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Abstract 

 
The thesis addresses the problem of mobile robots navigation in various cluttered 

environments and proposes methodologies based on a soft computing approach, 

concerning to three main techniques: Potential Field technique, Genetic Algorithm 

technique and Fuzzy Logic technique. The selected techniques along with their hybrid 

models, based on a mathematical support, solve the three main issues of path planning 

of robots such as environment representation, localization and navigation.  

The motivation of the thesis is based on some cutting edge issues for path 

planning and navigation capabilities, that retrieve the essential for various situations 

found in day-to-day life. For this purpose, complete algorithms are developed and 

analysed for standalone techniques and their hybrid models. In the potential field 

technique the local minima due to existence of dead cycle problem has been 

addressed and the possible solution for different situations has been carried out. In 

fuzzy logic technique the different controllers have been designed and their 

performance analysis has been done during their navigational control in various 

environments. Firstly, the fuzzy controller having all triangular members with five 

membership functions have been considered. Subsequently the membership functions 

are changed from Triangular to other functions, e.g. Trapezoidal, Gaussian functions 

and combinational form to have a more smooth and optimised control response. It has 

been found that the fuzzy controller with all Gaussian membership function works 

better compared to other chosen membership functions. Similarly the proposed 

Genetic algorithm is based on the suitable population size and fitness functions for 

finding out the robot steering angle in various cluttered field.   

At the end hybrid approaches e.g. Potential-Fuzzy, Potential-Genetic, Fuzzy-

Genetic and Potential-Fuzzy-Genetic are considered for navigation of multiple mobile 

robots. Initially the combination of two techniques has been selected in order to model 

the controllers and then all the techniques have been hybridized to get a better 

controller. These hybrid controllers are first designed and analysed for possible 

solutions for various situations provided by human intelligence. Then computer 

simulations have been executed extensively for various known and unknown 

environments. The proposed hybrid algorithms are embedded in the controllers of the 
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real robots and tested in realistic scenarios to demonstrate the effectiveness of the 

developed controllers.  

Finally, the thesis concludes in a chapter describing the comparison of results 

acquired from various environments, showing that the developed algorithms achieve 

the main goals proposed by different approaches with a high level of simulations. The 

main contribution provided in the thesis is the definition and demonstration of the 

applicability of multiple mobile robots navigations with multiple targets in various 

environments based on the strategy of path optimisation.   
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1.  Introduction  
 
This chapter gives motivations for conducting research in the fields of mobile robot navigation, a 
brief overview of the problem to be tackled and its application domains. A brief summary of the 
thesis contributions along with the thesis structure in the form of a series of short chapter 
abstracts can be found at the end of this introductory chapter. 
 

 

1.1.  The background 

 
The problem of motion planning in presence of obstacles has been extensively studied 

over the last decade. The main task of path planning for autonomous robot manipulators 

is to find an optimal collision-free trajectory from an initial to a final configuration. Since 

1960’s the research on mobile robots have been an emerging area in the field of 

automation and development. A vision-guided autonomous mobile machine named 

Shakey, is one of the earliest mobile robots designed in the year 1966 [1] at the Stanford 

Research Institute. Until recently, work has concentrated on the control of individual 

robots. From last two decades, there has been a great interest among scientific community 

to focus towards the co-ordination of multiple mobile robots. This interest has stemmed 

both from practical considerations that multiple robots are able to handle tasks that 

individual machines cannot, for instance carrying large, bulky and heavy loads and from a 

desire to create artificial systems that mimic nature in particular by exhibiting some of the 

primary behaviours observed in human and other animal societies. Many important 

contributions to this problem have been made in recent years. The design goal for path 

planning is to enable a mobile robot to navigate safely and efficiently without collisions 

to a target position in an unknown and complex environment. 

The navigation strategies of mobile robots can be generally classified into two 

categories, global path planning and local reactive navigation. The former such as 

artificial potential fields by [2] connectivity graphs or cell decomposition [3] is done 

offline, and the robot has complete prior knowledge about the shape, location, orientation, 

and even the movements of the obstacles in the environment. Some important 

contributions for navigation of multiple mobile robots in various environments have been 

reported in recent years [4-8]. The dynamic analyses of flexible robotic manipulators have 

been reported by [9] and [10].   
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Many artificial intelligence (AI) techniques have been adopted to tackle this problem 

[11], such as fuzzy logic techniques [12-14], genetic algorithms, potential field methods 

[15,16], neural networks approaches [17,18] and even hybrid techniques [19,20]. Each 

method has its own advantage over others in certain aspects. Generally, the main 

difficulties for robot-path-planning problem are computational complexity, local optimum 

and adaptability. Researchers have always been seeking alternative and more efficient 

ways to solve the problem. It is obvious that path planning can be viewed as an 

optimization problem (e. g., shortest distance) under certain constraints (e.g., the given 

environment with collision-free motion). However, in all such studies, a limited effort 

was made to find an optimal controller for mobile robots navigation with multiple targets.  

Present work introduces the algorithms which integrates the intelligent properties of 

potential field, genetic algorithm and fuzzy logic behaviour to develop a novel solution 

for multiple robots navigation for multiple targets seeking behaviour. It consisted of 

providing a general and well designed method for the derivation of input–output data to 

construct a hybrid controller that can be used by the robots to guide its navigation in 

presence of obstacles. The devised method has also accounted for collision-free paths and 

reduction of travel time while lessening the number of controller variables and hence 

structure. The noted superiority of the algorithm can provide a great help in building good 

hybrid models without the necessity of putting a great deal of effort in obtaining highly 

accurate and a huge number of data points. These controllers of different combinations 

are first designed and analyzed for possible solutions for various situations.  Then 

computer simulations have been executed for various known and unknown environments. 

Finally the proposed algorithms are embedded in the controllers of the real robots to 

demonstrate the effectiveness of the developed controllers. The hybrid algorithm using 

Potential-Genetic-Fuzzy technique has been found advantageous over other chosen stand 

alone techniques in all these efficiency aspects and these advantages have respected well 

on the robot trajectories in terms of their lengths and smoothness of motion by the robot 

to reach destination. 

 

1.2.  Needs statement 

 
This chapter cater to sound principles of software design, development and testing of 

multiple mobile robots using the above mentioned techniques (through window based 
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MATLAB software) in order to facilitate the integration of different capabilities. We have 

compared our simulation results with other models in similar environments and same has 

been implemented through real situation using prototype robots. However, the experience 

of simulation results and experimental exercises have led to certain key insights in 

research finding for the particular problem of local minima incurred during the navigation 

in a large-scale systems having dead end boundary, especially with respect to mixed 

hardware- and software-intensive simulation. Further, in order to substantiate the work  in 

a more precise manner the same multiple robots has been studied using search 

optimization technique such as genetic algorithm for optimum trajectories. Initially it was 

tried for multiple robots with single target and subsequently the same system was used for 

multi-robot with multi-targets systems. The details have been briefly described in the 

succeeding sections. 

 

1.3.  Objectives and scope of the work 

 
The prime objective of this research is to explore the application of artificial intelligence 

(AI) techniques for navigational control of multiple mobile robots. In particular, the 

research will seek to determine artificial intelligence techniques such as fuzzy logic, 

genetic algorithm (GA), artificial potential fields (APF) and hybrid techniques for 

implementing navigation algorithms for safe/efficient navigation of multiple mobile 

robots in a highly cluttered environment. In this particular application, the local minima 

problem due to existence of dead end cycle has been solved by redefining the repulsive 

potential field function. In order to avoid inter robot collision each robot incorporates a 

set of collision prevention rules implemented as a Petri Net model in its controller. This 

application also dealt with the multiple targets case to show the effectiveness and 

improved performance of the developed controller navigation scheme. This investigation 

is justifiable and timely, because the task of controlling the safe movements of many 

robots is complex and thus requires a higher degree of “intelligence”. The intelligent 

systems techniques can be realized efficiently in hardware and software using micro 

controllers, sensors and programming tools.  

 
The methodologies followed in the research are as follows: 

 To develop a fuzzy logic based navigation techniques for multiple mobile robots. 
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 To develop an artificial potential field based controller for controlling the 

movement of several robots simultaneously. 

 To develop a genetic algorithm based navigation techniques for optimal or near 

optimal path between the start to goal configuration. 

 To model hybrid potential-fuzzy technique, potential- genetic technique, genetic-

fuzzy technique and potential-fuzzy-genetic techniques for realising the better 

navigational response. 

 To verify the effectiveness and efficiency of the proposed developed techniques 

via simulation studies as well as real time experiment in various environments.  

 

1.4.  Outline of the thesis 
 

The thesis is structured as follows: 

 Chapter 1 introduces mobile robot navigation and basics of literature survey 

based on algorithms applied to path planning problems.  

 Chapter 2 is devoted to a detailed literature survey on mobile robot navigation 

and intelligent systems techniques.  

 Chapter 3 introduces the analysis of potential field based techniques in context of 

motion planning architecture of mobile robots. The general structure of obstacle 

avoidance and target seeking behaviour of the above proposed control scheme 

along with conceptual diagram of inter-robot collision avoidance module using 

Petri- net modelling has been explained in this chapter. 

 Chapter 4 describes the analysis of Genetic Controller for mobile robot 

navigation by keeping in view of path optimisation. A novel method has been 

adopted for path optimisation by suitably designing the fitness function. This 

fitness function is being analysed and implemented in the real robot in order to get 

robust control architecture for mobile robot navigation. 

 Chapter 5 deals with the analysis of a proposed fuzzy logic technique for 

navigation of multiple mobile robots by suitably designing different membership 

function distributions in order to get an efficient path planning strategy. The 

developed strategy takes into account the reference motion, direction, distances 
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between the robots and obstacles, distances between the robots and targets 

heuristically and refined later to find the optimum steering angle. 

 Chapter 6 deals with navigation using four different hybrid techniques. They are 

as follows: 1) potential-fuzzy technique, 2) potential- genetic technique, 3) 

genetic-fuzzy technique and 4) potential-fuzzy-genetic techniques. The detail 

controller design, analysis and implementation with real robot to fit in various 

environments have been described. The simulation results have been 

demonstrated, analysed and compared in order to illustrate the ability of the 

proposed control scheme to manage the navigation of mobile robots in different 

situations.   

 Chapter 7 deals with the navigation of robots remotely controlled using the 

techniques described in the previous chapters. 

 Chapter 8 conclusions are drawn on the basis of analysis, simulation and 

experimental results and ideas for further work are suggested and some further 

research scopes are suggested.  
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2.  Literature Review  
 

This chapter provides information about the relevant work and the state-of-the-art related 
to the area of mobile robot navigation focussing on intelligent systems techniques. The 
incremental development for path planning and control of mobile robot navigation from 
past decades to the recent has been addressed here. 
 

 

2.1.  The background  

 
The path planning and control of mobile robots in a dynamic environment has been an 

area of great interest to many AI researchers. In the real world of robot applications, a 

mobile robot should be able to operate in an unknown dynamic environment. Therefore, 

solving the motion planning problem is one of the vital tasks in navigation of an 

autonomous mobile robot. The path planning methods are based on knowing a priori 

complete information about the robot environment. The complete information about the 

robot environment is passed through the algorithm first and then, the path planner is 

launched to create a path or route from the robot’s start to its target configuration. In fact, 

these methods have carried out offline in completely known environments. On the other 

hand, the Robot navigation algorithms tried to find a route online, without having a priori 

information about the robot’s environment. Therefore, these kinds of algorithms that take 

the advantages of such information usually provided by ultrasonic, infrared, vision, laser 

range finder, proximity sensors and bumper switches are commonly known as Robot 

Navigation Algorithms.  

 
Recently, these algorithms have become more interesting for the robot control 

programmers; although, they have some limitation and restrictions too. For example, it is 

difficult to force a robot in a completely cluttered environment that cannot be described as 

a mathematical model and pass these information to a Robot Navigation Algorithm. So, 

inspired from the human intelligence, fuzzy logic neural network, genetic algorithm and 

potential field approaches have been deployed in navigation of mobile robots in many 

recent algorithms. However, the incorporation of an integral procedure to frame the 

hybrid controller is becoming an increasing necessity for autonomous robots capable of 

moving along in the industrial environments. Each method has its own advantage over 
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others in certain aspects. Generally, the main difficulties for robot-path-planning problem 

are computational complexity, local optimum, and adaptability. Researchers have always 

been seeking alternative and more efficient ways to solve the problem. 

 

2.2.   Navigation of mobile robots  
 

Since last few decades, the research communities in mobile robotics have paid lot of 

attentions to the development of different control architectures for navigation of mobile 

robots. For this, mainly two principle designs have been adopted. One is called the 

functional or horizontal decomposition [21] and the other is the behavioural or vertical 

decomposition [22] as shown in Fig. 2.1 & Fig. 2.2. The former approach is sequential 

and involves modelling and planning. The latter approach is parallel and requires 

exploration and map building. Both approaches use many distinct sensory inputs and 

computational processes. Decisions such as turn left, turn right, run or stop are made on 

the basis of those inputs [23]. 

 

 
 

Fig.  2.1.  Flow diagram of the horizontal decomposition method for navigation of mobile robot.  
 

Navigation for mobile robots can be well defined in mathematical (geometrical) 

terms. It involved many distinct sensory inputs and computational processes. Thus, it is 

necessary first to define what navigation is and what the function of a navigation system 

is. Levitt and Lawton [24] tried to define the navigation by following three questions: (a) 
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“Where am I ?”, (b) “Where are other places relative to me ? ” and (c) “How do I get to 

other places from here ?”. Underlying question (a) is the problem of recognising and 

identifying the particular place and questions (b) and (c) focused the point, how to get rid 

of the obstacle and march towards goal respectively. 

 

 
 

Fig.  2.2.  Flow diagram of the vertical decomposition method for navigation of mobile robot. 
 

An autonomous mobile robot is a system capable of interpreting, perceiving, 

executing and realising a task in an environment without any outside help. To accomplish 

this, the robot must first be able to interpret and perceive its environment, then analyse 

and model it. Next using this information, a navigation algorithm must allow the robot to 

determine a suitable trajectory with its available information. Finally, a control process 

must be able to assume that the robot moves correctly within its environment. In order to 

move safely in a work place and to detect the nearby object, the mobile robot must have a 

way to perceive its environment. Researchers mainly use devices such as laser, sonar, 

vision, infrared [25,26] or a heterogeneous sensor systems.  

 
Using the environmental information perceived at each instant as well as data from 

previous instants, a strategy should be pursued to enable the robot to reach its target 

position without colliding the obstacles. Keeping in view of the various research 

publications in the recent years in this field, attempt has been made to explore three main 
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techniques such as Potential Field technique, Genetic Algorithm technique, and Fuzzy 

Logic technique along with some other techniques viz. Neural Network technique, Grid 

Based technique, Heuristic technique, Adaptive Navigation technique, Virtual Impedance 

technique, and Divide and Conquer techniques and their hybrid models have been 

discussed. Those techniques together with the different sensors employed [27,28] have 

been reviewed below. It is realized that the research for navigation of mobile robot are not 

matured till date and has to be modified in many respects. Research may be done in 

finding out the optimal navigational technique for several mobile robots with multiple 

targets. Technical details may be found out to achieve various interactive perceptions 

between the robots and to recognise the obstacles ahead.  

 

2.3.  Different techniques used for navigation of mobile robots  

 
Since last three decades researchers have focussed on various techniques for control of 

mobile robots. The different techniques incorporated for the navigation of mobile robots 

are summarised below.  

 

2.4.  Potential field technique  
 
2.4.1.  Introduction 
 
The potential field approach was first introduced to the field of navigation of mobile robot 

by A. I. Khatib [29] around 1979. It is based on the metaphor that the goal should attract 

the robot towards it, and that the obstacles should repel the robot from them. The 

important variables in potential field navigation are the position of the robot, position of 

the goal point and positions of any obstacles. The total force exerted on the robot is equal 

to the vector sum of the attractive and repulsive forces. The attractive force is 

proportional to the distance from the goal point and the repulsive force is inversely 

proportional to the distance from the obstacle. Combining these two forces upon the robot 

produces a net resultant force that moves the robot towards the goal and away from 

obstacles simultaneously as shown in Fig. 2.3.   

 
This technique can be used in either a continuous or discrete form and is suitable for 

online navigation. It is computationally cheap (both in terms of computing the function to 

represent the potential field, and in terms of computing the desired direction for the agent 
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at positions on the potential field). Unfortunately, the basic technique is also incomplete 

and non-optimal, and in fact it is likely to fail on anything other than a trivial environment 

containing a few convex obstacles. Arbitrary obstacle shapes can be represented by this 

technique. Many researchers have used potential field techniques for navigation of the 

mobile robots, the incremental improvement and their look falls are highlighted below.  

 

 
 
Fig.  2.3.  Example of a potential field approach for mobile robot navigation.  
 

2.4.2. Potential field technique for mobile robot navigation  

 
Potential field technique is rapidly gaining popularity in navigation and obstacle 

avoidance applications for mobile robots because of its elegant mathematical analysis and 

simplicity. The potential field approach uses a scalar function called the potential 

function. It has a minimum value, when the robot is at the goal configuration and has a 

high value on obstacles. Anywhere else, the function slopes down towards the goal 

configuration, so that the robot can reach the target by following the negative gradient of 

the potential field. The high value of the potential field prevents the robot going near the 

obstacles. Potential field based navigation has been shaped by engineers for robot 

navigation. A chronology of important and recent publications in potential field based 

mobile robot navigation is given in terms of landmark papers as follows:  

 
In 1978, Khatib published his first paper with La Maitre [30] to suggest a need for a 

computationally lean yet flexible control technique for robots in a cluttered environment 

and posits a potential fields approach. In the year 1986, Khatib published the landmark 

journal paper, “Real Time Obstacle Avoidance for Manipulators and Mobile Robots” [2], 
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that is widely recognised as the start of mainstream research in this field. The approach 

faces several problems though, particularly the local minimum problem. A year later in 

1987, Koditschek presents a landmark paper containing the minimum-free navigational 

potential field approach [31]. This is followed up by other papers by Koditschek et al. in 

1989 and 1992 [32, 16] improving his technique. By 1990, most of the research into 

Khatib's original heuristic model of potential fields has stopped, with hybrid approaches 

and discrete potential field approaches having been the best practical efforts at 

overcoming local minima. Latombe [33] published the most significant work in discrete 

technique. In 1992 attempts were made to try and make the navigational field approach 

more general, by Connolly et al. [34] and Kim and Khosla [35].  

 
As early as 1991, doubts are being expressed as to whether the potential field method 

can ever be made to work [36], and by 1993, most of the research into variations of the 

navigational potential fields approach has been stopped, without managing to overcome 

key problems such as computational cost, inability to cope with complex environments or 

the limitation to offline navigation. After 1993, there were no more major historical 

breakthroughs in this field, but rather there was a path of research focused on applications 

of potential fields in particular niches of robotics and on making small modifications to 

existing work to try and incrementally improve, rather than revolutionise the field. The 

main areas of work were: hybridising potential fields with some other mechanism with 

potential fields being used to provide continuous trajectories [37- 39]; slightly improving 

upon the computational costs of the potential field approach [40]; or re-applying potential 

fields to more complicated problems than basic online navigation, i.e. multiple agents 

[41- 43] or navigation under non-holonomic constraints [44- 46]. Since the mid 1990s, 

potential fields have been found in lecture notes and books about navigation, but no 

revolutionary work has taken place - such as novel types of approach to the basic problem 

of navigation, or novel approaches to overcome the local minimum problem. Instead, 

small revisions are being made to existing approaches that have been around since the late 

1980s and early 1990s.  

 
After that Borenstein et al. [47] and Koren et al. [36] have developed a real‐time 

obstacle avoidance approach for mobile robots. The navigation algorithm takes into 

account of dynamic behaviour of a mobile robot and solves the local minimum trap 

problem. The repulsive force is much larger than the attractive force being considered by 
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them. In other words, the target position is not a global minimum of the total potential 

field. Therefore the robot cannot reach its goal due to the obstacle nearby. Garibotto et al. 

[48] have proposed a potential field approach for local path planning of a mobile robot in 

telerobotics context, i.e. with the presence of a human operator in the control loop at a 

supervisory level. Kim et al. [35] have developed a new function in artificial potential 

field by using harmonic functions that eliminate local minima for obstacle avoidance 

problem of a mobile robot in a known environment. Rimon et al. [49] and Koditschek 

[31] have presented a new methodology for exact robot motion planning and control 

unifying kinematic path planning problem and the lower level feedback controller design. 

They validate their results in simulation mode. Guldner et al. [50] have discussed a 

suitable control for tracking the gradient of an artificial potential field. However such 

functions are usually plagued by local minima. Al‐Sultan et al. [51] have introduced a 

new potential function for path planning that has the remarkable feature of no local 

minima.  

 
Yun et al. [52] have analysed a wall following action using potential field based on 

motion planning method. The new algorithm switches to a wall following control mode 

when the robot falls into local minima. They implemented the new algorithm on a Nomad 

200 mobile robot. They have demonstrated simulation and experimental results to 

validate the usefulness of their method. Chuang et al. [53] have presented analytical 

tractable potential field model of free space. They have used Newtonian potential function 

for collision avoidance between object and obstacle. Sekhawat et al. [54] have developed 

a technique based on holonomic potential field taking into account the nonholonomic 

constraints of the system. Liu et al. [55] have presented a navigation algorithm, which 

integrates virtual obstacle concept with a potential‐field‐based method to maneuver 

cylindrical mobile robots in unknown environments. Their study focuses on the real‐time 

feature of the navigation algorithm for fast moving mobile robots. They mainly consider 

the potential‐field method in conjunction with virtual obstacle concept as the basis of their 

navigation algorithm. They have presented their results in simulation and experiment 

modes. 

 
Wang et al. [56] have presented a new artificial potential field method for path 

planning of non‐spherical single‐body robot. The optimal path problem is calculated as 

per the heat flow with minimal thermal resistance. Ren et al. [57] have investigated the 
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inherent oscillation problem of potential field methods (PFMs) in the presence of 

obstacles and in narrow passages. These situations can cause slow progress and system 

instability in implementation. To overcome these two problems, they have proposed a 

modification of Newton’s method. The use of the modified Newton’s method greatly 

improves system performance when compared to the standard gradient descent approach. 

They have validated their technique by comparing the performance with the gradient 

descent method in obstacle‐avoidance tasks. Xi‐yong et al. [58] have presented a robot 

navigation algorithm with global path generation capability. Their algorithm prevents the 

robot from running into local minima. Simulation results show that the algorithm 

proposed by the author is very effective in complex obstacle environments. Chengqing et 

al. [59] have presented a navigation algorithm, which integrates virtual obstacle concept 

with a potential‐field‐based method to maneuver cylindrical mobile robots in unknown or 

unstructured environments. Simulation and experiments of their algorithm shows good 

performance and ability to overcome the local minimum problem associated with 

potential field methods.  

 
Im et al. [60] have proposed a local navigation algorithm for mobile robots that 

combines rule‐based and neural network approaches. First, the Extended Virtual Force 

Field (EVFF), an extension of the conventional Virtual Force Field (VFF), implements a 

rule base under the potential field concept. Second, the neural network performs fusion of 

the three primitive behaviours generated by EVFF. Finally, evolutionary programming is 

used to optimise the weights of the neural network with an arbitrary form of objective 

function. Furthermore, a multi network version of the fusion neural network has been 

proposed that lends itself to not only an efficient architecture but also a greatly enhanced 

generalization capability. The global path environment has been classified into a number 

of basic local path environments to which each module has been optimised with higher 

resolution and better generalization. These techniques have been verified through 

computer simulation under a collection of complex and varying environments.  

 
Tsourveloudis et al. [61] have used an electrostatic potential field (EPF) path planner, 

which combined with a two‐layered fuzzy logic inference engine and implemented for 

real‐time mobile robot navigation in a 2‐D dynamic environment. The first layer of their 

fuzzy logic inference engine performs sensor fusion from sensor readings into a fuzzy 

variable, collision, providing information about possible collisions in four directions, 
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front, back, left, and right. The second layer guarantees collision avoidance with dynamic 

obstacles while following the trajectory generated by the electrostatic potential field. 

They have tested their proposed approach experimentally using the Nomad 200 mobile 

robot. The potential field approach have been used by Cosio et al. [62] which allow for 

avoidance of large or closely spaced obstacles, through the use of auxiliary attraction 

points with adjustable force strength and distance to the goal. A genetic algorithm has 

been used for optimisation of the force intensity parameters of the repulsion and attraction 

cells, as well as the position parameter of the auxiliary attraction points. Their scheme 

reported constitutes an effective strategy for autonomous robot navigation. McFetridge et 

al. [63] have presented a methodology for robot navigation and obstacle avoidance. Their 

approach is based on the artificial potential field (APF) method, which is used for 

obstacle avoidance with fuzzy logic technique. They have presented simulation results 

demonstrating the ability of their developed algorithm to perform successfully in simple 

environments.  

 
Vadakkepat et al. [64] have proposed Evolutionary Artificial Potential Field (EAPF) 

for real‐time robot path planning. The artificial potential field method is combined with 

genetic algorithms, to derive optimal potential field functions. Their proposed 

Evolutionary Artificial Potential Field approach is capable of navigating robot situated 

among moving obstacles. Fitness functions like, goal‐factor, obstacle‐factor, 

smoothness‐factor and minimum‐path length factor are developed for the Multi‐Objective 

Evolutionary Algorithm (MOEA) selection criteria. Simulation results showed that their 

proposed methodology is efficient and robust for robot path planning with non‐stationary 

goals and obstacles. Ratering et al. [65] have proposed hybrid potential field method to 

navigate a robot in which the environment is known. They have tested their techniques in 

real as well as simulated mode.  

 
An algorithm based on an artificial potential field and hierarchical cell decomposition 

technique has been developed by Hou et al. [66] to solve the path finding problem for a 

mobile robot. The complete map of the workspace including obstacle locations has been 

assumed to be known a priori. The basic cell structure used for decomposition is a 

hexagon. Their artificial potential field is based on an attractive force from the goal 

position and repelling forces from the obstacles. They have also presented the computer 

simulations for various obstacles scenarios.  
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The local path planning by Cha et al.[67] is about directional weighting method 

based on configuration space method and potential approach method. Their directional 

weighting method decided the heading direction of the mobile robot by estimating the 

attractive resultant force. The heading direction enables the mobile robot to approach the 

goal through shortest path, without any collision with surrounding obstacles. They have 

estimated the effectiveness of their directional weighting method for real time mobile 

robot by computer simulation and experiment in a complex environment. Aisultan et al. 

[68] have discussed about the path planning of mobile robot by using potential function. 

They have presented the simulation using a point mobile robot in an environment with 

smooth obstacles. They have also given experimental evidence of their theory developed. 

Shkel et al. [69] have considered the case of a point-mass mobile robot operating in a 

planner environment with unknown stationary obstacles of arbitrary shapes. Based on the 

velocity and sensing data, the robot continuously plans its collision free motion based on 

canonical solutions. Each of which presents a time optimal path within the robot’s sensing 

range. Their simulation results demonstrate the performance of the algorithm.  

 
Pradhan et al. [70] described a modified potential field method for robots navigation. 

The developed potential field function takes care of both obstacles and targets. The final 

aim of the robots is to reach some pre-defined targets. The new potential function can 

configure a free space, which is free from any local minima irrespective of number of 

repulsive nodes (obstacles) in the configured space. There is a unique global minimum for 

an attractive node (target) whose region of attraction extends over the whole free space. 

Simulation results show that the proposed potential field method is suitable for navigation 

of several mobile robots in complex and unknown environments.  

 
Jean et al. [71] have used navigation of mobile robot using potential field method. 

Their proposed approach contributes in eliminating the existing problems of motor 

schema such as trap situations due to local minima, no passage between closely spaced 

obstacles, oscillations in presence of obstacles and oscillations in narrow passages. 

