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Abstract 
 

 

The distinction of Parkinsonian Syndromes (PS) is challenging due to similarities of symptoms 

and signs at early stages of disease. Thus, the need of accurate methods for differential 

diagnosis at those early stages has emerged. To improve the evaluation of medical images, 

artificial intelligence turns out to be a useful tool. Parkinson’s Disease, the commonest PS, is 

characterized by the degeneration of dopamine neurons in the substantia nigra which is 

detected by the dopamine transporter scan (DaTscanTM), a single photon-emission tomography 

(SPECT) exam that uses of a radiotracer that binds dopamine receptors. In fact, by using such 

exam it was possible to identify a sub-group of PD patients known as “Scans without evidence 

of dopaminergic deficit” (SWEDD) that present a normal exam, unlike PD patients. In this 

study, an approach based on Convolutional Neural Networks (CNNs) was proposed for 

classifying PD patients, SWEDD patients and healthy subjects using SPECT and Magnetic 

Resonance Imaging (MRI) images. Then, these images were divided into subsets of slices in 

the axial view that contains particular regions of interest since 2D images are the norm in 

clinical practice. The classifier evaluation was performed with Cohen’s Kappa and Receiver 

Operating Characteristic (ROC) curve. The results obtained allow to conclude that the CNN 

using imaging information of the Basal Ganglia and the mesencephalon was able to distinguish 

PD patients from healthy subjects since achieved 97.4% accuracy using MRI and 92.4% 

accuracy using SPECT, and PD from SWEDD with 97.3% accuracy using MRI and 93.3% 

accuracy using SPECT. Nonetheless, using the same approach, it was not possible to 

discriminate SWEDD patients from healthy subjects (60% accuracy) using DaTscanTM and 

MRI. These results allow to conclude that this approach may be a useful tool to aid in PD 

diagnosis in the future.  

 

Keywords: Parkinsonian Syndromes Classification - SWEDD - DatScanTM - MRI – 

Convolutional Neural Networks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



x 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xi 

 

 
 

 

Resumo 
 
 

 
A distinção de Síndromes Parkinsonianos (SP) tornou-se um desafio dado que os sintomas e 

os sinais característicos destas doenças são muito semelhantes entre si nas fases iniciais. Assim 

surge a necessidade da criação de métodos precisos para um diagnóstico que as diferencie. 

Uma possível solução é o recurso à inteligência artificial que se tem vindo a tornar numa 

ferramenta útil para a melhoria da interpretação das imagens médicas. A doença de Parkinson 

(DP), a SP mais comum, é caracterizada pela neurodegeneração dos neurónios 

dopaminérgicos. Esta neurodegeneração é detetada pelo DaTscanTM, um exame de tomografia 

computorizada por emissão de fotão único (do inglês Single-Photon Emission Computed 

Tomography, SPECT). A utilização deste exame permitiu a identificação de um subgrupo de 

pacientes diagnosticado com DP, denominados de “exames sem evidência de défice 

dopaminérgico” (do inglês “Scans without evidence of dopaminergic deficit”, SWEDD). Os 

SWEDD são pacientes que possuem um DatScan normal ao contrário dos pacientes com PD. 

Nesta dissertação, é proposta uma abordagem com recurso às redes neurais convolucionais (do 

inglês: Convolutional Neural Networks, CNNs) usando imagens SPECT e Imagens por 

Ressonância Magnética (IRM) que foram divididas em cortes axiais contendo regiões de 

interesse específicas, dado que na prática clínica as imagens convencionais são imagens a 2D, 

para classificação de doentes com PD, SWEDD e pessoas saudáveis. Para a avaliação do 

classificador calculou-se o Kappa de Coehn e a Característica de Operação do Receptor. Os 

resultados obtidos sugerem que CNN foi capaz de diferenciar DP do grupo de controlo 

(exatidão: 97,4% IRM e 92,4% SPECT) e DP de SWEDD (exatidão: 97.4% IRM e 93.3% 

SPECT) com recurso a informação de imagem dos gânglios da base e mesencéfalo, mas não 

foi capaz de discernir controlos de SWEDD. Deste modo, conclui-se que esta abordagem 

poderá ser útil para auxiliar no diagnóstico de DP no futuro.  

 

Palavras-Chave: Classificação de síndromes parkinsonianos – SWEDD - DaTscanTM – IRM 

– Redes neuronais convolucionais 
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Chapter 1 Introduction 
 

1.1 Motivation  

Parkinsonian Syndromes (PS) are progressive neurodegenerative disorders that mainly affect 

elderly people [1], [2]. PS, also known as Parkinsonism, are chronic movement disorders that 

affect the central nervous system and are characterized by motor symptoms such as 

slow/impairment movement with rigidity and/or tremor [1], [3]. Inside of the group of PS, 

Parkinson’s Disease (PD) is the second neurodegenerative disorder more frequent in the world 

and the commonest PS followed by the Atypical Parkinsonism (AP) [1]. AP includes Multiple 

System Atrophy (MSA), Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration 

(CBD) [1], [3]. About of 75% of PS cases are PD, 5% are PSP and 5% are CBD [4]. 

According to epidemiologic and demographic studies, as world population is increasing as well 

as aging, it is estimated that PS, specially PD, will drastically increase in the following decades 

[1]. According to World Health Organization, PD has an incidence rate of 9.7 to 13.8 per 100,000 

population per year [5] and approximately a prevalence of 1 million people in United States and 

in Western Europe [1]. In Portugal, it is estimated that about 18,000 inhabitants are also suffering 

from this disease [6].  

PS are not only characterized by motor symptoms. Patients may also suffer from mood disorders, 

sleep disturbances, cognitive impairment, urinary incontinence, sexual dysfunction and 

orthostatic hypotension [1], [5]. However, it is important to notice that these features and the 

motor symptoms tend only to be manifested at advanced stages of the diseases [1], [7]. At early 

stages of these diseases, the symptoms are not yet manifested or are very subtle [7]. Besides, when 

features are manifested even at early-onset, they tend to be very similar between PS and other 

movement disorders such as Essential Tremor (ET) [8]. Thus, it still is very difficult to 

differentiate them and have a precise diagnosis [9].  

Currently, there are approaches and scales to diagnose PS based on their clinical features, namely 

the United Kingdom Parkinson’s Disease Society Brain Bank (UKPDSBB) clinical diagnostic 

criteria  [10] and the Hoehn and Yahr Scale [11]. This criteria and scale include motor symptoms 

and a good response to Levodopa, a PD medicine. PD patients have an excellent response to that 

medication unlike AP who present poor response [1]. This medication acts in the affected and 

pathological regions of PS [1].  

Pathologically, PS are characterized by a deficit of dopamine that originates motor disorders. The 

dopamine is produced in the substantia nigra, a structure in the mesencephalon [1] In PS, this 

structure is degenerated faster than normal when compared with elderly people [1].  
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Despite the fact that PS diagnosis remain clinical, medical imaging have been useful for the study 

of neurodegenerative diseases [12–14]. For instance, Magnetic Resonance Imaging (MRI) has 

been used to detect structural changes and distinguish PS and Single-Photon Emission Computed 

Tomography (SPECT) with Dopamine transporter (DaT) imaging has been used to detect the 

referred dopamine degeneration and distinguish PS from other motor diseases. Both techniques 

turn out to be useful in providing neuroimaging biomarkers [1], [12]. In fact, these SPECT images 

led to the discovered of a sub group of patients early diagnosed with PD that presented Scans 

Without Evidence for Dopaminergic Deficit (SWEDD) [12], [13], [15], [16]. These subjects are 

now referred to SWEDD patients. Some studies refer that 10-20% of PD patients are SWEDD 

patients and point out that this may related with misdiagnosis and instead of PD these patients 

may suffer from another motor disorder in which there is no substantia nigra degeneration like 

dystonic tremor [17], [18].  

Usually, DaT SPECT images are interpreted visually by experts but the European Association of 

Nuclear Medicine Neuroimaging Committee recommends that a quantitative analysis should also 

be performed to improve the interpretation [19], which includes the use of Artificial Intelligence 

(AI) techniques [16]. 

AI has recently become an useful tool in the medical field, specially applied in the classification 

and analysis of neuroimaging data [16], [20]–[22] which includes Convolution Neural Networks 

(CNN) which are an useful tool for pattern recognition and visual-classification problems and 

have been used in the study of neurodegenerative disorders [22]–[25]. 

Therefore, distinguishing early stages PS and other movement disorders with similar symptoms 

has become a need and a challenge [26].  An early diagnosis not only reduces the economic health 

care systems costs but also aid in the treatment adjustment since the therapeutics is different for 

each PS and for the SWEDD patients [5]. Moreover, this  will also increase their quality of life 

of patients [5].  

In this study, it is proposed an approach to aid and improve early diagnosis of Parkinson’s Disease 

and SWEED patients based on a CNN framework using 2D MRI and 2D DaT SPECT images 

since the conventional medical images, in clinical practice, are 2D images [27] which are faster 

to acquire than 3D images. 

 

1.2 Goals of the study 

The main goal of this dissertation is to classify MRI and SPECT images of PD, SWEDD and 

healthy subjects using CNN.   
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To achieve this, the following secondary objectives will have to be reached: 

1. Extract MRI and DaT (DaTscanTM in this case) SPECT images of the Parkinson’s 

Progression Markers Initiative (PPMI) database and analyse demographic information 

about the patients, such as age and sex;   

2. Perform MRI and SPECT images pre-processing; 

3. Divide MRI and SPECT images into slices of the axial anatomical view; 

4. Train, validate and test the CNN model.  

With this approach it is intended to aid and to improve the early diagnosis of PD and to understand 

SWEED and PD imaging differences.  

1.3 Dissertation Structure  

This dissertation is comprised by this present chapter, the Theoretical Background chapter, the 

Methodology chapter, the Results chapter, the Discussion chapter and the Conclusions chapter.  

The present chapter, Introduction, briefly introduce some important concepts used in this 

dissertation, contextualized the study and enumerate the objectives. In Chapter 2, Theoretical 

Background, it is explained theorical concepts about PS, MRI and SPECT images and CNN, and 

it is described the state of the art of MRI and SPECT images in the study of PS and CNN 

applications in the medical field as well as other algorithms to classify PS. In Chapter 3, the 

Methodology, the criteria used for the formation of the data set is described as also MRI and 

SPECT images pre-processing steps, CNN architecture and how these were trained, validated and 

tested. In Chapter 4, the results obtained are described in the form of tables and representative 

plots. In Chapter 5, Discussion, the discussion of the results obtained is presented with a brief 

comparison with other studies. In the last Chapter, the conclusion and future work are presented.  
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Chapter 2 Theoretical Background 
 

In this Chapter, the theoretical concepts related with PS, MRI and SPECT DaTscanTM images 

acquisition and CNN architectures is described as the state of the art in the PS field including how 

MRI and SPECT images are used for the study of these diseases and the studies that used CNN 

as tool for PS classification. 

2.1 Parkinsonian Syndromes 

2.1.1 The History of Parkinsonian Syndromes 

PS has been described since early ages. The first texts found go back to ancient China and India, 

between 1000 and 500 B.C.[28], [29]. These documents describe symptoms very similar to those 

in parkinsonism [28], [29]. 

In 1817, PD was set as a neurological syndrome by the physician James Parkinson who observed 

and studied six cases of patients with PD, initially know as Shaking Palsy [30], [31] Parkinson 

described Shaking Palsy patients as having involuntary tremor, decrease of muscular strength and 

tendency to lean forward [30], [31].   In the middle-to-late of 19th century, Jean-Martin Charcot 

and his students could describe clinically this disease and discovered that Shaking Palsy patients 

do not necessarily present tremor as symptom and that these patients were not so weak as 

previously thought, which made them change the name of the disease for Parkinson' Disease [30]. 

In 1895, Richer and Miege gave a very important contribution to the understanding of PD 

progression through the publication of drawings and statues photos that illustrated the disability 

stages of this disease [30], [32], as illustrated by Figure 2.1. 

 

 

 

 

 

 

 

 

Figure 2.1 Drawings of the normal and pathologic erect position. a) Normal men have an erect position. 

Head in the vertical axis, as well as his back b) Parkinsonian patients tend to tilt their heads forward to the 

foot vertical axis. Adapted from Goetz [30]

a) b) 
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A few years later, Brissaud advanced with the possibility that substantia nigra damage could be 

the anatomical cause of PD and Greenfield and Bosanquet reported a full pathological analysis of 

PD as well as Parkinsonism based on brain injuries [30], [33]. Charcot studies also reported that 

PD patients can also present bradykinesia, that is, slow movements, as the responsible cause for 

difficulty in performing ordinary daily activities instead of the tremor or rigidity [30], [32], [34].  

Moreover, this author discovered that some PD patients differed in their symptoms [32], [34]. 

Initially, Charcot aimed to distinguish PD from other neurological diseases such as Multiple 

Sclerosis (MS) [34]. Charcot found that PD patients differ from MS and other diseases by the fact 

that they present rest tremor, rigidity, very soft speech, bradykinesia and a hunched posture [30], 

[32], [34]. He and his students were the first to report the atypical features present by some 

patients. These patients were characterized by an extended posture, a different facial expression 

and no tremor  as shown in Figure 2.2, which are different features from those manifested by PD 

patients [34].  Because of that, the term Parkinson-plus-syndromes or PS has coined [29].  

 

 

 

 

Figure 2.2 Charcot's drawings at his lesson (June 1888) illustrating Parkinsonian Syndromes.  a) Men at left 

has PD and it is characterized by a curved posture. The men on the right has Parkinsonism with an extended 

posture. b) These four drawings illustrate an atypical Parkinson’s Disease case of a Charcot’s patient. This 

patient shows a frightened expression, forehead muscles contracted despite the placid and blank stare of 

PD patients. Adapted from: [34] 

Nowadays, PS include PD, PD with dementia with Lewy Bodies, AP, Secondary Parkinsonism 

and other neurodegenerative diseases such as Huntington’s disease and Alzheimer’s disease with 

parkinsonism [1], [3]. As referred previously AP includes MSA, PSP and CBD and, in its turn, 

Secondary Parkinsonism covers drug-induced, infections and toxins [1]. 

2.1.2 Clinical and pathophysiology of the Parkinsonian Syndromes  

The following lines describes the clinical status and pathology of the PD, MSA, PSP and CBD.  

Patients with PS usually manifests identical motor symptoms such as bradykinesia, tremor and 

rigidity [1], [3]. These symptoms are associated with damage in structures responsible for motor 

control in the brain, namely, basal ganglia., and these injuries depend on the type of PS that the 

patient has. This damage in the basal ganglia is associated to dopaminergic neurons degeneration 

and consequently the dopamine deficit in specific brain areas [1], [3], [35]. 

Since PS are neurodegenerative diseases it is important to briefly explain some concepts related 

a) b) 
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with brain structures before the explanation of PS pathophysiology itself. The brain is comprised 

by cells called neurons which are small structures that communicate to each other by transmitting 

stimulus and sensations from the environment and command the body to respond to this stimulus, 

[36]–[38], as shown on Figure 2.3 a). These cells communicate by sending the stimulus through 

a contact zone between neurons called synapse [37], [38]. The synapses are divided into two 

types, electric synapses and chemical synapses. The last ones are the commonest in the brain. In 

the electric synapses, the neurons terminals are physically connected by protein channels that 

enable the passage of the electric impulse. In the chemical synapse the impulse electric pass from 

one neuron to another through chemical substances called neurotransmitters. The axon terminal 

from the transmitter neuron has a terminal button that contains vesicles with neurotransmitters 

inside. These vesicles merge with the pre-synaptic membrane and the neurotransmitters are 

released in the synaptic gap. Then, these neurotransmitters bind to specific receptors located in 

the postsynaptic membrane in dendrites’ terminations of the receptor neuron. Thus, the electric 

impulse is propagated through the neuron [37], [38], as illustrated on Figure_2.3 b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Neuron structure and chemical synaptic. a) Normal structure of a neuron b) Chemical synaptic. 

Neurotransmitters are messengers that send the information from one neuron to other. Adapted from [38] 

Regarding PD, this disease is strictly related with neurons degeneration and deficit of dopamine, 

an important neurotransmitter related with motor control among other functions. [1]   

The pathological hallmarks of PD are degeneration of the dopaminergic neurons located at the 

substantia nigra, as shown in Figure 2.4, reduction of the striatal dopamine, and abnormal 

a) 

b) 
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accumulation of protein aggregates, known as Lewy bodies, in injured cells of the substantia 

nigra, [1], [39]. These pathological features are responsible for the motor symptoms and signs 

that PD patients present. For instance, the neurodegeneration that occurs in substantia nigra 

affects all the basal ganglia cycle which, together with thalamus, are responsible for motor control 

functions. Once the cycle is affected, the information that reaches the motor cortex is not 

regulated, which leads to changes in movement [1], [40]. 

 

 

 

Figure 2.4  Substantia nigra a) Substantia nigra of a healthy subject, the presence of the neuromelanin 

dopaminergic neurons are visible in the image due to its characteristic black color. b) Substantia nigra from 

a PD patient, wherein the absence of dopaminergic neurons is visible. Adapted from: [12] 

In healthy people, the basal ganglia system controls the motor system and avoid involuntary 

movements. In addition to motor control, basal ganglia are also responsible for cognitive functions 

and behaviour control [1]. The process of motor control is possible due to connections between 

basal ganglia structures along with the thalamus and the cortex. This junction responsible for 

motor control is called the Basal Ganglia model or Cortico-Basal Ganglia-Thalamo-Cortical 

(CBGTC) loop. The basal ganglia are comprised by two primary inputs, striatum (caudate nucleus 

and putamen) and subthalamic nucleus (STN), by two primary outputs, internal segment globulus 

pallidus (GPi) and substantia nigra pars reticulata (SNr) and by two intrinsic structures, external 

segment globulus pallidus (GPe) and substantia nigra pars compacta (SNc), as shown in Figure 

2.5. [1], [41], [42]  

Figure 2.5 Basal ganglia structures. a) The color structures indicate the anatomical position in the brain of 

the basal ganglia, putamen and caudate nucleus b) Names of the structures of the basal ganglia with striatum 

(putamen and caudate nucleus) and thalamus. Adapted from: [41] 

a) b) 

a) 

 

b) 
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The basal ganglia model is organized into two pathways: the direct pathway and indirect pathway 

that act together to control the body movements. The direct pathway occurs when the motor cortex 

is stimulated, for instance, to initiate or perform a movement. In its turn, the indirect pathway 

stops a movement or prevent the body from doing involuntary movements [1], [42]. 

In the direct pathway, the motor cortex sends an excitatory stimulus to the striatum and the STN. 

In its turn, the striatum sends an inhibitory stimulus to GPi and SNr, whereas STN sends an 

excitatory stimulus to GPi, SNc, and SNr. SNc modulates neuronal firing and equilibrates the 

basal ganglia cycle by transmitting and increasing dopamine neurotransmitters to the striatum 

receptors called D1, which will raise the activity in the striatum cells. Thus, the striatum increases 

the inhibitory stimulus sent to the GPi. In its turn, GPi reduce its activity and does not send any 

signal to the Ventral Lateral nucleus (VLN) of thalamus which allows it to send excitatory 

stimulus to the motor cortex and spinal cord to allow motor functions [40], [42].  

In the indirect pathway, the striatum and STN also receive the excitatory stimulus from the cortex. 

Then, the striatum sends an inhibitory stimulus to the GPe and the STN to the SNc. The SNc will 

increase the dopamine in the striatum in the D2 receptors which lead to a decrease of an inhibitory 

impulse to the GPi. Consequently, GPi and SNr can send inhibitory signals to VLN. Then, the 

activity of the motor cortex is decreased, and no movement is executed since VLN cells get the 

stimulus of inhibition. All this process is illustrated in Figure 2.6 [40], [42]. 

Figure 2.6  Comparison of the CBGTC from a heathy person and PD patient. The red arrows represent the 

excitatory stimulus, the blue arrows represent the inhibitory stimulus and the green illustrate dopaminergic 

neurons. These neurons originate an excitatory stimulus if they are bounded to the D1 receptor or inhibitory 

if they are bounded to the D2 receptor. In a) there is represented the normal CBGTC. b) illustrates the 

CBGTC of a subject with PD. In this case, the dashed green lines represent the dopamine deficit which 

causes an increase of the inhibitory stimulus in the GPe (blue arrow in bold) which lead to motor symptoms. 

Adapted from:[1] 

In PD, the basal ganglia suffer dopaminergic neurons degeneration in the SNc which become 

pathologically degenerated and leads to the dopamine deficit in the striatum. Consequently, there 

is an increase of neurons fire in SNr and GPi. These two structures give rises to excessive 

inhibition of the thalamus and consequently an extreme reduction of the activity in the motor 

a) b) 
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cortex that originates the parkinsonian features [1], [40]. These motor symptoms arise when 

approximately 50% of the substantia nigra has already degenerated [43]. 

Besides the degeneration of the dopaminergic neurons and the reduction of dopamine in the 

system, post-mortem studies show an evidence of an abnormal aggregated of specific proteins in 

the injured neurons, known as Lewy Bodies [1]. These structures have a spherical form and are 

filamentous inclusions formed by presynaptic protein alpha-synuclein that combines with other 

components present in the neurons [1], [44], [45]. The reason why this agglomerated forms and 

why the protein α-synuclein pull out of its binding sites in the presynaptic axon terminal still 

unknown [44], [45]. 

To summarize, clinical PD is based on several features that include motor and non-motor 

symptoms [1]. Non-motor symptoms such as depression and dementia tend to manifest in the last 

stages of the disease,  as shown in Table 2.1[1]. 

Table 2.1 Clinical features of Parkinson’s disease. This table introduces the clinical features that PD patients 

manifest through the course of the disease. Anosmia is usually the onset of PD. Motor signals tend to 

manifest at advanced stages since they are related with degeneration of the SNc.  Adapted from [1] 

 

Concerning PD treatment, since the 1960s that this therapy includes a medicine called levodopa 

[1], [46]. Since artificial dopamine does not cross the blood-brain barrier, a barrier that protects 

the brain from strange particles and molecules, scientists create levodopa (commonly known as 

L-DOPA) which is a dopamine precursor. Levodopa is capable of penetrating in the brain and 

then is converted into dopamine [1], [46]. However, Levodopa has some side effects, namely, 

nausea, vomiting, and orthostatic hypotension. Moreover, at advanced stages of this illness and 

with a long-term of taking this medicine, PD patients may manifest excessive involuntary muscle 

Clinical features of PD 

Principal Motor Features Other Motor Features Non-Motor Features 

Bradykinesia (2) 

Rest tremor (2) 

Rigidity 

Gait impairment 

Reduced eye blinking 

Soft voice 

Dysphagia 

Masked facies (hypomimia) 

Anosmia (1) 

Sensory disturbances (e.g., 

pain) 

Mood disorders (e.g., 

depression) (3) 

Sleep disturbances (1) 

Autonomic disturbances 

Cognitive impairment (3) 

(1) E.g. of symptoms/signals that manifests are early stages of PD  

(2) E.g. of symptoms/signals that manifests at middle stages of PD 

(3) E.g. of Symptoms/signals that manifests at advanced stages of PD 
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contractions, which may originate abnormal postures and diphasic dyskinesias [1], [47], [48]. 

These symptoms appear due to chronic administration of the Levadopa, which causes fluctuations 

as a decrease of its effect in the organism [1], [49]. 

Concerning AP and Secondary Parkinsonism, these syndromes are also neurodegenerative 

diseases but differ from PD since the damage of the neurons can also occur in the striatum and 

globus pallidus [1]. Besides, these types of parkinsonism do not present Lewy bodies in the 

neurons of the SNc. [1]. In the beginning, AP and Secondary Parkinsonism patients present a 

good response to levodopa, but along the disease progression of the disease, the subjects starts to 

present a poor response [1]. 

More specifically, MSA can be parkinsonism (MSA-p) or cerebellar (MSA-c) predominant 

according to their main symptoms [1]. Clinically, MSA-patients can also present autonomic 

features because the autonomic nervous system is also affected [1], [50], [51]. The autonomic 

nervous system innervates all the organs of the body and is responsible for maintaining the 

homeostasis of the body by controlling blood pressure and heart rate [52], [53]. One example of 

autonomic dysfunctions that these patients manifest is orthostatic hypotension which can cause 

symptoms such as erectile dysfunction in males or urinary problems [50]. According to Harrison’s 

Principles of Internal Medicine, “Pathologically, MSA is characterized by degeneration of the 

SNc, striatum, cerebellum, and inferior olivary nuclei coupled with characteristic glial 

cytoplasmic inclusions (GCIs) that stain for α-synuclein” [1]. 

