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Flash memory devices represented a breakthrough in the storage industry since their
inception in the mid-1980s, and innovation is still ongoing after more than 35 years. They
are the largest landscape of storage devices, and we expect more and more advancements
in the coming years. The peculiarity of such technology is an inherent flexibility in terms of
performance and integration density according to the architecture devised for integration
of cells. In the context of code storage applications in the embedded world, automotive
microcontrollers, IoT smart devices, and edge AI, we rely on NOR Flash technology. Their
density ranges from a few Kbytes up to the Gigabit size. However, when massive data
storage is required, NAND Flash memories are a must in a system. NAND Flash can be
found in USB and Flash Cards (SD, eMMC), but most of all in Solid-State Drives (SSDs).
Since SSDs are extremely demanding in terms of storage capacity, they fueled a new
wave of innovation for Flash memories, namely 3D architecture. Today, 3D means that
multiple layers (up to almost two hundred, as we speak) of memory cells are manufactured
within the same piece of silicon, easily reaching a terabit of storage capacity per chip.
This will require a lot of innovation in process technology, materials, circuit design, flash
management algorithms, Error Correction Code (ECC), and finally system co-design for
new applications such AI and security enforcement.

This Special Issue provides insight on and advancements in Flash memory devices.
There are nine papers including one review paper, covering the reliability of 3D NAND
Flash devices [1–3], the characterization and design of Flash memory cell/string [2,4,5],
NOR Flash memories for embedded applications [5], a set of Error Correction Codes and
Secondary Correction Algorithms for flash memories [6,7], Flash management through
flash signal processing in controllers for Big Data storage [6–8], and the impact of Flash
memories on Solid State Drives reliability and performance [8,9].

Flash memory devices integrated either with planar or 3D process scheme suffer
from major performance and reliability threats that can be handled starting from the
first manufacturing process steps. In [1], Spinelli et al. reviewed the phenomenology of
random telegraph noise (RTN) in 3D NAND Flash arrays to deeply understand such a time-
dependent reliability issue. They pointed out the relevant role played by the polycrystalline
nature of the string silicon channels through experimental data and simulation models of
the current transport. The RTN features changed significantly in the transition from planar
to 3D processes due to the presence of highly defective grain boundaries on percolative
current transport in cell channels in combination with the localized nature of the RTN
traps. In [2], Ramesh et al. studied the erase operation performance by characterizing the
metal gate work function of different metal electrode and high-k dielectric combinations
in 3D Flash cell stack integration. They investigated the impact of different thermal treat-
ments on the work function and observed a dipole formation at the metal/high-k and/or
high-k/SiO2 interfaces. They also concluded that the erase performance of metal/high-
k/ONO/Si (MHONOS) capacitors is identical to the gate stack in three-dimensional (3D)
NAND Flash, although the work function extraction is convoluted by the dipole formation.
In [3], Chen et al. investigated the temperature effects that affect the reliability and perfor-
mance of NAND flash memories. They characterized Triple-Level Cell (TLC) 3D NAND
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flash memory chips in a wide temperature range by focusing on the raw bit error rate
(RBER) degradation during frequent-write (endurance) and frequent-read (read disturb)
working conditions. It was observed that the program time shows strong dependence on
the temperature and lifetime degradation induced by cycling and that the RBER can be
suppressed at higher temperatures. Read disturb has been found to be more detrimental at
low temperatures, but it can be beneficial for RBER recovery at high temperatures.

A successful Flash technology requires a careful design of the cell structure and of
the operation modes. In [4], Yi et al. addressed the minimization of the threshold voltage
variation of programmed cells by developing a new programming scheme to write the cells
from the top array in vertical NAND (VNAND) structures to reach 5 bits per cell storage
paradigm. With the aid of Technology-Computer-Aided Design (TCAD), the Z-Interference
for this new program algorithm is found to be better than the state of the art by at least
20 mV. Moreover, under scaled cell dimensions, the improvement becomes protruding.
In [5], Song et al. incorporated aluminum oxide in tunnel oxide to improve retention
characteristics of NOR flash arrays. By adopting the proposed tunneling layers in the NOR
flash array, the threshold voltage window after 10 years from programming and erasing
(P/E) was improved by 4 V. The validation of the proposed device structure took place by
comparing it with another stacked-engineered structure with SiO2/Si3N4/SiO2 tunneling
layers. Simulations through TCAD were exploited in this context. In addition, to verify
that our proposed structure is suitable for NOR flash array, disturbance issues are also
carefully investigated.

As Flash architectures scale, their reliability worsens significantly and they require
proactive control by using either advanced Error Correction Codes or some secondary
correction mechanisms that help the recovery of the corrupted stored information. NAND
flash memories are addressed especially in this context. In [6], Zhang et al. proposed a
set of machine learning algorithms to accurately predict endurance levels of the memory
array, which is of great significance for effectively extending the lifetime of NAND flash
memory devices and avoiding serious losses caused by sudden failures. In this work, a
multi-class endurance prediction scheme based on the SVM algorithm is proposed, which
can predict the remaining endurance level and the RBER at various lifetime points. Feature
analysis based on endurance data is used to determine the basic elements of the model
and its implementation on a System-on-Chip (SoC) module showing the completion of a
single prediction within 37 μs. In [7], He et al. presents a novel neural-network-assisted
error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC)
NAND Flash memory. They propose a relative log-likelihood ratio (LLR) to estimate the
actual LLR and transform the bit detection into a clustering problem suitable for a neural
network to learn the error characteristics of the NAND flash memory channel. Simulation
results show that the proposed scheme can significantly increase the lifetime of NAND
flash memories.

The interaction of Flash memories at the system level as currently happens in Solid
State Drive (SSD) architectures is also of paramount importance. The physics of devices and
the higher abstraction levels of the digital electronics come together in this context. In [8],
M. Favalli et al. discussed the data randomization for reducing or suppressing errors. In
this work, they proposed a randomization scheme that is easy to implement, cost effective,
and fully scalable with memory dimensions and guarantees optimal randomization along
the wordline and the bitline dimensions. The method has been validated on commercial
off-the-shelf TLC 3D NAND Flash memory. In [9], Du et al. defined garbage collection
(GC) as a time-consuming but necessary operation in Flash memories. They performed
a comprehensive experimental study in view of a performance cliff that closely relates to
Quality of Service (QoS). Through system-level simulations, they found that 3D NAND
Flash based SSDs exacerbate the situation by inducing a much higher number of page
migrations during GC. To relieve the performance cliff problem, they propose PreGC
to assist normal GC. Experimental results show that PreGC can efficiently relieve the
performance cliff by reducing the tail latency from the 90th to 99.99th percentiles.
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Abstract: For improving retention characteristics in the NOR flash array, aluminum oxide (Al2O3,
alumina) is utilized and incorporated as a tunneling layer. The proposed tunneling layers consist
of SiO2/Al2O3/SiO2, which take advantage of higher permittivity and higher bandgap of Al2O3

compared to SiO2 and silicon nitride (Si3N4). By adopting the proposed tunneling layers in the
NOR flash array, the threshold voltage window after 10 years from programming and erasing
(P/E) was improved from 0.57 V to 4.57 V. In order to validate our proposed device structure, it is
compared to another stacked-engineered structure with SiO2/Si3N4/SiO2 tunneling layers through
technology computer-aided design (TCAD) simulation. In addition, to verify that our proposed
structure is suitable for NOR flash array, disturbance issues are also carefully investigated. As a
result, it has been demonstrated that the proposed structure can be successfully applied in NOR flash
memory with significant retention improvement. Consequently, the possibility of utilizing HfO2 as a
charge-trapping layer in NOR flash application is opened.