Masoud [72] has explored the construction of a decentralized traffic controller for a large 

group of agents sharing a workspace with stationary forbidden regions using the potential 

field approach. They have given simulation results for verification of the theory 

developed. Mbede et al. [73] have focused on autonomous motion planning of 

manipulators in known environments and with unknown dynamic obstacles using 
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potential field method. Tsourveloudis et al. [61] have discussed about electrostatic 

potential field (EPF) path planner in combination with a two-layered fuzzy logic 

inference engine. Their proposed approach was experimentally tested using the “Nomad 

200” mobile robot. Cosio et al. [62, 74] have presented a new scheme for autonomous 

navigation of a mobile robot, based on improved artificial potential fields in which 

multiple auxiliary attraction points have been used to allow the robot to avoid large or 

closely spaced obstacles. They have conducted the simulation experiments for verification 

of their theory.  

 
Huang et al. [75] have proposed a new approach for vision-guided local navigation, 

based upon a model of human navigation. Their approach for target finding uses the 

relative headings to the goal and to obstacles, the distance to the goal and the angular 

width of obstacles, to compute a potential field over the robot heading. Wachter et al. [76] 

have presented a video which is the results of an effort to adopt APF methods for high-

speed, dynamic, non-holonomic robots. The video describes the experimental test bed: a 

fleet of inexpensive 4-wheel drive skid-steered robots called “Dynabots” capable of 

speeds up to 10 m/s. These robots fuse GPS and inertial measurement to estimate their 

own state. Jing et al. [77] have investigated the inherent oscillation problem of potential 

field methods (PFMs) in presence of obstacles and in narrow passages. They have 

validated their technique by comparing its performance with different potential models by 

changing different parameters. Tsuji et al. [78] have proposed a new trajectory generation 

method that allows full control of transient behaviour, namely, time-to-target and velocity 

profile based on the artificial potential field approach for a real-time motion-planning 

problem of robots. Apart from the above literature review, G. A. based navigational 

technique for control of mobile robots is also discussed below. 

 

2.5.  Genetic algorithm technique  

 
2.5.1.  Introduction 

 
Motion planning is an important aspect in the field of mobile robotics. Motion planning is 

to find a suitable collision-free path for a mobile robot to move from a start configuration 

to target configuration in an environment consisting of obstacles. In course of motion 

planning, very often this path is highly desirable to be optimal or near-optimal with 
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respect to time, distance, energy and smoothness. Distance is a commonly adopted 

criterion.  

 
It is obvious that path planning can be viewed as an optimization problem (e. g., 

shortest distance) under certain constraints (e.g., the given environment with collision-

free motion). Since the appearance of genetic algorithms (GA) in 1975 [79], GAs have 

been used in solving many optimization problems successfully. GA is stochastic search 

technique analogous to natural evolution based on the principle of survival of the fittest. 

The potential solutions of a problem are encoded as chromosomes, which form a 

population. Each individual of the population is evaluated by a fitness function. A 

selection mechanism based on the fitness is applied to the population and the individuals 

strive for survival. The fittest ones have more chance to be selected and to reproduce 

offspring by means of genetic transformations such as crossover and mutation. The 

process is repeated and the population is evolved generation by generation. After many 

generations, the population converges to solutions of good quality, and the best individual 

has good chance to be the optimal or near optimal solution. The feature of parallel search 

and the ability of quickly locating high performance region [80] contribute to the success 

of GAs on many applications. 

 

2.5.2.  Genetic algorithm technique for mobile robot navigation 
 

Since last few decades robot path planning has been an emerging area, and many 

techniques have been adopted to tackle this problem.  Researchers have always been 

seeking alternative and more efficient ways to solve the problem. In the recent years 

many researchers have used Genetic Algorithm for navigational path optimisation of 

mobile robots which are described below.  

 
The article by Merchán et al. [81] is based on genetic algorithm (GA) for 

navigational behaviors of an autonomous robot. They presented a method to adapt basic 

reactive behaviors using a genetic algorithm. In order to test the rules obtained in each 

generation of the genetic evolution process, a real robot has been used. They have shown 

their results numerically. Ming et al. [82] have used genetic algorithm for path planning 

of mobile robot. They have used this method to adjust the membership functions 

associated with the linguistic labels that defined the variables of a rule based control 

system. Their designed control system has allowed mobile robot to avoid unexpected 
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obstacles in an unknown environment. Noguchi et al. [83] have developed a path for 

agricultural mobile robot using genetic algorithm. They have optimised the time series of 

the steering angle and created the optimal work path for the mobile robot. Joo et al. [84] 

have discussed about Genetic Algorithm (GA) to produce a model for navigation control 

of a mobile robot. The validity of their result has been demonstrated by experiment. 

Genci et al. [85] have implemented an extended multi-population genetic algorithm 

(EMPGA), for navigation of an autonomous intelligent agent. Their algorithm tries to 

distribute the number of individuals among sub populations as different strategies and 

became successful during the course of evolution. Malrey [86] has discussed about the 

distributed autonomous robots (agents) systems. In his approach it is essential that each 

robot has both learning and evolution ability to adapt in dynamic environment. The 

validity of his system was verified through simulation, as shown in Fig. 2.4.  

 
 
Fig.  2.4.  Identification of distance and moving direction of artificial organisms. 
 
 

Jeong et al. [87] have described an efficient approach for designing a multi-agent 

system consisting of mobile robots that co-operate to achieve specific objectives. They 

have implemented an evolutionary approach to design controllers for mobile robots. 

Experiment and simulations are performed to verify the proposed idea. Noguchi et al. [83] 

have developed a method that is able to create a sub optimal path of an agricultural 

mobile robot. Their control technique is combining a neural network (NN) and a genetic 

algorithm (GA). They have also shown the comparison between simulation and 

experimental results in Fig. 2.5. 

 
 

Robot 

Prey 

 

Moving Direction 

Identification distance 
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Fig. 2.5.  Comparison between the trajectory of the robot simulator and that of the actual robot. 
 

GAs has been used by several researchers for path planning of mobile robots [88,87]. 

However, like most early GA applications, most of those methods adopt classical GAs 

that use fixed-length binary strings and two basic genetic operators, and few 

modifications were made to the algorithms. Genetic algorithm based path planning with 

fix-length binary string chromosomes based on cell representation of mobile robot 

environment has been proposed [89]. Its binary encoding is biased and inefficient. 

Besides, in order to use the standard GA, the path planning solutions are restricted to X-

monotone or Y-monotone. The classical GAs uses binary strings and two basic genetic 

operators.  After encoding solutions to a problem, the classical GAs are more like “blind” 

search, and perform well when very little prior knowledge is available. However, GAs do 

not have to be “blind” search, when additional knowledge about problem is available, it 

can be incorporated into GAs to improve the efficiency of GA [90]. Path planning is such 

a problem that requires knowledge incorporation into the GAs for the problem. Graph 

technique is a traditional way of representing the environment where a mobile robot 

moves around. A genetic algorithm based on MAKLINK graph environment 

representation is proposed by many authors [91,92]. In this genetic algorithm, the path is 

represented by variable length chromosomes formed by mid-points of the free-links, 

which is a more natural way of encoding than binary strings. This graph based method 

needs to form a configuration space before applying the genetic algorithm.  
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A specialized genetic operators was designed [93,94] with some heuristic knowledge. 

A path is represented by a hierarchically ordered set of vectors that define path vertices 

generated by a modified Gram-Schmidt orthogonalization process [95]. An evolutionary 

planner was proposed using GA for both on-line and off-line planning [98]. However, 

both approaches are relatively complicated on problem representation, evaluation, or GA 

structure. A novel Genetic Algorithms (GAs) approach was proposed [96] for a near 

optimal path planning of a mobile robot in a greenhouse. The chromosome encoding 

features in inverse proportion between research spaces of GAs and complexity of 

obstacles. They designed the fitness evaluation for both incomplete and complete paths to 

guide the evolutional direction.  

 
An improved genetic algorithm performance was developed by considering more 

efficient genotype structure for a known environment with static obstacles [97]. Motion 

was constrained to only row-wise navigation. The above work was improved and 

presented results of a genetic algorithm based path-planning model developed for local 

obstacle avoidance of a mobile robot in a given search space [98]. While a new approach 

based on evolutionary computations is discussed to solve constrained nonlinear 

programming problems [99]. Three dominant hybrid approaches to intelligent control are 

experimentally applied to address various robotic control issues for navigation of mobile 

robot [100]. The hybrid controllers consist of a hierarchical NN-fuzzy controller applied 

to a direct drive motor, a GA-fuzzy hierarchical controller applied to position control of a 

flexible robot link, and a GP-fuzzy behavior based controller applied to a mobile robot 

navigation task. The problem of path finding through a maze of given size has been 

addressed by [101]. They presented a biologically inspired solution using a two level 

hierarchical neural network for the mapping of the maze. In the above research a limited 

effort was made to find an optimal controller (instead, a GA was designed based on a 

particular user-defined function and rules) for mobile robots navigation with multiple 

targets. Moreover, in these literature no way it has been noticed the incorporation of Petri 

net model with GA, which is attempted in the current investigation to make an integrated 

effective navigational controller for path planning of mobile robots.  
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2.6.  Fuzzy logic technique  

 
2.6.1.  Introduction 

 
Fuzzy logic approach has a very important characteristic in the way it deals with various 

situations without analytical modelling of the environment. Fuzzy control concepts are 

useful in both global and local path planning tasks for autonomous mobile objects. 

Humans have a remarkable capability to perform a wide variety of physical and mental 

task without any explicit measurements or computations. Examples of everyday tasks are, 

driving in city traffic, parking a car, and cleaning of house. In performing such familiar 

tasks, humans use perceptions of time, distance, speed, shape, and other attributes of 

physical and mental objects. Perceptions are described by propositions drawn from a 

natural language, in which the boundaries of perceived classes are fuzzy. It is highly 

desirable to capture the expertise of a human mind and to utilise the knowledge to 

develop autonomous navigation strategies for mobile robots. Fuzzy logic provides a mean 

towards accomplishing this goal. Fuzzy logic provides a formal methodology for 

representing and implementing the human expert’s heuristic knowledge and 

perception‐base actions. Using the fuzzy logic framework, the attributes of human 

reasoning and decision‐making can be formulated by a set of simple and intuitive IF 

(antecedent)–THEN (consequent) rules, coupled with easily understandable and natural 

linguistic representations. 

 

2.6.2.  Fuzzy logic techniques for mobile robot navigation 

 
Fuzzy logic technique was first introduced by Lofti Zadeh [102] in 1979 and since then it 

has been used in many fields of engineering applications. Robot navigation control is one 

of the most emerging areas of fuzzy logic applications [103]. Fuzzy logic technique can 

efficiently be used for navigation of mobile robots. Many scientists have used this 

technique in the recent years for the navigation of mobile robot which are discussed 

below.  

 
Martinez et al. [104] have considered a problem in which sensor based motion 

control of mobile robot among obstacles in structured and/or unstructured environments 

with collision-free motion. For this they have taken fuzzy logic based intelligent control 

strategy, to computationally implement the approximate reasoning necessary for handling 
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the uncertainty inherent in the collision avoidance problem. Sensor-based navigation 

method, which utilised fuzzy logic and reinforcement learning for navigation of mobile 

robot in uncertain environments, has been proposed by Boem et al. [105]. Their proposed 

navigator consisted of obstacle avoidance and goal-seeking behaviours. They have 

designed the two behaviours independently at the design stage and then combined 

together by a behaviour selector at the running stage. A behaviour selector using a bi-

stable switching function chooses a behaviour, at each action step so that the mobile robot 

can go for the goal position without colliding with obstacles. In order to know the present 

state of mobile robot the ultrasonic sensors are used. The effectiveness of their proposed 

method was verified by a series of simulations.  

 
Ishikawa [106] has described about a sonar-based navigation method using fuzzy 

control. His purpose is to construct an expert knowledge for efficient and better piloting 

of autonomous mobile robot. His method provides two functions i.e. tracing a planned 

path by sensing distances of an autonomous mobile robot and other function for avoiding 

stationary and moving obstacles by sensing free area distances ahead of autonomous 

mobile robot. He has used fuzzy control to select suitable rules i.e. tracing a path/ 

avoiding obstacles according to a situation, which was derived from sensor information 

by using fuzzy control. He has established his theory by means of simulations. Maeda et 

al. [107] deal with the drive control of an autonomous mobile robot. The approach is 

based on a forecast learning fuzzy control. In their approach, the robot forecasts whether 

it will drive safely or not by prediction, i.e. by using their integrated control rules. Robot 

considers the results of the forecast, and then adjust the conclusion parts of the integrated 

control rules in order to drive safely in an unknown environment. They have also verified 

their experimental results with simulation.  

 
Beaufrere et al. [108] have discussed about real time navigation planning through an 

unknown obstacle field for mobile robot. They have used a two dimensional array to 

rapidly model the local environment. The array is continuously updated with an on board 

ultrasonic sensors. The information allows the robot to immediately compute the motion 

applying a navigation algorithm. The algorithm composed of three modules whose 

functions are to avoid obstacles, to reach the target point and to manage direction change 

of the mobile robot during path planning. For their approach they have used the method 
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based on fuzzy reasoning. They have tested the approach both by simulation and 

experiment. 

 
Wang [109] has used fuzzy systems to model higher levels of hierarchical systems 

and design controllers for the hierarchical systems. He has done two case studies i.e. 1) 

integrated planning and 2) control of mobile robots. In control part he has designed two 

types of control system for hierarchical model. He has shown in both cases that the whole 

hierarchical control system to be stable with tracking error converging to zero. A fuzzy 

approach for collision avoidance of automated guided vehicle (AGV) has been discussed 

by Lin et al.[110]. By fuzzy inference, they have guided an AGV from the starting point, 

towards the target without colliding with any static as well as moving obstacles. In trap 

recovering of the AGV they have used fuzzy logic and crisp reasoning combinely to get 

rid of a trap. They have shown the simulation results to show the feasibility of their 

proposed approach.  

 

 
 
Fig.  2.6.  Schematic view of the eight perpetual space categories, for fuzzy logic rules, used in 
navigation of mobile robot. 
 

The paper by Zhang et al. [111] is mainly concerned with a mobile robot reactive 

navigation in an unknown cluttered environment based on fuzzy logic. Their reactive 

1.  IN LEFT                                   2.  IN RIGHT                              3.  IN FRONT               4.  IN RIGHT  CORNER      

5.  IN LEFT CORNER      6.  IN BLOCKED CORNER               7.  IN CORRIDOR                 8.  NO OBSTACLE 
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navigation is a mapping between sensory data and commands without planning. Their 

algorithm provides a steering command letting a mobile robot to avoid a collision with 

obstacles, shown in Fig. 2.6. They have authenticated their techniques by experimental 

and simulation results. Jagannathan [112] has discussed about the control of a mobile 

robot using fuzzy logic controller. He has shown the simulation results for his theoretical 

results.  

 
Al-Khatib et al. [113] have developed a data-driven fuzzy approach for solving the 

motion planning problem of a mobile robot in the presence of moving obstacles. Their 

approach consists of devising a general method for the derivation of input–output data to 

construct a fuzzy logic controller (FLC). They have tested their algorithm in experimental 

model. 

 

 
 
Fig.  2.7.  Trajectory of the mobile robot with the scalar for the environment with three obstacles 
and two sub-objective points. 
 

Izumi et al. [114] have used intelligent control techniques for robotic systems with 

some success in a wide variety of applications. They have presented a method for the 

intelligent control system of a robot using the fuzzy behavior-based control, which 

decomposes the control system into several elemental behaviors, and each one is realized 

by fuzzy reasoning. The proposed method has been applied for an obstacle-avoidance 

problem of a mobile robot. The effectiveness of the method is illustrated through some 

simulations shown in Fig. 2.7. 
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The article by Alfro et al. [115] has described the development and implementation 

of an automatic controller for path planning and navigation of an autonomous mobile 

robot using simulated annealing and fuzzy logic. The simulated annealing algorithm has 

been used to obtain a collision-free optimal trajectory among fixed polygonal obstacles. 

The trajectory tracking has been performed with a fuzzy logic algorithm. The objectives 

of the control algorithm are to track the planned trajectory and to avoid collision with 

moving obstacles. They have shown simulations and experimental results to validate their 

theory developed.  

 
Lee et al.[116] have investigated the use of linguistic rules based on 'rules-of-thumb' 

experiences and engineering judgments to guide an industrial robot to follow a moving 

target using visual information. The problem has been formulated in the context of “Prey 

Capture” with the robot as a 'pursuer' and a moving object as a passive 'prey'. Such a 

formulation mimics the function and capable of a natural being to pursue its prey. The 

feasibility of the fuzzy logic control strategy has been verified experimentally.  

 
Fuzzy logic controller for mobile robot navigation has been designed by Montaner et 

al. [117]. They have used their proposed technique on an experimental mobile robot 

which uses a set of seven ultrasonic sensors to perceive the environment. The designed 

fuzzy controller maps the input space (information coming from ultrasonic sensors) to a 

safe collision-avoidance trajectory (output space) in real time. This is accomplished by an 

inference process based on rules (a list of IF-THEN statements) taken from a knowledge 

base. Their simulation and experimental results show that the method can be used 

satisfactorily for navigation of mobile robots.  

 
Hoffmann et al. [118] have presented a learning method which automatically designs 

fuzzy logic controllers (FLCs) by means of a genetic algorithm (GA). They have 

proposed a dynamically weighted objective function for control problems with multiple 

conflicting goals, which prevents the GA from premature convergence on FLCs that are 

exclusively specialized in the easier subtasks. Their robot obtains the task of reaching a 

target point by avoiding collisions with obstacles on its way. It perceives its environment 

by means of ultrasonic sensors. They have tested their results in simulation as well as in 

experimental mode. Mucientes et al. [119] have described a fuzzy control system for the 

avoidance of moving objects by a robot. A new paradigm of fuzzy temporal reasoning, 

which we call fuzzy temporal rules (FTRs), is used for this control task. Their control 
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system has over 117 rules, which reflects the complexity of the problem to be tackled. 

They have also presented the experimental analysis for the corresponding simulation 

results. 

 
Parhi [120] has described a mobile robot navigation control system based on fuzzy 

logic. Fuzzy rules embedded in the controller of mobile robot enables it to avoid obstacles 

in a cluttered environment. Each robot also incorporates a set of collision prevention rules 

implemented by a Petri Net model within its controller. The navigation control system has 

been tested in simulation and experimental modes. Therefore, in the recent approaches, 

many researchers proposed the navigation algorithms by using fuzzy logic [121,122]. 

However, in cases of operating the mobile robot in complex environments, the above 

methods have disadvantages of consistently constructing the navigation rules. Thus, to 

overcome this new problem, some other methods like Behavior Based Algorithms have 

also been suggested [123,124]. A considerable amount of work [125,126,127] has been 

carried out to develop suitable methods for motion planning of mobile robots, in presence 

of obstacles in an unknown environment. The automatic navigation of intelligent mobile 

robots in an unknown and changing environment were proposed by many authors [14, 

128–131] based on fuzzy logic approach. Simulation and experimental results have 

presented by them to validate their approach. Huq et al. [132] have developed a novel 

approach to combine motor schema and fuzzy context dependent behavior modulation for 

mobile robot navigation. Their proposed approach contributes in eliminating the existing 

problems of motor schema such as trap situations due to local minima, no passage 

between closely spaced obstacles, oscillations in presence of obstacles and oscillations in 

narrow passages.  

 
The Fuzzy controllers are mainly constructed by designing the fuzzy rules and 

membership functions (input and output) based on expert knowledge, modelling of 

processor learning [133]. To date, definition of fuzzy logic controller rules in robot 

obstacle avoidance are usually based on Mamdani or Takagi–Sugeno–Kang(TSK)rule 

base system [134–137]. However, it is difficult to maintain the correctness, consistency, 

and completeness of the generated fuzzy rule base. Various learning methods have been 

employed to design the fuzzy rule base [138, 139] and even construct fuzzy controllers 

[140,135]. Moreover, these methods contribute to the increasing complexity of the fuzzy 

controllers and could cause lost of interpretability [141]. Increasing the number of input 
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and output variables could also contribute the lost of rule base interpretability and 

understanding the condition to activate the rules become more difficult [142]. The ordinal 

structure model of fuzzy reasoning has an advantage of an easier approach of defining 

rules with multiple inputs and outputs, by giving an associated weight to each rule in the 

defuzzification process. Feng et al. [143] have proposed an evolutionary particle swarm 

optimization (PSO)-learning algorithm to automatically generate fuzzy decision rules. 

Due to the development of the fuzzy rule-based system, it actually regulates the omni-

directional vision-based mobile robot for obstacle avoidance and desired target 

approximation as soon as possible. Boubertakh et al. [144] proposes a new fuzzy logic-

based navigation method for a mobile robot moving in an unknown environment. This 

method endows the robot with the capabilities of obstacles avoidance and goal seeking 

without being stuck in local minima. A simple Fuzzy controller is constructed based on 

the human sense and a reinforcement learning algorithm is used to fine tune the fuzzy rule 

base parameters. Apart from the above discussed techniques some other techniques are 

also used for navigation of mobile robots which are discussed briefly as follows. 

 

2.7.  Other techniques 
 

2.7.1.  Neural network technique 

 
In recent years many researchers have used neural network technique for navigation of 

mobile robot. The works carried out by them are described below. 

 
Tani et al. [145] have presented a novel scheme for sensory-based navigation of a 

mobile robot. They have shown that their scheme, which constructs a correct mapping 

from sensory inputs, sequences to the manoeuvring outputs through neural adaptation, 

such that a hypothetical vector field that achieves the goal can be generated as shown in 

Fig. 2.8. Their simulation results have shown that robot can learn task of homing and 

sequential routing successfully in the workspace of a certain geometrical complexity.  

 
Janet et al. [146] have discussed about the neural network technique for navigation of 

mobile robot. They have used Kohonen and region-feature neural networks for this 

purpose. In both approaches they have categorised discrete region of space in a manner 

similar to optical character recognition. In their method, single robot can transform its 
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knowledge of various learned regions to other mobile robots. Hui et al. [147] have used 

neuro-fuzzy controller for mobile robot navigation.  

 

 
 
Fig.  2.8.  Schematic view of the neural networks for mobile robots navigation with Kohonen 
network input. 
 

The performances of these neuro-fuzzy approaches are compared with default 

behavior, manually-constructed FLC and potential field method, through computer 

simulations. They have stated that the neuro-fuzzy approach performs better than the 

other approaches, in most of the test scenarios. Antonini et al. [148] have proposed a real-

time multiprocessor system for the solution of the tracking problem of mobile robots 

CONTEXT UNIT FEEDBACK LOOP 

FEED FORWARD 

NETWORK

 

KOHONEN NETWORK 

WINNER

RANGE IMAGE 



Literature Review                     

 

29 
 

operating in a real context with environmental disturbances and parameter uncertainties. 

Their proposed control scheme utilizes multiple models of the robot for its identification 

in an adaptive and learning control framework. They have also shown the results 

experimentally for their theoretical validation.  

 

2.7.2.  Grid based technique  

 
Many scientists map the environment into grids and use them in the navigation of the 

mobile robots. This method which has been used by various researchers, have been 

discussed below.  

 
Lee et al. [149] adopted a methodology for global path planning for autonomous 

mobile robot in a grid-type world model.  

 
 
Fig.  2.9.  Schematic view of the grid base representation for navigation of mobile robots. 

AREA A

AREA B

PATH 1  

PATH 2 

                               ROBOT      GRID 

Each robot comes and goes from area a to area b by selecting and 
passing through path 1 or path 2. 
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The value of a certainty grid representing the existence of an obstacle has been 

calculated from reading of sonar sensors. A complete Bayesian derivation for a sensor 

data updating formula has been discussed and its validity is confirmed in a simulation by 

Cho et al. [150]. Asama et al.[151] have also discussed about the navigation of mobile 

robots by expressing the robot path as grid lines, Fig. 2.9.  

 

Meyer et al.[152] have reviewed map-learning and path-planning strategies within 

the context of map-based navigation in mobile robots. A hierarchy of navigation 

strategies has been outlined in the discussion, together with the sort of adaptive capacities, 

each affords to cope with unexpected obstacles or dangers encountered on robot’s way to 

its goal. Filliat et al.[153] have presented a navigation technique for a robot, which has 

been used for internal representation of the spatial layout of its environment to position 

itself is a very complex task. The advantages and drawbacks of these strategies, notably 

with respect to the limitations of the sensors on which they rely.  

 

2.7.3.  Heuristic technique  

 
Many investigators have used heuristic search method for the navigation of mobile robot. 

These are depicted below. 

 
The automatic reaction of a mobile robot, computed in real time during its movement 

towards a target in an open field with obstacles in it has been dealt by Xu et al.[154]. 

They have implemented the navigation control of the robot through fuzzy reasoning by 

utilising the above mentioned heuristic rules. They have also shown the simulation results 

of mobile robot avoiding obstacles. Song et al.[155] have experimentally studied the 

navigation system that allows mobile robot to travel in an environment about which it has 

no prior knowledge. Their developed navigation system has been tested in their 

experimental mobile robot to demonstrate its possible application in practical situation. 

Meeran et al. [156] have discussed about the optimal path planning for mobile robot. For 

this they have presented a system which uses heuristic rules to augment the convex hull 

initial sub-tour created by the Graham scan algorithm. Bruske et al.[157] have discussed 

about reinforcement learning of reactive collision avoidance for an autonomous mobile 

robot. Their sensory input consists of eight unprocessed sonar readings. With the help of 

adaptive heuristic method, they are able to find an obstacle free path for the mobile robot.  
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The local path-planning algorithm using a human’s heuristic method along with laser 

range finder for real-time navigation of a free-ranging mobile robot has been discussed by 

Cha [158]. Their algorithm utilises the human’s heuristic by which the shortest path from 

various pathways to the goal can be found. He has estimated the effectiveness of the 

established path-planning algorithm both by computer simulation and by experiment in a 

complex environment.  

 

2.7.4.  Adaptive technique  

 
Some of the scientists in recent years have used adaptive methods for the navigation of 

mobile robots. The research works by them are described below.  

 
Ram et al. [159] have discussed about a continuous case-based reasoning and its 

application to the dynamic selection, modification and acquisition of robot behaviours in 

an autonomous navigation system. They have investigated about the adaptive reactive 

control mechanisms for autonomous intelligent agents in different environments. 

Pourboghrat et al. [160] have presented adaptive control rules at the dynamics level for 

the navigation of non-holonomic mobile robots with unknown dynamic parameters. 

Adaptive controls are derived for mobile robots using back stepping technique for 

tracking of a reference trajectory and stabilization to a fixed posture. The proposed 

control laws include a velocity/acceleration limiter that prevents the robot’s wheels from 

slipping.  

 

2.7.5.  Virtual impedance technique  
 

Virtual impedance is one of the emerging methods used by various engineers for 

navigation of mobile robot. The techniques are briefly discussed below.  

 
Ota et al. [161] have discussed about the concept of “groups” in motion planning of 

multiple mobile robots. They have classified the groups into “static groups” and “dynamic 

groups”. In virtual impedance method, the trajectory is determined by means of virtual 

forces. The virtual forces consist of three parts: that is the force generated between a 

reference point of the robot at the present time and the real position of the robot, the force 

generated between two robots and the force generated between a robot and an obstacle. 

The reference points for each robot as a function of time are calculated in advance.  
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2.7.6.  Divide and conquer technique  
 

The divide and conquer technique used for robot navigation by different investigators has 

been described below. 

 
Mehta et al. [162] present a solution to the problem of constructing control programs. 