Regarding PSP, also known as Steele–Richardson–Olszewski syndrome, is pathologically 

characterized by loss of neurons in the striatum, SNc, subthalamic nucleus, midline thalamic 

nuclei and abnormal inclusions in the tau protein [1], [54]. PSP symptoms are restricted eye 

movements, gait impairment that leads to falls, and cognitive dysfunctions. These symptoms 

occur at different stages since it affects different nuclei [54]–[56]. Unfortunately, PSP develops 

at a very fast pace. The first symptoms usually manifest at the mid-60s with a faster progression 

that leads to death in 7 years on average [57]. Until now, the advanced age it the only risk factor 

of this disease [57]. 

CBD is a rare condition that affects the cerebral cortex and the basal ganglia by loss and atrophy 

of the neurons [1], [58]. The progression of the disease is slow and occurs during 6 to 8 years [58] 

and causes dystonic contractions and sensory disturbances. [1] 

Overall, there are specific symptoms for each PS. For instance, the absence of tremor, early 

speech, and gait impairment suggests a possible Atypical Parkinsonism; manifestations of 

hallucinations and dementia as the first signal as well as Parkinsonian features indicate a 

Dementia with Lewy bodies; diplopia, impaired down gaze may suggest PSP; predominant 

orthostatic hypotension may indicate an MSA [1]. 
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It is important to notice that the causes of Parkinsonian Syndromes are still unknown. [1], [3], 

[57] Early onset of PD before the age of 40 may indicate a genetic form of PD caused by genetic 

factors including gene mutations, especially mutation of the alpha-synuclein gene. However, most 

of the cases, approximately 85–90%, the factors that induce PD is not known yet. Some studies 

correlate environmental and lifestyle factors with idiopathic PD, i.e., Parkinson with an unknown 

cause [1], [59]. For instance, Hwang studied the possibility of the oxidative stress due to 

neuroinflammation being related to the SNc degeneration [60]. In 2003, H. Braak et al. advanced 

with the hypothesis that the protein alpha-synuclein arises at the gastrointestinal system and then 

spreads to the brain through the vagus nerve [39]. However, this lacks more studies and evidence 

to prove that this process may happen [61]. 

2.2 De novo PD patients 

De novo PD patients is a clinical expression to define a group of PD-patients that either does not 

receive any Levodopa treatment or were recently diagnosed as having Parkinson’s Disease [62].  

2.3 Non-Parkinson’s disease tremor: Essential Tremor 

Essential Tremor (ET) is a common movement disorder, monosymptomatic, of unknown cause 

and sometimes misdiagnosed with neurodegenerative diseases such as PS [1], [63], [64]. ET 

patients manifest symmetric high-frequency tremor (6–10 Hz) and voice or head tremor but show 

no evidence of changes in the dopamine in the dopamine system [1], [7], [63]. 

2.4 State-of-art: diagnosis of Parkinsonian Syndromes 

Over the years, several authors have proposed methods for PS diagnosis by elaborating scales that 

enumerate characteristics and signals for each illness [65]. In this study, only the most common 

were described. 

In 1967, Hohen and Yhar studied the progression and morbidity of patients with parkinsonism 

and developed a scale of PD progression, the Hoehn and Yhar (HY) Scale, which are nowadays 

accepted and internationally used [11]. HY Scale enumerates PD stages by describing symptoms 

that occur at each level. This scale was created to be used in follow-up progression of PD before, 

during and after treatment and consequently to promote a better evaluation of the therapy [11]. 

The scale comprises five stages that are based on the symptoms and the clinical degree of 

disability of the patients. In Table 2.2, the HY Scale is entirely reproduced without alterations. In 

the 1990s, HY Scale was slightly modified and it was added two intermediary levels: Stage 1.5: 

“Unilateral and axial involvement ” and Stage 2.5: “Mild bilateral disease with recovery on pull 

test “ [66]. This modified HY Scale emerged due to HY scale limitations, namely the fact that 

some patients may manifest the same symptoms at different stages [66]. Despite this, HY scale 

still be used for medical evaluation worldwide for PD symptom stage evaluation. [66] 
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Table 2.2 - Hoehn and Yahr Scale. This scale created in 1967 represents 5 stages of Parkinson´s Disease. 

Stages I, II and III represent the less levels of disability whereas Stage IV and V represent severe levels of 

disability. Entirely obtained from [11]  

Hoehn and Yahr Scale  

Stage I “Unilateral involvement only, usually with minimal or no functional 

impairment.”[11] 

Stage II “Bilateral or midline involvement, without impairment of balance.” [11] 

Stage III “First sign of impaired righting reflexes. This is evident by unsteadiness as the 

patient turns or is demonstrated when he is pushed from standing equilibrium with 

the feet together and eyes closed. Functionally the patient is somewhat restricted 

in his activities but may have some work potential depending upon the type of 

employment. Patients are physically capable of leading independent lives, and 

their disability is mild to moderate.”[11] 

Stage IV “Fully developed, severely disabling disease; the patient is still able to walk and 

stand unassisted but is markedly incapacitated.”[11] 

Stage V “Confinement to bed or wheelchair unless aided.”[11] 

 

In 2003, H. Braak et al. studied 41 cases of subjects clinically diagnoses as PD. Based on the 

clinical and pathological analysis of the patients, Braak et al. present a study that describes six 

stages of PD progression and the distinction of the initial, intermediate and final phases of the 

disease [39]. These stages were formed taking into account the presence of Lewy bodies as well 

all pathologies and symptoms manifested by patients and related studies. The Braak stages are 

following described. 

• Stages 1 and 2: 

In this phase of the illness, PD patients present non-motor symptoms that precede motor 

symptoms [67]. According to the literature, PD-patients tend to suffer from an impaired sense 

of smell that arises before the motor symptoms [68], [69]. Thus,  one study points out that an 

early exam of the olfactory performance when this symptom rise could evidence a possible 

early PD diagnosis [70]. Besides smell impairment,  PD patients may also manifest autonomic 

dysfunctions and Idiopathic Rapid Eye Movement Sleep Behaviour Disorder,  during the 

early stage of the disease [39], [71].  

• Stages 3 and 4: 

According to Braak et al., the pathology of stage 3 and 4 given by the injuries, i.e., the 

dopaminergic neurons start to get injured or degenerated which leads to the appearance of 

motor symptoms[39]. In stage 4, the damage in the olfactory nucleus is getting more severe. 
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It also in these two stages, 3 and 4, that Lowy bodies get formed and present in the lesioned 

neurons [39]. 

• Stages 5 and 6: 

These two stages are the most severe in this disease [39]. In stage five, the pathology reaches 

areas in the neocortex and prefrontal neocortex. In stage six, the neurodegeneration in the 

SNc is evident, and the disease develops affecting deeper regions such as the sensory and 

motor areas [39]. 

In 2007, Goetz et al. presents a revision of the Unified Parkinson's Disease Rating Scale 

(UPDRS), one of the most used scales for the clinical study of PD [72]. The UPDRS scale is a 

questionnaire with several questions divided into four parts concerning disabilities and 

impairments to classify PD severity [73]. This revision, also known as Movement Disorder 

Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), 

adds a new section that incorporates nonmotor features of PD [72] and allows the identification 

of the PD problems that a PD-patient may develop [72], [73]. Part I - Nonmotor Aspects of 

Experiences of Daily Living includes features of dopamine dysregulation syndrome, urinary 

problems, and cognitive impairment.; Part II - Motor Experiences of Daily Living contains 

walking and balance, tremor impact on activities and eating tasks; Part III - Motor Examination 

includes speech, Hand movements, gait, Postural tremor of hands, rest tremor amplitude and Part 

IV: Motor Complications covers dyskinesias (involuntary muscle movements) and motor 

fluctuations [1], [72]- 

Nowadays, the most used criteria are the UKPSBC [74]. With 80% of accuracy, UKPSBC were 

created by the analyses of 100 patients with Idiopathic Parkinson’s Disease [10], [65]. This study 

found out that some of these patients were misdiagnosed as PD, instead of having this disease, 

they suffer from some other PS or Alzheimer’s Disease. UKPSBC is formed by three steps. The 

first step enumerates and characterizes motor symptoms of PS such as bradykinesia or rest tremor, 

as shown in Figure_2.7. The second step lists pathologies that are not present at PS namely severe 

dementia at early ages and negative response to PD medication, levodopa. The last step describes 

signs and characteristics that the patient must have to be diagnosed with PD and includes good 

response to PD medication Levodopa and rest tremor presence. In this step, the diagnosis is valid 

when the patient presents at least three attributes [10]. 

To study mild cognitive impairment in neurologic diseases it is was develop a 10-minute cognitive 

screening tool called The Montreal Cognitive Assessment (MoCA) [75]. This test analyses 

cognitive domains such as attention and conceptual thinking [76]. 
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  Figure 2.7 United Kingdom Parkinson’s Disease Society Brain criteria. Elaborated by [77] 

For AP such as MSA, PSP and CBD several authors proposed clinical diagnostic criteria based 

on post-mortem studies and specific features [65]. In 1994, Quinn proposed a diagnostic criteria 

based on specific features of MSA: Possible diagnostic of  MSA includes sporadic adult-onset 

and poor response to levodopa, and Probable diagnostic of  MSA includes Possible diagnostic of  

MSA and severe autonomic failure [78]. For PSP, Lees describes clinical features that differ PSP 

from PD, namely the type of response for Levodopa (poor or excellent) and differences between 

balance, speech and facial appearance in the two illness[56]. Regarding CBD, there are no 

diagnostic criteria that were validated so far [65], [79].   

The first diagnoses of Parkinsonian syndromes were merely based on visual signs and symptoms 

[1], [30] However, post-mortem studies found a 24% of misdiagnosis [1]. Thus, several clinically 

criteria such as those mention above have been created. Besides clinical diagnosis, it is also 

essential to study the pathology of the disease, through methods that may aid in the diagnosis. 

[80]. Due to this need, medical imaging in Parkinsonian syndromes has emerged to show 

anatomical and functional changes related to PD pathologies [1]. 
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2.5 Medical Imaging in Parkinsonian Syndromes 

Through the years, medical imaging techniques have been aiding physicians and researchers in 

the study and understanding of PS [1], [25], [26]. Nowadays, the scientific community use several 

techniques such as MRI including Diffusion Tensor Imaging (DTI) SPECT Positron-emission 

tomography (PET). This study only focuses on MRI and SPECT [81]. 

2.5.1 Magnetic Resonance Imaging 

In the following lines, the physics behind MRI will be briefly explained. MRI is an anatomical 

image that represents the structure and the tissues, in this case, of the brain. 

MRI is an imaging modality based on physical principles of the atomic nuclei [82]. These nuclei 

have magnetic properties that can be translated into in a signal that is captured by coils. This 

signal allows a formation of an image [83]. Usually, hydrogen is the most nuclei used in MRI 

because it is the most abundant element in the human body, being present in water and lipids [82], 

[83] The physics behind the formation of this signal relies on the magnetic moment and angular 

momentum of the nuclei, the hydrogen proton [82]. The magnetic moment gives the magnetic 

strength and the orientation of the moving electric charge when this charge is interacting with an 

external magnetic field. When no external influences are applied such as magnetic and electric 

fields, the proton spins about itself, i.e., rotate around itself [82]. The hydrogen proton is positively 

charged and has that spinning movement which allow the production of an electric current that 

creates magnetic movement. The angular moment is then created due to the mass of the rotating 

proton multiplied by its angular velocity. [82]  

In MRI a constant magnetic field is applied to the body, in this case, the head, to gives a precession 

movement and a specific orientation to protons that were previous randomly orientated as 

illustrated in Figure 2.8 [82], [83]. These protons can be orientated parallel or antiparallel to the 

constant magnetic field applied. The parallel protons have lower energy while antiparallel protons 

have higher energy level.  

 

 

 

 

Figure 2.8 Proton orientation in MRI. a) Protons randomly oriented in free space b) Protons oriented 

according to the magnetic field. The protons which are aligned with the magnetic field are represent in blue. 

The process movement is the same as the gyroscopic motion but in this case the proton process 

due to the constant magnetic field and its orientation, as shown in Figure 2.9. 
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Figure 2.9  Precession Movement. The proton rotates around the direction of constant magnetic field.  

The MRI techniques measure the magnetization of all spins in the free space. The magnetization 

can be represented by one vector with two components, the longitudinal and the transverse [82]. 

The longitudinal component has the same direction as the constant magnetic field while the 

transverse component is perpendicular and has the zero value. When all the protons are aligned 

with the magnetic field, parallel or antiparallel, one pulse sequence perpendicular to the magnetic 

field is applied to the system. The pulse sequence is characterized by radiofrequency (RF) pulses 

and gradient pulses, which control timings and other parameters that allow the acquisition of the 

image [82], [83]. This pulse changes the amplitude of the longitudinal and transversal 

magnetization, by changing the magnetization of the longitudinal axis to the transverse plane. 

During the pulse, all protons are in the transverse plane, rotating with the same phase [82]. 

After pulse application, the magnetization tends to return to the equilibrium position and occurs 

transverse relaxation and longitudinal relaxation. The transverse relaxation also known as spin-

lattice relaxation is the decrease of net magnetization because of the loss of spins coherence of 

the protons [82]. In its turn, the longitudinal relaxation or spin-spin relaxation is the recuperation 

of the net magnetization along the horizontal axis because the protons tend to return to the 

equilibrium state, parallel to the magnetic field [82]. In MRI signal, these events are traduced by 

two relaxation times T2 and T1. In MRI signal, these events are traduced by two relaxation times 

T2 and T1. T2 is a time constant that represents the exponential decay of the net magnetization in 

the transverse wherein protons spin at different phases, as shown in Figure 2.10 [82]. 

 

 

 

Figure 2.10 Illustration of the T2 decay. During the pulse sequence the spins are perfect aligned. Once the 

pulse sequence is turn off, protons lose their phase coherence and gain different orientations. Adapted from 

[85]  

The recovery phase of the longitudinal magnetization is given by the time constant T1 which 

indicates the time that protons took to return to the equilibrium state before the excitation caused 

by the radiofrequency pulse, as illustrated in Figure 2.11 [82]. 
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Figure 2.11 Illustration of T1 recovery. The spins, initially in the transverse plan, return to the initial 

position and orientation in the longitudinal axis, represented as z in the image. Adapted from [82]  

During the image acquisition, the constant magnetic field is always turn on and may have slight 

differences in its intensity, which originate spatial inhomogeneities since the spins will be 

processing at different speeds. [82]. This event is translated by the time constant T2*. T2* reflects 

the quickly lost of coherence between the spins due to the spatial inhomogeneities [82]. 

T1 and T2 values depend on the proton density of the tissues. T1 is always bigger than T2.  Tissues 

with a high number of hydrogen protons have long  t1, e.g., fluids have longer T1 than T2 [83]. 

The contrast of the MRI images is related to T1 and T2 parameters and Proton density [82], [83]. 

Each constant time gives different structure contrast to each image. Thus, the images can be T1-

Weighted (T1-W), T2-Weighted (T2-W) and Proton Density weighted. These images are 

produced using Spin-Echo (SE) or Gradient-Echo (GE) which are pulse sequences. These pulse 

sequences are related with two concepts, Repetition Time (TR) and Echo Time (TE), respectively. 

The contrast in MRI is possible due to variations in TR and TE [83]. The SE sequence comprises 

an echo with two RF pulses. In its turn, the GE is formed by one RF pulse followed by one 

gradient that creates the echo. In both sequences, the echo measures the intensity of the signal. 

The function of the gradient is used to accelerates spins dephasing [82]. 

T1-W images give information about the RT of each tissue and are characterized by an 

intermediate TR and a short TE. These images are brighter in voxels containing tissues with short 

T1 because the spins in these tissues are the first to recovery to longitudinal magnetization and 

darker in voxels comprising tissues with long T1. For instance, the white matter is very bright, 

the water-based tissues such as grey matter are mid-grey and the fluids are dark. Thus, T1-W 

images shows the boundaries between the tissues and fat-based tissues [83]. 

T2-W have long T1 and intermediate TE. In this cases, the grey matter and fluids get bright and 

the fat-based tissues get dark since the spins had totally recovered [82]. PD Weighted images 

allows to distinguish fluid from cartilage [83].  

T1 
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2.5.2 State-of-the-Art: T1-Weighted and T2-Weighted images in PS 

MRI is usually used as routine to differentiate symptomatic parkinsonism from controls and to 

detect if there are any cerebrovascular damage causing the PS features [14]. 

On the one hand, according to the literature, anatomical changes in early-PD are very subtle in 

structural MRI [81], [84]. For instance, T1-W images present poor contrast in regions of interest 

areas such as STN and GP which difficult the detection of pathological anatomic findings [81], 

[84], [85]. 

On the other hand, the literature also describes MRI findings in structural alterations in PD brains. 

Due to the high quantity of iron present in these structures, the T1 value is short and consequently 

T2-W and T2*-Weighted images allow the detection of changes in structures like STN and 

GP[85].  Moreover, a study with 27 individuals with PD that filled Unified Parkinson's Disease 

Rating Scale and HY scale, pointed out for a reduction of 11% putamen in volume and 8% in 

caudate volume in PD when used a high-resolution 3T structural T1-W images when compared 

with control group. Nevertheless, this study also indicated that it is still unclear the relationship 

between the volume reduction and the dopamine deficit. [86]  

Concerning SNc degeneration in PD, some studies report no evidence of volumetric changes in 

SNc of patients [87], [88]. Minate and colleagues found alterations in the SN of PD patients and 

in T1 value in comparison with the control group. However, the authors conclude that these 

differences in SN of PD patients were also influenced by the midbrain size variability for each 

subject [89]. 

According to the literature, increasing the magnetic field in MRI image acquisition may improve 

structural image quality. Kwon et al. use a 7T magnetic field to acquire T2*-weighted MRI 

images of the SN from 10 PD-patients and 10 control subjects. The authors report that the shape 

of the substantia nigra of PD patients differs from Control individuals. Moreover, they also 

identified an increase of the hypointensity of the MRI signal due to a rise in the volume of the SN 

in PD-Patients. The increase of the SN shape is related to high concentrations of iron in PD-

patients, unlike Control subjects which are translated in variations in T2*-weighted MRI signal 

[90]. 

To aid in the detection of structural changes in MRI some techniques have been used, such as 

Voxel-Based Morphometry (VBM). VBM is an MRI technique that allows the analysis of focal 

brain anatomic differences between healthy and patients subjects. VBM uses image processing 

methods such as spatial normalization and segmentation into grey matter, white matter, and 

Cerebrospinal fluid[84], [91]. Using VBM, Burton et al. analyzed T1-W MRI scans from 26 PD-

patients and 26 PD-patients with dementia with the aim to investigate brain volume loss. The 
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study reported that PD-patients presented a reduction of grey matter volume in the frontal lobe 

comparatively to the control group. Regarding PD-patients with dementia, a loss of volume in the 

grey matter of the temporal lobe was found [92]. Other studies with PD patients identified reduced 

grey matter in the right side of the hippocampus and in the left superior temporal gyri, loss of 

volume in the olfactory bulb and volume reduction in grey matter in brain areas related with the 

olfactory system such as inner olfactory cortex and amygdala [93], [94]. The authors conclude 

the volume changes in the olfactory system agrees with the stages hypothesis of Braak. [39], [93]. 

Moreover, one study that used volumetric analysis and segmentation applied to T1-W images of 

PD patients reported volume reduction of the bilateral putamen in comparison with the control 

group [95] and Tinaz et all. applied an automated reconstruction method to T1-W images of PD-

patients and found a reduction volume of the striatum [96]. These findings are related with PD 

pathology and motor symptoms.[1] However, one study that also used T1-W images as well, 

reported mean striatal, cerebellar and brainstem volumes remain normal in comparison with 

control [97].   

Even with these findings, MRI is mostly used to distinguishing atypical syndromes from 

Parkinson's disease due to limited and subtle changes in early-PD brain structures. Nevertheless, 

new approaches to MRI pointed that this medical imaging technique may help in the 

discrimination of nigral degeneration and its progression. [98]  

In Atypical Parkinsonism, MRI has been used to detect changes in PSP, MSA and CBD [99]. 

According to the literature, the most affected areas in these syndromes are basal ganglia, 

brainstem, cortex and cerebellum. The atrophy and changes in these regions originate alterations 

in MRI signal relatively to healthy subjects and PD-patients. [100], [101] The Table 2.3 

summarize the some of the findings achieved so far and present the in literature. [13], [99]  

To sum up, Meijer et al. analysed several studies and proposed that MRI should be a tool to aid 

in PS diagnosis [14]. According to them, T1-Weighted may be used to detect brain atrophy and 

tissue loss but have some limitations, namely, poor contrast in some areas due to low sensitivity 

to signal intensities changes. Regarding T2-Weighted images, those are useful to detect changes 

in the basal ganglia which are detected by signal intensity changes in MRI [14].  

.  
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Table 2.3 Findings in structural MRI in PS 

AP MRI findings Reference 

MSA 

- No alteration in the Olfactory system  

- Atrophy in putamen (also known as putaminal rim sign)  

- Hypointensities in T2-weighted images  

- Atrophy in putamen of MSA subjects differ from PD-patients 

 

Chen et al. [93] 

Yekhlef et al. [102] 

 

Sako et al. [103] 

PSP 

- Volumetric reductions in brain-stem, midbrain and frontal grey 

matter 

- T2-weighted images hyperintensity in the midbrain  

- Midbrain atrophy, known as Hummingbird sign 

- Midbrain tegmentum atrophy known as morning glory sign 

 

Gröschel et al.  [104] 

 

Massey et al. [105] 

CBD 

- Cortical atrophy, lateral ventricle dilatation and mindbrain atrophy 

- Atrophy of parietal cortex and corpus callosum 

 

Yekhlef et al. [102] 

Gröschel et al. [104] 

PD 

- Volume reduction in caudate 

- Volume reduction in putamen 

 

- Differences in substantia nigra shape 

- Volume reduction in the grey matter of the frontal lobe 

- Reduced grey matter in Hippocampus, temporal lobe and olfactory 

bolb  

- Loss of volume in areas of the olfactory system  

Pitcher et al.  [86] 

Pitcher et al.. [86], 

Geng et al. [95] 

Kwon et al. [90] 

Burton et al. [92] 

Chen et al.[93], 

Summerfield et al. 

[94] 

 

2.5.3 Single-Photon Emission Computed Tomography in Parkinsonian Syndromes 

In the literature, some studies have shown that SPECT imaging can be useful to improve PS 

diagnosis criteria, especially when there is the hypothesis of PS diagnosis [15], [80]. In the 

following subchapter, it is described SPECT concepts and how related they are with Parkinsonian 

Syndromes.  

SPECT is a functional nuclear imaging technique. Functional images allow the study and the 

understanding of physiological activities, such as metabolism and blood flow, that occur within 

organs and tissues [13], [106]. 

SPECT images are obtained using radiopharmaceuticals comprise by radioligands that are 

injected in the patient. Once injected, these substances spread in different internal tissues or 

organs and the radioligands bind to specific molecules presented in those tissues and organs. This 

binding originates a reaction that causes gamma rays emission, photons. These photons are 



2.5 Medical Imaging in Parkinsonian Syndromes 

 

21 

 

capture by radiation detectors, called collimators [106]. The imaged is formed by the acquisition 

of these gamma rays from different views to guarantee that the distribution of radiation in the 

three-dimensional perspective of the body is detected. Then, using imaging reconstructions 

techniques the imaged is formed [106]. 

In this work, SPECT images are obtained from the brain to detect dopaminergic changes. In this 

case, the radiopharmaceuticals usually used are cocaine analogues [84]. These nuclear medicine 

tracers are used for the analysis of a specific brain function or brain pathology, namely the 

dopaminergic function, in which this injected substance binds to dopamine transporters or 

dopamine D2 receptors [84]. The radioactivity dose given to patients is stipulated taking into 

account safety rules [106].  

2.5.4 Dopamine transporter SPECT  

One type of SPECT imaging is DaT SPECT imaging, usually used to differentiate PS and other 

motor diseases such as ET [13].  DaT is a transporter protein located in the presynaptic membrane 

of the striatum that mediates the reuptake of the free dopamine within synaptic gap [107]. DaT 

SPECT exam allows to find out dysfunctions in the dopamine transporter [13], [80]. One of the 

radiopharmaceuticals used in the DaT SPECT imaging for PS is an active substance called 

ioflupane (123I). When injected in the body through the bloodstream, the ioflupane accumulates 

in the dopamine transporters of the striatum. In patients with parkinsonism, there are 

dopaminergic neurons degenerated and consequently less DaT. Thus, the concentration of the 

radioligand is less in the striatum in comparison with a healthy person. This reduction is visible 

on the scan [108]. Factors such as sex and age usually influence DaT density in healthy and 

pathologically subjects. For instance, aging is related with a reduction of DaT in the striatum of 

healthy subjects. However, this reduction is not so strong and evident as the loss in PD-patients 

[109]. Female subjects, healthy or PD-patients, differ slightly from male healthy or PD-patients 

by presenting a higher concentration of DaT [110], [111]. 

