproduction. More precisely, evolutionary al-

gorithms maintain a population of individuals. The population evolves according to
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rules of selection and other operators, which are referred to as “genetic operators”,

such as recombination and mutation. Each individual in the population receives

a measure of its fitness in the environment. Reproduction favors the individuals

with high fitness, thus exploiting the available fitness information. Recombination

and mutation perturb the individuals, providing general heuristics for exploration.

Although simplistic from a biologist’s viewpoint, these algorithms are sufficiently

complex to provide robust and powerful adaptive search mechanisms.

As one class of the major evolutionary algorithms, genetic algorithms are the

essential tools used in this work, and is introduced in detail in this chapter.

The current literature identifies three main types of search methods [15]:

• Calculus-based

• Enumerative

• Random

Calculus-based methods are commonly used for searching relatively smooth

search spaces. Calculus-based methods rely on searching by solving mathematical

formulas. Such methods can be very efficient and useful in single-peak domains,

because they employ the notion of hill climbing by seeking the local best in the

steepest permissible direction. While calculus-based methods have been improved

and extended, they show lack of robustness. The optima they seek are the best in

the neighborhood of a current point, and they depend on the existence of deriva-

tives. The second problem can be overcome for certain applications using different

techniques but implementations of these techniques are difficult and computation-

ally expensive.

Enumerative methods are search algorithms that start checking objective func-

tion values at every point in a finite or bounded infinite searching space, taking

one at a time. Although the algorithm seems attractive due to it’s simplicity, it

lacks efficiency in some practical applications. Many real world search spaces are
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simply too large to search in this way. Even some of the best enumerative schemes

like the dynamic programming break down on problems of moderate size [15].

Random search algorithms walk along randomly chosen points within the search

space and simply choose the point with the best objective function value. They have

achieved increasing popularity as the limitations of calculus-based and enumerative

techniques became obvious. Monte Carlo methods are well-known random search

algorithms. However, in the long run, random searches can be expected to do no

better than enumerative schemes.

Random search methods should be separated from randomized techniques.

Randomized search does not necessarily imply directionless search. Genetic al-

gorithm is an example of a search procedure that uses random choice as a tool to

guide a highly exploitative search through the coding of a parameter space.

3.1.2 What are genetic algorithms?

Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the

evolutionary ideas of natural selection and genetics. GAs were inspired by the

studies of cellular automata, which is a collection of “colored” cells evolving ac-

cording to a rule set based on neighboring cells’ states. In 1975, John Holland

at the University of Michigan proposed and analyzed GAs in his book – Adapta-

tion in Natural and Artificial Systems [16], which is generally acknowledged as the

beginning of the research in this field.

GAs are modeled on the natural evolution mechanism using the following foun-

dations:

• Individuals in a population compete for resources and mates.

• Those individuals most successful in each “competition” produce more off-

springs than those individuals performing poorly.

• Genes from “good” individuals propagate throughout the population so that
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two good parents sometimes produce offsprings which are better than either

parent.

• Each successive generation becomes more suited to their environment.

A population of individuals are generated in a random or heuristic way. Each

individual is represented by a finite string of symbols encoding a possible solution

in a given problem space. The individuals then go through generations of evolution

which mimic the biological evolutionary theory. In each generation, multiple indi-

viduals from current population are selected, usually in proportion to their fitness,

to enter the next generation. The fitness is a numerical value returned by a objec-

tive function, to evaluate how good the individuals are. The selected individuals

may also undergo the mutation or recombination to form a new population, which

goes on with the next iteration of the algorithm.

GAs differ from the normal optimization and search procedures in four ways:

• GAs work with a coding of the parameter set, not the parameters themselves.

• GAs search from a population of points, not a single point.

• GAs use objective function information, not derivatives or other auxiliary

knowledge.

• GAs use probabilistic transition rules, not deterministic rules.

In GAs, the finite-length string representing the solution of problem is analo-

gous to the chromosome in biological systems. Taken from the some finite-length

alphabet, the characters, features or detectors in the string are analogous to genes.

Each feature takes on different values (alleles) and may be located at different po-

sitions (loci). The total package of strings is called a structure or population (or,

genotype in biological systems). The correspondence between the biological and

GA terminologies is provided in Table 3.1.
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Biological Genetic Algorithm

chromosome string

gene feature, character or detector

allele feature value

locus string position

genotype structure, or population

phenotype parameter set, alternative solution, a decoded structure

Table 3.1: Comparison of biological and GA terminologies

3.2 Structure of a Simple Genetic Algorithm

In this section, the structure and techniques of a simple genetic algorithm (SGA)

is explained with a typical pseudo code. Each item of this code is examined and

demonstrated through simple examples.

3.2.1 The pseudo code

A pseudo code provides an abstract view of an algorithm. The pseudo code for a

standard genetic algorithm is shown in (Figure 3.1).

i = 0 set generation number to zero

init-population P0 initialize a usually random population of individuals

evaluate P0 evaluate fitness of all initial individuals of population

while (not done) do test for termination criterion (time, fitness, etc.)

begin

i = i + 1 increase the generation number

select Pi from Pi−1 select a sub-population for offspring reproduction

recombine Pi recombine the genes of selected parents

mutate Pi perturb the mated population stochastically

evaluate Pi evaluate its new fitness
end

Figure 3.1: Pseudo code of a standard genetic algorithm

In following sections, the mechanisms associated with each item of the pseudo
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No. String (x, y)

1. 100001 (x=4, y=1)

2. 001100 (x=1, y=4)

3. 110010 (x=6, y=2)

4. 000100 (x=0, y=4)

Table 3.2: Example of an initial population

code are explained with examples to illustrate how a genetic algorithm works.

3.2.2 Initial population

A genetic algorithm needs to start with a population of strings, or so called individ-

uals. The individuals of the initial population are usually randomly generated. If

domain knowledge of the problem is available, some advanced heuristic approaches

can be applied in the population initialization.

A simple problem is considered to demonstrate the operation of a genetic algo-

rithm. The problem is to find the maximum of the function u(x, y) = (x − 7)2 +

(y − 3)2, where both x and y lie in an integer interval [0,7].

At first, the binary coding method is selected to encode the solution of the

problem. Six binary bits are used to represent the x and the y values, three

successive bits for each of variables. For example, 011101 means: x = 011b = 3

and y = 101b = 5. Table 3.2 shows a possible randomly generated population of

four six-bit individuals.

3.2.3 Evaluation

In GAs, it is necessary to distinguish between good and bad individuals, and to

tell how good or bad they are. For this purpose, every individual of the newly

generated population must be evaluated according to the objective function. This

is done by mapping the objective function to a “fitness function” which produces
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No. String (x, y) Fitness

1. 100001 (4, 1) 13

2. 001100 (1, 4) 37

3. 110010 (6, 2) 2

4. 000100 (0, 4) 50

Table 3.3: Evaluation of the initial population

a non-negative figure of merit. The mapping is usually done as the following [15]:

• when the objective is to maximize a utility or profit function u(x), the prob-

lem of negative u(x) values must be handled by transforming the fitness

function f(x) as follows: f(x) = u(x)+Cmin when u(x)+Cmin > 0, f(x) = 0

otherwise.

• when the objective is to minimize a cost function g(x), it is necessary to

transform the minimization problem to a maximization problem and assure

that the measure is non-negative by using the following cost-to-fitness trans-

formation:

f(x) = Cmax − g(x) when Cmax − g(x) > 0, f(x) = 0 otherwise.

Cmin or Cmax may be chosen as an input coefficient, as the absolute value of the

smallest u-value or the largest g-value in the current or last k generations. They

can also be functions of the population variance.

As to the example problem under consideration, of which the maximum is to

be found, Cmin can be set to zero because the objective function u(x, y) will never

be negative. Thus, the fitness function f(x, y) is equal to u(x, y). The evaluation

of the four initial individuals is shown in Table 3.3:
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3.2.4 Selection

The selection operator in GA is to decide which individuals should be chosen to

generate the new population for the following generation. According to the “sur-

vival of the fittest” principle, individuals with higher fitness values should have

priority to pass on their genes to the following generation. For example, with Hol-

land’s original fitness-proportionate selection, an individual A which is twice as fit

as an individual B would be expected to appear twice as much in the next genera-

tion. Note that the GA usually does not select individuals directly by their ranks

in the population, thus the best individual is not guaranteed to be selected. There

are some solutions such as elitist strategy to handle this issue.

The fitness-proportionate selection is one of the simplest selection scheme and is

widely used. To implement fitness-proportionate selection, a biased roulette wheel

is created, in which each individual of the current population obtain a roulette

wheel slot sized in proportion to the individuals fitness. For this reason, such

a method is also called roulette wheel selection. n new individuals are selected

by simply spinning the weighted roulette wheel for n times [15]. By dividing an

individual’s fitness value with the average fitness values of all, the expected count of

this individual in the next generation can be calculated. For the example problem,

the average fitness functions of all individuals is 25.5. The expected copies of

individual No. 1 in the next generation is 13/25.5 = 0.51. Table 3.4 shows the

expected counts of the four individuals, as well as the normalized fitness values,

which are equal to the percentages of the individuals’ fitness values in the sum of

all fitness values. The normalized fitness indicates the chance of an individual to

be selected in a random spinning.

In the algorithm for realizing the roulette wheel selection, the i-th individual is

at first assigned a number Si =
∑i

j=1 fitnessi, which is the sum of all fitness values

from individual No. 1 to individual No. i. An integer is randomly and uniformly

chosen between 0 and the sum of the fitness values of all. The first individual whose

Si is equal to or greater than this random integer is selected. The Si values are

shown in Table 3.4. For example, suppose the randomly chosen number is 53, then
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No. String (x, y) Fitness Normalized Si Expected count Actual

1. 100001 (4 ,1) 13 12.7% 13 0.51 1

2. 001100 (1 ,4) 37 36.3% 50 1.45 1

3. 110010 (6, 2) 2 02.0% 52 0.08 0

4. 000100 (0, 4) 50 49.0% 102 1.96 2

Table 3.4: Results of reproduction

individual No. 4 is selected because S4 is the first value which succeeds 53. This

routine is repeated until enough individuals are selected. For the example problem,

four individuals are selected (Table 3.4).

3.2.5 Recombination

Following the selection operation, the recombination operation is performed upon

the selected individuals to generate new individuals for the following generation

pool. Most genetic algorithms have a single tweak-able probability of crossover

Pc, typically lying in a rang of 0.6 and 1.0, which represents the probability that

two selected individuals generate new offsprings. A random number between 0 and

1 is generated, and if it falls under the crossover probability, the recombination

operation is executed; otherwise, the individuals are propagated to the next gen-

eration unchanged. The most commonly performed recombination operator is the

crossover. Quite a lot of different crossover operators have been developed to han-

dle different problems. At this point, the simple one-point crossover is discussed

as example. This operator randomly and uniformly selects an integer k from the

range of [1, l − 1]. Two new strings are created by swapping all the characters

between positions k and l (Figure 3.2).

Before crossover After crossover

A B C D | E F G H A B C D | M N O P

I J K L | M N O P I J K L | E F G H

Figure 3.2: The one-point crossover operator
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The idea beneath the crossover operation is that: by recombining portions of

good individuals, it is likely to create even better individuals. The role of the

crossover operator is to lead the evolutionary process to move toward “promising”

regions of the search space. The crossover is the prime distinguishing factor of the

genetic algorithm from other optimization algorithms.

3.2.6 Mutation

Besides the crossover operator, mutation is another operation in GA which creates

new individuals. Typical genetic algorithms have a fixed, very small probability

of mutation (Pm) of perhaps 0.01 or less. A random number between 0 and 1 is

generated; if it falls under the Pm, the new individual’s chromosome is randomly

mutated in some way. Usually, the mutating operator simply tosses a biased coin

with probability Pm at each bit and, according to that result, alter the bit from 1

into 0 or vice versa (Figure 3.3).

The importance of mutation in genetic algorithm is still a matter of debate.

Some believe that mutation plays a secondary role in the simple genetic algorithm.

The effect of mutation is to reintroduce divergence into a converging population.

In the latter stages of a genetic algorithm run, the algorithm may be converging

upon a local maximum. Mutating some chromosomes may randomly explore new

points in searching space and enable the evolution to find a way past the local

maximum. The biological inspiration behind this operator is the fact that a chance

mutation in a natural chromosome can lead to the development of desirable traits.

Those traits provide the individual displaying certain characteristics an advantage

over its competitors [106].

Before mutation After mutation

1 0 1 1 0 0 1 0 0 1 0 0

Figure 3.3: The mutation operator

In the example case, the third bit from the left of individual No. 1 is changed

by mutation and the new population is shown in Table 3.5, as well as the new
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fitness values.

No. Selected parents After crossover After mutation New fitness

1. 10|0001 101100 100100 10

2. 00|1100 000001 000001 53

3. 00010|0 000100 000100 50

4. 00010|0 000100 000100 50

Table 3.5: New population and fitness after crossover and mutation

As shown in Table 3.5, a new string with high fitness has appeared. The sum of

the fitness values has increased from 102 to 163 and the average has increased from

25.5 to 40.8 just in one generation. Following the selection, crossover and mutation,

individuals No. 1 and 2 of the initial population are selected once (average fitness),

individual No. 3 is not selected (low fitness) and individual No. 4 is selected twice

(high fitness). Crossover generates the high-fitness string 000001 (string No. 2) but

also the low-fitness string 101100 (string No. 1) in which a mutation takes place

which, in this case, increases the fitness.

The simple genetic algorithm is a powerful tool which is able to converge rapidly

to an optimum of many different objective functions. The example problem is a

two-variable function, but a function of more variables is easy to implement. The

user has to create an encoding scheme, a fitness function and implement these

into the genetic algorithm, whose mechanisms are easy to transfer to a computer

program.

3.3 Theoretical Background

The theoretical basis of genetic algorithms relies on the concept of schema (pl.

schemata). A schema is a template describing a subset of chromosomes with sim-

ilarities at certain string positions. If A denotes the alphabet of symbols in chro-

mosomes, schemata are strings of symbols defined over alphabet {A ∪ {∗}}. The

extra-symbol “∗” is interpreted as a wildcard, which indicates the occupied loci are
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undefined and accept any symbol of A. The more “∗” symbols a schema contains

the less specific it becomes, i.e. the more strings it can describe.

A chromosome is said to be an instance of a schema if it matches the defined

positions where the symbols are already determined from A. For example:

The string 10011010 matches the schemata 1******* and **011***

among others, but does not match *1*11*** because they differ in the

second gene (the first defined gene in the schema).

A schema can also be interpreted as a hyperplane in a n-dimensional space

representing a set of solutions with common properties. Obviously, the number of

solutions belonging to the schema H depends on the number of defined positions

in it, which is defined as the order o(H) of schema H. The smaller the order is,

the more instances belong to the schema. Another related concept is the defining-

length δ(H) of a schema, which represents the distance between the first and the

last defined positions in the schema. The defining length determines the likelihood

of an instance of the schema being disrupted by crossover operation. Examples are

provided in Table 3.6.

Schema H o(H) δ(H)

∗ ∗ ∗ ∗ 0 0 1 ∗ 1 1 0 6 6

∗ ∗ 0 ∗ ∗ 0 1 ∗ ∗ 0 ∗ 4 7

0 1 1 0 1 ∗ ∗ 0 0 1 ∗ 8 9

Table 3.6: Examples of schemata

The idea of a schema provides a powerful and compact way to study well-

defined similarities among finite length strings over a finite alphabet. Usually, by

evaluating the fitness of any one string (whether it be large or small), one might

expect to obtain information about other strings which have a structure similar

to it. A string of length l built from alphabet of cardinality (number of alphabet

characters) n is the instance of nl different schemata. Every time the fitness of a

single chromosome is accessed, all of the schemata to which it belongs also undergo
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a trial. This phenomenon is known as implicit parallelism [16], which is a major

part of the explanation of the power of the genetic algorithm.

According to the implicit parallelism, by operations on chromosomes, GA is

performing a large number of trials in the searching space of schemata in parallel.

As a searching algorithm, GA needs to take care of the tradeoff between exploiting

the current best schemata and exploring new schemata by optimal allocation of

the number of trials. It turns out that the optimal strategy is to allocate an

exponentially increasing number of trials to those schemata which seems to be the

best [16]. Due to the mechanics of fitness based selection, GAs do allocate the

trials an the optimal manner.

The general schema growth equation for proportional selection is formulated

as,

m(H, t + 1) = m(H, t) ·
f(H)

f̄
, (3.1)

where m(H, t + 1) is the expected number of instances of schema H in generation

t + 1 and m(H, t) is the number of instances in generation t. f(H) denotes the

average schema fitness of the instances in generation t which belong to schema H

while the f̄ is the average fitness of all population. Under the assumption that

f(H) is above the average fitness, Equation 3.1 can be reformulated as,

m(H, t + 1) = m(H, t) ·
f̄ + c · f̄

f̄
= m(H, t) · (1 + c), (3.2)

and which finally leads to,

m(H, t + 1) = m(H, 0) · (1 + c)t, (3.3)

with a constant value of c > 0. Equation 3.3 clearly indicates that proportional

selection allocates exponentially increasing (decreasing) number of trials to above

(below) average schemata.

m(H, t+1) is further affected by the crossover operator and mutation operations.

A schema is destroyed by one-point crossover when the crossover point falling

within the schema’s defining length. As a result, the probability that the schema

H survives a crossover with the probability Pc is,

Psurv−cross(H) = 1 − Pc ·
δ(H)

l − 1
, (3.4)
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where l is the length of the chromosome. Similarly, a schema is disrupted by

mutation if the mutation takes place in the schema’s defined position. The survival

probability for mutation is given by,

Psurv−mute(H) = (1 − Pm)o(H) ≈ 1 − Pm · o(H), forPm ≪ 1. (3.5)

Combining Equations 3.1, 3.4 and 3.5, an estimation of the number of instances

of a schema in the generation t+1 is obtained, which is summarized as the schema

theorem [16]:

m(H, t + 1) ≥ m(H, t) ·
f(H)

f̄
·

{

1 −

(

Pc ·
δ(H)

l − 1

)

− Pm · o(H)

}

. (3.6)

The basic statement of the schemata theorem is that short, low-order, above-

average schemata (so-called building blocks) receive exponentially increasing trials

in the following generations.

Schemata theorem is regarded as the milestone in the development of the theo-

rems to describe the working of GAs. However, it is not general and its conclusions

are of limited use. Considering the following,

• No positive (constructive) effects of the GA operations are considered, result-

ing in a lower-bound expectation of the schemata growth.

• Operates under the assumption that the solution must be an instance of fit

schemata, which is not always true.

• Fails to provide any indication of the convergence rate towards the optimal

or near optimal, or how good a solution is eventually found.

The shortcomings of schemata theorem have led to several modern approaches

to the theorems associated with GA [107, 108].
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3.4 Case Study: Genetic Algorithm for Fuzzy

Logic Control of Mobile Robot

The adaptive capability, robust nature, and simple mechanics of genetic algorithms

make them suitable for various kinds of problems in the science, engineering and

business world. Furthermore, hybrid systems which combine GAs with other com-

putation methods, such as fuzzy logic or neural network, seem to be promising

and have attracted intense research interests. Studies have shown that GAs are

effective at optimizing the rule base and membership functions of fuzzy logic con-

trollers (FLCs) [74, 73, 109, 110, 111, 112]. With the great search power, GAs are

up-and-coming tools for knowledge acquisition for complicated systems and enable

us to establish a suboptimal fuzzy rule base, if not the global optimal one.

In this section, GA is applied to search for optimal decision-making rules for a

fuzzy logic controller. The controller is designed for the mobile Khepera robots to

perform obstacle avoidance task. The Khepera robots and the associated simulation

software Webots have been introduced in Section 2.6.2. Different from the work

in Section 2.6, all the eight infra-red sensors of Khepera robot are utilized. The

GA is applied to generate and optimize the FLC rule base, which means the rule

base is automatically designed. Simulation and experimental results show that the

GA optimized FLC works well on Khepera robots. With the GA evolved fuzzy

controller, the Khepera robot is able to navigate in unknown environments.

3.4.1 Fuzzy logic controller for Khepera robots

As introduced in Chapter 2, fuzzy logic can deal with uncertain and imprecise

situations. Linguistic variables are used to represent the domain knowledge, with

their membership values varying from 0 to 1. Basically, a fuzzy logic controller

consists of four major components [113]: the fuzzification interface, the knowledge

base (rule base), the inference engine and the defuzzification interface.
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Inferrence
Engine

Fuzzification Defuzzification

Rule Base

Data Base

Left

Khepera
Robots

AngleFront

Back

Right

Figure 3.4: Structure of the fuzzy controlled Khepera robot system

The fuzzy logic controller for the Khepera robot is designed to control the mov-

ing direction of the robot. The FLC is also made up of the four major components

(Figure 3.4). Furthermore, there is an auxiliary database providing environmental

information and parameter setting data to the FLC.

The proximity values received from the eight sensors are taken to generate the

inputs to the FLC. These eight sensors, marked from 0 to 7, are divided into four

groups to detect the obstacles in four directions. Each sensor’s input value ranges

from 0 to 1024. For instance, the sum of the values from sensors 0 (IR0) and 1

(IR1) is designated as the proximity sensor reading from the left side. The grouping

of the sensors is as follows:

Left = IR0 + IR1 Front= IR2 + IR3

Right = IR4 + IR5 Back = IR6 + IR7

The “Left”, “Front”, “Right” and “Back” variables resulted from grouping are

the inputs to the FLC. A bigger value indicates a closer object in that direction.

Three linguistic values, “Large”, “Medium” and “Small”, are used to represent each

input. A typical fuzzy rule often consists of antecedent (or premise), consequent (or

conclusion) and fuzzy relations. The input linguistic variables form the antecedents

of a fuzzy rule. Four linguistic values, “Forward”, “Small Turn”, “Large Turn” and

“Backward”, are used to represent the output in the consequent of a rule. The logic
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operation is “AND”. A typical fuzzy rule is:

If Left is Small AND Front is Large AND Right is Small AND Back is Small,

the action is Backward.

The consequent part indicates the angle by which the robot should turn to.

This angle, with the scope of 0 to 180 degree, is the final output of the FLC. From

the combination of three linguistic values for four inputs, there are 34 = 81 input

states. Thus, the FLC rule base for Khepera robot consists of 81 rules.

Due to their smoothness and concise notation, the popular bell-shaped mem-

bership functions (Figure 3.5) are used to fuzzify the inputs into linguistic variables

and defuzzify the consequent to crisp output. The functions are realized by

µLi(x, ai, bi, ci) =
1

1 + [[(x − ci)/ai]2]bi
, (3.7)

where ai decides the spread and bi decides the flex of the two sides of the bell-

shaped functions centered at ci. Altogether, the parameter set ai, bi, ci describes a

bell-shaped membership function. The sets for different linguistic variables form

the tunable parameters of the controller.

3.4.2 Genetic coding method and operators

The kernel of the FLC is its rule base, a set of linguistic control rules which are used

to simulate human thinking. The rule base plays a key role in FLC and determines

the control system’s performance under different situations. The conventional fuzzy

control rules are constructed on the basis of experts’ knowledge and experience.