Keywords: retention characteristic; high-κ; nonvolatile charge-trapping memory; stack engineering;
NOR flash memory; aluminum oxide

1. Introduction

With the advent of the Fifth Generation Mobile Networks (5G) era, the demand for
big data has increased rapidly in recent years [1–3], and the need for memory devices
enabling more data storage has consistently increased [4,5]. In order to satisfy these
demands, novel memory devices utilizing new materials such as aluminum oxide (Al2O3,
alumina), hafnium oxide (HfO2), zirconium dioxide (ZrO2), stacked HfO2/Al2O3, and
nano-laminated forms (HfAlOx) have been widely proposed and studied [6–8].

Among them, hafnium oxide (HfO2) has a tremendous advantage as a charge-trapping
layer (CTL) material, since its charge trap density is four times higher than that of the
conventional charge-trapping layer (CTL), silicon nitride (Si3N4) [9,10]. This enriched
CTL density of HfO2 can enable a wider threshold voltage (VTH) window and improved
memory margin [11,12]. Furthermore, permittivity of HfO2 is much higher than that of
Si3N4, which enables significant reduction in equivalent oxide thickness (EOT) of the gate
stack [13–17]. This enables low program voltage (VPGM), low erase voltage (VERS), fast
program/erase (P/E) speed, fast switching speed, and low power consumption.

From these various advantages of higher charge trap density and the possibility of
reducing EOT, HfO2-based charge-trapping memories (CTM) have been widely studied
for fast, high-capacity nonvolatile memory devices [18–21]. However, despite these ad-
vantages, HfO2 has encountered many limitations in commercialization due to retention
problems that come from its numerous shallow traps [22–25]. Therefore, this issue needs to
be solved for realizing practical high-κ–based charge-trapping memory (HCTM).

Micromachines 2021, 12, 328. https://doi.org/10.3390/mi12030328 https://www.mdpi.com/journal/micromachines
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In order to solve these retention issues, the use of Al2O3 as a CTL in a metal/Al2O3/SiO2/Si
(MAOS) structure has been proposed, but it also suffers from retention problems due to ver-
tical leakage current [26,27]. Another previous solution of simply increasing the thickness
of tunneling oxide layers has been proposed to mitigate this retention problem; however,
this approach concomitantly results in the degradation in P/E speed and subthreshold
swing (SS) due to an increase in EOT of the gate stack [28–31]. Furthermore, this approach
inevitably increases VPGM, VERS, and power consumption. Therefore, a new approach is
needed to solve these issues.

In this framework, the aim of this paper is to 1) improve retention characteristics of
HfO2-based CTM by using tunneling oxide layers of SiO2/Al2O3/SiO2 and 2) validate that
our proposed structure can be well applied in the NOR flash array, which has been broadly
studied for unsupervised learning [32,33]. For validating retention improvement in the
proposed memory device structure, it is also compared with the other bandgap engineering
(BE) tunneling oxide layers with SiO2/Si3N4/SiO2 [34–36].

Consequently, it has been demonstrated that the retention characteristics can be
significantly improved in a high-κ–based NOR flash memory device by utilizing the
advanced tunneling layers with SiO2/Al2O3/SiO2 on the tunnel field effect transistor
(TFET) structure, which has been broadly studied for low power application [37–44]. From
an array perspective, it has been demonstrated that the proposed memory device structure
is also able to inhibit the programming in unselected cells by bottom gate effect. Namely,
we have designed the memory device structure which is free from disturbance issues in
the NOR flash array with enhanced retention characteristics.

This paper is organized as follows. First, the basic transfer characteristics are analyzed
after calibration. Second, performance of inhibition in the NOR flash array is demonstrated.
Then, improvement of the retention characteristics is carefully analyzed with various
perspectives. Finally, the expected advantage of applying our proposed memory device
structure in the NOR flash array is discussed.

2. Device Structure and Model Physics

2.1. Structure of the Proposed Memory Device

In previous research, the advanced bandgap-engineered TaN/Al2O3/HfO2/SiO2/Si
(BE-TAHOS) structure has been investigated for a faster erasing speed and larger memory
window by incorporating Si3N4 at the tunneling oxide layer [37–44]. By utilizing this
BE-TAHOS structure [34–36] and applying Al2O3 at the tunneling layer, the advanced
structure of TaN/Al2O3/HfO2/SiO2/Al2O3/SiO2/Si (TAHOAOS) is designed for NOR
flash memory.

Cross-sectional views of conventional TaN/Al2O3/HfO2/SiO2/Si (TAHOS), BE-TAHOS,
and that of the proposed TAHOAOS structure are schematically shown in Figure 1. In order
to compare the proposed TAHOAOS structure with not only conventional TAHOS but also
the BE-TAHOS structure, BE-TAHOS is also designed with SiO2/Si3N4/SiO2 tunneling
oxide layers [34–36]. The devices designed in this work have four terminals with top gate,
bottom gate, source, and drain. The bottom gate is designed for solving disturbance issues.

Table 1 describes the film thickness and channel length for these devices. The sim-
ulated devices are composed of tunneling oxide layers with the same EOT of 3 nm for
fair comparison. The blocking oxide is composed of 6 nm Al2O3, and CTL is composed
of 4 nm HfO2. Bottom gate dielectric has a 3 nm thickness with SiO2. The length and
thickness of the silicon channel are 40 nm and 12 nm, respectively. A gate-drain underlap
(gate-source overlap) structure is applied for suppressing ambipolar current [38,39], which
undesirably increases the off-state current. In specific, since the ambipolar current occurs
due to band-to-band-tunneling (BTBT) current in the body/drain region, it is possible to
suppress the ambipolar current by locating the gate far from the drain, which is called
gate-drain underlap [38,39].

6
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(a)                   (b)                      (c) 

Figure 1. Schematic view illustrating (a) conventional TaN/Al2O3/HfO2/SiO2/Si (TAHOS),
(b) bandgap engineered (BE)-TAHOS, and (c) proposed TaN/Al2O3/HfO2/SiO2/Al2O3/SiO2/Si
(TAHOAOS) structure with two gate terminals. All structures commonly have HfO2 as charge-
trapping layer (CTL) and Al2O3 as blocking oxide. The abbreviated letters T, A, H, O, N stand for
tantalum nitride (TaN, gate metal), Al2O3, HfO2, SiO2, Si3N4, respectively.

