394 research outputs found

    Radiation safety based on the sky shine effect in reactor

    Get PDF
    In the reactor operation, neutrons and gamma rays are the most dominant radiation. As protection, lead and concrete shields are built around the reactor. However, the radiation can penetrate the water shielding inside the reactor pool. This incident leads to the occurrence of sky shine where a physical phenomenon of nuclear radiation sources was transmitted panoramic that extends to the environment. The effect of this phenomenon is caused by the fallout radiation into the surrounding area which causes the radiation dose to increase. High doses of exposure cause a person to have stochastic effects or deterministic effects. Therefore, this study was conducted to measure the radiation dose from sky shine effect that scattered around the reactor at different distances and different height above the reactor platform. In this paper, the analysis of the radiation dose of sky shine effect was measured using the experimental metho

    Automated Hardware Prototyping for 3D Network on Chips

    Get PDF
    Vor mehr als 50 Jahren stellte IntelÂź MitbegrĂŒnder Gordon Moore eine Prognose zum Entwicklungsprozess der Transistortechnologie auf. Er prognostizierte, dass sich die Zahl der Transistoren in integrierten Schaltungen alle zwei Jahre verdoppeln wird. Seine Aussage ist immer noch gĂŒltig, aber ein Ende von Moores Gesetz ist in Sicht. Mit dem Ende von Moore’s Gesetz mĂŒssen neue Aspekte untersucht werden, um weiterhin die Leistung von integrierten Schaltungen zu steigern. Zwei mögliche AnsĂ€tze fĂŒr "More than Moore” sind 3D-Integrationsverfahren und heterogene Systeme. Gleichzeitig entwickelt sich ein Trend hin zu Multi-Core Prozessoren, basierend auf Networks on chips (NoCs). Neben dem Ende des Mooreschen Gesetzes ergeben sich bei immer kleiner werdenden TechnologiegrĂ¶ĂŸen, vor allem jenseits der 60 nm, neue Herausforderungen. Eine Schwierigkeit ist die WĂ€rmeableitung in großskalierten integrierten Schaltkreisen und die daraus resultierende Überhitzung des Chips. Um diesem Problem in modernen Multi-Core Architekturen zu begegnen, muss auch die Verlustleistung der Netzwerkressourcen stark reduziert werden. Diese Arbeit umfasst eine durch Hardware gesteuerte Kombination aus Frequenzskalierung und Power Gating fĂŒr 3D On-Chip Netzwerke, einschließlich eines FPGA Prototypen. DafĂŒr wurde ein Takt-synchrones 2D Netzwerk auf ein dreidimensionales asynchrones Netzwerk mit mehreren Frequenzbereichen erweitert. ZusĂ€tzlich wurde ein skalierbares Online-Power-Management System mit geringem Ressourcenaufwand entwickelt. Die Verifikation neuer Hardwarekomponenten ist einer der zeitaufwendigsten Schritte im Entwicklungsprozess hochintegrierter digitaler Schaltkreise. Um diese Aufgabe zu beschleunigen und um eine parallele Softwareentwicklung zu ermöglichen, wurde im Rahmen dieser Arbeit ein automatisiertes und benutzerfreundliches Tool fĂŒr den Entwurf neuer Hardware Projekte entwickelt. Eine grafische BenutzeroberflĂ€che zum Erstellen des gesamten Designablaufs, vom Erstellen der Architektur, Parameter Deklaration, Simulation, Synthese und Test ist Teil dieses Werkzeugs. Zudem stellt die GrĂ¶ĂŸe der Architektur fĂŒr die Erstellung eines Prototypen eine besondere Herausforderung dar. FrĂŒhere Arbeiten haben es versĂ€umt, eine schnelles und unkompliziertes Prototyping, insbesondere von Architekturen mit mehr als 50 Prozessorkernen, zu realisieren. Diese Arbeit umfasst eine Design Space Exploration und FPGA-basierte Prototypen von verschiedenen 3D-NoC Implementierungen mit mehr als 80 Prozessoren

    Heterogeneous 2.5D integration on through silicon interposer

    Get PDF
    © 2015 AIP Publishing LLC. Driven by the need to reduce the power consumption of mobile devices, and servers/data centers, and yet continue to deliver improved performance and experience by the end consumer of digital data, the semiconductor industry is looking for new technologies for manufacturing integrated circuits (ICs). In this quest, power consumed in transferring data over copper interconnects is a sizeable portion that needs to be addressed now and continuing over the next few decades. 2.5D Through-Si-Interposer (TSI) is a strong candidate to deliver improved performance while consuming lower power than in previous generations of servers/data centers and mobile devices. These low-power/high-performance advantages are realized through achievement of high interconnect densities on the TSI (higher than ever seen on Printed Circuit Boards (PCBs) or organic substrates), and enabling heterogeneous integration on the TSI platform where individual ICs are assembled at close proximity