However, the experts’ knowledge about the system is more or less limited, and

sometimes is even not available at all. On the other hand, GAs operate without

any knowledge of the task domain and utilize only the fitness of the evaluated

individuals, that make them promising tools for the fuzzy rule base development

and/or optimization.

All the three parts of a fuzzy rule: antecedent, consequent and fuzzy relation,

can be evolved by GA. In this case, there are a total of 81 input states, for which
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Figure 3.5: Membership functions for inputs and output

the possible consequent parts are evolved by GA. Integer coding method is used.

The four consequent linguistic values: “Forward”, “Small Turn”, “Large Turn” and

“Backward”, are represented by integer numbers from 1 to 4. For the 81 rules in one

rule table, 81 integer numbers are combined into one chromosome as an individual.

Each integer number in the chromosome stands for one consequent part, thus one

fuzzy rule. In other words, each fuzzy rule has its associated consequent part on

a fixed position of the chromosome. The entire integer string represents the whole

rule base.

Furthermore, the rule table has a kind of a symmetry, resulting in part of

the rules having the same consequent parts. For example, if the two rules have

antecedents as follows:

Left is Large AND Front is Large AND Right is Small AND Back is Small...

Left is Small AND Front is Large AND Right is Large AND Back is Small...,

they should have the same consequent parts. Then the length of the chromosome
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can be shortened to 54 and that simplifies the computation a lot.

Another issue worth mention is that the robot should always move ahead when

no obstacle is around. Thus the consequent of the rule for this situation can be

fixed as “Forward”, which means turn by 0 degree. This prevents the robot from

spinning around its axis.

In the beginning of evolution, the fitness of the chromosome is initialized to

zero. The robot takes n steps to evaluated the performance of FLC. In each step,

the robot processes the sensor readings, decides the direction of motion and moves

along that direction for a certain distance. The fitness is decreased by unity if

obstacles are detected, otherwise the fitness is increased by unity. If the robot

keeps approaching an obstacle and the proximity value exceeds a predefined limit,

the fitness is decreased by ten units as punishment. Furthermore, there is a penalty

function associated to the angle turned by. The fitness is decreased by a value which

is k times the degree of the angle. k is selected between 0.0055 and 0.0111. This

penalty function in fact encourages the robot to act more efficiently, i.e., to turn

by the necessary angle to avoid obstacles.

In this case, the evolution operations on the chromosome are the standard

crossover and mutation. In each generation, individuals are sorted by their fit-

ness. Those with higher fitness values are selected as elite candidates to generate

offsprings. The evolution stops when the best individual has not made any im-

provement for a certain period of time.

3.4.3 Simulation, experimental results and discussion

The Webots package is used in the simulation phase. Programs are coded using MS

C/C++. The initial position and orientation of the robot are fixed in the training

world (Figure 3.6(a)). The robot is set to run 400 steps to evaluate the fitness of

each individual. In each step, the robot decides whether to turn or not and, moves

along the decided direction for 64 ms. The forward speed is set to 12 units (about

96 mm/s). The angle to turn is decided by the FLC with the rule base decoded
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(a) Training world. (b) Trajectory Before Evolution.

(c) Trajectory after 50 generations. (d) Trajectory After Evolution.

Figure 3.6: Robot’s trajectories in simulation setup
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(a) Before evolution (b) At an early stage of evolution

(c) At the late stage of evolution (d) After evolution

Figure 3.7: Robot’s trajectories in real world experimentations
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from the individual under evaluation. To be more realistic, a random white noise,

which is about 10% of the reading is added to the sensor measurements.

A small population size of 60 is used for the rather simple “obstacle avoidance”

task. The elite population size is 20. Based on the elites, 40 offsprings are generated

by cross-over and 20 of them are mutated. The rather high mutation proportion

helps to avoid the “premature convergence” which often happens with a small

population size. The algorithm is stopped when no improvement is observed with

the best individual in 20 successive generations.

At the beginning, the individuals are generated by arbitrarily assigning the four

consequent linguistic values to each rule. As a result, the robot wandered around

and crashed often. The robot also tends to linger at the corners of the obstacles for

a long time before moving out. As the evolution process carried on, the robot could

avoid obstacles “effectively” and crashed seldom. At the end of the evolution, the

best individual enabled the robot to avoid obstacles “efficiently” and escape from

trap points quickly. The robot trajectories are shown and compared in Figures

3.6(b), 3.6(c), and 3.6(d).

The Khepera robot with the rule bases obtained at different evolution stages in

simulation is tested in real environment (Figure 3.7) for experimental verification.

The experimental setting is much different from the training world and is totally

unknown to the robot. The robot is initially located near the lower-left corner of

the setting, facing towards the dead end in the upper-left corner. At first, with a

randomly generated rule base, the robot is trapped in the dead end (Figure 3.7(a)).

Then with the best rule base in the early stage of evolution, the robot is able to

move around, although its behaviors showed some kind of random motions (Figure

3.7(b)). With a further evolved rule base, the robot can move more efficiently

and swiftly (Figure 3.7(c)). At the end of evolution, the robot with the optimized

rule base can even navigate out of the surrounding obstacles (Figure 3.7(d)). The

swiftness in avoiding obstacles provided the robot a better chance to reach the exit.

It is noticed that the robot could not move around so elegantly as in the simula-

tion. Sometimes it just turned by an angle which is more than necessary. The drop
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in performance is due to the disturbances coming from the real world environment.

For instance, the environment’s color and lighting condition can disturb the sen-

sor readings and, the inertia and friction can affect the robot’s mechanic motion.

However, the FLC’s performance is not tampered that much by the disturbances,

depicting some grade of robustness and noise tolerance.

The proposed genetic algorithm has constructed an optimized rule base for the

FLC of Khepera robot. The FLC enables the robot to perform well in “obstacle

avoidance” task. The robot could move around the experimental world and never

crashed into or trapped by the obstacles.

Since the “obstacle avoidance” is a fairly simple task, the FLC designed here is

rather simple too. The following chapters will focus on more complex problems and

further combination of GA with Fuzzy logic to exploit the power of evolutionary

algorithms. In the following chapters, a fuzzy behavioral based robot soccer system

is developed, which provides a much more complex and non-trivial problem.
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Chapter 4

The Robot Soccer System

The previous chapters have introduced fuzzy logic and genetic algorithms in detail.

Several case studies have been described for illustration purpose. However, those

case studies are trivial in the sense of complexity and significance in practical

applications. The rest of this thesis discusses more complicated problems in a real

world multiple robotic system, which is the robot soccer system (RSS). Since the

robot soccer system serves as a platform for all the works in the rest of this thesis,

it is beneficial to provide a thorough introduction to the same. Both the system’s

hardware architecture and mathematical model are analyzed in this chapter.

4.1 Robot Soccer Activities

Robot soccer based competitions and research activities have been growing steadily

over the last two decades. Robot soccer system originates in the mid-90’s, marked

by the foundation of Robot World Cup Initiative (RobotCup) [114] and the Fed-

eration of International Robot Soccer Association (FIRA) [115]. Nowadays, there

are many leagues of robot soccer championships being held under the auspices of

FIRA and Robocup.

Since its birth, robot soccer has been an intriguing interdisciplinary field of

research. The robot soccer system is an instance of multiple robotic system which
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4.1. Robot Soccer Activities

Figure 4.1: The robot soccer field

covers a large area of research themes like robotics, intelligence control, commu-

nication, computer technology, sensor technology, image processing, mechatronics

and artificial life. The robot soccer based research aims to achieve an increased

level of autonomy and collaboration between artificial agents through the medium

of a very complex game soccer.

Robot soccer system is an excellent research platform for a number of reasons.

Researchers have to deal with a number of real world problems, such as environment

noise and robot failure. The competition element also works as a motivator for

researchers.

Specifically, the robot soccer system discussed in this thesis belongs to small

league Micro-Robot Soccer Tournament (MiroSot), which is a division of robot

soccer games held by FIRA annually at international scale.

Under small league MiroSot rules, the robot soccer game can be described briefly

as follows:

1. In the 3 vs 3 MiroSot game, six mobile robots are grouped as two soccer

teams, trying to score against each other to win the match. Each team has

one robot as the goalie.

2. The soccer field is black colored with dimensions 150cm × 130cm. The field
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is bounded on all sides by a 5cm high wall to prevent the robots and the ball

from tipping over the field (Figure 4.1).

3. An orange colored golf ball of the standard size acts as the soccer ball.

4. The robots are radio controlled and the size of each robot is limited to 7.5cm×

7.5cm × 7.5cm, except for the height of the antenna.

5. There is a camera placed over the field at a height of 2m, which provides the

host computer with the video image of the match field with the robots and

the ball inside (Figure 4.1).

6. The robots must have their team color patch on top. The team color is either

blue or yellow, as assigned by the organizers. The teams are allowed to use

other color patches to distinguish between home robots, except for any color

patch resembling the color of the opponent team color and the ball.

7. No human intervention is allowed during the game, except for stopping all

the robots according to the referee’s commands.

Similar to human soccer players, soccer robots should be agile, have good strat-

egy and need to collaborate.

4.2 Robot Soccer System Architecture

The hardware setting of robot soccer consists of three parts: the vision system, the

host computer and the robots (Figure 4.2). The vision system consists of a CCD

camera, a frame capture card and drivers. The video camera is mounted above the

robot soccer field and captures the overview of the playground. The vision system

serves as the sensor feedback of the system. As the “brain” of the system, the host

computer manipulates the vision data and controls the robots via radio frequency

(RF) communication. The soccer robots move on the playground following the

host computer’s commands and transfer the team strategy into reality.
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Figure 4.2: Hardware setting of a robot soccer system

The camera transmits analog video signals to the frame capture card inside the

host computer for digitalization. The image of the entire playground is captured

every 20ms and stored into the video buffer in RGB format. The vision algorithm

running in the host computer is employed to identify the robots and the ball,

according to their colors. The relative position data of each robot and the ball are

also obtained from the color pixel data by the vision-process module. Based on

the position data, the strategy module decides the robots’ subsequent actions and

compute the relative velocity settings of robots. The host computer outputs the

velocity commands to a RF transceiver through the serial part. The transceiver

in turn formats the commands into specific protocol signals and sends them to the

soccer robot, whose motion system is formed by two direct current (DC) motors

in a two-wheeled differential drive configuration. The control signals received by

the robot are then converted into voltages, which produce the torques that provide

angular velocities to the wheels and finally determine the posture and velocity of

the robot. The complete procedure is summarized in Figure 4.3.
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Figure 4.3: Overview of robot soccer system architecture

4.3 Soccer Robot Architecture

The soccer robot used in MiroSot is usually cube-shaped, equipped with two wheels

(Figure 4.4). Each wheel is driven by a DC motor controlled by the pulse width

modulator (PWM). The speed of the wheel is detected by an optical encoder. A

7.2v battery powers the robot. The wireless signal sent from host computer is

received by a RF module, which is connected to the serial port of the on-board

micro-controller. As the kernel of the robot, the micro-controller is integrated

with central processor, memory and I/O port. The proportional-integral-derivative

(PID) control algorithm is embedded into the micro-controller. The architecture

of the soccer robot is depicted in Figure 4.5.

The micro-controller, the motor and the encoder make up of a real-time close

loop control system. Upon receiving of the control signals from the host computer,

the on-board PID controller of robot ensures that the robot achieves its desired

velocity and consequently the desired position and orientation.
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Figure 4.4: The soccer robot
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Figure 4.5: Soccer robot hardware structure
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4.4 Mathematical Model of Soccer Robot

The motion of robot is controlled with two independent control signals for the left

and right wheel motors which are decided by the host computer. Obviously, the

relationship between the control signal and the resultant motion of robot is essential

for the robot motion control. For this reason, a mathematical model is constructed

for the better understanding of the kinematics of the soccer robot. Furthermore,

the model is especially important for the development of the robot soccer system

simulator which is vital for evolving the robot behaviors (Chapters 7 and 8).

The kinematic states of the robot are described in Cartesian Plane by two

vectors: P (posture) and V (velocity):

• P = [ x y θ ]T , where x, y, and θ refer to the robot’s x and y coordinates

and the robot’s heading angle with respect to the positive X-axis (Figure

4.6(a)).

• V = [ v ω ]T , where v and ω are the translational and rotational velocities

of the robot in the local coordinate system of the robot (Figure 4.6(b)).

Combinations of v and ω result in curved paths of different turning radii.

The posture P and velocity V vectors are related by a Jacobian matrix J(θ)

given by:

Ṗ =











ẋ

ẏ

θ̇











=











sin θ 0

cos θ 0

0 1











·





v

ω



 = J(θ)V. (4.1)

A non-holonomic constraint of the following form exists under such a configu-

ration:

ẋ sin θ − ẏ cos θ = 0. (4.2)

The non-holonomic constraint in Equation (4.2) describes the inability of two-

wheeled differential drive robots to move along a direction perpendicular to its

current heading, provided that the wheels are non-slipping. The angular velocities
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of the wheels are translated into linear motion through the traction of the wheel

on the contact surface:

v =





vL

vR



 = r





ωL

ωR



 , (4.3)

where vL and vR are the left and right wheel velocities, ωL and ωR are the left

and right wheel rotational velocities, and r is the radius of the wheels. From the

wheel velocities, the translational and rotational velocities of the soccer robot can

be obtained:

V =
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L





= r





1
2

1
2

− 1
L

1
L









ωL
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 = L · v, (4.4)

where L is the orthogonal distance between the two wheels. In most systems, the

left and right wheel control signals are specified in terms of byte values, hence a

relationship must be formed between these control signals and the resultant wheel

velocities:

v = G · u =





g11 g12

g21 g22









uL

uR



 , (4.5)

where uL and uR are the left and right wheel control signals sent to the robot and

G is a system gain matrix that is to be determined. Combining Equations (4.1)

and (4.4) result in Equation (4.6).

Ṗ = J(θ)Lv

= J(θ)LGu (4.6)

The system gain matrix G is a characteristic of the hardware (Equation (4.7)).

The determination of G can be simplified by assuming that the DC motors of both

wheels are matched (g11 = g22 = g), and the input signals and output velocities

for left and right wheel are decoupled from each other (g12 = g21 = 0). As a

result, the determination of G is reduced to finding a value for g. The value of

g varies across different system settings, and is usually decided by experimental
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Figure 4.6: Kinematic state definition

Exp. No. uL uR vavg(cm/s) g

1 20 20 35 1.75

2 30 30 54 1.80

3 50 50 82 1.64

4 80 80 135 1.69

Table 4.1: Experiments’ summary for the determination of g value.

measurement. The experimentation is conducted by placing the robot at rest, then

providing equal control signals to the left and right wheels. The trajectory of the

robot as well as its instantaneous velocities are recorded and plotted. When the

robot has accelerated to a steady state velocity, the value of g is calculated by

dividing the measured velocity by the input control signal. The velocity of robot

is obtained through the vision system feedback within the setup.

G =





g11 0

0 g22



 =





g 0

0 g



 =





vL

uL
0

0 vR

uR



 (4.7)

Table 4.1 summarizes the velocities used in the experimentation and the values

of g. The average of g values obtained from different experimentations is considered

in Equation (4.8). It is worth mentioning that the g value varies across robots

and/or the field of operation.

g = (1.75 + 1.80 + 1.64 + 1.69)/4 = 1.72 ≈ 1.7 (4.8)

The knowledge of the mathematical model is used to derive expressions for
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control signals based on inverse kinematics. Combining Equations (4.4) and (4.6)

provides equation (4.9).
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For any desired robot motion represented in terms of the translational (v) and

rotational (ω) velocities, the corresponding digital control signals for the left (uL)

and right (uR) wheels are,

uL =
1

g

(

v −
ωL

2

)

=
Vcommon − Vdiff

g
, (4.10)

uR =
1

g

(

v +
ωL

2

)

=
Vcommon + Vdiff

g
, (4.11)

where Vcommon = v and Vdiff = ωL
2

.
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Chapter 5

Fuzzy Behavior Based Control of
Multi-Robotic System

In this chapter, an extensive fuzzy behavior based architecture is proposed for

the control of mobile robots in a multi-agent environment. The behavior based

architecture helps to decompose the complex multiple robots system into smaller

modules of roles, behaviors and actions, which are more easy and efficient to control.

The use of fuzzy control introduces a dimension of human-like reasoning into the

behavior based architecture, which is based on a biological foundation as well.

Fuzzy logic is used in implementing individual behaviors, coordinating the various

behaviors within a single robot, and selecting roles for each robotic agent. Two

methods of behavior coordination, fuzzy rule-base coordination and activity and

action contribution, are explored. The proposed architecture utilizes the former

method as the backbone for coordinating deliberative behaviors as well as selecting

and assigning roles, and the latter for reactive behavior arbitration.

The robot soccer system is used as the test platform. The system provides an

environment which is complex and dynamic enough to study the robot behaviors.

As a result, it is also frequently used by researchers as a benchmark platform

for multi-agent systems. The effectiveness of fuzzy behavior architecture can be

evaluated conveniently and comprehensively in this platform.

The architecture is implemented on a team of three robots performing the roles

of attacker, midfielder, defender and goalie interchangeably. Issues relating to the
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design of effective behaviors are looked into. In particular, the robot behaviors and

roles are designed to be complementary to each other, so that a coherent team of

robots exhibiting good collective behavior is obtained.

The major practical issues that influence the implementation of the behavior

based architecture on actual hardware are real-time vision processing, RF com-

munication and robot mechanical motion. These issues create real-time problems,

such as disturbances and delays, which inevitably add to the challenges in the

design and implementation.

5.1 Introduction

In this work, a fuzzy behavior based architecture is developed to manage a team of

mobile robots, by decomposing the whole team into different roles, each role into

different behaviors, and then behaviors into primitive actions. Complex and intel-

ligent behaviors are expected to emerge from simple and primitive sub-behaviors

or actions, while group behaviors emerge from the cooperative or competitive be-

haviors of individual robots. This work explores the areas from design and im-

plementation of robot actions and behavior, coordination of behaviors within an

individual robot, right up to role building and role selection for multiple mobile

robots within a team. Fuzzy concepts are brought in for behavior building and

coordination, as well as in robot perception, decision-making and speed control.

To conduct research on such an extensive architecture, a robot soccer system

is selected as a platform that provides a sufficiently dynamic environment for the

multiple mobile robots to operate in. Due to the various human references made

in the game, the robot soccer system is a suitable setup for the study of the fuzzy

behavior based architecture. The robot soccer system is a typical multi-agent

robotic environment where robots need to cooperate or compete with each other

to fulfill certain tasks. In addition, each robot soccer player needs to undergo a

cognition process much similar to a human player, to decide which behaviors to

exhibit in order to win the game. In the field of robot soccer, fuzzy logic has
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already been employed in implementing individual robot behaviors and actions,

in particular for shooting and obstacle avoidance actions [58, 57]. Comparatively,

there are fewer initiatives for the behavior coordination aspect in robot soccer.

Among the material found in literature include a brief introduction to the use of

hierarchical fuzzy control in negotiating behavior based architecture [67], and the

use of fuzzy logic in game strategy selection [116].

This work focuses on mimicking the knowledge and cognition process used in

the human game as much as possible. With the understanding that the human

cognition process is a highly complex process, no single method of control can

be used across the board. This work attempts to explore the use of principles

for robot navigation, and extends them to the robot soccer scenario, which is a

much more dynamic and competitive environment where rival robots are involved.

Various methods for behavior coordination are explored and used for different sub-

sets of behaviors within the architecture, and in particular, marking a distinction

between deliberative and reactive behaviors. The proposed algorithm utilizes dif-

ferent methods of coordination for different behaviors under various scenarios so

as to handle the highly dynamic environment.

This chapter is organized as follows. In Section 5.2, the design principles behind

the behavior based architecture, that is, the decomposition and coordination of

behaviors, are discussed. Sections 5.3 to 5.7 describe the design and implementation

of the various levels of the behavior hierarchy, from action, to behavior, to roles,

and finally, the team formation. The uses of fuzzy logic for robot perception,

decision-making and speed control are introduced. A brief summary of the results

is provided in Section 5.8, and the chapter concludes, in Section 5.9, by putting

the work presented into perspective.
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Figure 5.1: The behavior architecture for a team of soccer robots

5.2 Design Concept

This section describes the principles and theory behind the design of the fuzzy

behavior based architecture. How behavior is perceived and decomposed in a be-

havior based architecture is described. Detailed descriptions are provided on two

methods of behavior coordination, the fuzzy rule-base coordination and, activity

and action contribution method. How these two methods are implemented in the

proposed architecture is also discussed.

The principles of the proposed fuzzy behavior based architecture can be ap-

plied for various organizations of multiple mobile robots. The architecture is im-

plemented on a team of soccer robots, and references are made to this scenario in

illustrating the theory.

5.2.1 The behavior based architecture

A robot, which is assigned with a specific task, is deemed to display a task-achieving

behavior. With a broadened scope of behaviors, the whole team of robots is ex-

pected to display a collective behavior. Due to different degrees of interpretations

of behavior, there is a need to clearly define how behaviors are decomposed. The
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proposed architecture decomposes behaviors into a hierarchy based on behaviors’

complexity. The aim is to decompose complex behaviors into simpler and man-

ageable sub-behaviors as one progresses from the top to bottom of the hierarchy.

Figure 5.1 shows the behavior architecture with examples of behaviors at each layer

of the hierarchy.

At the top of the hierarchy is the overall team behavior representing the team

strategy, which can be aggressive or defensive, depending on the match situation.

This is the most complex behavior as it represents the collective conduct of an

organization of different agents. At the second layer, the team is split into four

robot roles: attacker, midfielder, defender and goalie. Which role a robot has to

perform is decided by the fuzzy inference engine. The four roles are subdivided into

task-specific behaviors at the third level, such as “shoot”, “chase”, “pass”, “block”,

etc. Each role is fulfilled by a set of behaviors. Some of the behaviors (“avoid wall”

and “frustration”) are utilized in most of the roles while others (“shoot”/“guard”)

belong to specific roles (“attacker”/“defender”). These behaviors are further de-

composed into primitive actions, including “go–position”, “go–angle” and “spin”.

These basic actions, which are repeatedly used to implement various behaviors,

make up the bottom layer of the hierarchy. It is worthy of mention that some

actions are comprised of sub-actions characterized with different degrees of speed.

For instance, the “get-ball-at-angle” action consists of sub-actions with three speed

settings: fast, medium and slow. The fuzzy decision process decides on how much

of each sub-action contributes to the resultant robot speed. Essentially, the aim of

the architecture is to decompose a system into simpler sub-modules until the sub-

modules are straightforward enough to be handled on its own. The entire behavior

based architecture for robot soccer system involves the building and integration of:

• Four soccer robot roles,

• twelve individual robot behaviors, and

• fourteen primitive robot actions, some of which have three speed settings.

In the architecture, obstacle avoidance is explicitly fulfilled by independent
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behaviors, such as shun-robots and avoid-wall, while other behaviors need not

take it into consideration. This is in contrast to other reported approaches where

obstacle avoidance is included as an additional consideration when implementing

behaviors like shoot ball [58, 57]. In the proposed architecture, obstacle avoidance

behaviors are reactive behaviors, which are stimulated directly in response to the

environment.

