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ABSTRACT

Parkinson’s disease (PD) is a common age-related neurodegenerative disorder 
in the aging society. Early diagnosis of PD is particularly important for efficient 
intervention. Currently, the diagnosis of PD is mainly made by neurologists who 
assess the abnormalities of the patient’s motor system and evaluate the severity 
according to established criteria, which is highly dependent on the neurologists’ 
expertise and often unsatisfactory. Artificial intelligence provides new potential for 
automatic and reliable diagnosis of PD based on multimodal data analysis. Some 
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INTRODUCTION

Unmet Clinical Need for the Diagnosis 
of Parkinson’s Disease (PD)

Parkinson’s disease (PD) is the second most common chronic progressive 
neurodegenerative condition worldwide. PD mainly occurs in individuals aged 50 
years and above with motor symptoms include resting tremor, muscle tonus, and 
bradykinesia, and non-motor symptoms such as sleep dysfunction, dysgeusia, and 
cognitive deficits, etc. (Alzubaidi et al., 2021; D’Sa et al., 2023; Giannakopoulou 
et al., 2022). Males are more susceptible to the PD than females. The disease 
progresses gradually over time, negatively affecting the patient’s daily life (Barua 
et al., 2021). The pathology of PD is not fully clear. Current clinical interventions 
include medication and surgery to alleviate symptoms, but a complete cure for PD 
has not yet been found (E et al., 2021; Guo et al., 2022; Suri et al., 2022). The high 
cost of treatment is a significant economic burden on patients, their families, and 
the society (H. W. Loh et al., 2021).

Age is the most significant and unalterable risk factor for PD, while genetic, 
environmental, and behavioral factors also play a role (Barua et al., 2021; Tolosa et 
al., 2021). As the global population ages, the prevalence of PD increased dramatically 
with disability-adjusted life years worldwide (Giannakopoulou et al., 2022), and 
early identification and diagnosis of patients in the disease’s early stages is crucial 
to improve treatment efficiency and prognosis (Oliveira et al., 2023). Aging is 
associated with the decrease in dopamine secretion in neurons in the human brain. 
The pathological hallmark of PD consists of involute neuronal inclusions in the form 
of Lewy bodies and Lewy neurites with loss of neurons along the substantia nigra and 
other regions of the brain (Tolosa et al., 2021). However, the exact etiology of PD is 
still unclear. Although various pathophysiologic findings have aided in diagnosing 
PD, they do not enable clinicians to distinguish PD patients from healthy subjects.

At present, PD is diagnosed by reviewing the patient’s medical history, symptoms, 
signs, and examination outcomes. The symptoms are evaluated through scales, e.g., 
the Movement Disorders Society Sponsored Revision of the Unified Parkinson’s 

deep learning models have been developed for automatic detection of PD based 
on diverse biomarkers such as brain imaging images, electroencephalograms, 
walking postures, speech, handwriting, etc., with promising accuracy. This chapter 
summarizes the state-of-the-art, technical advancements, unmet research gaps, and 
future directions of deep learning models for PD detection. It provides a reference 
for biomedical engineers, data scientists, and health professionals.
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Disease Rating Scale (MDS-UPDRS) and the Hoehn and Yahr (H&Y) Staging 
Scale (Giannakopoulou et al., 2022). Radiological examinations, including magnetic 
resonance imaging (MRI), computed tomography (CT), and positron emission 
tomography (PET) can highlight the pathological changes in brain regions, providing 
reference for the detection of PD. However, there is no standardized imaging protocol 
for the detection of PD. In addition, it is difficult to exclude the confounding effects 
of other age-associated neurological diseases. With the lack of understanding of 
the underlying pathophysiology and the subjective nature of the diagnostic process, 
early and accurate of PD is still an unmet challenge (Alzubaidi et al., 2021; H. W. 
Loh et al., 2021; Xu et al., 2023).