Table 1. Film thickness and channel length in conventional TAHOS, BE-TAHOS, and proposed
TAHOAOS structure.

Region Material Thickness (nm)

Tunneling oxide
SiO2 3

SiO2/Si3N4/SiO2 1/1.7/1
SiO2/Al2O3/SiO2 1/2.3/1

Blocking oxide Al2O3 6
Charge-trapping layer HfO2 4
Bottom gate dielectric SiO2 3

Channel (length) Si 40
Channel (thickness) Si 12

2.2. Model Physics and Model Parameters

To carefully investigate the electrical characteristics in these three different structures,
tunneling models such as band-to-band-tunneling (BTBT), Fowler-Nordheim (FN) tunnel-
ing, direct tunneling, and trap-assisted tunneling (TAT) are applied in this device simulation
with Synopsys Sentaurus™ through a technology computer-aided design (TCAD) tool.
Physical models including Shockley-Read-Hall (SRH) recombination and E-field saturation
models are also applied for precisely analyzing the memory operation.

For details, we adopted various mobility models including the PhuMob mobility
model, Enormal (Lombardi) mobility model, and thin-layer mobility model to consider
interfacial surface calibration roughness scattering and Coulomb scattering. In addition,
models of eHighFieldSaturation, hHighFieldSaturation, and Avalanche (CarrierTempDrive)
are used for reflecting velocity saturation and avalanche breakdown. Non-local mesh,
eBarrierTunneling, and hBarrierTunneling are utilized for applying FN tunneling and
direct tunneling.

In modeling HfO2 as CTL, charge trap density of 1.2 × 1020 cm−3 is applied for HfO2,
which corresponds to its charge trap density in memory device [9–11]. Specifically, the energy
depth of electron is set as 0.7 eV from the lowest conduction band (LCB) of HfO2 [20], whereas
the energy depth of hole is set as 2.9 eV from the highest valence band (HVB) [21] of HfO2.
On the other hand, in modeling Al2O3, charge trap density of 2.0 × 1012 cm−3 is applied, and
the energy depth of electron/hole is set as 0.4/2.7 eV from LCB/HVB, respectively [8]. In
addition, effective electron tunneling masses (meff) of 0.55 mo, 0.2 mo, and 0.4 mo are used in
thin film of SiO2 [12], HfO2 [12], and Al2O3 [17], respectively.

7
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2.3. Workflow of Study and Calibration Process

Figure 2a illustrates the overall workflow of this paper. The calibration of memory
device is performed with the fabricated memory devices [45,46], and then gate dielectric
layers of SiO2/Al2O3/SiO2 is incorporated. Thereafter, validation of the proposed memory
device structure is conducted in terms of retention characteristics and inhibition in the
NOR flash array.

  

(a) (b) 

 
(c) 

Figure 2. (a) Illustration that summarizes overall workflow of this paper; (b) calibration results based on the fabricated
TANOS device [45]; (c) another calibration result based on fabricated BE-TAHOS device [46]. (Sky blue dot line indicates
the linear approximation of retention characteristic in the fabricated BE-TAHOS device.).

During the calibration process, quantum correlations are carefully conducted for
IDS-IGS calibration, and retention calibration is performed under Synopsys Sentaurus™
three-dimensional (3D) TCAD simulation [47]. For details, we adopted various mobility
models including the PhuMob mobility model, Enormal (Lombardi) mobility model, and
thin-layer mobility model to consider interfacial surface calibration roughness scattering
and Coulomb scattering. Firstly, IDS-IGS calibration is performed by carefully adopting the
velocity saturation model, quantum model, and gate work function (WF). Secondly, reten-
tion characteristics are carefully calibrated with the fabricated memory devices. Figure 2b,c
show our simulation results are well fit with the measured data of retention characteristics
in the fabricated TaN/Al2O3/Si3N4/SiO2/Si (TANOS) device and BE-TAHOS device.

3. Results and Discussion

3.1. Demonstration of NOR Flash Array with the Proposed Memory Device Structure

Before demonstrating the retention enhancement from the proposed structure, the
structure of the proposed memory device must be analyzed. In our proposed device
structure, there are two major technological changes.

8
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First, the tunneling oxide layer is technically changed for increasing physical thickness
and maintaining the same EOT of 3 nm at the same time (the exact thicknesses are shown in
Table 1). Since the EOT of the three structures is the same, the initial transfer characteristics
are almost the same, as shown in Figure 3.

Figure 3. Basic transfer characteristics of three different device structures. These transfer characteris-
tics show that our simulation is well designed with the same EOT thickness.

Second, the bottom gate was added to suppress programming of the unselected cell
and solve disturbance issues [37]. Specifically, as illustrated in Figure 4, the additional
bottom gates are connected with each other by the bottom gate line, which is perpendicular
to the source line and word line. From this perpendicular design between the bottom gate
line and word line, it is possible to program the selected cell only and inhibit programming
of unselected cells, as described in the following paragraph.

Figure 4. NOR array design for the proposed memory device structure. The newly added bottom
gate line is perpendicular to the word line for selective programming.

For programming, the FN tunneling mechanism is used instead of the hot-carrier injec-
tion (HCI) mechanism, which has been widely adopted for the conventional programming
method in the NOR flash array [48–50]. This is because the conventional HCI programming
consumes significant power due to a significant drain current during programming [48]. On
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the other hand, FN programming can lower power consumption [37] due to its lower gate
current compared to the higher drain current during HCI programming [48]. Therefore,
FN tunneling is adopted for programming with low power consumption.

Table 2 describes the voltage applied in the selected cell and unselected cells during
programming operation under the proposed NOR array design. Programming voltage
(VPGM) of 13 V and inhibition voltage of 7 V are adopted, as only 13 V can program the
memory cell in high-κ–based memory devices (namely, TAHOS structure) due to low EOT
of dielectric layers [18–21].

Table 2. The voltage applied in the selected cell and unselected cells during programming with the
proposed NOR array design.

Cell Type Top Gate Voltage (V) Bottom Gate Voltage (V)

Selected cell 13 0
Unselected cell 1 13 7
Unselected cell 2 0 7
Unselected cell 3 0 0

The different voltages are applied to the top gate and bottom gate of each cell, which
serves as selective programming without disturbance issues. Consequently, as demon-
strated in Figure 5, only the selected cell is programmed by FN tunneling, whereas the
unselected cells are not. Regarding threshold voltage (Figure 5b), all three unselected
cells show nearly zero threshold voltage shift just after programming, whereas the se-
lected sell shows significant threshold voltage shift just after programming. This is be-
cause more than 1016 cm−3 trapped electron charge is needed for threshold voltage shift
(Figure 5a,b) [18–21]. Therefore, it is possible to utilize our proposed structure in the NOR
flash array without disturbance issues and increase the capacity of memory storage.