In addition, a frustration behavior is incorporated in. Frustration is used as a

measure of the time in which the robot is in some form of difficulty, like being stuck

together with another robot, and then activates a haphazard action like spinning

to release itself from that situation. One might view frustration as an emotion of

being in difficulty rather than a behavior.

Apart from regarding the architecture as a top-down decomposition of more

complex functions to simpler ones, another way is to view the architecture as a

bottom-up building of more complex behaviors from simpler ones. For example,

the avoid-wall behavior is built up from the avoid-front, avoid-left, avoid-left-corner,

avoid-right and avoid-right-corner actions. To perform the role of an attacker, the

robot needs to possess behaviors like shoot, chase and pass ball. The attacker,

midfielder, defender and goalie roles build the collective behavior and strategy of

the whole soccer team. These two ways of interpreting the architecture also coincide

with two schools of thought in behavior coordination, which is further discussed in

the following section.

5.2.2 Action and behavior coordination

The coordination of different actions into behaviors, behaviors into roles and the

selection of roles for different robot agents are performed using fuzzy techniques.

Two methods of coordination are explored, namely, fuzzy rule-base coordination,

and, activity and action contribution.
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Fuzzy rule-base coordination

The fuzzy rule-base coordination method uses a fuzzy rule-base to select roles,

behaviors or actions. This method adopts a top-down decision making approach.

The output of each rule in the rule-base is a fuzzy singleton representing one be-

havior or action. For example, in the attacker’s rule-base, there can be a rule: “IF

(Ball is within shooting range) THEN (Shoot ball)”. The whole fuzzy rule-base

contains a series of such rules, which assesses the conditions within the playground

and the team’s game strategy, and proposes a suitable action. Figure 5.2 depicts

the process of fuzzy rule base coordination.

The defuzzification method in the fuzzy decision process is important to co-

ordination. Two defuzzification methods are explored: center of area (CoA) and

“max” criterion [9]. The use of either of the defuzzification methods depends on the

behaviors and actions at hand. For the CoA method, rules with positive strength

activate respective behaviors by recommending a pair of speeds for the left and

right wheels. These recommendations are then weighted according to the associ-

ated rules’ strengths and the final average forms the overall behavior of the role.

The CoA method is used to “merge” behaviors and actions which are compatible

to each other. The “max” criterion activates only one behavior at any time, which
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is determined by the rule with the highest strength. In general, the “max” crite-

rion is used for coordinating behaviors and actions that are mutually exclusive; for

example, the chase and shoot ball behaviors for attacker role.

Activity and action contribution

The activity and action contribution method is based on the work by Abreu and

Correia [55], and is in contrast to the rule-based approach due to its bottom-up ap-

proach in behavior building. Figure 5.3 shows the activity and action contribution

method.

In activity and action contribution, each fuzzy action provides a pair of activity

and action values. Action represents the output of the fuzzy action, and in this

case, is the pair of left and right wheel speeds recommended by the fuzzy action.

Activity represents the degree of contribution a fuzzy action has on the overall

behavior. The activity value in the range of [0, 1] is determined in a fuzzy manner.

One way of evaluating the activity value is by accessing the strength of the fuzzy

rule which holds the greatest significance to the fuzzy action. The main idea here

is that the activity value is obtained from the fuzzy statements within the rule-base

of the fuzzy action. It is the action that assesses the environmental conditions and

then expresses an opinion. The top-level arbitration merely reviews the different
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opinions and then adopts one of the opinions or an aggregate of opinions. That

is why the activity and action contribution method is considered as a bottom-up

approach.

For the behavior coordination, the CoA and “max” criterion methods are also

utilized. The CoA method takes the average of the action values recommended by

the fuzzy actions, weighted by the activity values. The “max” criterion activates

the fuzzy action with the greatest activity value. The application of either of the

methods varies from behavior to behavior, and generally depends on whether the

actions are mutually exclusive or not. The final action value computed forms that

behavior’s action value which is recommended to the relevant role in the upper

layer. As to a behavior’s final activity value, the determination methods also vary

for different behaviors. A simple way is to take the highest activity values from its

sub-actions as the overall activity value of the behavior.

Method of coordination

Based on the methods discussed, the architecture for coordination of roles, behav-

iors and actions is proposed. For the assignment of roles to the robot soccer players,

the fuzzy rule-base coordination method is used. The antecedents of the fuzzy rules

contain the decision factors relating to the conditions on the playground, the po-

sitions of opponents and the ball, and the game strategy of the whole team. The

roles assigned to the robot players should show cooperative and supportive behav-

iors among team-mates so as to exhibit collective group behavior, which is resistive

against the opposing team. For each role, behavior coordination is also based on

fuzzy rule-base coordination. The exception is with the goalie, whose behavior is

built on non-fuzzy if-else-if rules. The reason for doing so is that there are only a

few rules governing the goalie’s behavior. In addition, deciding whether the ball is

moving to the home goal or not, is more or less a discrete decision. Hence, it is not

necessary to use fuzzy logic for the goalie coordination.

Within each behavior, the method of action fusion and selection is based on the

type of behavior. In general, the activity and action contribution method is used for
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reactive behaviors like the avoid-wall behavior. The other deliberative behaviors

such as shoot, pass and block, in principle, adopt fuzzy rule-base coordination.

However, most of the deliberative behaviors in the proposed architecture are easily

implemented based on one or two robot actions. The basic actions, like go-position

and go-position-at-angle, are implemented using the fuzzy inference engine.

The rationale for merging the deliberative and reactive schools of thought is

as follows. The idea of top-down behavior coordination is likened to a deliberate

mode of decision-making. This process of thought applies more to behaviors like

shooting, and ball passing that are displayed based on the game strategy held

by the team. On the other hand, the bottom-up approach is more applicable for

reactive behaviors, like obstacle avoidance.

As the behavioral architecture is combining a top-down and bottom-up ap-

proach, a compromise between the two decision-making processes needs to be made

at the boundary where the two methods meet. At the meeting point, the activity

value of the behavior received from the bottom-up approach is treated the same

as the rule strength in top-down fuzzy rule-base approach. The activity value also

represents the weight or significance of the sub-behavior/action to its superior be-

havior/role. For example, a role that contains the avoid-wall behavior can not

activate that behavior based on the fuzzy rule. The avoid-wall behavior recom-

mends itself when it is necessary. Under this circumstance, the role assesses the

activity value of the avoid-wall behavior together with the strengths of the other

rules in the rule-base to determine the activation of the overall behavior. In this

way, reactive and deliberative behaviors/actions are seamlessly combined into the

architecture.

5.3 Fuzzy Action Design and Implementation

Most of the actions in the behavior architecture are fuzzy actions, implemented

using the fuzzy rule-base or inference engine. Depending on the type of action,

different information are chosen as input to the different fuzzy rule-base. However,
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the outputs from the fuzzy rule-base for all actions are the same: the speeds of

the left and right wheels of the robot, which drive the robot to a desired posture.

These basic fuzzy actions form the bedrock of a robot’s behavior.

The fuzzy behavior based architecture results in a distributed fuzzy control

system with small fuzzy sub-systems, instead of a single centralized one. Each fuzzy

sub-system is simple to implement, especially those for the basic actions. Triangular

and trapezoidal membership functions are widely used as they are effective enough

for simple fuzzy actions. Small sized rule-bases are manually constructed and fine-

tuned.

To illustrate the development of fuzzy actions, the go-position, go-position-at-

angle and get-ball-at-angle actions are described as follows.

5.3.1 The go-position action

The go-position action is a movement the robot makes to bring itself to a desired

position in the playground. The associated fuzzy rule-base takes in two inputs, the

distance of the robot to the target position and the angular deviation of the robot’s

heading direction with respect to the target position. The rule-base then produces

two outputs, the left and right wheel speeds.

The go-position action, as well as several other translation movements are im-

plemented with three degrees of speed, namely slow, medium and fast. In the

context of robot soccer, speed is a very critical issue when competition is involved.

The rules of go-position are set up to provide only a single level of speed for each

rule-base. Three different rule-bases are set up to cater for different levels of speed.

5.3.2 The go-position-at-angle action

Very often, a robot agent is required to approach a desired target with certain

orientation. This is especially important for soccer-playing robots, which need to

kick the ball in specific directions. The go-position-at-angle action achieves such a
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motion.

A separate fuzzy rule-base is constructed for the robot to reach the target at a

desired angle. This fuzzy rule-base is activated only when the robot moves within

a certain region of the target, which is a circle area with pre-defined diameter.

The two input variables to the fuzzy rule-base are the angles by which the

current and the desired robot headings are away from the straight line between

the centers of the robot and the ball. Essentially, the robot has to move in an

approximately circular fashion around the target point when it is far away. When

the robot closes in to the desired approaching angle, it makes a bigger turn to move

towards the target.

5.3.3 The get-ball-at-angle action

The get-ball-at-angle action is implemented based on the go-position-at-angle ac-

tion, with the ball as the target position. This task is much more challenging as

the ball is constantly on the move. It is important that the robot moves at an

appropriate speed to reach the vicinity of the ball before kicking it at a desired

angle.

The implementations of the go-position-at-angle actions at different speed levels

are activated under different scenarios to help the robot to reach the ball in the

best possible manner. A fuzzy rule-base is used to determine the speed. The fuzzy

input variables to the rule-base are the distance between the ball and the robot,

the speed of the ball, and the direction of the ball relative to the robot’s heading

angle. The last variable determines whether the ball is currently moving towards

the robot, or away from the robot, or in a direction perpendicular to the robot’s

heading direction. To further improve the performance, a fourth variable, the

angle of approach to the target with respect to the direction of travel of ball, can

be added to the fuzzy rule-base. However, this will be at the expense of additional

computation time.

The performance of a robot displaying the get-ball-at-angle action is shown in
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(a) Robot getting stationary ball at 0 degree

(b) Robot getting moving ball at 0 degree

Figure 5.4: Robot displaying the get-ball-at-angle action

87



5.4. Reactive Behavior

Shoot

Wander

Chase

Pass

Sweep

Track

Guard

Block

Kick

Frustration

Shun

 Robots

Avoid 

Wall

DELIBERATIVE

BEHAVIORS

REACTIVE

BEHAVIORS

Figure 5.5: Robot behaviors with reactive behaviors highlighted

Figure 5.4. In this test, the robot is expected to approach the ball at 0◦. When

the ball is at the stationary state, the robot approaches the ball at the desired

angle without any difficulty (Figure 5.4(a)). In the case of Figure 5.4(b), the ball

is slightly in front of the robot and is traveling away from the robot. However,

the robot moves at its fastest speed and manages to catch up with the ball and

eventually intercepts it at the desired angle.

5.4 Reactive Behavior

The robot behaviors in the behavior architecture are divided into two classes: re-

active and deliberative. Reactive behavior is defined as that displayed in direct

response to environmental stimulation (Figure 5.5), as in the case of avoid-wall

and shun-robots, or internal emotion (frustration). Deliberative behavior, on the

other hand, involves some sort of intention of the robot agent. This section dis-

cusses the design and building of the reactive behaviors.

5.4.1 The avoid-wall behavior

There is a need for soccer robots to avoid the boundaries of the playground. The

distances between the robot and the boundaries to the robot’s left, left-corner
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(45◦ left), front, right-corner (45◦ right) and right are evaluated (Figure 5.6). To

monitor all the five variables together requires a very large fuzzy rule-base. The

avoid-wall behavior is decomposed into five actions, namely, avoid-left, avoid-left-

front, avoid-front, avoid-right-corner and avoid-right, with each action handling the

obstacles in a particular direction. The coordination of these five actions is then

accomplished using the activity and action contribution method. The outputs, the

left and right wheel speeds, of each action form the action values. The activity

values of the actions are based on the membership values of the associated input

distance variables to the fuzzy rules.

The final left and right wheel speeds recommended by the avoid-wall behavior

are computed using the CoA method. The activity value for the avoid-wall behavior

is defined by the activity value of the avoid-front action which is the most crucial

one.

5.4.2 The shun-robots behavior

Apart from avoiding the playground boundaries, robots also need to avoid the

other robots in the playground. There are two steps in building the shun-robots

behavior. The first is to build a fuzzy rule-base for shunning a single robot. The

second is to take into account the other robots in the playground, and decide when

to shun robots.

In the design of the fuzzy rule-base, the input variables are the distance to

the obstacle robot and the angle by which the robot’s heading differs from the

direction towards the obstacle robot. When taking into account multiple obstacle
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robots, the shun-robots fuzzy rule-base is applied to each of the obstacle robots

to determine the speeds required to avoid each of them individually. This can be

viewed as assigning a shun-robot action to monitor each of the other robots in the

playground. Thus, the activity and action contribution method is applied to shun

multiple robots.

The activity value assists the robot to decide when to deploy the shun-robots

behavior. This deals with the issue of perception. Fuzzy logic is employed to

mimic this aspect of human behavior. The fuzzy notion of variable alert distance

is introduced to determine the potential obstacles around a robot.

The variable alert distance helps to determine when surrounding robots are

considered as near enough to be deemed as obstacles. The concept of the variable

alert distance is derived from the fact that fast moving bodies need a longer time

and distance to decelerate. Fast moving bodies, with large momentum, need to

have greater anticipation of surrounding obstacles, as it needs the “space” to slow

down and avoid the obstacles. For a fast moving body, the alert distance should

be long, and the objects within this distance are considered as potential obstacles.

The alert distance for a slow moving object is short. The slow moving robot only

needs to beware of objects that are really close to it. Following this argument, a

stationary object is not perceived to have any obstacles. The idea of a variable

alert distance can assist to determine when obstacles are considered to be near,

and it is used to derive the activity value. The activity value is computed through

fuzzy inference, based on robot speed, or if possible, the relative speed between the

robot and obstacle.

Figure 5.7 shows the performance of a robot that avoids two obstacle robots

while moving towards the ball. The robot encounters no difficult in shunning

the single obstacle robot (Figure 5.7(a)). When the robot is moving forward at a

medium speed, it manages to bypass the obstacle within a very small margin. In the

second case, the robot is moving backwards to the obstacle. It avoids the obstacle

robot in the stage 1 and then swiftly adjusts its orientation to its desired direction

(facing the ball) in stage 2 and 3. In the scenario of multiple obstacle robots
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(a) Robot shunning obstacle robot while moving forward/backwards

(b) Robot shunning tow obstacle robots

Figure 5.7: Robot shunning obstacle robots
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(Figure 5.7(b)), the robot begins with a high speed. At stage 1, the robot takes a

slight turn to move towards the ball. It encounters obstacle-robot-1 at stage 2 and

quickly turns towards the right. In the mean time, it bypasses obstacle-robot-2 as

well. At stage 3, the robot turns left to move towards the ball again, but almost

immediately finds obstacle-robot-2 in its path. It then quickly turns right to shun

the obstacle-robot-2, and finally at stage 4, the robot turns and homes the target.

It is observed that the robot has good ability in perceiving the presence of objects

in the surroundings.

5.4.3 The frustration behavior

Strictly speaking, frustration should be studied as an emotion rather than a behav-

ior. It is only the act of releasing the frustration that is considered as a behavior.

Although this work does not include the study and modeling of robot emotions,

the frustration behavior is implemented due to the need of the robot to resolve the

many frustrating scenarios that is present in real world.

For instance, the robots used in the robot soccer system are cubic in shape. Such

a geometric composition means that whenever robots are stuck together (Figure

5.8), it is very hard for them to release themselves. The frustration behavior is

designed to monitor situations where the robot is stuck with another robot or

when it is stuck against the walls. The frustration behavior monitors the period

of time for which the robot is in such frustrating situations. This variable time is

then fuzzified to obtain the activity value of the frustration behavior.

The behavior induced by frustration can be any haphazard reaction aimed at

releasing the frustration. An example is the spinning action. The degree of this

spinning motion is pegged against the period of frustration. If the period of frus-

tration is long, the robot is having trouble with moving out of a tight situation by

ordinary spinning and then it is required to spin at a higher velocity.
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Figure 5.8: The situation to trigger frustration behavior

5.5 Deliberative Behavior

In contrast to reactive behavior, deliberative behavior is displayed not purely in

response to environmental situations, but also due to some task that the agent is

undertaking. For the soccer robot, this includes behavior for shooting, chasing,

passing, wandering, guarding, sweeping, blocking and tracking (Figure 5.9). These

are behaviors which deal with game strategy and are put on with the intention of

winning a soccer game.

Most of the deliberative behaviors in this architecture are implemented directly

based on the basic fuzzy actions. This is mainly due to the fact that the basic

actions like get-ball-at-angle are very flexible when applied to ball seeking and

manoeuvring. The emphasis on the building of deliberative behaviors falls more

on the tactics considered in the design. The behaviors are designed to be simple

modules, which are complementary to each other, so that after integration, coherent

roles and logical group behavior of a soccer team can emerge.

Fuzzy logic is heavily used here for robot decision-making, such as determining

the direction to dribble the ball, and the target position to shoot the ball. Fuzzy

coordination is also used in speed control. As instances, the shoot and block

behaviors are described.
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Figure 5.9: Robot behaviors with deliberative behaviors highlighted

5.5.1 The shoot behavior

The shoot behavior belongs to the attacker role and is vital in winning a game.

This behavior is implemented by using the get-ball-at-angle action. The prime

issue here is to decide the best angle to shoot, which in turn is determined by

the target position that the robot is aiming at. To improve the chances of finding

the target and eventually scoring, shooting should take into account the opponent

goalie’s position and the current ball position. Fuzzy reasoning is brought into

determining a good target position to shoot at.

The input variables to the fuzzy rule-base of the shoot behavior are the ball

position and the opponent goalie position. The output variable is the desired target

position to shoot. Defuzzification provides the desired target position, which is used

to compute the angle at which to shoot the ball. The resultant shoot angle is used

to activate the get-ball-at-angle action.

5.5.2 The block behavior

The block behavior belongs to the goalie role. The block behavior’s major task is

to perceive where the ball is likely to hit the home goal, and to block it by moving

to the perceived target position. This is achieved by prediction and extrapolation
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on where the ball is heading for.

The goalie robot uses the goalie-go-position-FB (FB: forward and backward)

action to move to the blocking position as accurately and fast as possible. The

goalie robot should have the ability to decelerate quickly to stop at the desired

position while moving at high speed. Furthermore, the goalie should try to maintain

its motion along a straight line, in front of the goal.

There are three speed levels for goalie-go-position-FB actions. Experiments

show that the fast version of goalie-go-position-FB enables the goalie to reach the

blocking position very quickly. However, it turns out that the hardware could not

undertake such high-speed requirements successfully all the time. It is observed

that the robot sometimes skids and then overshoots the desired position. There is

a need to damp the robot motion. It is also observed that the medium and slow

versions of goalie-go-position-FB do not have skidding problems and achieved good

performance when the ball is moving not so fast or when it is kicked from a far-

away distance. The three versions of the goalie-go-position-FB actions are merged

together to form the block behavior. Coordination of the three actions is carried

out using the fuzzy rule-base coordination with the CoA defuzzification. The input

variables for goalie-go-position-FB fuzzy rules are the distance of the ball to the

home goal and its speed. The outputs are the left and right wheel speeds under the

three speed levels. For the rules with positive membership grades, their respective

output actions are activated, and the recommended output speeds are aggregated

to obtain a desirable speed. It is observed that after this action coordination is

implemented, occurrences of robot skidding have decreased considerably.

5.6 Behavior Coordination and Role Building

After each individual robot behaviors are built, the design involves building up the

overall behavior of a robot, or the various robot roles.
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5.6.1 Design approach

In this work, four roles are designed: the attacker, the midfielder, the defender and

the goalie. The characteristics of each role and its compatibility with the other

roles are kept in mind during the design. All behavior coordination is performed

using fuzzy rule-base coordination except for the goalie, which is implemented

using simple if-else-if rules. To illustrate the building of robot roles, the attacker,

defender and goalie role are discussed.

Before designing the roles, a prior study on behavior coordination on a generic

robot is made. Different roles are built based on the generic robot by specifically

expanding the rule base for behavior coordination. Such a prior testing, which

coordinates only a group of most basic behaviors, is important to detect early

flaws. In the early testing of a generic robot, it is observed that when the ball

is near or moving along the walls, the robot often oscillates between avoiding the

wall and getting the ball. This reveals that either the avoid-wall behavior has not

been designed well enough to allow trailing along the wall, or the robot’s fuzzy

rule-base is not sufficiently tuned so as to provide higher priority to get the ball.

Such an outcome reiterates the importance of having individual behaviors well

designed in the implementation of the behavior based architecture. It also reveals

that improvements can be made by just changing rules or modifying membership

functions of the fuzzy rule-base. The avoid-wall behavior has since then been tuned

to better adapt to the wall trailing.

5.6.2 General behavior coordination

For a single robot playing by itself in the playground, the behaviors to be coordi-

nated are kick, avoid-wall and shun-robot. The main purpose of the robot is to

move to the ball and kick it, while avoiding the walls and other roaming robots.

The fuzzy rule-base for behavior coordination for such a simple robot is as follows:

1. IF (Shun-robots behavior is active) AND (Ball is far away) THEN (Shun
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robot)

2. IF (Avoid-wall behavior is active) THEN (Avoid wall)

3. IF (Shun-robots behavior is not active) AND (Avoid-wall behavior is not

active) THEN (Kick ball).

The first two rules monitor the reactive behaviors in the architecture. The

reactive behaviors calculate the associated activity values from lower level actions

and these values form the grades of the antecedents or the rule strengths.

Experimentations show that the robot is able to move towards the ball in the

best possible manner, that is, in a straight line, while successfully avoiding any

roaming robot. Very often, the robot is found to slow down when the roaming

robot lands on its pathway, and then picks up speed again when the roaming robot

passes by. This observation is a desirable attribute, since most of the obstacles in

the robot soccer system are moving robots. If an obstacle robot is moving head-on

towards the robot, the robot should quickly shun that robot. Otherwise, it is better

that the robot slows down and let the obstacle robot to pass by rather than quickly

shunning it and ending up having to recalculate its direction. Collisions between

robots are seldom observed except when robot speeds are very high. Similarly, the

robot seldom crashes into walls unless it is traveling at a very high speed.

5.6.3 The attacker role

The attacker role is designed not just to perform the job of a striker. In fact, the

attacker has the task of continuously pursuing and gaining possession of the ball.

The fuzzy rule-base of the attacker is designed as follows:

1. IF (Frustration is active) THEN (Release frustration)

2. IF (Robot is heading towards wall) THEN (Avoid wall)

3. IF (Robot is blocked by other robots) AND (Destination is faraway) THEN

(Shun obstacle robots)
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Figure 5.10: Behaviors of the attacker role

4. IF (Robot is surrounded by opponents) THEN (Pass ball to team-mate)

5. IF (Ball is within shooting range) AND (Robot is not constrained) THEN

(Shoot ball)

6. IF (Ball is not within shooting range) AND (Robot is not constrained) THEN

(Chase ball).