For their control programme they have used divide and conquer strategy for producing 

control laws, i.e. input-to-output map. Nagabhushan et al. [163] have proposed an 

algorithm based on quad tree-based method for planning the shortest path from a given 

source to any given destination. The algorithm uses recursive divide-and-conquer design 

strategy. Their proposed algorithm works in a 2D static environment with obstacles of 

any shape and practically unconstrained size of an autonomous vehicle. Minguez et al. 

[164] in their paper have addressed the reactive collision avoidance for robots that move 

in very dense, cluttered, and complex scenarios. They have described the design of a 

reactive navigation method that uses a “divide and conquer” strategy based on situations 

to simplify the difficulty of the navigation. They have also proposed a geometry-based 

implementation of the design called the nearness diagram navigation. The advantage of 

this reactive method is to successfully move robots in troublesome scenarios. They have 

also shown the experimental results on a real vehicle to validate their research. In the 

below section some more reviews are done for mobile robot navigation based on hybrid 

techniques.  

 

2.8.  Hybrid technique for navigation of mobile robots  
 

In recent years, most of the researchers have used hybrid techniques for navigation of 

mobile robots. The related works carried out by them are briefly described below. 

 
Kubota et al. [165] have proposed a GA based techniques for mobile robot navigation 

by perceiving information about the dynamic environment. They apply the proposed 

method for acquiring collision avoidance behaviors of a mobile robot in a dynamic 

environment. They conduct several computer simulations and simple experiments of a 

mobile robot. in changing environment. Cosio et al. [166] in their paper presented a new 

scheme for autonomous navigation of a mobile robot, based on improved artificial 

potential fields and a genetic algorithm. In their scheme multiple auxiliary attraction 

points have been used to allow the robot to avoid large, or closely spaced, obstacles. The 
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configuration of the optimum potential field is automatically determined by genetic 

algorithm. Simulation experiments performed with three different obstacle configurations, 

and ten different routes, showed that the scheme reported has a good performance in 

environments with high obstacle densities, achieving a success rate of 93 per cent. Xin et 

al. [167] have proposed a method of global path planning based on neural network and 

genetic algorithm. They constructed the neural network model of environmental 

information in the workspace for a robot and used this model to establish the relationship 

between a collision avoidance path and the output of the model. Then the two-

dimensional coding for the path via-points was converted to one-dimensional one and the 

fitness of both the collision avoidance path and the shortest distance are integrated into a 

fitness function. The simulation results showed that the proposed method is correct and 

effective. Wong et al. [168] proposed, a method based on Genetic Algorithms (GA) is to 

design a fuzzy system to control an omni-directional mobile robot so that it can move to 

any direction and spin at a rotating rate. In this method, an individual of the population in 

the GA-based method is used to automatically generate fuzzy sets of the premise and 

consequent parts of fuzzy system. A fitness function is proposed to guide the search 

procedure to select an appropriate parameter set of the fuzzy system such that the output 

of the fuzzy system can approach the output of data base established from the kinematics 

model of the three-wheeled mobile robot.  

 
Hui  et al. [169] have developed Neuro-fuzzy approaches  to determine time-optimal, 

collision-free path of a car-like mobile robot navigating in a dynamic environment.  They 

also compared the performances of both the genetic algorithm (GA)-optimized NN-FLC 

(Mamdani Approach) as well as GA-optimized NN-FLC (Takagi and Sugeno Approach). 

Begum et al.  [170] made use of fuzzy logic for inferring the uncertainty in robot’s 

location after motion commands, and then matching process is performed using genetic 

algorithms, which search the most probable map given the location information. The 

correspondence problem is solved exploiting the property of natural selection, which 

supports better performing individuals to survive in the competition. Tan et al. [171] 

developed a genetic algorithm (GA)-based fuzzy-interference control system with an 

accelerate/brake (A/B) module for a mobile robot in unknown environments with moving 

obstacles. The A/B module of the proposed system is to enable the mobile robot to make 

human-like decisions as it moves toward a target. Under the control of the proposed fuzzy 

inference model, the robot can perform well in avoiding both static and moving obstacles. 
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The GA module is employed to tune the membership functions enables the robot without 

suffering from local minima. The effectiveness of the proposed approach is demonstrated 

by simulation studies. Garcia et al. [172] have presented a novel proposal to solve the 

problem of path planning for mobile robots based on Simple Ant Colony Optimization 

Meta-Heuristic (SACO-MH). In SACOdm, the decision making process is influenced by 

the existing distance between the source and target nodes; moreover the ants can 

remember the visited nodes. The selection of the optimal path relies in the criterion of a 

Fuzzy Inference System, which is adjusted using a Simple Tuning Algorithm. The path 

planner application has two operating modes, one is for virtual environments, and the 

second one works with a real mobile robot using wireless communication. Both operating 

modes are global planners for plain terrain and support static and dynamic obstacle 

avoidance.  

 
Daglarli et al. [173] present an artificial emotional-cognitive system-based 

autonomous robot control architecture for a four-wheel driven and four-wheel steered 

mobile robot. They considered discrete stochastic state-space mathematical model for 

behavioral and emotional transition processes of the autonomous mobile robot in the 

dynamic realistic environment. Deng et al. [174] explored a feedback control scheme of a 

two-wheeled mobile robot in dynamic environments. They discussed the existence of 

local minima and design of controller based on Lyapunov function candidate and 

considered virtual forces information including detouring force. Samsudin et al. [175] 

proposed a methodology to design an ordinal fuzzy logic controller with application for 

obstacle avoidance of Khepera mobile robot is presented. The implementation will show 

that ordinal structure fuzzy is easier to design with highly interpretable rules compared to 

conventional fuzzy controller. In order to achieve high accuracy, a specially tailored 

Genetic Algorithm (GA) approach for reinforcement learning has been proposed to 

optimize the ordinal structure fuzzy controller. They had shown the Simulation results 

and compared their results with conventional fuzzy controllers.  

 
Fuzzy logic control (FLC) has been discussed by Petru et al. [176] for controlling a 

robot. They have divided the FLC into several smaller subsystems which reduce the 

negative effect that a rule-base may have on real-time performance. Learning allows 

autonomous robots to acquire knowledge by interacting with the environment and 

subsequently adapting their behavior. Behavior learning methods have been used to solve 
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complex control problems that autonomous robots encounter in an unfamiliar real-world 

environment. Their paper discusses an experimental neuro-fuzzy controller for sensor-

based mobile robot navigation in indoor environments. The autonomous mobile robot 

uses infrared and contact sensors for detecting targets and avoiding collisions. 

 

2.9.  Different sensors used for navigation of mobile robots  
 

For navigation of mobile robot, sensors have an important role to play. There are different 

types of sensors used for navigation of mobile robot in the recent years. They can be 

classified into following categories: (i) Ultrasonic Sensor, (ii) Laser Sensor, (iii) Magnetic 

Compass Disk Sensor, (iv) Infrared Sensor, and (v) Vision (Camera) Sensor. Various 

researchers have used these sensors in navigation of mobile robots as described below.  

 

2.9.1.  Ultrasonic sensor  

 
Ultrasonic sensors are widely used as external sensors for mobile robots, because they are 

simple to build and are of low cost. Generally, in the pulse-echo method the distance to 

the target can be accurately measured. Ultrasound signals can be induced through the 

piezoelectric effect or through electrostatic forces. Most sensors used in robotics are 

electrostatic since this mechanism is more efficient for coupling into air. It can be used to 

obtain distances from about 0.25m to 10m through direct time-of-flight measurement. A 

firing pulse triggers an ultrasound burst from the sensor and starts a counter. The counter 

is halted when the sensor, now acting as a receiver, detects a signal above a pre-set 

threshold. The counter reading thus gives the time of flight. The related researches for 

navigation of mobile robot using ultrasonic sensors are discussed below.  

 
The research of Skewis et al. [177] has involved ultrasonic sensor-based motion 

planning for a single robot. They have used information from assumed sensor media as 

input to the motion-planning algorithm. A method for estimating the position and heading 

angle of a mobile robot moving on a flat surface has been proposed by Boem et al. [178]. 

Their localisation method utilises two passive beacons and a single rotating ultrasonic 

sensor. The passive beacons consist of two cylinders with different diameters and reflect 

the ultrasonic pulses from the sonar sensor mounted on the mobile robot. Their algorithm 

is suitable for processing sonar scan data obtained by an ultrasonic sensor with a wide 

beam spread. The proposed system has been implemented for a single robot in a very 
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simple environment. Kleeman et al. [179] have established that two transmitters and two 

receivers are necessary and sufficient for a mobile robot to distinguish between planes, 

corners and edges. They have used a sonar sensor array with a minimum number of 

transmitters and receivers for their mobile robot. With their method, it is very difficult to 

navigate a single mobile robot in an unknown environment. 

 
Mallita et al. [180] have discussed an ultrasonic imaging system for a mobile robot. 

Their transmitters cover a wide area and from the time-of-flight and the angle of 

incidence of echo pulses, their algorithm is able to detect obstacles ahead of the mobile 

robot. They have not implemented their method for multiple mobile robots. Hong et al. 

[181] have discussed the sensing of room boundaries for a mobile robot using an 

ultrasonic sensor array. They have implemented their algorithm with an extended Kalman 

Filter. Again, their technique was meant for a single mobile robot in a simple 

environment. Budenske et al. [182] have discussed the navigation of a robot with the help 

of sensory data. They have shown that their approach can be applied to guide a robot to 

and through an unknown and narrow doorway. Sonic range data is used to find the 

doorway, walls and obstacles. They have implemented their method for a single mobile 

robot for obstacle avoidance only.  

 

2.9.2.  Laser sensor  
 

Laser sensor is one of the popular sensors used for navigation of mobile robot. The use of 

this sensor, for navigation are summarised below.  

 
Navigation of mobile robot in cluttered room using a range-measuring laser as a 

sensor has been described by Forsberg et al. [183]. The robot estimates the size of the 

cluttered rectangle room and the position and orientation during its navigation. Failures in 

mobile robot navigation is due to errors in localising the robot relative to the environment 

could considerably reduced by path planning method proposed by Takeda et al.[184] . 

They introduced a method called Sensory Uncertainty Field (SUF), for every possible 

robot configuration ‘q’. This field estimates the distribution of possible errors in the robot 

configuration. They described in detail the computation of a specific SUF for a mobile 

robot equipped with a laser range sensor. Delaescalera et al. [185] have used an algorithm 

for localisation of mobile robot, which can be classified into two groups viz. 1) re-

localisation through the detection of landmarks present in that environment and 2) for the 
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map, they have used the sensors like laser diode and a CCD camera. The robot estimates 

its position by matching its sensorial information which is modelled as a straight line with 

a priori map of the environment. Their algorithm is able to work in real time. Lu et al. 

[25] have suggested two iterative algorithms for laser range scan so as to compute relative 

robot positions in an unknown environment. A solution to the problem of simultaneously 

extracting and tracking a piece-wise linear range representation of a mobile robot’s local 

environment is discussed by Pears [186]. He has used optical laser sensor for the 

navigation control.  

 

2.9.3. Magnetic compass disc sensor  
 

Magnetic compass disc sensor is mainly used for navigation of mobile robot. Their use 

has been discussed in the following sections.  

 
Finding the steering angle of an autonomous mobile robot by using an encoded 

magnetic compass disc as an orientation sensor has been discussed by Kim et al.[187]. 

They have done the experiments on two cases: 1) line path tracking test in a slippery 

environment and 2) orientation steering test in a circular path. They have also shown that 

the system is simple to design and applicable to mobile robot navigation.  

 
Borenstein et al. [188] have shown that the magnetic compass is a very good sensor 

for finding out the location and heading angle (x, y and θ) for navigation of mobile robot. 

They have outlined different magnetic sensor i.e. 1) Mechanical Magnetic Compass, 2) 

Fluxgate Compass, 3) Hall-Effect Compass, 4) Magneto-Resistive Compass and 5) 

Magneto-Elastic Compass. The compass best suited for use with mobile robot 

applications is the Fluxgate compass. Noguchi et al. [189] have described about a mobile 

robot system, including a positioning system using the geomagnetic direction sensor. 

They have developed a control algorithm system for the mobile robot and conducted test 

on mobile robot in grassland. They have found the average error of the final position of 

each target position to be about 0.4m. Their absolute maximum error and rms errors are 

about 0.51m and 0.23m respectively.  
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2.9.4.  Infrared sensor  

 
Infrared sensor remains one of the efficient device for navigation of mobile robots. The 

uses of this sensor for the navigation of mobile robot in the recent years have been 

discussed below.  

 

 
 
Fig.  2.10.  Mobile robots navigation based on infrared sensor (where T1 and T2 are the target 
positions of the robots R1 and R2. O1 and O2 are the obstacles). 
 

Aimy-an Autonomous Mobile Robot (AMR), capable of moving in an unknown 

environment filled with obstacles, has been developed by Yu et al. [190]. They have used 

infrared detector system to avoid collision with unexpected obstacles. They have also 

R1

R1

T2 

R2

R2 

R2 
T2 

T2 

T1

R

T1

      

R
T1 T1

(A) 
(B) 

( C)  

(D) 

O2 

O1 

O2 

O1

O2 

O1 
O2 

O

1



Literature Review                     

 

39 
 

given the experimental results, which exhibit the power of developed algorithm and 

infrared detector system. Kube et al.[191] in their robot have used infrared sensor for 

obstacle avoidance. In a multi-robot scenario, their infrared obstacle sensor can detect 

obstacle within a five foot range.  

 
Lumelsky et al. [192] have presented an approach for decentralised real-time motion 

planning for multiple mobile robots operating in unknown stationary obstacles. There 

robot has no knowledge about the scene or the paths and objectives of other robots. Each 

robot plans its path towards the target dynamically, based on the current position and 

sensory feedback shown in Fig. 2.10. They have used infrared sensor for their sensor 

feedback. Vandorpe et al. [193] have designed an autonomous mobile robot known as 

Leuvan Intelligent Autonomous System (LIAS). The robot is equipped with three types of 

sensor such as: ultrasonic sensor, tri-aural sensor and infrared sensor. Their optical 

infrared sensor gives a complete panoramic image of the scenario. In their robot an 

onboard system executes different modular navigation task. 

 

2.9.5. Vision sensor  
 

For object recognition by the mobile robot scientists mainly depend upon vision sensor. 

The use of this sensor for the navigation of mobile robot in recent years has been 

discussed below.  

 
Han et al.[194] have described a navigation method of a mobile robot in which a 

single camera and a guide mark was used. They have instructed a travel path to the robot 

by means of path drawn on a monitor screen. The image of the guide mark provided 

information regarding the robots position and heading direction. The heading direction 

was adjusted while moving if any deviation from the specified path is detected. They have 

implemented their method in a mobile robot, which runs at a average speed of 2.5 ft/s. 

Yagi et al. [195] have designed a omni-directional image sensor for navigation of a 

mobile robot. Their robot is able to navigate by detecting the azimuth of each object in the 

omni-directional image as shown in Fig. 2.11. By matching the azimuth with the 

environmental map, the robot can precisely estimate its own location and motion. 
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Fig.  2.11.  Environmental map and prediction of the azimuth angle by vision sensor. 
 

The robot can avoid colliding with unknown obstacles and estimate location by 

detecting azimuth changes, while moving about in the environment. Lin et al. [196] have 

described a landmark-based navigation technique for a mobile robot. They have achieved 

the robot position estimation by using a camera and a navigational landmark pattern.  

 
Wichert [197] proposed a new methodology for image-based navigation using a self-

organized visual representation of the environment. Self-organization leads to internal 

representations, which can be used by the robot but are not transparent to the user. It is 

shown how this conceptual gap can be bridged.  

 
Kidono et al.[ 198] have proposed a navigation strategy which requires minimum 

user assistance using image sensors. In this strategy, the user first guides a mobile robot to 

a destination by remote control. During this movement, the robot observes the 

surrounding environment to make a map. Once the map is generated, the robot computes 

and follows the shortest path to the destination autonomously. They have also shown the 

experimental results using a real robot.  

 

2.10.  Summary 

 
In this chapter an intensive review has been done on navigation of mobile robots. The 

basic problem of mobile robot navigations and some of the constraints, their limitations, 

merits/ demerits and successive improvement from the years together using various AI 
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techniques, especially focussing on those utilising potential field techniques, genetic 

algorithm techniques, fuzzy logic techniques and their hybrid techniques have been 

studied. This chapter also provides an overview of characteristics and metrics of 

navigation solutions, along with descriptions of the various sensors used for navigation of 

mobile robots. A survey of the application domains of automated navigation in complex 

and dynamic environment has been outlined in context of intelligent control technique.  

 
From the above literatures it have been found that most of the techniques have been 

implemented only in simulation and that a very limited works has been reported for 

controlling of multiple mobile robots with multiple targets in complex environments. 

Further there are no techniques which explain the inter-robot collision avoidance during 

navigation. This problem has been taken up in this work and addressed here for successful 

cognition for cooperative behaviour of multiple mobile robots in various complex 

environments. It is clear that it would be beneficial to have an approach to navigation that 

is computationally flexible, and as complete, optimal and natural as possible and that is 

capable of coping with a range of environments in terms of obstacle complexity and total 

number of obstacles. It would also be useful to have an approach that is general in nature 

so that it could be applied to all of the application domains and can be added to navigation 

problems to make them more challenging.  
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3. Potential Field Technique  for Navigation 
of Mobile Robots   
 

This chapter introduces the analysis of potential field technique in context of motion planning 
architecture of mobile robots. The general structure of obstacle avoidance and target seeking 
behaviour of the proposed control scheme along with conceptual diagram for inter-robot collision 
avoidance module using Petri- net modelling has been explained in this chapter. 
 

 

3.1.  Introduction  

 
This Chapter focuses on autonomous motion planning of multiple mobile robots in an 

unknown cluttered environment based on Artificial Potential Field (APF) technique. The 

navigation technique of robot control using modified artificial potential function depends 

on the distances between obstacle positions with respect to robots and targets and bearing 

angles between them, while classical approaches make use of the distances between 

obstacle positions with respect to the robots and targets. In this particular application, the 

modified potential field function has been proposed to approximate the robots to the 

nearest targets. Also each robot finds particular target assigned to them in an effective 

manner. The local minima problem has been solved by redefining the repulsive potential 

field function. In order to avoid inter robot collision, each robot incorporates a set of 

collision prevention rules implemented as a Petri Net model in its controller. The 

resulting navigation algorithm has been implemented on real mobile robots and tested in 

various environments. Experimental results presented demonstrate the effectiveness and 

improved performance of the developed controller navigation scheme. 

 

3.2.  Analysis of potential field technique for robot navigation  

 
The motion-planning problem for multiple mobile robots in a dynamic environment is to 

control the robots motion from an initial position to final targets while avoiding obstacles. 

Three assumptions are made to simplify the analysis: 

Assumption 1:   The robots moves in a two dimensional workspace. Its centre position in 

the workspace is denoted by q = [x, y]. 
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Assumption 2:   At each time instant, only one front obstacle, which is perpendicular to 

the robot,  one left obstacle and one right obstacle, which are nearest 

and co-linear with the robot, need to be avoided.  

 

3.2.1.  Attractive potential function 

 
Potential field method is one of the most popular conventional techniques for solving the 

motion planning problems of mobile robot [199]. In this approach, the robot in the 

configuration space is represented as a particle under the influence of an artificial 

potential field U. The potential field function can be defined over free surface as the sum 

of an attractive potential, pulling the robot towards the goal configuration and a repulsive 

potential pushing the robot away from the obstacle [200]. The attractive potential function 

used for target seeking is represented as follows [94]; 

 ( ) ( )m
att Target

1U q     q , q  
2
δρ=                                                                                     (3.1) 

where δ  is a positive scaling factor.  

( )Target Targetq , q || q  - q ||ρ =  denotes the Euclidean distance of the robot q from its current 

position to the target, Targetq  and m = 1 or 2.  Depending upon the value of m the shape of 

the attractive potential function is determined (e.g., for m=1, the shape is conical and for 

m=2, the shape is parabolic). 

 
The effectiveness of the potential field method mainly depends upon the chosen 

artificial potential function for particular application. Several potential functions, such as 

parabolic well, conic well, hyperbolic function, rotational field functions, quadratic 

potential field function, and exponential potential field function are used for various 

applications. However, parabolic and hyperbolic functions were mainly used for 

evaluating attractive and repulsive potential fields for path planning problem of robot 

respectively. The attractive potential field ( )a ttU x  can be defined as a parabolic well as 

follows.  

 
The attractive potential force is given by the negative gradient of the attractive 

potential field. 
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( ) ( ) ( )att att TargetF x   - U x   x  - xδ= ∇ =                                                                           (3.2) 

 where, ( )attF x = attractive force between robot and the target.  

( )attU x =potential energy function of the robot due to target. 

Targetx =position of the target. 

x=  position of robot and 
 
 

 

 Therefore,       

{ }
r

Total att satt
s=1

U = U (tar )∑                                                                                                  (3.3) 

where s is the numbers of targets, which varies from 1 to r 

 
The distance between the robot and goal becomes equal to zero when there will not 

be any attractive force. Moreover, attractive force increases with the distance 

Target|| q  - q  ||  in a linear fashion. Also, it is known that when the robot is far away from 

the obstacle, the repulsive force will be less and in such a condition, the robot’s motion 

will not be affected due to the presence of obstacle, whereas if the obstacle is found 

nearer to the robot, it exerts a repulsive force.  

 

3.2.2.  Repulsive potential function 

 
The commonly used repulsive function in the literature [201] is: 

( ) ( ) ( )

( )

2

obs 0
rep obs 0

obs 0

1 1 1   - ,          if q , q  
U  obs   2  q , q

0                                                   if q , q  > 

α ρ ρ
ρ ρ

ρ ρ

⎧ ⎛ ⎞
⎪ ≤⎪ ⎜ ⎟⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪⎩

                        (3.4)  

Where   α  is the positive scaling factor, ( )obsq , qρ  denotes the minimal distance 

from the robot q to the obstacle, o b sq , 0ρ is the positive constant denoting the distance of 

influence of the obstacle. The corresponding repulsive force is given by; 

 
( ) ( )rep repF  obs   - U  obs= ∇         

ˆˆ ˆ i j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂
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       = ( ) ( ) ( ) ( )

( )

obs obs 02
obs 0 obs

obs 0

1 1 1  - q , q    if  q , q   
 q , q  q , q

0                                                                               if q , q  > 

α ρ ρ ρ
ρ ρ ρ

ρ ρ

⎧ ⎛ ⎞
∇ ≤⎪ ⎜ ⎟⎜ ⎟⎨ ⎝ ⎠

⎪
⎩

          (3.5) 

Suppose in the environment there are many obstacles surround the target and robot then, 

the repulsive potential can be found as follows: 

 
For obstacle 1, 

( ) ( ) ( )

( )

1

1

1

2

1 obs 0
0obsrep 1

obs 0

1 1 1   -           if q , q  
2  q , qU  obs   

0                                                   if q , q  > 

α ρ ρ
ρρ

ρ ρ

⎧ ⎛ ⎞
⎪ ⎜ ⎟ ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪⎩

        and 

( )rep 1F  obs  = ( ) ( ) ( ) ( )

( )

1 1

1 1

1

1 obs obs 02
0obs obs

obs 0

1 1 1  - q , q           if q , q  
 q , q q , q 

0                                                                                        if q , q  > 

α ρ ρ ρ
ρρ ρ

ρ ρ

⎧ ⎛ ⎞
⎪ ⎜ ⎟ ∇ ≤⎪ ⎜ ⎟⎨ ⎝ ⎠
⎪
⎪⎩

    (3.6) 

For ith obstacle, 

( ) ( ) ( )

( )

i

i

i

2

i obs 0
0obsrep i

obs 0

1 1 1   -           if q , q  
2  q , qU  obs   

0                                                   if q , q  > 

α ρ ρ
ρρ

ρ ρ

⎧ ⎛ ⎞
⎪ ⎜ ⎟ ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪⎩

     and 

( )rep iF  obs   = ( ) ( ) ( ) ( )

( )

i i

i i

i

i obs obs 02
0obs obs

obs 0

1 1 1  - q , q           if q , q  
 q , q q , q 

0                                                                                        if q , q  > 

α ρ ρ ρ
ρρ ρ

ρ ρ

⎧ ⎛ ⎞
⎪ ⎜ ⎟ ∇ ≤⎪ ⎜ ⎟⎨ ⎝ ⎠
⎪
⎪⎩

   (3.7) 

 
where i is the number of obstacles and it varies from 1 to h, and 1α , 2α  ,………… iα  are 

the positive scaling factors for the corresponding obstacles. 

Therefore, the total repulsive potential due to h number obstacles are, 

 
( ) ( ) ( ) ( ) ( )rep rep 1 rep 2 rep i rep hTotal
U U obs   U obs ........  U obs ........ U obs= + + + + +             (3.8)    

                 = ( )
h

rep i
i=1

 U  obs∑                                                                                                              

 
Similarly the total repulsive force due to i number of obstacles are, 
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 ( ) ( ) ( ) ( ) ( )rep rep 1 rep 2 rep i rep hTotal
F F obs   F obs ........  F obs ........ F obs= + + + + +               (3.9) 

                 = ( )
h

rep i
i=1

F  obs∑       

The magnitude of the repulsive force will increase as the distance between the robot and 

the obstacle decreases. Then, the resultant force TotalF  can be calculated by adding 

( )att sF  tar  with ( )rep iU obs  vectorically. 

 
Total potential influences on the robot { TotalU } = Attractive potential due to r 

numbers of targets ( )
r

att s
s =1

 U  tar⎧ ⎫
⎨ ⎬
⎩ ⎭
∑  + Repulsive potential due to h number of 

obstacles ( )
h

rep i
i=1

U  obs⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

 
 

( ) ( )
r h

Total att s rep i
s =1 i=1

U   U  tar   U  obs= +∑ ∑                                                                     (3.10) 

 
Similarly the total force applied on the robot is the sum of attractive potential forces and 

repulsive potential forces. 

( ) ( )
r h

Total att s rep i
s =1 i=1

F   F  tar    F  obs= +∑ ∑                                                                      (3.11) 

 
which determines the motion of the robot as per the robot Kinematics (Appendix A). 

 
When the above induced force is applied for motion planning of multiple mobile 

robots there are four commonly referred problems [201], as follows: 1) trap situations due 

to local minima; 2) no passage between closely spaced obstacles; 3) oscillations in the 

presence of obstacles; and 4) oscillations in narrow passages. However, the above list is 

not complete. In fact, there is an additional problem, targets non-reachable with nearby 

obstacles, encountered when the target is very close to an obstacle. When the robot 

approaches its target, it approaches the obstacle as well. Near the obstacle repulsive force 

dominates attractive force. Thus, the robot will be repelled away rather than reaching the 

goal. This is due to the existence of local minima in the environment. This problem has 

been addressed in the next section. 
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3.2.3.  Local minima problem and new repulsive potential function 

 
In an environment shown in Fig. 3.1(a), where the robot position q = [x, 0], target position 

qtarget = [0, 0], obstacle 1 (qobs1) = [0.5, 0] on the right-hand side of the target, obstacle 2 

(qobs2) = [−1, 0] on the left-hand side of the target and obstacle 3 (qobs3) = [−0.5, 0.5] the 

robot will be trapped in a local minima by using equations mentioned by Khatib [2]. Here 

target and robot is within the influence of obstacle because the robot is very close to the 

obstacles. Therefore the robot will be trapped due to presence of local minima and cannot 

reach the target. 

 
Case-I (Stationary obstacles and target) 

 
 

Fig.  3.1(a).  Location of robot, target and obstacles for local minima problem. 

 

 
Fig.  3.1(b).  The corresponding potential function (UTotal). 

 
For the above environment a graph has been plotted between total potential (UTotal) 

verses x-axis which includes the obstacles, robot and target (Fig. 3.1b). It can be observed 

from the graph that the robot will be trapped at x = −0.2. Therefore, it is clear that the 
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target is not the minimum of the total potential function. Hence, the robot cannot reach 

the target, though there are no obstacles on its way. Thus, robot stuck in local minima at 

x=−0.2. To overcome this problem, new repulsive potential functions are proposed taking 

into account the relative distance between the robot and the target.  