 
(a) (b) 

 
(c) 

Figure 5. (a) Change of electron charge trap density during programming at the cells of the proposed
NOR array design. The density of trapped electron charge becomes saturated due to limited top
gate voltage. In the selected cell, the higher top gate voltage may increase the saturated density of
the trapped electron charge; (b) transfer characteristics just after programming of the cells in the
proposed NOR array design; (c) cross-sectional view of the selected cell with TAHOS structure that
illustrates the distribution of the trapped electron charge after programming.
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3.2. Retention Enhancement of the Proposed Memory Device Structure

In order to investigate the retention enhancement of the proposed TAHOAOS struc-
ture, devices with conventional TAHOS, and BE-TAHOS, proposed TAHOAOS structures
are programmed and erased with top gate voltage as described in Figure 6a. Specifically,
the high top gate voltage (17 V for programming and −21 V for erasing) is applied in order
to perform a fair comparison by matching initial threshold voltage (namely, threshold
voltage when time is 10−3 s). Then, retention characteristics of each structure are analyzed
for 10 years. It is shown that our proposed TAHOAOS structure maintains a significant
threshold voltage window for 10 years and is very strategic for retention characteristics, as
demonstrated in Figure 6b.

 
(a)                                        (b) 

Figure 6. (a) Top gate bias during programming and erasing, and (b) retention characteristics of
the conventional TAHOS, BE-TAHOS, and the proposed TAHOAOS structure. The high top gate
voltage (17 V for programming and −21 V for erasing) is applied in order to perform fair comparison
by matching initial threshold voltage at 1 micro-second. (Specifically, programming with top gate
voltage of 13 V, as in Table 2, results in different initial threshold voltage [37], and hence programming
with a higher top gate voltage of 17 V is performed for fair comparison.).

Specifically, our proposed TAHOAOS structure maintains 4.57 V of the threshold
voltage window, whereas conventional TAHOS structure only maintains 0.57 V after
10 years from programming and erasing (P/E) as illustrated in Figure 7. It is remarkable
that our proposed TAHOAOS structure shows better retention characteristics (more than
three times) compared to the BE-TAHOS structure.

 
          (a)                          (b)                          (c) 

Figure 7. Detailed description of retention characteristics in (a) conventional TAHOS, (b) BE-TAHOS,
and (c) proposed TAHOAOS structure.

However, there is one remarkable point in these retention characteristics. As shown in
Figure 6b, the retention characteristics of conventional TAHOS and BE-TAHOS after erase
operation (namely, red and pink line in Figure 6b) show barely little difference. Namely,
even though retention characteristics of BE-TAHOS (pink line) is slightly better than that

11



Micromachines 2021, 12, 328

of conventional TAHOS (red line), the difference between them is reduced due to valence
band offset.

This can be explained by energy band diagram. Figure 8 shows the energy band
diagram of BE-TAHOS and the proposed TAHOAOS structure with reference to previous
fabricated devices of the TAHOS and TANOS structure [51]. As illustrated in Figure 8a,
substantial valence band offset exists in the BE-TAHOS structure. This valence band offset
helps the hole to be ejected from HfO2 CTL. Therefore, the advantage of thicker tunneling
oxide layers in BE-TAHOS (compared to conventional TAHOS) is reduced in terms of
retention characteristics.

(a)                                       (b) 

Figure 8. Energy band diagram of (a) BE-TAHOS, and (b) proposed TAHOAOS structure. Regarding
retention characteristics, the valence band offset of BE-TAHOS (green arrow in panel a) mitigates
the advantage of thicker tunneling oxide layers in BE-TAHOS. The abbreviated letters T, A, H, O, N
stand for tantalum nitride (TaN, gate metal), Al2O3, HfO2, SiO2, Si3N4, respectively.

On the other hand, the proposed TAHOAOS structure has not only thicker tunnel-
ing oxide layers but also lower valance band offset compared to BE-TAHOS (Figure 8).
Therefore, regarding hole retention, the proposed TAHOAOS structure has a remarkable
competitive edge, as demonstrated in Figure 6b.

Figure 9 shows the transfer curves after 10 years of P/E operation in the conventional
TAHOS structure and the proposed TAHOAOS structure. It is expected that our proposed
structure can serve as a powerful tool for future big data markets with better reliability
(retention), higher memory capacity, and low power operation (TFET-based memory [34–40]).

 

Figure 9. Enhancement of retention characteristics by the proposed tunneling oxide engineering. The
graphs are calculated after 10 years of programming and erasing.

In summary, we have improved the retention characteristics with which HfO2-based
nonvolatile charge-trapping memory has encountered [22–25], and opened up the possibil-
ity of practical application of HfO2-based NOR flash memory for better memory capacity.

3.3. Proposal for Future Research

We have proposed the design methodology for better retention characteristics and
great immunity against disturbance issues by developing the TAHOAOS structure [37]
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on the NOR flash array. The proposed design technology is expected to improve the
retention characteristics and decrease power consumption during programming (due to
the programming method of FN tunneling) and during read operation (due to the TFET-
based structure). Furthermore, it is expected that our newly proposed device structure with
four terminals can solve the disturbance issue and make only a selected cell programmed.

However, even though our research has made considerable efforts to verify our
proposed methodology, our research is basically limited to NOR flash application. We
believe our proposed TAHOAOS structure can be applied beyond NOR flash application
and to other fields such as 3D NAND flash and 3D AND flash. This is because our
proposed technology may be applied in another domain by changing the design of the
circuit. Therefore, we would like to suggest the future research topic to readers by analyzing
our proposed technique in another array and another circuit design. It may be a desirable
and interesting topic to develop our research with various future memory applications.

4. Conclusions

In this study, we propose the advanced structure for the NOR flash array with retention
improvement. From the bottom gate effect, the disturbance issues are well suppressed,
and it is possible to utilize the proposed structure in a NOR flash array. In addition, the
threshold voltage window after 10 years of programming and erasing was considerably
increased from 0.57 V to 4.57 V by incorporating Al2O3 in tunneling oxide layers. This
enhancement is achieved by 1) high physical thickness of tunneling layers in the proposed
structure (namely, high permittivity of Al2O3) and 2) lower valence band offset/conduction
band offset in the proposed structure (namely, higher bandgap of Al2O3 compared to Si3N4).
These results open up the possibility of using enriched CTL (HfO2) with improved retention
characteristics. Therefore, the proposed TAHOAOS structure is very strategic for future
highly integrated memory cells in big data markets with significant reliability enhancement.
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Abstract: Minimizing the variation in threshold voltage (Vt) of programmed cells is required to the
extreme level for realizing multi-level-cells; as many as even 5 bits per cell recently. In this work,
a recent program scheme to write the cells from the top, for instance the 170th layer, to the bottom,
the 1st layer, (T-B scheme) in vertical NAND (VNAND) Flash Memory, is investigated to minimize
Vt variation by reducing Z-interference. With the aid of Technology Computer Aided Design (TCAD)
the Z-Interference for T-B (84 mV) is found to be better than B-T (105 mV). Moreover, under scaled
cell dimensions (e.g., Lg: 31→24 nm), the improvement becomes protruding (T-B: 126 mV and B-T:
162 mV), emphasizing the significance of the T-B program scheme for the next generation VNAND
products with the higher bit density.