To obtain SPECT images it also used radiotracers like 123I-iodobenzamide (123I-IBZM) and 123I-

iodolisuride (123I-IBF)  for the detection of dopamine D2 receptor to obtain information about the 

density of postsynaptic neuronal loss [13].  

2.5.5 PD patients with Scans Without Evidence of Dopaminergic Deficit, SWEDD 

In the literature, drug trails and studies that had used DaT SPECT images to analyse PD-patients 

reported that a few early-PD patients presented normal DaTscan [112]–[114]. For instance, in a 

study with 62 patients with clinical features of parkinsonism and tremor disorders, it was acquired 

DaT SPECT images from all the individuals. Within the participants, 38 fulfilled UK Brain Bank 

step 1 PD criteria and 24 failed standard Parkinson's disease and essential tremor criteria. The 
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results obtained showed that 14 of 24 subjects that do not fill in specific criteria had normal scans 

and 5 of 28 patients that were classified as PD had a normal scan [113]. These PD-patients that 

presented a normal scan which indicates that there is no dopaminergic deficit are now called 

SWEDD patients [15].  

Moreover, follow-up studies using DaT SPECT images show that approximately 10% of the cases 

clinically diagnosed as early PD had SWEDD [18] and that those patients tend to have a normal 

DaT SPECT along disease progression [18], [115].  

However, some findings corroborate the fact that patients with SWEDD may have been 

misdiagnosis as PD-patients [116]. On the one hand, there are strong evidence that at early-PD 

stages, when the symptoms first appear, 80 % of striatal dopamine and 50 % of nigral dopamine 

cells are already lost. This reduction can be detect by a DaT SPECT exam which results in an 

abnormal scan. [43], [84], [117] On the other hand, recent studies found that SWEDDs patients 

had normal olfaction score unlike PD patients [17] and present different structural connectivity 

[118]. 

Clinically, SWEDD’s patients can be divided into two categories: tremor dominant or non-tremor 

dominant. Within the causes of tremor dominant SWEDD type are dystonic tremors [15], [18], 

[119] and the causes behind non-tremor dominant SWEDD type are related with Vascular 

Parkinsonism or Huntington’s disease [15]. Besides the evidence of the dopamine neurons 

without degeneration, SWEDD patients are also characterized by the fact that the glucose 

metabolic patterns are also normal [120]. Regarding the response of SWEDD patients to L-Dopa, 

in the literature this is dubious. [112]  

2.5.6 Diagnosis of Parkinsonian Syndromes with DAT-SPECT 

The literature suggests that DaT SPECT scans can be an asset to improve diagnostic accuracy as 

well as to aid in the identification of individuals with dopaminergic deficit before the onset 

symptoms [80], [121]–[123]. For instance, in PD, 60-70% of the dopamine neurons are 

degenerated and consequently DaT ligand uptake is substantially reduced even at early-stages 

comparatively to aged-matched healthy individuals. This loss in PD is substantially detected in 

DaT SPECT [80], [121]–[123]. Unfortunately, the sensitivity of the DaT SPECT is known to be 

less than 100%, which may be related with SWEDD cases [80].  

Besides, in the comparison of PS, Dat SPECT is limited and does not aid to distinguish  PD, MSA, 

PSP and CBD [80] because DaT SPECT scan only detects loss of DaT which is typical in all PS. 

Consequently, DaT SPECT imaging is not used to differentiate PS. For instance, all of PS have 

abnormal DaT SPECT with asymmetry in the striatum [124] in comparison with healthy subjects 



2.6 Artificial Intelligence 

 

23 

 

but with different progression and pathology. However, even with those changes DaT SPECT is 

only able to differentiate PS and Control groups, as illustrated in the Figure 2.12. [125], [126] 

 

 

 

 

 

Figure 2.12 DaT SPECT images from Control subjects and Parkinson’s Diseases. DaTscan SPECT of a) 

Control subjects, b) PD-patients, c) MSA- patients, d) PSP-patients and e) dementia with DLB. The 

differences between the PS and the healthy group are evidenced in the images but the changes among PD 

and AP may not be comparable because all present evident asymmetries in the striatum. Adapted from [80], 

[123] 

Despite this difficulty of PS distinction, DaT SPECT is very useful to differentiate PS from other 

diseases that have similar symptoms like those manifested in those syndromes [124]. For instance, 

studies reported that the visually analysis of [123I]-FP-CIT SPECT by experts can allow the 

diagnosis of essential tremor and parkinsonism because ET patients present normal a scan which 

indicates that there is no pathological change in the dopaminergic system [127], [128]. 

 In the Figure 2.13, it is enumerated the cases and the groups of subjects that are nowadays 

considered as having normal or abnormal DaT SPECT.  

 

 

 

 

 

 

Figure 2.13 - Normal vs Abnormal DaT SPECT. According to the literature Essential tremor and Dystonic 

tremor present normal DaT scans since there is no degeneration in the basal ganglia. SWEDD PD-patients 

present a normal DaT SPECT but are early diagnosed as having PD. Parkinsonian syndromes are inserted 

into abnormal DaT SPECT since these patients have loss of dopamine.  

2.6 Artificial Intelligence  

Artificial intelligence is a concept that emerged after World War II, and it is used nowadays in 

diverse areas, namely, robotics, bioinformatics, speech and imaging processing, finance and 

chemistry [129].  

Several authors have been trying to define Artificial Intelligence. Haugeland sees AI as the area 

that “makes computers think . . . machines with minds, in the full and literal sense.” [130] and 

Rich and Knight define that concept as “The study of how to make computers do things at which, 
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Healthy subjects PD 

PSP + MAS + CBD 

Genetic Parkinsonism 
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SWEDD PD-patients 
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at the moment, people are better”[131]. So far, all the definitions are inserted in two pillars: 

Thinking/Action and Humanly/Rationally, because a computer to be considered intelligent has to 

have human and/or animal characteristics [129]. Those pillars can be divided into four 

approaches: Thinking Humanity, Thinking Rationally, Acting Humanly and Acting Rationally 

[129]. Within of the topic Acting Humanly is Machine Learning (ML). 

 ML as Goodfellow et al. said “is the ability [of computers] to acquire their own knowledge, by 

extracting patterns from raw data”, that is, computers with AI must have the ability to learn from 

data of any situation in the world with an automatic learning process and, thus, predict or make 

decisions based on what have learned [132]. Inside of Machine Learning field is Deep Learning. 

In this subchapter, Deep Learning is explained with especially focus on Convolutional Neural 

Network algorithm and its applications in the medical imaging field.  

2.6.1 Deep Learning  

Deep Learning is a subfield of ML that nowadays have been more used due to the improvement 

of hardware and software [133]. In deep learning, the process of learning is based on getting the 

characteristics of the object. For instance, considering an airplane image, the algorithm extracts 

the colour, the shape of the wings and other characteristics on the image to learn what defines an 

airplane. In AI, these characteristics are called features.  

It is also important to mention that these images are constituted by a bunch of pixels that contain 

a lot of information and that deep learning algorithms are able to extract features at a high level, 

namely, abstract features. For instance, to detect a cat, an airplane, or a face of a human, these 

algorithms first extract small and simple concepts such corners or edges and then extract complex 

concepts, called abstract features, such as objects parts. 

 All these features are extracted by which is called hidden layers [132]. A usually deep learning 

model is constituted by the visible layer, which contains the input image and several hidden layers 

that capture features of the image, first the simple ones then the complex ones as exemplified in 

Figure 2.14. The information travels from one hidden layer to another, that is, the 2nd hidden 

layers extract features from the resultant pixels of the 1st hidden layer and so on. The hidden 

layers are layers that extract indirectly information about the input. 

 

 

 

 

Figure 2.14 Schematic of a deep learning model. Adapted from [132] 
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In AI and consequently, in deep learning, there are two learning process:  

• Supervised learning: in the learning process, also called training, the neural network 

receives the input with the respective label, i.e., the class of the input [132]. Thus, the 

network learns input features by knowing that they belong to a certain class.  

• Unsupervised learning: in this case, the input of the network does not have any 

additional information such as the class that belongs to, that is, the learning process is 

based on the network ability to learn and recognized features from non-label data [132].  

2.6.2 History Behind Convolutional Neural Networks 

In this subchapter, it is briefly described the history of CNN and the progress present in literature 

that originates this algorithm. 

Deep learning can be implemented using Artificial Neural Networks (ANN). ANN architectures 

are based on animal biological neuronal systems [134] and they are considered deep if it have 

more than one hidden layer. All the artificial neural networks are made of computational units 

called neurons, also known as nodes, that mimics neurons in the brain [135] and are connected 

with each other as biological neurons.  

In 1943, McCulloch and Pitts proposed a mathematical approach for an artificial neuron based on 

the biological neurons [136]. This model mimics the synaptic strength by expressing it as the 

weighted sum of n input signals in the neuron minus a threshold. This modulation is represented 

in the Equation 2.1, where positive weights reflect excitatory stimulus and negative weights 

reflect inhibitory stimulus [137]. The 𝜃 is a non-linear function called activation function, 𝑤𝑖 is 

weight of the 𝑖𝑡ℎ input where 𝑖 = 0,1,2,3 … , 𝑛,  𝑥𝑖 is input signal in the neuron and 𝑢 is the 

threshold value, usually 𝑤0 = − 𝑢, and 𝑥0 = 1 [137].  

 
𝑦 =  𝜃 (∑ 𝑤𝑖𝑥𝑖 − 𝑢

𝑛

𝑖=1

) (2.1) 

The Equation 2.1 can also be written as in Equation 2.2 [135]. 

 𝑦(𝑥) = 𝐺(𝑤𝑥𝑇 + 𝑏) (2.2) 

In Equation 2.2,  𝐺 is the activation function, 𝑤𝑥𝑇 is the array of weights and the input array, 

where 𝑇 indicates a matrixial operation called transpose and 𝑏 is the threshold called bias.  

The activation function acts like biological neurons, where when the input overcame a specificity 

threshold, the neuron fire the information across the axon [135]. In this case, the information 

flows to the next neuron and so on in a process called feedforward. A feedforward neural network, 

also known as multilayer perceptron, is a process that occurs from the first layer to the last layer 

without returning to the beginning point or to an intermediary stage [135].  
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The 𝑏 threshold is unique for each neuron and it is responsible to define if the activation of the 

neuron is significant to pass forward in the network. Both weight and bias are trainable 

parameters, that is, the CNN learn and adjusts them in the feedforward process [135]. An example 

of a feedforward ANN architecture and their parameters is represented in the Figure 2.15. 

 

 

 

 

 

 

 

 

Figure 2.15 Feedforward neural network architecture. I is the input layer where xi are the input values, H 

denoted the hidden layers and Z the last layer. W is the weighted array and wij is two-dimensional weighed 

and d1, d2 and dz are neurons. Adapted from [134] 

 

2.6.3 State-of-the-Art of CNN 

Convolutional Neural Networks are one type of ANN usually used for pattern recognition [138], 

[139]. The basis of this network is based on David Hubel and Torsten Wiesel work [132]. These 

two neurophysiologists spend several years studying the visual cortex of cats with specially focus 

on the receptive field cells of the primary visual cortex located in the retina, the area responsible 

for first processing the visual input [132], [140]. 

 The receptive fields cells are sensory neurons that detect light brightness, control the firing of 

visual neurons firing and are divided in simple or complex cells [140], [141]. Simple receptive 

fields cells have two types of subdivisions, the excitatory and the inhibitory and these regions are 

activated only if they receive the specific stimuli, light on or off. Through observation of cells 

mapping, Hubel and Wiesel realized that these cells were sensible to simple features of the input 

such as bars and edges and that and this cells were also able to detect position variations [132], 

[140], [142]. Unlike simple cells, complex cells are insensitive to edges, bars and position 

variations but are able to detect more complex features, such if cells have the same orientation 

[140].   

These findings inspired Fukushima that in 1980 created the first neural network visual cortex-

inspired. This network called Neocognitron was based on the cells of the cat visual cortex [143] 

previously mentioned and it was develop to have the ability to recognized patterns as a human 
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been learns using unsupervised learning. The Neocognitron are constituted by two layers: S-Layer 

and C-layer, that are applied one after the other. S-Layers behavior like filters to mimic simple 

cells proprieties of edges and bars detection. In its turn, C-layers receive as input S-layer values, 

and act like complex cells by merging values. This structure was elaborated to be able to recognize 

shapes of the input image based on their geometrical features at any position and without being 

sensitive to small distortions of that shapes. The Neocognitron which means that the network 

learn by itself by receiving as input repetitive stimulus patterns without any additional information 

such as the class that the input belongs to [143]. Fukushima realized that complex cells in the last 

layers started to respond only to a specific stimulus pattern and conclude that Neocognitron was 

able to recognize patterns correctly [143]. 

A few years later, other studies used an Artificial Convolutional Neural Network based on 

Neocognitron to apply to medical imaging for pattern recognition [139], [144]. The structure of 

this Artificial CNN is simpler than the Neocognitron and differ in the fact that it is not constituted 

by C-layers and instead of using unsurprised learning, the automatic machine learning method 

used was back-propagation algorithm, a supervised learning approach [139], [144].  

In 1998, LeCun and colleagues proposed a CNN called LeNet that uses a Gradient-Based 

Learning Approach and the backpropagation algorithm [138]. Even with some similiters with the 

previous CNN algorithms, LeCun proposed an improved CNN structure organized in several 

layers based also in the cat visual cortex. This CNN is constituted by the layers that mimics simple 

cells, the convolutional layers, and by pooling layers that have the same proprieties as complex 

cells. The CNN was training and tested with Modified National Institute of Standards and 

Technology (MNIST) database of handwritten digits [138], [145]. LeCun et al. conclude that 

Gradient-Based Learning improve CNN performance and suggests that CNN is a useful tool to 

feature extraction  [138].  

2.6.4 Convolutional Neural Networks Architecture 

Convolutional Neural Networks are a trainable feedforward neural network constituted by 

multiple stages called layers [138]. CNN are constituted by the input layer, hidden layers and the 

output layer and all of these layers are characterized by having three dimensions: width, height 

and depth [135]. Each hidden layer receives a two-dimension input from the previous layer and 

originates a two-dimensional output. These two-dimensional arrays are called feature maps and 

contain the features extracted [138].  

Concerning CNN architecture, this network is organized in two parts: the feature extraction and 

classification [134]. This network is mainly based on two mathematical operations: cross-

correlation and pooling, that occur in the feature extraction stage.  
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The feature extraction stage is constituted by a convolutional layer, an activation layer and a 

pooling layer.  

The classification part is constituted by a Fully Connected (FC) layer. After FC layer, usually 

there is final layer with a loss function that originates a output traduced by single vector with 

probability scores [135]. 

Therefore, CNN has the following architecture: an input layer receives normalized images with 

the same size [138], convolutional layers, activation function layers, pooling layers, fully 

connected layer and loss function layer. The main layers are illustrated in the Figure 2.16. 

 

 

 

 

 

 

Figure 2.16  Convolutional Neural Network Architecture. This architecture was drawn by LeCun et al. 

[145] to classify handwritten digits of the MNIST database. Between the convolution layer and the 

subsampling layer also called pooling layer is usually an activation layer. After the fully connected layer is 

also a loss function layer. 

The following subtopics are a deep description of each stage and of the components of CNN. 

• Convolutional layer CNN 

Firstly, it is important to notice that CNN has more than one convolutional layer to extract several 

features. Moreover, together with activations functions, it mimics simple cells of the visual cortex 

of the cat [132], [135] by acting like a detector or filter. 

Convolution approach is a mathematical operation that englobes two functions, in which one 

affect the other, to create a third that represents the modifications that that the second function 

caused in the first one [132], [146]. 

 

𝑦(𝑡) = ∫ 𝑓(𝑎)𝑔(𝑡 − 𝑎)𝑑𝑎

+∞

−∞

 (2.3) 

The g function in the Equation 2.3 represent a weight that it is applied to function f. This operation 

is usually represented with and asterisk, Equation 2.4. 

 𝑦(𝑡) = (𝑓 ∗ 𝑔)(𝑡) (2.4) 

In convolutional neural networks the 𝑓 function can be represented as 𝐼 and represents the input, 

an initial image or sets of arrays with visual information. The 𝑔 function is a kernel function 
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usually represented as 𝐾. The kernel is also an array with parameters that are changed by the 

learning algorithm to improve CNN. [132] Both I and K functions are multi-dimensional arrays, 

usually two-dimensional, i.e. matrix, and can be expressed as in Equation 2.5 [132]. 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =   ∑ ∑ 𝐼( 𝑖 −  m, j − n)𝐾(m, n)

𝑄−1

𝑛=0

𝑃−1

m=0

 (2.5) 

In the eq.2.5, the convolution is represented by summation over a finite number of the input 

dimensions, 𝑆(𝑖, 𝑗) represents the feature map wherein 𝑖 are the rows and 𝑗 are the columns of the 

image [132]. The input image is a two-dimensional array of size  𝑊 ×  𝐻 where 𝑊 is width and 

𝐻 is height which values are usually pixels. The kernel size is  𝑃 × 𝑄 [135]. Each feature map is 

an image with size 𝑊 − 𝑃 + 1 × 𝐻 − 𝑄 + 1. For instance, an input image of size 8 ×  8  and a 

kernel size of 2 ×  2 originates an output image with 7 ×  7. In CNN, it is common to use the 

Equation 2.5 with some slight differences to guarantee that the kernel function is not inverted 

when applied in the network [135]. Thus, the equation usually applied, also known as cross-

correlation, is expressed in Equation 2.6 [132]. 

 

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ∑ ∑ 𝐼( 𝑖 +  m, j +  n)𝐾(m, n)

𝑄−1

𝑛=0

𝑃−1

m=0

 (2.6) 

The kernel function is used to extract features from the input image. The kernel is also known as 

filter because its acts like a learning filter where only specific characteristics of the image are 

extracted to proceed to the next layer.[135] Each kernel has weights which are values that indicate 

the importance that the algorithm needs to give to a specific feature. [135] 

The cross-correlation function is applied in the convolutional layer, and basically, the kernel 

convolves across the input image along width and height. The kernel is constituted by local 

receptive fields that are activated when a feature is detected [135] and allow neurons to extract 

all visual features such as corners or edges at any spatial position of the input image or from a 

feature map if the convolution layer is after a pooling layer. 

 After that, CNN learns which weight must give to each feature to allow the activation of the 

receptive fields  [132], that is, the weights of each units in kernel are constantly being adjusted in 

the training process to improve feature detection [135]. Besides, this network it is also able to 

detected these features in any position [138]. 

Then, all these features pass again through other layers to extract high-order features. The 

convolution output contains several features maps in which each map contains information about 

a specific feature. Thus, the convolutional layer output has width, height and depth [132], [135]. 
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• Activation function Layer – Rectified Linear Unit 

The activation layer is usually used immediately after the convolutional layer. This layer contains 

a non-linear function applied element-wise to determine if the values of the convolutional layer 

output traduces important features. Basically, this function defines a threshold that indicates 

which neurons are activated [132], [135]. The advantage of the application of a non-linear 

function it to modulate the linear output as a non-linear function [147]. Thus, CNN can learn and 

modulate any input-output relationship. 

The most common activation function applied to neural networks is Rectified Linear Unit (ReLU) 

[135]. This function is expressed in Equation 2.7 and graphically in Figure 2.17 [132], [135].  

 𝐺𝑟𝑒𝐿𝑈(𝑥) = max {0, x} (2.7) 

When applied to CNN, Equation 2.2 previously mentioned is given as follows, Equation 2.8:  

 𝑦(𝑥) = 𝐺(𝑤𝑥𝑇 + 𝑏) = max {0, 𝑤𝑥𝑇 + 𝑏}  (2.8) 

In Equation 2.8, 𝑤𝑥𝑇 + 𝑏 is the output from linear operations such as cross-correlation and 

pooling and, in this case, the input of the activation layer [135].  

Figure 2.17 illustrates that the activation function sets all the negative values in the feature map 

to zero and all the positive values remain unaltered. In CNN, the negative values that were set to 

zero will not pass forward in the network, that is, that neurons will not fire. Concerning the 

positive values, those will pass through to the following layer because they traduce a meaningful 

feature [132]. 

 

 

 

 

 

Figure 2.17 Graphic representation of Rectified Linear Unit. Negative values x, usually the weights in 

neural networks, are set to zero. Positive values have different values according to their weight. Adapted 

from: [132] 

The main advantage of the activation function such as ReLU is the fact that accelerates the process 

of training and makes it more “effective” as Habibi et al suggest [133]. ReLU has a disadvantage 

called dead neurons, which are neurons that have a negative weight during training and that 

always conducted to zero [135].  
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Besides ReLU there are other activation function, such as Sigmoid Function and Hyperbolic 

Tangent Function Tanh, that are represented in Figure 2.18 [135]. However, the literature suggests 

that ReLU is the function that conducts to better results [147], [148]. 

  

 

 

 

 

 

Figure 2.18 Activation Functions. a) Sigmoid Function and b) Hyperbolic Tangent Function. 

• Pooling Layers 

The main objective of adding a pooling layer, also called down sampling, to a neural network is 

to reduce spatial resolution of the output of the previous layer, that is, reduce feature maps size 

[135], [138] only along their with and height. This layer is important to prevent CNN to detect 

features by its position in the receptive field and to reduce their sensibility to ships and distortions 

in the features and consequently reduces overfitting [138]. Besides, once the output is simplified 

and the CNN has to learn less parameters, this layer also reduces computational costs. [133] 

The pooling layer contains a pooling function that changes the output of the previous layer based 

on the information in the nearby outputs [132]. For instance, the pooling operation changes locally 

the feature map which is the output usually from the activation layer.  

In CNN, the most common pooling functions are max pooling, average and weighted average 

[132] and these are functions convolves along the image as a filter. The max pooling operation 

along the input selects a rectangular neighbourhood and within these pixels select the maximum 

value. The output is the maximum values of the rectangular areas considered. In the average 

operation the output value is the average of the rectangular neighbourhood pixels and in the 

weighted average the output is calculated based on distance of the other pixels to the central one 

[132]. According to Sherer et al. the max-pooling presents better results than average pooling 

[135]. In this layer, it is also common to use the stride operation, which it will be explained further, 

to avoid possible overlapping [135].  

• Sparse Connectivity, Shared weights, Zero-padding, Stride in Feature Extraction 

According to LeCun et al, the convolution operation has two important ideas: sparse connectivity 

and shared weights [135] and pooling operation has shared weights. Zero-padding and Stride are 

common both to convolutional and pooling layers. 
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Sparse connectivity: In feature extraction stage, all the layers are organized in the following 

manner: a small portion of one-layer is connected with a single neuron of the next layer. Sparse 

connectivity refers to that connection between layers and it also is related with the fact that the 

kernel size is smaller than the input image which has several pixels [132]. In fact, input image 

size makes almost impossible to connect all the neurons to each pixel, because it would be 

necessary millions of neurons and computational power. Thus, CNN by having sparse 

connectivity, the local receptive fields of the kernel pass through the input image. Then, for each 

small area of the input with the size of the kernel, the output of that area with the kernel is only 

connected with one neuron, as illustrated in Figure 2.19. Even considering that this originates a 

size reduction, it does not affect feature extraction. Besides, even small features can be detected. 

Sparse connectivity does not only increases the statistical efficiency but also reduce the 

parameters needed for learning. [132], [138]  

 

 

 

 

 

 

Figure 2.19 Connection of input layer or one hidden layer with the following layer, in CNN. In feature 

extraction state, each small parts of a layer are connected to only one unit of the following layer. Adapted 

from: [142] 

Shared weights: The shared weights also known as parameter sharing emerged to reduce 

parameters in the CNN and are used in convolutional layers [132], [138]. This means that the 

receptive field used in convolutional layers are always the same for all the image, that is, it does 

not change along the image. Thus, CNN by using the same parameters is able to detect several 

features with just one kernel which values and regardless their position [132]. 

Zero-padding: Zero-padding refers to the addiction of pixels with zero value to the border of the 

resultant feature map. During feature extraction, the size of the features maps decreases due to 

the application of the cross-correlation and pooling operations [132], [135]. Thus, zero-padding 

guarantees that spatial dimensions of the resultant feature map remain the same or with a specific 

dimension [132], [135]. This process is illustrated in Figure 2.20.  

Stride: The stride function is used in situations wherein it is wished to skip some pixels. This 

technique reduces substantially computational costs and possible loss of features information is 

not significant  [132]. An example of stride application in a feature map it is showed in Figure 

2.21. 