 

3.2.4.  Modified repulsive potential function   

 
From the above discussion it has been concluded that, the global minimum of the total 

potential field is not at the target position. This problem occurs as the robot approaches 

the target, the repulsive potential force increases due to presence of obstacle near the 

target. It is observed that if the repulsive potential force approaches zero, the robot 

approaches the target. To attain the global minimum at the target for the environment 

shown in Fig. 3.2, a modified repulsive potential function has been developed that takes 

the relative distance between the robot and the target is given in Eq. (3.12). 

 

 
( ) ( ) ( ) ( )

( )

i

i

i

2

n
i t arg et obs 0

0obsrep i

obs 0

1 1 1 q,q          if  q,q  
2 q,qU Obs  

0                                                                  if  q,q > 

α ρ ρ ρ
ρρ

ρ ρ

⎧ ⎛ ⎞
⎪ ⎜ ⎟− ≤⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪⎩

         
(3.12) 

where ρ(q, qobsi) is the minimum distance between robot q and obstacle i & varies from 1 

to h, and  ρ (q, qtarget) is the distance between the robot and the target. The value of n = 2. 

 
Fig.  3.2.  Contour plot of mobile robots navigation using new repulsive potential function.  
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The contour and surface plot are plotted for the total potential for the above case and are 
shown in Figs. 3.2 and 3.3. 
 
 

 
Fig.  3.3.  Total Potential function without local minima. 

 
From Fig. 3.2 it is obvious that, at the target i. e. at the origin, the total potential 

reaches its global minimum equal to zero. The Eq. (3.12) along with factor ρn(q,  qtarget) 

drag the robot towards the nearest target, thus ensuring the robot to be at the global 

minimum. The total potential {UTotal} can be obtained using Eq. (3.10). For n =2 and δ = 

α1 = α2 = α3 = 1, it is found that in Fig. 3.2 there is only one minima exist which is at the 

target. The flow chart and detail calculation for change in steering angle (Phir [ir]) is 

shown in Appendix B and C respectively.  

 

Case-II (Dynamic obstacle and target) 
 
 

 

 

 
Fig.  3.4.  Line diagram for local minima program. 
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While employing the new potential functions for dynamic motion planning, local 

minimum problems do exist and should be taken care of. For example, consider the case 

when two robots and the target move in the same direction along the same line and the 

robot 2 is in between, as shown in Fig. 3.4. Assuming that the target moves outward or 

synchronously with the robot (this assumption ensures that the robot2 is between the 

robot1 and the target all the time), the robot1 is obstructed by the robot2 because robot2 is 

the obstacle for the robot1 and cannot reach the target. 

 
To solve the problem, the simplest method is to keep the movement of robot1 

according to the total potential force as usual and wait for the robot2 or the target to 

change their motion. Since the environment is highly dynamic where both the target and 

the obstacles are moving, the situations where the configuration of the robot2 and target 

keeps static are rare. Thus, the waiting method is often adopted. However, if after a 

certain period of waiting, the configuration of the robot2 and target is still unchanged and 

the robot1 is still trapped, then it can be assumed that the configuration will not change 

temporarily and the robot will take other approaches to escape from the trap situation. 

Since the configuration of the robot1, robot2 and target is relatively stationary, the 

conventional local minimum recovery approaches such as wall following method, which 

are designed for the stationary environment cases, can be applied.  

 

3.3.  Analysis of Petri net model for inter robot collision avoidance 

 
In the APF method of navigation even though robots reach the target efficiently by 

escaping from local minima but still there may be possibility of collision among robots. In 

order to avoid the inter-robot collision in multiple mobile robots system Petri Net model 

has been introduced.  J. L. Peterson [202] first developed Petri Net model. In this strategy 

motion generation is selected for mutual collision avoidance according to the complexity 

of the situation.  Fig. 3.5 depicts the Petri Net model built into each robot to enable it to 

avoid collision with other robots. The model comprises 7 states (or Tasks). The location 

of the token indicates the current state of the robot. 

 
It is assumed that, initially, the robots are in a highly cluttered environment, without 

any prior knowledge of one another or of the targets and obstacles. This means the robot 

is in state “Task 1” (“Wait for the start signal”). In Fig. 3.5, the token is in place “Task 1”. 

Once the robots have received a command to start searching for the targets, they will try 



 Potential Field Technique for Navigation of Mobile Robots                       
 

51 
 

to locate targets while avoiding obstacles and one another. The robot is thus in state 

“Task2” (“Moving, avoiding obstacles and searching for targets”). 

 
During navigation, if the path of a robot is obstructed by another robot, a conflict 

situation is raised. (State “Task 3”, “Detecting Conflict”). Conflicting robots will 

negotiate with each other to decide which one has priority. The lower priority robot will 

be treated as a static obstacle and the higher priority robot as a proper mobile robot (state 

“Task 4”, “Negotiating”). 

 

   

Fig.  3.5.  Petri Net Model for avoiding inter-robot collision. 
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As soon as the conflict situation is resolved, the robots will look for other conflicts 

and if there is no other conflict they will execute their movements (state “Task 5”, 

“Checking for conflict and executing movements”). 

 
If a robot meets two other robots already in a conflict situation, its priority will be 

lowest and it will be treated as a static obstacle (state “Task 6”, “Waiting”) until the 

conflict is resolved. When this is done, the robot will re-enter state “Task 2”. 

 

3.4.  Simulation results  

 
This section presents exercises aimed at illustrating the ability of the proposed control 

scheme to manage the navigation of mobile robots in different situations. Simulations 

were conducted with the help of MATLAB software package developed by the author. 

This generalized program enables to generate any number of mobile robots, targets and 

obstacles and controls in an artificial simulated environment containing multi targets and 

obstacles. Three exercises have been designed to show the different capabilities of the 

proposed control scheme.  

 

3.4.1.  Collision-free movement, obstacle avoidance and target seeking 

 
The current tasks comprises of two robots, moving in a platform with thirteen obstacles 

and one target (Fig. 3.6). 

     
Fig.  3.6.  Navigation environment for two mobile robots consisting of multiple obstacles and 
single target. 
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This exercise designed to demonstrate that the robots reach the target without 

colliding with obstacles or one another and at the same time avoiding the obstacles. 

Robots choose their own path to reach the target by covering the shortest length.  It can be 

noted that the robots stay well away from the obstacles. 

 

3.4.2.  Obstacle avoidance and target seeking by multiple robots 

 
This exercise involves three mobile robots initially assembled in a highly cluttered 

environment. The Fig. 3.7 depicts a situation where three mobile robots and twenty 

obstacles and two targets. In this simulation, each robot has reached their nearest target in 

an efficient manner without any collision between themselves and obstacles in a highly 

cluttered priori unknown environment.  

 

 
Fig. 3.7. Navigation of three mobile robots with two targets in a high density obstacle 
environment. 
 

3.4.3.  Wall following and target seeking  

 
The wall following and target seeking behavior has been shown in Fig. 3.8. This exercise 

involves the wall following behavior of single mobile robot in an environment consisting 

of sixteen obstacles. In the present scenario the obstacles are arranged in a particular 

fashion so that they act like a wall between the robot and the target. As the robots search 

for their targets, they find the walls along which they continue to move by applying the 

wall following rules and finally reached the target.  
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Fig.  3.8.  Navigation environment for wall following behavior consists of one robot, one target 
and multiple obstacles. 

 

In the above simulations, the path are found by assuming that the robots moves at 

variable speed and the resultant virtual force applied to it only determines the direction of 

its motion.  

 

3.5.  Comparison of results with other models 

 
In this section a comparison has been made between Park and Lee [203] model and 

results from current control scheme in simulation and experimental mode. The 

performance of the two methods was mainly evaluated on the basis of path length. The 

results from Park and Lee [203] are shown in Figs. 3.9(a), (c), (e) and (g) are compared 

with the results obtained from present investigation for similar environments [Figs. 

3.9(b), (d), (f) and (h)] and tabulated in Table 3.1.  

 
The simulation has been conducted in a similar environment as described by Park and 

Lee [203]. It has been observed in the environment shown in Fig. 3.9(a) and (c) presented 

by Park and Lee and Fig. 3.9(b) and (d) from current developed technique are free from 

any local minima problem. Therefore the robot can successfully reach the goal with the 

APF approach. Similarly in the Fig 3.9(e) and 3.9(f), both the cases the robots are trapped 

at the closed U-shape boundary due to the existence of local minima.  
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Fig.  3.9.  Comparison of results from Park and Lee [203] model and current investigation.   
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In Fig. 3.9(h) robot escape from the local minima by using new APF function for 

obstacles which drag the robot near the target in a shortest path. In some scenarios, of 

Park and Lee [203], it can be seen that, the path of robot has sharp change in direction 

with large steering angle and sometimes zigzag like motion, which is taken care in the 

present investigation. In Fig. 3.9(b), (d), (f) and (h) shows the robot reach the target in 

shortest path with smooth trajectory by using the new potential field function. From the 

above simulation results it is very clear that, the developed algorithm can efficiently drive 

the robot in a cluttered environment. 

 
Table 3.1  
Comparison of results from the current investigation with Park and Lee [203] model. 
 
Sl. 
No. 

Environmental types Path length of Park and 
Lee [203] Model, in ‘cm’  

Path length from current
investigation in  ‘cm’   

1. Rectangular obstacle and path
planning by APF method [Fig.
3.9(a) & (b)].  

 

 

7.1 
 

6.0 

2. Open aisle and path planning
by APF method [Fig. 3.9(c) & 
(d)]. 
 

 
6.4 

 
5.1 

3. Closed aisle and failed path
planning by APF method [Fig.
3.9(e) & (f)]. 
 

 
3.7 

 
3.2 

4. Closed aisle and path planning
by APF method with virtual
obstacle [Fig. 3.9(g) & (h)]. 

 

10.2 

 

9.8 

 
Experimental verification of the above simulation results has been shown in next section. 

 

3.6.  Experimental implementation 

 
3.6.1.  Specification of real robot 

 
Experimental validation and verification of the proposed method has been demonstrated 

using the three similar prototype mobile robots developed in the laboratory. The mobile 

robot has two active wheels and two passive wheels. Each active wheel is driven by DC 

gear servo motor (12V, 30 rpm) independently and a driver circuit for the motor is 

mounted on the dual-wheel caster assembly in the prototype robot. Passive wheels are 
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installed on both side of the steering axis as an auxiliary wheel in order to keep the 

balance of the active dual-wheel caster assembly and the prototype robot. The path traced 

by the robot during motion was marked on the floor by means of a pen attached to the 

back of the robot frame. The position and posture of the prototype robot can be estimated 

by dead reckoning using the equations developed and information from the encoders 

arranged on the wheels and the steering axes. The appearance of the wheeled mobile 

robot assembly is shown in Appendix D. 

 

3.6.2.  Control system 

 
Control commands from microprocessor are given in form of voltages through D/A 

converter using an interface board (RIF-01). These voltage signals drive the DC-motors 

via driver circuits, so that driving torque is occurred. While, pulses from the encoders are 

counted by UPP (Universal Pulse Processor) on the interface board. These counts are 

transmitted to the microprocessor for further processing.  

 
3.6.3.  Real-time experiment 

 
In order to demonstrate the effectiveness of the above control system and the validity of 

the algorithm developed using modified potential field function, a variety of experiments 

using developed robot are conducted. The robot has operated in an environment with 

cylindrical target and conical obstacles ranging from 0.08 to 0.10 m base diameter.  

 

 

Fig.  3.10.  Experimental set up for navigation of mobile robot in the similar environment shown 
in Fig. 3.9(b). 
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The four different cases of  similar environments as described by Park and Lee [203], 

which are already verified in simulation mode have been verified experimentally [shown 

in Figs.3.10-3.13] to show the effectiveness of the developed controller. 

 
Figs. 3.10(a-f) have demonstrated a situation where robot and target are placed in 

opposite corner of a rectangular boundary (created by a variety of conical obstacle 

configurations). When robot starts motion it speeds up in straight path up to the wall and 

slows down to take a turn near the wall, then moves according to wall following rules to 

reach the target. The robot autonomously chooses its way in the shortest trajectory to 

reach the desired destination.  

 
For the second robot navigation (Fig. 3.11), it can be observed that, the robot follows 

a straight path except the turning points from its start to the goal position. There are, 

however, situations such as in Figs. 3.12(a-f), in which the robot is following a local 

minimum corresponding to a U-shaped boundary that prevents the robot to pass through 

and find the target. As the robot approaches this situation, the level of the obstacle 

potential rises, causing the robot to slow down and stop before a collision occurs. In some 

cases the robot can rotate and move with some zigzag motion until it reaches another 

local minima in the potential that can lead it out of this situation. The developed potential 

field method takes care to invoke a new path based on available information received by 

the robot about the environment with heuristic recovery approach. Finally the robot able 

to reach the target which is shown in Figs. 3.13(a-f) sequentially. 

 

Fig.  3.11.  Experimental set up for navigation of mobile robot in the similar environment shown 
in Fig. 3.9(d). 
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Fig.  3.12.  Experimental set up for navigation of mobile robot in the similar environment shown 
in Fig. 3.9(f) using classical APF. 

 

 

 
Fig.  3.13.  Experimental set up for navigation of mobile robot in the similar environment shown 
in Fig. 3.9(h) using modified APF. 

 
Here the potential field approach has been used as a local holonomic motion planner. 

The new potential function is used for real time experiments with the developed robot. 

The experimentally obtained paths follow closely those traced by the robots during 

simulation. From these figures, it can be seen that the robots can indeed avoid obstacles 

and reach the targets. It is found that by comparing the results from both the simulation as 

well as experiment that, the path followed by the robots using new potential field function 

can successfully arrive at the target by avoiding obstacles. The trajectories are smooth and 
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take reasonably efficient paths as compared to Min path. More than thirty experiments 

have been conducted to test the model. The maximum velocity of mobile robot used for 

navigation is 0.05 m s−1. There are a number of trials with varying complexity to show 

that the model works for different sizes and numbers of obstacles. The real time simulated 

results show the effectiveness of the developed controller for mobile robots navigating in 

priori unknown cluttered environment. 

 

3.7.  Summary 

 
In this chapter, a modified potential field method has been proposed for mobile robot 

motion planning in presence of static and dynamic obstacles in a cluttered environment.  

The mobile robot navigation control system described in this chapter comprises of two 

parts. The first part is an APF based controller that combines the total attractive and 

repulsive forces (by taking into account the relative distances of the robots with respect to 

the targets and obstacles and the bearing angles between them) to direct the steering of the 

robot to avoid obstacles in its path and reach the target. The second part is a Petri Net 

model implementing crisp rules for preventing collision between different mobile robots. 

This division of the navigation control task is based on the rationale that information 

concerning moving obstacles around a robot is often not known precisely, while the 

simultaneous relative locations of the robots can be much better defined through 

communication between themselves. Various exercises have been carried out by 

considering the different navigational scenarios such as (i) collision-free movement, 

obstacle avoidance and target seeking by single robot, (ii) obstacle avoidance and target 

seeking by multiple robots and (iii) wall following and target seeking behavior etc. It is 

found that the robots stay well and able to reach their targets efficiently. A comparison 

has been made between Park and Lee [203] model and results from current control 

scheme both in simulation and experimental modes. The simulations and tests on actual 

robots demonstrated that the proposed system functions correctly, enabling the robots to 

find targets in environments cluttered with obstacles and other mobile robots without 

hitting the obstacles or colliding against one another. 

 
In the subsequent chapters genetic algorithm and fuzzy-logic have been explored and 

analyzed as standalone techniques. These techniques are then combined and hybridized to 

develop better controller for path planning of mobile robots.  
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4. Genetic Algorithm Technique for 
Navigation of Mobile Robots   
 

This chapter describes the analysis of Genetic Controller for mobile robot navigation by keeping 
in view of path optimisation. A novel method has been adopted for path optimisation by suitably 
designing the fitness function. This fitness function is being analysed and implemented in the real 
robot in order to get robust control architecture for mobile robot navigation. 
 

 

4.1.  Introduction  

 
In the past three decades, genetic algorithms have been widely used for optimisation of 

various engineering applications. In the current chapter genetic algorithm has been 

explored for analysis and optimization of path for mobile robot navigation. It is desirable 

that a robot can navigate safely in an unknown environment in a specified path plan, and 

that the motion controller has to follow the plan as closely as possible. Robot has become 

a prominent tools that it has increasingly taken a more important role in many different 

industries. As such, it has to operate with great efficiency and accuracy. In an 

environment including obstacles, motion planning is to find a suitable collision-free path 

for a mobile robot to move from a start configuration to target configuration. In course 

motion planning very often this path depends upon the parameters such as time, distance, 

energy and smoothness. Distance is a commonly adopted criterion. GAs can optimise 

many such parameters encountered by the robot during navigation. 

 
4.1.1.  Overview 

 
Genetic algorithms (GAs) are introduced as a computational analogy of adaptive systems. 

A typical genetic algorithm requires a genetic representation of the solution domain and   

a fitness function to evaluate the solution domain. A standard representation of the 

solution is as an array of bits. The main property that makes these genetic representations 

convenient is that their parts are easily aligned due to their fixed size, which facilitates 

simple crossover operations during child formation. Variable length representations may 

also be used, but crossover implementation is more complex in this case. Tree-like 

representations are explored in genetic programming and graph-form representations are 

explored in evolutionary programming. 
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The fitness function is defined over the genetic representation and measures the quality of 

the represented solution. The fitness function is always unique and problem dependent. 

Once the genetic representation and the fitness functions are defined, GA proceeds to 

initialize a population of solutions randomly, then improve it through repetitive 

application of mutation, crossover, inversion and selection operators. 

 

4.1.2.  Problem formulation 

 
In this chapter, a novel knowledge based genetic algorithm for path planning of multiple 

robots for multiple targets seeking behaviour in presence of obstacles is proposed. The 

proposed algorithm based upon an iterative non-linear search, which utilizes matches 

between observed geometry of the environment and a map of position locations from 

sensors data to estimate a suitable heading angle, there by correcting the position and 

orientation of the robots to find targets. This knowledge based GA is capable of finding 

an optimal or near-optimal robot path in complex environments. The resulting navigation 

algorithm has been implemented on real mobile robots and tested in various environments 

for comparison. 

 

4.2.  Design of mobile controller using GA 

 
4.2.1. Basic approach for obstacle avoidance 

 
As specified earlier a genetic algorithm (GA) based obstacle avoidance scheme has been 

used here for path planning of multiple robots with multiple targets in presence of 

obstacles. Genetic algorithms are heuristic optimization methods whose mechanisms are 

analogous to biological evolution. The evolutionary procedure employed in the 

simulations consists of a standard GA program. The speed of genetic algorithm depends 

heavily on the encoding scheme of the chromosomes and on the genetic operators that 

work on these chromosomes [204, 93]. In order to speed up a GA, the chromosome’s and 

gene’s structures need to be as simple as possible. In addition, only a few, but very 

effective, reproduction operators should be applied on the chromosomes. A GA operates 

on a population of chromosomes, which represent possible solutions for a given problem. 

This implementation is a new approach to the path-planning and obstacle avoidance 

problem, representing each chromosome as a group of basic elements. These elements 

define the robot's movements in agreement with the feedback generated by its 
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environment. Each feedback, which is used as input to the system, is based on the sensors 

reading and on the robot's direction to its goal location. The sensors reading are presented 

to the GA system in a simplified form. The proposed simulator provides 6 sets of 

ultrasonic and 4 sets of IR sensors for detecting the obstacles and bearing of the targets. 

However, the distances are calculated at each instantaneous position of the robots. These 

distances are calculated based on the position and orientation of the obstacles with respect 

to robots instantaneous position.  

 
The basic inputs to the genetic controller are front obstacle distance (FOD), left 

obstacle distance (LOD) and right obstacle distance (ROD) to all the GAC and output is 

heading angle (H.A.). These inputs and outputs are expressed in terms of encoded 

generation function distributions by crisp values. Then, these crisps values are converted 

to binary values in order to facilitate the interface with machine language for further 

processing of the controller. To visualise the above genetic controller in real sense the 

problem has been addressed in different stages. The stages are analysed below: 

 
Stage 1: Formation of pool set for obstacle avoidance 

 
From the sensors outputs (F.O.D., L.O.D. and R.O.D.) distances an initial population pool 

is created with a predefined population size. The population contains number of 

individuals (i.e., chromosomes). Each individual represents a solution for the problem 

under study. In our case, each solution is in terms of a heading angle between the current 

directions of the robots’ steering with respect to targets’ directions from its start to end 

point in the search space. The initial population with size n can be presented as follows: 

 

Initial Population = <P1, P2, …, Pn> 

 
Each structure have the elements p(i,i) which are simply an integer string of length L, 

in general. Each population have 5-sets of chromosomes which are represented by 

Element numbers 1 to 5. 
 
          Element: 1    Element: 2    Element: 3    Element: 4    Element: 5   

   P1= {  p1, 1                  p1, 2                 p1, 3                 p1, 4                 p1, 5} 

   P2= {  p2, 1                  p2, 2                 p2, 3                 p2, 4                  p2, 5} 

   ………………………………………………………………………... 



Genetic Algorithm Technique for Navigation of Mobile Robots                      

 

64 
 

   ………………………………………………………………………... 

   …………………………………………………………………........... 

   Pn= {  pn,1,        pn,2,                pn,3,                pn,4,                pn,5} 

where,  

             Element No. 1 (p1, 1 to pn, 1) represents the left obstacle distance (F.O.D.).  

             Element No. 2 (p1, 2 to pn, 2) represents the front obstacle distance (L.O.D.).  

 Element No. 3 (p1, 3 to pn, 3) represents the front obstacle distance (R.O.D.). 

 Element No. 4 (p1, 4 to pn, 4) represents the instantaneous heading angle (H.A) with    

 respect to target position. 

             Element No. 5 (p1, 5 to pn, 5) represents the sign conversion (‘+ve’, ‘zero’ and ‘–     

             ve’) for clockwise, straight and anti clockwise based on the direction of HA (f)   

             respectively which is shown in Fig. 4.1. 
 
Distances beyond 511 mm radius the region is treated as obstacle free and in this case 

robot considered that, there is no obstacle in the particular direction and starts moving 

towards target till find any obstacle on the way within the range. In this case heading 

angle will be zero (Case 5 in Table 4.1). In case 2 left obstacle distance is medium, front 

obstacle distance is near and right obstacle distance is near, so robot will take a left turn 

of 12degree (-ve) in order to avoid obstacle.  

 

 

Scenario 1                                 Scenario 2                                Scenario 3 
(Case: close right obstacle)      (Case: obstacles far around)     (Case: close left obstacle) 
 
Fig.  4.1.  Sign convention of GA output in terms of heading angle (HA) with respect to obstacle 
position. 
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Similarly in case 8, left obstacle distance is near, front obstacle distance is very near 

and right obstacle distance is medium, so robot will take a right turn of 12degree (+ve) in 

order to avoid obstacle. For the heading angle each degree of rotation is taken as 

(511/180)th  part for both clockwise and anti clockwise movement of robot. For simplicity 

a set of 10 populations has been shown in tabular form (Table 4.1). 

 
Table  4.1.  

Heading angle (H.A.) with respect to different obstacle positions. 

Case FOD (mm)  LOD (mm) ROD (mm) HA(f) 
(Degree) 

Direction 
 (+/-)ve 

1 250 200 150 18 -ve 

2 300 340 260 12 -ve 

3 400 300 150 10 -ve 

4 270 280 160 15 -ve 

5 600 100 120 0 straight 

6 505 400 280 5 -ve 

7 480 220 450 14 +ve 

8 120 200 360 12 +ve 

9 500 100 450 16 +ve 

10 320 450 180 10 -ve 

 

Stage 2: Analysis of fitness function for obstacle avoidance 

 
Fitness function represents an important part of any evolutionary process using GAs. 

Appropriate selection of the fitness function will lead the search towards the optimal 

solution. The optimal obstacle avoidance, in our case, is the possible collision free motion 

of robot with optimum heading angle (HA) with respect to target location, thereby 

optimising the trajectory between the start and end point in the environment. Thus, the 

fitness function is responsible for optimal obstacle avoidance. The proposed GA 

knowledge based controller helps computing the total number of steps the mobile robot 

need during navigation to reach the end point. Consequently, the fitness value for a 

complete solution is computed as: 
 

( ) ( ) ( ) ( ) ( )1 2 3 4 50.4 0.15 0.15 0.15 0.15Totalf f f f f f= + + + +                                               (4.1) 
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where, 

( ) ( ) ( ){ }2 2 2
1 ,1 ,2 ,3FOD ci LOD ci ROD cif C p C p C p= − + − + −                                                     (4.2)                        

2 ,1FOD cif C p= −                                                                                                                         (4.3) 

3 ,2LOD cif C p= −                                                                                                                         (4.4) 

4 ,3ROD cif C p= −                                                                                                                         (4.5) 

5f TA HD= −                                                                                                                             (4.6) 

 
and (C FOD –Pci,1), (C LOD –Pci,2)  and (C ROD –Pci,3) are the best distances (child) obtained 

from the given pool set of front, left and right obstacles distances from instantaneous  

obstacle position with respect to initial position. TA and HD are the target angle and 

heading direction respectively. The coefficients of the fitness function are computed 

statistically using fuzzy inference technique and are cited in Appendix E. 

 
Stage 3: Crossover of parameters and its analysis  

During the operation of reproduction crossover is applied on the chosen parent 

chromosomes only within a certain probability, the crossover probability. In the chosen 

crossover operator, two parent chromosomes are combined applying a single-cross-point, 

value encoding crossover. The crossover operator has been modified to produce two 

offspring chromosomes with each crossover operation. This is achieved by using the gene 

information, which are not used to build offspring one, in order to build a second 

chromosome. In the proposed controller the crossover operators has been used for front, 

left and right obstacle distances as well as for the heading angle. The function of 

crossover operator for first two pool set cases are shown in Table 1 and illustrated in Fig. 

4.2. 

 
Cross over for “F.O.D.” 

Parent 1                                                                       Offspring 1 
0 1 1 1 1 1 0 1 0 
                        crossover point 
Parent2                                                                        Offspring 2 

 
 

  

0 1 1 1 0 1 1 0 0

1 0 0 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 
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 Cross over for “L.O.D.” 

Parent 1                                                                       Offspring 1 
0 1 1 0 0 1 0 0 0 
                        crossover point  
Parent2                                                                        Offspring 2 

 
 

 
Cross over for “R.O.D.” 

Parent 1                                                                       Offspring 1 
0 1 0 0 1 0 1 1 0 
                        crossover point 
Parent2                                                                        Offspring 2 

 
 

 
Cross over for “H.A.” 

Parent 1                                                                       Offspring 1 
0 0 0 1 1 0 0 1 1 
                        crossover point 
Parent2                                                                        Offspring 2 

 
 

Fig. 4.2. Single-Cross-Point, value-encoding crossover for F.O.D., L.O.D., R.O.D. and 
H.A. 
 

Stage 4: Mutation 

 
For mutation, almost every operation that changes the order of genes within a 

chromosome or that changes a gene’s value (such as location or direction) is a valid 

mutation operator. The mutation operator has been designed according to the addressed 

obstacle avoidance problem. The chosen mutation operator checks with a mutation 

probability for every single gene whether it should be mutated or not. If a gene is to be 

mutated, a random number between 1 and the total number of population in the search 

space is assigned to location and a random direction, either clock wise, anticlockwise or 

straight, is based on reference direction. This mutation variant has the advantage that it 

gives the opportunity for a chromosome to become significantly altered. That means that 

the complete search space will be explored and it therefore prevents the GA from getting 

stuck in a local optimum. The fitness of all affected genes (steps) is re-evaluated and 

stored immediately after the changes in location and direction are made. Each step’s 

fitness is therefore always up to date with every instantaneous position of robot. 