The first three rules are related to the environmental constraints on the robot,

while the final three rules deal with game tactics. The strengths of the rules for

reactive behavior are tied to their activity values, whereas those for deliberative

behavior are determined by some of the antecedents (Figure 5.10). In particular,

the two deliberative behaviors of shoot and chase can only be displayed if the robot

is not constrained either by the wall or opponents. The grade of the antecedent

“robot is not constrained” is obtained by taking the assessment of the maximum

of the rule strengths of the first three rules.

5.6.4 The defender role

The defender is supposed to help the goalie in guarding the home goal and clearing

the shots that are directed towards the home goal. The rule base of the defender

is shown as follows.

1. IF (Frustration is active) THEN (Release frustration)

2. IF (Robot is heading towards wall) THEN (Avoid wall)
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Figure 5.11: Behaviors of the defender role

3. IF (Robot is blocked by other robots) AND (Destination is faraway) THEN

(Shun obstacle robots)

4. IF ((Ball is in danger zone) OR (Ball is moving towards home goal)) AND

(Robot is not constrained) THEN (Sweep ball)

5. IF (Home side is not under attack) AND (Robot is not constrained) THEN

(Guard home goal)

Once again, the first three rules handle reactive responses. The next two rules

determine if the defender should stay on guard in front of goal or sweep the ball

away (Figure 5.11). While designing the defender, it is kept in mind that there

is an attacker which is responsible for winning the possession of the ball from the

opponents. In order to avoid any clash with the attacker, the defender shall only

sweep the ball when the ball is in the danger zone close to the goal or it is directed

towards the goal. Otherwise, it is deemed that the home side is not under attack,

and the defender should stay on guard.

5.6.5 The goalie role

The goalie is designed using straight-forward if-else-if rules instead of the fuzzy rule

base. It consists of four behaviors (Figure 5.12) and they are organized as bellow.

• IF (Robot is frustrated) THEN (Release frustration)

• ELSE IF (Ball is at the sides of the goal) THEN (Kick ball away)
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KickDELIBERATIVE

REACTIVE

Goalie Role

Track Block

Frustration

Figure 5.12: Behaviors of the goalie role

Figure 5.13: Performance of an attacker robot against a goalie

Figure 5.14: Performance of an defender assisting the goalie
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• ELSE IF (Ball is moving towards home goal) THEN (Block ball)

• ELSE (Track ball)

The first reason for doing so is that there are only a few rules governing the

goalie’s behavior. Secondly, deciding whether the ball is moving to the home goal

or not, is more or less a discrete decision. As such, it is believed that these few

rules can be easily implemented without using fuzzy logic.

The performance of the attacker is tested by letting an attacker robot to play

against a goalie. The overall paths taken by both robots are shown in Figure 5.13.

In stage 1, the attacker moves from its initial position to shoot towards the goal,

but the goalie manages to block. While shooting the ball towards goal, the attacker

is traveling at high speed. However, it is observed that the attacker is able to slow

down and avoid crashing into the goalie. The attacker, in fact, turned left to shun

the goalie as shown at stage 2 (Figure 5.13). The attacker then prepares to turn

around to chase after the ball. Meanwhile, the goalie continues to track the ball. At

stage 3, the attacker, which is displaying its chase behavior, manages to intercept

the ball.

The performance of the defender is illustrated in Figure 5.14. As the ball is

travelling towards the goal, the goalie predicts where the ball is heading for (Figure

5.14). The goalie thus moves quickly to the perceived blocking position and would

be able to block the ball. However, before the ball manages to reach the goal area,

the defender has already emerged from its guarding position to intercept the ball

and sweep it away.

5.7 Role Selection and Assignment

The final stage of the design involves the assignment of roles to the three robots in

the team. The concerns in the assignment process include the characteristics of the

roles and the game tactics deployed. In this case, only three of the four designed

roles are displayed at one time. That is simply because there are only three robots
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Distance of Closest Opponent to Home Goal

Near Medium Far

Distance of Near Defender Defender Midfielder

Ball to Medium Defender Midfielder Midfielder

Home Goal Far Defender Midfielder Midfielder

Table 5.1: Fuzzy rule base for selection of the third robot role

in a team. Repeated roles are not allowed as conflict may arise between the two

robots with the same role.

The assignment process is performed in two stages. The first stage is to select

which three roles to be displayed at any time. The second stage is to assign these

three roles to the three robots. This means that each robot may not perform the

same role all the time and provision is made for role changing. Both role selection

and assignment depend on the relative positions of the robots and ball in the

playground.

5.7.1 Role selection

In the role selection, the presence of the goalie is always a must. In addition, the

attacker is the only role which is actively pursuing the ball in the proposed designs.

Hence, this role must be always present for the team to maintain possession of the

ball. The last role will be either the midfielder or the defender, and that is decided

based on the positions of the ball and the opponents in the playground.

The fuzzy logic is employed again to fulfill the selection of the third robot role.

The input variables are the distance of the ball and the distance of the opponent

robot which is closest to the home goal. The fuzzy rule base for role selection is

shown in Table 5.1.
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5.7.2 Role assignment

After the selection of the three roles is done, the next step involves assigning the

selected roles to the robots in the team. As with a normal soccer game, the goalie

role is always be performed by one particular robot.

The task then remains for the assignment of the two roles of attacker and

midfielder, or attacker and defender to the two remaining robots. Since the attacker

is designed to be the role that is pursuing the ball, the easiest method of role

assignment is to let the robot which is closer to the ball be the attacker, and the

other be the midfielder, or the defender.

5.8 Summary of Results

In view of all the experimentations performed, a summary of the results obtained

is presented.

5.8.1 Fuzzy actions

The results show that the use of the fuzzy logic provides an easy way of imple-

menting well-behaved actions. The ease of using the fuzzy rule-base is further

appreciated considering the fact that the relationship between the inputs and out-

puts of the actions are highly nonlinear in nature. The versatility of fuzzy logic is

observed from the fact that it is able to implement not only simple actions, like

go-position and go-angle, but technically more skilful actions like get-ball-at-angle

as well. The get-ball-at-angle action has proven to be a very important behavior

as many of the deliberative behaviors like shoot, pass and chase rely heavily on it.

In addition, fuzzy logic is also very useful in robot perception, decision-making and

speed control.

Robots using fuzzy actions are found to move with better agility and greater

purpose. In terms of target seeking, or ball seeking, the performance of the robots is
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found to be very good, especially when the ball is stationary or moving at moderate

speeds.

5.8.2 Robot behavior

For the reactive behaviors, the avoid-wall and frustration behavior are found to

serve their purposes. The shun-robots behavior also worked well when obstacles

are stationary or moving at moderate speeds. The main issues regarding the imple-

mentation of deliberative behavior is in the building of simple and yet competent

behaviors. Results obtained from experimentations on the robot roles show that

the deliberative behaviors worked effectively when combined together, and are in-

strumental in the successful implementation of the roles.

5.8.3 Robot roles

Among all the four roles designed, the goalie proves to be the most competent due

to its high percentage of successful blocking. The good performance of the goalie

mainly comes from the excellent performance of the block behavior. It can be

seen that the actions and behaviors lower down in the behavior hierarchy greatly

influence the performance of the roles and behaviors higher up in the hierarchy.

The coordination of the goalie’s behavior does not use fuzzy techniques. How-

ever, this should not be interpreted to be that fuzzy coordination is not as useful

as simple if-else-if rules. The simple reason for using if-else-if rules for the goalie is

due to the fact that there is no compelling need to fuzzify the inputs to the goalie’s

rule-base, since they are mainly discrete decisions.

The attacker, midfielder and defender have performed up to expectations, bear-

ing in mind that the capabilities and limits of the actions and behaviors that are

used to implement them.

Within the limits of the hardware setup, it is found that the four different roles

designed are complementary to each other, and result in robot behaviors which are

104



5.8. Summary of Results

supportive among each other. Desirable role changes are also observed. Very often,

when the attacker has possessed the ball and is dribbling it towards the opposition’s

side, the defender automatically moves up to midfield to support. Furthermore,

when the opponent manages to resolve this attack and kicks the ball back to the

home side, the midfielder often becomes the attacker and actively pursues the ball

to intercept it.

5.8.4 Comparison with original system

The overall performance of the fuzzy behavior based robot soccer system is com-

pared with the original in the competition.

In the original system, there is a goalie, defender and attacker. The attacker

is always trying to pursue the ball and push the ball to the opponent goal area.

The goalie guard the goal gate with the help of defender. The behavior of robot

is decided by a simple strategy related non-fuzzy rule base. There are ten task-

achieving robot behaviors to be performed by robot. To achieve the behavior’s

objective, the robot is supposed to reach certain destination point, sometimes with

a desired orientational. For instance, the robot performing the “intercept-ball”

behavior should reach the ball as soon as possible (Figure 5.15). Mathematic

equations are set up based on the current velocities of the robot (Vr) and the ball

(Vb), the current positions of the robot and the ball, as well as the direction that

the balls velocity makes with the line adjoining the robot and the ball (α). The

predicted position of interception and the time taken by robot (t) are resulted from

the equations. Obviously, the position of interception is the robot’s destination in

the time of t. Based on these information, the trajectory of the robot is calculated

by the trajectory planing module. From the trajectory, the desired position and

heading of robot in the next time-step are decided and the speed control signals for

the two wheels are generated. PID (Proportional-Integral-Derivative) controllers

are used to ensure that the desired wheel speeds are achieved.

The fuzzy behavioral based robot soccer system and the original one are put
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Figure 5.15: The “intercept-ball behavior in original system

into the match. Each match lasts for 10 minutes. The number of scores and shots

are collected in 20 runs and the averaged values are tabulated in Table 5.2.

Performance Date Original System Fuzzy System

Scores 1 1.4

Number of shots 14 18.2

Table 5.2: Comparison of fuzzy and original robot soccer system

5.9 Conclusions

Behavior based robotics studies the desired types of behaviors for robots to display,

as well as the algorithms and computational needs to achieve such behaviors. Each

of these aspects has been dealt with to a certain degree in this work. A good

portion of work has gone into designing behaviors and roles which are effective

and beneficial for a team of soccer robots. The use of fuzzy logic as the tool to

implement the behavior based architecture stems from the belief that the use of

human reasoning can help robots attain behaviors that closely resembles animal

and human behaviors. Performing this work on the actual hardware also allows

the researchers to gain a better perspective on the actual interaction between the

robots and their environment. The practical issues that arose from the hardware

implementation also provided greater insights into the complexity of the problem

at hand.
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The results obtained have been very encouraging. The decomposition of a

system into various simple behaviors has proven to be an effective method for

implementing large control systems. The use of fuzzy logic together with the be-

havior based architecture has resulted in more agile robots, which are persistent in

accomplishing their tasks. Results also show that multiple robots taking different

and complementary roles have the tendency to display supportive behavior towards

each other. This is due to the proper design of complementary behaviors within

the architecture so as to build up a coherent system.

A major highlight in this work is that the whole study is performed directly

on the actual robot soccer hardware. The act of bringing the robots out from

the simulation platform into the real world allows the researcher to have a greater

understanding of the environmental influences on the robots and the interaction

between them. The algorithm used on the robots is also subjected to rigorous tests

in the actual environment. Furthermore, implementation on actual hardware poses

a lot of practical considerations and limitations. The results obtained under such

conditions can be put into better perspective.

In conclusion, this work has established an extensive behavior architecture that

can be easily adapted for further studies in related fields. In particular, the work

discussed in this chapter seeks to contribute to the research in cooperative ro-

botics and the development of social behavior in robotic systems, as well as the

development of robot behaviors that parallel their biological counterparts.
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Chapter 6

Adaptive Tuning in Fuzzy
Behavior Based Robotic System

An extensive fuzzy behavior based architecture for a robot soccer system is outlined

in Chapter 5. The various behaviors in the system were manually designed. Such

a manual approach is inherently inefficient. In this chapter, an adaptive tuning

methodology for the discussed fuzzy behavior based architecture is investigated.

Two tuning methods are explored based on the manipulation of fuzzy member-

ship functions and applied to the fuzzy behavioral architecture. The real world

experimentation show improvements on the system’s control performance.

6.1 Introduction

In Chapter 5, a fuzzy behavior based control architecture is developed for a robot

soccer system. The behavior building, behavior coordination and robot decision-

making blocks were realized through fuzzy logic. Such an approach has resulted in

agile robots which have the tendency to exhibit supportive behaviors.

However, the fuzzy behavior based system is designed specifically to the current

robot soccer system configuration. Furthermore, the fuzzy actions and behaviors

are all static. Such a static architecture is incapable of handling all the unforeseen

scenarios in the competitive and dynamic environment, which may degrade the

system performance. Any changes in the system configuration features, including
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playground’s texture and robot’s kinematic characteristic, require manual modifi-

cation in the fuzzy controller. Since manual tuning is extremely tedious and time

consuming, some kind of easier and faster tuning methods are needed to relieve the

problem.

Two tuning methods, which change the position or shape of membership func-

tions, are explored in this chapter. The tuning is applied to the fuzzy membership

functions for different aspects of the fuzzy behavioral architecture: robot actions,

robot roles and team strategy. The prime purpose of the tuning methodology is

to provide adaptive fine-tuning ability to the system when notable environmental

changes occur. Thus the behaviors and strategy can be suitably adjusted to cater

for different situational needs, similar to an actual human soccer game.

Exploiting the adaptive tuning dispenses with the need for the re-formulation

of the pre-defined fuzzy membership functions. Furthermore, the two tuning meth-

ods can form an off-line diagnostic tool which is useful in the formulation of new

fuzzy membership functions and verifying the performance of existing ones. The

diagnostic tool can replace the conventional “trial and error” approach. Real world

experimentation are carried out on the robot soccer system to validate the proposed

methodologies.

This chapter is organized as follows. Section 6.2 elaborates the tuning method-

ologies. Section 6.3 describes the implementation and experimentation while Sec-

tion 6.4 summarizes the work. For convenience, the fuzzy behavior based system

developed in Chapter 5 is referred as the original system in the rest of the chapter.

6.2 Tuning Methodologies

The adaptive tuning methods are focused on the fuzzy logic part while the behav-

ioral hierarchy structure is kept intact. Since the fuzzy logic engine is the control

kernel of the system, modifications on the fuzzy engine has direct influence on the

system’s performance. On the other hand, the system architecture remains stable
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Figure 6.1: The parameterized fuzzy subsets

during the on-line tuning. That kind of stability is important in the middle of a

real world match in which the tuning may happen.

The reforming of a fuzzy controller is usually concentrated on two parts: the

fuzzy rule base and the fuzzy membership functions. On-line changes on the fuzzy

rule base may greatly change the robot’s behaviors and that is a bit risky in a real

world match. Due to the importance of system stability, the membership functions

are chosen as the subjects of adaptive tuning.

Triangular, trapezoidal, Gaussian bell curve and sigmoid are the commonly

used fuzzy membership functions. Formed by straight lines, the triangular and

trapezoidal membership functions have the advantage of simplicity, but lacking

smoothness. Since one of the benefits of the behavior based architecture is the

decomposition of complex fuzzy system into distributed and simpler fuzzy sub-

systems, triangular and trapezoidal functions are sufficient for the sub-systems’

fuzzy controllers and are prevalently adopted in the system.

The shape of the membership functions is usually parameterized by a set of val-

ues. For instance, there are three parameters for a triangular membership function

(one for the peak point and the other two for the left and right bases) and four

parameters for the trapezoidal one: the left and right shoulder points denote the

positions of the associated fuzzy subsets in the universe of discourse, while the left

and right base points represent the span of the function (Figure 6.1).
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Figure 6.2: Translate-tuning and its imposed limits

One of the most commonly used defuzzification methods in the original system

is center-of-area (CoA) method, whose mathematic form is defined in Equation 6.1

(for both the continuous and discrete cases):

y =

∫

µ(y) · ydy
∫

µ(y)dy
or y =

∑n

i=1 µ(yi) · yi
∑n

i=1 µ(yi)
, (6.1)

where y is the crisp output of the defuzzified variable y and, µ(y) is the degree

of truth decided by the membership functions. Two tuning methodologies are

developed according to the CoA method, resulting in either the shifting of the entire

subset or the broadening/narrowing of the span of the subset. The first tuning

method shifts a fuzzy subset along the universe of discourse in the entire output

range (Figure 6.2). The crisp defuzzified output is manipulated by modifying the

position of the subset. For example, if the positive subset for linguistic value “PS”

is shifted to the left/right (Figure 6.2), the CoA of the subset is shifted. The overall

CoA point is also shifted accordingly, that causes the output to decrease/increase.

The y increases/decreases by shifting the CoA, while the related µ(y) remains the

same. As a result, the output y is changed by shifting.

For smooth and gradual tuning, small shifting step is adopted so that the de-

fuzzified output experiences no abrupt changes. Certain limits are imposed on the

shifting to prevent the subsets from overlapping each other too much, which in

fact reduces the number of subsets. Other limits are also needed to prevent the

positive/negative subsets to overrun into the negative/positive side. There is no

limit to the number of membership functions being tuned simultaneously. With

the limits on the scope of tuning for each subset, simultaneous tuning on several
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Figure 6.4: Base point tuning to decrease output magnitude

fuzzy subsets is indeed isolated so as not to affect each other.

Unlike shifting the whole membership function, the second tuning method alters

the base points of the associated subsets and keeps the peak point fixed (Figures

6.3 and 6.4). By changing the shape of the membership functions, this method

increases or decreases the output.

The modification of the base points makes the subset asymmetrical, thus chang-

ing the associated output. In Figure 6.3, the movement of the base points increases

the positive/negative output’s magnitude, while Figure 6.4 shows a contrary situ-

ation. The direction of the base point movement is related to whether the subset

is positive or negative. The limits outlined for the shifting tuning method are

imposed for the base point tuning as well.

It is noticed that the shifting tuning method usually has significant impact on
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Figure 6.5: The parameter file

the membership functions while the base point tuning has a relatively moderate

impact. The choice of which method to be used depends on the nature of the robot

motion and the prevailing situation. For example, the shifting tuning can be used

in fuzzy actions for straight motions in which more distinct increment or decrement

of speed is allowed. Meanwhile, the base point tuning can be used to fine-tune a

slight overshoot of an angle-turning action. The combined use of the two methods

is also feasible.

The adaptive tuning is applied when the system needs to adapt to certain en-

vironmental changes. Certain criteria are set up based on the performance data.

By checking the performance criteria from time to time, the system indirectly de-

tects the environmental changes. Adjustments on fuzzy membership functions are

triggered until the prescribed performance criteria are satisfied. The initialization

of adaptive tuning can be manually carried out but it is the system itself adapts

its behaviors to environmental changes. The process flow is depicted in Figure 6.6.

During the tuning process, the membership function’s parameters are stored as

a string of integers in text files named after their respective robot actions, behaviors

or roles (Figure 6.5). For instance, each triplet represents a single triangular fuzzy

subset. The prime purpose of the parameter files is to keep the resultant parameters

of the tuned fuzzy subsets for future use. The parameters stored in the text files can

be loaded into the system at any time, without the need to recompile the control

program. By this way, the parameter files make the real-time alteration of the fuzzy

subsets possible. Furthermore, various strategies can be activated by replacing the

current parameter file(s) with those characterizing the different strategies, while

the system is still running.
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Figure 6.6: The adaptive tuning process flow

6.3 Experimental Implementation

The tuning methods discussed in Section 6.2 are implemented in a robot soccer

system. For the fuzzy behavior based architecture, both the primitive actions

at the base level and team strategy at the top level are selected to undergo the

adaptive tuning.

The adaptive tuning on robot primitive actions aims to handle the environmen-

tal variations which cause undesirable control imprecision. For the tuning on basic

fuzzy actions, only the output membership functions are subjected to tuning. As

a result, the fuzzy inference engine is not affected.

6.3.1 Robot actions

There are always some changes occurring in the environment of the robot soccer

system. The changes could be replacement of the playground with different tex-

ture, or changing the robot DC motors. The accuracy of primitive robot actions are

affected due to such changes and fine-tuning is necessary. To carry out the adaptive

tuning, the robot is scheduled to perform a specific primitive action repeatedly in
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Current heading angle: θh

Angle of deviation: θ = θh − θd

Desired heading angle: θd

Figure 6.7: The go-angle action

the new environment. At each run, the system checks certain performance crite-

ria, such as overshoot or undershoot. Accordingly, the output fuzzy membership

functions related to the robot-speed are adjusted by one predefined step-size. The

adjustments go on as the action is repeated, until the performance criteria are sat-

isfied. A flag signal is set to indicate that enough number of runs are performed. In

this way, the system successfully adapts its actions to the environmental changes.

One of the basic robot actions is the go-angle, whose purpose is to orient the

robot to the desired angle - usually to face the direction of the ball. The input to

the fuzzy engine is the angle of deviation θ, defined as the difference between the

robot’s current heading angle θh, and the desired heading angle θd (Figure 6.7).

If the angle of deviation is negative, the robot performs a counter-clockwise turn.

Since this is an on-the-spot rotation, the left and right wheel speeds should have

the same value but of opposite directions.

The associated tuning process is straightforward. The robot is made to per-

form the go-angle action under different speed settings. The overshoot/undershoot

is measured by the angular difference between the final heading angle and the de-

sired one. If an overshoot/undershoot is detected, fuzzy subsets are adjusted to

decrease/increase the speed. Depending on the magnitude of the overshoot, shift

tuning or base points tuning is selected. The subset of the output fuzzy member-

ship functions is shifted or broadened/narrowed by a predefined step-size. As the

go-angel action being repeated, the angular error finally falls into the desired range

and a suitable parameter set is reached.
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Figure 6.8: The effectiveness of adaptive tuning on go-angle action

Angle of deviation: θ = θh − θd

Ball

Distance to desired position

Figure 6.9: The go-position action

To verify the effectiveness of adaptive tuning, the performance of go-angle before

and after the tuning is compared. The robot is made to orient itself from a specified

heading angle of 35 degree to the desired heading angle of 180 degree. The trial is

repeated for 25 times. At each time step in each run, the robot heading angle is

recorded. The average heading angle at each time step is plotted in Figure 6.8. It is

obvious that the control performance is improved with the application of parameter

tuning. The overshoot is greatly decreased.

Another primitive action go-position (Figure 6.9) is implemented with adaptive

tuning in the similar way. The go-position action is to move the robot to a desired

position. The two inputs of this fuzzy action are the distance to destination and

the angle of deviation (Figure 6.9). In the context of a robot-soccer game, the
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destination is usually the position of the ball. Several other basic actions are

realized on the basis of go-position, including get-position-at-angle and get-ball.

During the tuning process, the robot is commanded to perform the go-position

action repeatedly to reach the center of playground from different starting positions.

The go-position action’s performance before and after tuning on a new playground

are compared. Before the tuning, the robot overshoot the desired position, rotated

and moved back towards the target, and missed the target again (Figure 6.10(a)).

After the tuning is applied, the output fuzzy membership functions for speed are

adjusted for every overshoot appeared. As the process goes on, a significant de-

crease in the magnitude of overshoot is observed (Figure 6.10(b)). Figure 6.11

shows the comparison in terms of the overshoot, rise-time, settling-time and the

steady-state error, validating the higher precision and better performance achieved

by adaptive tuning.