Hidden Layer 

Input Layer  
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Figure 2.20  Zero-padding. This figure represents an example of a 2x2 kernel applied to a 6x6 image. The 

output is a 5x5 matrix. The application of the zero-padding equals to 1, in this case, makes the dimensions 

remain the same. 

 

 

 

 

 

 

Figure 2.21 Example of application of a kernel with and without stride. Without stride there is no pixel 

skipping. With stride equals 2, the kernel skips two pixels at once. The s number represents the stride value. 

 

 

 

 

 

 

 

Figure 2.22 Layers at feature extraction vs fully connected layer. At the top, it is represented layers with 

sparse connectivity wherein a and b are the weights, xi are the input and si the output. Each neuron couple 

are connected with only one neuron of the s layer. At the bottom, it is represented a FC layer wherein each 

neuron xi is connected with all neurons of the following layer.  

• Fully Connected Layer  

The fully connected layer is usually connected with the last pooling layer of the network or with 

the last layer of the feature extraction part. Unlike convolutional and pooling layers, in FC layer, 

each unit is connected with each neuron of the previous layer [135] as shown in Figure 2.22. For 

* = 

6 x 6 input image 

2 x 2 Kernel 

5 x 5 output image 

Zero-padding, p = 1 

Without Stride 

(s = 0) 

With Stride 

(s = 2) 
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each input value of FC layer, it is multiplied a weight and it is added a bias [133] which traduces 

on the relation of high-features and classes. In CNN, this layer originates an array with linear 

unnormalized log probability scores as output with n classes, wherein n is the number of classes 

that the input image may belong too [135]. 

• Loss layer 

The loss layer is the last layer of the CNN and consists in the application of a loss function to the 

output obtained in the previous layer, usually a FC layer [132], [135]. This function also known 

as cost function is used to measure the difference between the prediction and the correct value, 

that is the loss [132].  

In deep learning, the most common loss functions are Softmax and Multiclass Support Vector 

Machine (SVM) [149]. 

Softmax function: 

Softmax function also known as multinomial logistic regression basically computes scores from 

the FC layer into a meaningful probabilities scores and calculates the loss based on those scores 

[132], [149]. These values obtained in the FC layer can be represented as a vector k and, basically,  

this vector pass through the softmax layer and originates an output which is a normalized 

probability distribution (between 0 and 1) [132]. Each predictive value in k can be expressed as 

𝑧, wherein 𝑧 = 𝑤𝑥𝑖
𝑇 + 𝑏 .The softmax function is expressed in Equation 2.10 [132], [149] 

wherein 𝑥𝑖 is the input image, 𝑧𝑘 is score obtained and 𝑧𝑗 are the scores along k array in the jth 

position. ∑ exp (𝑧𝑗)𝑗  is responsible for normalize the scores. Thus, the output of a CNN with a 

softmax function is meaningful normalize probability distribution [132]. 

 
𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥)𝑖 = 𝑃(𝑌 = 𝑘|𝑋 = 𝑥𝑖)  =  

𝑒𝑧𝑘

∑ 𝑒𝑧𝑗
𝑗

 (2.10) 

Regarding the loss value, this is calculated through the log of the probability of the score obtained 

in the FC layer matching to the correct class, as expressed in Equation 2.11 [149] wherein  𝑦𝑖 is 

the real class of the input image and it is an integer and 𝑧𝑦𝑖 is the score that the FC layer gives to 

the correct class. 

 
𝐿𝑖 = −log (𝑃(𝑌 = 𝑦𝑖|𝑋 = 𝑥𝑖))  =  

𝑒𝑧𝑦𝑖

∑ 𝑒𝑧𝑗
𝑗

 (2.11) 

Multiclass SVM loss function: 

Multiclass SVM loss function also known as Hinge loss has a different approach to loss 

calculation. Unlike Softmax, this function does not originate an output with meaningful scores. 

Instead, it quantifies how bad was the classifier performance based on loss calculations [149]. 

This function is usually applied when there are multiple classes. 
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This loss function analyses if the score of the correct class is higher than the score of the incorrect 

classes by a margin Δ, a previous stipulated constant. Basically, this function subtracts the scores 

of the incorrect classes with the score of the correct layer. Then, the sum of that difference 

between scores is made and the sum result traduces the loss [149]. The Multiclass SVM loss 

function is expressed in the Equation 2.12, wherein 𝑧𝑦𝑖 corresponds to the score of the correct 

class, 𝑧𝑗 the scores of the incorrect classes and 𝑗 the jth position in the k array and each 𝑗 correspond 

to one class.  

 𝐿𝑜𝑠𝑠 = 𝐿𝑖 = ∑ max (0,

𝑗 ≠ 𝑦𝑖

 𝑧𝑗 − 𝑧𝑦𝑖 +  𝛥) (2.12) 

This function can be represented graphically as illustrated in Figure 2.23 a). In Figure 2.23 b) is 

illustrated an example of 𝐿𝑜𝑠𝑠 = 0 because 𝑧𝑦𝑖 ≥ 𝑧𝑗  +  𝛥. 

 

  

 

 

 

 

Figure 2.23 Hinge Loss function. a) Hinge Loss b) Hinge Loss wherein the score of correct class (zi) is 

bigger than the incorrect class (zj). 

The total and final loss is given by the sum of the losses in the network, as expressed in Equation 

2.13, wherein N is the number of images in the dataset [132], [149]. This Equation is valid for 

any loss function. 

 
𝐿𝑜𝑠𝑠 =

1

𝑁
∑ 𝐿𝑖(𝑧, 𝑦𝑖)

𝑖

 (2.13) 

• CNN Regularization  

In deep learning, during the learning process the network creates a complex function to modulate 

and describe the outputs. However, sometimes the model fits too well the training data but does 

not fit in the test data and tends to occur underfitting or overfitting [132]. 

Underfitting emerge when the low error values is not good enough, and the network cannot obtain 

good results in the train test and consequently cannot replicate results to new data. Overfitting 

occurs when the CNN model fits to well in the data and the error between the training error and 

the test is to big [132].  

To prevent the network model to overfit is common to add a term in the loss function to allow the 

algorithm to choose the best generalized function that is able to modulate unseen data, the test set. 

a) b) 
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This term penalizes the weights of the neurons by making them small and near zero or by setting 

them to zero which are associated with simple functions [132], [149]. This process is called 

regularization and prevent the network to create overly complex functions. The regularization 

term is given by 𝜆𝑅(𝑊) and thus, the final loss function is given by the Equation 2.14, wherein 

R(W) is the regularization function, 𝜆 a hypermeter called regularization strength and 𝑊 the 

weight vector. The increase of the 𝜆 parameter leads to small weight [132]. 

 

𝐿 (𝑊) =
1

𝑁
∑ 𝐿𝑖(𝑧, 𝑦𝑖) +  𝜆𝑅(𝑊)

𝑁

𝑖=1

  (2.14) 

The most common 𝑅(𝑊) functions used are L1 regularization, L2 regularization and dropout. 

L1 regularization: This regularization, also known as weighted decay, set the weights to smaller 

values, and it is expressed as the squared norm of the sum of all the weights which leads to small 

weights, Equation 2.15 [132], [149]. 

 𝐿1:     𝑅 (𝑊) = ∑ ∑ 𝑊𝑘,𝑙
2

𝑙𝑘

  (2.15) 

L2 regularization:  This regularization, set some weights to zero, and it is expressed as the norm 

of the sum of all the weights, Equation 2.16 [132], [149]. 

 𝐿2:     𝑅 (𝑊) = ∑ ∑ |𝑊𝑘,𝑙|

𝑙𝑘

  (2.16) 

Dropout:  This regularization is usually placed after FC. Dropout consists in temporally remove 

random neurons during training process in forward pass to increase the ability of the network to 

learn the weights more precisely [132], [150]. An example is illustrated in Figure 2.24. Thus, the 

network act like if it was training several networks because it is training several subnetworks with 

different neurons removed. Even though it increases the time of training this does not lead to 

computational costs [150].  

 

 

 

 

 

 

Figure 2.24 Dropout layer. a) CNN structure without dropout b) CNN structure with a dropout layer. 

Adapted from: [150] 

 

a) b) 
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• CNN Training 

In AI, the intent of training is to find the weights and biases that minimizes the loss function, that 

is, which values minimizes the discrepancy between the real class and the output [132]. One of 

the most successful approaches to train a neural network is the Gradient-Based Learning [145] 

because those parameters are updated very faster. In this case, the loss function minimization is 

achieved by the calculation of its gradient with respect of weights [138].  

In CNN, it is usually used the Stochastic Gradient Descent (SGD) to adjust the weights. SGD is 

obtained using the backpropagation algorithm. Basically, this algorithm computes the negative 

gradients that faster minimize the loss function and send them backwards to beginning of the 

network to adjust the weights. Then, these update weights are propagated forward in the network 

and the process repeats until the error/loss is minimized.  

The SGD is a linear combination of the previous weight update, 𝑉𝑡, and the negative gradient 

∇𝐿(𝑊𝑡). The weight update is expressed in Equation 2.17 and Equation 2.18, wherein 𝑡 is the 

iteration number, 𝜇 momentum, 𝛼 is the learning rate, 𝑉𝑡+1the update value, 𝑊𝑡+1the update 

weight and 𝑊𝑡 the previous rate [151]. 

 𝑉𝑡+1 = 𝜇𝑉𝑡 +  𝛼∇𝐿(𝑊𝑡) (2.17) 

 𝑊𝑡+1 = 𝑊𝑡 +  𝑉𝑡+1 (2.18) 

The parameters  µ and 𝛼 are hyperparameters, where the momentum, µ, is the weight that indicates 

how much the previous weight influence the weight of the following layer, and the learning rate, 

𝛼, is the weight of the negative gradient [151] 

It is important to notice that the initialization of the weight, bias and hyperparameters is made 

according to specific methods that will not be explored in this work. 

2.6.5 State-of-the-art: CNN applications to Medical field 

CNN have many applications in several fields, such as, traffic signs identification [135], video, 

speaking and image recognition [152]. The usage of this AI algorithm has been increasing through 

the years due to the improvement of the computer power and because it has been proved that CNN 

are useful in those areas [132], [135], especially in the medical field [24], [25], [153], [154]. 

For instance, in 1995, a study used CNN for microcalcifications detection in digital mammograms 

and lung nodules on radiographs [139]. Later, in 1996, Sahiner et al. performed abnormal mass 

and normal breast tissue classification with recourse to CNN [144]. 
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In 2017, Zou et al. used a 3D-CNN to classify Attention Deficit Hyperactivity Disorder with 

structural and functional MRI and conclude that a multi-modality approach is useful to find 

neuroimaging biomarkers in brain related diseases [155].  

Regarding neurodegenerative diseases, Pereira et al. used CNN to classify electric signals of PD 

patients and healthy subjects [156]. These electric signals translate the tremors of the hand when 

subjects are drawing specific figures such as circles and spirals. Then, the electronic signal was 

converted into a time series-based image and tested with several CNN types [156].  

Liu et al. proposed a 3D cascaded CNN to study Alzheimer’s Disease (AD) in multi-modality 

approaches [24]. The study was conducted with MRI and PET images of 93 AD-patients, 204 

mild cognitive impairment (MCI)patients and 100 control subjects. The MRI and PET images 

where divided into 3D local patches. Then to each patch is was assigned a 3D CNN to extract the 

high-level features. After that, all the high-level features were compacted, and then they were the 

input of a 2D CNN. The 3D CNN was constituted by convolutional and pooling layers with three 

dimensional kernels and 2D CNN was formed by two consecutive convolutional layers, two fully 

connected layers and one softmax layer. The 3D CNN and 2D CNN architectures are illustrated 

in Figure 2.25.   

 

Figure 2.25 Multi-modality cascaded CNN architecture. This CNN was drawn by Lio et al. [24] 

The authors conclude for the approach proposed there is no need for segmentation and rigid 

registration steps in the image pre-processing steps and that comparatively with other 

classifications models, this new method present higher accuracy. The results obtained in this study 

was 93.26% accuracy for AD vs Control classification and 82.95% accuracy for MCI vs controls 

[24]. 

CNN were also applied to Multiple Sclerosis identification. A study conducted by Zhang et al., 

obtained 98.23% accuracy, 98.22% sensitivity and 98.24% specificity [154]. In this study 

participated 38 patients and 26 healthy controls. Each image was divided into slices and those 

which contained the regions associated to Multiple Sclerosis pathology were collected to the 

classification. To increase the data training, the authors performed data augmentation by applying 
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the following methods: rotation, gamma correction, noise injection, random translation and 

scaling. The CNN was constituted by 7 convolutional layers, 3 fully connected layers, dropout 

layers and the parametric ReLU layer. The authors conclude that the introduction of dropout and 

the parametric ReLU increases CNN accuracy [154].  

CNN have also been used for medical imaging segmentation. For instance, Karimi et al. study 

showed that a CNN-based segmentation framework was able to predict the coordinates of the 

prostate surface based on prostate MRI images [157] and Chen et al. used CNN to brain tumour 

MRI image segmentation [158].  

Moreover, CNN was also applied to the classification of DaTScan SPECT and MRI images. The 

following subchapter describes studies that used CNN to classify PS as well as other machine 

learning techniques used for the same propose. 

2.7 State-of-the-art: Classification methods for PS   

Through the years, several approaches have been used to attempt to classify PS. In 2017, Choi et 

al. designed a 3D-CNN to classify DaTScan images of early PD-patients, SWEDD patients, 

control (healthy) subjects and patients with non-PS [25]. Besides classification with CNN, the 

authors also analysed the performance of professionals. The images were extracted from the PPMI 

database and from the Seoul University Hospital. The 3D CNN, PD Net, is illustrated in the Figure 

2.26. This 3D-CNN is constituted by 3D-convolutional layers interleaved with pooling layers 

with the max pooling function, followed by a ReLU function, a FC layer and the softmax layer. 

The input images were normalized by the range 0 to 255 and zero-padding was also applied. The 

training process was performed with stochastic gradient descent. The training and validation sets 

were executed using images from PD and control subjects. The classification of SWEDD subjects 

were performed using the pre-trained PD Net with PD and Control images to obtain a result of 

“normal” or “abnormal” image. Then, the prediction was compared with the diagnosis of the 

PPMI database. Concerning PD patients, in the test set it was obtained 96.0% accuracy, 100% 

specificity and the 94.2% Sensitivity. The authors also verified that these results are higher than 

those achieved by the visual and conventional quantification [25].  
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Figure 2.26 Deep convolutional neural network for DaTscan SPECT images classification designed by 

Choi et al. [25].  

Another study conducted by Martinez-Murcia also used CNN to distinguish DaTscan SPECT 

images of PD-patients, SWEDD patients and Healthy subjects. Firstly, using a traditional CNN, 

similar to the one designed by LeCun et al., it was classified PD vs Control which result in 95.5% 

accuracy, 96.1% sensitivity and 94.5% specificity. Then, it was classified PD vs Control vs 

SWEDD which leads to 82.0% accuracy [153].   

Moreover, Esmaeilzadeh et al. developed a deep learning framework for PD classification with 

3D-CNN using MRI images. The architecture of the network is constituted by 3 blocks of 2 

convolutional layer and 1 pooling layer wherein the activation function for each layer is the 

Leaky-ReLU, two fully connected layers and one softmax layer. Besides MRI images, the authors 

also tested an approach of introducing two features in the last FC layer: age and sex. The 

introduction of these two variables increases the accuracy of the classifier. Furthermore, to a better 

understanding and visualization the output of the CNN model they create a Parkinson Heat-Map 

of Brain of the axial, sagittal and coronal views. These maps are images with a colour scale that 

translates the most significant and critical areas in the image that the CNN considered as an 

important feature as illustrated in Figure 2.27 [22].. In this case, it coincides with the pathological 

regions in PD: Substantia Nigra, Basal Ganglia and the Superior Parietal [22].  

 

 

 

 

Figure 2.27 Parkinson Heat-Map of Brain in the Esmaeilzadeh et al study. a) Coronal view b) Axial view 

c) Sagittal view. At blue colors indicate the critical regions for PD diagnosis. Adapted from: [24] 
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Besides CNN, other approaches have been used to analyze and/or classify SPECT images. Some 

studies used a fully automated Objective Striatal Analysis (OSA) to calculate the striatal binding 

ratio [159]–[161]. The striatal binding ratio is a measure used by specialists to analyse the SPECT 

images, since this ratio is different in PD-patients in comparison with healthy subjects. This ratio 

is given by the ratio of striatal region and the occipital minus 1 [162].  

Regarding OSA, in a succinctly explanation, in this technique the DaT SPECT images are re-

oriented with a standard average template and the algorithm OSA automatically detects the 

striatum and the occipital structures and calculate the binding ratio of these structures [159]. Once 

this ratio is lower in PS patients [116], this algorithm is able to detect that difference in comparison 

with healthy subjects and that is why it is considered an useful tool [160]. A study that made usage 

of this technique achieved similar ratios to those manually obtained by a specialist [159]. 

Interestingly, OSA allows the detection of the laterally asymmetry in the dopamine of the striatum 

[161] which causes unilateral symptoms [163].  

Besides OSA, Machine Learning methods such as SVM were also used for PS diagnosis [164]–

[166]. SVM is a supervised learning algorithm used for pattern recognition [167].  

Briefly, SVM is an algorithm that transforms the input vectors into a feature map space that is 

filled with points originated from the training process. Then this feature map has a hyperplane, 

the optimal mathematical model, that works like a decision boundary to separate training data 

points from each class. The best hyperplane is the one that optimizes the algorithm, that is, the 

hyperplane that it is maximally distant from both classes and that best divide them [167]. In 

complex cases, wherein, the training data points from the both classes are mixed and the linear 

hyperplane is not able to divide the points of each class, it is usually used kernel techniques [168]. 

Prashanth et al. used SVM to classify SPECT images of early PD-patients and controls and 

performed a logistic regression to estimate the risk of PD. The SVM classification was performed 

using the striatal binding ratio as a feature, and it was obtained an 96% accuracy using a kernel 

and 92% accuracy when used linear SVM [164]. Other studies using SVM and SPECT images  

classified early-PD and controls based on the side of the brain that was affected [166].  

In 2015, Oliveira et al. obtained a high accuracy result with the SVM using a voxels-as-features 

approach [21]. The classifier achieved 97.86% accuracy using specific voxels of the volume of 

interest as features for the SVM. These voxels were from the cortex and occipital area [21]. Other 

study elaborated by Tagare et al. that also used a voxel-based logistic analysis reveal that voxels 

in the caudate, the putamen and globus pallidus are useful for PD and Control classification. 

Moreover, this approach could distinguish SWEDD-patients from PD-patients, but not SWEDD-

patients from control group. They also develop a new method called logistic component that 
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revealed interesting findings related with age and sex of the subjects. In fact, this study showed 

that exists a normal increase of dopaminergic degeneration due to aging but that it is smaller and 

less significant in comparison with PD-Patients. Moreover,  the authors also showed that there is 

no evidence of difference in the dopamine degeneration between female and male PD-patients 

[20]. 

Regarding MRI images studies that also used other algorithms than CNN, Singh et al. also used 

two combined machine learning algorithms to classify T1-weighted images of PD, SWEDD and 

control subjects of the PPMI database. Those methods were an unsupervised Self-Organized Map 

(SOM) used for feature extraction and a supervised learning based Least Squares Support Vector 

Machine to classification (LSSVM). The (SOM) algorithm was able to detect the biomarkers that 

differ SWEDD from PD and the test was performed by dividing the data set in two groups: Age-

unrelated groups and age-related groups. The case that they considered that had the best 

performance was when it was used age-related groups and LSSVM classifier obtained  99% 

accuracy for PD vs SWEDD [169].  

Other study performed by Duchesne using also T1-weighted MRI images to classify PD, PSP and 

MSA achieved higher accuracy results (90.6%) and 93.3% sensitivity and 88.2% specificity. They 

used features from the characteristics of the hindbrain in the MRI images, namely shape and 

intensity,  as input for the SVM algorithm [170]. Salvatore et al. also applied SVM algorithm to 

distinguish PD from PSP. The authors performed a voxel-based analysis and conclude that best 

areas to discriminate this two PS were: midbrain, corpus callosum and thalamus [171]. Zhang et 

al. discriminate PD and ET using machine learning framework based on SVM and statistical 

analyses for classification. The significant features were extracted with the Principal Component 

Analysis technique from the most significant regions of interest: caudate, calcarine and right 

medial frontal gyrus. The resulting accuracy was 84.54%, 84.48% and 87.22% for caudate, 

calcarine and right medial frontal gyrus, respectively [172].  

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 3 Methodology  

 

This section is divided in four main topics: study population, MRI and DaTscanTM pre-processing 

steps, train, validation and test set formation and CNN architecture. Firstly, it is presented the data 

population selection, the criteria for data extraction and data set formation will be explained. 

Secondly, the pre-processing of the MRI and SPECT images will be described as well as the 

formation of the slices that will be used for the classification. Then, the CNN framework used in 

this work will be described together with the parameters and images used for train, validation and 

test sets. Lastly, the methods used for the evaluation of the model performance will be presented 

and described as well. 

3.1 Study population 

The images used in this study were extracted from the PPMI database. PPMI is an international, 

multi-center and longitudinal study constituted by data that came from several clinical sites in the 

world, such as, United States, Europe, Israel and Australia [173]. 

This database is a landmark for the clinical study of PD progression and its goal is to improve the 

understanding of the disease and boost the research to refine the PD therapeutics and adequate it 

for each patient [174]. PPMI is comprised of biological samples, clinical behavioural assessments 

and medical images obtained from different techniques based on standardized protocols. These 

biomarkers are available for the scientific community to aid the investigation, study and 

identification of biomarkers related with PD progression [174].    

In the present moment of this study, the database was constituted by a total of 26295 brain scans 

and 1184 participants. These participants are divided into six cohorts according to their 

characteristics, diagnoses and exams results. The six cohorts are: 

• Control Subjects: This group is comprised by health participants who are 30 years or 

older and do not present first degree blood relatives with PD. This exclude the risk of the 

disease being inherited from relatives [175]. 

• de novo PD subjects: This group contains participants early-diagnosed with PD (up two 

years) and that never were medicated with PD medication [175]. 

• Prodromal subjects: These participants do not have PD but were diagnosed with 

hyposmia or sleep behaviour disorder, which are features that may suggest the beginning 

of PD [175].  

• SWEDD subjects: This group contains people early diagnosed with PD that present a 

normal DaTscanTM  [175]. 
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• Genetic Cohort Subjects: This group is comprised by subjects who have a genetic 

mutation in a specific gene, and that were diagnose with or without PD [175]. 

• Genetic Registry Subjects: This group is comprised by subjects diagnosed with or 

without PD who have a genetic mutation or a first-degree relative [175]. 

 

All subjects, except controls, had been submitted to the cognitive tests MoCA, and two motor 

assessments MDS-UPDRS and Hoehn and Yahr scale performed in PPMI clinical sites.  

 

PPMI is constituted by several brain scans obtained from different medical imaging techniques: 

Computed Tomography (CT), Diffusion Tensor Imaging (DTI), SPECT, Positron Emission 

Tomography (PET), MRI and Functional Magnetic Resonance (fMRI) [174]. Although, all of 

these techniques are important for PD study [84], in this work it only will be used images acquired 

with MRI and SPECT. Moreover, it was also needed that the subjects in the study had some 

characteristics in common. Therefore, exclusion criteria based on 7 criteria were applied as 

described in the following section and summarized in Table 3.1. 

3.1.1 Exclusion and inclusion criteria  

1. Group Exclusion:  

This study is focused on PD, SWEDD and Healthy subjects due to the need to 

distinguish them. Therefore, all groups except de novo PD, SWEDD and Control were 

excluded. After this selection, the data sample was comprised by 23163 images and 

749 participants. 

2. Images Exclusion:  

As referred previously, only MRI and DaTscanTM SPECT images were used. On one 

hand, MRI images give anatomic information and allow to find changes in 

pathological brains when compared to controls. On the other hand, DaTscanTM 

provides information about striatum function. After this selection, the data sample was 

comprised by 7831 images and 749 participants.  

3. Exclude pre-processing MRI data:  

In PPMI, some MRI are already processed. Since in this study it is needed that they 

must undergo the same processing, only the original MRI images will be considered. 

SPECT images do not need this criterion because PPMI only have pre-processed 

DaTscan images. After this selection, the data sample was comprised by 6425 images 

and 749 participants. 

4. T2 and PD MRI images exclusion:  

- The PPMI database consists of several MRI images, namely Proton Density Weighed 

(PD-W), T1-W image an T2-W images. In this study only the T1-W images will be 

used due to the following reasons: 
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- The conventional T1-W images have been considered important for the study of PS 

because they can translate biomarkers that indicates structural changes that occur 

during the progression of these diseases [84].  