    Méthodologies de conception ASIC pour des systÚmes sur puce 3D hétérogÚnes à base de réseaux sur puce 3D

    Get PDF
    Dans cette thĂšse, nous Ă©tudions les architectures 3D NoC grĂące Ă  des implĂ©mentations de conception physiques en utilisant la technologie 3D rĂ©el mis en oeuvre dans l'industrie. Sur la base des listes d'interconnexions en dĂ©route, nous procĂ©dons Ă  l'analyse des performances d'Ă©valuer le bĂ©nĂ©fice de l'architecture 3D par rapport Ă  sa mise en oeuvre 2D. Sur la base du flot de conception 3D proposĂ© en se concentrant sur la vĂ©rification temporelle tirant parti de l'avantage du retard nĂ©gligeable de la structure de microbilles pour les connexions verticales, nous avons menĂ© techniques de partitionnement de NoC 3D basĂ© sur l'architecture MPSoC y compris empilement homogĂšne et hĂ©tĂ©rogĂšne en utilisant Tezzaron 3D IC technlogy. Conception et mise en oeuvre de compromis dans les deux mĂ©thodes de partitionnement est Ă©tudiĂ©e pour avoir un meilleur aperçu sur l'architecture 3D de sorte qu'il peut ĂȘtre exploitĂ©e pour des performances optimales. En utilisant l'approche 3D homogĂšne empilage, NoC topologies est explorĂ©e afin d'identifier la meilleure topologie entre la topologie 2D et 3D pour la mise en Ɠuvre MPSoC 3D sous l'hypothĂšse que les chemins critiques est fondĂ©e sur les liens inter-routeur. Les explorations architecturales ont Ă©galement examinĂ© les diffĂ©rentes technologies de traitement. mettant en Ă©vidence l'effet de la technologie des procĂ©dĂ©s Ă  la performance d'architecture 3D en particulier pour l'interconnexion dominant du design. En outre, nous avons effectuĂ© hĂ©tĂ©rogĂšne 3D d'empilage pour la mise en oeuvre MPSoC avec l'approche GALS de style et prĂ©sentĂ© plusieurs analyses de conception physiques connexes concernant la conception 3D et la mise en Ɠuvre MPSoC utilisant des outils de CAO 2D. Une analyse plus approfondie de l'effet microbilles pas Ă  la performance de l'architecture 3D Ă  l'aide face-Ă -face d'empilement est Ă©galement signalĂ© l'identification des problĂšmes et des limitations Ă  prendre en considĂ©ration pendant le processus de conception.In this thesis, we study the exploration 3D NoC architectures through physical design implementations using real 3D technology used in the industry. Based on the proposed 3D design flow focusing on timing verification by leveraging the benefit of negligible delay of microbumps structure for vertical connections, we have conducted partitioning techniques for 3D NoC-based MPSoC architecture including homogeneous and heterogeneous stacking using Tezzaron 3D IC technlogy. Design and implementation trade-off in both partitioning methods is investigated to have better insight about 3D architecture so that it can be exploited for optimal performance. Using homogeneous 3D stacking approach, NoC architectures are explored to identify the best topology between 2D and 3D topology for 3D MPSoC implementation. The architectural explorations have also considered different process technologies highlighting the wire delay effect to the 3D architecture performance especially for interconnect-dominated design. Additionally, we performed heterogeneous 3D stacking of NoC-based MPSoC implementation with GALS style approach and presented several physical designs related analyses regarding 3D MPSoC design and implementation using 2D EDA tools. Finally we conducted an exploration of 2D EDA tool on different 3D architecture to evaluate the impact of 2D EDA tools on the 3D architecture performance. Since there is no commercialize 3D design tool until now, the experiment is important on the basis that designing 3D architecture using 2D EDA tools does not have a strong and direct impact to the 3D architecture performance mainly because the tools is dedicated for 2D architecture design.SAVOIE-SCD - Bib.Ă©lectronique (730659901) / SudocGRENOBLE1/INP-Bib.Ă©lectronique (384210012) / SudocGRENOBLE2/3-Bib.Ă©lectronique (384219901) / SudocSudocFranceF

    Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Full text link

    Experimental Evaluation and Comparison of Time-Multiplexed Multi-FPGA Routing Architectures

