826 research outputs found

    Analysis of the high frequency substrate noise effects on LC-VCOs

    Get PDF
    La integració de transceptors per comunicacions de radiofreqüència en CMOS pot quedar seriosament limitada per la interacció entre els seus blocs, arribant a desaconsellar la utilització de un únic dau de silici. El soroll d’alta freqüència generat per certs blocs, com l’amplificador de potencia, pot viatjar pel substrat i amenaçar el correcte funcionament de l’oscil·lador local. Trobem tres raons importants que mostren aquest risc d’interacció entre blocs i que justifiquen la necessitat d’un estudi profund per minimitzar-lo. Les característiques del substrat fan que el soroll d’alta freqüència es propagui m’és fàcilment que el de baixa freqüència. Per altra banda, les estructures de protecció perden eficiència a mesura que la freqüència augmenta. Finalment, el soroll d’alta freqüència que arriba a l’oscil·lador degrada al seu correcte comportament. El propòsit d’aquesta tesis és analitzar en profunditat la interacció entre el soroll d’alta freqüència que es propaga pel substrat i l’oscil·lador amb l’objectiu de poder predir, mitjançant un model, l’efecte que aquest soroll pot tenir sobre el correcte funcionament de l’oscil·lador. Es volen proporcionar diverses guies i normes a seguir que permeti als dissenyadors augmentar la robustesa dels oscil·ladors al soroll d’alta freqüència que viatja pel substrat. La investigació de l’efecte del soroll de substrat en oscil·ladors s’ha iniciat des d’un punt de vista empíric, per una banda, analitzant la propagació de senyals a través del substrat i avaluant l’eficiència d’estructures per bloquejar aquesta propagació, i per altra, determinant l’efecte d’un to present en el substrat en un oscil·lador. Aquesta investigació ha mostrat que la injecció d’un to d’alta freqüència en el substrat es pot propagar fins arribar a l’oscil·lador i que, a causa del ’pulling’ de freqüència, pot modular en freqüència la sortida de l’oscil·lador. A partir dels resultats de l’anàlisi empíric s’ha aportat un model matemàtic que permet predir l’efecte del soroll en l’oscil·lador. Aquest model té el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem. el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem.The integration of transceivers for RF communication in CMOS can be seriously limited by the interaction between their blocks, even advising against using a single silicon die. The high frequency noise generated by some of the blocks, like the power amplifier, can travel through the substrate, reaching the local oscillator and threatening its correct performance. Three important reasons can be stated that show the risk of the single die integration. Noise propagation is easier the higher the frequency. Moreover, the protection structures lose efficiency as the noise frequency increases. Finally, the high frequency noise that reaches the local oscillator degrades its performance. The purpose of this thesis is to deeply analyze the interaction between the high frequency substrate noise and the oscillator with the objective of being able to predict, thanks to a model, the effect that this noise may have over the correct behavior of the oscillator. We want to provide some guidelines to the designers to allow them to increase the robustness of the oscillator to high frequency substrate noise. The investigation of the effect of the high frequency substrate noise on oscillators has started from an empirical point of view, on one hand, analyzing the noise propagation through the substrate and evaluating the efficiency of some structures to block this propagation, and on the other hand, determining the effect on an oscillator of a high frequency noise tone present in the substrate. This investigation has shown that the injection of a high frequency tone in the substrate can reach the oscillator and, due to a frequency pulling effect, it can modulate in frequency the output of the oscillator. Based on the results obtained during the empirical analysis, a mathematical model to predict the effect of the substrate noise on the oscillator has been provided. The main advantage of this model is the fact that it is based on physical parameters of the oscillator and of the noise, allowing to determine the measures that a designer can take to increase the robustness of the oscillator as well as the consequences (trade-offs) that these measures have over its global performance. This model has been compared against both, simulations and real measurements, showing a very high accuracy to predict the effect of the high frequency substrate noise. The usefulness of the presented model as a design tool has been demonstrated in two case studies. Firstly, the conclusions obtained from the model have been applied in the design of an ultra low power consumption 2.5 GHz oscillator robust to the high frequency substrate noise with characteristics which make it compatible with the main communication standards in this frequency band. Finally, the model has been used as an analysis tool to evaluate the cause of the differences, in terms of performance degradation due to substrate noise, measured in two 60 GHz oscillators with two different tank inductor shielding strategies, floating and grounded. The model has determined that the robustness differences are caused by the improvement in the tank quality factor and in the oscillation amplitude and no by an increased isolation between the tank and the substrate. The model has shown to be valid and very accurate even in these extreme frequency range.Postprint (published version