- In fact, T1-Weighted images are usually used for distinguishing PS such as PSP from 

PD and normal subjects [176]. This happens because PD patients present subtle 

changes in T1-Weighted images unlike other PS that have visible changes in MRI 

images [84]. 

- Besides, T1-Weighted can also detect changes in putamen volume in both early and 

advanced stage of PD [95].  

After this selection, the data sample was comprised by 3130 images and 749 

participants.  

5. MRI exclusion according to their acquisition characteristics: 

 PPMI database is comprised by several T1-weighted MRI images which have 

different acquisition parameters from each other such as the magnetic field, sequence 

acquisition and their dimension (2D or 3D). According to the literature, 3D images 

have higher spatial resolution than 2D images [177]. This is due to the fact that 3D 

images have a smaller section thickness that ensures that there is no loss of spatial 

information, which does not happen with 2D images [178]. Regarding the intensity of 

the magnetic field, it is possible to obtain good results with either 1.5T or 3T [179]. 

Images acquired with 3T allow that early stages of PD can be detected, but whether 

3T or 1.5T, good results can be obtained to detect  PS using both intensity scans [95], 

[180]. Moreover, according to the Canadian Agency for Drugs and Technologies in 

Health, it cannot yet be clinically concluded that 3T is more effective than 1.5T since 

it cannot be ascertained whether or not patients receive a personalized treatment and 

whether or not it translates into a different clinical outcome [181]. Thus, according to 

this, all the 3D T1-W images which acquired whether with 1.5T or 3T were included 

in this study. After this selection, the data sample was comprised by 3111 images and 

749 participants.  

6. Subjects must have both exams - MRI-SPECT pair:  

This criterion is one of the most important. To compare images from different imaging 

techniques and to guarantee that SPECT images are adjusted to the respective subject, 

it is mandatory that each subject has at least one T1-weighted image and one 

DaTscanTM SPECT. Thus, all the participants that only have one MRI image or one 

DaTscanTM were excluded. After this selection, the data sample was comprised by 

3085 images and 728 participants.  

7. Selection of MRI and SPECT images with the closest dates: This criterion joins 

SPECT and MRI images that have the closest acquisition dates with the aim to form 
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image pairs. According to National Institute for Health and Care Excellence of the 

United Kingdom, patients with PD should be seen regularly to review their diagnosis, 

with intervals of 6-12 months [182]. In PPMI, there are participants that have more 

than one DaTscanTM or more than one T1-W image. In these cases, it is necessary to 

select which exam will be used to form MRI-SPECT pair. Thus, the MRI and SPECT 

exams that are selected to form a pair are the ones with closest dates, that is, the ones 

that only differ in a maximum of 6-12 months. Besides, since PPMI is a longitudinal 

study, several subjects have more than one SPECT and MRI pair. In this work it was 

considered one MRI-SPECT pair for each subject at baseline. After this selection, the 

data sample was comprised by 1244 images and 622 participants. 

Table 3.1 Exclusion Criteria for Population of the study 

Data Criteria 

PPMI 

Images = 26295 

Participants = 1184 

 

 1st Exclusion criterion: 

Exclude all the groups except: Control, SWEDD 

and de novo PD 

After application of 1st Exclusion criterion: 

Images = 23163 

Participants = 749 

 

 2nd Exclusion criterion.: 

Removal of all the exams that will not be used  

(DTI, CT, fMRI and PET)  

After application of 2nd Exclusion criterion: 

Images = 7831 

Participants = 749 

 

 3th Exclusion criterion: 

Exclude all the processed MRI data 

 After application of 3nd Exclusion criterion: 

Images = 6425 

Participants = 749 

 

 4th Exclusion criterion: 

 T2-W and PD-W MRI images exclusion 

After application of 4th Exclusion criterion: 

Images = 3130 

Participants = 749 

 

 

 

 

 

 5th Exclusion criterion: 

MRI exclusion according to their acquisition 

characteristics 

After application of 5th Exclusion criterion: 

Images = 3111 

Participants = 749 
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 6th Exclusion criterion: 

Subjects must have both exams  

After application of 6th Exclusion criterion: 

Images = 3085 

Participants = 728 

 

 7th Exclusion criterion: 

Selection of MRI and SPECT images with the 

closest dates and at Baseline where each subject 

only have one MRI and SPECT pair 

After application of 7th Exclusion criterion: 

Images = 1244 

Participants = 622 

 

 

3.1.2 MRI and SPECT Acquisition  

MRI and SPECT images used in this work were acquired in clinical sites of PPMI. This 

acquisition is based on a standard protocol developed by PPMI [174]. Although acquired with the 

same protocol, it is also important to notice that the images were acquired in MRI machines from 

different companies. As previously referred, those images were acquired at Baseline [183]. The 

3D T1-Weighted images used in this study were acquired from Sagittal or Axial planes [183]. 

Regarding DaTscanTM SPECT images, those are acquired after 4±0.5 hours after the radiotracer 

Ioflupane I123 injection  [184].  

The acquisition parameters of the MRI and SPECT images used in this work are described in the 

Appendix A. This information was extracted of the header of the DICOM MRI and DaTscan brain 

scans and from the PPMI database website (https://ida.loni.usc.edu/login.jsp). 

3.1.3 Statistical data sample analysis 

In this dissertation, it is intended groups with age and sex matched. Thus, the PD patients, 

SWEDD patients and Control subjects were considered categorical independent groups, wherein 

the age of each subject is a numerical variable and sex is a categorical variable. Then, it is was 

performed the Mann-Whitney U Test to test if there are age differences between the groups and 

the Chi-Square Test to test if there are associations between the sex of the groups since for the 

subjects of those groups must share similar characteristics to allow a reliable comparison.  

Mann-Whitney U Test is a non-parametric test used to compare differences between two 

independent groups, when the dependent variable is numerical or ordinal [185]. In its turn, Chi-

Square Test is used to detect if there are any relationship between two categorical variables [185]. 

Both methods test the Null hypothesis (H0). This hypothesis postulates that there is no difference 

two phenomena using Mann-Whitney U Test and no relationship using Chi-Square Test [186]. 

The Null hypothesis is rejected when a value, called p-value, is less than a significant level. In 

this work, it was considered that the significant level is 0.05 because it usually the suggested by 

https://ida.loni.usc.edu/login.jsp
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the literature. Thus, if the p-value is less than 0.05, there is a significant difference for Mann 

Whitney U test  or association between two groups using Chi-Squared Test. Otherwise, if the p-

value is higher than 0.05, then there is no significant difference or association [185] depending 

on the test used. Both Mann Whitney U and Chi-squared tests were performed using the SPSS 

software.  

3.2 MRI and SPECT pre-processing and registration 

The principal aim of this procedure is to align brain scans even coming from different subjects 

into a common space using a standard template. All the pre-processing steps performed in this 

study followed typical procedures described and used in the literature [24], [25], [123], [187]. 

Firstly, both type of images, MRI and SPECT, were downloaded in Digital Imaging and 

Communications in Medicine (DICOM) format. After extracted, T1-Weighted and DaTscan 

images were converted from DICOM to Neuroimaging Informatics Technology Initiative (NIfTI) 

format with Statistical Parametric Mapping 12 (SPM) and dcm2nii – Neuroimaging tools & 

Resources Collaboratory, respectively. This format is the most used format in imaging pre-

processing programmes because it facilitates data analysis [188]. 

Concerning the MRI pre-processing steps, they were performed using SPM12. SPM12 is an 

academic toolkit develop by Wellcome Trust Centre for Neuroimaging at University College 

London for functional data analysis and image processing based on statistical and mathematical 

concepts [189]. The pre-processing steps were: Anterior Commissure (AC) – Posterior 

Commissure (PC) alignment correction, bias regularisation, affine registration to Montreal 

Neurological Institute - International Consortium for Brain Mapping (MNI-ICBM) brain 

template, spatial normalisation, and smoothing. These steps were performed as follows: 

1. The AC – PC alignment correction was manually performed to ensure that the T1-Weighted 

images have the closest orientation to the template and to facilitate the following steps [190]. 

This was executed using the “Display” option of the SPM12 interface; 

2. To to reduce artefacts in MRI images and correct non-uniform intensity inhomogeneities 

caused by high-fields, it was applied bias regularisation = light regularisation (0.001) and Bias 

Full Width at Half Maximum (FWHM) = 60 mm cutoff (default values). This step was 

performed using the “Segment” option. 

3. Affine registration was performed to register the MR images to the MNI- ICBM template. 

This process was performed with the “Segment” option. This step allows the formation of 

Deformation Fields images which are images that express information about the shapes of the 

subject brain and traduces the amount of displacement of these shapes in the location of 3D 

space [191]. Then, the Deformation Fields are used in the following step to complete the 

registration process.  
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4. Spatial normalization was used to handle scans into standard stereotactic space [191]. This 

step was performed using “Normalize: Write” with the deformation fields obtained in the 

previous step. 

5. Smoothing is used to improve signal-to-noise ratio, reduce artefacts in MRI images and correct 

non-uniform tissue intensities 2. This step was performed using “Smooth” option with FWHM 

=2 [191], [192].  

Regarding SPECT images, the DaTscanTM were already pre-processed when extracted from 

PPMI. According with the information provided by PPMI [193], SPECT raw projection data were 

acquired at PPMI Imaging centres and were sent to the HERMES (Hermes Medical Solutions, 

Stockholm, Sweden) to be reconstructed with the system for iterative reconstruction based on 

hybrid ordered-subset expectation maximisation, an algorithm for image reconstruction. In this 

step, no filters were applied [193].  Then the subsequent processing was applying a standard 3D 

Gaussian 6.0 mm filter to the resultant image. [18] Following that, all the scans were normalized 

to Montreal Neurologic Institute (MNI) space, a template that was created based on healthy young 

subjects [193].  

Therefore, in this study, the only processing step that was performed to the SPECT images were 

the co-registration with the MRI images resultant from the smoothing step. The co-registration 

allows that SPECT and MRI images have the same spatial normalization. All DaTscanTM were 

co-registered with the respective T1-weighted image of the same subject. This was performed 

using “Coregister: Estimate & Reslice” option [192].  

3.2.1 Input images 

In clinical practice, the conventional medical images are 2D images [27], since 3D images present 

higher time of acquisition [194]. Thus, the 3D pre-processed MRI and SPECT images were 

divided into two-dimensional slices in PNG format which is compatible with software application 

used [195]. The slices were obtained from the Axial anatomical view illustrated in Figure 3.1.  

 

 

 

 

Figure 3.1 Anatomical planes of the brain. The Coronal view separate the front from the back of the brain. 

The Sagittal separates the left side from the right side. The Axial view is from the bottom of the brain to 

the top and it is the one used in this study. Adapted from [196]. 

Both MRI and SPECT images have the same dimensions due to the registration process, 

79x95x79 voxels. Thus, each 3D Axial and each DaTscanTM image was divided in 79 slices. One 

Sagittal Coronal 

Axial 
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example of the slices obtained of one healthy subject is represented in the Appendix B. Each 

Axial slice has a size of 79x95 mm2. The division in slices was performed using MATLAB. 

After the division, it was applied a Contrast Limited Adaptive Histogram Equalization (CLAHE) 

to the resultant slice that were used in the classification. The CLAHE is an approach based on the 

Histogram Equalization (HE).  HE is an image processing method used to increase the quality of 

the images based on contrast enhancement [197]. Basically, the HE uniforms the greys levels of 

an image using a histogram that reflects the uniform distribution of that grey levels. In its turn, 

unlike HE, CLAHE has a local approach in which it is performed an histogram for each region of 

the image [197]. The CLAHE was performed with the function “adapthisteq” of the MATLAB.  

3.3 Classification with Convolutional Neural Networks 

3.3.1 MedCNN and Caffe 

In this study, it was used an application based on the deep learning framework Caffe. This 

application called MedCNN: convolutional neural networks for medical applications was 

developed by Godinho at Institute of Biophysics and Biomedical Engineering (IBEB) to be 

applied to the classification of biomedical signals and medical images  [195].  

Caffe is an open source framework of deep learning algorithms namely convolutional neural 

networks, developed by Berkeley AI Research. Caffe makes use of Graphics Processing Units, 

known as GPU, to fasten computation than using only the CPU [198]. GPU are powerful 

electronic circuits that are able to increase the parallel computing with a good energy efficiency 

[199], Figure 3.2.  

The Caffe framework is comprised by C++ libraries, Compute Unified Device (CUDA®) and 

Blobs. All the implementation of this framework is C++ based [198] and the acceleration of Caffe 

computation [135] is performed by CUDA and cuDNN library , develop by NVIDIA [200]. The 

Blobs act like Protocol Buffers. Protocol Buffers are methods that serialize data, that is, convert 

data to formats for storing and communication [201] and they are compatible with several 

programming languages.  

In its turn, Blobs are 4-dimensional arrays to store and communicate data within Caffe libraries 

[198]. Usually, Blobs stores batches of images and parameters of the network [198]. In this case 

that large-data is used, the data is store in Lightning Memory-Mapped Database Manager 

(LMDB) format. The LMDB library stores the data as byte arrays and it is characterized by its 

memory efficiency and elevated performance [202].  



3.3 Classification with Convolutional Neural Networks 

 

51 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 GPU versus CPU. During GPUusage, several of operations are performed by the GPU while 

CPU just runs some code.  GPU has thousands of cores to process work in parallel and intensive functions, 

like shown in the image, e.g., three lines are processed at the same time unlike CPU which only have 

multiple cores and process in a serial sequence and one line at once. Adapted from: [200]  

 

Caffe also provides interfaces for MATLAB and Python [198]. For instance, the MedCNN 

interface was developed using Python code [195]. See Figure 3.3 

 

 

 

 

 

Figure 3.3 Framework Caffe and MedCNN application. Protocols Buffers, C++ and CUDA allow the 

criation of the Caffe Library that contains files that can be used by the Caffe user. The MedCNN application 

was develeoped using the python interface. Adapted from:[135] 

Concerning the installation process of both Caffe and application of MedCNN, firstly is installed 

CUDA 8.0 and respectively cuDNN, followed by some Caffe dependencies required and 

described at Caffe website. The Anaconda Python 2.7 is also installed to allow the use of Caffe 

python code. Then, the framework Caffe is installed and MedCNN can be lunched trough the 

Spider, a python development environment, of Anaconda.  

In this work, it was used a CentOS Linux 7, with the processor Intel® Xeon(R) CPU E5530 @ 

2.40GHz × 4 and the graphic card GeForce GTX TITAN X/PCIe/SSE2. This GPU is 

characterized by its high performance due to its features: 3072 CUDA cores, 7.0 Gbps of memory 

clock and 12 GB of random access [200] which make it one of best NIVIDIA graphic cards [203]. 
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3.3.2 CNN architecture  

The MedCNN application works with the following network architecture. Firstly, the input data 

of the untrained network (the PNG slices) are converted to the LMDB format and scaled to 1/255 

to set the intensity of the pixels of the image into a range of 0 to 1 to guarantee an intensity 

normalization of the images [204]. This scaling also enables faster computing since set all the 

inputs with the same covariance which helps in calculations in the training process [205]. Then, 

the data pass through the CNN architecture designed in the Figure 3.4.  

Figure 3.4 CNN designed in the MedCNN application and adapted to this study. The input and features 

maps have size denoted as Height x Width (Caffe notation). Adapted from: [195] 

This CNN is inspired in the LeNet develop by LeCun et al. [138] and used in Godinho work [195]. 

As illustrated in Figure 3.4. The CNN is comprised by the following order and layers: 

• Convolutional layer with a kernel size of 5x5, stride equal 1 and an output of 100 

features maps in the first layer and 200 features maps in the second layer; 

• Pooling layer with max-pooling function, kernel size of 2x2 and stride equal 2 and 

an output of 100 features maps; 

• Convolutional layer with a kernel size of 5x5, stride equal 1 and an output of 200 

features maps; 

• Pooling layer with max-pooling function, kernel size of 2x2 and stride equal 2 and 

an output of 200 features maps; 

• Inner Product Layer, the Fully Connected layer originates 100 output values 

• Activation layer with the ReLU function  

• Inner Product Layer: from the Fully Connected layer results 2 outputs which are 

the number of classes that the image may belong to. 

• Softmax layer with the Softmax loss function.  

A weight filler was applied to all layers except ReLU and Softmax layers. A weight filler is an 

algorithm that initializes the weights. In  this work, it was applied the weight filler Xavier which 

is based on Glorot and Bengio study [206], and basically set the initial values of the weights based 

on the number of inputs and output nodes. 
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For the learning process it was used the SGD with the Backpropagation algorithm. In this 

procedure, it was performed a learning rate decay policy that defines how the algorithm learns the 

weights.  

In this approach, it was used a learning rate decay policy defined as 𝛼𝑖𝑛 × (1 +

𝑔𝑎𝑚𝑚𝑎 ×  𝑖𝑡𝑒𝑟)− 𝑝𝑜𝑤𝑒𝑟, wherein 𝛼𝑖𝑛 is the initial learning rate, 𝑔𝑎𝑚𝑚𝑎 is a value that drops 

the learning rate, 𝑖𝑡𝑒𝑟 is the current iteration, and 𝑝𝑜𝑤𝑒𝑟 is related with the decay function. The 

parameters were initialized as follows: 𝛼𝑖𝑛 has the value 0.001, gamma has the value 0.0001, 

power has the value 0.75 and momentum has the value 0.9. In this case, the regularization is given 

by the weight decay that was initialized with the value 0.0005. The maximum iterations was 5000 

and for each 500 iterations occurs a validation test [195]. These backpropagation hyperparameters 

are stored in a file created by Caffe, called solver. These parameters are based on Godinho work 

[195] and caffe documentation.   

3.3.3 Train, Validation and Test Sets  

To train, validate and test the algorithm it was used the Monte Carlo cross-validation method 

present in the MedCNN application. This method randomly splits data into two sets: train set and 

test set Then, this process is repeated several times and several batches with one train set and one 

test set are formed. The resultant accuracy is given by the average of the accuracy of the batches 

[207].  In this case, the data is divided into three parts: the train set, the validation set and test set. 

Moreover, this method also prevents biased estimations.  

In the train set, the train data is used to optimize the function that best fits the data, for instance, 

the weight model. In the validation set, the data it is used to optimize the hypermeters such as 

number of iterations and learning rate, to estimate the error between the value predicted and the 

real value and, thus, to verify if the network does not overfits. The validation occurs during 

network training. In its turn, the test set are non-labelled and unseen data by the trained network 

that test and evaluates the network  [208].  

In this study, Monte Carlo 5-fold cross-validation was performed to obtain 5 batches for each 

classification group. It was applied an approach of splitting the data in 50% for the train set, 25% 

for the validation set and 25% for the test set. Thus, for each batch it was used a split relation of 

2:1:1 (train, validation and test).  

In this work, the group of subjects that had the less subjects was considered the limiting group 

and n corresponded to number of individuals of that group. Thus, for each classification 2n 

subjects was used which corresponds to the sum of the n subjects of the limiting group with n 

subjects random extracted from the group with more subjects.  
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In this study, it was performed the following classification: Control vs PD, Control vs SWEDD 

and PD vs SWEDD. The Table 3.2 resumes each classification group.  

Table 3.2 Characteristics of each classification group 

Groups Nº batches 

Sets* 

Train Validation Test 

Control vs PD 5 

50% (
1

2
𝑛 Control + 

1

2
𝑛 PD) 

25% (
1

4
𝑛 Control 

+ 
1

4
𝑛 PD) 

25% (
1

4
𝑛 Control 

+ 
1

4
𝑛 PD) 

Control vs SWEDD 5 

50% (
1

2
𝑛 Control + 

1

2
𝑛 SWEDD) 

25% (
1

4
𝑛 Control 

+ 
1

4
𝑛 SWEDD) 

25% (
1

4
𝑛 Control 

+ 
1

4
𝑛 SWEDD) 

PD vs SWEDD 5 

50% (
1

2
𝑛 PD +  

1

2
𝑛 SWEDD) 

25% (
1

4
𝑛 PD + 

 
1

4
𝑛 SWEDD) 

25% (
1

4
𝑛 PD + 

 
1

4
𝑛 SWEDD) 

* 𝑛 is the number of subjects of the limiting group 

The cases where this division into data sets gives non-integers numbers, the size number of the 

train and validation sets is round half down to the nearest integer and in the test set the size number 

is round half up to the nearest integer.  

To increase the information given to the network regarding regions of interest the slices were 

assembled into groups of three, as illustrated in Figure 3.5, and the average of the three slices was 

performed to produce a slice without loss of texture information as described in Savio et al. study. 

[209]. Thus, the resulting voxels are the average of the intensities of the matching pixels. The 

resulting slice is, then, the input of the CNN. The generation of slices was for all subjects. 

1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 

21 22 23 24 25 26 27 28 29 30 

31 32 33 34 35 36 37 38 39 40 

41 42 43 44 45 46 47 48 49 50 

51 52 53 54 55 57 57 58 59 60 

61 62 63 64 65 67 67 68 69 70 

71 72 73 74 75 77 77 78 79 --- 

Figure 3.5 Illustration of the groups of three slices that formed the 3-channel slices. 

In this case, it was only considered slices from 21 to 47 since they contain specific regions of 

interest. The slice 21 contains the beginning of the mesencephalon and the slice 47 contains the 

end of the septum pellucidum.  

To summarize, the classification was performed according to the following order:  
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1. Classification of MRI slices: 

1.1 Control vs PD 

1.2 Control vs SWEDD 

1.3 PD vs SWEDD 

2. Classification of the DaTscan slices: 

2.1 Control vs PD 

2.2 Control vs SWEDD 

2.3 PD vs SWEDD 

3.3.4 Test/ Evaluation of the Classifier CNN 

The test results are stored in a comma-separated value (.cvs) file. Thus, it is possible to analyse 

the results using statistical methods. The analysis of the test set results is based on the calculation 

of the Accuracy, the Sensitivity, the Specificity, the Positive Predictive Value (PPV) and the 

Negative Predictive Value (NPV).  

The accuracy defines the proximity of the results obtained to the real value, i.e., discrimination 

between patients from healthy subjects. The sensitivity evaluates the ability of the test to correctly 

predict if the subject has the disease and the specificity translates the capacity of the test to rightly 

predict healthy subjects.  

In its turn, the PPV defines the probability of having the disease if the test is positive and the NPV 

defines the probability of do not have the disease if the test is negative [210]. The calculation of 

those parameters was performed using the confusion matrix in Table 3.3. In this study, the 

probability of having PD or to not having PD (control group), the probability of being SWEDD 

to not having SWEDD (control group) and the probability of having PD to having SWEDD was 

compared.  

To evaluate the performance of the classifier, the Cohen’s Kappa coefficient and the Receiver 

operating characteristic (ROC) curve was used. The Cohen’s Kappa (ĸ) method measures the 

interrater reliability, that is, the agreement between two or more classifiers by taking into account 

that may occur agreement by chance. The agreement happens when two or more classifiers set 

the same score to the variables. Thus, if ĸ=1, the agreement is perfect [211]. The calculation of 

the Cohen’s Kappa is expressed in Table 3.4. 

In its turn, the ROC curve is a method that evaluates the classifier performance [212]. This curve 

is given by the plot of sensitivity vs false positive rate (FPR) that it is calculated by 1-specificity, 

as illustrated in Figure 3.6.  
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Table 3.3- Confusion matrix for the calculation of Sensitivity, Specificity and PPV and NPV. The ‘a’, ’b’, 

‘c’ and ‘d’ defines the number of subjects for each situation 
 

 Disease Not Disease  

Positive Test a  b 

 

PPV = 
𝑎

𝑎+𝑏
 

 

Negative Test c d NPV = 
𝑑

𝑐+𝑑
 

 Sensitivity = 
𝑎

𝑎+𝑐
  Specificity = 

𝑑

𝑑+𝑏
 Accuracy = 

𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
 

 

Table 3.4 Calculation of Cohen’s Kappa. The a,b,c and d are the same as in the Table3.3 

Cohen’s Kappa 

𝑘 =  
𝑝𝑜 − 𝑝𝑒

1 −  𝑝𝑒
 

N = a + b + c + d 

𝑝𝑜 =
(𝑎 + 𝑏)

𝑁
 

𝑝𝑒 =  
(𝑎 + 𝑏)

𝑁
×  

(𝑎 + 𝑐)

𝑁
+  

(𝑐 + 𝑑)

𝑁
×

(𝑏 + 𝑑)

𝑁
 

 

 

 

 

 

 

 

Figure 3.6 Example of a ROC curve 

The closer is the curve to the sensitivity axes, the greater is the power of discrimination of the 

classifier. When the curve is near the chance line, it suggests that the classifier is not good at 

distinguish the two classes under testing (e.g. disease from healthy) [212].  The measure that 

translates the meaning of ROC curve is the area under the curve (AUC). AUC that analysis 

effectiveness of the classifier to distinguish disease from healthy and it based on the sensitivity 

and FPR. If AUC = 1, the classifier is perfect at performing that distinction. If AUC = 0.5, then 

the classifier is not better than change for balanced groups (i.e.groups with the same number of 
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subjects). If AUC = 0 the classifier set all the healthy subjects as unhealthy and unhealthy subjects 

as healthy [212], for example.  

