17 research outputs found

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    2019 Abstract Book

    Get PDF

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    IMPROVED IMAGE QUALITY IN CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED INTERVENTIONS

    Get PDF
    In the past few decades, cone-beam computed tomography (CBCT) emerged as a rapidly developing imaging modality that provides single rotation 3D volumetric reconstruction with sub-millimeter spatial resolution. Compared to the conventional multi-detector CT (MDCT), CBCT exhibited a number of characteristics that are well suited to applications in image-guided interventions, including improved mechanical simplicity, higher portability, and lower cost. Although the current generation of CBCT has shown strong promise for high-resolution and high-contrast imaging (e.g., visualization of bone structures and surgical instrumentation), it is often believed that CBCT yields inferior contrast resolution compared to MDCT and is not suitable for soft-tissue imaging. Aiming at expanding the utility of CBCT in image-guided interventions, this dissertation concerns the development of advanced imaging systems and algorithms to tackle the challenges of soft-tissue contrast resolution. The presented material includes work encompassing: (i) a comprehensive simulation platform to generate realistic CBCT projections (e.g., as training data for deep learning approaches); (ii) a new projection domain statistical noise model to improve the noise-resolution tradeoff in model-based iterative reconstruction (MBIR); (iii) a novel method to avoid CBCT metal artifacts by optimization of the source-detector orbit; (iv) an integrated software pipeline to correct various forms of CBCT artifacts (i.e., lag, glare, scatter, beam hardening, patient motion, and truncation); (v) a new 3D reconstruction method that only reconstructs the difference image from the image prior for use in CBCT neuro-angiography; and (vi) a novel method for 3D image reconstruction (DL-Recon) that combines deep learning (DL)-based image synthesis network with physics-based models based on Bayesian estimation of the statical uncertainty of the neural network. Specific clinical challenges were investigated in monitoring patients in the neurological critical care unit (NCCU) and advancing intraoperative soft-tissue imaging capability in image-guided spinal and intracranial neurosurgery. The results show that the methods proposed in this work substantially improved soft-tissue contrast in CBCT. The thesis demonstrates that advanced imaging approaches based on accurate system models, novel artifact reduction methods, and emerging 3D image reconstruction algorithms can effectively tackle current challenges in soft-tissue contrast resolution and expand the application of CBCT in image-guided interventions

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury
    corecore