23 research outputs found

    Flash Memory Devices

    Get PDF
    Flash memory devices have represented a breakthrough in storage since their inception in the mid-1980s, and innovation is still ongoing. The peculiarity of such technology is an inherent flexibility in terms of performance and integration density according to the architecture devised for integration. The NOR Flash technology is still the workhorse of many code storage applications in the embedded world, ranging from microcontrollers for automotive environment to IoT smart devices. Their usage is also forecasted to be fundamental in emerging AI edge scenario. On the contrary, when massive data storage is required, NAND Flash memories are necessary to have in a system. You can find NAND Flash in USB sticks, cards, but most of all in Solid-State Drives (SSDs). Since SSDs are extremely demanding in terms of storage capacity, they fueled a new wave of innovation, namely the 3D architecture. Today “3D” means that multiple layers of memory cells are manufactured within the same piece of silicon, easily reaching a terabit capacity. So far, Flash architectures have always been based on "floating gate," where the information is stored by injecting electrons in a piece of polysilicon surrounded by oxide. On the contrary, emerging concepts are based on "charge trap" cells. In summary, flash memory devices represent the largest landscape of storage devices, and we expect more advancements in the coming years. This will require a lot of innovation in process technology, materials, circuit design, flash management algorithms, Error Correction Code and, finally, system co-design for new applications such as AI and security enforcement