Keywords: NAND flash memory; interference; Technology Computer Aided Design (TCAD) simulation;
disturbance; program; non-volatile memory (NVM)

1. Introduction

Due to the nature of NAND flash memory, which lacks the capability of random
access [1] of NOR flash memory [2,3] or other memories such as DRAM (Dynamic Random
Access Memory) and PCM (Phase Change Memory), reading and writing operations of one
cell inevitably accompanies operations on the other cells simultaneously in a target NAND
string [4,5]. Various combinations of the operation scheme such as bit line voltage (VBL),
read voltage (VREAD), pass voltage (VPASS), etc., are typically tested and finally the optimal
set is chosen by product engineers to minimize the threshold voltage (Vt) variation for
the given as-fab-out chips [6–9]. Moreover, with the higher level of layers emerging every
year or two, such that Memory companies announced a 6th generation vertical NAND
(VNAND) flash memory product of 120 layers in 2019 and subsequently plan to announce
the next 7th generation of 170 or more layers in a year or so [10], even more complicated
combinations of the operation scheme are being developed. For example, varying bias
conditions depending on the word line (WL) number, due to the nature of high aspect ratio
contact etching [11–13], need to be investigated by trial and error to meet the criteria of Vt
variation in a tight schedule. For this reason, the operation scheme optimization process
heavily relies on the product engineers’ intuition or, recently, statistical approaches such as
machine learning technology which can often neglect to understand the underlying charge
transport physics [14,15]. However, in order to accumulate the prior experience on the
operation scheme optimization toward the sustainable technique for future products, it is
critically important to understand the correlation between the input (operation scheme)
and the output (Vt variation).

Micromachines 2021, 12, 584. https://doi.org/10.3390/mi12050584 https://www.mdpi.com/journal/micromachines
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2. Simulation Methods

In this report, we target the investigation of Vt interference and coupling dependency
on the programming direction in a bit line as shown in Figure 1a. One method is to program
beginning from the bottom to top (B-T), i.e., from WL1 to WL170, which is the scheme
adopted by early generations of VNAND, and the other is to program beginning from the
top to bottom (T-B), i.e., from WL170 to WL1, which has been recently employed [16–21].
Although the scheme of T-B is currently prevailing over B-T because of the better vul-
nerability toward interference/coupling, as mentioned earlier, this link may have been
found through empirical trials based on a few prior reports with outdated cell geome-
tries [22,23]. That is probably the reason why any quantitative analysis and investigation is
unavailable publicly with up-to-date VNAND cell structures. In this work, by performing
Technology-Computer Aided Design (TCAD) simulations (SynopsysTM, Mountain View,
CA, USA) of interference for the two distinct schemes [24], we provide solid understanding
on the difference between the two and evaluate the benefit for the scaled-down cells of
next generation VNAND products.

Figure 1. (a) Vertical NAND (VNAND) Flash cell array schematic showing neighbors both intra-string (Z-interference)
and inter-string. Z-interference is the most critical since the channel is shared in close proximity for VNAND products. (b)
Current versus voltage data as a function of the gate voltage of the victim cell (WL3). Solid line represents the reference
state before the aggressor cell is programmed. Red dashed line and blue solid line denote the states after interference by
T-B and B-T, respectively. (c) Interference of 8 different states (E, P1, P2, P3, P4, P5, P6, and P7) for triple level cell (TLC)
under the condition of the aggressor programmed to P7 (Vt = 3.177 V). Blue diamonds and red circles show the results
out of Bottom to Top (B-T, WL4 is aggressor) and Top to Bottom (T-B, WL2 is aggressor), respectively. Remarks with (Exp.)
denote experimentally measured interferences (unpublished) from Samsung’s 4th generation VNAND (Ref. [18]).

3. Results and Discussion

Figure 1b shows eight sets of IBL-VWL curves at Vt’s from the erased state (E) to the
programmed states (P1, P2, . . . , P6, and P7). The tunneling masses of 0.36 m0 and 0.38 m0
were used for electrons and holes, and the block erasing with VERS = −16 V for 1 ms
resulted in Vt.E = −3.889 V based on BL current IBL = 100 nA. It should be noted that the
electron tunneling mass of 0.36 m0 was chosen to properly describe the pass disturb under
EP7 interference (approximately 100 mV of pass disturb and 150 mV of coupling), while
this brings about the programming speed faster (Vpgm = 16 V for 100 μs makes Vt,P7)
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compared to experimental results (Vpgm = 19~20 V for 100 μs makes Vt,P7). This is a well-
known dilemma for Flash memory TCAD simulations, where the trap-assisted-tunneling
(TAT) model is rarely considered due to the complexity in describing the atom defects in
the actually fabricated ONO (Oxide-Nitride-Oxide) films. Moreover, uncertainties due to
random telegraph noise (RTN) were not considered to clarify the comparison by mean
Vt’s [25]. Read voltage (VREAD) of 7 V was used as default. Once every cell in the model (five
word lines) was written to the state E by the block erasing, seven different programmed
states were mimicked by using the programming voltage (VPGM) of 16.0 V, 15.3 V, 14.6 V,
13.9 V, 13.2 V, 12.5 V, and 11.8 V for P7, P6, P5, P4, P3, P2, and P1 states, respectively, on
the third word line (WL3) together with VPASS applied to the other cells of 8 V for 100 μs.
Consequently, the Vt’s of seven programmed states constituted 3.177 V, 2.487 V, 1.794 V,
1.098 V, 0.399 V, −0.293 V, −0.990 V, of which the average read window between two
adjacent states is approximately 0.7 V, enabling the triple level cell (TLC). The interference
on WL3 was simulated under two different scenarios. The first is when the upper adjacent
cell, WL4, is programmed to P7, named as B-T scheme and represented by blue solid lines.
The second is when the aggressor is WL2, named as T-B scheme and represented by red
dashed lines.

Based on the raw data available in Figure 1b, the amount of interference in the unit
of mV as a function programmed state in Vt is rearranged in Figure 1c, which can be
labelled as EP7, P1P7, P2P7, P3P7, P4P7, P5P7, P6P7, and P7P7. The green dashed line at
Vt = −0.690 V is of the virgin state and it should be noted that the fixed charge of
−1012 cm−2 was used between the poly-silicon channel and fill oxide (the core oxide
of a NAND string due to macaroni-like structure) to fit the typical virgin Vt ranging from
−0.5 V to +0.5 V. The comparison between T-B (red circles) and B-T (blue diamonds) clearly
provides the better interference performance of T-B over B-T. The interference in NAND
Flash consists of two contributions: one is the change in trapped charge concentration of
the victim cell due to VPASS = 8 V during the programming phase (pass disturb), and the
other is the influence of the adjacent cell during the reading phase (coupling). In addition,
the distinctively high interference of EP7, 269 mV for B-T and 235 mV for T-B, compared to
those of P1P7~P7P7 implies the significant contribution of pass disturb.