Deep Learning Models and Potential for Detecting 
PD: An Overview of the State of the Art

Computer-aided diagnostic (CAD) systems can assist neurologists to comprehensively 
analyze the pathological features, providing new potentials for the early detection 
of PD (Bhachawat et al., 2023). CAD tools enhanced by artificial intelligence, i.e., 
machine learning or deep learning (DL) algorithms, can enable automated detection 
of PD based analysis of relevant biomarkers extracted from multimodal data, e.g., 
electroencephalogram (EEG) signals, gait posture, articulation, and radiological 
imaging data (H. W. Loh et al., 2021; Segato et al., 2020). DL has flourished in 
recent years and has excelled in various applications including image processing, 
natural language processing, and sequential signal processing. DL algorithms are 
capable of handling large-scale raw data and automatically extracting deep features, 
eliminating the need for feature selection and extraction which is a common limitation 
of machine learning models (Lee et al., 2017; H. W. Loh et al., 2021). DL algorithms 
have unique advantages in the quantitative analysis of multimodal, multidimensional 
big data, which is impossible in traditional clinical diagnosis made by neurologists. 
DL techniques have been used in examining brain imaging data and routine clinical 
examination results of many neurological disease, where the translational application 
in PD may generate new potentials in the early diagnosis (Giannakopoulou et al., 
2022). DL models for the diagnosis of PD have been proposed using various types 
of data, including brain images and biosignals (PET, MRI, and EEG), as well as 
motor symptoms (gait, handwriting, speech) (H. W. Loh et al., 2021). The DL models 
may extract PD-associated features that are often neglected or difficult to detect in 
clinical practice (Giannakopoulou et al., 2022).

Artificial neural network (ANN) is a machine learning model consisting of three 
primary layers, i.e., input layer, hidden layer and output layer (Krogh, 2008). When 
an ANN model is integrated into an architecture with multiple hidden layers, the 
system is referred to as a deep neural network (DNN). DNN can process complex data 



182

Automatic Diagnosis of Parkinson’s Disease

with high precision (Lee et al., 2017). Other classes of models such as Convolutional 
Neural Networks (CNN), Recurrent Neural Network (RNN), and the Long Short-
Term Memory (LSTM) are constructed based on the primary architecture of DNN 
(H. W. Loh et al., 2021). CNN has been commonly used for image recognition and 
classification. RNN and LSTM are recognized for their capacity to detect patterns 
in sequential data, providing new potentials in the initial diagnosis of PD based on 
monitoring data (Chintalapudi et al., 2022).

LITERATURE REVIEW AND BACKGROUND

Literature Search Strategy

We reviewed recent studies in mainstream databases (PubMed and Web of Science) 
using the following keywords: deep learning AND Parkinson’s disease AND 
(diagnosis OR detection). 357 papers are found and 177 papers are included for 
analysis after the screening based on the titles and abstracts. There are relatively 
few comprehensive comparisons of different DL models for early detection of AD. 
Figure 1 shows the word cloud of the included studies.

Figure 1. Word cloud of the included studies
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Convolutional Neural Network (CNN)

CNNs are a type of artificial neural networks commonly applied in image analysis. 
A CNN model consists of multiple layers, each performing a specific task. The CNN 
input layers include convolutional and pooling layers, where the convolutional layer 
contains multiple filters for extracting features from the input images, producing 
multiple feature maps which are developed by training (Figure 2) (H. W. Loh et al., 
2021; Hui Wen Loh et al., 2021). Subsequent convolution and pooling layers optimize 
the features and decrease the spatial dimensionality of feature mapping, which 
minimizes the possibility of overfitting and makes the network less computationally 
complex and more adaptable to the changes of input. The output of the feature 
mapping of the final pooling layer is flattened to a single list vector (Figure 2) 
(Lee et al., 2017; H. W. Loh et al., 2021). The fully connected layer is responsible 
for the features extracted from the single list vector and performs the final image 
classification. CNNs are commonly used for image recognition and classification, 
such as target detection, scene segmentation, and lesion detection on medical images 
(Lee et al., 2017; H. W. Loh et al., 2021).

Recurrent Neural Network (RNN)

RNN creates a sequential representation of longitudinal data, where the inherent 
storage units can store previous network outputs and use them as inputs for future 
computations, which enhances the network’s ability of decision making based on 
time series data (Balderas Silva et al., 2018; Chintalapudi et al., 2022). However, 
due to the lack of a control system, exploding and vanishing gradients are common 
concerns in RNN models. As a result, basic RNN models are often unable to learn 
data with long term dependencies (H. W. Loh et al., 2021; Loh et al., 2020).