0 1 1 0 1 0 1 0 0

1 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 

0 1 1 1 0 0 1 0 0 

1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 

0 0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 
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Stage 5: Evaluation of fittest child according to fitness function  

 
The evaluation of fittest child is computed as per the fitness function described in stage 2. 

The outline of the schematic diagram showing the flowchart for the proposed knowledge 

based genetic algorithm is given in Fig. 4.3 and the detailed working principle is 

highlighted below. 

 
The GA controller begins its search by randomly creating a number of solutions 

(equals to the population size) represented by the binary strings and are evaluated by the 

fitness function derived in Eq. (4.1).  Two parents for FOD, LOD and ROD are selected 

from the pool set according to fitness function. Once the parents are chosen from the 

population, they are modified by using three operators: reproduction, crossover and bit-

wise mutation. The iteration process involving these three operators followed by the 

fitness evaluation is called a generation. The generations proceed until a termination 

criterion is satisfied. In the current approach, the termination criterion can either be that 

the preset maximum generation is exceeded, or that the best solution remains unchanged 

for certain generations. Accordingly the best heading angle (f) will be decided and 

command execution starts to move the robot towards the target. 

 
The proposed algorithm can also be suitably applied for dynamic environment. 

During navigation it checks sensing about the environment periodically. If the 

environment is changed, the algorithm will re-evaluate the current population according 

to the new environment and starts the process to get a new solution. In such cases, in 

order to increase the diversity of the population mutation with higher probability is 

applied to the current population. According to the fittest child, the heading angle of the 

robot will be decided. The obstacle avoidance behaviour of the robot using genetic 

algorithm will be incorporated in the Petri-net model for successful navigation of the 

mobile robot. The working principle of the proposed Petri-net model for inter-robot 

collision avoidance has been discussed in the previous section. The task used for the 

Petri-net model using GA has been outlined below. 
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Fig.  4.3.  The outline of schematic diagram showing the flowchart for the proposed motion 
planning scheme. 
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Task 1  Wait for the start signal 

Task 2  Moving, avoiding obstacles using GA 

Task 3  Detecting conflicts with the help of GA 

Task 4  Negotiating  

Task 5  Checking for conflict and executing movements 

Task 6  Searching for targets using GA 

Task 7  Waiting 

 

4.3.  Simulation results  

 
This section presents exercises aimed at illustrating the ability of the proposed control 

scheme to manage the navigation of mobile robots in different situations. MATLAB 

software package has been developed and used for conducting simulation. This 

generalized program enables to generate any number of mobile robots, targets and 

obstacles and controls in an artificial simulated environment containing multi-targets and 

obstacles. Three exercises have been designed by arranging obstacles in different fashions 

to create different environment for the GA based controllers to show the capabilities of 

the proposed control scheme.  

 

4.3.1.  Collision-free movement, obstacle avoidance and target seeking in highly clutter 
environment 
 
The navigation environment for collision free motion and obstacle avoidance for three 

robots with three targets in a highly cluttered environment has been shown in Fig. 4.4. 

This exercise is designed to demonstrate that each robot reach their targets without 

colliding with other robots while avoiding the obstacles. Robots choose their path by its 

own to reach the target by following the shortest trajectories.  

 
It can be noted that the robots stay well away from the obstacles and move in smooth 

path from its start locations to end locations and found their targets efficiently. 
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Fig.  4.4.  A view of navigational environment for collision avoidance by three robots and 
three targets in a highly cluttered environment.  
 

4.3.2.  Obstacle avoidance and target seeking by several robots 
 

 
Fig.  4.5.  Navigation environment for target seeking behaviour for collision free motion and 
obstacle avoidance by multiple robots with multiple targets.  

 

This exercise (Fig. 4.5) involves six mobile robots assembled in a cluttered 

environment for navigation. In this simulation, each robot has reached their nearest target 
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in an efficient manner without any collision between themselves and obstacles in a 

cluttered unknown environment using GA technique. 

 

4.3.3.  Wall following and target seeking behavior 

 
The wall following and target seeking behavior has been shown in Fig. 4.6. This exercise 

involves the wall following behavior of four robots consisting of two targets. In the 

present scenario the obstacles are arranged in a particular fashion so that they represent 

like a wall between the robots and the targets. As the robots search for their targets, they 

find the walls along which they continue to move by applying the wall following rules. In 

the initial position the robots are heading towards the dead-end. Due to the additional 

context information provided by the proposed controller robots can able to perceive the 

dead ends. The controllers initiate the turning manoeuvre, which last until the robots are 

heading away from the dead-ends. Afterwards, the normal wall-following behaviour 

guides the robots to exit from the corridor by keeping a safe distance from the wall. Fig. 

4.6 shows the robots trajectories from start positions to targets without suffering from 

‘‘dead cycle” problems. 

 
Fig.  4.6.  Navigation environment for wall following and target seeking behaviour of multiple 
robots. 
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dynamic environment. Further the robots have well compromised between themselves in 

the cluttered environment in order to avoid collision among themselves as well as with 

other obstacles. The same controller has been demonstrated for other cases of simulation 

in the succeeding sections. 

 

4.4.  Approach for design validation with other models 

 
In this section a comparison has been made between Gemeinder and Gerke [205] model 

and results from current control scheme in simulation and experimental mode. The 

performance of the two methods is mainly evaluated on the basis of the path length. The 

results from Gemeinder and Gerke [205] shown in Fig. 4.7(a) and Fig. 4.8(a) are 

compared with the results obtained from current investigation [Fig. 4.7(b) and 4.8(b)] for 

similar environments. The comparisons of results for both the methods are given in Table 

2.  

 

 
Fig.  4.7.  Comparison of results from the current investigation and Gemeinder and Gerke [205] 
(Scenario 1).  
 

In the first case, both the controllers are applied to a situation with complex maze 

with different shapes of boundary that would cause the existence of ‘‘dead cycle” 

problems. In this case the robot cannot see the target directly due to the wall in between 

them.  It can be observed in the environment (Gemeinder and Gerke [205] model), shown 

in Fig. 4.7(a) that the robot is trapped at each steps throughout the maze due to the 

existence of local minima and finally able to find their target after a long exercise by 
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following a longer trajectory. In Fig. 4.7(b) the robot can avoid the maze made with 

similar boundary found on its way towards the target efficiently by the proposed GA 

model. In this case robot will first takes left turn due to the obstacle (boundary) in front of 

it, then sense the target and finally follows the walls in order to reach the target 

successfully by receiving systematic information from the sensors through the state 

memory strategy. 

 
In the second case, the robot supposed to find the target approximately in a complex 

situation like closed aisle for a dead cycle problem. In Fig. 4.8(a) proposed by Gemeinder 

and Gerke [205] model the robot got trapped in the U-shaped area first, and then it has 

escaped from the trap by taking a loop and eventually reaches the target by following a 

zigzag motion. Fig. 4.8(b) shows a simulation result of the robot behavior adapted by 

means of the proposed method. In the initial position the robot is heading towards the 

dead-end. Due to the additional context information provided by the proposed controller 

robot can able to perceive the dead-end. The controller initiates a turning manoeuvre, 

which lasts until the robot is heading away from the dead-end. Afterwards, the normal 

wall-following behaviour guides the robot to the exit of the corridor by keeping a safe 

distance from the wall.  
 

 
 
Fig. 4.8. Comparison of results from the current investigation and Gemeinder and Gerke [205] 
(Scenario 2). 
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Table  4.2   

Comparison of results from the current investigation with Gemeinder and Gerke [205] model  

Sl 
No. 

Environmental types Path length of 
Gemeinder Model, 
 in ‘cm’  

Path length from 
current investigation 
in  ‘cm’   

1. Complex maze with different shape 
of Rectangular obstacles and path 
planning using GA [Fig. 7(a) & (b)]  

 

11.6 8.8 

2. Closed aisle and path planning using 
GA [Fig. 8(a) & (b)] 

17.2 20.4 

 
In some scenarios of Gemeinder and Gerke [205] model it can be seen that the path 

of robot has sharp change in direction with some greater steering angle and sometimes 

small zigzag like motion that has been taken care in the present investigation. Fig. 4.7(b) 

and 4.8(b) show that the robot reaches their target in a smooth motion with the proposed 

approach. The performance of the two models was mainly evaluated on the basis of path 

length and smoothness of trajectory which is shown in Table 4.2. From the above 

simulation results it is clear that, the developed algorithm can efficiently drive the robot in 

a cluttered environment. The above simulation results has been verified experimentally 

and shown in next sections (Figs. 4.9- 4.10).  

 

4.5.  Experimental results and discussion 

 
The effectiveness of the proposed systems has been demonstrated by analysing the 

experimental results. In this section the experimental results from developed motion 

planner has been demonstrated for its operation in an environment with rectangular aisle 

of different shapes. Two different cases of similar environments as described by 

Gemeinder and Gerke [205] model, which are already verified in simulation mode, have 

been verified experimentally (Figs. 4.9- 4.10) using the robot developed in the laboratory.  
 
Figs. 4.9(a-f), demonstrate a situation where robot and target are placed in opposite 

corner of the complex maze (created by a variety of rectangular obstacle configurations). 

Initially robot cannot see the target directly because of the obstacles between robot and 

target. When robot starts motion it senses the target and speeds up in straight path 

towards the targets up to the U-shaped wall and slows down to take right turn to avoid 

obstacle, then follows a wall following rules to reach the target. 
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Fig. 4.9.   Experimental results for navigation of mobile robot in the similar environment shown 
in Fig. 4.7(b) 

 

 

Fig. 4.10.   Experimental results for navigation of mobile robot in the similar environment shown 
in Fig. 4.8(b). 

 

The robot autonomously chooses its way in the shortest trajectory to reach the desired 

destination by getting the optimised heading angle obtained from knowledge based GA 

controller. For the second case of navigation (Fig. 4.10(f)), it can be observed that, the 

robot follows a straight path except the turning points from its start to the goal position 

inside the closed aisle. In some cases the robot can rotate and move with some zigzag 

motion until it reaches target. The developed controller takes care to invoke a new path 
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based on available information received by the robot about the environment with ruled 

based heuristic recovery GA approach. 

 
The experimentally obtained paths follow closely those traced by the robots during 

simulation. From these figures, it can be seen that the robots can indeed avoid obstacles 

and reach the targets. It has been concluded by comparing the results from both the 

simulation as well as experiment that, the path followed by the robots using the proposed 

controller can successfully arrive at the target by avoiding obstacles. The trajectories are 

smooth and take reasonably efficient paths as compared to Gemeinder and Gerke [205] 

paths. More than thirty experiments have been conducted to test the model. The 

maximum velocity of mobile robot used for navigation is 0.05 m s−1. There are a number 

of trials with varying complexity to show that the model works for different sizes and 

numbers of obstacles. The real time simulated results show the effectiveness of the 

developed controller for mobile robots navigating in priori unknown cluttered 

environment. 

 

4.6.  Summary 

 
In this study, the prime objective was to construct the framework of some hierarchical or 

procedural control structures to implement basic navigation problems for multiple robots 

based on GA. Firstly, we have proposed a method for adjustment of fitness values to 

avoid statistical variation due to randomness in initial positions and orientations of 

obstacles. Then the distances of obstacles from three directions (viz. front, left and right) 

were evaluated by using suitable fitness function and optimised by the proposed 

algorithm based upon an iterative non-linear search, which utilizes matches between 

observed geometry of the environment and a-priori map of position locations, there by 

correcting the position and orientation of the robot to find targets. During navigation of 

several robots there could be the chances for conflict situations and inter robot collision 

among them. This has been taken care in the present study by suitably designing of a 

general-purpose conflict avoidance module based on Petri-net model and embedded in the 

controllers of each robot in order to navigate safely in the environment.  The developed 

strategies have been checked via simulations as well as experiments, which show the 

ability of proposed controller to solve the multiple robot navigation tasks in an optimised 

way and to obtain a strategy for this purpose.  
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5. Fuzzy Logic Technique  for Navigation of 
Mobile Robots   
 

This chapter deals with the analysis of proposed fuzzy logic technique for navigation of multiple 
mobile robots by suitably designing different membership function distributions in order to get an 
efficient path planning strategy. The developed strategy takes into account the reference motion, 
direction, distances between the robots and obstacles, distances between the robots and targets 
heuristically and refined later to find the optimum steering angle.  

 

5.1.  Introduction  

 
The development of Artificial Intelligence (AI) techniques for autonomous navigation in 

real-world environments constitutes one of the major trends in the current research on 

robotics. An important problem in autonomous navigation is the need to cope with the 

large amount of uncertainties and ambiguities that are inherent of natural environments. 

Fuzzy logic has features that make it an adequate tool to address this problem. This 

chapter interprets a method for controlling multiple mobile robots with multiple targets in 

various (known and unknown) environments using fuzzy rule based on heuristic 

knowledge. The focus has been made to design robust behavior path planning modules 

for mobile agents to coordinate in a highly cluttered environment. Several such modules 

by using sensory information from instantaneous position of obstacles and bearing of 

targets have been integrated to obtain an intelligent controller for high-level reasoning 

and low-level execution strategy. For such issue, a thorough review has been done in the 

literature survey search. The pros and cons of fuzzy logic solutions for navigation of 

several mobile robotic agents have also been discussed. 

 

5.1.1.  Overview 

 
Fuzzy logic technique plays an important role to design the intelligent controller for 

mobile robot. Fuzzy set theory provides a mathematical framework for representing and 

treating uncertainties in the sense of vagueness, imprecision, lack of information and 

partial truth. Fuzzy control systems employ a mode of approximate reasoning that 

resembles the decision-making process of human’s knowledge. A fuzzy system is usually 

designed by interviewing an expert and formulating the implicit knowledge of the 
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underlying process into a set of linguistic variables and fuzzy rules. In particular for 

complex control tasks, obtaining the fuzzy knowledge base from an expert is often based 

on a tedious and unreliable trial and error approach [140]. Fuzzy set theory was first 

introduced by Lofti Zadeh [102] in the mid sixties and since then fuzzy logic has been 

applied to many diverse fields, from control theory to artificial intelligence. This section 

presents a variety of fuzzy logic models, combining the different membership functions to 

find an efficient controller which addresses an optimal or near optimal path for the 

challenges posed by autonomous robot navigation. 

 

5.1.2.  Problem formulation 

 
In this chapter, a novel real-time fuzzy navigation algorithm for multiple mobile robots 

operating in unknown cluttered environments is presented. The final aim of the robots is 

to reach some pre-defined goals in shortest trajectories without collision between 

themselves, while avoiding obstacles. Based upon reference motion, direction, distances 

between the robots and obstacles, distances between the robots and targets, different types 

of fuzzy rules are taken (by selecting different combinations of membership functions) 

heuristically and refined later to find the steering angle. In order to get the requisite 

information between robots, targets and obstacles each robot is equipped with an array of 

on board ultrasonic sensors for measuring the distances of obstacles and other robots 

around it and series of infrared sensors for detecting the bearing of target. To realize the 

controller in real sense the program is embedded in the robot for online independent 

navigation. Robots know their position from movements of their respective wheels (as 

steering angle of robot depends on the left and right wheel velocities). In order to avoid 

inter-robot collision each robot incorporates a set of collision prevention rules 

implemented as a Petri-net model in its controller. It has been found that the best path 

optimization takes place when the fuzzy logic controller (FLC) having Gaussian 

membership function is used. The resulting navigation algorithm has been implemented 

on real mobile robots and tested in various environments. The experimental results 

presented demonstrate the effectiveness and improved performance of the developed 

controller navigation scheme. 
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5.2.  Control architecture 

 
5.2.1.  Analysis of obstacle avoidance and target seeking behavior 

 
The robots considered here are of differential wheel drive type and can readily move in 

each direction (limited to a predefined value) and can similarly rotate in any arbitrary 

degree (limited to another predefined value). The Ultrasonic and Infrared Sensors used in 

the robots to sense the obstacles from left, right and front of the robot with acceptable 

tolerance in their measured value. In the proposed algorithm, the robot’s environment is 

considered with smooth floor and the obstacles are assumed as vertical substances with 

rigid bodies enough to reflect the ultrasonic beams. At the end, supporting the above 

consideration, the aim is to design and implement an appropriate algorithm that can guide 

the robot from any arbitrary position in the work space as the start point, to another 

arbitrary location as the target. The path should be free from any collision and the robots 

should never hit any obstacles or the walls of the work space considered for experiment. 

The line diagram of general structure for a basic fuzzy controller is given in Fig. 5.1. 

 

 
Fig.  5.1.  Line diagram of a basic Fuzzy controller. 

 

Three types of membership functions having five membership functions in each, i.e. all 

triangular members, combinations of trapezoidal and triangular members and all Gaussian 

members are considered. Linguistic variables such as ‘‘very near’’ (VN), ‘‘near’’, 

‘‘medium’’, ‘‘far’’ and ‘‘very far’’ (VF) for obstacle distances have been considered for 

navigation of multiple mobile robots. 

 
Some of the fuzzy control rules are activated according to the information acquired 

by the robots using their sensors. The outputs of the activated rules are weighted by fuzzy 
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reasoning and the velocities of the driving wheels of the robots are calculated. Left wheel 

velocity and right wheel velocity are denoted as ‘leftvelo’ (LV) and ‘rightvelo’ (RV) 

respectively. Similarly ‘leftdist’,  ‘rightdist’, and ‘frontdist’ are defined for the distances 

left obstacle distance (L.O.D.), right obstacle distance (R.O.D.) and front obstacle 

distance (F.O.D.) respectively.  

 
Table 5.1  
Input parameters to the fuzzy controller. 

(a) Parameters for Obstacle Distances 
Linguistic 
Variables 

Very Near 
(m) 

Near 
(m) 

Medium 
(m) 

Far 
(m) 

Very Far 
(m) 

LOD 0.0 0.2 0.4 0.6 0.8 
ROD 0.2 0.4 0.6 0.8 1.0 
FOD  0.4 0.6 0.8 1.0 1.2 
 
 (b) Parameters for Target Heading Angle  
Linguistic 
Variables 

‘‘More neg’’ 
(deg.) 

‘‘Neg’’ (deg.) Zero(deg.) ‘‘Pos’’ 
(deg.) 

‘‘More pos’’ 
(deg.) 

Target 
Heading 
Angle(f) 

-180 -120 -10 10 60 
-120 -60 0.0 60 120 
-60 0 10 120 180 

 
 
Table 5.2  
Output parameters of the fuzzy controller. 

(a) Parameters for Wheel Velocity 
Linguistic 
Variables 

Very Slow 
(m/s) 

Slow 
(m/s) 

Medium 
(m/s) 

Fast 
(m/s) 

Very Fast 
(m/s) 

LV 
& 
RV 

0.01 0.02 0.03 0.04 0.05 
0.02 0.03 0.04 0.05 0.06 
0.03 0.04 0.05 0.06 0.07 

 

The parameters defining the input and output functions are listed in Table 5.1(a, b) 

and Table 5.2 respectively. The values of the parameters are decided empirically by 

considering sensing distance of the used sensors and speed of driving wheels. 

 
Terms like ‘very slow’ (VS), ‘slow’, ‘medium’ (med.), ‘fast’, and ‘very fast’(VF) are 

considered for left wheel velocity and right wheel velocity for five-membership functions. 

Similarly linguistic variables such as ‘more pos’ (more positive), ‘pos’ (positive), ‘zero’, 

‘neg’ (negative) and ‘more neg’ (more negative) are defined for the bearing of heading 

angle (HA) with respect to target.  
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The term ‘notargetconsider’ is used if there is no target in the environment. The 

membership functions described above are shown in Fig. 5.2. 

 

 
Fig. 5.2.  Fuzzy Controllers for mobile robot navigation. 
 
 
5.2.2.  The fuzzy mechanism for mobile robot navigation  

 
Based on the subsets, the fuzzy control rules are defined as follows:  

If  LD is LDi Λ FD is FDj Λ RD is RDk Λ HA is HAl 

Then LV is LVijkl  Λ  RV is RVijkl                                                                                   (5.1) 
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where i = 1–5, j = 1–5, k = 1–5 and l = 1–5 because LD, FD, RD and HA have five-

membership functions each.  

From expression (1) two rules can be written: 

If (LD is LDi and FD is FDj and RD is RDk and HA is HAl) 

Then LV = LVijkl     

And                                                                                                                                  (5.2) 

If LD is LDi and FD is FDj and RD is RDk and HA is HAl  

Then RV = RVijkl  

A factor Wijkl is defined for the rules as follows:  

Wijkl= µLDi (disi)LµFDj (disj)LµRDk (disk)LµHAl (angl)                                                      (5.3)  

where disi, disj and  disk are the measured distances  and  angl  is the value of the heading 

angle. 

The membership values of the left wheel and right wheel velocities velLV and velRV are 

given by:   

ijkl ijkl

ijkl ijkl

LV ijkl LV LV vel

RV ijkl RV RV vel

μ (vel) = W μ (vel )    LV

μ (vel) = W μ (vel )    RV
′

′

∧ ∀ ∈

∧ ∀ ∈

⎫⎪
⎬
⎪⎭

                                                                     (5.4) 

The overall conclusion by combining the outputs of all the fuzzy rules for five-

membership function can be written as follows: 

1111 ijkl 5555

1111 ijkl 5555

LV LV LV LV LV LV LV

RV RV RV RV RV RV RV

μ (vel) μ (vel ) ... μ (vel ) ... μ (vel )

μ (vel) μ (vel ) ... μ (vel ) ... μ (vel )
′ ′ ′

′ ′ ′

= ∨ ∨ ∨ ∨

= ∨ ∨ ∨ ∨

⎫⎪
⎬
⎪⎭

                                          (5.5)
 

The crisp values of Left Velocity and Right Velocity are computed using center of gravity 

method is:  

. ( ). ( )
Left Wheel Velocity

( ). ( )

. ( ). ( )
Right Wheel Velocity =

( ). ( )

LV

LV

RV

LV

vel vel d vel
LV

vel d vel

vel vel d vel
RV

vel d vel

μ

μ

μ

μ

= =

=

⎫
⎪
⎪
⎬
⎪
⎪
⎭

∫
∫
∫
∫

                                          (5.6) 
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5.2.3.  Analysis of obstacle avoidance  

 
When the robot is very close to the target, the attractive force between the robot and the 

target causes the robot seeking towards the target. Similarly when the robot is very close 

to an obstacle, because of repulsive force developed between the robot and the obstacle 

the robot must change its speed and heading angle to avoid the obstacle. In order to 

demonstrate the control architecture for obstacle avoidance and target seeking behaviour 

an example has been explained using the proposed fuzzy mechanism. Here five 

membership functions with all Gaussian members have been considered for distances, 

heading angle and wheel velocities as the crisp values for inputs and outputs. Referring to 

Figs. 5.3 & 5.4, it has been seen in the environment that the front obstacle distance is 

0.43m, left obstacle distance is 0.22m and right obstacle distance is 0.96m respectively.  

 

 
 

Fig. 5.3.  Initial position of the robot in an unknown environment. 

 

Some of the fuzzy rules used for obstacle avoidance by robots are listed in Table 5.3. 

All the rules in that table have been obtained heuristically using human intelligence.  

 
Some of the fuzzy rules using five-membership function mentioned in Table 5.3 cater 

for extreme conditions when the obstacles have to be avoided as quickly as possible. For 

example in rule 2 (Table 5.3), the left obstacle distance is ‘‘very far’’, front obstacle 

distance is ‘‘very near’’, right obstacle distance is ‘‘near’’ and no target is located around 
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the robot, then the robot should turn to left side to avoid collision with the obstacle in 

front and towards right of it. For the above condition the right wheel velocity should 

increase very fast and left wheel velocity should decrease very slowly. In this manner the 

robots avoid the obstacles by activating the rules applicable for the particular situation.  

 

 

Fig. 5.4.  Left, front and right obstacle distances. 
 

Table 5.3   

Obstacle avoidance rules for five-membership function. 

Fuzzy rule 
no. Action leftdist frontdist rightdist Heading angle(f) leftvelo rightvelo

1 OA VN VN VN Notargetconsidered VS Slow 

2 OA VF VN Near Notargetconsidered VS VF 

3 OA VN VN Med. Notargetconsidered Fast Slow 

4 OA VN VN Far Notargetconsidered Fast Slow 

5 OA VN VN Very Far Notargetconsidered VF Med. 

6 OA VN Near VN Notargetconsidered Slow Slow 

7 OA VN Near Near Notargetconsidered Slow Slow 

8 OA VN Near Med. Notargetconsidered Fast Med. 

9 OA VN Near Far Notargetconsidered Fast Slow 

10 OA VN Near Very Far Notargetconsidered VF Fast 
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Note: Where (m) = Degree of membership function, OA: obstacle avoidance, TS: target seeking, 
Positive: right turn, Negative: left turn, VF: very far (for Obstacle distances), VF: very fast (for 
wheel velocity). 

 

5.2.4.  Control steering action for target acquisition  

The prime objective of the robots is to reach the target safely and efficiently in a shortest 

trajectory. If any one of the robots senses a target, it will decide whether it can reach the 

target or there is any obstacle that will obstruct the path. If there is no obstacle on the path 

leading to the target, the robot will find its desired path and proceed towards it. Table 5.4 

describes some of the rules for five-membership function to locate the target. The above 

fuzzy rules for control strategy are obtained heuristically. 

 
Table 5.4   

Target seeking rules for five-membership function. 

Fuzzy rule 
no. 

Action leftdist frontdist rightdist Heading 
angle(f) 

leftvelo rightvelo

11 TS VN Far Near Positive Slow VS 

12 TS VN Med. Very Far Positive VF VS 

13 TS Near Far Far Positive Fast Slow 

14 TS Med. Far Near Negative Slow Med. 

15 TS Far Med. Near Negative Med. Fast 

16 TS Far Very Far Near Negative Med. VF 

 

Rule number 12 (Table 5.4) states that if the left obstacle distance is ‘‘very near’’, 

front obstacle distance is ‘‘medium’’ and right obstacle distance is ‘‘very far’’ and the 

robot detects a target located on the right side (positive), then the robot should turn right 

as soon as possible. To do this, the left wheel velocity of the robot should increase very 

fast and the right wheel velocity should decrease very slowly. 

 
Considering the same situation as described in Fig. 5.4 for target seeking behaviour, 

the corresponding velocities are found from the fuzzy rules described in Table 5.4. For 

the mentioned obstacles, there will be 2 ×2 ×2 = 8 fuzzy rules activated to control the left 

wheel velocity and right wheel velocity of the robot which are tabulated in Table 5.5. The 

resultant velocities are given in Fig. 5.5, from which the crisp values can be determined 

and the realization of target tracking behaviour can be achieved. 
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Fig. 5.5.  Resultant left and right wheel velocity obtained as output from the proposed fuzzy 
controller. 
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Table 5.5   

Robot wheel velocities according to different combinations of obstacle distances. 

Sl. 
No. 

Different combinations of obstacle 
distances 

Wheel velocities according to fuzzy 
rules 

1. Left obstacle: very near, front obstacle: 
near and right obstacle: very far 

Left wheel velocity: very fast and 
right wheel velocity: very slow 
 

2. Left obstacle: very near, front obstacle: 
near and right obstacle: far 
 

Left wheel velocity: fast and right 
wheel velocity: slow 
 

3. Left obstacle: very near, front obstacle: 
medium and right obstacle: very far 
 

Left wheel velocity: very fast and 
right wheel velocity: very slow 
 

4. Left obstacle: very near, front obstacle: 
medium and right obstacle: far 
 

Left wheel velocity: fast and right 
wheel velocity: medium 

5. Left obstacle: near, front obstacle: near 
and right obstacle: very far 
 

Left wheel velocity: medium and 
right wheel velocity: very slow 

6. Left obstacle: near, front obstacle: near 
and right obstacle: far 
 

Left wheel velocity: slow and right 
wheel velocity: very slow 
 

7. Left obstacle: near, front obstacle: 
medium and left wheel velocity: very fast

Right obstacle: very far and right 
wheel velocity: very slow 
 

8. Left obstacle: near, front obstacle: 
medium and right obstacle: far 

Left wheel velocity: fast and right 
wheel velocity: slow 

In all the rules heading angle is taken as zero. 
 