In the above experimentation, the tuning on go-angle and go-position actions

are both triggered by the appearance of overshoot/undershoot. Other performance

criteria can be set up to trigger the tuning catering for different scenarios. One

good example is the tuning of get-ball action against an opponent. The purpose of

get-ball action is to gain possession of the ball in a match. In the process of the get-

ball action, the distance between the ball and robot is recorded at each step. Since

the ball is a passive element, it is expected that the robot can always reach the

ball provided that there is enough time. However, if the robot fails often to get the

ball within a reasonable time, that implies that the ball is already snatched by an

opponent robot at a faster speed. Under this circumstance, the tuning is triggered

to adjust the associated fuzzy membership function. Gradually the robot’s speed

increases to match that of the opponent’s speed. The whole idea is summarized as

following:

Scenario Opponent robot is faster and more likely to gain possession of the ball

Countermeasure Own robot increases speed

Principle IF previous-robot-to-ball-dist < current-robot-to-ball-dist,
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(a) Go-position before tuning

(b) Go-position after tuning

Figure 6.10: The performance comparison of go-position
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Figure 6.11: The effectiveness of adaptive tuning on go-position action

THEN broaden the fuzzy subsets

Figure 6.12 (a) and (b) demonstrate the robot’s “speed-matching” capability de-

veloped by tuning. In the experimentation, two robots are made to go after the

ball at equal distance. However, the robot at the left corner of the playground is

inherently faster by a small margin (5% or so). At the end of the first run, the

robot at the right corner is tuned as it failed to get the ball earlier than the left

robot (Figure 6.12(a)). Consequently, after several runs, the right robot becomes

quicker and finally gets the ball earlier than its competitor (Figure 6.12(b)).

6.3.2 Robot roles and team strategy

At the higher levels of the fuzzy behavior based architecture of the robot soccer

system, the robot roles are defined according to the specific tasks of individual

robots. The collective effects of the robot roles represent the team behavior. The

team strategy is realized by role selection and assignment. There are four robot

roles: the attacker, midfielder, defender and goalie. In the original system [117],

a simple mechanism is adopted for role assignment. The attacker and goalie are

always present, and the same role is not assigned to two robots simultaneously. As
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(a) Get-ball before adaptive tuning

(b) Get-ball after adaptive tuning

Figure 6.12: The performance comparison of get-ball
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a result, the fuzzy engine needs only to choose a role for the third robot between

midfielder and defender. The adaptive tuning on the upper levels is aimed to

adjust the robot’s behaviors and the team strategy according to the soccer match

situation.

The attacker has a crucial role as it is responsible of pursuing and maintaining

the possession of the ball. The attacker takes all the attacking activities and also

helps to reinforce the defence. For the attacker, the distance to the opponent goal

area is evaluated by a fuzzy membership function. If the robot together with the

ball are “near” enough and it is not obstructed, the shoot behavior is activated. In

fact, the fuzzy membership function determines a fuzzy “shoot area”. Adjusting of

the fuzzy membership function changes the size of the “shoot area”, and thus affects

the attacker’s tendency to shoot (Figure 6.13). In this way, the aggressiveness of

the attacker is manipulated by adaptive tuning.

In the robot soccer match, the score difference and the match time can be

used as the triggering condition for adaptive tuning. The adaptive tuning can

take effect when the home-team’s score is less than the opponent’s. The attacker

needs to become more offensive by taking a higher tendency to shoot. This is

accomplished by changing the associated fuzzy subsets with the tuning method to

expand the fuzzy “shoot area” (Figure 6.13). Basically, the increase in the degree

of aggressiveness is roughly in proportion to the score difference. In addition, the

attacker becomes even more offensive if its team is unable to catch up on the score

despite of the earlier tuning. The time left in the match can also be taken into

consideration. The less the time left, the more aggressive the attacker should be.

Some triggering conditions for increasing the aggressiveness are listed as bellow:

• IF Score-gap = Opponent-goal - Our-Goal ≥ 1

• IF Our-Goal - Opponent-goal > 3 (means the opponent team is very weak)

• IF Score-gap remains AND Aggressiveness already increased

With the increasing aggressiveness, the attacker is observed to perform more shots.
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Figure 6.13: The fuzzy shoot area of attacker

Figure 6.14: The fuzzy defence area of defender
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Figure 6.15(a) shows some typical behaviors exhibited by the attacker after adap-

tive tuning. The robot shoots the ball even though it is still far away from the

opponent goal area. After the ball is swept away by the opponent goalie, the

attacker quickly performs another shot.

Another robot role subjected to adaptive tuning is the defender, which usually

tries to block or sweep the ball which comes to its “guard area” (Figure 6.14). The

“guard area” is also a fuzzy area defined by a set of fuzzy membership functions.

The adaptive tuning can expand the “guard area” and increases the defensiveness

of the defender (Figure 6.14), according to the following conditions:

• IF Score-gap = Opponent-goal - Our-Goal ≥ 3

• IF Score-gap remains AND defensiveness already increased

The result is an increased likelihood of defender to sweep the ball away from home

goal area. It is also possible to use same conditions to trigger the tuning of attacker

and defender simultaneously.

The defender’s behavior after adaptive tuning is depicted in Figure 6.15.(b).

After the tuning, the defender tries to sweep the ball from the home side of play-

ground as soon as possible. Once the ball is out of the “guard area”, the defender

returns quickly to its original position within the “guard area” and leaves the task

of pursuing the ball to the attacker.

The primary purpose of adaptive tuning on the team strategy level is to increase

the team’s offensiveness when the team is already in a disadvantageous position.

The team strategy is embodied by selecting a role between midfielder and defender

for the third robot other than the attacker robot and goalie robot. Since the

midfielder is a supportive role to the attacker, the offensive strategy here means

a bias towards midfielder during the role selection. The triggering condition for

the team strategy is the same as those for the attacker and defender roles. The

performance of the team strategy after tuning is not easy to evaluate as the robot

roles’ behaviors have also been tuned at the same time. However, as a whole,
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(a) The attacker after adaptive tuning

(b) The defender after adaptive tuning

Figure 6.15: The performance of adaptive tuning on robot roles
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the soccer team has become more aggressive as expected and sometimes greatly

increased the chance of wining the match which had an unfavorable beginning.

It is noticed that the more aggressive robot behaviors or team strategy do not

guarantee better performance in a match. However, the aggressive behaviors and

strategy are in fact the only way out when a team cannot take the upper hand in

the match with the standard behaviors and strategy. In the human soccer match,

the soccer player’s performance is always affected by his physical or mental states,

which may fluctuate all the time. Compared to the human counterpart, a robot

soccer player usually has a rather stable performance on the match. As a result, if

a team is in an inferior position at the beginning, it has scarcely any chance to get

back the upper hand if no alterations are made in the behavior or strategy. That

is the reason why the adaptive tuning is important and useful although it cannot

guarantee a winning strategy.

6.4 Summary of Results

An adaptive tuning method is applied to a fuzzy behavior based system. The

performance of the tuned fuzzy actions is quite desirable. All the actions have

achieved improvements in terms of less overshoot, and shorter settling-time as

well as smaller steady-state error. The robots are observed to move with greater

precision and agility. Specifically, the attacker and defender have shown the desired

offensive and defensive behavior whenever necessary. Notably, despite the increase

in the offensiveness whereby the attacker is made to shoot from a wider range, the

accuracy of the shooting behavior is not adversely affected. Likewise, the defender

has shown greater ability to sweep the ball out of the home ground. The team

strategy, together with the adaptively tuned behaviors and actions, is capable of

achieving better performance in a complicated match environment.

The proposed mechanism provides the adaptive tuning ability to the fuzzy be-

havior based system for handling environmental and system changes which degrade

the performance. Compared to the manual tuning, this method saves a lot of efforts
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and time. After the manual initialization, the system adapt the fuzzy behaviors to

the changed environment by itself. Furthermore, the parameter files of behaviors

are able to be loaded on-line. The different fuzzy behaviors’ settings catering for

different strategies can be pre-defined and be selected whenever necessary. How-

ever, it is hard to make the system fully self-tuning. The triggering conditions of

the tuning for some of the fuzzy actions, especially those at the higher levels of

the behavior hierarchy, are indeed manually set. The computational expenses to

monitor and analyze all the triggering conditions for so many behaviors are very

high and will seriously slow down the system’s speed on vision data processing and

robotic control, which are the more important tasks. Limited by the computation

capacity of the current hardware setting, the partially manual initialized adaptive

tuning is a better way out.
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Chapter 7

Evolution of Fuzzy Behaviors in
Multi-Robotic System

In the discussed behavior based architecture, complicated interactions of multiple

robots are decomposed into modular behaviors in different complexity levels. The

fuzzy logic approach brings in human-like reasoning to the behavior construction,

selection and coordination. To facilitate the system’s adaption to different changes,

some adaptive tuning mechanism (Chapter 6) has been incorporated. However,

there are limitations in those tuning methods. The heavy computational load

prohibit it from a system-wide application. Furthermore, they are just tuning

methods based on the already developed system, whose effectiveness is quite limited

in the system developing stage.

In this chapter, the evolution of the fuzzy behavior based architecture is dis-

cussed. Genetic algorithm is used to evolve various behaviors in the fuzzy behavior

based architecture. The behaviors at different levels of the architecture hierarchy

are generated and improved through evolution. At the lowest level, the evolved

fuzzy controllers enhanced the smoothness and accuracy of the primitive robot ac-

tions. At the higher level, the individual robot behaviors have become more skillful

after the evolution. At the topmost level, the evolved group behaviors have resulted

in aggressive competition strategy. The simulation and real-world experimentation

on a robot soccer system justify the effectiveness of the approach.
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7.1 Introduction

Fuzzy logic can be involved in almost every aspect of the behavior based system:

from the implementation of robot actions and behaviors, the behavior coordination

for individual robot, right up to the role building and role assignment. However,

in the traditional way of developing a fuzzy system, the expert’s knowledge of the

system is necessary. The performance of such a fuzzy system is usually human

dependent and sometimes far from optimum. To further improve and to make the

system adaptive in nature, evolutionary methods are often used to complement the

fuzzy behavior based system [64, 118, 119].

In this chapter, an evolutionary fuzzy behavior based approach for a multi-

robotic system is explored. The genetic algorithm is used to evolve the fuzzy

behavior based architecture. GA can work efficiently even without the comprehen-

sive knowledge of the system model. This future makes it suitable to work with

complicated systems like the multi-robotic system. For the developed hierarchi-

cal fuzzy behavior based architecture GA is utilized at various levels. The fuzzy

behaviors are improved through the evolution process.

Different from the works that have been explained in the Chapters 5 and 6, the

evolution process of fuzzy behavior based robot soccer system can not be performed

on the real world set-up. A simulator platform for robot soccer system is carefully

developed to provide a virtual environment as close to reality as possible. The

evolution process is carried out and noticeable improvements in the performance

of robot behaviors are observed in both the simulation and real-world experimen-

tation. If there are internal changes (such as changes in robot kinematic features)

or external changes (such as changes in environment characteristics), suitable be-

haviors can be reconstructed and evolved.

The fuzzy behavior based architecture for multi-robotic system is introduced

in Section 7.2. The mechanism of evolving fuzzy behavioral system with GA is

discussed in Section 7.3. The robot soccer system and the developed simulator are

briefed in Section 7.4. Section 7.5 describes the simulation study and experimental
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implementation. Conclusions and discussions are summarized in Section 7.6.

7.2 Fuzzy Behavior Based Architecture for Multi-

Robotic System

The fuzzy behavior based architecture for multi-robotic system is discussed in the

Chapter 5. However, it is worthwhile to provide a generalized overview in this

section.

In the construction of behavior based architecture, a hierarchy of roles, behav-

iors and primitive actions is set up to start with. The multi-robotic system is

decomposed according to such a hierarchy. How to build the hierarchy depends

heavily on the nature of systems at hand. The general idea is to use the complex-

ity of behaviors as a guideline. Complex roles and behaviors are put in the higher

level of hierarchy. They are decomposed into simpler, modular and manageable

sub-behaviors, from the top to the bottom of the hierarchy. The number of levels

in the behavior architecture mainly depends on the complexity of the system. The

objective and importance of each behavior might also affect the behavior’s relative

position in the hierarchy. The structure can be flexible as long as it facilitates the

realization of the behavioral system.

Figure 7.1 shows a typical layout of behavioral architecture for multi-robotic

system which has four levels. At the top of the hierarchy is the group behavior

representing the team strategy. In a multi-robotic system, the “team” refers to a

group of robots having cooperative relationship and serving a common purpose.

As to one “team” of robots, other robots are treated as part of the environment,

while they might be another “team”. The group behavior of a team is constructed

by the collective effects of individual robots’ activities. Based on their objectives,

individual robots are expected to display different behavior patterns. Roles are

defined to decompose the group behavior and are located in the second level. At

each time step, the fuzzy controller at the top level assigns a certain role to each
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Figure 7.1: The behavior based architecture

robot. To fulfill its role, a robot needs to perform some task-specific behaviors.

Those individual behaviors are defined in the third level. Behaviors in this level

are designed to carry out simple tasks. Some behaviors are reactive in nature, which

are in direct response to the environment stimulus. Other behaviors are strategy

based, driven by the system’s inherent strategy and objectives. The behaviors

are further decomposed into primitive actions, which form the bottom level of the

hierarchy. Primitive actions are usually the basic motions which are easy to realize.

The primitive actions are components to construct complicated behaviors.

On the basis of the hierarchy structure, fuzzy logic is applied to realize the be-

haviors at each level. Normally there are different requirement for the controllers at

different levels. For primitive actions, the associated fuzzy controllers are required

to achieve accurate and smooth robot motion. The behaviors at higher levels are

constructed based on the lower level behaviors. The fuzzy controllers at the higher

level are mainly used for decision making and behavior coordination. Based on the

environmental information and the relevant objectives assigned by the upper level,

the fuzzy controllers activate suitable behaviors at the lower level.

Obviously, behavior coordination is one of the main objectives of the developed

system. Different actions/sub-behaviors are combined into higher level behaviors,
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or behaviors into roles. Two general fuzzy behavior coordination mechanisms are

utilized in the behavior based architectures: the fuzzy rule base coordination [54]

and, the activity and action contribution [55].

The fuzzy rule base coordination method uses a fuzzy rule base to select a suit-

able role, behavior or action. For the robot soccer system, the rule base contains

a series of fuzzy rules, which assesses the conditions within the playground and

chooses a suitable action to serve the team’s game strategy. Basically the rule base

takes the role of an decision maker to resolve the behavior conflicts and achieve co-

ordination. This method adopts a top-down decision making approach. The fuzzy

rule base coordination method is used in role assignment, behavior coordination

for roles and action coordination for deliberative behaviors.

Contrary to the rule base coordination method, the activity and action contribu-

tion method uses a bottom-up approach in behavior building. The fuzzy inference

engine of each sub-behavior provides a pair of activity and action values. Action

value represents the output from the fuzzy inference engine and activity value rep-

resents the degree of the sub-behavior’s contribution to the upper-level behavior.

The upper-level arbitrator simply reviews the activity values proposed from the

lower level and calculates the output behavior with a pre-defined algorithm, such

as the center–of–area (CoA) method. Generally, the activity and action contri-

bution method is used for action fusion and action selection within the reactive

behaviors.

The hierarchy architecture is flexible and modular. Other control methods can

be utilized along with fuzzy logic to form a hybrid system. The option of setting

up a hybrid system is quite open and is not discussed in this thesis. The focus of

this work is to improve the fuzzy behavior based system with the incorporation of

the evolutionary algorithms.
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Figure 7.2: The evolution of fuzzy behavior based architecture

7.3 Evolution of the Fuzzy Behavior Based Sys-

tem

In the behavior based architecture discussed in Section 7.2, fuzzy logic is applied

in almost every aspects, from the primitive actions’ realization and behavior co-

ordination to the overall role building and assignment. Thus, it is clear that the

fuzzy logic controller’s quality is crucial to the performance of the system.

On the other hand, the design of fuzzy logic controller is usually an experience

based work. Although the time-consuming “trial and error” approach can be taken

to fine-tune the system, the human dependent fuzzy controllers still have space for

further optimization. Meanwhile, any change in the system configuration, such as

the difference in environment features or robot’s kinematic characteristic, requires

relative modification/tuning in the fuzzy controller. Incorporating the evolutionary

method into the development or modification of fuzzy controller for behavior based

system seems to be a suitable way out. The evolutionary mechanism paves the way

for both improving the performance and reducing the human workload.

The genetic algorithm is an optimum searching algorithm which is useful in

knowledge acquisition. The genetic algorithm for fuzzy controller development and
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optimization usually focuses on two aspects: the rule base and the membership

functions reforms [74, 120, 121, 122, 123], and these two approaches are explored

in this work.

For the primitive actions at the bottom level of hierarchy, the fuzzy rules are

often simple and straightforward. The possible improvement on fuzzy rules is quite

limited. Under such circumstances, the evolution of membership function seems to

be more promising at the bottom level of the architecture.

As mentioned in Chapter 6, the triangular membership function is prevalently

adopted in the system. The triangular membership functions can be tuned in two

ways. Shifting the entire triangle can modify the position of the associated fuzzy

subset in the universe of discourse. Depending on the necessity, restrictions can be

imposed, such as limiting the range, step-size of shifting or specifying the subsets

under modification. In the second method, changing the base points of the triangle

modifies the span of the functions. In fact, both the methods move the “center

of gravity” of the associated membership function. According to the extent of

movement caused, the first tuning method seems to have significant impact on the

membership function while base point tuning has a relatively moderate impact.

These two methods are compatible with each other and can be used together.

On the other hand, the evaluation of the performance of fuzzy membership

function is meaningful only when the function is associated with fuzzy rules. The

rule base is the kernel of a fuzzy controller. For the fuzzy behavior architecture,

the rule base optimization is usually applied to higher level robot behaviors and

role assignment.

A typical fuzzy rule often consists of antecedents (or premise), consequents (or

conclusion) and fuzzy relations. All parts of a fuzzy rule are suitable for evolution

and, the choice is made based on the requirement and characteristic of the problem

under consideration.

Since fuzzy logic is applied everywhere in the behavior structure, the evolution

of the fuzzy controllers can make the whole system evolvable (Figure 7.2). However,
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it is reasonable to focus on those fuzzy behaviors which are most important to the

system’s performance and those which have greater margin for improvement. Such

criteria serve as guidelines in the case study.

To apply the genetic algorithm, parameters of the membership functions and/or

the fuzzy rules are encoded as individual chromosomes. Various genetic operations

and fitness functions are designed for different fuzzy controllers under evolution.

In this work, GA evolution is performed in a robot soccer simulator software and

the results are validated by real world experimentations on a robotic soccer setup.

7.4 The Robot Soccer System

7.4.1 Fuzzy behavior based architecture of robot soccer

system

The case study of evolution of fuzzy behavior based multi-robotic system is per-

formed on a robot soccer system. The fuzzy behavior architecture has been set up

for the robot soccer system in Chapter 5 [117]. Figure 7.3 shows the hierarchy of

fuzzy behaviors of different complexity, as well as the coordination mechanisms.

The fuzzy rule base coordination method is widely used in each level. The ac-

tivity and action contribution method is used only for reactive behaviors, such as

“avoid wall” and “shun robot”. The goalie adopts a straightforward “if–else–if

logic” coordination method for simple but quick reactive motions.

The above fuzzy behavioral architecture is realized on the real world set up

in Chapter 5. Fuzzy techniques are used almost everywhere in this system. The

only exception is the coordination of the goalie’s behavior which uses the simple

if-else-if rules. Most of the primitive actions and behaviors show acceptable per-

formance. However, not all of them are fully optimized, especially for the higher

level behaviors, which has a prominent role in decision making.
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Figure 7.3: The behavior architecture of the team of soccer robots

7.4.2 Robot soccer system simulator

The evolutionary computations are performed on a robot-soccer simulation system

(Figure 7.4) developed as a test-bed for multi-agent system research. The use of

a simulation environment is necessary since performing GA evolution directly on

an actual robot soccer system is impractical. In particular, the evaluation of the

fitness of each individual in every generation requires the robots to perform a set

of benchmark actions repeatedly. Even with the moderate population size and

number of generations to run, the process is too time-consuming, not to mention

the strain on the robot hardware and limitations on the longevity of the robots’

batteries.

Based on the mathematical model of soccer robot discussed in Section 4.4, the

simulator for robot soccer system is developed in Microsoft Visual C++, using the

OpenGL library for visualization. The simulator models many of the environmental

conditions of a real robot soccer game, such as the interactions between the robots,

the ball, and the boundaries of the soccer field. Robots are modeled as block masses

with two-wheel differential drive, and the ball as a circular sliding mass, subject

to rolling friction. Collisions between robots and the ball comply with the relative

orientations of their colliding surfaces. The effects of collisions are calculated by
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Figure 7.4: The robot soccer simulator

solving the vector equations for the conservation of momentum, giving rise to ac-

curate and visually-realistic characteristics. In addition, uncertainty in positions

of objects due to noise in visual perception are simulated by some random factors

in position data. To achieve the desirable verisimilitude, all these characteristics

are adjustable by changing the parameter settings in the simulator. Such features

are especially useful when systems with different configurations (such as ball and

robot masses) are to be simulated.

The simulator menus are activated with a right click on the graphic. They

provide convenient access to different working modes. The “game mode” submenu

includes all the default scenarios in a robot soccer competition, such as “Kick off”,

“Free-ball” and “Penalty”. The “Train mode” submenu is defined particularly for

the evolution of behaviors in different levels. The “Demo mode” menu consists

of demonstrations of some basic actions. Simulation settings such as toggling on

and off the path tracing in simulator are set in the “Options” menu. The basic

functions, including “Start” and “Quit”, are listed in the main menu.

The fuzzy behavior based architecture which is used in the real-world robot

soccer system in Chapter 5 [117] is migrated into the simulator to control the

virtual robots. For the evolution purpose, the proposed genetic algorithms are also

incorporated in the simulator as an extension. The evolved system is compared
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Figure 7.5: Go-position-at-angle action

with the original fuzzy logic control system in Chapter 5 [117] and verified on the

real-world platform.

7.5 Simulation and Experimentation

7.5.1 Evolution at the primitive behavioral level

The primitive actions are the most simple actions in the system (Figure 7.3). For

the basic components of all the complicated behaviors, the accuracy and smooth-

ness of the primitive actions are obviously important. As discussed in Section 7.3,

evolution at this level is focused on membership function tuning. Due to the sim-

plicity of the rule bases for primitive fuzzy actions, it is more useful to evolve the

membership functions alone.

Among the primitive actions (Figure 7.3), the “go” actions are most basic. The

“get–ball” actions are derived from the “go” actions. Among the “go” actions,

“go–angle” and “go–position” are simpler than the “go–position–at–angle”. The

“go–angle” is for on-the-spot turning, which the robot makes to orientate itself to

a certain angle. The “go–position” is a generic action the robot takes to reach a

desired position with the shortest path. The robot turns towards the destination,
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and then moves directly towards the target point. The “go–position–at–angle”,

whose goal is to reach a desired position with a desired orientation (Figure 7.5),

requires more skill and has more influence on robot performance than the first

two. The accuracy of “go–position–at–angle” affects the robot’s ability to control

the ball and is important for behaviors like “shoot” and “pass”. As a result, the

“go–position–at–angle” action is selected to evolve.