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    낸드 플래시 기반 저장장치의 수명 향상을 위한 계층 교차 최적화 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 김지홍.Replacing HDDs with NAND flash-based storage devices (SSDs) has been one of the major challenges in modern computing systems especially in regards to better performance and higher mobility. Although uninterrupted semiconductor process scaling and multi-leveling techniques lower the price of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND flash memory, as a side effect of recent advanced device technologies, is emerging as one of the major barriers to the wide adoption of SSDs in high-performance computing systems. In this dissertation, we propose new cross-layer optimization techniques to extend the lifetime (in particular, endurance) of NAND flash memory. Our techniques are motivated by our key observation that erasing a NAND block with a lower voltage or at a slower speed can significantly improve NAND endurance. However, using a lower voltage in erase operations causes adverse side effects on other NAND characteristics such as write performance and retention capability. The main goal of the proposed techniques is to improve NAND endurance without affecting the other NAND requirements. We first present Dynamic Erase Voltage and Time Scaling (DeVTS), a unified framework to enable a system software to exploit the tradeoff relationship between the endurance and erase voltages/times of NAND flash memory. DeVTS includes erase voltage/time scaling and write capability tuning, each of which brings a different impact on the endurance, performance, and retention capabilities of NAND flash memory. Second, we propose a lifetime improvement technique which takes advantage of idle times between write requests when erasing a NAND block with a slower speed or when writing data to a NAND block erased with a lower voltage. We have implemented a DeVTS-enabled FTL, called dvsFTL, which optimally adjusts the erase voltage/time and write performance of NAND devices in an automatic fashion. Our experimental results show that dvsFTL can improve NAND endurance by 62%, on average, over DeVTS-unaware FTL with a negligible decrease in the overall write performance. Third, we suggest a comprehensive lifetime improvement technique which exploits variations of the retention requirements as well as the performance requirement of SSDs when writing data to a NAND block erased with a lower voltage. We have implemented dvsFTL+, an extended version of dvsFTL, which fully utilizes DeVTS by accurately predicting the write performance and retention requirements during run times. Our experimental results show that dvsFTL+ can further improve NAND endurance by more than 50% over dvsFTL while preserving all the NAND requirements. Lastly, we present a reliability management technique which prevents retention failure problems when aggressive retention-capability tuning techniques are employed in real environments. Our measurement results show that the proposed technique can recover corrupted data from retention failures up to 23 times faster over existing data recovery techniques. Furthermore, it can successfully recover severely retention-failed data, such as ones experienced 8 times longer retention times than the retention-time specification, that were not recoverable with the existing technique. Based on the evaluation studies for the developed lifetime improvement techniques, we verified that the cross-layer optimization approach has a significant impact on extending the lifetime of NAND flash-based storage devices. We expect that our proposed techniques can positively contribute to not only the wide adoption of NAND flash memory in datacenter environments but also the gradual acceleration of using flash as main memory.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Dissertation Goals 3 1.3 Contributions 4 1.4 Dissertation Structure 5 Chapter 2 Background 7 2.1 Threshold Voltage Window of NAND Flash Memory 7 2.2 NAND Program Operation 10 2.3 Related Work 11 2.3.1 System-Level SSD Lifetime Improvement Techniques 12 2.3.2 Device-Level Endurance-Enhancing Technique 15 2.3.3 Cross-Layer Optimization Techniques Exploiting NAND Tradeoffs 17 Chapter 3 Dynamic Erase Voltage and Time Scaling 20 3.1 Erase Voltage and Time Scaling 22 3.1.1 Motivation 22 3.1.2 Erase Voltage Scaling 23 3.1.3 Erase Time Scaling 26 3.2 Write Capability Tuning 28 3.2.1 Write Performance Tuning 29 3.2.2 Retention Capability Tuning 30 3.2.3 Disturbance Resistance Tuning 33 3.3 NAND Endurance Model 34 Chapter 4 Lifetime Improvement Technique Using Write-Performance Tuning 39 4.1 Design and Implementation of dvsFTL 40 4.1.1 Overview 40 4.1.2 Write-Speed Mode Selection 41 4.1.3 Erase Voltage Mode Selection 44 4.1.4 Erase Speed Mode Selection 46 4.1.5 DeVTS-wPT Aware FTL Modules 47 4.2 Experimental Results 50 4.2.1 Experimental Settings 50 4.2.2 Workload Characteristics 53 4.2.3 Endurance Gain Analysis 54 4.2.4 Overall Write Throughput Analysis 56 4.2.5 Detailed Analysis 58 Chapter 5 Lifetime Improvement Technique Using Retention-Capability Tuning 60 5.1 Design and Implementation of dvsFTL+ 62 5.1.1 Overview 62 5.1.2 Retention Requirement Prediction 64 5.1.3 Maximization of Endurance Benefit 66 5.1.4 Minimization of Reclaim Overhead 68 5.2 Experimental Results 69 5.2.1 Experimental Settings 69 5.2.2 Workload Characteristics 70 5.2.3 Endurance Gain Analysis 72 5.2.4 NAND Requirements Analysis 73 5.2.5 Detailed Analysis of Retention-Time Predictor 76 5.2.6 Detailed Analysis of Endurance Gain 83 Chapter 6 Reliability Management Technique for NAND Flash Memory 87 6.1 Overview 89 6.2 Motivation 91 6.2.1 Limitations of the Existing Retention-Error Management Policy 91 6.2.2 Limitations of the Existing Retention-Failure Recovery Technique 92 6.3 Retention Error Recovery Technique 95 6.3.1 Charge Movement Model 95 6.3.2 A Selective Error-Correction Procedure 99 6.3.3 Implementation 100 6.4 Experimental Results 103 Chapter 7 Conclusions 108 7.1 Summary and Conclusions 108 7.2 Future Work 110 7.2.1 Lifetime Improvement Technique Exploiting The Other NAND Tradeoffs 110 7.2.2 Development of Extended Techniques for DRAM-Flash Hybrid Main Memory Systems 111 7.2.3 Development of Specialized SSDs 112 Bibliography 114 초 록 122Docto

    Architectural Techniques for Multi-Level Cell Phase Change Memory Based Main Memory