Figure 2 provides the net charge concentration (QCON) information with color plots (a)
and curves (b) as a function of the position in the radial axis. Note that r = 0 nm corresponds
to the center of the cylindrical symmetry for a VNAND string. Because the diameter of
the hole was used to be 120 nm followed by 7.5 nm blocking oxide, 6 nm trap-nitride,
and 5.5 nm tunneling oxide, r = 46.5 nm and r = 52.5 nm represent the interfaces with
tunneling oxide and blocking oxide, respectively. In this work, we did not consider the
tendency of decreasing hole-diameters and ONO film thicknesses with decreasing WL
numbers in so called “stack-coverage”. Although it is known to cause the variation in
threshold voltages of 3D NAND cells [26,27], recent advances in high-aspect-ratio thin film
technique produce very decent stack-coverages (ONO film > 95% and Poly-Si > 90% by
comparing the film thickness of WL1 to that of WL170). Moreover, the state-of-the-art high-
aspect-ratio-etching technique makes almost uniform hole diameters (~120 nm) except for
approximately 10% of the top and bottom layers of a NAND string [21].
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Figure 2. (a) Net charge concentration (QCON) comparison of B-T and T-B. (b) QCON in the trap-nitride layer of WL3 as a
function radial coordinate r, where 46.5 nm and 52.5 nm represent two interfaces with oxide layers: top, EP7, where WL3 is
originally at the state with Vt = −3.889 V (E). Slight change in QCON for 46.5 < r (nm) < 46.7 is observed after interference,
because of pass disturb (8 V); bottom, P1P7, where WL3 is initially at the state with Vt = −0.976 V (P1). In this case, pass
disturb is negligible because P1 state is relatively invulnerable to VPASS = 8 V.

The first two color plots in Figure 2a show the comparison between B-T, where WL4
was programmed to P7, and T-B, where WL2 was programmed to P7, so that all other cells
appear to be similar with the peak net charge concentration of 3 × 1019 cm−3 except for
aggressor cells with −3 × 1019 cm−3. Note that the trap concentration, both for electrons
and holes, was set to 3 × 1019 cm−3 in this work. Even though only five WLs were built
in our simulation model, considering the computational cost, there was no detectable
amount of asymmetry between the cell near the top (WL4) and the cell near the bottom
(WL2) in terms of the net charge concentration. The plot of QCON as a function of r in
Figure 2b reveals the subtle change in the net charge concentration after the aggressor cell
(WL4 or WL2) is written, especially near the interface of trap-nitride and tunneling oxide
(46.5 < r (nm) < 46.7). The integration of the net charge concentration, with respect to
the volume, led to ΔQ about −20, where B-T and T-B showed negligible difference. The
color plots for P1P7 on the right in Figure 2a show P1P7 interference where the victim is
programmed to P1 before the aggressor is written to P7, so that slight blue color region
(QCON < 0) is identified together with the trapped holes from the block erasing operation.
The plot of QCON versus r in Figure 2b for P1P7 demonstrates the coexistence of trapped
electrons near the interface with tunneling oxide (46.5 < r (nm) < 48) and trapped holes
farther away from the interface (48 < r (nm) < 49). More importantly, all three curves
(Ref, B-T, and T-B) are almost overlapped and the corresponding integration of the differ-
ence concluded that the charge equivalent to just one electron tunneled through the victim
cell under VPASS = 8 V for 100 μs. In order to explain the sudden jump in interference
from P1 to E, the information of the change in the net charge can be utilized. The upper
bound of the Vt shift, as a result of the additional 20 trapped electrons, can be estimated by
ΔVt = 1.6 × 10−19 × ΔQ/C with the assumption of a simple one-dimensional capacitor.
C was calculated to be 20.6 aF by C−1 = CTOX

−1 + CTrapN
−1 + CBOX

−1, and results in
ΔVt = 155 mV by ΔQ = 3.28 aC (20 electrons), whereas for P1P7 interference the con-
tribution of ΔQ to interference is just 8 mV because only one electron was additionally
trapped. Therefore, the distinctively high interference for EP7 should be attributed to the
tunneling under VPASS = 8 V for 100 μs, whereas P1P7 allows negligible tunneling under
the same condition.
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Figure 3a,b shows the band diagram for WL3 along with the radial direction from
r = 35 nm (interface between poly-silicon channel and fill-oxide) to r = 65 nm (tungsten
gate) for the aforementioned cases, EP7 and P1P7. Due to the lower conduction band
edge (or electrostatic potential) of the trap-nitride layer stemming from the trapped hole
(792 holes trapped after block erasing shown in Figure 3c), the tunneling barrier from
the conduction band edge of the channel is partially Fowler–Nordheim type. As a result,
the conduction band edge’s up-lift of about 0.03 eV can be observed at t = 100 μs, compared
to t = 1 μs on the inset. However, P1P7 in Figure 3b exhibits a harsher tunneling barrier
because P1 state possesses only 201 holes as shown in Figure 3e; hence, the electrostatic
potential of Si3N4 is relatively higher than that of the state E. The inset shows negligible
change in the conduction band edge during 100 μs, which is consistent to the statement for
P1P7 of Figure 2b (only 1 electron tunneled). Figure 3c shows the change in the number
of net charges in the trap-nitride layer of WL3 as a function of time. The aggressor under
16 V shows nonlinearly fast electron tunneling as a function time, where 807 holes initially
located in WL2’s trap-layer are almost cancelled to neutral within 1 μs and, for the rest of
the time, the additional charge corresponding to 918 electrons is trapped until t = 100 μs.
Figure 3d,e show the change with time for EP7 and P1P7, respectively. Because the range
of change is significantly small (EP7: 20 electrons and P1P7: 1 electron) compared to the
aggressor cell at a larger bias of 16 V, the time-dependent evolution appears to be simple
linear evolutions.