For the “go–position–at–angle” action, fifteen linguistic values are used for the

output of fuzzy controller while only three linguistic values are used for the input.

As a result, the output membership function set is more complicated than the input

set. The improvement space for the rather simple input membership functions

are quite limited. The evolution processing is focused on the tuning of output

membership functions for the “go–position–at–angle” action.

Fully overlapped triangular membership functions are used for the fifteen fuzzy

linguistic values which represent the output of the fuzzy controller for “go–position–

at–angle” (Figure 7.6). Due to the fully overlapped membership functions, tuning

the peak point is equivalent to changing the base points of the nearby membership

functions. A set of fifteen parameters (i.e. the peak points) is enough to define the

shapes and positions of the fifteen membership functions. Integer coding method

is used to encode one parameter set into one individual chromosome.

To evaluate different parameter settings, the robot is made to perform the

“go–position–at–angle” action to reach the destination from five different starting

positions and orientations. For each starting point, three runs are performed with

three speed settings (fast, medium and slow). Two factors are considered in perfor-

mance evaluation: the difference between the robot’s final and desired orientations

at the destination point (angle error ∆α) and the number of steps (n) used in each

run to reach the destination. The angle error is a measure of the accuracy of ro-

bot action. The steps taken in each run is a measure of smoothness and swiftness

associated with the robot actions. The fitness function Fgo used in simulation is

defined by Equation (7.1).

Fgo = u ·
v

Sum(∆α) + v
·

w

Sum(n) + w
(7.1)
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big), NM(negative medium), NMS(negative medium small), NS(negative small),

NSS(negative small small), ZR(zero), PSS(positive small small), PS(positive small),

PMS(positive medium small), PM(positive medium), PMB(positive medium big),

PB(positive big), PBB(positive big big)

Figure 7.6: The membership functions for “go–position–at–angle”
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Figure 7.7: The GA process for “go–position–at–angle”

where u, v and w are integer constants, Sum(∆α) is the sum of the angle errors

and, Sum(n) is the sum of the steps in all the runs with different starting points

and speed settings. u is merely a scaler to regulate the fitness range. v and w

adjust the weights of Sum(∆α) and Sum(n) in Fgo. The values of u, v and w

are heuristically decided. In this work, u, v and w are considered as 100, 10 and

100 respectively. Due to a smaller v value, the angle error has more influence than

the “steps” in Fgo. The accuracy of the action is more important and has higher

priority for consideration in the optimization process.

As to the GA process, the population size is fixed at 300 individuals. Stochastic

universal sampling (SUS) [124] with elitism selection is adopted. Only one elite

individual is selected and preserved for the following generation. Uniform crossover

[125] is used with a crossover probability Pc of 0.8. Mutation takes place at two

points with a probability Pm of 0.05. The evolution process usually converged

around 60 generations (Figure 7.7).

The membership functions using the original parameter setting [117] are plotted

in Figure 7.6(a). The original membership functions have a fitness value less than

10 in the simulation, while the fitness value after evolution is around 30 (Figure
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.8: Simulation performance of “go–position–at–angle” (position No. 1)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.9: Real world performance of “go–position–at–angle” (position No. 1)

142



7.5. Simulation and Experimentation

(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.10: Simulation performance of “go–position–at–angle” (position No. 2)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.11: Real world performance of “go–position–at–angle” (position No. 2)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.12: Simulation performance of “go–position–at–angle” (position No. 3)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.13: Real world performance of “go–position–at–angle” (position No. 3)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.14: Simulation performance of “go–position–at–angle” (position No. 4)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.15: Real world performance of “go–position–at–angle” (position No. 4)
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7.7).

The performance of the optimized membership functions (Figure 7.6(b)) is val-

idated in simulation and real world experimentations. The evolved system is com-

pared to the system with original membership functions (Figures 7.8, 7.10, 7.12,

7.14, 7.9, 7.11, 7.13, 7.15). In these experimentations, robots perform “go–position–

at–angle” from different starting points numbered from 1 to 4. The destination is

the center of the field. The differences between the robot starting orientation and

the desired final orientation are 45, 90, 135 and 180 degrees respectively in each

case. In Figures 7.8, 7.10, 7.12, 7.14, it is clear that compared to the original sys-

tem, the evolved system achieved significant improvements on the performance in

simulation experiments. The original system’s final angle errors are quite obvious,

while the evolved system decreased the angle errors close to zero. Furthermore, the

trajectories of the evolved system are smoother than that of the original system.

The same conclusion can be drawn from the real world experimentations (Figure

7.9, 7.11, 7.13, 7.15), although the trajectories are slightly different from those

observed in the simulation.

On the other hand, though the performance of the evolved system is found

better than the original system, the results of real world experimentations are not

perfect yet. Starting from the starting position 4 with 180 degree to turn (Figure

7.15(b)), the evolved system overshoots the angle difference before reaching the

destination and makes the trajectory not so smooth while adjusting the orientation.

Since this is not observed in the simulation, it is reasonable to say that those flaws in

performance are caused by the difference between the virtual system in simulation

and the real one. However, it is safe to say that the evolved system does outperform

the original one. The flaws are very small and have less effects on the performance

of the upper level behaviors which are based on “go–position–at–angle” action.

The same is experimentally verified in Section 7.5.2 for the “shoot” behaviors.
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7.5.2 Evolution at the robot behavioral level

The robot behaviors are constructed from primitive behaviors. At this level, GA

is applied to the rule bases. The “shoot” behavior, which is the trickiest and most

important one at the robot behavior level, is selected as a test case. The “shoot”

behavior belongs to the attacker role and is vital in winning a game. This behavior

is implemented by the “get–ball–at–angle” actions, which is a modification of the

“go–position–at–angle”. To perform the “shoot” behavior, the fuzzy controller of

the attacker analyzes the positions of the opponent goalie and the ball, decides the

best shooting angle and activates “get–ball–at–angle” actions to fulfill the shooting.

The ball position is gauged with the angle λ of the ball with respect to the center

of the goal. λ is calculated as follows:

λ = tan−1 BallY − GoalY

BallX − GoalX
, (7.2)

where BallY and BallX are the coordinates of the ball, and, GoalY and GoalX are

the coordinates of the center of goal (Figure 7.16). The opponent goalie’s position

is determined by its y-coordinate. The output variable of the fuzzy rule base is

the y-coordinate of the desired target position to shoot (TargetY in Figure 7.16).

Table 7.1(a) is the original rule base for “shoot” behavior [117].

In Table 7.1(a), the inputs to the fuzzy inference engine are classified into 20

states. Verified in the early experimentations and matches, this number of states

are suitable and enough to represent the input space. Thus the antecedent part of

fuzzy rules are not evolved in this system. The evolutionary optimization is focused

on the consequent parts of fuzzy rules.

In the simulation, the attacker robot is fielded against the opponent goalie,

whose behaviors are pre-programmed as in [117] and have demonstrated good per-

formance in real world experimentations. The ball is kept at ten different positions.

Five of the positions are predefined and fixed throughout the evolution and, the

other five positions are randomly chosen and changed in every generation. The

fixed shooting positions are benchmark positions to provide a universal standard

through all the generations. Without the fixed positions, the fitness of the same
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Figure 7.16: The inputs and outputs of shoot behavior

Y-coordination of opponent goalie

FL CL C CR FR

Angular FL R L L CL CL

Ball L CR CR L CL CL

Position R CR CR R CL CL

FR CR CR R R L

(a)The original rule base

Y-coordination of opponent goalie

FL CL C CR FR

Angular FL CR L R C CL

Ball L R R L L L

Position R R R R L L

FR CR C L R CL

(b)The evolved rule base

Linguistic values: L(left), R(right), C(center), FL/R(far left/right), CL/R(central left/right)

Table 7.1: Rule bases for shoot ball
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chromosome may change too much in different generations and become meaning-

less. Meanwhile, fixed positions are not enough to represent the whole testing

space, and that is why the random positions are necessary.

The goal score “Goal” achieved by the robot is an apparent guideline to the

performance of “shoot” behavior. However, only the goal score itself cannot re-

veal the performance difference between chromosomes with the same goal score.

Furthermore, the goal score of the same chromosome is a bit unstable due to the

randomly selected shooting positions. Thus, another performance index ∆Y is in-

troduced as a measure of the quality of the “shoot” behavior. It is defined as the

difference (denoted as ∆Y ) between TargetY and the Y-coordinate of the goalie

at the moment when the robot kicks the ball. The bigger ∆Y means the higher

chance to score a goal. Since the width of the goal is 40cm and the goalie seldom

leaves its goal area, the maximum ∆Y value is 40. The fitness function Fshoot is

thus defined as follows:

Fshoot = Sum(∆Y ) + 40 · Goal , (7.3)

where Sum(∆Y ) is the sum of ∆Y obtained by shooting actions from the ten

starting positions. When a goal is scored, the maximum ∆Y (40) is granted to

that run as a bonus.

The objective of GA is to maximize the chance of scoring a goal by evolving the

rule base. Due to the symmetry of the rule base (Table 7.1), 10 of the 20 fuzzy rule

consequences (the outputs) are encoded into one chromosome. The population size

is set to 180. The GA operations (selection, crossover and mutation) are the same

as those for the “go–position–at–angle” action, with different parameter setting.

The elite size is taken as 10, the crossover probability Pc as 0.6 and the mutation

probability Pm as 0.05.

A typical GA evolution for the “shoot” behavior is plotted in Figure 7.17. The

convergence is usually reached around 80 generations, after that the best individual

dominates the population. Due to the random starting positions and the existence

of the goalie robot, the fitness value of the same individual is not consistent. That

is the cause of the fluctuations in the average fitness and highest fitness curves
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Figure 7.17: The GA process for the shoot behavior

in Figure 7.17. However, the long term improvement of average fitness is still

observable. Although the highest fitness value in each generation changes from

time to time, the genotypes of best individuals in different generations are in fact

the same or quite similar. That means the GA process is stabler than its appearance

in Figure 7.17.

The performance of the evolved rule-base (Table 7.1(b)) is compared with the

original system in simulation (Fig. 7.18, 7.20, 7.22, 7.24), as well as through real

world experimentation (Fig. 7.19, 7.21, 7.23, 7.25). Four shooting positions are

selected from the areas in which the “shoot” behavior is most commonly performed.

The scoring percentages of the original and evolved systems are summarized in

Table 7.2 with 30 shots for each shooting position. It is worthy of mention that

attacking is always much harder than defending in a robot-soccer competition.

Compared to the width of the goal (40cm), the goalie robot is quite large an

obstacle in size (7.5cm). Furthermore, this “obstacle” is as agile as any other robot

player and its task is to block the ball. It is quite normal that the goalie may block

most of the shots which is observed with the original rule-base. The attacker failed

153



7.5. Simulation and Experimentation

(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.18: Simulation performance of “shoot” behavior (position No. 1)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.19: Real world performance of “shoot” behavior (position No. 1)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.20: Simulation performance of “shoot” behavior (position No. 2)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.21: Real world performance of “shoot” behavior (position No. 2)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.22: Simulation performance of “shoot” behavior (position No. 3)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.23: Real world performance of “shoot” behavior (position No. 3)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.24: Simulation performance of “shoot” behavior (position No. 4)
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(a) Trajectory of original system

(b) Trajectory of evolved system

Figure 7.25: Real world performance of “shoot” behavior (position No. 4)
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to score any goals at most of the times and even never succeeded from certain

positions (i.e. position No. 2 and 4) (Table 7.2). On the contrary, the evolved rule-

base highly improved the scoring percentage and the attacker successfully scored

goals from all of the four positions (Table 7.2).

Shooting Original System Evolved System

Positions Simulation Real World Simulation Real World

Position 1 10.0% 3.3% 23.3% 13.3%

Position 2 3.3% 0% 16.7% 10.0%

Position 3 13.3% 13.3% 16.7% 20.0%

Position 4 0% 0% 23.3% 16.7%

Note: scoring percentage = (goal scored / number of shots) × 100%

Table 7.2: Comparison of scoring percentage

From both the simulation (Figures 7.18, 7.20, 7.22, 7.24) and real world results

(Figures 7.19, 7.21, 7.23, 7.25), it is observed that the robot in the evolved system

always tries to shoot the ball into the far end of the goal with respect to the

reactions of the goalie robot. One good instance in real world experimentation is

the scenario at position 4 (Figure 7.25(b)). At the beginning, the ball is on the left

side of the goal and the goalie is at the center. When the goalie moves to the left

side where the ball is nearby, the robot makes a turn and shoots the ball to the

right end of the goal. Although the goalie quickly changed its direction, it barely

missed the ball. That is a good indication of the skill developed from GA evolution.

It should be mentioned that the accuracy of the “shoot” behavior is determined

by the primitive actions from which it is constructed (“get–ball–at–angle”, “go–

position–at–angle”, etc.). The performance of the evolved “shoot” behavior implies

that the optimized “go–position–at–angle” is quite satisfactory.

7.5.3 Evolution at the group behavioral level

After some of the important individual robot behaviors are optimized, the evolution

is carried out at the higher layer which is more strategy related. At the role

162



7.5. Simulation and Experimentation

assignment level, the robot soccer system needs to evaluate the current competition

situation, carry out the team strategy by the intelligent selection and assignment

of four roles (attacker, midfielder, defender and goalie) to three robots. Since the

presence of the goalie is a must, the assignment is in fact to select roles from

attacker, midfielder and defender for the other two robots.

Role assignment mechanism revised

The input space of the fuzzy rule base at this level is the whole play-field. With

the need of handling complicated environmental information, the antecedent parts

of fuzzy rules become very important at this level. Both the antecedent and con-

sequent parts of fuzzy rules need to be evolved.

In the original system, the role assignment adopts a quite simple mechanism.

At first, the goalie role is fixed with one robot. The attacker role is always present

because it is the only role equipped with offensive behaviors. Between the two

robots other than the goalie, the one which is currently closer to the ball is chosen

as the attacker. Due to the possible conflict, the same role is not assigned to two

robots at the same time. As a result, the fuzzy engine needs only to chose a role

for the third robot between midfielder and defender (Table 7.3(a)). The inputs to

fuzzy engine are the distance of the closest opponent robot to home goal and the

distance of the ball to home goal. The outputs are the role of the midfielder or

defender. This mechanism is too simple to handle the complicated and dynamic

system activities. Its inability often causes inappropriate group behaviors. For

instance, it is often found in the competition [115, 126] that: when a robot is stuck

with opponent robots, its role cannot be taken up by another robot which is in idle

status then.

In this work, no limits are set in the role selection of the two robots other than

the goalie robot. The two robots are allowed to perform the same role at the same

time. Both the antecedent and consequent components of fuzzy rules are evolved.

There are three linguistic values (near, medium and far) for the two inputs: distance

of the closest opponent robot to home goal and the distance of the ball to home
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goal. The output is a pair of roles chosen from three roles (attacker, midfielder and

defender). The six possible role combinations are the possible rule consequents.

The antecedents are randomly combined with the consequents to generate a fuzzy

rule. Every individual of GA represents a rule base which contains a set of fuzzy

rules. The size of rule base is defined as 18, twice the number of the possible

antecedents. It is natural to find rules with the same antecedents in one rule

set. Under this situation, only the first rule encountered in the string is considered.

Meanwhile, it is also normal that sometimes not all the nine antecedents are present

in one individual rule base. The missing of antecedents implies that the relative

input states are omitted in the fuzzy controller. The fuzzy rule base can still work

with such kind of omission although the output may be different. The effects of

the missing antecedents on the performance are left to the evolutionary process

to handle. If an antecedent is crucial to the fuzzy controller’s performance, any

individual rule base without it, receives a low fitness value and cannot survive the

evolution. As a result, only the unimportant or unnecessary antecedents will be in

the risk of omission and that kind of omission is indeed making the rule base more

efficient.

Evolution process

The performance of the new rule base is evaluated by competing with a team using

the original rule base. Two teams of robots are pitched for a match for a certain

period (a certain number of steps). The match is considered over when the total

goals scored reaches the limit (set as 3 here) or the time (set as 1200 steps) is up.

Besides the scores, the time duration for which the ball is each which side of the

field is also recorded. The fitness function Frole is defined as follows:

Frole = u + v · (Goal − Lost) + w ·
Topp

Ttotal

, (7.4)

where u, v and w are integer constants, Goal and Lost are scores of the home and

opponent teams, Topp is the time for which the ball is in the opponent half of the

field, and Ttotal is the total match time. The ratio of Topp to Ttotal is an indication

of which team takes the upper hand in a game and the associated weight of this
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Figure 7.26: The GA process for role selection and assignment

ratio (w) is set to 100. The weight attached to the score difference (v) is set to 100.

Since the team may lose up to 3 goals, the second part of Frole can be negative. u

is utilized to keep Frole non-negative and is set to 300.

The population size of GA is fixed at 100 while the elite size is set to 8. The

crossover probability Pc and the mutation probability Pm are set to 0.65 and 0.05

respectively. In the evolution process (Figure 7.26), it is noticed that the fluctua-

tions in the fitness value curves are a bit large. This is not strange considering the

rather random nature of a soccer match. The dynamic situations in the compe-

tition made the fitness of the same individual inconsistent. However, despite the

fluctuations, the observable improvement in the average fitness shows the effective-

ness of GA. Although the best individuals keep changing at each generation, they

are found similar to one another at later stages of evolution. It is also noticed that

not all the best individuals contain all the nine possible antecedents, which means

that the antecedents have different degrees of importance. Some of the antecedents

can be omitted and replaced by others with similar inputs. Such a feature is quite

helpful in situations where the increase in the number of input variables results
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Distance of closest opponent robot to home goal

Near Medium Far

Ball distance Near Defender Defender Midfielder

to Medium Defender Midfielder Midfielder

home goal Far Defender Midfielder Midfielder

(a) The original rule base

Distance of closest opponent robot to home goal

Near Medium Far

Ball distance Near AA MD DD

to Medium AM AD AA

home goal Far AD AA AA

(b) The evolved rule base

Linguistic values: AA(two attackers), DD(two defenders), MM(two midfielders),

AM(attacker & midfielder), AD(attacker & defender), MD(midfielder & defender)

Table 7.3: Rule bases for role assignment

in an exponential increase in the number of the rules. Under such circumstances,

finding the most important antecedents can help to decrease the size of the rule

base and to increase computational efficiency. The evolved rule base is displayed

in Table 7.3(b).

Performance Real World Simulation

Data Original Evolved Original Evolved

Scores 1 1 1.2 1.4

Number of shots 14 22 15.4 18.2

(Topp/TTotal) — — 36.3% 63.7%

Note: In simulation, the average values from 5 matches are used

Table 7.4: Comparison of match performances

The performance of the evolved rule-base is evaluated in simulation and real

world against the original rule-base. For a real world match of 20 minutes and sev-

eral simulation trials, the score and number of shots are recorded. Additionally, the

ratio of Topp to Ttotal in simulation is also noted. The recorded data is compared in

Table 7.4. Though the score difference is small, the scores do not necessarily speak
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of or reflect the competition strategy in place. The differences in number of shots

and ratio of Topp to Ttotal (Table 7.4) indicate that the evolved team has performed

better and gained dominance in the matches compared with the original system.

The evolved team is observed to be aggressive in attacking and in defending. It is

noteworthy that the original team has won several prizes at the international level

robot-soccer competitions [115, 126].

7.6 Conclusion and Discussion

The decomposition of a complicated system into various simple behaviors is proven

to be an effective method for realization of complex control systems. The GA’s

development and optimization at different levels of fuzzy behavioral architecture

resulted in more agile and intelligent behaviors. The GA is applied to different

aspects of the fuzzy controller at different levels of the behavioral architecture.

Based on the original system which is already well designed, improvements ware

achieved at different levels of the architecture. At the lowest level, the accuracy

of primitive behaviors are obviously enhanced. At the higher levels, more skillful

behaviors (like shoot to the far-end corner of the goalie) are developed, as well as

a more effective role assignment mechanism which embodies the group behavior.

All of these are verified through the simulation and real-world experimentations.

In general, the optimized behaviors enable the robots to carry out the tasks

more accurately and the evolved group behavior results in a better game strategy.

Meanwhile, the evolutionary algorithm provides an efficient way to develop and

optimize a complex multi-robotic system. Utilizing the simulator, the optimization

process is much faster than the manual “trial and error” method, especially when

there is not enough knowledge of the system to guide the manual tuning.

There is still improvement space for the team strategy part of the architecture.

For example, a more feasible and comprehensive performance index for the eval-

uation of the strategy is necessary for the evolutionary methods. The mechanism

used here can be extended to other multi-robotic systems as well.
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Chapter 8

DNA Coded GA for Fuzzy
Robot-Role Assignment

In the evolution of team strategy for fuzzy behavior based robot soccer system, all

the antecedents and consequents of fuzzy rules are evolved through genetic algo-

rithm. The coding method determines the meaning of a character in the individual

chromosome by the characters surrounding it. In another words, the meaning of

each character is context dependant, not position dependant. Despite the fact that

position dependant coding is most commonly used in GA, a context dependant

coding formation is in fact much closer to the natural DNA chromosome. The

coding strings can have variable length and are still compatible to the normal ge-

netic operations. This chapter project the DNA coding in a more general scheme.

The specific features of DNA coding methods and their influence on the genetic

algorithms are analyzed through the robot soccer role assignment problem.

8.1 Introduction

Humans have always looked towards nature for solutions to everyday problems.

Evolutionary computation is a collection of computation algorithms derived from

observing nature, in particular evolution of population through natural selection

[127, 128, 129]. Nature, through constraints in environment, has been able to select

the offspring from the individuals with the most suitable attributes. In the same
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way, an optimum solution to computation problems can be selected by applying

constraints to a population over many generations.

While studies and theories of Charles Darwin and Gregor Mendel had been

the basis in the science of selection, a great breakthrough in genetics came in

the year 1953 when James Watson and Francis Crick unveiled the secret of life,

the Deoxyribonucleic Acid (DNA) [130]. Henceforth, researchers have begun to

understand how genetic information is coded and passed on from one generation

to the next.

Motivated by the gene expression which involves translation of nucleotide se-

quences of DNA into amino acid sequences, the DNA like coding method has been

proposed for evolutionary computing [131, 132, 133, 134]. DNA coded strings are

used to represent the fuzzy “if-then” rule bases [131, 132, 134, 135, 136] or the

production rules of the L-system [133] as the individuals of genetic algorithm. The

DNA coding method allows flexible representation, overlapped and redundant cod-

ing, variable string length and no restrictions on the crossover point. The simula-

tion results suggested that the redundancy and overlapping in DNA coding worked

well for fuzzy rule discovery [131]. However, the reported works lack in explicit

explanation.