While navigation of multiple robots there could be the chances for conflict situations 

and inter robot collision among them. This has been taken care in the present study by 

suitably designing a general-purpose conflict module based on Petri Net model discussed 

in chapter 3 and embedded in the controllers of each robot in order to navigate safely in 

the environment.  

The various tasks of the Petri-Fuzzy embedded module are outlined below.  

Task 1  Wait for the start signal 

Task 2  Moving, avoiding obstacles using fuzzy inference   

Task 3  Detecting conflicts using fuzzy inference 

Task 4  Negotiating  

Task 5  Checking for conflict and executing movements 

Task 6  Searching for targets using fuzzy inference 

Task 7  Waiting 



Fuzzy Logic Technique for Navigation of Mobile Robots     

 

90 
 

5.3.  Simulation results  

 
In the current section various simulation results are exhibited for navigation of mobile 

robots using fuzzy inference techniques for a typical situation by considering three robots 

and two targets. Three exercises have been designed for different combinations of five-

membership fuzzy controllers to show the capabilities of the proposed control scheme. 

The effectiveness of various fuzzy controllers are analysed, discussed and compared for 

path optimization. 

 

5.3.1.  Comparison between different types of fuzzy controller  

 
In order to compare the performances of different combinations of fuzzy controllers 

simulation has been carried out in a similar environment using five-membership 

functions.  Figs. 5.6–5.8 represent the path traced by the robots using five-membership 

triangular function, five-membership triangular and trapezoidal function and Gaussian 

membership function respectively. Total path lengths for different fuzzy controllers are 

measured (in pixels) for three mobile robots. The comparison of results in terms path 

lengths, time taken to reach the targets and performance evaluations (%) for different 

cases are given in Table 5.6.  
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Fig. 5.6  Collision avoidance by three mobile robots with two targets using five-membership 
fuzzy controller with all triangular members. 
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Fig. 5.7  Collision avoidance by three mobile robots with two targets using five-membership 
fuzzy controller with combination of triangular and trapezoidal members. 
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Fig. 5.8.  Collision avoidance by three mobile robots with two targets using five-membership 
fuzzy controller with all Gaussian members. 
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Table 5.6   

Performance evaluation from five-membership triangular FLC with other FLCs for navigation of 
three mobile robots in a similar environment. 

Sl. 
No. 

Different techniques Robot 
number 

Path length 
in pixels 

Time taken to 
reach  the targets 
in sec. 

Performance 
evaluation (%) 

1. Five-membership 
triangular FLC 
 

1 324 33.1 - 
 2 342 34.8 - 
 3 335 34.0 - 
      
2. Five-membership 

triangular & trapezoidal 
combination FLC 
 

1 312 31.7 4.41 
 2 336 34.2 1.75 
 3 330 33.5 1.50 

3. Five-membership 
Gaussian FLC 

1 295 29.9 10.73 
 2 332 33.6 3.57 
 3 325 32.8 3.65 

 

In the above simulation, it can be seen that each robot has reached their nearest target 

in an efficient manner without any collision between themselves and obstacles in a highly 

cluttered environment. But still there are some differences in the path length, smoothness 

of trajectories and time frame to reach the targets. It can be seen from the above 

simulations that, in Fig. 5.6 (considering all five triangular membership functions) the 

paths of all the robots are not smooth and the robots followed a longer trajectories to 

reach the goal. In Fig. 5.7 (considering combinations of triangular-trapezoidal 

membership functions) the paths followed by all three robots are smoother as well as 

lesser in lengths as compared to the environment with all five triangular membership 

functions. Similarly in Fig. 5.8 (considering all five Gaussian membership functions) all 

the robots reached their nearest targets efficiently in shortest trajectories with 

comparatively smoother motion.  Further the robots well compromised between 

themselves in the cluttered environment in order to avoid collision among themselves as 

well as with other obstacles. From the above simulation it can be concluded that the 

controller with all Gaussian membership functions was found to be most efficient among 

the other controllers for chosen simulations. Hence the same fuzzy controller using 

Gaussian membership functions has been demonstrated for other cases of simulation in 

the succeeding sections. 
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5.3.2.  Approach for design validation with other models 

 
In this section a comparison has been made between Wang and James [206] model and 

results from current control scheme in simulation and experimental mode. The 

performance of the two methods was mainly evaluated on following two criteria; 

i. the path length  

ii. the smoothness of the trajectories. 
 

The results from Wang model are shown in Fig. 5.9(a), (c) and (e) are compared with 

the results obtained from present study for similar environments [Fig. 5.9(b), (d) and (f)] 

has been tabulated in Table 5.7.  

 
In the first case, both the controllers are applied to a situation with U-shape boundary 

that would cause the existence of ‘‘dead cycle” problems. In this case the robot cannot see 

the target directly due to the wall in between them.  It can be observed in the environment 

shown in Fig. 5.9(a) presented by Wang and James [206] that the robot is trapped at the 

closed U-shape boundary due to the existence of local minima and finally able to find 

their target after a long exercise by following a longer trajectory. 

 
In Fig. 5.9(b) the robot can avoid the U-shaped boundary found on its way towards 

the target efficiently by the proposed fuzzy logic model. In this case robot will first follow 

the wall following rules in order to escape from dead end and successfully found its 

targets by receiving systematic information from the sensors through the state memory 

strategy. This shows the robot trajectory from start position to target without suffering 

from the “symmetric indecision” and ‘‘dead cycle” problems. 

 

 

Start 

Target 
a 

b 
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Fig. 5.9.  Comparison of results from the current investigation and Wang and James [206].  

 
In the second case, the robot supposed to find the target approximately in a similar 

situation as described in first case. In Fig. 5.9(c) proposed by Wang and James [206] the 

robot  got trapped in the U-shaped area first, then it was escaped from the trap by taking a 

loop and eventually reaches the target. Fig. 5.9(d) shows a simulation of the robot 

behavior adapted by means of the proposed method. In the initial position the robot is 

heading towards the dead-end. Due to the additional context information provided by the 

proposed controller robot can able to perceive the dead-end. The controller initiates a 

turning manoeuvre, which lasts until the robot is heading away from the dead-end. 

Afterwards, the normal wall-following behaviour guides the robot to the exit of the 

corridor by keeping a safe distance to the left wall. Similarly in third case the robot from 

current developed technique found the goal in shortest trajectories with a smoother 

motion as compared to Wang and James [206] model [Fig. 5.9(e) and 5.9(f)].  
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Table 5.7   

Comparison of results from the current investigation with Wang and James [206] simulation.  

Sl 
No. 

Environmental types Path length of Wang
and James [206] 
model, in ‘cm’  

Path length from 
current investigation 
in  ‘cm’   

1. Rectangular obstacle and path planning 
by FLC [Fig. 5.9(a) and (b)].  
 

15.6 13.5 

2. U-shaped aisle and path planning by 
FLC [Fig. 5.9(c) and (d)]. 
 

33.2 21.5 

3. Closed aisle and path planning by FLC 
[Fig. 5.9(e) and (f)]. 

7.0 6.2 

 

In some scenarios, of Wang and James [206] simulation it can be seen that, the path of 

robot has sudden change in direction with some greater steering angle and sometimes small 

zigzag like motion that has been taken care in the present investigation. Fig. 5.9(b), (d) and 

(f) show that the robot reaches their target in a shortest path with smooth motion by using 

the present fuzzy logic approach. The performance of the two models was mainly evaluated 

on the basis of path length and smoothness of trajectory which is shown in Table 5.7. From 

the above simulation results it is clear that, the developed algorithm can efficiently drive the 

robot in a cluttered environment.  Experimental verification of the above simulation results 

has been shown in next sections (Fig. 5.10- 5.12).  

 

5.4.  Experimental result and discussions 

 
To demonstrate the effectiveness of the above control system and validity of the 

algorithm developed using Gaussian membership FLCs, a variety of experiments using 

prototype robots are conducted. In this section the simulation results from currently 

developed motion planner has been presented for experiments, which was operated in an 

environment with rectangular aisle of different shapes. The detail specification of the 

developed robot is given in Chapter 3 (Section 3.6.1). 

 
Three different cases of similar environments as described by Wang and James [206], 

which are already verified in simulation mode have been verified experimentally [Fig. 

5.10- 5.12] to show the effectiveness of the developed controller. In Figs. 5.10(a-f), it is 

demonstrated a situation where robot and target are placed in opposite corner of a 

rectangular boundary (created by a variety of rectangular obstacle configurations). When 
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robot starts motion it senses the target and speeds up in straight path towards the targets 

up to the bottom left corner of the rectangular wall and slows down to take right turn to 

avoid obstacle, then follows a wall following rules to reach the target. 

 

 

Fig. 5.10.   Experimental set up for navigation of mobile robot in the similar environment as 

shown in Fig. 5.9(b). 

 
 

 

Fig. 5.11.  Experimental set up for navigation of mobile robot in the similar environment as 
shown in Fig. 5.9(d). 
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Fig. 5.12.  Experimental set up for navigation of mobile robot in the similar environment as 
shown in Fig. 5.9(f). 
 

For the second robot navigation (Fig. 5.11f), it can be observed that, the robot 

follows a straight path except the turning points from its start to the goal position. There 

are, however, situations such as in Fig. 5.12(f), in which the robot is following a U-

shaped path to find the target. In some cases the robot can rotate and move with some 

zigzag motion until it reaches target. The developed fuzzy logic controller takes care to 

invoke a new path based on available information received by the robot about the 

environment with ruled based heuristic recovery approach.   

 
The experimentally obtained paths follow closely those traced by the robots during 

simulation. From these figures, it can be seen that the robots can indeed avoid obstacles 

and reach the targets. It has been concluded by comparing the results from both the 

simulation as well as experiment that, the path followed by the robots using Gaussian 

function can successfully arrive at the target by avoiding obstacles. The trajectories are 

smooth and take reasonably lesser paths as compared to Wang and James [206] paths. 

 

5.5.  Summary 

 
In this chapter different fuzzy logic controllers have been designed and analysed their 

performance to control the motion of multiple mobile robots in various environments. 

First the triangular members with five membership functions have been considered and 
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subsequently the membership functions are changed from triangular to other functions 

and combinations to have a more smooth control response. The robot navigation control 

system described in this chapter takes into account the relative distances of the robots 

with respect to the targets and obstacles and the bearing angles between them to direct the 

steering of the robot to avoid obstacles in its path and reach the target. In order to 

navigate safely and avoid inter robot collision each robot incorporates a set of collision 

prevention rules implemented as a Petri Net model in its controller. It is seen that the 

fuzzy controller with Gaussian membership function works better and safely navigate the 

robots from start to goal position in a precise manner with smooth trajectory. The 

developed strategies have been checked via simulations as well as experiments, which 

show the ability of proposed controller to solve the multiple robot navigation tasks in an 

optimised way to obtain a strategy for the purpose. It has been observed that, the robots 

follow closely the simulation path by the developed motion planning approach and able to 

navigate successfully in a cluttered environment.  
 

It is observed that hybridisation of techniques improve the effectiveness/performance 

and hence increases the robustness of the controller. In the next chapter different 

developed hybrid techniques are analysed and discussed by taking into account the 

strategy developed in Chapter-3, 4 and 5. 
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6.  Hybrid  Techniques  for  Navigation  of 
Mobile Robots  
 
 
This chapter deals with navigation using four different hybrid techniques. They are as follows: 1) 
potential-fuzzy technique, 2) potential- genetic technique, 3) genetic-fuzzy technique and 4) 
potential-fuzzy-genetic techniques. The detail controller design, analysis and implementation with 
real robot to fit in various environments have been described. The simulation results have been 
demonstrated, analysed and compared in order to illustrate the ability of the proposed control 
scheme to manage the navigation of mobile robots in different situations. 
 
 
6.1.  The background 

 
In previous chapters the navigation of mobile robots has been widely demonstrated in 

various known and unknown environments by using standalone potential, genetic and 

fuzzy logic techniques. These techniques are not always the best choice for some tasks 

that can be effectively produced a robust performance in dynamic and complex 

environments. Sometimes the task to be performed needs the robot to make some 

intelligent decision to reach the destination in an optimal or near optimal path while 

avoiding collision among themselves and obstacles. This leads a platform to try the 

similar situations with various combinations of hybrid controllers for the purpose. In these 

hybrid approaches firstly, the combinations of two techniques has been selected in order 

to model the controllers and secondly, all the techniques have been hybridized to get a 

better controller. These hybrid controllers are first designed and analysed for possible 

solutions for various situations.  Then computer simulations have been executed for 

various known and unknown environments. Finally the proposed hybrid algorithms are 

embedded in the controllers of the real robots to demonstrate the effectiveness of the 

developed control scheme.  

 
This chapter gives navigational analysis of different models, their advantages and 

disadvantages for following four main approaches; i.e. Potential-Fuzzy technique, 

Genetic-Fuzzy technique, Potential-Genetic technique and Potential-Fuzzy-Genetic 

hybrid technique. A thorough comparison was carried out for various situations and 

examples of such hybrid architectures among themselves and others AI techniques are 

presented in this chapter. 
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6.2. Analysis of Potential-Fuzzy hybrid controller for mobile robot navigation 

 
6.2.1.  Introduction 

 
In this chapter the motion planning of multiple mobile robots with multiple targets in 

presence of obstacles in a priori unknown cluttered environment using Potential-Fuzzy 

Hybrid Controller (PFHC) is discussed. Based upon a reference motion, direction; 

distances between the robots and obstacles; distances between the robots and targets are 

given as inputs to the Potential-Fuzzy controller (Fig. 6.1). A combination of multiple 

sensors is equipped on the prototype robot to sense the obstacles near the robot, the 

targets location and the current robot speed. The hybrid controller takes the control 

decision on the basis of signals received from sensors mounted around the robot. To 

realize the controller in real sense the program is embedded in the robot for online 

independent navigation. The Petri net model discussed in chapter 3 has also been 

simultaneously integrated with the hybrid technique for inter robot collision avoidance 

and obstacle avoidance during navigation. The “symmetric indecision” problem is 

resolved by several mandatory-turn rules, while the “dead cycle” problem is resolved by a 

state memory strategy. Under the control of the proposed Petri-Potential-Fuzzy model, the 

mobile robot can preferably “see” the environment around and avoid static and moving 

obstacles automatically. The robot can generate reasonable trajectories towards the target 

in various situations without suffering from the “symmetric indecision” and the “dead 

cycle” problems. The effectiveness and efficiency of the proposed approach are 

demonstrated through simulation studies as well as experimental implementation in 

various environments.  

 
6.2.2. Control architecture 
 

To carry out the above procedures two techniques such as potential field method and 

fuzzy inference technique have been studied and analysed in previous sections are 

combined to generate the Potential-Fuzzy hybrid techniques. The details inputs to the 

potential segments are obstacle position and target position around. Based on the obstacle 

and target positions the resultant repulsive and attractive potential forces are calculated as 

follows;  

Let FrontF∑ = Resultant repulsive potential force along the direction of rear-front axis of 

the robot due to the obstacles which influence the robot. 
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AlongF∑ = Resultant repulsive potential force along the direction of left-right axis of the 

robot due to the obstacles which influence the robot. 

The output from the potential field method is First Heading Angle (F.H.A.) can is 

calculated as follows; 

 θ = Current heading angle at which the robot moving in the environment. 

Change in steering angle required for obstacle avoidance is 

[ ] -1 Front

Along

 FPhif ir   Tan  
F

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                                           (6.1) 

First heading angle firstθ  =  θ + Phir [ir]                                                                       (6.2) 
 
The intermediate analysis and mathematical steps for calculating the attractive and 

repulsive forces are explained extensively in Chapter 3. The inputs and outputs of 

potential segment have been given pictorially in Fig. 6.1. The other part of the potential-

fuzzy hybrid techniques consists of the fuzzy inference techniques having several inputs 

and outputs. The inputs are F.O.D., L.O.D., R.O.D. and F.H.A (that have been obtained 

from potential segment of the hybrid controller) as shown in Fig. 6.1. The overall outputs 

of the potential fuzzy hybrid technique are LV and RV. These two velocities ultimately 

give the heading angle (f) according to the flow diagram shown in Fig. 6.2. The 

Gaussian membership functions are used in fuzzy inference technique to get the optimum 

results as discussed in Chapter 5. 

 

 

Note: VN:  Very Near,  Med.: Medium and VF:  Very Fast. 
 

Fig. 6.1.  Five membership Potential-Fuzzy hybrid controller with all Gaussian members for 
mobile robot navigation. 
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Fig.  6.2.  A schematic diagram showing flowchart for step by step algorithm of the proposed 
motion planning scheme. 
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The overall flow chart of the potential-fuzzy hybrid controller is given Fig. 6.2. For 

navigational control of the robot, an incremental approach is adopted, where the robot’s 

movement is a collection of small steps combining both straight and non linear curved 

paths. In the beginning of navigation, the axis correction module is activated by 

considering the obstacle’s and target’s positions if the robot’s main axis does not coincide 

with the target direction. This is done by getting systematic sensory information from the 

targets and obstacles and accordingly the corresponding attractive/ repulsive forces 

generated using the potential segment of the hybrid controller. After that, the robot search 

for existence of any critical obstacle ahead of it, in the predicted distance step. If it finds 

any critical obstacle, the motion planner is to be activated; otherwise the robot moves 

with the maximum possible speed in the direction of target with zero deviation of HA in 

the next step. The outputs of the motion planner are nothing but the left wheel velocity 

and right wheel velocity of the robot and the corresponding deviation necessary to avoid 

collision with the most critical obstacle. Moreover, if required, the motion planner’s 

deviation output is to be corrected by using the collision avoidance scheme implemented 

in the form of Petrinet Model which is shown in Chapter 3 (Section 3.3). If the robot’s 

future direction of movement differs from the existing one, then all the constraints are to 

be satisfied, else it starts from step one. This process will continue, till the robot reaches 

its target location (Fig. 6.2). The simulation results based on Potential-Fuzzy controller 

obtained during navigation of mobile robots are analysed and discussed below. 

 

6.2.3.  Simulation results  
 
This section presents exercises aimed at illustrating the ability of the proposed hybrid 

control scheme to manage the navigation of mobile robots in different situations. 

Simulations are conducted from the computer program being developed by the author. 

Two case studies have been designed by considering multiple robots and multiple targets 

using Potential-Fuzzy hybrid controller (PFHC) with five member ship Gaussian functions 

to show the capabilities of the proposed control scheme. In the first navigational scenario 

the three robots with two targets in a highly cluttered environment are considered. In the 

second navigational scenario the three robots with three targets in a quite different 

environment of highly cluttered type is taken to demonstrate the results. These two 

environmental scenarios will be discussed for other hybrid approaches in the forth coming 

sections and results are compared to find an optimal controller for the purpose.   
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Scenario 1 

 
Note: R(1,1)……. R(1,4),    R(2,1)……. R(2,4)  and  R(3,1)……. R(3,4)    are different instantaneous 
positions at time (t) of robot1, 2 and 3 respectively.  
 
Fig. 6.3(a).  Collision avoidance by three mobile robots with two targets using Potential-Fuzzy 
hybrid controller (2-D workspace and obstacles). 
 

 
 
Fig. 6.3(b).  Collision avoidance by three mobile robots with two targets using Potential-Fuzzy 
hybrid controller (3-D work space and obstacles). 
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Scenario 2 

  
Fig. 6.4(a).  Collision avoidance by three mobile robots with three targets using Potential-Fuzzy 
hybrid controller (2-D work space and obstacles). 
 
 

 
Fig. 6.4(b).  Collision avoidance by three mobile robots with three targets using Potential-Fuzzy 
hybrid controller (3-D work space and obstacles). 
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The 2-D and 3-D view of scenario 1 and 2 are presented in Figs. 6.3(a, b) and Figs. 6.4(a, 

b). Path traced by three robots in environmental scenario 1 & 2 using the proposed hybrid 

model are given in Table 6.1. From the above simulations it can be seen that each robot 

has reached their nearest target in an efficient manner without any collision between 

themselves and obstacles in a cluttered environment. The details of computational steps at 

different instantaneous positions for scenario 1 are shown in Appendix F. 

 
Table 6.1   

Path obtained from scenario 1 & 2 using Potential-Fuzzy hybrid controller for multiple robots 
navigation.  

Sl. 
No. 

Scenario Type  Robot number Path length in ‘pixels’ Time taken to reach 
the targets in ‘sec’. 

1. Scenario 1 
 

1 290 29.3 
 2 311 33.0 
 3 295 32.0 
     
2. Scenario 2 

 
1 228 27.0 

 2 283 29.6 
 3 232 27.2 

 

6.2.4.  Comparison of results with other models 

 
In this section a comparison has been made between Wang and James [206] model as 

discussed in Chapter 5 (section 5.3.2), results using stand alone fuzzy logic  techniques 

and results from current hybrid control scheme in simulation and experimental mode are 

presented. This scenario considered for the comparison focuses on navigation with dead 

end problem escape from U-shape and corridor navigation. The simulation results 

obtained for the above discussed environment using Potential-Fuzzy Hybrid Controller 

(PFHC) and Wang and James [206] model are shown in Figs. 6.5(a-f). The comparison of 

results for two methodologies is given in Table 6.2.  

 
In the first case (i.e. navigation with dead end) the robot navigates in the environment 

searching for the target. During navigation the robot confronts with dead end, negotiate 

and finally come out from the dead end during target searching [Figs. 6.5(a, b)]. At the 

end robot reached the target. It has been observed that the current controller gives 

optimum and smoother trajectories by Parhi and Mohanta [207] compared to Wang and 

James [206] trajectories and Fuzzy Gaussian trajectories as discussed in chapter 5. 
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Fig. 6.5.  Comparison of results from the current investigation and Wang and James [206]. 

 

Similarly in case two it has been observed that robot trapped by Wang and James [206] 

model and afterwards escaped from the U-shaped obstacles. During comparison between 
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Fuzzy-Gaussian technique (discussed in Chapter 5), Wang and James [206] technique and 

Potential-Fuzzy technique, the results of the current hybrid technique are optimum [207]. 

Also a better result is obtained using current hybrid technique by Parhi and Mohanta [207] 

for the above simulation.  

 
Table 6.2   
Comparison of results between Wang and James [206] model, Stand alone fuzzy logic technique 
and Potential-Fuzzy hybrid techniques in similar environment.   

Sl 
No. 

Environmental 
types 

Path length of different techniques in ‘cm’ 
Wang and James [206]
Model  

Gaussian-Fuzzy  
Logic Technique  

Potential-Fuzzy hybrid 
Technique [207]   

1. Rectangular 
aisle  

15.6 13.5 12.6 

2. U-shaped aisle  33.2 21.5 20.7 

3. Closed aisle  7.0 6.2 5.4 

 

6.2.5.  Real-time experiment 
 
Experimental verifications are also carried out using prototype robot developed in the 

laboratory for the similar situations such as Rectangular aisle, escape from U-shape 

obstacles and closed aisle which are shown in Figs. 6.6, 6.7 and 6.8. The robot navigates 

in the above outline environment using the hybrid potential-fuzzy controller. A very good 

agreement is observed between the simulation and experimental results of the hybrid 

potential-fuzzy controller. 

 
Fig. 6.6.   Experimental set up for navigation of mobile robot in the similar environment shown in 
Fig. 6.5(b) 
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Fig. 6.7.  Experimental set up for navigation of mobile robot in the similar environment 
shown in Fig. 6.5(d). 
 
 

 
 
Fig.  6.8.  Experimental set up for navigation of mobile robot in the similar environment 
shown in Fig. 6.5(f). 

 

6.3.  Analysis of GA-Fuzzy hybrid controller for mobile robot navigation 

 
6.3.1.  Introduction 

 
This chapter presents an approach to build a hybrid Petri-Genetic-Fuzzy Controller 

(PGFC) for navigational behaviour of multi-robotic agents. The incorporation of an 

integration procedure to frame a hybrid controller is becoming an increasing necessity for 
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autonomous robotic vehicles capable of moving along in the industrial environment. To 

find a suitable collision-free path for multiple mobile robots navigation in real world 

environment is extremely necessity for cooperative tasks. In this section genetic algorithm 

technique is integrated with Fuzzy logic technique to find an efficient controller for the 

purpose mentioned. In the fuzzy inference system five membership functions with all 

Gaussian members has been considered. The direction and motion control of the robots 

based on the final output of the Genetic-Fuzzy hybrid controller.  The Petri-net model 

(already discussed in Chapter 3) which is integrated with Genetic-Fuzzy controller to 

avoid inter robot collision during navigation. The proposed approach has also been 

applied for achieving multi-target systems.  

 

6.3.2.  Design of mobile controller using GA-Fuzzy Hybrid approach  

 
As specified earlier a genetic algorithm (GA) and fuzzy logic based obstacle avoidance 

scheme has been used here for path planning of multiple robots with multiple targets in 

presence of obstacles. Problem-specific genetic fuzzy operators are not only designed 

with domain knowledge, but also incorporate small-scale local search that improves 

efficiency of the operators. This task could be carried out by specifying a set of GA-

Fuzzy rules by taking into account the different situations found by the mobile robots. 

The schematic diagram for the proposed Genetic-Fuzzy hybrid controller is shown in Fig. 

6.9. 

For this purpose the basic inputs to the genetic segment of Genetic-Fuzzy controller 

(FGC) are obstacles position and targets position and output is heading angle (H.A.). This 

output is again passed through the fuzzy segment of hybrid controller in addition to the 

other parameters such as front obstacle distances (FOD), right obstacle distances (ROD) 

and left obstacle distances (LOD) to get the requisite left and right wheel velocity which 

controls the motion of the robot.  

 
Fig.  6.9.  Genetic-fuzzy hybrid controllers for mobile robot navigation. 
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The detail mathematical analysis and step by algorithm are discussed in 

corresponding chapters. The proposed hybrid Genetic-fuzzy controller is suitable for both 

static and dynamic environments. The effectiveness and efficiency of the proposed 

approach are exhibited through simulation and experimental results. 

 

6.3.3.  Simulation results  
 

In this section the two environmental scenarios which are already discussed in previous 

sections using Potential-fuzzy hybrid technique are taken for simulation using the 

proposed Genetic-fuzzy hybrid controller.  

 
The first scenario consists of 3-robots and two targets. During navigation it can be 

observed that, the robots follow different path with respect to the robots controlled by the 

Potential-fuzzy technique. It has been noticed that, the robot can successfully reach the 

target by avoiding the obstacles using the proposed Genetic-fuzzy technique. The 

corresponding 2-D & 3-D simulations for two discussed scenarios are shown in Figs. 

6.10(a, b) and 6.11(a, b). Total path traced by three mobile robots for two different 

scenarios are measured (in pixels) and tabulated in Table 6.3.  

Scenario 1 

 

Fig.  6.10(a).  Collision avoidance by three mobile robots with two targets using Genetic-Fuzzy 
hybrid controller (2-D workspace and obstacles). 
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Fig.  6.10(b).  Collision avoidance by three mobile robots with two targets using Genetic-Fuzzy 
hybrid controller (3-D workspace and obstacles). 
 

Scenario 2 

  
Fig.  6.11(a).  Collision avoidance by three mobile robots with three targets using Genetic-Fuzzy 
hybrid controller (2-D workspace and obstacles). 
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Fig.  6.11(b).  Collision avoidance by three mobile robots with three targets using Genetic-Fuzzy 
hybrid controller (3-D workspace and obstacles). 
 