Long Short-Term Memory (LSTM)

LSTM can overcome the shortcoming of RNN in vanishing gradients by introducing 
blocks of memories instead of self-connected implicit units (E et al., 2021; H. W. 

Figure 2. Basic architecture of a convolutional neural network (CNN) model
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Loh et al., 2021; Loh et al., 2020). A typical LSTM model includes a memory block 
and a memory unit in the hidden layer (Jiang et al., 2019). The memory block adopts 
a unique gate structure that contains three gate units, i.e., an input gate, a forgetting 
gate, and an output gate, which operate in unison to embody the LSTM function and 
manage the information flow (Jiang et al., 2019; H. W. Loh et al., 2021). To prevent 
the negative impact from irrelevant inputs, multiplicative gate units are employed. The 
input gate determines what information (xt) can be stored in the memory cell based 
on present input vector. The forgetting gate controls which information should be 
kept or forgotten in the memory cell. The output gate layer determines which output 
to be forwarded at each time step and which information to output as a hidden state 
(ht) (Jiang et al., 2019). The solution to the vanishing gradient problem resides in 
the forgetting gate, which employs a function to decide whether to retain or discard 
the information of previous cell state (Ct-1). By eliminating irrelevant data and 
appropriately resetting the information inherited from the current inputs, the large 
discrepancy that occurs between the old and new information can be addressed 
(Jiang et al., 2019; H. W. Loh et al., 2021). LSTM substitutes each conventional 
node in the implicit layer with a memory unit with the ability that learns long-term 
dependencies between successive sets of data, enabling the storage of, and access to, 
the information across extended periods (E et al., 2021). The capabilities of LSTM 
models in pattern recognition and time series prediction enable wide application 
scenarios such as speech and handwriting recognition, machine translation, air 
pollution prediction, and weather forecasting (E et al., 2021).
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RECENT DEEP LEARNING MODELS 
IN CLINICAL APPLICATIONS

Brain Imaging Analysis

Some state-of-the-art DL models with novel architectures have been proposed 
and effectively applied in medical image analysis. MRI, PET, and single-photon 
emission computed tomography (SPECT) are fundamental brain imaging procedures 
commonly utilized in the diagnosis of PD at early stages. For MRI, Chakraborty et 
al. utilized 3D MRI images of the entire brain for to capture the complex patterns 
of all subcortical brain structures. After data preprocessing, a 3D CNN structure 
was developed and cross-validated to detect PD, with an accuracy of 95.3% 
(Chakraborty et al., 2020). Piccardo et al. used 3D CNN to analyze brain PET and 
identify PD patients with nigrostriatal neurodegeneration, achieving 93% accuracy 
(Piccardo et al., 2021). Sun et al. developed a novel DL-based radiomics model fed 
by [18F] fluorodeoxyglucose (FDG) PET images and validated it with an accuracy 
of 95.17% in diagnosing PD (Sun et al., 2022). As to SPECT, Kurmi et al. proposed 
an integrated CNN (Fuzzy Rank Level Fusion) model to detect PD using dopamine 
transporter (DaT) scan images, achieving the highest accuracy of 98.8% (Kurmi et 

Figure 3. Basic structure of a long short-term memory (LSTM) unit. ht−1: the previous 
block output;xt: the input vector ; σ: the sigmoid function;tanh: a tanh function; Ct-1: 
the previous cell state; Ct: the cell state at time t; ht: the hidden output. Inspired by 
Balaji et al. (2021).
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al., 2022). SPECT imaging has shown superior modeling performance to MRI and 
PET imaging for automated PD detection, partly because of its ability to detect DaT 
with the radiotracer Iodofluran-123 (Choi et al., 2017), which reflects the loss of 
dopamine neurons in the brain of PD patients (Garibotto et al., 2013; H. W. Loh et 
al., 2021). CNN models perform well in identifying PD from healthy controls based 
on brain image analysis and deserve further exploration.