Figure 3. Band diagram of the victim cell (WL3) along the radial direction of a cylindrical cell string and corresponding
number of trapped charges in the trap-nitride layer as a function of time while programming WL2 with VPGM = 16 V and
VPASS = 8 V. (a) WL3 at the state E exhibits Fowler–Nordheim tunneling due to lowered conduction band edge by trapped
hole charges in the trap-nitride layer. (b) WL3 at the state P1 depicts the harsher tunneling barrier compared to that of E
in Figure 4a. This is because the net charge in the trap-nitride layer is less positive compared to E(erase) state so that the
electrostatic potential is higher. (c) Number of trapped charges (Q) in the trap-nitride layer of WL2 beginning from the state
E as a function of time under programming voltage VPGM = 16 V is shown (green dotted line) together with that of victim
cell under two different states (E and P1). (d) WL3 at E under the bias VPASS = 8 V shows the charge in Q from +792 to +771,
implying about 20 electrons were tunneled and holes were canceled. (e) WL3 at P1 shows negligible change in Q (from +201
to +200) so that the interference (121 mV for B-T and 88 mV for T-B) purely comes from the adjacent cell’s channel inversion.
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Figure 4. Poly-silicon channel information during reading operation (VWL3 = −1 V, VREAD = 7 V, VBL = 0.7 V, VCSL = 0 V) (a)
band diagram: Top, electron carrier concentration; bottom, following the z-axis (r = 38 nm). The potential of 0.7 V through
the bit line is mainly applied to the reading cell (WL3) since the adjacent cells are fully inverted with VREAD = 7 V; hence
they have negligible resistances. Consequently, WL4 should experience less inversion (by VREAD − 0.7 V = 6.3 V) compared
to WL2 (by VREAD − 0 V = 7 V), which is reflected in electron density in the bottom figure. WL4 and WL2 have carriers of
1.3 and 1.9 (1018 cm−3) at the center, respectively. (b) Color plots of electron density for ‘initial’ reveal non-centered carrier
bottleneck due to drain-induced-barrier-lowering (DIBL) effect. As a result, B-T; having the upper adjacent cell programmed,
has the stronger interference compared to T-B with the lower adjacent cell programmed. The light blue region corresponds
to trap-nitride layer (Si3N4) (c) When VREAD is increased to 8 V, the imbalance between B-T (VREAD − 0.7 V = 7.3 V) and
T-B (VREAD − 0 = 8 V) is reduced.

Now, P1P7 can be regarded as the best example to investigate the mechanism of
improved interference performance for T-B over B-T because it allows us to rule out ΔQ
even after experiencing VPASS = 8 V for 100 μs (pass disturb), whereas the contrast is
the largest among others: P2P7, P3P7, . . . , P7P7. Figure 4a shows the P1P7 case’s band
diagram for poly-silicon channel through the axial direction z when VWL3 = −1 V, which is
approximately the Vt of P1 state (−0.99 V), is being applied on WL3 and VREAD = 7 V for
the other cells. Due to the partial inversion of WL3 with −1 V compared to WL2 and WL4
with 7 V, the voltage applied to BL (VBL = 0.7 V) is mainly applied to solely WL3. As a result,
the upper cells, including WL4, should encounter drain-induced-barrier-lowering (DIBL),
hence the actual potential drop across ONO should be 6.3 V (VREAD − VBL). The plot at
the bottom of Figure 4a reveals the electron carrier density, which shows the slightly lower
carrier concentration for the WL4 region compared to that for the WL2 region. Moreover,
the minimum carrier concentration 5.1 × 1015 cm−3 appeared at z = 303 nm, which is above
the center of WL3 (z = 287.5 nm) and reflects the effect of DIBL. Figure 4b visualizes the
off-centered ‘bottleneck’ for conduction. It should be noted that the red-colored region
represents that the carrier density is equal to or higher than 1015 cm−3. Due to the off-
centered bottleneck based on DIBL, the aggressor on the upper adjacent cell (WL4 for B-T
case) strengthens the bottleneck which reflects high interference (121 mV in Figure 1c). For
T-B case, the bottleneck is less affected by the aggressor at the lower cell (WL2) so that
the interference is reduced significantly (88 mV in Figure 1c). Figure 4c shows a similar
comparison under higher read voltage, VREAD = 8 V. Considering that the contrast between
T-B and B-T comes from the DIBL effect on VREAD, it is observed that the higher reading
voltage lessens the difference between the two.
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It is worth inspecting the trend of T-B compared to B-T under various circumstances
and scaled cell dimensions that are inevitable for the next generation of products with more
layers; unless semiconductor process hurdles related to vertical NAND’s stack height are
dramatically resolved, such as high aspect ratio etching technique and mechanical stress
issues, to name a few [28].

Figure 5a shows the variation with respect to read voltage difference. It can be seen
that the improvement by T-B over B-T is protruding with smaller read voltage such that
VREAD = 6 V shows the improvement of 28 mV (= 107 mV − 79 mV), whereas VREAD = 8 V
exhibits 19 mV (= 113 mV − 94 mV) when considering the averaged value of P1P7, P2P7,
. . . , P6P7, and P7P7. Figure 5b,c depict the trend with scaled dimensions where 24 nm for
the thickness of the nitride pad during the initial stage of the VNAND process (Lg) and
17 nm for the thickness of the oxide pad (Ls) are highly probable for the newest vertical
NAND Flash Memory product (>170 layers) under development. It is clearly shown that
the scaled cells undergo significant interference such that Lg = 24 nm shows 162 mV and
Ls = 17 nm shows 155 mV under B-T. Luckily the remedy by T-B over B-T also increases
with scaling such that Lg/Ls = 24 nm/20 nm shows the improvement of 36 mV, which is
superior than 21 mV from the reference geometry of this work (Lg/Ls = 31 nm/20 nm) so
that the deterioration in interference and read window can be slowed down. It is noted
that we simulated thicker ONO and Poly-Si cases (7.8/6.3/5.8/6.6 nm) compared to the
reference (7.5/6.0/5.5/6.0 nm) to confirm any remarkable deviation owing to the stack-
coverage. Nevertheless, the interference for T-B and B-T were found to be 114 mV and
86 mV, respectively, such as the reference of 105 mV for T-B and 84 mV for B-T. Therefore,
we believe that the state-of-the-art stack coverage (ONO > 95% and Poly-Si > 90%) in
the Flash memory product’s thin-film process is sufficiently good enough to impose little
uncertainties in our simplified TCAD models.

Figure 5. Averaged interference (P1P7, P2P7, . . . , P6P7, and P7P7) for T-B and B-T schemes with various changes such as (a)
VREAD, and cell dimensions, (b) gate length and (c) gate space, for the next generation vertical NAND Flash products. Note
that the reference is (VREAD, Lg, Ls) = (7 V, 31 nm, 20 nm) and the raw data of each case is available in Figure S1.