In this work, the ROC curve was calculated with 95% confidence interval and it is given by the 

average of the ROC curve and AUC of the 5 batches. The standard deviation represents the 

difference between the resulting average and the batches of each imaging technique. The ROC 

curve was only performed for the slices that showed the highest accuracies. The ROC curve   and 

the AUC was performed using python. 



 

 

 

 

 

Chapter 4 Results 
 

4.1 Study Population 

The resulting data sample obtained after imaging pre-processing steps and respective 

demographic information of the subjects are summarized in Table 4.1. Due to noise and image 

artefacts, 18 MRI brain scans and the matching SPECT images were excluded.  

Thus, in this work, 1,208 images and 604 subjects were used. Table 4.1 shows that from the 604 

subjects, 168 were Control subjects, 338 PD patients and 58 SWEDD patients, in which each 

subject has one MRI and one SPECT images. The average age for Controls is 60 ± 11 years old, 

62 ± 8 years old for PD and for SWEDD is 62 ± 10 years old. Regarding sex, the gender ratio in 

terms of F/M was 0.54 in the Control group, 0.56 in the PD group and 0.53 in the SWEDD group. 

Table 4.1 Subjects demographic information 

 

Regarding the statistics tests performed to analyse the data sample, the results of the Mann-

Whitney U Test and Chi-square test are expressed in Table 4.2. 

Table 4.2 Test statistics results of Mann-Whitney U Test and Chi-square Test for Control, PD and SWEDD 

groups 

Groups 
Mann-Whitney U Test Chi-Square 

U p-value 𝒳2 p-value 

Control vs PD 29,884.50 0.272 0.037 0.847 

Control vs SWEDD 4,354.50 0.228 0.008 0.930 

PD vs SWEDD 10,523.00 0.623 0.049 0.825 

Group 
s N Age (yo) Sex 

(subjects) images [31,50[ [50,70[ [70,86[ Avg±std  (F/M) 

Control 168 

336 

(168 MRI + 

168 SPECT) 

27 106 35 60 ±11 59/109 

PD 378 

756 

(378 MRI + 

378 SPECT) 

40 252 86 62±10 136/242 

SWEDD 58 

116 

(58 MRI + 58 

SPECT) 

7 38 13 62 ±10 20/38 

yo.: years old; Avg: Average; std: Standard Deviation, F: Female; M: Male. 
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The p-value, regarding age comparison, was 0.272 for Control and PD groups, 0.228 for Control 

vs SWEDD, and 0.623 for PD vs SWEDD. About sex comparison the p-value was 0.847 for 

Control and PD groups, 0.930 for Control and SWEDD and 0.825 for PD and SWEDD. 

Appendix C illustrates an example of the slices MRI on Figure C.1 and DaTscan slices on Figure 

C.2 from control (healthy) subject obtained after the pre-processing steps and the images splitting, 

not including the CLAHE processing since it was just applied to slices that were used for training 

models. 

4.2 Classification  

Table 4.3 shows the number of slices that were used in the data sets of each classification of MRI 

and SPECT slices, separately taking into account order mentioned in Chapter 3.3.3.  

In Control vs PD comparison, the limiting group was the Control group that comprises 168 

subjects against the 378 PD patients. In both comparison (Control vs SWEDD and PD vs 

SWEDD), the limiting group was the SWEDD group which comprises 58 slices.  

As can be seen on Table 4.3, the train set comprises 168 slices in Control vs PD and 58 slices in 

the other comparisons, which is 50% of the total of slices used in each case. Each validation and 

tests set comprise 84 slices in Control vs PD, 14 slices and 15 slices, respectively, in Control vs 

SWEDD and PD vs SWEDD. 

Table 4.3 Number of slices used for each classification group in Train, Validation and Test 

Classification 

Group 
Total slices used Train Validation Test 

Control vs PD 

 

336 

(168 Control/ 168 PD) 

84 Control 

84 PD 

42 Control 

42 PD 

 42 Control 

42 PD 

Control vs 

SWEDD 

 

116 

(58 Control/ 58 SWEDD) 

29 Control 

29 SWEDD 

14 Control 

14 SWEDD 

15 Control 

15 SWEDD 

PD vs SWEDD 
116 

(58 PD/ 58 SWEDD) 

29 PD 

29 SWEDD 

14 PD 

14 SWEDD 

15 PD 

15 SWEDD 

 

The slices that encompass regions of interest, namely, mesencephalon and basal ganglia, are 

illustrated in Figure 4.1. 

4.1.1 Comparison of Control and Parkinson’s Disease 

The accuracy results obtained in the comparison of Control and PD subjects using MRI images 

for each batch are expressed in Table B.1 and using SPECT images are in Table B.2 of 
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Appendix B. These tables show that the slices that lead to the highest accuracy were MRI 

slices 27_28_29 and SPECT slices 39_40_41.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Slices that comprises the mesencephalon and the basal ganglia. These slices are from a Control 

subject, PD patient and a SWEDD patient. 

Figure 4.2 shows the average accuracy of the five batches achieved with MRI and SPECT slices. 

As is shown in that figure, the CNN was able to distinguish Control from PD with 97.4±1.2% 

average accuracy using MRI slices 27_28_29 that encompassing the mesencephalon. This result 

was the highest in the distinction of PD from Control within the MRI and SPECT results, followed 

by SPECT slices 39_40_41 comprising the basal ganglia that had 92.4±3.6% average accuracy. 

Unlike MRI slices 27_28_29, the matching SPECT slices had a lower accuracy 62.0±2.5%. MRI 

slices 39_40_41 had also a small average accuracy 45.7±2.9 %. The remain MRI slices showed 

an accuracy approximately to 50% as SPECT slices 21_22_23 and SPECT slices 24_25_26. From 

SPECT slices 30_31_32 to slices 45_46_47 the average accuracy was always above 73%. 

Mesencephalon - Control Basal Ganglia - Control 

Mesencephalon - PD Basal Ganglia - PD 

Mesencephalon – SWEDD Basal Ganglia – SWEDD 

MRI SPECT MRI SPECT 

Slices 27_28_29 Slices 39_40_41 
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Figure 4.2 Average accuracy using MRI and SPECT slices in Control vs PD 

 

 Figure 4.3 Accuracy results for Mesencephalon MRI vs SPECT in Control vs PD 

Figure 4.3 illustrates the accuracy of the five batches resulting from the cross-validation of MRI 

and SPECT slices 27_28_29 that include the mesencephalon. This figure shows that the highest 

accuracy result achieved was 98.8% in batch 5 using MRI slices. The accuracy concerning SPECT 

slices 27_28_29 was close to 60% in all batches. 

Regarding the accuracy obtained using slices 39_40_41 encompassing the basal ganglia, those 

results are illustrated in Figure 4.4. The highest accuracy in was 97.6% in Batch 2 and the lower 

was 88.1% using Batch 5 using SPECT slices. The other SPECT batches had similar results, 

unlike MRI batches that presented an accuracy close to 45%.  
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Figure 4.4 Accuracy results for Basal Ganglia - MRI vs SPECT in Control vs PD 

 

Table 4.4 Sensitivity, Specificity, PPV, NPV and Cohen's Kappa for Control vs PD using MRI and 

SPECT images 

The results of Sensitivity, Specificity, PPV, NPV, and Kappa of MRI and SPECT slices of the 

classification, are summarized in Table 4.4. The higher specificity and sensitivity results were 

100.0% and 94.76% respectively, obtained with MRI slices 27_28_29.  

Slices 
Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
Kappa + std  

Slices 21_22_23 
MRI 51.43 55.24 53.55 53.14 0.07±0.11 

SPECT 59.05 59.52 59.61 59.09 0.19±0.11 

Slices 24_25_26 
MRI 50.95 50.48 50.02 51.56 0.01±0.11 

SPECT 55.71 62.86 60.04 58.96 0.19±0.11 

Slices 27_28_29 
MRI 100.00 94.76 95.07 100.00 0.95±0.03 

SPECT 62.38 61.43 61.82 62.23 0.24±0.11 

Slices 30_31_32 
MRI 54.29 58.57 56.05 57.01 0.13±0.11 

SPECT 74.29 76.19 76.82 74.76 0.50±0.09 

Slices 33_34_35 
MRI 53.81 50.48 52.15 52.16 0.04±0.11 

SPECT 82.38 74.76 77.03 80.81 0.57±0.09 

Slices 36_37_38 
MRI 49.05 56.19 52.49 52.76 0.05±0.11 

SPECT 89.05 89.52 89.81 89.34 0.79±0.07 

Slices 39_40_41 
MRI 48.10 43.33 45.84 45.45 -0.09±0.11 

SPECT 92.86 91.90 92.11 92.81 0.85±0.06 

Slices 42_43_44 
MRI 44.76 47.14 45.80 46.09 -0.08±0.11 

SPECT 81.90 89.05 88.42 83.35 0.71±0.08 

Slices 45_46_47 
MRI 48.10 51.90 50.14 49.88 0.00±0.11 

SPECT 75.24 71.90 73.03 74.64 0.47±0.10 

std: Standard Deviation 

48.8%
40.5%

45.2% 47.6% 46.4% 45.7%
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Unlike MRI, the matching SPECT slices had 62.38% sensitivity and 61.43% specificity. SPECT 

slices 39_40_41 achieved 92.86% sensitivity and 91.90% specificity, and the matching MRI 

slices had 48.10% sensitivity and 43.33% specificity.  

Figure 4.4 also shows that the PPV and NPV was 95.07% and 100.0%, respectively, in MRI slices 

27_28_29, and 92.11% and 92.81% in SPECT slices 39_40_41. Regarding the Cohen’s Kappa, 

MRI slices 27_28_29 achieved ĸ = 0.95±0.03 which is higher than the result of SPECT slices 

39_40_41 that was ĸ = 0.85±0.06. 

The ROC curve and the respective AUC of the mesencephalon and basal ganglia are illustrated 

in Figure 4.5 and Figure 4.6, respectively. Figure 4.5 shows that the AUC was higher using MRI 

slices since these slices presented AUC = 0.99, CI 95%: [0.96 - 1.00] using MRI slices of the 

mesencephalon.  

 

 

 

 

 

 

 

 

 
Figure 4.5 ROC curve and AUC for PD in mesencephalon classification of Control vs PD. 

Regarding slices encompassing the basal ganglia, Figure 4.6 shows that the AUC was 0.98, CI 

95%: [0.94 - 1.00] using SPECT slices which is higher than the results obtained using the 

matching MRI slices.  

Figure 4.7 expresses the confusion matrixes of the batches with higher accuracy of the 

classification of the mesencephalon. The confusion matrix of the batch 5 of the classification 

using MRI slices shows that the CNN was able to correctly predict 100% of the PD patients and 

97.62% of the Controls subjects. The CNN using SPECT slices of the batch 5 was able to correctly 

classify 61.90% of the PD-patients and 66.67% of the Control Subjects. 
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Figure 4.6 ROC curve and AUC for PD in basal ganglia classification of Control vs PD. 

 

                                                       

 

 

 

 

 

 

 

 

 

Figure 4.7 Confusion matrix of MRI slices of the batch 5 and SPECT slices of the batch 5. These slices 

comprise the mesencephalon (Slices 27_28_29). 

Regarding the classification of the basal ganglia, Figure 4.8 shows the predictions of the 

classification using MRI and SPECT slices 39_40_41.  

The CNN, using MRI slices of the Batch 2, was able to rightly predict 45.24% of the PD patients 

and 35.72% of the Controls. These results were lower than those achieved by the classification 

using SPECT slices. With SPECT slices, the CNN was able to predict 95.24% of the PD patients 

and 95.24% of the Control subjects. 

 

Batch 5 Real Class  

Predicted Class PD Control  

PD 42 1 43 

Control 0 41 41 

 42 42 N = 84 

Batch 5 Real Class  

Predicted Class PD Control  

PD 26 14 40 

Control 16 28 44 

 42 42 N = 84 

Confusion matrix of MRI slices - Mesencephalon 

Confusion matrix of SPECT slices - Mesencephalon 
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Figure 4.8 Confusion matrix of MRI sliced of the batch 2 and SPECT slices of the batch 1. These slices 

correspond to the basal ganglia (slices 39_40_41). 

 

4.2.2 Comparison of Control and SWEDD 

The accuracy results of the classification of Control vs SWEDD are expressed in Table B.3 and 

Table B.4 for MRI slices and in Table 4.8 for SPECT slices, respectively, in Appendix B. Those 

tables show that the accuracy results of MRI and SPECT slices are similar.  

As can be seen in Figure 4.9, the results of the average accuracy of the MRI slices were slightly 

higher than those achieved using SPECT slices.  

 

Figure 4.9 Average Accuracy for MRI and SPECT Control vs SWEDD 
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Batch 2 Real Class  

Predicted Class PD Control  

PD 19 27 46 

Control 23 15 38 

 42 42 N = 84 

Batch 1 Real Class  

Predicted Class PD Control  

PD 40 2 42 

Control 2 40 42 

 42 42 N = 84 

Confusion matrix of SPECT slices – Basal Ganglia 

Confusion matrix of MRI slices – Basal Ganglia 
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For instance, both MRI and SPECT slices that encompass the mesencephalon had 54.7% average 

accuracy. Regarding the slices that comprise the basal ganglia, SPECT slices 39_40_41 had 

62.7% average accuracy and the matching MRI slices had 52.0%.  

Figure 4.10 and Figure 4.11 show the resulting accuracy of the classification of Control vs 

SWEDD using MRI and SPECT slices comprising regions of interest. 

Figure 4.10 illustrates that the batches have distinct results in both medical imaging techniques. 

For instance, MRI slices had 50.0% accuracy in Batch 1 and 73.33% in Batch 2. The same 

occurred with SPECT slides, e.g., Batch 1 presented 40.0% accuracy and Batch 5 had 70.00%. 

Figure 4.10 Accuracy results of Mesencephalon classification - MRI vs SPECT in Control vs SWEDD 

 

Figure 4.11 Accuracy results of Mesencephalon classification - MRI vs SPECT in Control vs SWEDD 
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Regarding the basal ganglia slices, Figure 4.13 shows that the batches in the classification with 

MRI slices have an accuracy between 60.00% and 73.33%. Concerning SPECT batches, those 

have an accuracy between 53.33% and 80.00%. As in the previous case of the mesencephalon 

classification, the results are similar.  

The Table 4.9 expresses the Sensitivity, Specificity, PPV, NPV and Cohen’s Kappa obtained in 

Control vs SWEDD classification.  

Table 4.5 Sensitivity, Specificity, PPV, NPV and Cohen's Kappa for Control vs SWEDD using MRI and SPECT images 

Slices 
 Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 
Kappa ± Std 

Slices 21_22_23 
MRI 44.00 72.00 62.65 55.94 0.16±0.18 

SPECT 58.67 60.00 59.31 60.04 0.19±0.18 

Slices 24_25_26 
MRI 66.67 64.00 66.01 66.29 0.31±0.17 

SPECT 54.67 64.00 60.08 58.80 0.19±0.18 

Slices 27_28_29 
MRI 58.67 50.67 54.66 54.66 0.09±0.18 

SPECT 49.33 60.00 56.13 53.92 0.09±0.18 

Slices 30_31_32 
MRI 49.33 58.67 55.25 53.44 0.08±0.18 

SPECT 48.00 44.00 46.01 45.83 -0.08±0.18 

Slices 33_34_35 
MRI 58.67 53.33 55.10 57.20 0.12±0.18 

SPECT 53.33 49.33 52.67 47.54 0.03±0.18 

Slices 36_37_38 
MRI 53.33 57.33 57.39 54.75 0.11±0.18 

SPECT 53.33 44.00 50.20 46.55 -0.03±0.18 

Slices 39_40_41 
MRI 65.33 65.33 65.34 65.81 0.31±0.17 

SPECT 68.00 57.33 62.81 63.33 0.25±0.17 

Slices 42_43_44 
MRI 49.33 64.00 58.87 56.07 0.13±0.18 

SPECT 50.67 49.33 52.62 48.77 0.00±0.18 

Slices 45_46_47 
MRI 66.67 60.00 62.86 64.92 0.27±0.17 

SPECT 54.67 49.33 51.19 52.27 0.04±0.18 

Std: standard deviation 

As show in Table 4.5, MRI slices 27_28_29 had 58.67% sensitivity, 50.67% specificity, 54.66% 

PPV and 54.66 NPV and SPECT slices 39_40_41 had 68.00% sensitivity, 57.33% specificity, 

62.81% PPV and 63.33 NPV. Regarding Cohen’s Kappa, MRI slices encompassing the 

mesencephalon and the matching SPECT slices had both ĸ = 0.09±0.18. SPECT slices 39_40_41 

presented ĸ = 0.25±0.17 and the matching MRI slices had ĸ = 0.31±0.17. 

Concerning the ROC curve and the respective AUC, the results of AUC achieved using slices 

comprising the mesencephalon and the basal ganglia are illustrated in Figure 4.12 and Figure 

4.13, respectively. In the classification of the Control vs SWEDD, Figure 4.12 shows that MRI 

slices encompassing the mesencephalon had AUC = 0.57 with CI 95% [0.36-0.78] and SPECT 

slices had AUC = 0.54 with CI 95% [0.33-0.75] and these results are close to the chance level. 
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Figure 4.12 ROC curve and AUC obtained in the classification of mesencephalon slices, in Control vs 

SWEDD 

As it is shown in Figure 4.13, the AUC was 0.67 with CI 95% [0.48-0.87] using MRI slices and 

0.66 with CI 95% [0.46-0.85] using SPECT slices.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 ROC curve and AUC obtained in the classification of basal ganglia slices, in Control vs 

SWEDD 

The confusion matrixes of the classification of Control and SWEDD using MRI and SPECT slices 

comprising regions of interest are expressed in Figure 4.14 and Figure 4.15. 

Figure 4.14 shows that CNN using MRI slices 27_28_29 of Batch 2 was able to predict 66.67% 

of the SWEDD patients and 60% of the Controls and SPECT slices of Batch 5 correctly predict 

80% of the SWEDD cases and 80% of the healthy subjects. It is important to notice that these 

were the batches that presented the highest accuracy. 
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In its turn, Figure 4.15 shows that using MRI slices comprising the basal ganglia, the CNN was 

able to correctly predict 73.33% of the SWEDD cases and 73.33% of the Controls.  

Regarding SPECT slices, the CNN correctly classified 80% of the SWEDD patients and 80% of 

the healthy subjects. 

                                                       

 

 

 

 

 

 

 

 

 

 

 

                                   

 

 

 

 

 

 

 

 

 

Figure 4.15 Confusion matrix of MRI slices of the batch 5 and SPECT slices of the batch 5. These slices 

correspond to basal ganglia (Slices 39_40_41). 

 

Batch 2 Real Class  

Predicted Class SWEDD Control  

SWEDD 10 6 16 

Control 5 9 14 

 15 15 N = 30 

Batch 5 Real Class  

Predicted Class SWEDD Control  

SWEDD 12 3 15 

Control 3 12 15 

 15 15 N = 30 

Figure 4.14 Confusion matrix of MRI slices of the batch 2 and SPECT slices of the batch 5. These slices 

correspond to the mesencephalon (Slices 27_28_29). 

 

 

 

 

 

Batch 5 Real Class  

Predicted Class SWEDD Control  

SWEDD 11 4 15 

Control 4 11 15 

 15 15 N = 30 

Batch 5 Real Class  

Predicted Class SWEDD Control  

SWEDD 12 3 15 

Control 3 12 15 

 15 15 N = 30 

Confusion matrix of MRI slices - Mesencephalon 

Confusion matrix of SPECT slices - Mesencephalon 

Confusion matrix of SPECT slices – Basal Ganglia 

Confusion matrix of MRI slices – Basal Ganglia 
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4.2.3 Comparison of Parkinson’s Disease and SWEDD 

The accuracy results achieved in the classification of PD vs SWEDD using MRI slices are in 

Table B.5 and using SPECT slices are in Table B.6 in the Appendix B. These results show that 

the highest accuracy was obtained using MRI slices 27_28_29, SPECT slices 36_37_38 and 

SPECT slices 39_40_41. The accuracy of these slices is expressed in the following figures.  

For instance, Figure 4.16 shows the average accuracy obtained with all the slices considered in 

this work. As can be seen in Figure 4.16, the highest average accuracy was achieved using SPECT 

slices 36_37_38 which presented 93.3±3.7%, followed by Slices 39_40_41 comprising the basal 

ganglia that achieved 86.0±4.9%. Concerning MRI slices including the mesencephalon, these 

obtained 73.3±3.7% average accuracy. The remaining MRI slices had average accuracy results in 

a range of 51.3% to 69.3% and SPECT slices between 48.7% and 80.0%. 

 

Figure 4.16 Average Accuracy for MRI and SPECT PD vs SWEDD 

In the classification of PD vs SWEDD, using MRI slices 27_28_29, the CNN achieved 76.7% 

accuracy in batches 2 and 4, and 73.3% accuracy in batches 3 and 5, as shown in Figure 4.17. 

Unlike MRI, Figure 4.17 also shows that the accuracy of the matching SPECT slices was 66.67% 

in batch 4, 63.3% in batch 3 and 60.0% in batches 2 and 5. 

Regarding the classification using slices that encompasses the basal ganglia, Figure 4.18 shows 

that using SPECT slices, the batch with the highest accuracy was the batch 1 with 93.3% accuracy, 

followed by the batch 3 that presented 90.0% accuracy. Regarding MRI slices, these presented 

approximately 56% accuracy.  
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The slices that presented higher accuracy, the results of the batches are displayed on Figure 4.19. 

SPECT slices 36_37_38 achieved 96.7% accuracy in batches 1 and 3 and 86.7% accuracy in batch 

4 which is the lower result of these slices. Unlike SPECT, the accuracy of the matching slices was 

close to 60%.  

 

Figure 4.17 Accuracy results of Mesencephalon classification - MRI vs SPECT in PD vs SWEDD 

 

Figure 4.18  Accuracy results of Basal Ganglia classification - MRI vs SPECT in PD vs SWEDD 
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Figure 4.19 Accuracy results of slices 36_37_38 classification - MRI vs SPECT in PD vs SWEDD 

The results of Sensitivity, Specificity, PPV, NPV and Cohen’s Kappa are summarized in Table 

4.12. The distinction of PD vs SWEDD using MRI slices encompassing the mesencephalon 

(Slices 27_28_29) showed 65.33% sensitivity, 81.33% specificity, 79.01% PPV, 70.88% NPV. 

Table 4.6 Sensitivity, Specificity, PPV, NPV and Cohen's Kappa for PD vs SWEDD using MRI and SPECT 

slices 

 

Slices  Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

NPV 

(%) 

Kappa ± 

Standard 

error 

Slices 21_22_23 MRI 50.67 52.00 51.36 51.20 0.03±0.18 
 SPECT 50.67 46.67 47.96 50.28 -0.03±0.18 

Slices 24_25_26 MRI 73.33 65.33 68.71 70.36 0.39±0.16 
 SPECT 57.33 48.00 52.92 52.54 0.05±0.18 

Slices 27_28_29 MRI 65.33 81.33 79.01 70.88 0.47±0.16 
 SPECT 58.67 50.67 54.66 54.66 0.09±0.18 

Slices 30_31_32 MRI 60.00 56.00 58.10 57.89 0.16±0.18 
 SPECT 61.33 62.67 62.30 62.09 0.24±0.18 

Slices 33_34_35 MRI 65.33 58.67 60.90 63.65 0.24±0.18 
 SPECT 74.67 85.33 84.59 78.33 0.60±0.14 

Slices 36_37_38 MRI 69.33 50.67 59.44 63.24 0.20±0.18 
 SPECT 96.00 90.67 91.53 95.88 0.87±0.09 

Slices 39_40_41 MRI 56.00 53.33 54.83 55.45 0.09±0.18 
 SPECT 86.67 85.33 85.74 86.45 0.72±0.12 

Slices 42_43_44 MRI 65.33 48.00 55.76 58.43 0.13±0.18 
 SPECT 74.67 77.33 79.60 75.10 0.52±0.15 

Slices 45_46_47 MRI 62.67 52.00 56.44 58.67 0.15±0.18 
 SPECT 76.00 65.33 67.80 75.91 0.41±0.16 
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SPECT slices 27_28_29 had 58.67% sensitivity, 50.67% specificity. Regarding the slices that 

comprise the basal ganglia, the CNN achieved 86.87% sensitivity and 85.33% specificity using 

SPECT slices 38_40_41. The slices with higher accuracy, slices 36_37_38, presented 96% 

sensitivity, 90.67% specificity, 91.53% PPV and 95.88% NPV. 