    Get PDF
    Phase change memory (PCM) recently has emerged as a promising technology to meet the fast growing demand for large capacity main memory in modern computing systems. Multi-level cell (MLC) PCM storing multiple bits in a single cell offers high density with low per-byte fabrication cost. However, PCM suffers from long write latency, short cell endurance, limited write throughput and high peak power, which makes it challenging to be integrated in the memory hierarchy. To address the long write latency, I propose write truncation to reduce the number of write iterations with the assistance of an extra error correction code (ECC). I also propose form switch (FS) to reduce the storage overhead of the ECC. By storing highly compressible lines in single level cell (SLC) form, FS improves read latency as well. To attack the short cell endurance and large peak power, I propose elastic RESET (ER) to construct triple-level cell PCM. By reducing RESET energy, ER significantly reduces peak power and prolongs PCM lifetime. To improve the write concurrency, I propose fine-grained write power budgeting (FPB) observing a global power budget and regulates power across write iterations according to the step-down power demand of each iteration. A global charge pump is also integrated onto a DIMM to boost power for hot PCM chips while staying within the global power budget. To further reduce the peak power, I propose intra-write RESET scheduling distributing cell RESET initializations in the whole write operation duration, so that the on-chip charge pump size can also be reduced

    Performance Analysis of NAND Flash Memory Solid-State Disks

    Get PDF
    As their prices decline, their storage capacities increase, and their endurance improves, NAND Flash Solid-State Disks (SSD) provide an increasingly attractive alternative to Hard Disk Drives (HDD) for portable computing systems and PCs. HDDs have been an integral component of computing systems for several decades as long-term, non-volatile storage in memory hierarchy. Today's typical hard disk drive is a highly complex electro-mechanical system which is a result of decades of research, development, and fine-tuned engineering. Compared to HDD, flash memory provides a simpler interface, one without the complexities of mechanical parts. On the other hand, today's typical solid-state disk drive is still a complex storage system with its own peculiarities and system problems. Due to lack of publicly available SSD models, we have developed our NAND flash SSD models and integrated them into DiskSim, which is extensively used in academe in studying storage system architectures. With our flash memory simulator, we model various solid-state disk architectures for a typical portable computing environment, quantify their performance under real user PC workloads and explore potential for further improvements. We find the following: * The real limitation to NAND flash memory performance is not its low per-device bandwidth but its internal core interface. * NAND flash memory media transfer rates do not need to scale up to those of HDDs for good performance. * SSD organizations that exploit concurrency at both the system and device level improve performance significantly. * These system- and device-level concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance increase due to one does not come at the expense of the other, as each exploits a different facet of concurrency exhibited within the PC workload. * SSD performance can be further improved by implementing flash-oriented queuing algorithms, access reordering, and bus ordering algorithms which exploit the flash memory interface and its timing differences between read and write requests

    Charge-based compact model of gate-all-around floating gate nanowire with variable oxide thickness for flash memory cell

    Get PDF
    Due to high gate electrostatic control and introduction of punch and plug process technology, the gate-all-around (GAA) transistor is very promising in, and apparently has been utilized for, flash memory applications. However, GAA Floating Gate (GAA-FG) memory cell still requires high programming voltage that may be susceptible to cell-to-cell interference. Scaling down the tunnel oxide can reduce the Program/Erase (P/E) voltage but degrades the data retention capability. By using Technology-Computer-Aided-Design (TCAD) tools, the concept of tunnel barrier engineering using Variable Oxide Thickness (VARIOT) of low-k/high-k stack is utilized in compensating the trade-off between P/E operation and retention characteristics. Four high-k dielectrics (Si3N4, Al2O3, HfO2 and ZrO2) that are commonly used in semiconductor process technology are examined with SiO2 as its low-k dielectric. It is found that by using SiO2/Al2O3 as the tunnel layer, both the P/E and retention characteristics of GAA-FG can be compensated. About 30% improvement in memory window than conventional SiO2 is obtained and only 1% of charge-loss is predicted after 10 years of applying gate stress of -3.6V. Compact model of GAA-FG is initiated by developing a continuous explicit core model of GAA transistor (GAA Nanowire MOSFET (GAANWFET) and Juntionless Nanowire Transitor (JNT)). The validity of the theory and compact model is identified based on sophisticated numerical TCAD simulator for under 10% maximum error of surface potential. It is revealed that with the inclusion of partial-depletion conduction, the accuracy of the core model for GAANWFET is improved by more than 50% in the subthreshold region with doping-geometry ratio can be as high as about 0.86. As for JNT, despite the model being accurate for doping-geometry ratio upto 0.6, it is also independent of fitting parameters that may vary under different terminal biases or doping-geometry cases. The compact model of GAA-FG is completed by incorperating Charge Balance Model (CBM) into GAA transistor core model where good agreement is obtained with TCAD simulation and published experimental work. The CBM gives better accuracy than the conventional capacitive coupling approach under subthreshold region with approximately 10% error of floating gate potential. Therefore, the proposed compact model can be used to assist experimental work in extracting experimental data