EEG and ECG Signal Analysis

EEG signals detect electrophysiological activity in the brain by standardized 
electrodes placed on the scalp (Shah et al., 2020). PD can change the dynamic 
properties of the EEG due to the progressive death of dopamine-releasing neurons 
and alterations in the anatomical structure of the brain (Shah et al., 2020) . Oh et 
al. utilized a CNN model to differentiate the EEG signals of 20 patients with PD 
and 20 normal subjects with a binary classification accuracy of 88.25% (Oh et al., 
2020). Chu et al. used structured power spectral density with spatial distribution 
as an input to CNN to detect personalized anomalies in spatial spectral features 
of EEG in early-stage PD patients with an accuracy of 99.87% (Chu et al., 2021). 
Some studies suggested the combination of CNN and RNN models, among which 
Shah et al. proposed a Convolutional Recurrent Neural Network (CRNN) model that 
extracted sufficient spatial and temporal features from multichannel EEG signals, 
which achieved 99.2% accuracy in detecting PD (Lee et al., 2021). Khare et al. 
introduced a CNN architecture using Smoothed Pseudo-Wignerville distribution 
attributes of EEG signals as input in the best performing model, achieving nearly 
100% accuracy (Khare et al., 2021).

Cardiac autonomic dysfunction is present in the early stages of PD and can be 
reflect by electrocardiogram (ECG) signals. Yoo et al. developed a CNN model 
consisting of 16 layers to detect PD based on ECG data and cross-validated it with 
86.9% accuracy (Yoo et al., 2023). ECG could serve as a potential indicator for 
diagnosing PD while further validation is needed.

Gait Recognition and Pose Estimation

PD is featured by a motor syndrome that includes bradykinesia, resting tremor, 
rigidity, and altered posture and gait; therefore, assessment of body movement can 
also aid in the diagnosis of PD (Tolosa et al., 2021). Currently, PD-related evaluations 
comprise assessments of gait, handwriting, speech, and other motor-related tests. Gait 
disorders may worsen with the progression of PD. Currently, gait analysis focuses 
on gauging the severity of gait disturbances and detecting the episodes of freezing 
(di Biase et al., 2020). El Maachi et al. processed 18 one-dimensional signals from 
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a foot sensor measuring vertical ground reaction force by constructing a classifier 
using a one-dimensional CNN, ultimately achieving 98.7% classification accuracy 
(El Maachi et al., 2020). CNN can automatically learn valuable features from given 
gait data, and LSTM is widely used for gait recognition because they are good at 
dealing with time series with long intervals and multiple classification problems 
(Xia et al., 2020). Xia et al. developed a DL-based bimodal model with left and right 
gaits modeled respectively by CNN and LSTM, both trained and tested on sequential 
data of one-dimensional vertical ground reaction force signals across different gait 
cycles, obtaining a high accuracy of 99.31% in detecting PD (Xia et al., 2020). The 
DL-enhanced gain recognition provides a possible approach for early detection of 
PD in daily monitoring.

With the advancement of computer vision technology, there has been significant 
development in human pose estimation algorithms. In vision-based gait analysis, 
locating the joints of an individual in an image or video has been used to achieve 
human pose estimation (Zhang et al., 2023). Zhang et al. accurately identified PD gait 
in forward walking video with 87.1% accuracy using a weighted adjacency matrix 
with virtual connectivity and a multiscale temporal convolutional network(Zhang 
et al., 2023). Chen and colleagues placed sensors at the wrists, ankles, and hips to 
collect motion data from participants during 10 m walking trials, and constructed CNN 
classification models. They found that the hip sensors had the highest classification 
performance, with an accuracy of 98.01% in detecting PD (Chen et al., 2023).

Vocal Signal Analysis

Patients with PD struggle with movement due to muscle stiffness which impairs 
their ability to speak normally, e.g., decreased volume, slurred speech (Nijhawan et 
al., 2023). Vocalization disorder is amongst the earliest symptoms of PD. A variety 
of DL models have been proposed to detect PD by analyzing speech signals which 
are nonlinear, nonsmooth signals with oscillatory properties, where the performance 
depends on the both feature extraction and classification algorithms (Hireš et al., 
2022; Mian, 2022; Nijhawan et al., 2023). Goyal et al. proposed a hybrid approach 
combining resonance component analysis and time-frequency domain features, where 
a CNN classifier was fed by a hybrid dataset to detect PD achieving 99.4% accuracy 
(Goyal et al., 2021). Nagasubramanian et al. developed a CNN-based multivariate 
speech data analysis approach which achieved an accuracy rate of 99.5% in detecting 
PD (Nagasubramanian & Sankayya, 2021). Ali et al. developed a hybrid intelligent 
system for automatic acoustic analysis of speech signals using linear discriminant 
analysis to reduce dimensionality where the hyperparameters were optimized by a 
genetic algorithm, with nearly 100% classification accuracy (Ali et al., 2019). CNN 
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models have been widely used for speech signal analysis while clinical trials are 
needed for full validation.