Concerning the Cohen’s Kappa obtained in the comparison of PD and SWEDD, MRI slices 

27_28_29 had ĸ = 0.47±0.16, SPECT slices 39_40_41 had ĸ = 0.72±0.12. SPECT slices 

36_37_38 showed presented the highest ĸ (0.87±0.09).  

 

The results of the ROC curve to the classification PD vs SWEDD of the slices 27_28_29, slices 

36_37_38 and slices 39_40_41 are in Figure 4.20, Figure 4.21 and Figure 4.22, respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 4.20 ROC curve and AUC obtained in the classification of mesencephalon slices, in PD vs SWEDD 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 ROC curve and AUC obtained in the classification of slices 36_37_38, in PD vs SWEDD. 
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The classification of PD vs SWEDD using MRI slices including the mesencephalon had AUC = 

0.84 [0.69 – 0.98] with CI of 95%. In its turn, SPECT slices presented AUC = 0.61 [0.40 – 0.81] 

with CI of 95%, as illustrated in Figure 4.22.  

Regarding the slices of the basal ganglia, the ROC curves of MRI and SPECT slices are 

represented in Figure 4.21. In its turn, SPECT slices presented AUC = 0.90 [0.79 – 1.00] with CI 

of 95%, and a standard deviation of 0.05. 

Figure 4.22 shows the ROC curves and respective AUC of MRI and SPECT slices 36_37_38. In 

this case, MRI slices showed AUC = 0.63 [0.43 – 0.83] with CI of 95%, SPECT slices presented 

AUC = 0.98 [0.92 – 1.00] with CI of 95%, and a standard deviation of 0.01. 

 

 

 

 

 

 

 

 

Figure 4.22 ROC curve and AUC obtained in the classification of basal ganglia slices, in PD vs SWEDD. 

                                                      

 

 

 

 

 

 

 

Figure 4.23 Confusion matrix of the MRI and SPECT slices of the batch 2. These slices correspond to the 

mesencephalon (Slices 27_28_29). 

Batch 2 Real Class  

Predicted Class SWEDD PD  

SWEDD 9 1 10 

PD 6 14 14 

 15 15 N = 30 

Batch 2 Real Class  

Predicted Class SWEDD PD  

SWEDD 8 5 13 

PD 7 10 17 

 15 15 N = 30 

Confusion matrix of MRI slices - Mesencephalon 

Confusion matrix of SPECT slices - Mesencephalon 
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Figure 4.23 contains the confusion matrixes of MRI and SPECT slices 27_28 _29 of the batch 2. 

The CNN classifier using MRI slices was able to correctly predict 60% of the PD cases and 

93.33% of the Control subjects.  

Using MRI slices 39_40_41 encompassing the basal ganglia, the CNN was able to correctly 

predict, in batch 5, 80% of the PD patients and 40% of the Control subjects, as illustrated in Figure 

2.24. Unlike MRI, using the matching SPECT slices of PD, the algorithm was able to predict 

100% of the PD cases and 93.33% of the Controls.   

                                           

 

 

 

 

 

 

 

Figure 4.24 Confusion matrix of the MRI and SPECT slices of the batch 5. These slices correspond to basal 

ganglia (slices 39_40_41). 

                                                

 

 

 

 

 

 

 

Figure 4.25 Confusion matrix of the MRI and SPECT slices of the batch 3. These slices correspond to slices 

36_37_38. 

 

 

Batch 5 Real Class  

Predicted Class SWEDD PD  

SWEDD 13 6 19 

PD 2 9 11 

 15 15 N = 30 

Batch 5 Real Class  

Predicted Class SWEDD PD  

SWEDD 12 3 15 

PD 3 12 15 

 15 15 N = 30 

Batch 3 Real Class  

Predicted Class SWEDD PD  

SWEDD 12 9 21 

PD 3 6 6 

 15 15 N = 30 

Batch 3 Real Class  

Predicted Class SWEDD PD  

SWEDD 15 1 16 

PD 0 14 14 

 15 15 N = 30 

Confusion matrix of MRI slices – Basal Ganglia 

Confusion matrix of SPECT slices – Basal Ganglia 

Confusion matrix of MRI slices – Slices 36_37_38 

Confusion matrix of SPECT slices – Slices 36_37_38 



 

 

 

 

 

As it is shown it Figure 4.25, using SPECT slices 36_37_38, the CNN was able to correctly 

classify 80% of the PD cases and 80% of the Controls subjects unlike using MRI slices that rightly 

predict 86.67% of the PD patients and 86.67% of the Controls.  



 

 

 

 

 

Chapter 5 Discussion 
 

5.1 Main results 

The main and most significant results obtained in this dissertation are following enumerated:  

a) The discrimination of Control from PD: 

• Using MRI slices 28_29_30 encompassing the mesencephalon, the CNN 

achieved 97.4% average accuracy, which were the highest accuracy result in this 

classification, and AUC = 0.99  

• Using SPECT slices 39_40_41 encompassing the basal ganglia, the CNN 

obtained 92.4% average accuracy and AUC = 0.98 

b) The discrimination of Control from SWEDD: 

• MRI and SPECT slices had similar results, for instance, approximately 50-60% 

accuracy 

c) The discrimination of PD from SWEDD: 

• Using MRI slices 28_29_30 encompassing the mesencephalon, the CNN 

achieved 73.3% average accuracy and AUC = 0.84 

• Using SPECT slices 39_40_41 encompassing the basal ganglia, the CNN 

obtained 86.0% and AUC = 0.90 

• Using SPECT slices 36_37_38, the CNN achieved 93.3% average accuracy and 

AUC = 0.98 

5.2 Classification 

Prior to the classification, the Mann-Whitney test and Chi-Square were performed. The Mann-

Whitney results showed that there are no had no significant differences in terms of age between 

the subjects of the following groups: Control and PD (p = 0.272), Control and SWEDD (p = 

0.228), and PD and SWEDD (p = 0.623). In its turn, the Chi-Squared showed that there is no 

significant association between the sex of the subjects that comprises these groups: Control and 

PD (p = 0.847), Control and SWEDD (p = 0.930), and PD and SWEDD (p = 0.825). 

Taking into account these results, the data sample used in Control vs PD, in Control vs SWEDD, 

and in PD vs SWEDD was considered age and sex-matched as well as the groups of subjects 

present in each test set used in the classification.  

Concerning the classification of Control vs PD, the CNN classifier was able to distinguish PD 

from healthy subjects using MRI slices that encompassed the mesencephalon and using SPECT 

slices comprising the basal ganglia. Moreover, these MRI slices lead to higher accuracy in the 
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classification of PD and Control. For instance, MRI slices embracing the mesencephalon 

presented higher average accuracy (97.4%) than the matching SPECT slices (61.70%) and SPECT 

slices including the basal ganglia presented also higher accuracy (92.4%) than the same MRI 

slices (41.75%).  The results also showed that in the classification using SPECT slices, the CNN 

tend to present higher accuracy when slices containing the basal ganglia or structures near it are 

used. Unlike SPECT, the accuracy of the classifier using the matching MRI slices tends to 

decrease to 45-50% in slices including the basal ganglia or other structures than mesencephalon.  

Concerning Cohen’s Kappa results, the kappa of the MRI slices encompassing the mesencephalon 

was 0.95±0.03 which, according to McHugh, is an almost perfect level of agreement [213] with 

the real PPMI label. In its turn, SPECT slices including the basal ganglia showed a strong level 

of accordance (ĸ = 0.85±0.06) [213] with PPMI database. The SPECT slices, containing structures 

anatomically located close to the basal ganglia, presented a moderate level of agreement with the 

PPMI labels (0.60 < ĸ < 0.80). The classification with the remaining slices presented a weak level 

of agreement (ĸ < 0.50) [213] with the medical diagnosis of PPMI.  

Moreover, the analysis of the ROC curve shows that using MRI slices 27_28_29 and SPECT 

slices 39_40_41 the classifier had an outstanding ability to discriminate PD from Controls [214], 

according to Hosmer and Lemeshow, presenting AUC = 0.99 and AUC = 0.98, respectively. 

Unlike these slices, the AUC of the SPECT slices 27_28_29 and MRI slices 39_40_41 shows that 

the CNN was not able to discriminate PD from Control.  

Concerning the anatomically and physiologically point-of-view, the classification of PD and 

Control show that the slices that achieved higher accuracy and AUC were those that comprise the 

mesencephalon or the basal ganglia, which are, according to the literature, regions of interest in 

PD [1]. Moreover, the results of the MRI slices 27_28_29 classification are in accordance with 

the studies conducted by Minati et al. and Kwon et al. which suggest that substantia nigra of PD 

suffer changes that are detectable by MRI [89], [90]. Regarding the results of the SPECT slices 

39_40_41 classification, these are in accordance with the literature that suggests that PD patients 

had alterations in the basal ganglia due to the dopaminergic deficit [1], [3] that it is detected using 

DaTscan SPECT scans [123]. 

In Table 5.1 it is shown the results obtained in this work in comparison with those achieved by 

other studies. For instance, the study conducted by Esmaeilzadeh et al. presented 100% accuracy 

in the classification of PD and Control using 3D MRI images [22], which is a higher value than 

the accuracy obtained using the MRI slices encompassing the mesencephalon (97.4%). However, 

it is important to note that in the study of Esmaeilzadeh et al., there is no explicit information 

either if the authors performed more than one test or if they used cross-validation methods as used 

in this work.  
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Table 5.1 Comparison of studies that performed classification of Control vs PD  

Authors Control vs PD (test sets results*) 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

AUC 

(%) 

Esmaeilzadeh 

et al [22] 

- MRI 3D images 

- Datasets: (85%,10%,5%) 

Train set: 1040 images; Validation set: 120 

images; Test set: 56 images  

- Subjects: 

452 PD:  

292M Age: 63.3±9.8 years old 

160F, Age: 61.9±9.9 years old 

204 Control: 

134M, Age: 61.7±10.9 years old 

70F, Age: 59.2±11.6 years old 

- Data Augmentation 

- Algorithm:  

 3D CNN + Dropout + group normalization 

+ Demographic information about the 

subjects (age and sex) 

100 NA NA 1.00 

Singh et al. 

[169] 

MRI images 

- Subjects: 

518 PD:  

346M/172F, Age: 61.8±9.6 years old 

245 Control: 

155M, 90F, Age: 60.1±11.4 years old 

- Algorithms:  

SOM for Feature Extraction  

(features: intensity) 

LSSVM for training and classification 

(10 folds) 

It was performed two cases: 
    

1. Age Unrelated Groups 87.4 71.9 94.7 NA 

       2.    Age Related Groups 97.2 93.4 98.9 NA 

Amoroso et al. 

[215] 

MRI images 

- Datasets: 

NA 

- Subjects: 

374 PD:  

243M/131F, Age: 61.6±9.8 years old 

 169 Control: 

93.0 93.0 92.0 0.92 
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107M, 62F, Age: 60±11.5 years old 

- Algorithms:  

Random Forest for Feature Extraction 

(features: connectivity measures + clinical 

data) 

SVM for classification 

(10 fold-cross validation) 

Choi et al. 

[25] 

SPECT DaTscan 3D images 

- Subjects: 

374 PD:  

245M/134F, Age: 61.5±9.9 years old 

170 Control: 

112M, 58F, Age: 60.9±11.5 years old 

- Data Sets: 

Train/Validation sets: 

379 PD/ 170 Control 

Test set: 

52 PD/ 23 NC 

- Algorithms:  

1.   3D CNN 96.0 94.2 100 0.988 

2.   Visual interpretation 87.4 97.2 65.2 0.81 

3. Visual interpretation + conventional 

quantification (regional DaT binding ratio of 

putamen/ caudate and occipital cortex) 

92.0 96.2 82.6 0.92 

Oliveira et 

al.[21] 

SPECT DaTscan 3D images 

- Subjects: 

445 PD:  

287M/158F, Age: 61.6±9.8 years old 

209 Control: 

136M, 73F, Age: 61.8±1135 years old 

- Algorithms:  

SVM 

Input of SVM: 

Features that contains the Binding potential 

ratio of Striatal VOIs with cortex and 

occipital reference VOIs 

(20-fold cross-validation) 

97.86 97.75 98.09 NA 

Martinez-

Murcia et al. 

[153] 

SPECT DaTscan 3D images 

- Subjects: 

158 PD  

95.5 96.1 94.5 NA 
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111 Control 

- Data Augmentation 

- Algorithms:  

3D CNN 

CNN input: portions of the images 

containing the striatum 

(10-fold cross validation) 

The present 

study 

MRI and SPECT slices  

- Datasets: 

2:1:1 - train, validation and test 

Train set: 84 PD/ 84 Control 

Validation set: 42 PD/ 42 Control 

Test set: 42 PD/ 42 Control 

- Subjects: 

378 PD 

242M, 136F, Age: 62.0±10.0 

168 Control 

109M, 59F, Age: 60.0±11.0 years old 

- Algorithms:  

2D CNN 

(5 batches: Monte Carlo cross-validation) 

2 cases: 

MRI mesencephalon slices 97.4 100.0 94.8 0.99 

SPECT basal ganglia slices  92.4 92.8 91.9 0.98 

Acc: Accuracy, Sen: Sensitivity, Spe: Specificity; AUC: Area Under the Curve; VOIs: Voxels of interest, Age 

is mean ±standard deviation. M: Male; F: Female.  

Furthermore, the present work used balanced datasets to prevent biased results unlike the study 

mentioned above that did not specified if the datasets contains the same number of PD and 

Controls subjects. A drawback of this work in comparison with the study of Esmaeilzadeh et al. 

is the fact that the size of the train set is smaller than the 1040 images used in the 3D CNN. These 

images were obtained using data augmentation - flip technique [22] - and in this work these 

techniques were not applied. 

Although the CNN was capable of classifying PD and Controls using MRI slices 27_28_29, this 

classifier was not able to discriminate those groups using the MRI slices 39_40_41 comprise the 

basal ganglia. This fact does not agree with the classifier in the study of Esmaeilzadeh et al. and 

the SOM algorithm in Singh et al. study that considered this region as an important feature for 

the classification [22] when MRI images are used. However, these supports the evidence of 

changes in PD SPECT slices 39_40_41. 
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As it is shown in Table 5.1, unlike this work, the study conducted by Singh et al. used a Feature 

Extraction algorithm. In this case, the SOM algorithm extract features based on the variations in 

the intensity of the PD images in comparison with Controls as well as differences between voxels 

[187] to create a vector with regions of interest. 

 In the comparison of Control vs PD, the present work achieved higher accuracy than the 

classification using the group of Age Unrelated Groups (AUG) (87.4%) in the Singh et al. study. 

In the classification of AUG, the authors extracted as features the variations in the intensity of the 

grey matter images, white matter images and original images [169]. Moreover, the PPV (95.07%) 

and NPV (100.0%) were also higher in this study in comparison with Singh et al. (PPV = 87.5 

and NPV = 86.5) [169]. In the classification of the Age-Related Groups (ARG), the features were 

extracted from the difference in the average intensity in each age group. In comparison with this 

case, the CNN using MRI slices 27_28_29 presented the same accuracy result as the SVM 

classifier. However, the specificity is lower and differ in approximately 4% but has higher 

sensitivity. In this study, the NPV was higher but the PPV was lower comparatively with the that 

study (NPV = 97.3% and PPV = 97.2%) [169]. It is also important to notice that the Singh et al. 

used an unbalance sample (245 Controls and 518 PD patients), unlike this work, which may lead 

to biased results.  

In comparison with Amoroso et al. study, the CNN using MRI slices 27_28_29 presented higher 

accuracy (97.4%) and AUC (0.99), as shown in Table 5.1. Although the number of batches used 

in that study is higher (10 fold-cross validation), they used an unbalanced data set (169 Controls 

and 374 PD patients) that may influence the results.  

The present study uses CNN to extract characteristics such as the textures of the input image in 

contrast to the Amoroso et al. study that uses Random Forests to extract features based on 

connectivity measures [215]. These connectivity measures using the Pearson’s correlation were 

obtained from a network model of the brain regions based on T1-W 3D MRI images [215]. The 

present work considered the mesencephalon and the basal ganglia as important regions of interest 

unlike the  Random Forests that considered the frontal, occipital and temporal [215] as 

signification regions and gave less importance to the mesencephalon. 

The classification using the SPECT slices of the basal ganglia obtained a slightly lower accuracy 

test (92.4%) than the accuracy achieved by Choi et al. (96.0%) using 3D CNN [25], Martinez-

Murcia et al. (95.5%) [151] and Oliveira et al. (97.86%) [21]. However, the same SPECT slices 

present higher accuracy and Cohen’s Kappa (ĸ = 0.85±0.06) than the accuracy of the visual 

interpretation by experts and by the conventional techniques calculated in Choi et al. study (ĸ = 

0.65±0.11) [21].  
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In comparison with the results of the MRI slices contains the mesencephalon, these achieved 

higher accuracy and sensitivity than the studies mentioned in Table 5.1 concerning classification 

if Control and PD using SPECT but lower specificity (94.8%)  in comparison with Oliveira et al. 

study (98.09%) [21]. However, it is also important to notice that although Oliveira et al. and 

Martinez-Murcia et al. studies used cross-validation methods, the data sample used in the 

classification is unbalance, since the number of PD patients is higher than the number of Controls 

subjects.  

In this study, the features were extracted from the entire SPECT slices. However, instead of all 

image, Martinez-Murcia et al. used only portions of the image that contained volumes of interest 

(VOIs), namely the striatum, which obliges the use of another pre-processing step for 

segmentation. Despite this difference, the accuracy results in comparison with this study just had 

approximately 2% of difference.   

In the study of Oliveira et al., the features were not extracted from a supervised algorithm as in 

this work. Instead, the authors calculated the binding potential ratio of the striatum by taking the 

occipital and the cortex (excluding the basal ganglia) as a reference. Besides, in comparison with 

the present work and the other studies in Table 5.1, the Oliveira et al. study present the highest 

accuracy achieved.  

In Control vs SWEDD, although the classification using MRI slices presented higher results than 

SPECT slices, the CNN was not able to discriminate Control from SWEDD. For instance, the 

accuracy was 54.7% for MRI and SPECT slices 27_28_29, 65.3% and 62.8% with for MRI and 

SPECT slices encompassing the basal ganglia, respectively.  

Moreover, Cohen's Kappa results were less than 0.2 in all the cases which, according to McHugh, 

evidence that the CNN has a minimal level of agreement [213] with the PPMI database. Regarding 

the ROC curve, both MRI and SPECT slices 27_28_29 had AUC close to 0.50 that shows, 

according to Hosmer et al. [214], Control and SWEDD were not discriminated. 

The results obtained with SPECT DaTscan slices are accordance with the literature that indicates 

that SWEDD patients presented a normal DaTscan [12], [13], [15]. In comparison with the 

literature, the MRI classification showed lower accuracy (63.33%), sensitivity and specificity. 

For instance, the study of Singh et al. previously mentioned also classified Control vs SWEDD 

and obtained 99.4% accuracy in the age related group classification and 96.4% in the age 

unrelated group [169], as shown in Table 5.2. However, in that article the proportion of Control 

and SWEDD subjects are not the same (245 Control and 68), in contrast to this work that used a 

balanced train set (29 Control and 29 SWEDD) and test set (15 Control and 15 SWEDD). Besides, 
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it is important to note that the data sample used in this classification was lower than in Control vs 

PD since more subjects were considered.  

Concerning the classification of PD versus SWEDD, the CNN was able to discriminate those 

groups with 73.3% accuracy using the MRI slices of the mesencephalon and 76.00% accuracy 

using the SPECT slices of the basal ganglia. The highest accuracy result was obtained with 

SPECT slices 36_37_38 (93.3%). This result was not expected since in Control vs PD the highest 

accuracy result was obtained using SPECT slices of the basal ganglia. This may be related with 

the fact that each test set of the batches and between classification groups is different from the 

others because they are all result from a random selection of the data sample or because there may 

be something else in those slices than enable to discriminate PD vs SWEDD. Regarding the 

classification with the remaining slices, the CNN was not capable to discriminate PD versus 

SWEDD. 

The results of the Cohen’s Kappa indicate that the classification using slices 36_37_38 had perfect 

agreement level and it is the higher result obtained in this case.  

Table 5.2 Comparison of studies that performed classification of Control vs SWEDD 

Authors Control vs SWEDD (test sets results) 
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

AUC 

(%) 

Singh et al. 

[169] 

MRI images 

- Subjects: 

245 Control: 

155M, 90F, Age: 60.09±11.35 

68 SWEDD: 

48M/20F, Age: 61.53±9.59 

- Algorithms:  

SOM for Feature Extraction  

(features: intensity) 

LSSVM for training and classification 

(10 folds) 

It was performed two cases: 
    

1. Age Unrelated Groups 96.4 98.8 88.1 NA 

       2.    Age Related Groups 99.4 1 97.2 NA 

The present 

study 

MRI and SPECT slices  

- Datasets: 

2:1:1 - train, validation and test 

Train set: 29 PD/ 29 Control 

Validation set: 14 PD/ 14 Control 

Test set: 15 PD/ 15 Control     
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- Subjects: 

168 Control 

109M, 59F, Age: 60.0±11.0 years old 

58 SWEDD 

38M, 20F, Age: 62±10.0 years old 

- Algorithms:  

3D CNN 

(5 batches: Monte Carlo cross-validation) 

MRI mesencephalon slices 54.7 58.7 50.67 0.57 

SPECT basal ganglia slices 65.33 68.0 57.3 0.46 

Acc: Accuracy, Sen: Sensitivity, Spe: Specificity; AUC: Area Under the Curve; VOIs: Voxels of interest 

The results of the Cohen’s Kappa indicate that the classification using SPECT slices 36_37_38 

had, according to McHugh, perfect agreement level (ĸ = 0.87)[213] with the PPMI database. 

Using the SPECT slices of the basal ganglia, the results had a moderate level of agreement. 

However, the MRI slices of the mesencephalon lead to a weak level of agreement. 

The results of the ROC curve indicate that the classifier using SPECT DaTscan slices of the basal 

ganglia present higher AUC (ĸ = 0.72) than MRI basal ganglia slices (ĸ = 0.47) and consequently 

are greater discriminator.  

Physiologically, the SPECT results are in accordance with Marek et al. study that suggests that 

SWEDD patients do not have PD [216] since these patients did not present dopaminergic deficit 

[1], [12]. The results of the MRI slices suggest that the PD slices containing the mesencephalon 

are different from the SWEED slices.  

In comparison with Singh et al. study that also classified PD and SWEDD, the accuracy of the 

MRI slices was lower (73.33%) [169] as shown in Table 5.3. However, the authors did not use a 

balanced sample in the training set, which may have led to biased estimations (518 PD and 68 

SWEDD) [169].  

To summarize, the higher accuracy results as well as higher AUC common in the three 

classification groups was obtained using MRI slices 27_28_29 that correspond to mesencephalon 

and SPECT slices 39_40_41 that correspond to basal ganglia. Differences between batches or 

between classification slices results may be related with the fact that the test set was always 

created randomly for each batch.  

Moreover, unlike some studies expressed in Table 5.1 that use 3D images, the approach with 2D 

slices used in this work has the advantage that can be reproduced in clinical practice since the 

physicians make usage of 2D MRI images to aid in the diagnosis of brain diseases [27]. Besides, 

another benefit of using 2D slices, is the fact these images need smaller scanning (acquisition) 
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times than 3D images [194]. However, the disadvantage of the 2D slices usage is the fact these 

slices may contain less information than the volume of interest in 3D images.  

Table 5.3 Comparison of studies that performed classification of PD vs SWEDD 

Authors PD vs SWEDD (test sets results)  
Acc 

(%) 

Sen 

(%) 

Spe 

(%) 

AUC 

(%) 

Singh et al. 