The main objective of this chapter is to project the DNA coding in a more gen-

eral scheme, which is characterized by the specific features: the context dependency,

intron parts, redundancy and variable string length in evolutionary algorithms. It

also aims to analyze the influence of these features and explain their influence on

the performance, via the simulation study in the context of role assignment in a

robot soccer system.
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8.2 Coding Methods for Genetic Algorithm

Genetic algorithm is the optimization algorithm based on Darwinism and Mendelism.

In genetic algorithm, a set of parameters is selected to define a solution to the prob-

lem. Depending on the problem, various coding methods have been used in the

implementation on genetic algorithm. Different problems call for different repre-

sentations as well as search methods for maximum efficiency. The most popular

coding methods for genetic algorithm include binary coding, real value coding and

permutation coding.

Binary coding is simple and most widely used. It is also easy to implement

various types of genetic operators when binary coding is used. For example, mu-

tation can be done by randomly inverting bits in a chromosome. Binary coding is

well suited for problems where solutions are pseudo-Boolean as in knapsack prob-

lem and other combinatorial problems. Integer or real-valued variables can also

be represented by binary strings of specific length depending on the required ac-

curacy. An alternative to binary coding is the gray coding, which is used by some

researchers to eliminate the Hamming cliff problem associated with binary coding

[137]. In gray coding, any two consecutive strings differ only by one bit, whereas in

binary coding this is not the case. However, in a binary coded string or even a gray

coded string, a bit change in any arbitrary position may cause a large change in

the represented integer or real number. Furthermore, both binary and gray codings

may cause representation space to be much more complicated than the searching

space.

The real value coding method was initially used in evolution strategies and

evolutionary programming, which is characterized by the direct operation on the

real-valued solution vector. Since there is no empirical evidence indicating that

binary coding results in greater efficiency in solving real-valued problems, there

has been a trend away from binary coding in GA research [138, 139, 140]. For

real-valued numerical optimization problems, the real value coding outperforms

binary coding method because it is more convenient, consistent and concise in

representation [141].
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Permutation based coding method is usually used to represent logical solutions

for scheduling problems and classic combination problems such as the traveling

salesman problem. Genetic algorithms using permutation coding method are re-

ferred as ordering GAs [142]. One obvious attribute of permutation coding is that

genetic operators such as simple crossover and mutation may fail to generate valid

offsprings. Specialized recombination operators for GA have been proposed, includ-

ing order crossover 1 [143, 144], order crossover 2 [145], position crossover [145],

partially map crossover (PMX) [144] and maximal preservative crossover (MPX)

[146].

There are other coding methods, such as mixed-integer coding [147], intron

coding [148, 149] and parse tree coding [150]. These coding methods are specialized

to cater for different kind of problems. One class of interesting coding method which

is discussed in depth in the this chapter is the DNA like coding method, which is

motivated by the transcription of DNA to mRNA and the translation of mRNA to

proteins [131, 132, 133, 134].

8.3 DNA Like Coding Method

8.3.1 Protein, DNA and messenger RNA

Before discussing the DNA like coding method for GA, it is worthwhile to introduce

the natural DNA coding mechanism, which are very important in every life form.

It is well known that proteins are the fundamental agents of life; every human

being contains something like ten thousand different proteins. Their properties and

interactions determine the way human beings are. The information that defines the

primary structure∗ of every protein is encoded in the DNA (deoxyribonucleic acid).

In fact, the protein (in its primary structure) is a linear sequence of a combination

of twenty different amino acids which are decided by DNA.

∗The first product of the protein synthesis. The final structure of the protein (that is the one
determines its function) is the result of the interactions between the primary structure and its
environment. Understanding this process in detail is an open problem faced by the biologists.
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Figure 8.1: The chemical structure of DNA

DNA is a double stranded sequence of four nucleotides which are adenine (A),

guanine (G), cytosine (C) and thymine (T). A portion of DNA sequence (a gene)

encodes the information that determines the sequence of amino acids of the protein.

It is for this reason that scientists use the expression genetic code. In a word, DNA

contains the genetic information that defines the proteins, the engines of life.

The four nucleotides that compose a strand of DNA are often called bases. The

chemical structure of DNA, the famous double helix (Figure 8.1), was discovered

by James Watson and Francis Crick in 1953. It consists of a particular bond of

two linear sequences of bases. This bond follows a property of complementarity:

adenine bonds with thymine and viceversa, and cytosine bonds with guanine and

viceversa. This is known as Watson-Crick complementarity and it is also denoted

as follows:

A = T, T = A, C = G, G = C.

One of the strands which constitute a DNA molecule holds the information

that codes various genes. This strand is often known as the template strand or

antisense strand. The complementary strand is the coding strand or sense strand.

In the synthesis of proteins, the messenger Ribonucleic acid (mRNA) is constructed

at first. As being constructed from the template strand, the mRNA strand has the

same information as the coding strand. The genetic code for the mRNA is identical
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. . . CUA CGG ACA AUG GCU AGC AAG GCG AUU UA . . .mRNA

  Leu Arg Thr Met Ala Ser Lys Ala Ile

Codon

Amino Acid

Figure 8.2: Codons in mRNA and corresponding Amino Acids

to the coding strand but for the fact that RNA contains the U (uracil) base rather

than the T (thymine) base. The RNA contains many unused parts after the first

synthesization. Splicing is performed to remove the unused parts to create the final

mRNA.

In the mRNA, three successive bases called codons are allocated sequentially.

The codons in mRNA are shown in Figure 8.2. The Leu, Arg, Thr and etc, are

abbreviations for amino acids (Table 8.1). Based on the three bases of codon, the

corresponding amino acid can be identified. The “AUG” along the left-top-right

direction in the Table 8.1 corresponds to “Met”. The special Terminator codon

(Ter) is a stop codon. The transcription, which is the process of synthesizing the

RNA based on the DNA strand, is terminated when the “Ter” is present.

There are twenty types of amino acids and terminator codons, represented by

totally sixty-four three-letter codons (Table 8.1). That results in a certain extent

of redundancy. It is important to note that this redundancy helps to relax the

accuracy requirement or increase the flexibility. For instance, a point mutation on

the last letter is not likely to produce a malfunctioning protein. Similarly, this

property can be exploited in DNA coding method.

Another fact worthy of mention is the existence of many non-coding sequences

in the RNA after the first synthesization. These non-coding sequences are usually

referred as introns while the coding sequences are named as exon. All the introns

are precisely spliced to produce the final mRNA (Figure 8.3). The reason for the

existence of introns is still being debated. There is a strong belief that introns play

a regulatory role in the cell. It is possible that introns of DNA contain sequences

that control gene activity in someway or other in the splicing process of the mRNA
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U C A G

U

Phenylalaine Tyrosine Cysteine U

(Phe) Serine (Tyr) (Cys) C

Leucine (Ser) Terminator Ter A

(Leu) (Ter) Tryptophan(Trp) G

C Leu

Histidine U

Proline (His) Arginine C

(Pro) Glutamine (Arg) A

(Gln) G

A

Isoleucine
Asparagine

Ser
U

(Ile)
Threonine (Asn) C

(Thr) Lysine
Arg

A

Methionine(Met) (Lys) G

G

Aspartic acid U

Valine Alanine (Asp) Glycine C

(Val) (Ala) Glutamic acid (Gly) A

(Glu) G

∗U(uracil) replaces T(thymines) in RNA

Table 8.1: The genetic code of amino acids

[151, 152, 153]. The different ways of splicing of introns increase the variation of the

gene. Coding methods utilizing introns have already been proposed [148, 154, 149].

In this chapter, the intron’s effects on the coding for GA is also explored.

8.3.2 The basics of encoding

Motivated by the gene expression which involves translation of nucleotide sequences

of DNA into amino acid sequences, the DNA coding method has been proposed to

encode fuzzy if-then rules and neural networks [131, 133].

To illustrate the basic idea of DNA coding for GA, the fuzzy system is taken

as example. DNA chromosome is assigned to each fuzzy inference system. The

parameters and variables of fuzzy system values are mapped to the protein codons.

The strand of DNA is manipulated by genetic operators and then decoded. Unlike
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Figure 8.3: The exon and intron

CG          CCGCGTCACGA          CCGGGGTTCCATACCTCGGGAC...

Arg Arg His Glu Cys Arg Gly...   

Pro Gly Phe His Thr Ser Gly...   

*Codon ATG denotes the starting point

Rule String 1

Rule String 2

ATG ATG

Figure 8.4: Reading and translation of genes

DNA Chromosome: ATG CAG ACC ATT GAC........

Codons in mRNA : Start Gln Thr Ile Asp ........

Parameters: Input 1 + Input 2 + ... + Output 1...

Fuzzy Rules: IF + Input 1 + Membership function 1 + And/Or/Then  + ....

Refined Set of Fuzzy Rules

Reading & mapping      

Translation

Assembling

Figure 8.5: Translation from DNA to fuzzy rules

175



8.3. DNA Like Coding Method

Input
Membership Function Setting

And/Or/Then Output Weight
Central Position Discourse Spread

Phe

Input 1
Position 1

Width 1

AND

Output 1

0.1

Leu 0.2

Ile
0.3

Val

Position 2Ser

Input 2

0.4
Pro

Thr

Position 3

Width 2 Output 2

0.5
Tyr

His

OR

0.6
Gln

Input 3
Position 4Asn

0.7Lsy

Asp

Position 5

Width 3 THEN Output 3

Glu

Input 4

0.8
Cys

Trp

Position 6
0.9

Arg

Gly 1.0

Table 8.2: A possible sample translation table

biological DNA, it is unnecessary to transcript the DNA chromosome into mRNA.

Decoding can be done by reading the DNA string starting from the beginning or a

predefined start point, such as an “ATG” codon (Figure 8.4). Every triplet codon

is translated into a corresponding parameter or logic operation according to the

predefined coding table (Table 8.2). The whole procedure is depicted in Figure 8.5.

It should be noticed that in Table 8.2, every codon has different possible meanings.

The exact meaning of a codon depends on the meaning of the codon just before it.

For instance, the codon “His” represents the central position of the membership

function if it follows a codon representing the input and the codon after it is

translated as the discourse spread of the membership functions. Moreover, if “His”

follows a codon representing the fuzzy relation “AND”, it is decoded as another

input. If the codon before it means the “THEN”, clause in a typical fuzzy “IF ...

THEN ...” statement, it will be an output. In general, the meaning of a codon is

context depended.

In this work, a more general DNA coding mechanism is explored, which is
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characterized by the features of context dependency, intron parts, redundancy and

variable string length. Under such a scheme, total flexibility in codons’ definitions

and translation rules are allowed. Even the codons themselves can be redefined

as 2-letter couplets or any n-letter combinations from the alphabet {A, C, G, T},

other than the natural amino acid triplets. Some codons may share the same

meaning, resulting in redundancies as in natural chromosomes. Some others may

stand for nothing in particular, just like introns in RNA. The encoded individual

string can be of variable length. Since there is no restriction on the formation of the

individual string, DNA coded strings are compatible to simple genetic algorithm

(SGA) operators. The features of the DNA like coding are further analyzed with

a case study.

8.4 DNA Coded GA for Robot-Role Assignment

To test out the DNA coding method, the fuzzy behavior for role assignment in

robot soccer system is evolved by DNA coded genetic algorithm.

In Section 7.5.3, the evolution of the group behavior of the behavior based

robot soccer system is discussed. The major function of the group behavior is to

assign roles to soccer robots. In the original system (Chapter 5), the goalie role

is fixed onto robot. For the rest of the two robots, the existence of an attacker is

always necessary and it is assigned to that robot closer to the ball. Since any role

is restricted to only one robot, the fuzzy system needs only to select a role between

defender and midfielder for the last robot, based on the positions of the ball and the

opponents in the playground. In Section 7.5.3, the limit of “one role for one robot”

is eased. More role combinations are allowed and the fuzzy system is evolved by

GA to make the choice. Since only the distance of the closest opponent robot to

home goal and the distance of the ball to home goal are taken as the inputs, the

fuzzy system utilized is still a rather simple one. However, a more complicated rule

base increases the computation load and slow down the system which is definitely

unacceptable in a real-world robot soccer match.

177



8.4. DNA Coded GA for Robot-Role Assignment

Distance of Ball

Distance of closest opponent Robot

FUZZY 

INFERENCE 

SYSTEM

Two Roles in Combination

Distance of Ball

Distance of opponent Robot 1 Role of home Robot 1

Distance of home Robot 2

Distance of home Robot 1

Distance of opponent Robot 2
Role of home Robot 2

(a)

(b)

Note: The distance refers to the distance to home goal.

FUZZY 

INFERENCE 

SYSTEM

Figure 8.6: The two-input and five-input systems

In this section, the fuzzy role assignment problem for robot soccer system is

considered again. As the major purpose here is to study the performance of the

DNA coding method, a more complex fuzzy rule base is developed for role assign-

ment and it is evolved by genetic algorithm in simulation, while the real world

performance of the robot soccer system is not looked into.

8.4.1 Coding mechanisms

Compared to the original two-input system from Section 7.5.3 (Figure 8.6.(a)),

five input variables are considered for the new fuzzy system (Figure 8.6.(b)). The

five inputs are the position of the ball to the home goal, the positions of the two

opponents and the positions of the two home robots. Each variable has three

linguistic values: near, medium and far. Two output variables are the roles of

the two robots other than the goalie, which may be the attacker, midfielder and

defender. Consequently, there are 35 = 243 input states and totally 37 = 2187

possible rules. The evolution is focused on the rule base of the fuzzy system while

the membership functions are kept intact.

Three coding methods are used for the comparison. The first one is the standard
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integer coding. The others are two DNA coding methods, named as DNA coding

1 and 2. The difference between the two DNA codings is that DNA coding 1

contains no intron while the DNA coding 2 does. The four characters representing

the DNA base – A, C, G and T – are employed to build the chromosome string.

The biological term “codon” is borrowed to indicate the three-letter triplets and/or

two-letter couplets in the DNA coding method.

The start/stop codon is not used in the DNA coding methods proposed here,

which marks an apparent departure from the DNA coding methods in [131, 132,

133]. The using of start/stop codon separates the individual strings into segments

of useful genes and meaningless introns. Each segment of gene is mapped to a fuzzy

rule. If the structure of rule is fixed, whose number of parameters are already known

(just like the case of robot soccer system here), the length of gene segment needs

to match the rule. Too short a gene results in an invalid rule while too long a

gene wastes a lot of codons. Both the cases result in some kind of inefficiency

in decoding useful rules from individual chromosomes. However, it is difficult to

control the number or the length of useful genes as the start/stop codons are

randomly distributed. Another effect of the start/stop codon is that it allows the

overlap reading of the genes, which means that the gene segments can share some

portions. However, there is no empirical evidence to show the advantages of such

a overlapping. Furthermore, if necessary, the overlapping can be easily realized

by rereading the chromosome from another starting point chosen in a random or

heuristic way, without the definition of start/stop codon. As a result, the start/stop

codon is not defined in this work.

The details of the three coding methods used here are further discussed in the

following.

Genetic algorithm using integer coding method

Using the integer coding method to encode the fuzzy rule base is quite straightfor-

ward. Each individual string represent a complete fuzzy rule base, which includes

all the input states which are indexed from 1 to 243. The length of the individual
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1 2 3 4 5 6 7 8 9 10 11 12 ......... 483 484 485 486

1- Output role for robot number 1 under input state 1

2- Output role for robot number 2 under input state 1

3- Output role for robot number 1 under input state 2

4- Output role for robot number 2 under input state 2

5- Output role for robot number 1 under input state 3

6- Output role for robot number 2 under input state 3

7- Output role for robot number 1 under input state 4

8- Output role for robot number 2 under input state 4

· · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·

483- Output role for robot number 1 under input state 242

484- Output role for robot number 2 under input state 242

485- Output role for robot number 1 under input state 243

486- Output role for robot number 2 under input state 243

Figure 8.7: Structure of the chromosome encoded with integer coding method

string is of 243 × 2 = 486 integers and fixed through the GA process. The integer

set {1, 2, 3} is mapped to the three output linguistic values: attacker, midfielder

and defender. As there are two robot roles to be decided, every two consecutive

integers stand for the output resulting from one indexed input state (Figure 8.7).

The coding method is a typical position dependent one, because the meaning of

every integer is merely determined by its absolute position. In this case, for the

n-th integer of the individual string: if n is odd, the integer stands for the output

role of robot number 1 under the input state indexed as ⌊n
2
⌋ + 1; if n is even, it

indicates the role of robot number 2 for the ⌊n
2
⌋-th input state.

The GA population size is set to 200. The stochastic universal sampling (SUS)

[124] with elitism selection is used, while the number of elite individuals are set

to 3. Uniform crossover [125] and random multiple points mutation are adopted.

The crossover probability Pc and mutation probability Pm are set as 0.6 and 0.05,

respectively.
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A C G T

A Codon 1 Codon 1 Codon 2 Codon 2

C Codon 1 Codon 1 Codon 2 Codon 2

G Codon 1 Codon 3 Codon 3 Codon 2

T Codon 3 Codon 3 Codon 3 ∗

Table 8.3: Index of the two-letter codons with DNA coding method 1

Input/Output Variables Codon 1 Codon 2 Codon 3

Distance: Ball to own goal Near Medium Far

Distance: Opponent 1 to own goal Near Medium Far

Distance: Opponent 2 to own goal Near Medium Far

Distance: Robot 1 to own goal Near Medium Far

Distance: Robot 2 to own goal Near Medium Far

Role: Robot 1 Attacker Midfielder Defender

Role: Robot 2 Attacker Midfielder Defender

Table 8.4: Translation from codons to fuzzy rules with DNA coding method

Genetic algorithm using DNA coding method 1

In the DNA coding method 1, the four DNA nucleotides, A, C, G and T, make up

the coding alphabet. Each individual is a string of characters randomly selected

from the alphabet. Different from the natural three-letter protein codons, totally

16 two-letter couplets are employed and mapped onto three index codons (Table

8.3). Fifteen two-letter couplets are randomly grouped to represent codons 1, 2

and 3, which are in turn used to encode the three linguistic values for both the

five inputs and two outputs. The sixteenth couplet is used as a wildcard codon,

which is randomly mapped to codon 1, 2 or 3. That is to make sure that the three

codons have equal chances to appear in the individual string. In this way, all the

16 couplets have specific meaning.

Following the translation Table 8.4, the genes are decoded to fuzzy rules, which
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DNA Chromosome: AC TG CA GA CG AT GC ........

Indexed Codons: Codon 1 Codon 3 Codon 1 Codon 1 Codon 2 Codon 2 Codon 3........

Linguistic values: Near Far Near Near Medium || Midfielder Defender ...

Fuzzy Rules: If ( Ball is Near) and (Opponent 1 is Far) and (Opponent 2 is Near) and ... 

Then (Robot 1 is Midfielder) (Robot 2 is Defender) ....

Reading & mapping      

Translation

Assembling

Figure 8.8: Decoding process for DNA coding method 1

make up the final rule base. Among the resultant fuzzy rules, some of them may

have the same antecedent parts standing for same input states. Only the first rule

among them is included in the rule base. As all the couplets are meaningful and

there is no start/stop point, the individual chromosome contains no meaningless

part (intron). The decoding process from DNA strings to fuzzy rules is depicted in

Figure 8.8. The meaning of codons is partially related to their absolute positions.

For instance, the codon in the 3rd, 11th and 19th positions are always translated

to the 3rd input variable: the distance of the opponent robot 2 to home goal.

However, to which input state the input variable belongs remains undecided. This

codon needs to be combined with the two codons ahead, which are associated to

the other two input variables’ values, to depict a definitive antecedent of a fuzzy

rule. In this point of view, the DNA coding method 1 is context dependent. On

the other hand, each codon are represented by at least five two-letter couplets,

resulting in some kind of redundancy. The individual string can be of variable

length. The SGA operators are used while the validity of individual strings remain

unaffected.

Similar to the GA with integer coding, the population size is set to 200. Indi-

vidual chromosome’s initial length is set to 500 characters, and the string length

is allowed to change throughout the GA process. The genetic operators and the

parameter settings (Pc, Pm) are almost the same as that of GA with integer coding,
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A C G T

A – – Codon 1 Codon 1

C Codon 3 – Codon 2 –

G – – – Codon 2

T – Codon 3 – –

Table 8.5: Index of the two-letter codons with DNA coding method 2

except that the random two points crossover are used here to replace the normal

crossover.

Genetic algorithm with DNA coding method 2

The DNA coding method 2 defers from the method 1 in the mapping mechanism

between couplets and codons. Among the 16 two-letter couplets, only 6 of them

are meaningful while the others are meaningless (Table 8.5). The selection of these

six meaningful couplets are rather arbitrary. The only requirement is that the

characters in the alphabet – A, C, G and T – have equal number of instances in

these six couplets. In other words, these six couplets should have the same chance of

appearance in chromosomes. The existence of the meaningless couplets introduces

intron parts into individual chromosomes. If such as intron part is read in the

chromosome, it is just bypassed and the meaningful parts are translated to fuzzy

rules using the same translation table used in DNA coding method 1 (Table 8.4 and

Figure 8.9). No start/stop codon is used but the introduction to introns already

makes the coding method as a context dependent one. The other features of DNA

coding method 1 like redundancy and variable string length are also existing in

DNA coding 2.

The genetic algorithm with DNA coding method 2 uses the SUS with elitism

selection, two-point crossover and multi-point mutation operators. The parameter

settings are also the same as those used in the case of method 1.

There are other considerations for the DNA coding method representing fuzzy
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DNA Chromosome: AC TG CA GA TC AT GT GC AG CG........

Indexed Codons: -- Codon 2 Codon 3 -- Codon 3 Codon 1 Codon 2 -- Codon 1 Codon 3 ...

Linguistic values: Medium Far Far Near Medium || Attacker Defender ...

Fuzzy Rules: If ( Ball is Medium) and (Opponent 1 is Far) and (Opponent 2 is Far) and ... 

Then (Robot 1 is Attacker) (Robot 2 is Defender) ....

Reading & mapping      

Translation

Assembling

Figure 8.9: Decoding process for DNA coding method 2

rule bases. In both the methods 1 and 2, one valid fuzzy rule is represented by

7 meaningful couplet codons. The number of valid fuzzy rules represented by an

individual is related to the string length. Since the string length may vary during

evolution, there could be some extremely long individual strings containing lots of

fuzzy rules. However, totally 243 fuzzy rules with different antecedents are enough

to set up a complete rule base covering all the inputs states. It is unnecessary for an

individual to contain too many fuzzy rules. Furthermore, one promising purpose of

DNA coding here is to find a smaller but yet effective rule base covering only the

most important input states. In consequence, an upper-limit (denoted as Rnum)

is set to the number of fuzzy rules decoded from one individual. Rnum is usually

chosen as 100 in the simulation, while the setting of 250 and 25 are also tested for

comparison.

Since the size of rule base represented by an individual is varied with the string

length and is limited by Rnum, it is normal to find in the simulation that no fuzzy

rule is fired at some time steps. This means that the input states at those instances

are not covered by the current rule base. At such moments, a default role setting is

chosen as the output. At the beginning of the simulation, the default roles are the

attacker for one robot and the defender for the other. After that time, the default

output is simply the role assignment of the last time step. Since the input space of

the fuzzy controller is continuous, it is reasonable to assume that the input state
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of the current step is closer to that of the last step. Hence their outputs should

share some similarity too.