Handwriting Dynamics Assessment

Dysgraphia is a primary symptom of PD. As the disease progresses, the patient’s 
ability to write deteriorates. Micrographia (abnormally small letter sizes) is a common 
and easily detectable writing abnormality among PD patients (Rios-Urrego et al., 
2019). To differentiate handwritten images of PD patients from healthy controls, 
the majority of proposed deep learning methods utilize CNN models, and datasets 
like HandPD, NewHandPD, and Parkinson’s Drawing are commonly employed 
(Kamran et al., 2021; Pereira et al., 2016). Pereira et al. presented the “NewHandPD” 
dataset, which captures signals recorded from patients with PD and healthy people 
through a smart pen, and developed a CNN model to learn features of handwriting 
dynamics with an accuracy about 95% in detecting PD (Pereira et al., 2018). Kamran 
et al. combined PaHaW dataset, HandPD, NewHandPD, and Parkinson’s Drawing 
datasets and used a deep migration learning-based algorithm to overcome the high 
variability of handwritten materials and achieved high accuracy of 99.22% in PD 
detection (Kamran et al., 2021). Speech and handwritten recordings are easier and 
less costly compared to brain imaging, and have a greater potential in population 
screening of PD patients.

Multimodal Data Analysis

Given the heterogeneous and complex nature of PD progression, along with the 
challenges in continuously tracking all relevant metrics, multimodal data analysis 
is essential for the detection of PD and severity evaluation in real-world settings 
(Skaramagkas et al., 2023). Multimodal data are generated from different technical 
approaches, including imaging modalities such as SPECT, PET, MRI, etc., and/
or clinical tests such as cognitive and motor tests (Zhang, 2022). Deep learning 
has unique advantages in multimodal data analysis, enabling the integration of 
heterogeneous information for detecting PD. Vásquez-Correa et al. proposed a 
CNN model to identify PD patients based on their difficulties in commencing or 
terminating movements from speech, handwriting, and gait information, where the 
integration of three biosignals derived a promising accuracy of 97.3% (Vásquez-
Correa et al., 2019). Pahuja and Prasad developed feature-level and modal-level 
CNN frameworks to classify diagnosed PD patients and healthy controls using a 
hybrid dataset of neuroimaging (T1-weighted MRI scans and SPECT) and biological 
(cerebrospinal fluid) features, with maximum accuracy of 93.33% and 92.38% in 
feature-level and modal-level frameworks (Pahuja & Prasad, 2022).
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DISCUSSION

Summarization of the State of the Art

The existing DL model have shown great potential for early diagnosis of PD. The 
performance metrics are above 90% in many studies (Table 1). MRI, SPECT and 
DaTSCAN imaging datasets, obtained mainly from the Parkinson Progression 
Markers Initiative (PPMI) are widely used to train the classifiers (Chakraborty et al., 
2020; Kurmi et al., 2022; Ozsahin et al., 2020). CNN is the most commonly used DL 
model, which has achieve high performance in image classification (Kurmi et al., 
2022) and the analysis of one-dimensional signals such as EEG and speech (Goyal 
et al., 2021; Khare et al., 2021) . Gait analysis performs better when using hybrid 
model CNN-LSTM model (Xia et al., 2020). Outstanding results have been achieved 
based on CNN and Deep Migration Learning in a study focusing on classification 
of handwritten images to recognize PD at an early stage (Kamran et al., 2021). In 
addition, Ozsahin et al. and Ali et al. used back propagation neural network and 
Genetically Optimized Neural Network models which achieved the highest prediction 
accuracy in SPECT and speech analysis respectively (Ali et al., 2019; Ozsahin et 
al., 2020). Since the majority of existing studies are based on unimodal data using 
different datasets, it is difficult to conclude on the best DL model (H. W. Loh et 
al., 2021). These studies demonstrated the potential of specific DL models for PD 
diagnosis provided references for future exploration (Garcia Santa Cruz et al., 2023).
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Table 1. Summary of deep learning models to detect Parkinson’s disease