[169] 

MRI images 

- Subjects: 

518 PD:  

346M/172F, Age: 61.79±9.58 

68 SWEDD: 

48M/20F, Age: 61.53±9.59 

- Algorithms:  

SOM for Feature Extraction  

(features: intensity) 

LSSVM for training and classification 

(10 folds) 

It was performed two cases: 
    

1. Age Unrelated Groups 94.6 99.2 60.7 NA 

       2.    Age Related Groups 98.9 99.5 95.7 NA 

The present 

study 

MRI and SPECT slices  

- Datasets: 

2:1:1 - train, validation and test 

Train set: 29 PD/ 29 Control 

Validation set: 14 PD/ 14 Control 

Test set: 15 PD/ 15 Control 

- Subjects: 

378 PD 

242M, 136F, Age: 62.0±10.0 

58 SWEDD 

38M, 20F, Age: 62±10.0 years old 

- Algorithms:  

2D CNN 

(5 batches: Monte Carlo cross-validation) 

2 cases: 

MRI mesecenphalon slices 73.3 58.7 50.7 0.84 

SPECT basal ganglia slices 86.0 68.0 57.3 0.90 

Acc: Accuracy, Sen: Sensitivity, Spe: Specificity; AUC: Area Under the Curve; VOIs: Voxels of interest 
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Concerning the CNN performance, unlike 3D images, the usage of 2D slices has the advantages 

of requiring less computing power and memory usage and training the classification models is 

less time-consuming. 

Singh et al. [167], Oliveira et al. [21] and Amoroso et al. [215] performed a classification based 

on SVM algorithm which achieved similar results to those obtained in this work with CNN, which 

indicates that both these approaches leads to higher accuracy results. Moreover, the feature 

extraction using other algorithm may also be time consuming. The drawback of the CNN is the 

fact that to training the studies typically are used several images. For instance, Lecun et al. [138] 

used 60,000 images to train the CNN, but it is also important to notice that the number of classes 

was 9 since it was intended to classify nine digits in contrast to this study that only was classified 

two classes.  

Thus, the main limitation of this dissertation was related with data sample, namely, the number 

of SWEDD subjects. PPMI database only have 58 SWEDD patients with both MRI and SPECT 

images. These 58 SWEDD subjects are significantly lower than the 169 Control subjects and 378 

PD-patients used.  As described in the methodology chapter, the number of subjects used in 

training the classification models is based on the number of subjects of the limiting group, that is, 

the group with less subjects in order to guarantee that in the classification step the same number 

of individuals of each group is analyzed. Because of that, only 58 Control and 58 PD-patients 

were considered in the Control vs SWEDD and PD vs SWEDD classification.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Chapter 6 Conclusion and Future Work 
 

The main goal of this dissertation is to classify PD patients, SWEDD patients and Control 

(healthy) subjects using an approach based on MRI and SPECT slices and CNN. The results 

obtained allow to conclude that this objective was partially achieved since the CNN was able to 

distinguish PD from Controls and PD from SWEDD, but not Control from SWEDD. 

The discrimination of PD from Controls and PD from SWEDD was reached using specific slices 

that encompassed regions of interest associated with PD according to the literature. In particular, 

were MRI slices included the mesencephalon and SPECT slices included the basal ganglia, which 

are regions of interest known to be related with the dopamine deficit that PD-patients present. 

Moreover, according to the ROC curve results, these regions also lead to higher accuracy results 

in comparison with slices including other brain structures. However, unlike the expected, the MRI 

slices of the basal ganglia presented lower accuracy which may be related to the dataset and the 

number of subjects used.  

Regarding Control vs SWEDD, the CNN was not able to discriminate those subjects using SPECT 

slices which are in accordance with the literature wherein studies indicates that SWEDD patients 

have normal DaTscan. Furthermore, the findings using MRI slices of the mesencephalon shows 

there are no differences in Control slices and SWEDD slices.  

The classification of PD vs SWEDD suggests that SWEDD patients differ from PD patients in 

the fact that they had different MRI mesencephalon and different SPECT basal ganglia slices 

imaging patterns.  

Thus, the results obtained in this work suggest the fact that CNN is a useful tool for medical 

imaging classification based on imaging patterns. 

In comparison with other studies that make use of 3D images, this work has the advantage of 

using 2D slices which are the norm in clinical use and which are faster to acquire. Thus, this 

approach enables the usage of 2D images for diagnosis. Moreover, this also makes it possible to 

review the diagnosis using previously acquired data. The classification using the combination of 

2D images and CNN should in principle be simpler and faster in terms of computational effort 

enabling faster outputs obtained at the imaging console or Picture Archiving and Communication 

System (PACS).  

However, this methodology still needs improvement to be applied in the clinical environment. 

For instance, a lot of images were left out in the classification since it was used a balanced data 
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sample in the data sets. Additionally, data augmentation techniques can also be applied, such as 

mirroring, translations, and rotations, to increase the train set size.  

Furthermore, the classification with the axial anatomical view opens the way to the classification 

of the sagittal and coronal views as well.  

Moreover, the CNN performance can also be tested with the implementation of other loss and 

regularization functions, that were mentioned in subchapter 2.6. Regarding CNN architecture, this 

can be modified to accept more than three slices as input to perform, for instance, a multi-modality 

classification. 

To conclude, the approach proposed in this dissertation may be considered a promising and an 

innovative method for PD and SWEDD classification as well as other diseases based since it not 

only gives local information but also it indicates which medical imaging technique has higher 

accuracy.  
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Appendix A T1 – Weighted MRI and DaTscan acquisition 
 

Table A.1 T1-weighted MRI and DaTscan images sequence parameters and other critical characteristics. These characteristics  include repetition time, echo time, inversion 

time (for MRI) and dose (for SPECT) 

Technique Images Name Characteristics 

MRI Sag 3D FSPGR 

BRAVO straight 

Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems: Size = 256 x 256 x 152 

mm3; Thickness = 1.2 mm; Voxels size = 1x1x1.2 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo 

 

MRI Sag 3D FSPGR 

BRAVO 

Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 152 

mm3; Thickness = 1.2 mm; Voxels size = 1x1x1.2 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo 

 

MRI SAG 3D T1 Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: Philips Medical Systems; Size = 256 x 256 x 

170 mm3; Thickness = 1mm; Voxels size = 1x1x1 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo 

 

MRI MPRAGE 

GRAPPA 

Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: SIEMENS; Size = 240 x 256 x 176 mm3; 

Thickness = 1mm; Voxels size = 1x1x1 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo /Inversion 

Recovery 

 

MRI AX T1 Acquisition Plane: Axial; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 512 x 512 x 84 mm3; 

Thickness = 2mm; Voxels size = 1x1x2 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo /Inversion 

Recovery 
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MRI AXIAL T1 3D 

MPRAGE 

Acquisition Plane: Axial; Acquisition Type = 3D; Manufacturer: SIEMENS; Size = 216 x 256 x 208 mm3; 

Thickness = 1mm; Voxels size = 1x1x1 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo /Inversion 

Recovery 

 

MRI Axial spgr Acquisition Plane: Axial; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 512 x 512 x 248 

mm3; Thickness = 1mm; Voxels size = 1x1x1 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo 

 

MRI SAG FSPGR 3D Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 248 

mm3; Thickness = 1.4mm; Voxels size = 1x1x1.4 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo 

 

MRI MPRAGE T1 SAG Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 176 

mm3; Thickness = 1.0 mm; Voxels size = 1x1x1.4 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo 

 

MRI MPRAGE SAG Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: SIEMENS; Size = 512 x 512 x 80 mm3; 

Thickness = 2 mm; Voxels size = 1x1x2 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo/Inversion 

Recovery 

 

MRI SAG T1 3D 

FSPGR 

Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: SIEMENS; Size = 256 x 256 x 98 mm3; 

Thickness = 1.5 mm; Voxels size = 1x1x1.5 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo 

 

MRI SAG SPGR Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 98 

mm3; Thickness = 1.5 mm; Voxels size = 1x1x1.5 mm3; Field Strength = 0.7T; Pulse Sequence = Gradient Echo 
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MRI 3D SAG Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: Philips Medical Systems; Size = 256 x 256 x 

154 mm3; Thickness = 1.2 mm; Voxels size = 1x1x1.2 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient 

Echo 

 

MRI FSPGR 3D SAG Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 152 

mm3; Thickness = 1.2 mm; Voxels size = 1x1x1.2 mm3; Field Strength = 1.5T; Pulse Sequence = Gradient Echo 

 

MRI SAG FSPGR 

BRAVO 

Acquisition Plane: Sagittal; Acquisition Type = 3D; Manufacturer: GE Medical Systems; Size = 256 x 256 x 152 

mm3; Thickness = 1.2 mm; Voxels size = 1x1x1.2 mm3; Field Strength = 3T; Pulse Sequence = Gradient Echo 

 

SPECT DaTscan Size = 109 x 91 x 91 mm3; Voxels size = 2x2x2 mm3; Target dose for subjects = 185 MBq or 5.0 mCi of DaTSCAN™ 

Dose range for injection = 111 to 185 MBq; Raw projection data dimension = 128 x 128 matrix stepping each 3 

degrees for a total of 120 projections or 4 degrees for a total of 90 projections 
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Appendix B: Accuracy Results  
 

Table B. 1 Accuracy results obtained in the classification of Control vs PD with MRI slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

 (%) 

Batch5 

(%) 

Avg ± std 

(%) 

Slices 21_22_23 

Total 56.0 60.7 47.6 39.3 50.0 50.7±7.3 

Control 54.8 50.0 47.6 45.2 54.8 50.5±3.8 

PD 57.1 71.4 47.6 33.3 45.2 51.0±12.7 

Slices 24_25_26 

Total 56.0 60.7 47.6 39.3 50.0 50.7±6.7 

Control 54.8 50.0 47.6 45.2 54.8 50.5±3.5 

PD 57.1 71.4 47.6 33.3 45.2 51.0±11.6 

Slices 27_28_29 

Total 97.6 97.6 95.2 97.6 98.8 97.4±1.2 

Control 95.2 95.2 90.5 95.2 97.6 94.8±2.3 

PD 100.0 100.0 100.0 100.0 100.0 100.0±0.0 

Slices 30_31_32 

Total 46.4 69.0 54.8 54.8 57.1 56.4±7.3 

Control 57.1 61.9 54.8 52.4 66.7 58.6±5.1 

PD 35.7 76.2 54.8 57.1 47.6 54.3±13.2 

Slices 33_34_35 

Total 52.4 51.2 53.6 50.0 53.6 52.1±1.4 

Control 50.0 54.8 57.1 40.5 50.0 50.5±5.7 

PD 54.8 47.6 50.0 59.5 57.1 53.8±4.4 

Slices 36_37_38 

Total 53.6 53.6 58.3 48.8 48.8 52.6±3.6 

Control 52.4 59.5 54.8 54.8 59.5 56.2±2.9 

PD 54.8 47.6 61.9 42.9 38.1 49.0±8.5 

Slices 39_40_41 

Total 48.8 40.5 45.2 47.6 46.4 45.7±2.9 

Control 38.1 35.7 50.0 54.8 38.1 43.3±7.6 

PD 59.5 45.2 40.5 40.5 54.8 48.1±7.7 

Slices 42_43_44 

Total 44.0 42.9 42.9 54.8 45.2 46.0±4.5 

Control 45.2 42.9 45.2 54.8 47.6 47.1±4.1 

PD 42.9 42.9 40.5 54.8 42.9 44.8±5.1 

Slices 45_46_47 

Total 53.6 50.0 47.6 47.6 51.2 50.0±2.3 

Control 59.5 52.4 47.6 45.2 54.8 51.9±5.1 

PD 47.6 47.6 47.6 50.0 47.6 48.1±1.0 

Avg: Average; std: Standard Deviation 
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Table B. 2 Accuracy results obtained in the classification of Control vs PD with SPECT slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

(%) 

Batch5 

(%) 

Avg ±std 

(%) 
 Total 50.0 65.5 59.5 64.3 57.1 59.3±5.6 

Slices 21_22_23 PD 47.6 71.4 54.8 64.3 59.5 59.5±8.1 

 SWEDD 52.4 59.5 64.3 64.3 54.8 59.0±4.9 

 Total 66.7 58.3 59.5 60.7 51.2 59.3±5.0 

Slices 24_25_26 Control 61.9 69.0 59.5 71.4 52.4 62.9±6.8 

 PD 71.4 47.6 59.5 50.0 50.0 55.7±8.9 

 Total 57.1 63.1 63.1 61.9 64.3 61.9±2.5 

Slices 27_28_29 Control 61.9 66.7 57.1 54.8 66.7 61.4±4.9 

 PD 52.4 59.5 69.0 69.0 61.9 62.4±6.3 

 Total 75.0 79.8 67.9 72.6 81.0 75.2±4.8 

Slices 30_31_32 Control 78.6 81.0 64.3 64.3 92.9 76.2±10.9 

 PD 71.4 78.6 71.4 81.0 69.0 74.3±4.6 

 Total 71.4 78.6 78.6 79.8 84.5 78.6±4.2 

Slices 33_34_35 Control 61.9 73.8 76.2 73.8 88.1 74.8±8.3 

 PD 81.0 83.3 81.0 85.7 81.0 82.4±1.9 

 Total 92.9 91.7 88.1 86.9 86.9 89.3±2.5 

Slices 36_37_38 Control 95.2 92.9 90.5 78.6 90.5 89.5±5.8 

 PD 90.5 90.5 85.7 95.2 83.3 89.0±4.2 

 Total 95.2 97.6 89.3 91.7 88.1 92.4±3.6 

Slices 39_40_41 Control 95.2 97.6 90.5 92.9 83.3 91.9±4.9 

 PD 95.2 97.6 88.1 90.5 92.9 92.9±3.4 

 Total 85.7 86.9 83.3 85.7 85.7 85.5±1.2 

Slices 42_43_44 Control 92.9 88.1 92.9 85.7 85.7 89.0±3.2 

 PD 78.6 85.7 73.8 85.7 85.7 81.9±4.9 

 Total 69.0 71.4 82.1 71.4 73.8 73.6±4.5 

Slices 45_46_47 Control 69.0 64.3 78.6 66.7 81.0 71.9±6.6 

 PD 69.0 78.6 85.7 76.2 66.7 75.2±6.8 

Avg: Average; std: Standard Deviation 

 

 

 

 

 

 

 

 

 



Appendix B: Accuracy Results 

 

113 

 

Table B. 3 Accuracy results obtained in the classification of Control vs SWEDD with MRI slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

(%) 

Batch5 

(%) 

Avg±Std 

(%) 
 Total 46.7 50.0 60.0 60.0 73.3 58.0±9.3 

Slice-21_22_23 PD 53.3 66.7 66.7 80.0 93.3 72.0±13.6 

 SWEDD 40.0 33.3 53.3 40.0 53.3 44.0±8.0 

 Total 63.3 83.3 60.0 66.7 53.3 65.3±10.0 

Slice-24-25-26 Control 46.7 86.7 80.0 60.0 46.7 64.0±16.7 

 SWEDD 80.0 80.0 40.0 73.3 60.0 66.7±15.2 

 Total 50.0 73.3 46.7 46.7 56.7 54.7±10.0 

Slice-27-28-29 Control 40.0 73.3 40.0 46.7 53.3 50.7±12.4 

 SWEDD 60.0 73.3 53.3 46.7 60.0 58.7±8.8 

 Total 60.0 40.0 53.3 53.3 63.3 54.0±8.0 

Slice-30-31-32 Control 66.7 46.7 46.7 53.3 80.0 58.7±12.9 

 SWEDD 53.3 33.3 60.0 53.3 46.7 49.3±9.0 

 Total 70.0 53.3 56.7 53.3 46.7 56.0±7.7 

Slices 33_34_35 Control 66.7 53.3 40.0 46.7 60.0 53.3±9.4 

 SWEDD 73.3 53.3 73.3 60.0 33.3 58.7±14.8 

 Total 50.0 63.3 46.7 46.7 70.0 55.3±9.6 

Slices 36_37_38 Control 40.0 86.7 40.0 53.3 66.7 57.3±17.7 

 SWEDD 60.0 40.0 53.3 40.0 73.3 53.3±12.6 

 Total 60.0 63.3 63.3 66.7 73.3 65.3±4.5 

Slices 39_40_41 Control 73.3 60.0 60.0 60.0 73.3 65.3±6.5 

 SWEDD 46.7 66.7 66.7 73.3 73.3 65.3±9.8 

 Total 46.7 50.0 63.3 63.3 60.0 56.7±7.0 

Slice-42-43-44 Control 53.3 53.3 66.7 60.0 86.7 64.0±12.4 

 SWEDD 40.0 46.7 60.0 66.7 33.3 49.3±12.4 

 Total 73.3 60.0 60.0 63.3 60.0 63.3±5.2 

Slice-45_46_47 Control 73.3 66.7 46.7 46.7 66.7 60.0±11.2 

 SWEDD 73.3 53.3 73.3 80.0 53.3 66.7±11.2 

Avg: Average; std: Standard Deviation 

 

 

 

 

 

 

 



Appendix B: Accuracy Results 

 

114 

 

Table B. 4 Accuracy results obtained in the classification of Control vs SWEDD with SPECT slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

(%) 

Batch5 

(%) 

Avg±std 

(%) 
 Total 63.3 60.0 70.0 43.3 60.0 59.3±8.8 

Slices 21_22_23 PD 73.3 66.7 60.0 46.7 53.3 60.0±9.4 

 SWEDD 53.3 53.3 80.0 40.0 66.7 58.7±13.6 

 Total 53.3 56.7 66.7 60.0 60.0 59.3±4.4 

Slices 24-25-26 Control 60.0 66.7 66.7 60.0 66.7 64.0±3.3 

 SWEDD 46.7 46.7 66.7 60.0 53.3 54.7±7.8 

 Total 40.0 56.7 43.3 63.3 70.0 54.7±11.5 

Slices 27-28-29 Control 53.3 53.3 40.0 66.7 86.7 60.0±15.8 

 SWEDD 26.7 60.0 46.7 60.0 53.3 49.3±12.4 

 Total 50.0 40.0 53.3 40.0 46.7 46.0±5.3 

Slices 30_31_32 Control 46.7 46.7 53.3 33.3 40.0 44.0±6.8 

 SWEDD 53.3 33.3 53.3 46.7 53.3 48.0±7.8 

 Total 60.0 50.0 33.3 56.7 56.7 51.3±9.6 

Slices 33_34_35 Control 66.7 66.7 6.7 46.7 60.0 49.3±22.5 

 SWEDD 53.3 33.3 60.0 66.7 53.3 53.3±11.2 

 Total 40.0 63.3 40.0 56.7 43.3 48.7±9.6 

Slices 36_37_38 Control 33.3 60.0 20.0 73.3 33.3 44.0±19.6 

 SWEDD 46.7 66.7 60.0 40.0 53.3 53.3±9.4 

 Total 63.3 53.3 60.0 56.7 80.0 62.7±9.3 

Slices 39_40_41 Control 73.3 33.3 60.0 40.0 80.0 57.3±18.2 

 SWEDD 53.3 73.3 60.0 73.3 80.0 68.0±9.8 

 Total 40.0 66.7 56.7 53.3 43.3 52.0±9.6 

Slices 42_43_44 Control 33.3 66.7 46.7 60.0 26.7 46.7±15.2 

 SWEDD 46.7 66.7 66.7 46.7 60.0 57.3±9.0 

 Total 53.3 63.3 60.0 56.7 50.0 56.7±4.7 

Slices 45_46_47 Control 46.7 60.0 66.7 53.3 46.7 54.7±7.8 

 SWEDD 60.0 66.7 53.3 60.0 53.3 58.7±5.0 

Avg: Average; std: Standard Deviation 
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Table B. 5Accuracy results obtained in the classification of PD vs SWEDD with MRI slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

(%) 

Batch5 

(%) 

Avg±std 

(%) 
 Total 56.7 40.0 50.0 56.7 40.0 48.7±7.5 

Slices 21_22_23 PD 60.0 53.3 66.7 26.7 26.7 46.7±16.9 

 SWEDD 53.3 26.7 33.3 86.7 53.3 50.7±20.9 

 Total 50.0 56.7 46.7 53.3 56.7 52.7±3.9 

Slices 24-25-26 PD 40.0 66.7 33.3 53.3 46.7 48.0±11.5 

 SWEDD 60.0 46.7 60.0 53.3 66.7 57.3±6.8 

 Total 53.3 60.0 63.3 66.7 60.0 60.7±4.4 

Slices 27-28-29 PD 53.3 66.7 46.7 46.7 73.3 57.3±10.8 

 SWEDD 53.3 53.3 80.0 86.7 46.7 64.0±16.1 

 Total 63.3 63.3 53.3 66.7 63.3 62.0±4.5 

Slices 30_31_32 PD 66.7 60.0 53.3 60.0 73.3 62.7±6.8 

 SWEDD 60.0 66.7 53.3 73.3 53.3 61.3±7.8 

 Total 93.3 73.3 80.0 73.3 80.0 80.0±7.3 

Slices 33_34_35 PD 93.3 93.3 73.3 73.3 93.3 85.3±9.8 

 SWEDD 93.3 53.3 86.7 73.3 66.7 74.7±14.2 

 Total 96.7 93.3 96.7 86.7 93.3 93.3±3.7 

Slices 36_37_38 PD 100.0 86.7 93.3 80.0 93.3 90.7±6.8 

 SWEDD 93.3 100.0 100.0 93.3 93.3 96.0±3.3 

 Total 93.3 83.3 90.0 83.3 80.0 86.0±4.9 

Slices 39_40_41 PD 93.3 80.0 93.3 80.0 80.0 85.3±6.5 

 SWEDD 93.3 86.7 86.7 86.7 80.0 86.7±4.2 

 Total 70.0 63.3 83.3 80.0 83.3 76.0±8.0 

Slices 42_43_44 PD 66.7 53.3 100.0 73.3 93.3 77.3±17.2 

 SWEDD 73.3 73.3 66.7 86.7 73.3 74.7±6.5 

 Total 56.7 66.7 70.0 83.3 76.7 70.7±9.0 

Slices 45_46_47 PD 66.7 60.0 66.7 66.7 66.7 65.3±2.7 

 SWEDD 46.7 73.3 73.3 100.0 86.7 76.0±17.7 
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Table B. 6 Accuracy results obtained in the classification of PD vs SWEDD with SPECT slices 

Slices Accuracy 
Batch1 

(%) 

Batch2 

(%) 

Batch3 

(%) 

Batch4 

(%) 

Batch5 

(%) 

Avg±std 

(%) 
 Total 50.0 56.7 56.7 46.7 46.7 51.3±4.5 

Slices 21_22_23 PD 40.0 60.0 60.0 40.0 60.0 52.0±9.8 

 SWEDD 60.0 53.3 53.3 53.3 33.3 50.7±9.0 

 Total 80.0 80.0 56.7 53.3 76.7 69.3±11.8 

Slices 24_25_26 PD 80.0 73.3 46.7 46.7 80.0 65.3±15.4 

 SWEDD 80.0 86.7 66.7 60.0 73.3 73.3±9.4 

 Total 66.7 76.7 73.3 76.7 73.3 73.3±3.7 

Slices 27_28_29 PD 86.7 93.3 66.7 86.7 73.3 81.3±9.8 

 SWEDD 46.7 60.0 80.0 66.7 73.3 65.3±11.5 

 Total 63.3 46.7 63.3 53.3 63.3 58.0±6.9 

Slices 30_31_32 PD 60.0 33.3 60.0 60.0 66.7 56.0±11.6 

 SWEDD 66.7 60.0 66.7 46.7 60.0 60.0±7.3 

 Total 60.0 56.7 56.7 66.7 70.0 62.0±5.4 

Slices 33_34_35 PD 53.3 60.0 60.0 60.0 60.0 58.7±2.7 

 SWEDD 66.7 53.3 53.3 73.3 80.0 65.3±10.7 

 Total 63.3 53.3 60.0 53.3 70.0 60.0±6.3 

Slices 36_37_38 PD 40.0 40.0 40.0 53.3 80.0 50.7±15.5 

 SWEDD 86.7 66.7 80.0 53.3 60.0 69.3±12.4 

 Total 40.0 60.0 53.3 46.7 73.3 54.7±11.5 

Slices 39_40_41 PD 33.3 73.3 60.0 40.0 60.0 53.3±14.6 

 SWEDD 46.7 46.7 46.7 53.3 86.7 56.0±15.5 

 Total 56.7 53.3 60.0 56.7 56.7 56.7±2.1 

Slices 42_43_44 PD 33.3 46.7 53.3 53.3 53.3 48.0±7.8 

 SWEDD 80.0 60.0 66.7 60.0 60.0 65.3±7.8 

 Total 60.0 50.0 66.7 53.3 56.7 57.3±5.7 

Slices 45_46_47 PD 46.7 46.7 60.0 53.3 53.3 52.0±5.0 

 SWEDD 73.3 53.3 73.3 53.3 60.0 62.7±9.0 

Avg: Average; std: Standard Deviation 
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Appendix C: Example of MRI and SPECT slices  
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Figure C. 1 Example from one control subject of the 79 slices obtained with 3D T1-Weighted MRI images 

division in Axial plane. 
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Figure C. 2 Example from one control subject of the 79 slices obtained with DatTscan SPECT images 

division in Axial plane. 
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