44 research outputs found

    lPv6 Transition: Why A New Security Mechanisms Model Is Necessary.

    Get PDF
    This paper describes the scenario in the transition oflpv4 to lpv6 with focusing on the security issues involved in each of the transition methods: dual stack and tunneling. Then, the paper analyze the existing security mechanisms available and identify new considerations for a new security model

    Implementação de mecanismos de transição e coexistência dos protocolos IPV4-IPV6 nos centros de computação de alto desempenho suportados pelas redes acadêmicas

    Get PDF
    El presente documento pretende contextualizar al lector sobre algunos de los mecanismos que existen para la transición de IPv4-IPv6 y evidencia algunos aspectos que se deben tener en cuenta al momento de evaluar e implementar algunos de ellos, específicamente en centros de computación de alto desempeño y en redes académicas para el apoyo de proyectos de investigación. También se pretende mostrar la implementación y soporte de IPv6 en plataformas tecnológicas e-learningThis document aims to contextualize the reader about some of the mechanisms that currently exist for IPv4-IPv6 transition and evidence some aspects that must be taken into account when evaluating and implementing some of them, specifically in centers of high performance computing and academic networks to support research projects. It also aims to show the implementation and support of IPv6 in e-learning technology platforms.Este documento tem como objetivo contextualizar o leitor sobre alguns dos mecanismos que existem para a transição do IPv4 para o IPv6 e evidenciar alguns aspectos que devem ser considerados na avaliação e implementação de qualquer um deles, especificamente nos centros de computação de alto desempenho e redes acadêmicas para apoiar projetos de pesquisa.  Ainda se pretende mostrar a implementação e o suporte de IPv6 em plataformas tecnológicas e-learning

    IPv6 : prospects and problems : a technical and management investigation into the deployment of IPv6

    Get PDF
    Masteroppgave i informasjons- og kommunikasjonsteknologi 2003 - Høgskolen i Agder, GrimstadIPv4 has been used for over twenty years, and will most likely be used in many years ahead. However, we are now experiencing that the IPv4 address space is running out, resulting in restrictions on who will be able to get these types of addresses assigned to them. Methods such as Network Address Translator (NAT) have been developed and implemented in order to save the IPv4 address space. It is said that this is not a good enough solution, as such techniques introduce new problems at the same time solving some. A new version of the Internet Protocol, IPv6, has been developed and is likely to replace IPv4. IPv6 has been developed to solve the address problem, but also new features are designed to supposedly enhance network traffic. In our thesis we give an overview of the problems with IPv4. This includes the limited address space and the limited quality of service. Further we present the features of IPv6 that are meant to solve these problems and add new possibilities. These are: New address format, the IPv6 header and Extension headers to mention some. Further we have investigated and here present how the transition from IPv4 to IPv6 is expected to take place, followed by a thorough description of the transition mechanisms. One of the original intentions on the development of IPv6 was that IPv4 and IPv6 have to be able to coexist for a long period of time. Transition mechanisms have therefore been designed to make this possible. There are three main types of mechanisms: - Tunnelling - Translation - Dual-stack. Each of these mechanisms requires different configuration and implementations in hosts and network. Technical research on transition mechanisms states that these are not good enough for all IPv6/IPv4 scenarios and need improvements in order to make IPv4 and IPv6 coexist smoothly. There are a lot of transition mechanisms that are agreed upon as being good for general use and then there are transition mechanisms that are good for certain scenarios and not for others. Some scenarios still lack a good translation mechanism. As a result of this, IPv6 networks are being built separately from IPv4 networks. In Asia commercial IPv6 networks are offered, while the process is slower in other parts of the world. The reasons for not building IPv6 networks are many, and not agreed upon. Some believe it is because of economical restrictions, while others claim it is technical reasons and that it exists far too few applications supporting IPv6. The number of IPv6 enabled applications is growing. Large companies like; Microsoft Corporation, Cisco Systems Inc, Apple Computers Inc., Sun Microsystems Inc and various versions of Linux include support for IPv6. The deployment of IPv6 is expected to happen at different times in different parts of the world. We have investigated the status of IPv6 globally and in Norway. The main results are that the roll-out has reached the furthest in Asia where commercial IPv6 networks already are offered. The activity in Norway is still small, but growing. It was desired to run an experiment in order to prove or disprove some of the information we gathered on how IPv6 interoperates with IPv4, but because of limitations in the network at Heriot-Watt University we were not able to do this. Instead we have focused on a project by Telenor R&D; “IPv6 migration of unmanaged networks-The Tromsø IPv6 Pilot”. We also gathered some information from people working at Norwegian ISPs in order to address some of the aspects of the upgrading

    Development of a Graduate Course on the Transition to Internet Protocol Version 6