    Towards Design and Analysis For High-Performance and Reliable SSDs

    Get PDF
    NAND Flash-based Solid State Disks have many attractive technical merits, such as low power consumption, light weight, shock resistance, sustainability of hotter operation regimes, and extraordinarily high performance for random read access, which makes SSDs immensely popular and be widely employed in different types of environments including portable devices, personal computers, large data centers, and distributed data systems. However, current SSDs still suffer from several critical inherent limitations, such as the inability of in-place-update, asymmetric read and write performance, slow garbage collection processes, limited endurance, and degraded write performance with the adoption of MLC and TLC techniques. To alleviate these limitations, we propose optimizations from both specific outside applications layer and SSDs\u27 internal layer. Since SSDs are good compromise between the performance and price, so SSDs are widely deployed as second layer caches sitting between DRAMs and hard disks to boost the system performance. Due to the special properties of SSDs such as the internal garbage collection processes and limited lifetime, traditional cache devices like DRAM and SRAM based optimizations might not work consistently for SSD-based cache. Therefore, for the outside applications layer, our work focus on integrating the special properties of SSDs into the optimizations of SSD caches. Moreover, our work also involves the alleviation of the increased Flash write latency and ECC complexity due to the adoption of MLC and TLC technologies by analyzing the real work workloads

    Caractérisation et conception d' architectures basées sur des mémoires à changement de phase

    Get PDF
    Semiconductor memory has always been an indispensable component of modern electronic systems. The increasing demand for highly scaled memory devices has led to the development of reliable non-volatile memories that are used in computing systems for permanent data storage and are capable of achieving high data rates, with the same or lower power dissipation levels as those of current advanced memory solutions.Among the emerging non-volatile memory technologies, Phase Change Memory (PCM) is the most promising candidate to replace conventional Flash memory technology. PCM offers a wide variety of features, such as fast read and write access, excellent scalability potential, baseline CMOS compatibility and exceptional high-temperature data retention and endurance performances, and can therefore pave the way for applications not only in memory devices, but also in energy demanding, high-performance computer systems. However, some reliability issues still need to be addressed in order for PCM to establish itself as a competitive Flash memory replacement.This work focuses on the study of embedded Phase Change Memory in order to optimize device performance and propose solutions to overcome the key bottlenecks of the technology, targeting high-temperature applications. In order to enhance the reliability of the technology, the stoichiometry of the phase change material was appropriately engineered and dopants were added, resulting in an optimized thermal stability of the device. A decrease in the programming speed of the memory technology was also reported, along with a residual resistivity drift of the low resistance state towards higher resistance values over time.A novel programming technique was introduced, thanks to which the programming speed of the devices was improved and, at the same time, the resistance drift phenomenon could be successfully addressed. Moreover, an algorithm for programming PCM devices to multiple bits per cell using a single-pulse procedure was also presented. A pulse generator dedicated to provide the desired voltage pulses at its output was designed and experimentally tested, fitting the programming demands of a wide variety of materials under study and enabling accurate programming targeting the performance optimization of the technology.Les mémoires à base de semi-conducteur sont indispensables pour les dispositifs électroniques actuels. La demande croissante pour des dispositifs mémoires fortement miniaturisées a entraîné le développement de mémoires non volatiles fiables qui sont utilisées dans des systèmes informatiques pour le stockage de données et qui sont capables d'atteindre des débits de données élevés, avec des niveaux de dissipation d'énergie équivalents voire moindres que ceux des technologies mémoires actuelles.Parmi les technologies de mémoires non-volatiles émergentes, les mémoires à changement de phase (PCM) sont le candidat le plus prometteur pour remplacer la technologie de mémoire Flash conventionnelle. Les PCM offrent une grande variété de fonctions, comme une lecture et une écriture rapide, un excellent potentiel de miniaturisation, une compatibilité CMOS et des performances élevées de rétention de données à haute température et d'endurance, et peuvent donc ouvrir la voie à des applications non seulement pour les dispositifs mémoires, mais également pour les systèmes informatiques à hautes performances. Cependant, certains problèmes de fiabilité doivent encore être résolus pour que les PCM se positionnent comme un remplacement concurrentiel de la mémoire Flash.Ce travail se concentre sur l'étude de mémoires à changement de phase intégrées afin d'optimiser leurs performances et de proposer des solutions pour surmonter les principaux points critiques de la technologie, ciblant des applications à hautes températures. Afin d'améliorer la fiabilité de la technologie, la stœchiométrie du matériau à changement de phase a été conçue de façon appropriée et des dopants ont été ajoutés, optimisant ainsi la stabilité thermique. Une diminution de la vitesse de programmation est également rapportée, ainsi qu'un drift résiduel de la résistance de l'état de faiblement résistif vers des valeurs de résistance plus élevées au cours du temps.Une nouvelle technique de programmation est introduite, permettant d'améliorer la vitesse de programmation des dispositifs et, dans le même temps, de réduire avec succès le phénomène de drift en résistance. Par ailleurs, un algorithme de programmation des PCM multi-bits est présenté. Un générateur d'impulsions fournissant des impulsions avec la tension souhaitée en sortie a été conçu et testé expérimentalement, répondant aux demandes de programmation d'une grande variété de matériaux innovants et en permettant la programmation précise et l’optimisation des performances des PCM

