325 research outputs found

    Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

    Get PDF
    Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions

    CLASSIFICATION OF PARKINSON'S DISEASE IN BRAIN MRI IMAGES USING DEEP RESIDUAL CONVOLUTIONAL NEURAL NETWORK

    Get PDF
    In our aging culture, neurodegenerative disorders like Parkinson's disease (PD) are among the most serious health issues. It is a neurological condition that has social and economic effects on individuals. It happens because the brain's dopamine-producing cells are unable to produce enough of the chemical to support the body's motor functions. The main symptoms of this illness are eyesight, excretion activity, speech, and mobility issues, followed by depression, anxiety, sleep issues, and panic attacks. The main aim of this research is to develop a workable clinical decision-making framework that aids the physician in diagnosing patients with PD influence. In this research, we proposed a technique to classify Parkinson’s disease by MRI brain images. Initially, normalize the input data using the min-max normalization method and then remove noise from input images using a median filter. Then utilizing the Binary Dragonfly Algorithm to select the features. Furthermore, to segment the diseased part from MRI brain images using the technique Dense-UNet. Then, classify the disease as if it’s Parkinson’s disease or health control using the Deep Residual Convolutional Neural Network (DRCNN) technique along with Enhanced Whale Optimization Algorithm (EWOA) to get better classification accuracy. Here, we use the public Parkinson’s Progression Marker Initiative (PPMI) dataset for Parkinson’s MRI images. The accuracy, sensitivity, specificity, and precision metrics will be utilized with manually gathered data to assess the efficacy of the proposed methodology

    Classification of Alzheimer’s and Parkinson’s Disease Based on VGG19 Features with Batch Normalization

    Get PDF
    Dementia is a condition when thinking, reasoning and memory skills are lost and patients have emotional instability and personality changes. Researchers are looking into how the underlying disease processes that lead to various kinds of dementia begin and interact. Additionally, they keep researching the various diseases and conditions that cause dementia. Alzheimer’s and Parkinson's disease contribute to dementia development. Recently deep learning-based techniques have surpassed the performance of traditional algorithms in the field of machine vision, image detection, natural language handling, object detection, and medical image analysis. This study proposed a transfer learning-based model for Parkinson’s and Alzheimer’s disease classification from slices of MRI. Pretrained VGG19 with Batch normalization is used for feature extraction and the final dense (fully connected-FC) layers are fine-tuned to meet our requirements. The performance of the model is analyzed by varying hyperparameters. The proposed model outperformed other pre-trained CNN models by achieving an accuracy of 97.19%

    Classification of patients with parkinsonian syndromes using medical imaging and artificial intelligence algorithms

    Get PDF
    The distinction of Parkinsonian Syndromes (PS) is challenging due to similarities of symptoms and signs at early stages of disease. Thus, the need of accurate methods for differential diagnosis at those early stages has emerged. To improve the evaluation of medical images, artificial intelligence turns out to be a useful tool. Parkinson’s Disease, the commonest PS, is characterized by the degeneration of dopamine neurons in the substantia nigra which is detected by the dopamine transporter scan (DaTscanTM), a single photon-emission tomography (SPECT) exam that uses of a radiotracer that binds dopamine receptors. In fact, by using such exam it was possible to identify a sub-group of PD patients known as “Scans without evidence of dopaminergic deficit” (SWEDD) that present a normal exam, unlike PD patients. In this study, an approach based on Convolutional Neural Networks (CNNs) was proposed for classifying PD patients, SWEDD patients and healthy subjects using SPECT and Magnetic Resonance Imaging (MRI) images. Then, these images were divided into subsets of slices in the axial view that contains particular regions of interest since 2D images are the norm in clinical practice. The classifier evaluation was performed with Cohen’s Kappa and Receiver Operating Characteristic (ROC) curve. The results obtained allow to conclude that the CNN using imaging information of the Basal Ganglia and the mesencephalon was able to distinguish PD patients from healthy subjects since achieved 97.4% accuracy using MRI and 92.4% accuracy using SPECT, and PD from SWEDD with 97.3% accuracy using MRI and 93.3% accuracy using SPECT. Nonetheless, using the same approach, it was not possible to discriminate SWEDD patients from healthy subjects (60% accuracy) using DaTscanTM and MRI. These results allow to conclude that this approach may be a useful tool to aid in PD diagnosis in the future

    Automatic Diagnosis of Parkinson's Disease Based on Deep Learning Models and Multimodal Data

    Get PDF
    Parkinson's disease (PD) is a common age-related neurodegenerative disorder in the aging society. Early diagnosis of PD is particularly important for efficient intervention. Currently, the diagnosis of PD is mainly made by neurologists who assess the abnormalities of the patient's motor system and evaluate the severity according to established criteria, which is highly dependent on the neurologists' expertise and often unsatisfactory. Artificial intelligence provides new potential for automatic and reliable diagnosis of PD based on multimodal data analysis. Some deep learning models have been developed for automatic detection of PD based on diverse biomarkers such as brain imaging images, electroencephalograms, walking postures, speech, handwriting, etc., with promising accuracy. This chapter summarizes the state-of-the-art, technical advancements, unmet research gaps, and future directions of deep learning models for PD detection. It provides a reference for biomedical engineers, data scientists, and health professionals

    Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning.

    Get PDF
    PURPOSE This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. METHODS This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson's disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. RESULTS The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. CONCLUSION This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis

    An Intelligent Hybrid Optimization with Deep Learning model-based Schizophrenia Identification from Structural MRI

    Get PDF
    One of the fatal diseases that claim women while they are pregnant or nursing is schizophrenia. Despite several developments and symptoms, it can be challenging to discern between benign and malignant conditions. The main and most popular imaging method to predict Schizophrenia is MR Images. Furthermore, a few earlier models had a definite accuracy when diagnosing the condition. Stable MRI criteria must also be implemented immediately. Compared to other imaging technologies, the MRI imaging method is the simplest, safest, and most common for predicting Schizophrenia. The following factors are mostly involved in the subprocess for the initial MRI image. Before calculating the length between the sample point and the cluster center, the initial cluster center of the sample is identified. Classification is done according to how far the sample point is from the cluster center. The picture is then generated once the new cluster center has been derived using the classification history and verified to match the cluster convergence condition. A grey wolf optimization-based convolutional neural network approach is offered to get beyond the limitations and find schizophrenia, whether its hazardous or not. Many MRI images or datasets are analyzed in a short time, and the results show a more accurate or higher rate of schizophrenia recognition

    Abnormal gait detection by means of LSTM

    Get PDF
    This article presents a system focused on the detection of three types of abnormal walk patterns caused by neurological diseases, specifically Parkinsonian gait, Hemiplegic gait, and Spastic Diplegic gait. A Kinect sensor is used to extract the Skeleton from a person during its walk, to then calculate four types of bases that generate different sequences from the 25 points of articulations that the Skeleton gives. For each type of calculated base, a recurrent neural network (RNN) is trained, specifically a Long short-term memory (LSTM). In addition, there is a graphical user interface that allows the acquisition, training, and testing of trained networks. Of the four trained networks, 98.1% accuracy is obtained with the database that was calculated with the distance of each point provided by the Skeleton to the Hip-Center point
    corecore