    Get PDF
    Internet and mobile connectivity has grown tremendously in the last few decades, creating an ever increasing demand for Internet Protocol (IP) addresses. The pool of Internet Protocol version 4 (IPv4) addresses, once assumed to be more than sufficient for every person on this planet, has reached its final stages of depletion. With The Internet Assigned Numbers Authority’s (IANA) global pools depleted, and four of the five Regional Internet Registries (RIR) pools down to the their last /8 block, the remaining addresses will not last very long. In order to ensure continuous growth of the internet in the foreseeable future, we would need a newer internet protocol, with a much larger address space. Specifically, with that goal in mind the Internet Protocol version 6 (IPv6) was designed about two decades ago. Over the years it has matured, and has proven that it could eventually replace the existing IPv4. This thesis presents the development a graduate level course on the transition to IPv6. The course makes an attempt at understanding how the new IPv6 protocol is different than the currently used IPv4 protocol. And also tries to emphasize on the options existing to facilitate a smooth transition of production networks from IPv4 to IPv6

    Migration to a New Internet Protocol in Operator Network

    Get PDF
    This thesis explains the differences between IPv4 and IPv6. Another important part of the thesis is to review the current readiness of IPv6 for worldwide production use. The status (in terms of readiness, adaptability, compatibility and co-existence) of IPv6 in TeliaSonera is discussed in more detail. The most important reason for migrating to IPv6 is the address exhaustion of IPv4. This may not be a big problem in the developed countries but in developing countries the growth of Internet is fast and lots of more addresses are needed. The need for addresses is not only from computers but from many devices connected to the Internet. Attempts to slow down the exhaustion of free addresses have been made but current solutions are not enough. IPv6 will solve the problem by using much longer addresses. It will also add security features and simplify headers to speed up routing. TeliaSonera has started to roll out IPv6 services. At the beginning the corporate customers will receive IPv6 connectivity and consumers will follow later. TeliaSonera International Carrier is already serving its customers with IPv6. It seems that IPv6 is ready, standards have been ready for years and support in devices and software is prevalent. To achieve and keep up the global connectivity, IPv6 is a must and should not be avoided

    IPv4 address sharing mechanism classification and tradeoff analysis

    Get PDF
    The growth of the Internet has made IPv4 addresses a scarce resource. Due to slow IPv6 deployment, IANA-level IPv4 address exhaustion was reached before the world could transition to an IPv6-only Internet. The continuing need for IPv4 reachability will only be supported by IPv4 address sharing. This paper reviews ISP-level address sharing mechanisms, which allow Internet service providers to connect multiple customers who share a single IPv4 address. Some mechanisms come with severe and unpredicted consequences, and all of them come with tradeoffs. We propose a novel classification, which we apply to existing mechanisms such as NAT444 and DS-Lite and proposals such as 4rd, MAP, etc. Our tradeoff analysis reveals insights into many problems including: abuse attribution, performance degradation, address and port usage efficiency, direct intercustomer communication, and availability

    Analyzing challenging aspects of IPv6 over IPv4

    Get PDF
    The exponential expansion of the Internet has exhausted the IPv4 addresses provided by IANA. The new IP edition, i.e. IPv6 introduced by IETF with new features such as a simplified packet header, a greater address space, a different address sort, improved encryption, powerful section routing, and stronger QoS. ISPs are slowly seeking to migrate from current IPv4 physical networks to new generation IPv6 networks. ‎The move from actual IPv4 to software-based IPv6 is very sluggish, since billions of computers across the globe use IPv4 addresses. The configuration and actions of IP4 and IPv6 protocols are distinct. Direct correspondence between IPv4 and IPv6 is also not feasible. In terms of the incompatibility problems, all protocols can co-exist throughout the transformation for a few years. Compatibility, interoperability, and stability are key concerns between IP4 and IPv6 protocols. After the conversion of the network through an IPv6, the move causes several issues for ISPs. The key challenges faced by ISPs are packet traversing, routing scalability, performance reliability, and protection. Within this study, we meticulously analyzed a detailed overview of all aforementioned issues during switching into ipv6 network

    Assessing the Impact of Carrier-Grade NAT on Network Applications

    Full text link

    IPv4 to IPv6 transition : security challenges

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    An analysis of the risk exposure of adopting IPV6 in enterprise networks

    Get PDF
    The IPv6 increased address pool presents changes in resource impact to the Enterprise that, if not adequately addressed, can change risks that are locally significant in IPv4 to risks that can impact the Enterprise in its entirety. The expected conclusion is that the IPv6 environment will impose significant changes in the Enterprise environment - which may negatively impact organisational security if the IPv6 nuances are not adequately addressed. This thesis reviews the risks related to the operation of enterprise networks with the introduction of IPv6. The global trends are discussed to provide insight and background to the IPv6 research space. Analysing the current state of readiness in enterprise networks, quantifies the value of developing this thesis. The base controls that should be deployed in enterprise networks to prevent the abuse of IPv6 through tunnelling and the protection of the enterprise access layer are discussed. A series of case studies are presented which identify and analyse the impact of certain changes in the IPv6 protocol on the enterprise networks. The case studies also identify mitigation techniques to reduce risk
    corecore