Study Sample size Input 
Feature Methods Performance(%)

(Chakraborty et 
al., 2020)

203 PD and 203 HC 
      (PPMI)

MRI Scans 
Images CNN

Accuracy=0.953 
Specificity=0.943 
AUC=0.98

(Kurmi et al., 
2022)

432 PD and 213 HC 
      (PPMI)

DaT scan 
Images CNN

Accuracy=0.985 
Specificity=0.977 
Sensitivity=0.988

(Ozsahin et al., 
2020)

1334 PD and 212 HC 
       (PPMI)

DaT scan 
Images

Back 
Propagation 
Neural 
Network

Accuracy=0.996 
Specificity=0.992 
Sensitivity=0.997

(Piccardo et al., 
2021)

43 PD and 55 HC 
      (private)

[18F]DOPA 
PET/CT 
scan Images

CNN

Accuracy=0.93 
Specificity=0.89 
Sensitivity=1 
ROC(AUC)=0.882

(Sun et al., 2022) 125 PD and 281 HC 
(combination of 2 database)

[18F]FDG 
PET 
scan Images

Deep 
Learning-
based 
Radiomics

Accuracy=0.952 
Specificity=0.889 
Sensitivity=0.978 
ROC(AUC)=0.90

(Lee et al., 2021) 20 PD and 22 HC EEG CNN and 
RNN

Accuracy=0.992 
ROC(AUC)=0.99

(Khare et al., 
2021)

15 PD and 16 HC 
       (public) EEG Parkinson’s 

disease CNN Accuracy=1

(Xia et al., 2020) 93 PD and 73 HC 
       (public) Gait CNN and 

LSTM

Accuracy=0.993 
Specificity=0.992 
Sensitivity=0.994

(Goyal et al., 
2021) 16 PD, 21 HC and 20HC Speech CNN Accuracy=0.994

(Ali et al., 2019) 20 PD and 20 HC Speech

Genetically 
Optimized 
Neural 
Network

Accuracy=1 
Sensitivity=1

(Pereira et al., 
2018) 74 PD and 18 HC Handwriting CNN Accuracy=0.935

(Yoo et al., 2023) 751 PD and 751 HC ECG CNN Accuracy=0.869 
ROC=0.924

(Vásquez-Correa 
et al., 2019) 44 PD and 40 HC Multimodal 

data CNN Accuracy=0.976

N.B: PD, Parkinson’s disease; HC, healthy control; PPMI, Parkinson Progression Markers Initiative; ROC, 
receiver operating characteristic curve; AUC, area under curve; CNN, Convolutional Neural Networks; 
RNN, Recurrent Neural Network; LSTM, Long Short-Term Memory. EEG, electroencephalogram; ECG, 
electrocardiogram.
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Advantages of Deep Learning in the Diagnosis of PD

Currently, the diagnosis of PD is determined primarily by neurology based on a clinical 
feature set that is highly subjective and prone to perceived error, with suboptimal 
clinical diagnostic accuracy reported for movement disorder specialists (Parajuli 
et al., 2023). The DL models enable the extraction of relevant deep information 
from large multimodal datasets of PD, providing higher accuracy and sensitivity 
in early diagnosis of PD. The application of DL models may contribute to clinical 
decision-making towards personalized treatment and efficient management to 
reduce the burden on healthcare professionals. The results may reveal underlying 
pathophysiological mechanisms.

Limitations, Challenges, and Future Directions

A good DL model for clinical practice should provide end-users with reliable reference 
on disease diagnosis with adaptability on different cohorts and application scenarios. 
Despite the high performance existing DL models, there are some limitations and 
challenges to be addressed before the DL models can be translated into real-world 
clinical practice (Figure 4).