    RF transceiver design for electronic toll collection system (ETC) using compact dipole antenna

    Get PDF
    Electronic Toll Collection (ETC) system is one of the types of traffic control system that has rapid development in the recent years. ETC system is one of the major applications of Dedicated Short Range Communication (DSRC) which operates in the frequency band of 5.8GHz, used for the transfer of information between the road side unit (RSU) and the on board unit (OBU) which are situated at the toll station and on the vehicle respectively. The working of the system is based on RFID technology. ETC system is implemented in the 0.18microm CMOS technology, which is an aggressive technology in terms of its low cost and easy integration of the RF circuits.;A compact dipole antenna based low-cost RF transceiver for ETC system is designed in this thesis. Amplitude Shift Keying (ASK) modulation technique is employed in the implemented RF transceiver. In transmitter side, a class-E power amplifier is used to amplify the signal power. In order to send and receive the signal, a dipole antenna operating at a frequency of 5.8GHz is used. A low-power and energy efficient Low-Noise Amplifier (LNA) is used in the receiver block which consumes very less power and has a minimal noise figure compared with prior arts. A self-mixer is used for the down-conversion of the signal. Results of this design demonstrate the working of the transceiver at 5.8GHz frequency up to an input data rate of 400 Mbps

    Ultra Wideband Oscillators

    Get PDF

    Design and Analysis of a Discrete, PCB-Level Low-Power, Microwave Cross-Coupled Differential LC Voltage-Controlled Oscillator

    Get PDF
    Radio Frequency (RF) and Microwave devices are typically implemented in Integrated Circuit (IC) form to minimize parasitics, increase precision and tolerances, and minimize size. Although IC fabrication for students and independent engineers is cost-prohibitive, an abundance of low-cost, easily accessible printed circuit board (PCB) and electronic component manufacturers allows affordable PCB fabrication. While nearly all microwave voltage-controlled oscillator (VCO) designs are IC-based, this study presents a discrete PCB-level cross-coupled, differential LC VCO to demonstrate this more affordable and accessible approach. This thesis presents a 65 mW, discrete component VCO PCB with industry-comparable RF performance. A phase noise of -103.7 dBc/Hz is simulated at a 100 kHz offset from a 4.05 GHz carrier. This VCO achieves a 532 MHz (13.25%) tuning bandwidth. A figure of merit, FOMP, [1] value of -177.7 dB (includes phase noise and power consumption) is calculated at 4.05 GHz. This surpasses the performance of an industry standard VCO (HMC430LPx, Analog Devices), -176.5 dB, and four other commercially available VCOs. Furthermore, this study presents novel discrete design implementations to minimize both power consumption and capacitive loading effects, while optimizing phase noise. Finally, this project serves as a reference for analyzing and implementing low-level, complex RF and Microwave circuits on a PCB accessible to all students and independent engineers