    Design of Logic-Compatible Embedded Flash Memories for Moderate Density On-Chip Non-Volatile Memory Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. December 2013. Major: Electrical Engineering. Advisor: Chris H. Kim. 1 computer file (PDF); xx, 129 pages.An on-chip embedded NVM (eNVM) enables a zero-standby power system-on-a-chip with a smaller form factor, faster access speed, lower access power, and higher security than an off-chip NVM. Differently from the high density eNVM technologies such as dual-poly eflash, FeRAM, STT-MRAM, and RRAM that typically require process overhead beyond standard logic process, the moderate density eNVM technologies such as e-fuse, anti-fuse, and single-poly embedded flash (eflash) can be fabricated in a standard logic process with no process overhead. Among them, a single-poly eflash is a unique multiple-time programmable moderate density eNVM, while it is expected to play a key role in mitigating variability and reliability issues of the future VLSI technologies; however, the challenges such as a high voltage disturbance, an implementation of logic compatible High Voltage Switch (HVS), and a limited sensing margin are required to be solved for its implementation using a standard I/O device. This thesis focuses on alleviating such challenges of the single-poly eflash memory with three single-poly eflash designs proposed in a generic logic process for moderate density eNVM applications. Firstly, the proposed 5T eflash features a WL-by-WL accessible architecture with no disturbance issue of the unselected WL cells, an overstress-free multi-story HVS expanding the cell sensing margin, and a selective WL refresh scheme for the higher cell endurance. The most favorable eflash cell configuration is also studied when the performance, endurance, retention, and disturbance characteristics are all considered. Secondly, the proposed 6T eflash features the bit-by-bit re-write capability for the higher overall cell endurance, while not disturbing the unselected WL cells. The logic compatible on-chip charge pump to provide the appropriate high voltages for the proposed eflash operations is also discussed. Finally, the proposed 10T eflash features a multi-configurable HVS that does not require the boosted read supplies, and a differential cell architecture with improved retention time. All these proposed eflash memories were implemented in a 65nm standard logic process, and the test chip measurement results confirmed the functionality of the proposed designs with a reasonable retention margin, showing the competitiveness of the proposed eflash memories compared to the other moderate density eNVM candidates
    corecore