8.4.2 Simulation results

Simulations are performed on the robot soccer simulator explained in Chapter 7.

The rule base under evolution is evaluated by competing with a team using the

original rule base (Chapter 7). Two teams of robots are pitched for a match for a

certain period (set as 600 steps). The game also ends immediately when the total

number of goals scored reaches a limit. The limit is set to 3 there, which is found to

be the maximum number of goals can be score by both teams in 600 steps. Similar

to the real world human soccer game, the performance of a team is summarized

by some statistical data. The first data is of course the match score. Secondly,

the time duration for which the ball is within which side of the field is recorded.

Usually, the ball in one side of the field implies that the team at this side is under

attack. Different from the fitness function used in Chapter 7, one more factor is

considered, which is the control of the ball. Except for the two goalies, the robot

which is nearest to the ball is regarded as the possessor of the ball. The fitness

function Frole is constructed as follows:

Frole = u + v · (Goal − Lost) + w1 ·
Tball

Ttotal

+ w2 ·
Topp

Ttotal

(8.1)

where u, v, w1 and w2 are integer constants, Goal and Lost are scores of the home

and opponent teams, Tball is the time for which the ball is under the control of

the home team, Topp is the time for which the ball is in the opponent half of the

field, and Ttotal is the total match time. With a weight w1 of 100, the ratio of

Tball to Ttotal implies which team has possession in the game. The ratio of Topp to

Ttotal is an indication of which team takes the upper hand in the game and the

associated weight (w2) is set to 80. It is observed that the score is indeed not a

stable performance index. Furthermore, the two teams seldom score in the match

due to the rather short period of 600 steps. As a result, the weight attached to the

score difference (v) is set to a relative small value of 10. Since a team may lose
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Figure 8.10: Fitness curve for integer coding method

the game, the second part of Frole can be negative. u is set to 30 and is utilized to

keep Frole non-negative.

In the simulation, the random nature of the soccer competitions brings in some

degree of variation in fitness evaluations. The fitness value of the same chromosome

may not be constant. Different rule bases, though similar, are evolved from different

GA runs with the same coding method. The average values across 50 different runs

for each coding method are depicted as fitness value curves (Figure 8.10 to 8.13), in

which fluctuations are noticed. The fluctuation is especially serious in the “highest

fitness value” curves. However, the trend and property of the evolution process are

still observable.

When the integer coding method is used, the fitness values for each generation

are summarized in Figure 8.10. Both the average fitness value and the highest

fitness value of the whole population cease to improve after 200 iterations. The

average fitness value falls in the range between 100 and 105, while the highest

fitness value is stabilized around 160.

The DNA coding method 1 is used with the upper-limit on the number of fuzzy

rules decoded from an individual set to 100 (Rnum = 100). In other words, each

186



8.4. DNA Coded GA for Robot-Role Assignment

0 50 100 150
100

120

140

160

180

200

H
ig

he
st

 F
itn

es
s 

V
al

ue

Generations

0 50 100 150
80

90

100

110

120

A
ve

ra
ge

 F
itn

es
s 

V
al

ue

Generations

R
num

 = 100

R
num

 = 250

Figure 8.11: Fitness curve for DNA coding method 1

individual represents a fuzzy rule base containing at most 100 rules. The size of the

fuzzy rule base is less than half of the one represented by integer coding method.

In the simulation, the GA process converges around 125 iterations. The average

fitness and highest fitness values are stabilized around 103 and 165, respectively

(Figure 8.11). In the case of Rnum = 250, both the average and highest fitness

converge to a higher value (Figure 8.11). The range of improvement on fitness

value is from 5 to 10.

The same setting of Rnum for DNA coding method 1 is also applied to DNA

coding method 2. The evolutionary process with DNA coding method 2 usually

reaches the convergence to around 140 generations. The final average fitness value

lingers around 110 and the highest fitness value fluctuates slightly around 180

(Figure 8.12). If the Rnum increases to 250, the average and highest fitness curve

raise to the levels around 115 and 185, respectively.

The fitness curves of GAs using three coding methods are compared in Figure

8.13. Rnum is set to 100. The staring points of the fitness curves for three coding

methods are almost equal. Despite of the fluctuations, it is observable that the
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Figure 8.12: Fitness curve for DNA coding method 2

fitness curves with DNA coding 1 reach the same level as the curve with integer

coding does (Figure 8.13), if not slightly higher. Nevertheless, the DNA coding 2

obviously provides the best fitness curves in respect of both the average fitness or

highest fitness.

Performance validation is carried out with the evolved rule bases and the original

rule base through simulation soccer matches. The performance data (the scores,

number of shots, Tball

TTotal
and Topp

TTotal
) of the rule bases from the same coding method

are collected and averaged. The average performance data for each coding method

are compared in Table 8.6.

From the fitness comparison, it seems that DNA coding methods outperform the

integer coding method in this problem, although the size of rule base represented

by a DNA coded chromosome is only 100 rules at most. One important reason for

such a performance is due to the interactions inside the fuzzy rule base. For the

fuzzy rule base discussed here, the fuzzy rules are in fact not independent from each

other. Rules with similar antecedents should also have related consequents. More
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Performance Integer Coding DNA Coding 1 DNA Coding 2

Data Original Evolved Original Evolved Original Evolved

Scores 0.3 1.6 0.2 1.4 0.2 2.0

Number of shots 11.7 18.0 12.6 17.2 10.4 18.8

(Tball/TTotal) 33.7% 66.3% 31.6% 68.4% 23.9% 76.1%

(Topp/TTotal) 36.9% 63.1% 34.9% 65.1% 28.2% 71.8%

Table 8.6: Comparison of simulation match performances

importantly, the results of certain fuzzy rules change the situation in the match field

and in turn trigger certain other rules. In the position dependent integer coding

method, each rule has mapped to a fixed position in the string. The nonlinear

causality between rules results in a nonlinear interaction of characters/codons at

different positions. The fitness of one character/codon at one position may depend

on the value of other characters/codons. This effect is usually referred as epistasis

[155, 156], which may decrease the performance of GA [157, 158]. According to the

schema theorem, GA works well if a string with high fitness can be build from short,

low-order and above-average schemata. Thus, one of the basic requirement of GAs

to be successful is low epistasis of the problem. To this problem, it is justifiable

to assume that a rational schema should contain the characters interacting with

each other. However, if the positions of two characters are far from each other,

the schema will be long and liable to destruction by GA operators. For the fixed

coding method, this problem is unavoidable. But for the context dependent DNA

codings, the rules are not fixed to absolute positions. Those nonlinear related

characters may be moved together during the GA operations, resulting in short

and reasonable schemata. The position-independent parameters in the individual

string in fact alleviate the difficulty caused by epistasis. That is a major advantage

of DNA coding methods.

Meanwhile, both the DNA coding method 1 and 2 have some degree of re-

dundancy in the coding. Referring to Tables 8.3 and 8.5, each indexed codon is

represented by more than one couplets. The result of such a redundancy is that two

individuals displaying the same phenotype (i.e. representing the same fuzzy rule
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Figure 8.13: Fitness curve comparison for the three coding methods

base) may have different genotype (different strings). A crossover between them

may produce offsprings with different phenotype. This feature helps to increase

the population diversity which may be another benefit with DNA coding methods.

Furthermore, the DNA coding method 2 introduces introns into individual

strings. Researchers have observed that introns may lead to considerable improve-

ment in performance of genetic algorithms [148, 154] and genetic programming

[159]. In this work, DNA coding method 2 demonstrates a better performance

than that of DNA coding 1 (Figure 8.13). It seems that the meaningless parts

(introns) in the string play a useful role in absorbing disruption caused by ge-

netic operations. They also provide themselves as building materials which may be

transferred to meaningful codons at any time during GA operations. This is some

kind of enlargement of the searching space covered by current population and also

an increase in the population diversity.

Besides the fitness values, some other parameters related to DNA coding’s per-

formance are also looked into. The fuzzy rule base decoded from an individual

is evaluated in a match lasting for 600 steps. A counter Cfire is set up for each

individual to denote how active the rule base is. In each step, if at least one rule

in the rule base is triggered, the counter is increased by unity. Thus the maximum
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Figure 8.14: The change of Cfire and string length throughout evolution

of Cfire is 600. The counter remains unchanged when none of the fuzzy rules is

fired and the output is determined by the default setting. A bigger value of Cfire

indicates a more active rule base. A fuzzy rule base has to be active enough at

first before taking any effects. In fact, Cfire is related to how many input states

are covered by the fuzzy rule base, which is in turn associated with the size of rule

base and the length of the individual string. Both the average of Cfire and length

of the population are plotted in Figure 8.14 for the DNA coding method 2 with

Rnum as 100.

The initial length for DNA coding chromosomes is set to 500 characters. With

this length, a chromosome contains at most 35 valid fuzzy rules, which implies

a quite small rule base. The average Cfire is about 200, which means the fuzzy

rule base is not active for two-thirds of the time. As the evolution goes on, the

average length of all individuals increases quickly. At the end of evolution, the

average length is around 13000 characters. The chromosome then contains about

6500 two-letter couplets, in which approximately six-sixteenths of them are valid

codons (Table 8.5). As a result, about 6500 × 6
16

× 1
7
≈ 348 valid rules can be

decoded. The rules with duplicated antecedent parts are further filtered. The final
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Figure 8.15: Fitness curve comparison for different Rnum settings

rule base should already reach the limited size of 100 rules. Consequently, the

average Cfire increases steadily from 200 to 460. The rule base becomes more and

more effective as its size increases. The DNA coding allows individual to be of

variable length. That means the size of the encoded fuzzy rule base is also flexible

and can be evolved by GA.

The benefits of the variable size for fuzzy rule base seems not prominent at

first glance. It is obvious that the bigger rule base is always preferred with respect

to the coverage of input states. If the Rnum is not imposed, the size of rule base

surely grow to the maximum of 243 during evolution. However, it seems that the

effectiveness of the rule base is not linear to its size. While the size is limited by

Rnum = 100, the rule base is already active for 76% (460/600) of the time. To

study the influence of the variable Rnum on the GA process, the fitness curves with

different setting of Rnum are depicted in Figure 8.15. While the Rnum is increased
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from 100 to 250, the size of the resultant rule base is more than doubled. However,

the improvements on both the average fitness and highest fitness are just around

2% ∼ 3% (Figure 8.15). A even smaller Rnum of 25 is tested. With such a small

rule base, the decline of fitness curves is only about 12% ∼ 15%.

Such results suggested that not all the rules in the rule base are of the same

importance. Some of them are related to those most crucial input states and thus

dominate the performance of the fuzzy rule base. A compact rule base containing

only those important rules will be more computationally efficient than the complete

rule base covering all the input states. This feature will become more and more

meaningful as the fuzzy rule base getting more complicated and bigger. On the

other hand, it is usually hard to tell which input states are more important at the

design stage. With DNA coding methods, GAs can automatically search for and

optimize the crucial rule base with different size settings. As to the integer coding

method, the input states are attached to absolute positions on strings. Under this

circumstance, GAs can not optimize the fixed structure of the rule base.

8.5 Conclusion

In this chapter, the context dependent DNA like coding methods are discussed and

implemented to the evolution of fuzzy rule base. DNA coding methods are flexible

and easy to use. It can be directly used with the standard genetic operators. Two

types of DNA coding methods, with and without the intron parts, are compared

with the traditional integer coding method. GAs with the three coding methods

are applied to the fuzzy role assignment problem in a robot soccer system.

The results shows that DNA coding methods outperform the integer coding

method in this problem. The context dependent coding can handle the negative

effect of epistasis, which degrades the performance of the position dependent cod-

ing. The redundancy in the DNA coding increases the population diversity. The

DNA coding with intron parts displays an even better performance. It seems that
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the intron parts are helpful in preventing useful schemata from disruption and in-

creasing population diversity. The DNA coded individuals are of variable length.

Such a feature provides GA with the possibility to evolve both the size and the

structure of the fuzzy rule base. As the result, a compact but efficient rule base

can be developed by DNA coded GA.
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Chapter 9

Conclusions and Future Directions

9.1 Conclusions

Following the introductory chapters, an extensive fuzzy behavior based architecture

for multiple robotic system is proposed in Chapter 5. The decomposition of a

system into various simple behaviors in a hierarchy fashion is a promising way for

implementing complex control systems. Such a hierarchy architecture also leads to

a distributed fuzzy control system constructed from simple sub-systems, instead of

a centralized and complex one. The fuzzy behavior based architecture is realized

directly and comprehensively on the actual robot soccer hardware. Encouraging

performance is obtained in the experimentations as well as at robot soccer official

matches. The soccer robots are observed to move with better agility and greater

purpose. Meanwhile, the real world approach poses a lot of practical considerations

and limitations. The results obtained under such conditions can be put into better

perspective.

In Chapter 6, an adaptive tuning method is applied to the fuzzy behavior based

robot soccer system proposed in Chapter 5. Fine tuned by the method outlined in

Chapter 6, fuzzy actions have achieved improvements in terms of less overshoot,

shorter rise-time and shorter settling-time, as well as smaller steady-state error.

The robots as the attacker or defender have shown the desired offensive or defen-

sive behaviors whenever necessary. The team strategy, together with the adaptively
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tuned behaviors and actions, is capable of achieving better performance in a dy-

namic match environment. The proposed mechanism provides certain adaptive

tuning ability to the system for handling deleterious environmental and system

changes. With the feedback data, the system can adjust its fuzzy behaviors to

regain the performance. In comparison with the manual trial and error approach,

the method proposed is more easy to use. Furthermore, the parameter files of

behaviors are able to be loaded on-line, which enable on-line switching of different

pre-defined settings catering to different strategies. However, the adaptive tuning

process is still manually activated, due to the limited computation capacity of the

current hardware setting.

In Chapter 7, genetic algorithm is employed to develop and optimize fuzzy be-

haviors at different levels of the fuzzy behavior based architecture. Although the

original system in Chapter 5 is already well designed, noticeable improvements

were achieved at different levels of the architecture. According to the results of the

simulation and real-world experimentations, the accuracy of primitive behaviors

are obviously enhanced. More skillful behaviors (like shoot to the far-end corner

of the goalie) are developed, as well as a more effective role assignment mech-

anism which embodies the group behavior. It is indeed desirable and useful to

introduce evolutionary algorithms into the fuzzy behavior based multi-robotic sys-

tems. Meanwhile, the evolutionary algorithm provides an efficient way to develop

and optimize a complex multi-robotic system, especially when there is not enough

knowledge of the system for the development in a manual fashion.

Context dependent DNA like coding methods are discussed in Chapter 8. Ge-

netic algorithms with three coding methods, two for DNA coding and one for

integer coding, are implemented to evolve the fuzzy rule base for role assignment

task in the robot soccer system. Some beneficial features of DNA coding meth-

ods are explored. At first, the DNA like coding method is flexible. With different

translation rules, the individual string can be used to represent numeric values, lin-

guistic words, or even structural information. Meanwhile, the compatibility with

standard genetic operators is not compromised. Secondly, the feature of context
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dependency is helpful in dealing with the detrimental impacts of epistasis. Fur-

thermore, the redundancy in the DNA coding increases the population diversity.

The existence of intron parts can decrease the chances of useful schemata being

disrupted and increase the population diversity as well. The last but not the least,

the DNA coded GA can evolve both the size and the structure of the fuzzy rule

base, resulting in a compact but efficient rule base.

9.2 Future Directions

Based on the works in this thesis, the future research can be carried out along the

following directions.

The fuzzy behavior based architecture outlined in Chapter 5 is proposed as

a general control architecture for multiple robots systems. Obviously, it can be

implemented to other multi-robotic systems as well. The architecture itself can

be improved and refined in such applications. Other control methods, such as the

traditional PID control, neural networks or expert systems, can be included to form

a hybrid structure.

The adaptive tuning mechanism in Chapter 6 is manually triggered. Although

the computation power of current system cannot support an extensive on-line mon-

itoring and feedback system, future research in this direction is very meaningful.

Under the current system capacity, it is feasible to set up a rule base for self-

alteration of game strategies and certain crucial behaviors.

As to the evolutionary fuzzy system in Chapter 7, there are also space for

improvement. The refinement on the kinetic model of soccer robot will definitely

improve motion control of robots, both in real world and in simulation. For the

evolution at the strategy level, designing a better fitness function for GA is crucial

for further improvement. On the other hand, co-evolution of related fuzzy behaviors

and fuzzy roles seems to be a promising direction.

The DNA coding methods discussed in Chapter 8 are not limited to encoding
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the fuzzy system. Under the general scheme, DNA coding is not defined by using

the alphabet based on DNA bases, but the features. It is quite suitable to represent

the neural networks in evolutionary-neural systems. On the other hand, applying

the DNA coding methods to the genetic programming will also be an interesting

direction.
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Paul Schwefel, editors, Parallel Problem Solving from Nature - PPSN VII,

pages 665–675, Berlin, 2002. Springer.

[27] J. David Schaffer. Multiple objective optimization with vector evaluated ge-

netic algorithms. In J. J. Grefenstette, editor, Proc. of the First Int. Conf. on

Genetic Algorithms, pages 93–100, Hillsdale, NJ, 1985. Lawrence Erlbaum.

201



Bibliography

[28] Kalyanmoy Deb. Multi-objective genetic algorithms: Problem difficulties

and construction of test problems. Evolutionary Computation, 7(3):205–230,

1999.

[29] P. J. Bentley and J. P. Wakefield. Finding Acceptable Solutions in the Pareto-

Optimal Range using Multiobjective Genetic Algorithms. In P. K. Chawdhry,

R. Roy, and R. K. Pant, editors, Soft Computing in Engineering Design and

Manufacturing, Part 5, pages 231–240, London, June 1997. Springer Verlag

London Limited. (Presented at the 2nd On-line World Conference on Soft

Computing in Design and Manufacturing (WSC2)).

[30] David B. Fogel. Evolutionary algorithms in engineering applications. IEEE

Transactions on Evolutionary Computation, 2(2):72, July 1998.

[31] Carlos A. Coello Coello. Theoretical and numerical constraint-handling tech-

niques used with evolutionary algorithms: A survey of the state of the art.

Computer Methods in Applied Mechanics and Engineering, 191(11–12):1245–

1287, 2002.

[32] Jürgen Branke. Evolutionary algorithms in neural network design and train-

ing – A review. In Jarmo T. Alander, editor, Proc. of the First Nordic

Workshop on Genetic Algorithms and their Applications (1NWGA), pages

145–163, Vaasa, Finnland, 1995. Department of Information Technology and

Production Economics, University of Vaasa.

[33] F. H.F. Leung, H. K. Lam, S. H. Ling, and P. K.S. Tam. Tuning of the

structure and parameters of a neural network using an improved genetic

algorithm. IEEE-NN, 14:79– 88, Jan 2003.

[34] Paul G. Harrald and Mark Kamstra. Evolving artificial neural networks to

combine financial forecasts. IEEE Transactions on Evolutionary Computa-

tion, 1(1):40–52, April 1997.

[35] Kumar Mehta and Siddhartha Bhattacharyya. Combining rules learnt using

genetic algorithms for financial forecasting. In 1999 Congress on Evolutionary

Computation, pages 1245–1252, Piscataway, NJ, 1999. IEEE Service Center.

202



Bibliography

[36] Lawrence Davis, David Orvosh, Anthony Cox, and Yuping Qiu. A genetic

algorithm for survivable network design. In Stephanie Forrest, editor, Proc.

of the Fifth Int. Conf. on Genetic Algorithms, pages 408–415, San Mateo,

CA, 1993. Morgan Kaufmann.

[37] H. G. Sandalidis, P. P. Stavroulakis, and J. Rodriguez-Tellez. An efficient

Evolutionary Algorithm for Channel Resource Management in Cellular Mo-

bile Systems. IEEE Transactions on Evolutionary Computation, 2(4):125,

November 1998.

[38] Gibilisco Stan, editor. The McGraw-Hill Illustrated Encyclopedia of Robotics

and Artificial Intelligence. McGraw-Hill Inc., 1994.

[39] Robin R. Murphy. An Introduction to AI Robotics. MIT Press, 2000.

[40] Robert K. Lindsay, Bruce G. Buchanan, Edward A. Feigenbaum, and Joshua

Lederberg. Applications of Artificial Intelligence for Organic Chemistry: The

DENDRAL Project. McGraw-Hill, New York, 1980.

[41] B. G. Buchanan and E. H.(eds) Shortliffe. Rule-based Expert Systems: The

MYCIN experience of the Stanford Heuristic Programming Project. Addison-

Wesley (Reading MA), 1985.

[42] Ronald C. Arkin. Behavior-Based Robotics. The MIT Press, Cambridge,

MA, 1998.

[43] R.A. Brooks. A robust layered control system for mobile robot. IEEE Journal

of Robotics and Automation, RA-2, no.1:14–23, 1986.

[44] Ronald C. Arkin. Towards Cosmopolitan Robots: Intelligent Navigation in

Extended Man-made Environments. PhD thesis, University of Massachusetts,

1987.

[45] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous

architecture for controlling real-world mobile robots. In Proceedings of the

Tenth National Conference on Artificial Intelligence (AAAI-92), pages 809–

815, San Jose, CA, USA, July 1992. AAAI Press.

203



Bibliography

[46] D. M. Lyons and A. J. Hendricks. Planning, reactive. In Encyclopedia of

Artificial Intelligence, pages 1171–1181. John Wiley, 2nd edition, 1992.

[47] G.J. Klir and T.A. Folger. Fuzzy sets, uncertainty, and information. Prentice

Hall, Eaglewood Cliffs, N.J., 1992.

[48] K.M. Passino and S. Yurkovich. Fuzzy control. Addison-Wesley, Menlo Park,

California, 1998.

[49] Z. Wasik and A. Saffiotti. A fuzzy behavior-based control system for ma-

nipulation. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS), pages 1596–1601, Lausanne, CH, 2002.

[50] Andrea Bonarini, G. Invernizzi, T.H. Labella, and M. Matteucci. An archi-

tecture to coordinate fuzzy behaviors to control an autonomous robot. Fuzzy

sets and systems, 134, no.1:101–115, 2003.

[51] A. Bonarini and M. Restelli. An architecture to implement agents co-

operating in dynamic environments. In Proceedings of AAMAS 2002 - Au-

tonomous Agents and Multi-Agent Systems, pages 1143–1144, New York, NY,

2002.

[52] E. Mendelson, O. Nayer, S. Berman, and Y. Edan. Behavior-based control of

multi-robot assembly/palletizing systems. In Proceedings of the 5th Biannual

World Automation Congress, 2002., pages 1–6, 2002.

[53] M.F. Selekwa and E.G. Collins. Centralized fuzzy behavior control for robot

navigation. In 2003 IEEE International Symposium on Intelligent Control.,

pages 602–607, 2003.

[54] D. Driankov and A. Saffiotti. Fuzzy logic techniques for autonomous vehicle

navigation. Physica-Verlag, Heidelberg, 2001.
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