    Low power digitally controlled oscillator for IoT applications

    Get PDF
    This work is focused on the design of a Low Power CMOS DCO for IEEE 802.11ah in IoT applications. The design methodology is based on the Unified current-control model (UICM), which is a physics-based model and enables an accurate all-region model of the operation of the device. Additionally, a transformer-based resonator has been used to solve the low-quality factor issue of integrated inductors. Two digitally controlled oscillators (DCO) have been implemented to show the advantages of utilizing a transformedbased resonator and the methodology based on the UICM model. These designs aim for the operation in low voltage supply (VDD) since VDD scaling is a trend in systems-onchip (SoCs), in which the circuitry is mostly digital. Despite the degradation caused by VDD scaling, new RF and analog circuits must deliver similar performance of the older CMOS nodes. The first DCO design was a low power LC-tank DCO, implemented in 40nm bulk-CMOS. The first design presented a DCO operating at 45% of the nominal VDD without compromise the performance. By reducing the VDD below the nominal value, this DCO reduces power consumption, which is a crucial feature for IoT circuits. The main contribution of this first DCO is the reduction of VDD scaling impact on the phase-noise do the DCO. The LC-based DCO operates from 1.8 to 1.86 GHz. At the maximum frequency and 0.395V VDD, the power consumption is a mere 380 W with a phase-noise of -119.3 dBc/Hz at 1 MHz. The circuit occupies an area of 0.46mm2 in 40 nm CMOS, mostly due to the inductor. The second DCO design was a low-power transformer-based DCO design, implemented in 28nm bulk-CMOS. This second design aims for the VDD reduction to below 0.3 V. Operating in a frequency range similar to the LC-based DCO, the transformer-based DCO operated with 0.280V VDD with a power consumption of 97 W. Meanwhile, the phase-noise was -101.95 dBc/Hz at 1 MHz. Even in the worst-case scenario (i.e., slow-slow and 85oC), this second DCO was able to operate at 0.330V VDD, consuming 126 W, while it keeps a similar phase-noise performance of the typical case. The core circuit occupies an area of 0.364 mm2.Este trabalho objetiva o projeto de um DCO de baixa potência em CMOS para aplicações de IoT e aderentes ao padrão IEEE 802.11ah. A metodologia de projeto é baseada no modelo de controle de corrente unificado (UICM), que é um modelo com embasamento físico que permite uma operação precisa em todas as regiões de operação do dispositivo. Adicionalmente, é utilizado um ressonador baseado em transformador visando solucionar os problemas provenientes do baixo fator de qualidade de indutores integrados. Para destacar as melhorias obtidas com o projeto do ressonador baseado em transformador e com a metodologia baseada no modelo UICM, dois projetos de DCO são realizados. Esses projetos visam a operação com baixa tensão de alimentação (VDD), uma vez que o escalonamento do VDD é uma tendência em sistemas em chip (SoCs), em que o circuito é majoritariamente digital. Independente da degradação causada pelo escalonamento de VDD, circuitos analógicos e de RF atuais devem oferecer desempenho semelhante ao alcançado em tecnologias CMOS mais antigas. O primeiro projeto foi um DCO de baixa potência com tanque LC, implementado em tecnologia bulk-CMOS de 40nm. O primeiro projeto apresentou uma operação a 45% do VDD nominal sem comprometer o desempenho. Ao reduzir o VDD abaixo do valor nominal, este DCO reduz o consumo de energia, que é uma característica crucial para circuitos IoT. A principal contribuição deste DCO é a redução do impacto do escalonamento do VDD no ruído de fase. O DCO com tanque LC opera de 1,8 a 1,86 GHz. Na frequência máxima e com VDD de apenas 0,395V, o consumo de energia é 380 W e o ruído de fase é -119,3 dBc/Hz a 1 MHz. O circuito ocupa uma área de 0.46mm2 em processo CMOS de 40 nm. O segundo projeto foi um DCO de baixa potência baseado em transformador, implementado em tecnologia bulk- CMOS de 28nm. Este projeto visa a redução de VDD abaixo de 0,3 V. Operando em uma faixa de frequência semelhante ao primeiro DCO, o DCO baseado em transformador opera com VDD de 0,280V e com consumo de potência de 97 W. O ruído de fase foi de -101,95 dBc/Hz a 1 MHz. Mesmo no pior caso de processo, este DCO opera a um VDD de 0,330V, consumindo 126 W, com o ruído de fase semelhante ao caso típico. O circuito ocupa uma área de 0.364mm2

    On-chip Spiral Inductor/transformer Design And Modeling For Rf Applications

    Get PDF
    Passive components are indispensable in the design and development of microchips for high-frequency applications. Inductors in particular are used frequently in radio frequency (RF) IC\u27s such as low-noise amplifiers and oscillators. High performance inductor has become one of the critical components for voltage controlled oscillator (VCO) design, for its quality factor (Q) value directly affects the VCO phase noise. The optimization of inductor layout can improve its performance, but the improvement is limited by selected technology. Inductor performance is bounded by the thin routing metal and small distance from lossy substrate. On the other hand, the in-accurate inductor modeling further limits the optimization process. The on-chip inductor has been an important research topic since it was first proposed in early 1990\u27s. Significant amount of study has been accomplished and reported in literature; whereas some methods have been used in industry, but not released to public. It is of no doubt that a comprehensive solution is not exist yet. A comprehensive study of previous will be first address. Later author will point out the in-adequacy of skin effect and proximity effect as cause of current crowding in the inductor metal. A model method embedded with new explanation of current crowding is proposed and its applicability in differential inductor and balun is validated. This study leads to a robust optimization routine to improve inductor performance without any addition technology cost and development
    corecore