Table 6.3   

Path obtained from scenario 1 & 2 using Genetic-Fuzzy hybrid controller for multiple robots 
navigation.  

Sl. 
No. 

Scenario Type  Robot number Path length in ‘pixels’ Time taken to reach 
the targets in ‘sec’. 

1. Scenario 1 
 

1 283 28.7 
 2 298 32.2 
 3 292 31.8 
     
2. Scenario 2 

 
1 220 26.5 

 2 276 28.6 
 3 216 27.0 

 

6.3.4.  Comparison of results with other model 
 

A comparison has been made between Luh and Liu [208] model and results from hybrid 

Genetic-Fuzzy control scheme in simulation and experimental mode. The performance of 

the two methods is mainly evaluated keeping in view the following parameters. 

i. the path length 

ii. the smoothness of the trajectories. 
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 The results of three different cases obtained by Luh and Liu [208] shown in Fig. 6.12 

(a, c, e) are compared with the results obtained from present investigation for similar 

environment [Fig. 6.12(b, d, f)].  
 

 

 

 
Fig.  6.12.  Comparison of results from the current investigation  and Luh and Liu [208]. 
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enclosed by double U-shaped boundary, and target is placed just opposite side of robot.  
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During navigation it has been observed that robot first move towards target location 

by straight path take a turning manoeuvre due to the presence of wall between them and 

able to reach the target after long exercise. The same situation has been tested via 

simulation using genetic-fuzzy hybrid controller. The path covered by the robot is found 

to be smooth and shortest as compared to the Luh and Liu [208] path described in Fig. 

6.12(b). In the second environment robot is placed in a closed U-shaped boundary and 

target is in the opposite corner of robot. In this case robot was first trapped near the corner 

and finally able to reach the target by taking a longer trajectory shown in Fig. 6.12(c).  

Similarly in the Figs. 6.12(e, f), for both the cases the robots trapped at the complex U-

shaped boundary due to the existence of local minima. In Fig. 6.12(f) robot escaped from 

the local minima exits due the wall between them by using new control scheme which 

drags the robot near the target in a shortest path. The detail comparison of results has been 

given in Table 6.4. 

 
Table 6.4 

Comparison of results from the current investigation with  Luh and Liu [208] model.  

Sl 
No. 

Environmental types Path length of Luh 
and Liu [208]. in 
‘cm’   

Path length from 
current investigation 
in  ‘cm’   

1. U-shaped boundary, [Fig. 6.12(a, b)].  
 

17.4 14.6 
 

2 Closed U-shaped boundary,  
[Fig. 6.12(c, d)]. 

21.2 15.4 
 
 

2 Complex U-shaped boundary, [Fig. 6.12
(e, f)]. 

19.6 14.8 
 

  

 From the above simulation results it is clear that, the developed algorithm can 

efficiently drive the robot in a cluttered environment. Experimental verification of the 

above simulation results have been shown in next section (Fig. 6.13- 6.15).  

 
6.3.5.  Real-time experimental results  
 
 
To realize the effectiveness of Genetic-Fuzzy hybrid controller a variety of experiments 

using Khepera II robots are conducted. The position and posture of the prototype robot 

can be estimated by dead reckoning using the hybrid control technique and information 

from the encoders arranged on the wheels and the steering axes. The robot considered for 

experiment is a differential drive robot with an on-board PC and wireless Ethernet. A 
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series of distance measuring sensors are mounted around the top of robot in order to sense 

the front, left, right, and back obstacle distances. The signals received from different 

sensors according to obstacle distances decides the speed at DC-motors via driver circuits, 

so that driving torque occurs by the robot for its movement.  

 
 The three different cases of similar environments as described by Luh and Liu [208], 

which are already verified in simulation mode have been verified experimentally (Fig. 

6.13- 6.15) to show the effectiveness of the developed controller. 

 

 

Fig. 6.13.   Experimental set up for navigation of Khepera II mobile robot in the similar 
environment shown in Fig. 6.12(b). 
 
 

 
Fig. 6.14.   Experimental set up for navigation of Khepera II mobile robot in the similar 
environment shown in Fig. 6.12(d). 
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Fig. 6.15.  Experimental set up for navigation of Khepera II mobile robot in the similar 
environment shown in Fig. 6.12(f). 
 

Fig. 6.13(a-f), demonstrated a situation where robot and target are placed in opposite 

side of double U-shaped boundary. When robot starts motion it senses the target and 

speeds up in straight path towards the targets up to the bottom corner of the wall and 

slows down to take right turn to avoid collision, then follows a wall (wall following 

behaviour) to reach the target. The robot autonomously chooses its way in the shortest 

trajectory to reach the desired destination. For the second robot navigation [Fig. 6.14(f)], 

it can be observed that, the robot follows a straight path except the turning points from its 

start to the goal position. Figs. 6.14(a-f) explain a situation in which the robot is trapped 

in a local minimum (corresponding to a closed U-shaped boundary) that prevents the 

robot to pass through and find the target. As the robot approaches this situation, the level 

of the obstacle potential rises, causing the robot to slow down and stop before a collision 

occurs. The developed algorithm takes care to invoke a new path based on available 

information received by the robot about the environment with heuristic recovery 

approach, which has been shown in Fig. 6.14(a-f). In Fig. 6.15(f) robot successfully reach 

the target from the trap situation by taking a turning manoeuvre and then wall following 

rules to reach the goal by systematic information received from the proposed hybrid 

controller. The comparison of simulation and experimental results from the current investigation 

are shown in Table 6.5. 

 
The experimentally obtained paths follow closely those traced by the robots during 

simulation. From these figures, it can be seen that the robots can indeed avoid obstacles 

and reach the targets. 
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Table 6.5  

Comparison of simulation and experimental results from the current investigation.  

Sl 
No. 

Environmental types Simulation Results Experimental Results 
Path length 
(cm) 

Time 
taken(Sec) 

Path length 
(cm)  in  
1/10th scale 

Time taken 
(Sec) in  
1/10th scale 

1. U-shaped boundary 

 [Fig. 6.12(b) & Fig. 
6.13]  
 

12.1 24.52 
 

14.8 
 

34.24 
 

2. Closed U-shaped 
boundary [Fig. 
6.12(d) & Fig. 6.14] 

10.0 20.86 11.4 23.20 

 
3. 

 
Complex U-shaped 
boundary[Fig. 6.12(f) 
& Fig. 6.15] 

 
9.8 

 
18.65 

 
10.6 

 
22.42 

 

 It has been concluded by comparing the results from both the simulation as well as 

experiment that, the path followed by the robots using Petri-Genetic-fuzzy controller can 

successfully arrive at the target by avoiding obstacles. The trajectories are smooth and 

take reasonably efficient paths as compared to Luh and Liu [208] path.  

 

6.4.  Analysis of Potential-GA Hybrid Controller for mobile robot navigation 

 
6.4.1. Introduction 

 
This chapter proposes a new approach for the design and development of intelligent 

mobile robot based on Potential-Genetic hybrid controller.  It discusses the complex 

functional structure of such systems, providing solutions to some typical design problems. 

The system, on the one hand, offers some solutions for the problems related to the hybrid 

potential field building (like dead lock and local minima problem), and on the other hand, 

looks for the problem-solutions connected with self organization of the mobile robots 

during navigation. It is decentralized and behaviour-oriented, because the agents sharing 

the basic information about the positions and orientations between each other, and on the 

basis of these information they define the next possible position and orientation. It is 

evolutionary self-organized, because the moving strategies are defined by a genetic 

algorithm and with the specified policies the near-optimal next possible move can be 

determined. To realize the controller in real sense the program is embedded in the robot 
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for online independent navigation. In order to avoid inter robot collision each robot 

incorporates a set of collision prevention rules implemented as a Petri Net model in its 

controller (already discussed in chapter 3). Numerical examples as well as simulation 

results are provided to evaluate the feasibility of the proposed approach. The current 

research involves the design, development, systems integration, simulation and 

experimental testing of the intelligent mobile robot in various environments for validity of 

the proposed control scheme. 

 
In this section the motion planning of multiple mobile robots with multiple targets in 

presence of obstacles in a priori unknown environment using modified knowledge based 

potential-GA controller is discussed. The inputs to the controller are obstacles positions 

and target positions and output heading angles (H.A.) are expressed in terms of encoded 

generation function distributions by crisp values. This output is again passes through the 

hybrid potential controller in addition to the other parameters such as left obstacle 

distances (L.O.D.), front obstacle distances (F.O.D.) and right obstacle distances (R.O.D.) 

to get the requisite final wheel velocities which controls the motion of the robot. The 

proposed potential-GA controller is suitable for both static and dynamic environments. 

The effectiveness and efficiency of the proposed approach are demonstrated through 

simulation studies as well as experimental implementation in various environments. 
 

6.4.2.  Control architecture  
 

Chapter 3 discusses about the total attractive force and repulsive force using the potential 

field function taking into the consideration the inputs such as obstacle and target positions 

around the robot and detail analysis is done in chapter 3. The F.H.A. can be calculated 

from the following equation. 

 
The change in steering angle required for obstacle avoidance is; 

[ ] Front-1

Along

F
Phif ir   Tan  

F
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

                                                                                       (6.3) 

 
The corresponding First heading angle (F. H. A.) =  θ + Phir [ir]                                 (6.4) 
 

It determines the motion of the robot. 

 
Where,  
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∑ FrontF = Resultant repulsive potential force along the direction of rear-front axis of the 
robot due to the obstacles which influence the robot. 
 
∑ AlongF = Resultant repulsive potential force along the direction of left-right axis of the 
robot due to the obstacles which influence the robot. 
 

 θ = Current heading angle at which the robot moving in the environment. 
 

This First heading angle (F. H. A.) along with the instantaneous obstacles distances i. 

e. F.O.D., L.O.D. and R.O.D. are again input to the genetic segment of the potential-

genetic controller. From the sensors outputs of the instantaneous distances (F.O.D., 

L.O.D. and R.O.D.) an initial population pool is created with a predefined population 

size. The population contains number of individuals (i.e., chromosomes). Each individual 

represents a solution for the problem under study. In our case, each solution is in terms of 

a second heading angle (S.H.A.) between the current directions of the robots’ steering 

with respect to targets’ directions from its start to end point in the search space. The 

evaluation of fittest child is computed as per the fitness function described in stage 2 

(Chapter. 4, Section.4.2). According to the fittest child, the heading angle of the robot will 

be decided. The output of the genetic segment is expressed in terms of ‘Second heading 

angle’ (S. H. A.), which is the final output of hybrid controller for robot navigation. This 

optimised S.H.A. drag the robots near the target in a shortest path as compared to 

potential controller alone. The schematic diagram for the hybrid controller is shown in 

Fig. 6.16.  

 

 
 

 
Fig. 6.16.  Potential-GA hybrid controllers for mobile robot navigation 
 

The obstacle avoidance behaviour of the robot using hybrid potential genetic algorithm 

has been incorporated in the Petri-net model for successful navigation of the mobile 

robot. The detail of the proposed Petri-net model is discussed in Chapter 3. 
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6.4.3.  Simulation results  
 
This section presents tasks aimed at illustrating the ability of the proposed control scheme 

to manage the navigation of mobile robots in different situations. Firstly, windows based 

simulations of the mechanical, electronic and software systems are carried out. These 

tests are conducted in accordance with the proposed working principle of Potential-GA 

hybrid systems. The two scenarios recorded for mobile robot navigation using potential 

genetic hybrid controller consists of multiple robots, targets and obstacles as described 

earlier. The simulation results show the initial scenario, intermediate scenario and final 

scenario in both 2-D and 3-D environment (Figs. 6.17-6.22).  

 

Scenario 1 

 

Fig.  6.17.  Collision avoidance by three mobile robots with two targets using Potential-Genetic 
hybrid controller (3-D workspace and obstacles: Initial scenario).  
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Fig.  6.18(a).  Collision avoidance by three mobile robots with two targets using Potential-Genetic 
hybrid controller (2-D workspace and obstacles: Intermediate scenario).  
 

 
Fig.  6.18(b).  Collision avoidance by three mobile robots with two targets using Potential-
Genetic hybrid controller (3-D workspace and obstacles: Intermediate scenario).  
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Fig.  6.19(a).  Collision avoidance by three mobile robots with two targets using Potential-Genetic 
hybrid controller (2-D workspace and obstacles: Final scenario).  
 

 

Fig.  6.19(b).  Collision avoidance by three mobile robots with two targets using Potential-
Genetic hybrid controller (3-D workspace and obstacles: Final scenario).  
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Scenario: 2 

 

Fig.  6.20.  Collision avoidance by three mobile robots with three targets using Potential-Genetic 
hybrid controller (3-D workspace and obstacles: Initial scenario). 

 

Fig. 6.21(a).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic hybrid controller (2-D workspace and obstacles: Intermediate scenario). 
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Fig. 6.21(b).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic hybrid controller (3-D workspace and obstacles: Intermediate scenario). 

 
Fig. 6.22(a).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic hybrid controller (2-D workspace and obstacles: Final scenario). 
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Fig. 6.22(b).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic hybrid controller (3-D workspace and obstacles: Final scenario). 
 

It has been observed that mobile robot can navigate successfully in a cluttered 

environment and at the end able to reach the targets. Robots choose their path by its own 

to reach the target by following the shortest trajectories. It can be noted that the robots 

stay well away from the obstacles and move in smooth path from its start location to end 

location.  

 
The aim of these simulations is to ensure that the robot can cope with different 

working environments. In these simulations, the environment outline is modified by 

repositioning obstacles in different fashion and to get optimal navigational path. The same 

controller has been demonstrated for other cases of simulation in the succeeding sections. 

 

6.4.4.  Approach for design validation with other models 

 
The validation of the proposed techniques has been made with Krishna and Kalra [209] 

model. The validated results are shown both in simulation and experimental modes.  
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The results from Krishna and Kalra [209] shown in Fig. 6.23(a) and Fig. 6.24(a) are 

compared with the results obtained from present study in similar environments [Fig. 

6.23(b) and Fig. 6.24(b)]. The results are also given in tabular form in Table 6.6.  

 

 
 
Fig. 6.23. Comparison of results from the current investigation and Krishna and Kalra [209]. 
 

In the first case, both the controllers are applied to a situation with complex maze 

with different shapes of boundary that would cause the existence of ‘‘dead cycle” 

problems. In this case the robot cannot see the target directly due to the wall in between 

them.  It can be observed in the environment shown in Fig. 6.23(a) presented by Krishna 

and Kalra [209] model that the robot is trapped at each steps throughout the maze due to 

the existence of local minima and finally able to find their target after a long exercise by 

following a longer trajectory. In Fig. 6.23(b) the robot can avoid the maze made with 

similar boundary found on its way towards the target efficiently by the proposed GA 

model. In this case robot will first takes left turn due to the obstacle (U- shaped boundary) 

in front of it, then sense the target and finally follows the walls in order to reach the target 

successfully by receiving systematic information from the sensors through the state 

memory strategy.  

 
In the second case, the robot supposed to find the target approximately in an complex 

situation like closed aisle for a dead cycle problem. In Fig. 6.24(a) proposed by Krishna 

and Kalra [209] model the robot got trapped in the T-shaped area first, and then it was 

escaped from the trap by taking a long loop through the entire boundary and eventually 

reaches the target by following a zigzag motion. Fig. 6.24(b) shows a simulation of the 

robot behaviour adapted by means of the proposed method. 

Start Target 
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Fig.  6.24.  Comparison of results from the current investigation and Krishna and Kalra [209]. 
  

In the initial position the robot is heading towards the dead-end. Due to the additional 

context information provided by the proposed controller robot can able to perceive the 

dead-end. The controller initiates a turning manoeuvre, which lasts until the robot is 

heading away from the dead-end. Afterwards, the normal wall-following behaviour 

guides the robot to the exit of the corridor by keeping a safe distance to the left wall.  
 
Table 6.6   
Comparison of results from the current investigation with Krishna and Kalra [209] model  
Sl 
No. 

Environmental types Path length of Krishna 
and Kalra [209], in ‘cm’ 

Path length from 
current 
investigation in  
‘cm’   

1. Maze with U-shape and oval shaped 
obstacles [Fig. 6.23(a) & (b)]  
 

12.2 10.5 

2. Complex closed aisle [Fig. 6.24(a) & 
(b)] 

28.4 6.8 

 
The performances of the two models are mainly evaluated on the basis of path length 

(Table 6.6). From the above simulation results it is clear that, the developed algorithm can 

efficiently drive the robot in a cluttered environment.  Experimental verification of the 

above simulation results has been shown in next sections.  

 

6.4.5.  Real-time experimental results 

 
Figs. 6.23 & 6.24, show the experimental result scenario in stepwise for the problems 

defined in preceding Section.6.4.4. Two different cases of similar environments as 

described by Krishna and Kalra [209] model (verified in simulation mode) have been 

Start Target 
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verified experimentally (Figs. 6.25- 6.26) to show the effectiveness of the developed 

controller. Khepera mobile robots are used for carrying out the experimentation. The 

detail specifications and  hardwares of Khepera II robots are given in Appendix G. During 

experimentation it is seen that the robot follows closely the simulation using the proposed 

hybrid potential GA controller. In the next section a more complex potential genetic fuzzy 

controller is discussed.  

 

 
 
Fig. 6.25.   Experimental results for navigation of mobile robot in the similar environment shown 
in Fig. 6.23(b). 
 
 

 

 
Fig. 6.26.   Experimental results for navigation of mobile robot in the similar environment shown 
in Fig. 6.24(b). 
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Figs. 6.25(a-f), have demonstrated a situation where robot and target are placed in 

opposite side of the complex maze (created by a variety of obstacle configurations). 

Initially robot cannot see the target directly because of the obstacles between robot and 

target. When robot starts motion it senses the target and speeds up in straight path towards 

the targets up to the U-shaped wall and slows down to take left turn to avoid obstacle, 

then follows a wall following rules to reach the target.  

 
Similarly for the second case of robot navigation it can be observed that, the robot 

follows a straight path except the turning points from its start to the goal position inside 

the closed aisle (Fig.6.26f). The experimentally obtained paths follow closely those traced 

by the robots during simulation. The trajectories are smooth and take reasonably efficient 

paths as compared to Krishna and Kalra [209] paths. The real time simulated results show 

the effectiveness of the developed controller for mobile robots navigating in priori 

unknown cluttered environment.  

 

6.5. Analysis of Potential-Fuzzy-Genetic Hybrid Controller for mobile robot 
navigation 
 

6.5.1.  Introduction 

 
This chapter presents an approach for building multi-input and single-output hybrid 

models. Such a model is composed of a learning method which automatically designs 

fuzzy logic controllers (FLCs) by means of a potential-genetic algorithm (PGA). The 

fuzzy membership functions that define these variables have been optimised through 

potential-genetic operators by receiving systematic information from the targets and 

obstacles position. Simulation examples are provided to evaluate the feasibility of the 

proposed approach. Comparison shows that the suggested approach can produce a hybrid 

model with higher accuracy. The validity of the resultant model is demonstrated by 

simulation and experiment.  
 
 In this chapter the motion planning of multiple mobile robots with multiple targets in 

presence of obstacles in a priori unknown environment using modified Potential Field 

based Genetic-fuzzy hybrid Controller is discussed. This task could be carried out by 

specifying a set of potential GA-fuzzy rules by taking into account the different situations 

found by the mobile robots. The approach is to extract a set of potential GA-fuzzy rules 
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from a set of trajectories provided by human intelligence. Problem specific potential GA-

fuzzy operators are not only designed with domain knowledge, but also incorporate small-

scale local search that improves efficiency of the operators. A relatively simple but 

effective evaluation method is applied to both feasible and infeasible solutions. For this 

purpose inputs are obstacles position and target position to all the controllers and output 

heading angles (HA) are expressed in terms of encoded generation function distributions 

by crisp values. The outputs of the hybrid controller are the requisite wheel velocity i.e. 

LV and RV, which controls the motion of the robot.  

 

6.5.2.  Design and analysis of hybrid Potential-GA-Fuzzy controller 

 
The hybrid controller (shown in Fig. 6.27) has three segments, i.e. potential controller, 

genetic controller and fuzzy controller. The inputs to the potential controller are obstacle 

position and target position, and output is the first heading angle (F.H.A.).  The F.H.A. is 

computed on the basis of the total attractive and repulsive forces as shown in Chapter 3. 

The output of potential controller, in addition to obstacle distances i.e. F.O.D., L.O.D., 

R.O.D. are passed through the genetic controller to get a quite better heading angle i. e. 

Second Heading Angle (S.H.A.). The second heading angle is computed by carrying out 

the steps as describe in chapter 4. The output of genetic controller, in addition to obstacle 

distances i.e. F.O.D., L.O.D., R.O.D. are again passed through the fuzzy controller to get 

a optimal response in terms of left wheel and right wheel velocity, which are the overall 

output of  the Hybrid Potential-GA-fuzzy Controller. The filtered fuzzy rules are 

embedded in the controller by providing a set of fuzzy rules from a set of trajectories 

which are extracted by human intelligence. The outputs from the fuzzy controller are LV 

and RV. The velocities are computed from fuzzy inference technique and subsequently by 

defuzzification method as discussed in chapter 5. These defuzzified velocities can 

produce the optimal or near optimal trajectory by optimizing the heading angle. The 

obstacle avoidance behaviour of the robot using hybrid potential-GA-fuzzy Controller has 

been incorporated in the Petri-net model for successful navigation of the mobile robot. 

The detail of the proposed Petri-net model is discussed in section 3. The validity of the 

resultant model is demonstrated through simulation studies as well as experimentation in 

various situations. 
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Fig. 6.27. Potential-GA-fuzzy hybrid controller with Gussian fuzzy membership 
functions for mobile robot navigation 
 

6.5.3.  Simulation results  
 
Using potential-GA-Fuzzy controller two specific tasks has been carried out. These tasks 

resemble the environment given in previous section of this chapter (section 2-4). Four 

figures are outlined for carrying out the task. Out of which two figures are dedicated for 

2D environmental situation and another two figures are showing the 3D representation of 

2D environment. In this task multiple numbers of robots, targets and obstacles are 

involved.  

Scenario 1 

 

Fig.  6.28(a).  Collision avoidance by three mobile robots with two targets using Potential-
Genetic-Fuzzy hybrid controller (2-D work space and obstacles). 
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Fig.  6.28(b).  Collision avoidance by three mobile robots with two targets using Potential-
Genetic-Fuzzy hybrid controller (3-D work space and obstacles). 
 
Scenario 2 

 
Fig.  6.29(a).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic-Fuzzy hybrid controller (2-D work space and obstacles). 
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Fig.  6.29(b).  Collision avoidance by three mobile robots with three targets using Potential-
Genetic-Fuzzy hybrid controller (3-D work space and obstacles). 
 

6.5.4.  Overall comparison of results with different hybrid models  

 
It can be observed that at the end of this task the robots able to reach their defined targets 

in most efficient manner as compared to the results obtained from Potential-Fuzzy, 

Potential-Genetic and Genetic-Fuzzy systems. An overall comparison has been drawn on 

the basis of path lengths for both the cases and respective results are given in Table 6.7.  

 

Table 6.7 
Path lengths (in ‘Pixel’) of three robots for the environments shown using different hybrid 
techniques.  
Sl. 
No.  

Environment 
types  

Robot No Potential-
Fuzzy  

Potential-
GA  

GA-
Fuzzy  

Potential 
GA-Fuzzy 

1.  Environment 1  1 

2 

3 

290 

311 

295  

267 

295 

293  

283 

298 

291  

253 

293 

281  

 
2.  Environment 2  1 

2 

3 

228 

283 

232  

223 

274 

211  

220 

276 

216  

211  

265  

202  

Path3 

Path2 

Path1 

Target2 

Target3 

Robot3 

Robot2 

Robot1 

Target1 
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Other tasks such as navigation in a highly cluttered environment (Fig. 6.30) and 

corridor navigation (Fig. 6.31) are also shown using the Potential-GA-Fuzzy controller. 

Fig.6.30 shows the navigational scenarios for single robot in a highly cluttered 

environment with different obstacle size. The target is placed on the opposite corner of 

the robot and robot has to move in a very close passage between different obstacle 

configurations. Using the developed hybrid technique i.e. Potential-GA-Fuzzy controller, 

the robot finally able to reach the target efficiently in a shortest trajectory. 

 
Fig. 6.30.  Collision-free movement, obstacle avoidance and target seeking behaviour in a 
highly cluttered environment by single robot with single target. 
 
 

The second exercise involves the wall following behaviour of single robot with single 

target. In the present scenario the obstacles are arranged in a particular fashion so that 

they act like a wall between the robot and the target. As the robot search for the target, it 

finds the wall along which it continues to move by applying the wall following rules. In 

the initial position the robot is heading towards the dead-end. Due to the additional 

context information provided by the proposed controller robot can able to perceive the 

dead end. The controller initiates a turning manoeuvre, which lasts until the robot is 

heading away from the dead-end. Afterwards, the normal wall-following behaviour 

guides the robot to the exit of the corridor by keeping a safe distance to the left wall. Fig. 

6.31 shows the robot trajectory from start position to target without suffering from ‘‘dead 

cycle” problems. 
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Fig. 6.31. Navigation environment for wall following and target seeking behaviour of 
single robot. 

 

The results of the simulations showed that all robots are stayed away from each other and 

each robot has reached their nearest target in an efficient manner without any collision 

between themselves and obstacles in different environments. Further the robots well 

compromised between themselves in the environment in order to avoid collision among 

themselves as well as with other obstacles. The aim of these simulations is to ensure that 

the robot can cope with different working environments. In these simulations, the room 

outline is modified by repositioning obstacles in different fashion. The same controller 

has been demonstrated for other cases of simulation in the succeeding sections. 

 
6.5.5.  Approach for design validation with other models 

 
In the current section a comparison has been carried out between the results among the 

proposed model and the Reza et al. [210] model. The complete detail of the comparison is 

explained below.  

 
In this section a comparison has been made between Reza et al. [210] model and 

results from current control scheme in simulation and experimental mode. The 

performance of the two methods was mainly evaluated on following the path length. The 

results from Reza et al. [210] are shown in Fig. 6.32(a) and Fig. 6.33(a) are compared 

Target 

Robot 

Path 
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with the results obtained from present study for similar environments [Fig. 6.32(b) and 

6.33(b)] as has been tabulated in table 6.8.  

 

 
 
(a) Simulation results of Reza et al. [210] model                 (b) Simulation results from 
current investigation 
 
Fig. 6.32.  Comparison of results from Reza et al. [210] model the current investigation (Scenario 
1).  
 

In the first case, both the controllers are applied to a situation with complex maze 

with different shapes of boundary that would cause the existence of ‘‘dead cycle” 

problems. In this case the robot cannot see the target directly due to the wall in between 

them.  It can be observed in the environment shown in Fig. 6.32(a) presented by Reza et 

al. [210] model that the robot is trapped at each steps throughout the maze due to the 

existence of local minima and finally able to find the target after a long exercise by 

following a longer trajectory. In Fig. 6.32(b) the robot can avoid the maze made with 

similar boundary found on its way towards the target efficiently by the proposed GA 

model. In this case robot first takes right turn due to the obstacle (circular- shaped 

boundary) in front of it, then senses the target and finally follows the walls in order to 

reach the target successfully by receiving systematic information from the sensors 

through the state memory strategy.  

 
In the second case, the robot supposed to find the target approximately in a complex 

situation like closed aisle for a dead cycle problem. In Fig. 6.33(a) proposed by Reza et 

al. [210] model the robot got trapped in the T-shaped area first, and then it was escaped 

Start 

Target 
Navigational path 



Hybrid Techniques for Navigation of Mobile Robots                      

 

138 
 

from the trap by taking a long loop through the entire boundary and eventually reached 

the target by following a zigzag motion. Fig. 6.33(b) shows a simulation of the robot 

behaviour adapted by means of the proposed method. 