    Get PDF
    Emulating large complex designs require multi-FPGA systems (MFS). However, inter-FPGA communication is confronted by the challenge of lack of interconnect capacity due to limited number of FPGA input/output (I/O) pins. Serializing parallel signals onto a single trace effectively addresses the limited I/O pin obstacle. Besides the multiplexing scheme and multiplexing ratio (number of inter-FPGA signals per trace), the choice of the MFS routing architecture also affect the critical path latency. The routing architecture of an MFS is the interconnection pattern of FPGAs, fixed wires and/or programmable interconnect chips. Performance of existing MFS routing architectures is also limited by off-chip interface selection. In this dissertation we proposed novel 2D and 3D latency-optimized time-multiplexed MFS routing architectures. We used rigorous experimental approach and real sequential benchmark circuits to evaluate and compare the proposed and existing MFS routing architectures. This research provides a new insight into the encouraging effects of using off-chip optical interface and three dimensional MFS routing architectures. The vertical stacking results in shorter off-chip links improving the overall system frequency with the additional advantage of smaller footprint area. The proposed 3D architectures employed serialized interconnect between intra-plane and inter-plane FPGAs to address the pin limitation problem. Additionally, all off-chip links are replaced by optical fibers that exhibited latency improvement and resulted in faster MFS. Results indicated that exploiting third dimension provided latency and area improvements as compared to 2D MFS. We also proposed latency-optimized planar 2D MFS architectures in which electrical interconnections are replaced by optical interface in same spatial distribution. Performance evaluation and comparison showed that the proposed architectures have reduced critical path delay and system frequency improvement as compared to conventional MFS. We also experimentally evaluated and compared the system performance of three inter-FPGA communication schemes i.e. Logic Multiplexing, SERDES and MGT in conjunction with two routing architectures i.e. Completely Connected Graph (CCG) and TORUS. Experimental results showed that SERDES attained maximum frequency than the other two schemes. However, for very high multiplexing ratios, the performance of SERDES & MGT became comparable

    The Customizable Virtual FPGA: Generation, System Integration and Configuration of Application-Specific Heterogeneous FPGA Architectures