Firstly, most of the current DL models are based on small, unimodal datasets 
rather than using large-scale multimodal datasets. This is attributed to the lack 
of high-quality datasets and the research gaps in reliable data fusion algorithms. 
As a result, overfitting is common problem for DL-assisted CAD tools where 
the performance could be overestimated (Pahuja & Prasad, 2022). On the other 
hand, existing DL models lack large-scale validation on real-world clinical data 
from different cohorts. The lack of large-scale validation also compromises the 
interpretability and generalization ability of the models. In clinical practice, it is 
essential for neuroscientists to understand the underlying mechanisms and relevant 
factors behind the results provided by DL models. Considering the diversity in 
disease progression between patients, the DL models based on unimodal data are 
unlikely to capture the underlying patterns of disease for reliable diagnose of PD. 
All these limitations make it difficult to develop reliable DL-assisted CADs and 
integrate them in current clinical practice (H. W. Loh et al., 2021; Paul et al., 2022; 
Varghese, 2020). Technically, towards fully-validated DL models, it its essential to 
process and analyze large multimodal datasets, which proposed challenges in data 
preprocessing, data fusion, and computational efficiency of the DL algorithms. 
Another limitations lies in the research ethics in these early-stage DL models based 
on open-source datasets, where patient privacy and security are often overlooked. The 
data security and patients’ privacy are important concerns in real-world applications.
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Data security and privacy are important concerns in real-world applications. 
On the one hand, personal information is at the risk of leakage during the sharing 
of PD-associated datasets. On the other hand, the DL algorithms themselves have 
privacy issues, including data leakage in the training phase, as well as model 
inversion attacks, black-box/white-box attacks, membership inference attacks, and 
model stealing attacks during application (Al-Rubaie & Chang, 2019; Rouani et 
al., 2019). Multi-party homomorphic encryption is a combination of homomorphic 
encryption and secure multi-party computation, which can protect privacy during data 
sharing. In addition, relaxed differential privacy can be considered in the training of 
DL models (Scheibner et al., 2021). Multiple technologies are combined to achieve 
privacy protection throughout the DL-based data analysis. Finally, the development 
of standards and regulations provides essential frameworks and guidance for the 
protection of privacy, participants’ awareness, and data transparency.

In the future, improvements can be made in different dimensions (Figure 4). 
First, breaking the limitation of sample size, establishing benchmark databases, 
and introducing datasets with multimodal, multidimensional features can improve 
the generalization ability of DL algorithms and prevent overfitting. Second, the 
establishment of advanced data preprocessing and deep learning frameworks are 
essential for the processing of large-scale multimodal datasets. Third, towards a 
reliable, well-validated, and interpretable CAD system for clinical decision-making 
in real-world settings, it is imperative to consider the multimodal signals and data 
as the input, the ability to detect new biomarkers, and the data security solutions 
for privacy protection. Finally, there is high need for reshaping the healthcare 
ecosystem at policy level. The improvement of technical standards, the update of 
current clinical guidelines, and establishment of relevant regulations on research 
ethics and standardization will commonly improve the development of DL-enhanced 
CAD for early diagnosis of PD.
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CONCLUSION

The use of DL models has significant potential for early, personalized diagnosis of 
PD. Currently DL models have achieved high performance but limited by dataset, 
overfitting, lack of validation, low interpretability, low generalization ability, with 
concerns on data security. Future improvements in dataset, algorithm, system, and 
policy could overcome the current gaps and achieve DL-enhanced CAD applicable 
for early diagnosis of PD in real-world clinical settings.
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KEY TERMS AND DEFINITIONS

CNN: A deep learning approach that is widely used for solving complex problems, 
and overcomes the limitations of traditional machine learning approaches.

Disability-Adjusted Life Years: A measure for total health combining Years 
Lost due to Disability and the Years of Life Lost due to premature mortality.

Lewy Bodies: The defining pathological characteristic of Parkinson’s disease 
and dementia with Lewy bodies, constitute the second most common nerve cell 
pathology, after the neurofibrillary lesions of Alzheimer’s disease.

MDS-UPDRS: The most widely used clinical Parkinson’s Disease Rating Scale, 
which consists of four sections, including Non-motor Experience of Daily Life; II: 
Motor Experience of Daily Life; III: Motor Examination; IV: Motor Complications;

Robustness: The capacity of an analytical procedure to produce unbiased results 
when small changes in the experimental conditions are made voluntarily.

Substantia Nigra: Is a midbrain dopaminergic nucleus which has a critical role 
in modulating motor movement and reward functions as part of the basal ganglia 
circuitry.
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