 

(a) Simulation results of Reza et al. [210] model                 (b) Simulation results from     
                                                                                                    current investigation 
 
Fig.  6.33.  Comparison of results from Reza et al. [210] model the current investigation 
(Scenario 2).  
  

In the initial position the robot is heading towards the dead-end. Due to the additional 

context information provided by the proposed controller robot can able to perceive the 

dead-end. The controller initiates a turning manoeuvre, which lasts until the robot is 

heading away from the dead-end. Afterwards, the normal wall-following behaviour 

guides the robot to the exit of the corridor by keeping a safe distance to the left wall.  
 
Table 6.8  Comparison of results from the current investigation with Reza et al. [210] model  
Sl 
No. 

Environmental types Path length of Reza et 
al. [210]  Model, in 
‘cm’  

Path length from 
current 
investigation in  
‘cm’   

1. Maze with U-shape and oval shaped 
obstacle [Fig. 6.32(a) & (b)].  
 

17.5 12.4 

2. Complex closed aisle [Fig. 6.33(a) 
& (b)]. 

20.8 10.2 

 
In some scenarios of Reza et al. [210] model it can be seen that, the path of robot has 

sudden change in direction with some greater steering angle and sometimes small zigzag 

like motion that has been taken care in the present investigation. Fig. 6.32(b) and Fig. 

Target 
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Navigational path 
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6.33(b) show that the robot reaches their target in a smooth motion with the proposed 

approach. The performance of the two models was mainly evaluated on the basis of path 

length and smoothness of trajectory which is shown in Table 6.8. From the above 

simulation results it is clear that, the developed algorithm can efficiently drive the robot in a 

cluttered environment. Experimental verification of the above simulation results has been 

shown in next sections. 

 

6.5.6.  Experimental validations and discussions 

 
The current section discusses about the experimental details for carrying out the tasks of 

the simulation environment shown in Fig. 6.32 & Fig. 6.33. During experimentation 

Khepera II robot is used. The detailed hardware specification of the Khepera II mobile 

robot are given in Appendix G. the discussion about the experimental procedure for 

carrying out the task is given below.  

 
Two different cases of similar environments as described by Reza et al. [210] model, 

have been verified experimentally (Figs. 6.34- 6.35) to show the effectiveness of the 

developed controller. 

 

 

 
Fig. 6.34   Experimental results for navigation of mobile robot in the similar environment 
shown in Fig. 6.32(b) 
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Fig. 6.35   Experimental results for navigation of mobile robot in the similar environment 
shown in Fig. 6.33(b). 
 

In Figs. 6.34(a-f) a situation is demonstrated where robot and target are placed in 

opposite side of the complex maze (created by wall type obstacle configuration). Initially 

robot cannot see the target directly because of the wall between robot and target. When 

robot starts motion it senses the target and speeds up in straight path towards the targets 

up to the U-shaped wall and slows down to take left turn to avoid obstacle, then follows a 

wall following rules to reach the target. The robot autonomously chooses its way in the 

shortest trajectory to reach the desired destination by getting the optimised heading angle 

obtained from hybrid controller. For the second robot navigation case (Fig. 6.35f), it can 

be observed that, the robot follows a straight path except the turning points from its start 

to the goal position inside the closed aisle.  

 
Table 6.9 
 Comparison of simulation and experimental results from the current investigation.  
Sl 
No. 

Environmental types Simulation Results Experimental Results 
Path length 
(cm) 

Time taken
(Sec) 

Path length (cm) 
 in 1/10th scale 

Time taken (Sec
in 1/10th scale 

1. Maze with U-shape and 
oval shaped obstacle 
[Fig. 6.32(b) & Fig. 
6.34]  
 

12.4 24.12 
 

14.2 
 

32.36 
 

2. Complex closed aisle 
[Fig. 6.33(b) & Fig. 
6.35] 

10.2 20.16 11.0 22.15 

d e Target f

c 

Start 

a b
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The developed controller takes care to invoke a new path based on available 

information received by the robot about the environment with ruled based heuristic 

recovery GA approach. The experimental and simulation results for both the 

environments are given in Table. 6.9. From these results it can be noticed that the 

experimentally obtained paths follow closely those traced by the robots during simulation. 

 

6.5.7.  Real-time experiment for multiple robots navigation 

 
In order to demonstrate the effectiveness and improved performance of the developed 

hybrid navigation scheme (i. e. Potential-Genetic-Fuzzy controller) the experiment using 

Khepera II robots has been carried out. The four Khepera II robots are taken for 

experiment in an abundant maze with single target. The three stages of navigation 

scenario have been shown in Figs. (6.36-6.38). 

 

 

 

Fig. 6.36.  Navigation of four real robots (Khepera II) in a cluttered environment (Initial 
scenario).  
 

Khepera II  
Robots 

Obstacles 

Target 



Hybrid Techniques for Navigation of Mobile Robots                      

 

142 
 

 
 
Fig. 6.37. Navigation of four real robots (Khepera II) in a cluttered environment (Intermediate 
scenario). 
 

 

 
 
Fig. 6.38.  Navigation of four real robots (Khepera II) in a cluttered environment (Final scenario). 
 

From the experimental results it can be seen that the robots can indeed avoid 

obstacles and reached the target. It is concluded from the above real-time experimental 

results that the proposed hybrid algorithm can also be works satisfactorily for multiple 

robots navigation. There are a number of trials with varying complexity to show that the 

model works for different sizes and numbers of obstacles. The real time simulated results 

show the effectiveness of the developed controller for mobile robots navigating in priori 

unknown cluttered environment.  
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6.6.  Summary 

 
In the present chapter four types of hybrid techniques such as Potential-fuzzy, Potential-

Genetic, Genetic Fuzzy and potential fuzzy genetic has been analysed. For carrying the 

analysis two types of scenarios have been taken into account. While studying the 

scenarios it has been observed that potential-genetic-fuzzy technique gives smoothes and 

best trajectories compared to other three developed hybrid model. It has been also noticed 

that using the first three hybrid models robots are able to reach the target while 

negotiating with the obstacles. A comparison is also made between the potential fuzzy 

techniques and Wang and James [206] technique, potential genetic technique with Krishna 

and Kalra [209] and genetic +fuzzy technique and Luh and Liu [208] technique last 

potential fuzzy genetic and Reza et al. [210] techniques. During the comparison it has 

been observed that using the developed hybrid techniques the robots follow the path in an 

optimum way in comparison to other technique. Experimental verifications are also 

carried out for different scenarios for different hybrid controller to collaborate their 

respective working model in reality. During experimental comparison it is found that the 

robot follows closely the simulation path. Other tasks such as corridor navigation in 

highly cluttered environment and multiple robot seeking for multiple target scenarios are 

given for potential fuzzy genetic controller. It is observed that the robot successfully 

navigate in the environment while achieving the goal. In the next chapter an overview of 

online navigation is given. 
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7.   Control of Multiple Mobile Robots using 
Remote Connection  
  
In this chapter remote control of multiple mobile robots has been discussed. The rapidly growing 
standard means of communication, (i.e. World Wide Web, www) is adopted in this work as the 
medium for transmitting control information between the different robots. Although control of 
robots has been demonstrated in obstacle avoidance exercises, such a form of control can be 
regarded as reactive. Some evidences of controlling multiple robots remotely are also provided in 
this chapter. 
 

 

7.1.  Introduction  

The Remote Control has been discussed in this chapter. With the help of World Wide 

Web (www) the remote methodology has been implemented for realising the task in real 

form. In the current study potential- - genetic -fuzzy technique has been implemented for 

verifying the remote methodology used in the current chapter. 

 

7.2.  Robot Navigation through www implementation 

 
7.2.1. Data transfer between Computers through the www 

A schematic view of the connection between two computers: Computer A (client) and 

Computer B (server) is shown in Fig. 7.1, which is divided into three parts: Client, Middle 

Tier and Backend.   

 
(a)  Client 

Clients are common users who can access web pages in a computer connected to the 

Internet (e.g. Computer A). The web pages that the client access are Hyper Text Markup 

Language (HTML) or Script pages. The HTML or script page are used for sending data 

consist of buttons and tabs which clients select according to their needs.  

 
For example, clients can choose one of the techniques for robot navigation. There is 

also a provision for starting or stopping the navigation as desired by selecting the 

respective buttons. The “Send” tab is used for sending the chosen technique command 

and the “start” or “stop” command to Computer B. The “Reset” tab gives an option to 

clients for initialising a different set of commands. The commands are sent in accordance 
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with the Hyper Text Transfer Protocol (HTTP) or Script page from Computer A to 

Computer B.  

 
(b) Middle Tier 

 
The Middle Tier consists of a Web Server and a software application (script page), both 

of which reside in Computer B (Fig. 7.1). The script page writes data (received by the 

server from clients) into the memory (hard disk) of Computer B. 

 

 

Fig.  7.1.  Schematic view of 3-tier combination for remote control (through www) of mobile 
robots 
 
 
(c) Backend 
 
The Backend consists of data files which reside in Computer B (Fig. 7.1). These data files 

are created and updated by the script pages using the data supplied by clients.    

 

7.2.2.  Connection between Robot Software and Data Files  

 
The robot simulation and control software resides in Computer B. The control software 

reads data from the data files stored in Computer B every second and takes action 

accordingly. The sequence of stages from clients to robots is shown in Fig. 7.2.  

Client  Middle Tier  Backend

 Script 
Page 

Data MiningWWW Web Server

Computer A  Computer B 
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Fig.  7.2.  Stages in robot control by clients. 

 

7.2.3.  Updated Images of Robot Workspace  

 
Pictures of the robot workspace are captured at regular intervals of one second using the 

"SnagIt" window screen capture software. The captured images are stored in the Graphics 

Interchange Format (GIF) in Computer B. As soon as the client clicks the “Send” tab, 

Computer A connects to another script page, which displays images of the robot 

workspace.  

 

7.3.  Demonstrations 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.  7.3(a).  Detailed remote experimental set up for navigation of three mobile robots. 
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Figures 7.3(a-d) depict the navigation of three mobile robots controlled via the www 

using Potential-Genetic-Fuzzy techniques. In these scenarios the robot negotiate with U-

shaped objects, while avoiding obstacles and reaching the targets. This technique has 

been chosen for demonstration as it is found to be the best among those developed in this 

work. Fig. 7.3 (b, c & d) present the real navigation results for the developed technique.  

 

 

Fig.  7.3(b).  Navigation of multiple mobile robots using WWW (Initial scenario).    

 

 

Fig.  7.3(c).  Navigation of multiple mobile robots using WWW (Intermediate scenario). 
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Fig.  7.3(d).  Navigation of multiple mobile robots using WWW (Final scenario). 

               

7.4.  Summary 

 
This chapter has described the implementation of different techniques for remote robot 

navigation. The medium for transmitting control commands is the World Wide Web 

because of its almost universal acceptance as a means for asynchronous communication. 

Script pages are used for transmitting and receiving the data between the front end and 

backend. Robots can be used for navigational application in hazardous environment remotely 

using the current methodology. 
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8.  Conclusion and Future Directions  
 

The previous chapters discuss the background, need statement, problem formulation and 
approach for navigation of mobile robot navigation in various environments. Different techniques 
have been used; their capabilities and fit for several situations are studied in detail via simulation 
and real time experiments. This chapter summarises the main contributions and conclusions of 
the research and proposes ideas for further work. 

 

8.1.  Important contributions 

 

The core objective of this research is to develop some effective methodology by exploring 

the AI techniques for safe and efficient path planning strategy techniques for cooperative 

locomotion of mobile robot in various environments. In the present work different 

controllers with stand alone AI techniques as well as hybrid techniques have been 

designed and their performance analysis is studied during their navigational control in 

various environments. The major contributions and findings are summarised below. 

 

Firstly, a novel, straight forward and purely Potential field based navigation 

technique was considered.  The new potential functions take into account the relative 

distances and bearing between obstacles and the targets with respect to the robots. It has 

been seen that by using new potential field function the robots are able to avoid efficiently 

any obstacles, escape from dead ends and find targets without collision. The robots also 

follow the wall and reach the target effectively.  

 

Secondly, genetic algorithm techniques was considered to construct the framework of 

some hierarchical or procedural control structures to implement basic navigation 

problems for multiple robots based on GA. Firstly, a method has been proposed for 

adjustment of fitness values to avoid statistical variation due to randomness in initial 

positions and orientations of obstacles. Then the distances of obstacles from three 

directions (viz. front, left and right) were evaluated by using suitable fitness function and 

optimised by the proposed algorithm based upon an iterative non-linear search, which 

utilizes matches between observed geometry of the environment and a-priori map of 
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position locations, there by correcting the position and orientation of the robot to find 

targets. 

Thirdly, the fuzzy logic techniques with all five triangular membership functions 

have been considered. Subsequently the membership functions are changed from 

triangular to other functions, e.g. trapezoidal, Gaussian functions and combinational form 

to have a more smooth control response. It has been found that the fuzzy controller with 

Gaussian membership function works better and it is observed that robots able to navigate 

safely from start to goal position in an unknown cluttered environment.  

 

Finally, hybrid techniques were analysed by considering different combination of 

techniques.  The devised method has also accounted for collision-free paths and reduction 

of travel time while lessening the number of controller variables and hence structure. It is 

seen that hybrid techniques performs well compared to stand alone techniques and best 

results observed with the potential-genetic-fuzzy hybrid controller among the chosen 

techniques. The developed strategies have been checked via simulations as well as 

experiments, which show the evidence of the capabilities of proposed controller to solve 

the multiple robot navigation tasks with multiple targets in an optimised way and to 

obtain a strategy for this purpose.  

 
_ 
8.2.  Conclusions 

 
From the simulation and experimental results, it is concluded that the developed simple 

fuzzy controller with all Gaussian membership is able to control the navigation of 

multiple mobile robots in an unknown cluttered workspace. 

 
The potential‐fuzzy technique has increased the performance compared to both the 

stand alone potential and fuzzy logic techniques. Similarly the potential‐genetic technique 

performs better than the simple genetic technique. 

 
The best performing techniques are based on potential‐Genetic‐Fuzzy technique, 

which gives robust navigation results in an unknown environment. This technique 

provides better result than other hybrid techniques developed, namely the potential‐fuzzy 

and potential‐genetic and genetic-fuzzy technique.  
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Further the technique demonstrates that it is possible to provide a navigation 

technique that can overcome a number of surface problems including the local minimum 

problem. The Proposed techniques also allow the approach to operate in 3D environments 

including obstacle which shows novelty of the techniques used for the navigation of 

mobile robots. The navigational techniques developed in this research have been successfully 

applied in controlling the mobile robots remotely (through the WWW) and on-site, with the 

help of developed software. This provides a user-friendly and flexible way of controlling the 

mobile robots using different navigational techniques. 

 

8.3.  Future directions 

 
Though much work have been conducted in this field, the tasks are not yet completed for 

navigational solutions of all possible situations found in day to day life. There is still an 

open area of research for autonomous navigation.  There are a number of interesting 

directions to pursue as future work by improving the state of the art through an entirely 

new type of navigational approach. 

 
The following are suggestions for further investigation:  

• In the current research work, the techniques developed for multiple mobile robot 

navigation enable the robots to avoid each other and static obstacles. However, 

further development of the techniques may be required for the avoidance of 

moving obstacles other than the robots. These obstacles (e.g. animals, moving 

equipments etc.) may or may not have sensors mounted on them that are able to 

communicate with robots.  

• Co-ordination between the robots for co-operative task with static as well as 

moving obstacles.  

• The navigational techniques developed in this research work are capable of 

detecting and reaching static targets. Further modifications in these navigational 

techniques may be carried out so that the robots can not only detect dynamic 

targets but also reach them.  

•  When several robots are involved in a co-operative task using the techniques 

 developed in this research, such as moving objects from one position to another 
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and avoiding obstacles, sentinel robots are required for co-ordination. 

Modification of the navigational techniques is required to carry out sentinel-free 

co-operation in an environment having obstacles. 

•  Further work needs to be undertaken in the area of optimising the number of 

 robots reaching and handling a particular object according to its weight and 

 volume. This will optimise the process of co-operation by controlling the number 

 of robots required for each task. The navigational techniques developed in this 

 research could be extended to incorporate this feature. 

•  Further work with respect to the use of visual sensing may be undertaken to 

improve the environmental perception of mobile robots. This may help to facilitate 

co-operation between the robots in a more intelligent manner (by providing 

additional, improved sensory data). It may also be used in the context of robot 

control through the WWW by presenting on-line pictures of the robot’s work area. 

Digital cameras (e.g. web cams) with a suitable computer interface may be 

employed for this purpose. 
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Appendix A 

Kinematic Analysis of differential drive Robot: 

The motion of the wheeled mobile robot is discussed in this section.  

 

 

 

 

 

 

 

 

Fig. A1.   Kinematic model of a four wheeled mobile robot. 

A kinematic model of a wheeled mobile robot has been considered in Fig. A1. The rear 

wheels are fixed parallel to robot body and allowed to roll or spin but not slip. The front 

wheels can turn to left or right, but the left and right front wheels must be parallel. All the 

corresponding parameters of the wheeled mobile robot are depicted in Fig.A1 and defined 

as follows.  

( ),f fx y  Position of the front wheel center of wheeled mobile robot 

( ),r rx y  Position of the rear wheel center of wheeled mobile robot 

The configuration of the robot moving on a plane surface at every instant is defined by 

the parameter (x, y, θ ). The rear wheel is always tangent to the orientation of the vehicle. 

The no-slipping condition mentioned previously requires that the robot navigate in the 

direction of its wheels. Thus, we have 

sin cos 0r rx yθ θ
• •

− =                                                                   (A1) 

This is nonholonomic constraint. The front of the wheeled mobile robot is fixed relative 
to the rear, thus the coordinate ( ),r rx y  is related to ( ),f fx y  
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Thus, differentiating (2) with respect to time gives 

sin

cos

r f

r f

x x l

y y l

θ θ

θ θ

• • •

• • •

⎫= + ⎪
⎬
⎪= − ⎭

                                                              (A3)  

Substituting (A3) to (A1), we can get 

sin cos 0f fx y lθ θ θ
• • •

− + =                                             (A4) 

From Fig. A1, we have 

( )

( )

cos

sin

f

f

x v

y v

θ φ

θ φ

•

•

⎫= − ⎪
⎬
⎪= − ⎭

                                                     (A5)  

Substituting (A5) to (A4), we can derive 

sinv
l
φθ

•

=                                                          (A6) 

Equations (A5) and (A6) are the kinematic equations of wheeled mobile robot with 

respect to the axle center of the front wheels and are used to generate the next forward 

state position of the vehicle when the present states and control input are given. Then 

using equations (A3) to (A6), the kinematics of wheeled mobile robot with respect to the 

axle center of the rear wheels is described as, 

    
cos cos

sin cos

•

•

=

=

r

r

x v

y v

θ φ

θ φ
   

sinv
l
φθ

•

=                                                (A7) 

Equations (A7) is used to generate the next backward state position of the vehicle when 

the present state and control input are given. 

From equation (A7) we have,             

1
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Where VL and VR are the left and right wheel velocity of the rear wheels. 

By changing the velocities of the two wheels, the instantaneous center (Ic) of rotation will 

move and different trajectories will be followed (Fig. A2). 

 

Fig. A2.   The differential drive motion of wheeled mobile robot.  

 

At each moment in time the left and right wheels follow a path (Fig. A2) that moves 

around the Ic with the same angular rate dt. 

Therefore, 

2
⎛ ⎞+

= ⎜ ⎟−⎝ ⎠
−

=

L R

L R

L R

V V dR
V V

V V
d

ω

                                                         (A9)                  

The velocity of the centre point, which is the midpoint between the two wheels, can be 

calculated as the average of the velocities VL and VR.        

Thus,   
2

L RV Vv +
=                                                        (A10)                 

If  VL = VR then the radius k is infinite and the robot moves in a straight line. For different 

values of VL and VR, the mobile robot does not move in a straight line but rather follows a 

curved trajectory around a point located at a distance R from Centre point. If VL = -VR, 

then the radius R is zero and the robot rotates around one wheel. For any real value of the 

velocity, r must be real, to get a real curved path. Thus, ‘θ’ has to lie within 00 and 900, 

i.e., 00 < θ < 900, for a non-holonomic robot. 
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Fig.  A3.  Flow Chart for developed APF Program. 
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Appendix C 

 
Calculation of steering angle: 

 
With the help of sensors the robot will detect obstacles around it in the environment. 

Accordingly the robot will calculate the repulsive navigation forces (Fig. A4). 

Let, 

Front RearF −∑ = Resultant repulsive navigation force along the direction of left-right axis of 

the robot due to the obstacles which influence the robot. 

Left RightF −∑ = Resultant repulsive navigation force along the direction of left-right axis of 

the robot due to the obstacles which influence the robot. 

( )θ = Current heading angle at which the robot moving in the environment. 

Change in steering angle (Phir [ir]) required for obstacle avoidance is 

1 Front Rear

Left Right

FPhir[ ir ] Tan
F

− −

−

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                                      (A11) 

New heading angle ( )θ new = ( )θ + Phir[ir]                                                              (A12)                       

 

 

 
Fig.  A4.  Robot heading angle with respect to different obstacle positions. 
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Appendix D 
 
Specification of N.I.T. Robot 

The approximate size of the robot is as follows: 

Length   :   16 cm (including sensor position) 

Width  :   12 cm 

Height   :   10 cm from ground and 

The size of platform (test bed) used for navigation is as follows:  

Length    :  1.4 m 

Width    :   2.0 m 

Height  :          0.18 m 

 

 

 

Fig.  A5.  Appearance of the wheeled mobile robot used for experiment. 

 

The robot considered for experiment is a differential drive robot with an on-board PC and 

wireless Ethernet. There are six ultrasonic and four infra red sensors mounted around the 

top of robot (out of which two sensors in each in front and back sides and one in each at 

the left and right side of the mounting ) in order to sense the front, left, right, and back 

obstacle distances. 
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Appendix E 

The Fuzzy membership functions for different coefficients are shown in Fig. A6. The 

coefficients for the sub-fitness functions f1, f2,…., f5 are calculated using fuzzy inference 

technique and statistical analysis. The degree of membership functions are detailed as 

follows. 

 

Fig.  A6.  Fuzzy membership function used for evaluation of different fitness function coefficient 
using proposed motion planning scheme. 

The maximum values are estimated statistically from the membership functions 

distribution. In the current case the high intensity factors are considered for navigation of 

mobile robots. However, the other values of coefficient can be tried in future for 

alternative navigational performance. It may be noted that the fuzzy inference technique 

is only used for calculation of the sub coefficients for the fitness function described in Eq. 

(4.1). 

 0.0         0.1       0.2         0.3        0.4       f1 

           Low           Medium    High 
   µ     Cluttered   Cluttered    Cluttered 

 0.0   0.0375     0.075     0.1125    0.15       f5

           Low           Medium    High 
   µ     Heading     Heading    Heading 

 0.0   0.0375    0.075    0.1125   0.15   f2, f3 &f4

           Low        Medium   High 
   µ     Priority   Priority     Priority 

(a) Fuzzy membership function for coefficient ‘f1’ 

(b) Fuzzy membership function for coefficients  
‘f2, f3 & f4’  

(c) Fuzzy membership function for coefficient ‘f5’  
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Appendix F 

 
Computational example for different steps of the proposed hybrid controller 

 
In the current paper hybrid Petri-potential fuzzy controller has been developed and used 

for mobile robot navigation. During navigation from start location to target location 

different positions of the robots at a particular time (t) are estimated step wise. The 

complete details are given in tabular form [Table A1] and are discussed below. Based on 

the sensory information the front, left, right obstacle distances and targets location for 

different robots are evaluated. These distances are the input to the hybrid controller. The 

computational results of hybrid controller of five membership function having all 

Gaussian members [Refer Fig. 6.3(a, b)] are considered to show the Computational steps 

at different instantaneous positions. Table A1 shows the computational results in four 

steps (i.e. [R(1,1), R(2,1)), R(3,1)], [R(1,2), R(2,2)), R(3,2)],  [R(1,3), R(2,3)), R(3,3)] and [R(1,4), R(2,4)), 

R(3,4)] for three mobile robots.   

 
Table A1 
Example of some of the rules of Potential-Fuzzy Hybrid Controller to show the 
Computational steps at different instantaneous positions based on the proposed algorithm. 
No. of 
Robot. 

Position Co-
ordinates 
In ‘pixels’ 

Input to the Hybrid 
Controller 

LV RV 

FOD in 
‘pixels’ 

LOD in 
‘pixels’ 

ROD in 
‘pixels’ 

 R(1,1) (2, 17) 46 14 2 Slow Very Fast 

Robot1 R(1,2) (6, 22) 22 74 4 Slow Fast 

 R(1,3) (12, 22) 32 2 2 Fast Fast 

 R(1,4) (23, 30) 30 10 6 Fast  Fast 

 R(2,1) (6, 5) 14 3 20 Slow Very Slow 

Robot2 R(2,2) (10, 3) 18 4 10 Slow Very Slow 

 R(2,3) (17, 3) 22 4 20 Slow  Very Slow 

 R(2,4) (25, 7) 66 4 24 Very Fast Slow 

 R(3,1) (8, 3) 24 10 10 Slow Slow 

Robot3 R(3,2) (14, 2) 26 4 4 Slow Slow 

 R(3,3) (19, 3) 90 4 10 Very Fast Fast 

 R(3,4) (28, 10) 76 6 20 Very Fast Fast 

 



 

 

A

Sp

 

    

Fi

Pr

RA

Fl

M

Sp

Se

I/O

Po

Appendix 

pecification

                   

ig.  A7.  Kh

E

rocessor 

AM 

lash 

Motion 

peed 

ensors 

O 

ower 

G 

ns of Khepe

    (a)           

hepera II Ro

Elements 

era-II 

                    

obot with an

M

5

5
P

2
(r

M

8
to
A
P

3

P
O

173

                    

nd without c

 

Motorola 68

12 Kbytes I

12 Kbytes
Programmab

2 DC brushe
roughly 12 

Max: 0.5 m/

 Infra-red p
o 100mm ra

AND 
Power Consu

 Analog Inp

Power Adap
OR 

3 

                    

camera.       

Technic

331, 25MH

IMPROVED

ble via seria

ed servo mo
pulses per m

s, Min: 0.02

proximity an
ange IMPRO

umption NE

puts (0-4.3V

pater 

             (b)  

                

cal Inform

Hz IMPROV

D 

al port NEW

otors with in
mm of robo

2 m/s 

nd ambient 
OVED  

EW 

V, 8bit) 

 

ation 

VED 

W 

ncremental e
ot motion) 

light sensor

Appendix

 

encoders 

rs with up 



Appendix 
 

174 
 

Rechargeable NiMH Batteries IMPROVED 

Autonomy 1 hour, moving continuously IMPROVED. Additional 
turrets will reduce battery life. 

Communication Standard Serial Port, up to 115kbps IMPROVED 

Extension Bus Expansion modules can be added to the robot using the 
K-Extension bus. 

Size Diameter: 70 mm 
 
Height: 30 mm 

Weight Approx 80 g 

Payload Approx 250 g 

Simulators  WEBOTS, Realistic 3D Simulator and robot 
programming (Windows & Linux) 

BotController. 2D simulation and robot programming 

Development Environment for 
Autonomous Application  

KTProject, graphical interface for GNU C Cross-
Compiler (Windows) 

GNU C Cross-Compiler, for native on-board 
applications (Windows, Linux & Sun) 

Freeware 

Remote control Software via 
tether or radio 

LabVIEW® (on PC, MAC or SUN) using RS232 

MATLAB® (on PC, MAC, Linux or SUN) using 
RS232 

SysQuake® (on PC, MAC, Linux or SUN) using 
RS232 

Freeware 

Any other software capable of RS232 communication 
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