    Get PDF
    In den vergangenen drei Jahrzehnten wurde die Entwicklung von Field Programmable Gate Arrays (FPGAs) stark von Moore’s Gesetz, Prozesstechnologie (Skalierung) und kommerziellen MĂ€rkten beeinflusst. State-of-the-Art FPGAs bewegen sich einerseits dem Allzweck nĂ€her, aber andererseits, da FPGAs immer mehr traditionelle DomĂ€nen der Anwendungsspezifischen integrierten Schaltungen (ASICs) ersetzt haben, steigen die Effizienzerwartungen. Mit dem Ende der Dennard-Skalierung können Effizienzsteigerungen nicht mehr auf Technologie-Skalierung allein zurĂŒckgreifen. Diese Facetten und Trends in Richtung rekonfigurierbarer System-on-Chips (SoCs) und neuen Low-Power-Anwendungen wie Cyber Physical Systems und Internet of Things erfordern eine bessere Anpassung der Ziel-FPGAs. Neben den Trends fĂŒr den Mainstream-Einsatz von FPGAs in Produkten des tĂ€glichen Bedarfs und Services wird es vor allem bei den jĂŒngsten Entwicklungen, FPGAs in Rechenzentren und Cloud-Services einzusetzen, notwendig sein, eine sofortige PortabilitĂ€t von Applikationen ĂŒber aktuelle und zukĂŒnftige FPGA-GerĂ€te hinweg zu gewĂ€hrleisten. In diesem Zusammenhang kann die Hardware-Virtualisierung ein nahtloses Mittel fĂŒr PlattformunabhĂ€ngigkeit und PortabilitĂ€t sein. Ehrlich gesagt stehen die Zwecke der Anpassung und der Virtualisierung eigentlich in einem Konfliktfeld, da die Anpassung fĂŒr die Effizienzsteigerung vorgesehen ist, wĂ€hrend jedoch die Virtualisierung zusĂ€tzlichen FlĂ€chenaufwand hinzufĂŒgt. Die Virtualisierung profitiert aber nicht nur von der Anpassung, sondern fĂŒgt auch mehr FlexibilitĂ€t hinzu, da die Architektur jederzeit verĂ€ndert werden kann. Diese Besonderheit kann fĂŒr adaptive Systeme ausgenutzt werden. Sowohl die Anpassung als auch die Virtualisierung von FPGA-Architekturen wurden in der Industrie bisher kaum adressiert. Trotz einiger existierenden akademischen Werke können diese Techniken noch als unerforscht betrachtet werden und sind aufstrebende Forschungsgebiete. Das Hauptziel dieser Arbeit ist die Generierung von FPGA-Architekturen, die auf eine effiziente Anpassung an die Applikation zugeschnitten sind. Im Gegensatz zum ĂŒblichen Ansatz mit kommerziellen FPGAs, bei denen die FPGA-Architektur als gegeben betrachtet wird und die Applikation auf die vorhandenen Ressourcen abgebildet wird, folgt diese Arbeit einem neuen Paradigma, in dem die Applikation oder Applikationsklasse fest steht und die Zielarchitektur auf die effiziente Anpassung an die Applikation zugeschnitten ist. Dies resultiert in angepassten anwendungsspezifischen FPGAs. Die drei SĂ€ulen dieser Arbeit sind die Aspekte der Virtualisierung, der Anpassung und des Frameworks. Das zentrale Element ist eine weitgehend parametrierbare virtuelle FPGA-Architektur, die V-FPGA genannt wird, wobei sie als primĂ€res Ziel auf jeden kommerziellen FPGA abgebildet werden kann, wĂ€hrend Anwendungen auf der virtuellen Schicht ausgefĂŒhrt werden. Dies sorgt fĂŒr PortabilitĂ€t und Migration auch auf Bitstream-Ebene, da die Spezifikation der virtuellen Schicht bestehen bleibt, wĂ€hrend die physische Plattform ausgetauscht werden kann. DarĂŒber hinaus wird diese Technik genutzt, um eine dynamische und partielle Rekonfiguration auf Plattformen zu ermöglichen, die sie nicht nativ unterstĂŒtzen. Neben der Virtualisierung soll die V-FPGA-Architektur auch als eingebettetes FPGA in ein ASIC integriert werden, das effiziente und dennoch flexible System-on-Chip-Lösungen bietet. Daher werden Zieltechnologie-Abbildungs-Methoden sowohl fĂŒr Virtualisierung als auch fĂŒr die physikalische Umsetzung adressiert und ein Beispiel fĂŒr die physikalische Umsetzung in einem 45 nm Standardzellen Ansatz aufgezeigt. Die hochflexible V-FPGA-Architektur kann mit mehr als 20 Parametern angepasst werden, darunter LUT-Grösse, Clustering, 3D-Stacking, Routing-Struktur und vieles mehr. Die Auswirkungen der Parameter auf FlĂ€che und Leistung der Architektur werden untersucht und eine umfangreiche Analyse von ĂŒber 1400 BenchmarklĂ€ufen zeigt eine hohe Parameterempfindlichkeit bei Abweichungen bis zu ±95, 9% in der FlĂ€che und ±78, 1% in der Leistung, was die hohe Bedeutung von Anpassung fĂŒr Effizienz aufzeigt. Um die Parameter systematisch an die BedĂŒrfnisse der Applikation anzupassen, wird eine parametrische Entwurfsraum-Explorationsmethode auf der Basis geeigneter FlĂ€chen- und Zeitmodellen vorgeschlagen. Eine Herausforderung von angepassten Architekturen ist der Entwurfsaufwand und die Notwendigkeit fĂŒr angepasste Werkzeuge. Daher umfasst diese Arbeit ein Framework fĂŒr die Architekturgenerierung, die Entwurfsraumexploration, die Anwendungsabbildung und die Evaluation. Vor allem ist der V-FPGA in einem vollstĂ€ndig synthetisierbaren generischen Very High Speed Integrated Circuit Hardware Description Language (VHDL) Code konzipiert, der sehr flexibel ist und die Notwendigkeit fĂŒr externe Codegeneratoren eliminiert. Systementwickler können von verschiedenen Arten von generischen SoC-Architekturvorlagen profitieren, um die Entwicklungszeit zu reduzieren. Alle notwendigen Konstruktionsschritte fĂŒr die Applikationsentwicklung und -abbildung auf den V-FPGA werden durch einen Tool-Flow fĂŒr Entwurfsautomatisierung unterstĂŒtzt, der eine Sammlung von vorhandenen kommerziellen und akademischen Werkzeugen ausnutzt, die durch geeignete Modelle angepasst und durch ein neues Werkzeug namens V-FPGA-Explorer ergĂ€nzt werden. Dieses neue Tool fungiert nicht nur als Back-End-Tool fĂŒr die Anwendungsabbildung auf dem V-FPGA sondern ist auch ein grafischer Konfigurations- und Layout-Editor, ein Bitstream-Generator, ein Architekturdatei-Generator fĂŒr die Place & Route Tools, ein Script-Generator und ein Testbenchgenerator. Eine Besonderheit ist die UnterstĂŒtzung der Just-in-Time-Kompilierung mit schnellen Algorithmen fĂŒr die In-System Anwendungsabbildung. Die Arbeit schliesst mit einigen AnwendungsfĂ€llen aus den Bereichen industrielle Prozessautomatisierung, medizinische Bildgebung, adaptive Systeme und Lehre ab, in denen der V-FPGA eingesetzt wird
    • 

    corecore