Figure 6 exposes the corresponding electrostatic potential distribution for Lg = 24 nm
compared to the reference Lg = 31 nm, further analyzing the improvement by T-B scheme
for scaled cells as an example. It should be noted that the electrostatic potential is referenced
to that of WL3. P1P7 interference, where Vt,WL3 = −0.99 V and Vt,Aggressor = 3.18 V, was
used consistently for the analysis in Figure 4, which exhibits the improvement from 121 mV
of B-T to 88 mV of T-B as shown in Figure 1c. Note that the case of Lg = 24 nm makes
234 mV from B-T and 165 mV from T-B, which is higher than the averaged values available
in Figure 5. The electrostatic potential valley is mainly responsible for the Vt of the cell
under reading, and it is observed that at the center of the channel (r = 38 nm) the length of
the valley (0.4 V < electrostatic potential < 0.47 V) changes dramatically for the scaled cell
(15 nm → 12 nm at Lg = 24 nm), compared to the reference (19 nm → 17 nm at Lg = 31 nm).
The emphasized deterioration in interference with scaled NAND cell sizes is indirectly
evidenced by a 14 nm planar NAND flash memory reported in 2016 by Samsung [23].
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Although they did not adopt the scheme of T-B [22] and kept the conventional B-T due to
undisclosed reasons, a significant interference (back pattern dependency or back-pattern-
effect) in the extremely scaled 14 nm NAND cells might have forced them to introduce
a new scheme in incremental step pulse programming (ISPP), where VREAD is lowered
selectively for upper cells during the verify operation in ISPP.

Figure 6. Electrostatic potential distribution change with Lg scaling (31 → 24 nm) Both are after
EP7 interference (Vt,Victim = −0.99 V, Vt,Aggressor = 3.2 V) followed by reading at the moment at
VWL3 = −1 V.

4. Conclusions

In conclusion, this work performed a systematic study on the improvement in inter-
ference when the Top to Bottom (T-B) programming scheme is employed compared to
the conventional Bottom to Top (B-T) scheme which probably originated from the planar
NAND Flash products with a single layer on the ground level in a historical point of view.
With the aid of TCAD simulations, it is shown that only the erased state (E) suffers from
both pass disturb under the normal condition of VPASS = 8 V and coupling to the adjacent
cells. The enhancement by the T-B scheme is mainly delivered by the latter contribution
(coupling), stemming from the nature of NAND’s reading operation combined with drain-
induced-barrier-lowering (DIBL). Therefore, most states (e.g., P1, P2, . . . , P6, P7 for TLC
and P1, P2, . . . , P14, P15 for QLC) can benefit from the T-B scheme, despite the fact that
programmed states are inherently free from pass disturb. Moreover, it is expected that
T-B lessens the interference more prominently, especially for the next generation vertical
NAND Flash products with more than 170 layers, inevitably followed by the higher degree
of integration (smaller Lg and Ls). This work highlights its importance for future vertical
NAND Flash memories, the applications of which include conventional use as data stor-
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age [21], but also other applications such as neuromorphic computing [29–32], security in
IoTs [33], etc.

Supplementary Materials: The supporting materials are available online at https://www.mdpi.
com/article/10.3390/mi12050584/s1. Figure S1: Raw data of interference under various conditions
of VREAD, Lg, and Ls with respect to the reference VREAD = 7 V, Lg = 31 nm, and Ls = 20 nm shown in
Figure 5.
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Abstract: In this paper, we review the phenomenology of random telegraph noise (RTN) in 3D
NAND Flash arrays. The main features of such arrays resulting from their mainstream integra-
tion scheme are first discussed, pointing out the relevant role played by the polycrystalline nature
of the string silicon channels on current transport. Starting from that, experimental data for RTN
in 3D arrays are presented and explained via theoretical and simulation models. The attention is
drawn, in particular, to the changes in the RTN dependences on the array working conditions that
resulted from the transition from planar to 3D architectures. Such changes are explained by consider-
ing the impact of highly-defective grain boundaries on percolative current transport in cell channels
in combination with the localized nature of the RTN traps.

Keywords: 3D NAND Flash memories; random telegraph noise; Flash memory reliability

1. Introduction

Random telegraph noise (RTN) in MOS transistors has been an important topic of in-
terest in the solid-state device community since the 80s, when results of low-frequency
noise characterization [1] showed a transition from a typical 1/ f behavior at high tem-
peratures to a series of discrete switching events as temperature was lowered. Similar
observations were soon made when moving from large- to small-area devices [2], and
interpreted in terms of capture/emission of electrons by single interface traps. On the
theoretical side, this result highlighted the importance of the number fluctuation contribu-
tion to the flicker noise, but prompted the emergence of a new limitation to MOS device
operation as well [3].

Moving from early investigations and models [4–9], the RTN picture grew more complex,
as novel time and amplitude observations [10–14] hinted at a non-negligible role played by
non-uniform electron conduction in submicron devices [15,16]. This idea gained traction when
the phenomenon began to be investigated in Flash memories [17–23], demonstrating current
fluctuations up to 60% [22] and threshold voltage (VT) shifts reaching 700 mV [18] in 90-nm
technology node devices. The physical picture now accepted that accounts for such results
is based on the fact that, in scaled devices, dopants must be viewed as individual ions
rather than a continuous distribution, resulting in randomly-placed charges in the deple-
tion region. Such random point charges [24–27] give rise to sharp peaks in the band energy
profile of the channel of an MOS transistor, resulting in local modulation of the current flow
and filamentary conduction. If a “strategic” trap happens to be placed right above a current
path, electron trapping will effectively shut off such a path, resulting in a large drain current
and VT fluctuation [28–31]. On the other hand, if the trap is placed over a region in which
little current flows, its trapping/detrapping will barely affect the overall current. Such
an idea has been successfully applied to explain the statistical distribution of the RTN fluc-
tuations in NOR and NAND arrays, measured in terms of their amplitude [19,32,33] and
time constants [34–36], providing a useful tool for extracting information about the impact
of device parameters on RTN. A recent review of the issue can be found in [37].

The above-mentioned framework has served nicely the Flash community until the first
decade of the 21st century, when several limitations to the scaling of the planar NAND
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technology prompted the emergence of 3D arrays [38]. In such devices, the RTN picture just
outlined fell short of adequately describing the experimental data, in view of the peculiar
characteristics of the polycrystalline material used as conduction channel.

In the following, we will review in detail the physics of RTN in 3D NAND Flash
memories, discussing the main experimental data and physical models developed to quan-
titatively account for them. We begin our discussion with a brief summary of the main 3D
array architecture and cell structure, followed by a description of electron transport in
3D NAND channels. This will allow us to develop a consistent picture of RTN in 3D
NAND devices, whose main features will be highlighted. After this part, we will focus
our attention on the main experimental data presented in the literature, taking advantage
of the model results to provide interpretation for them.

2. Array and Cell Structure

Among the several architectural solutions for 3D storage [39–46], the one employing
vertical-channel strings crossed by a set of planar wordlines has become the most effective
one [47–50], and is the focus of this section. Here we will briefly describe the main features
of such an array, namely its organization and cell structure, referring to previous works
for further details [51].

A pictorial view of the array is shown in Figure 1 (left): note that the cell strings run
vertically from the substrate to the bitlines. As in planar arrays, select elements are needed
near the source and drain ends of the string, integrated in rows running orthogonally
to the bitlines. The rest of the cells are contacted by planar wordlines that span over
an entire block of the array. One of the advantages of this structure is that the large increase
in density allowed by the exploitation of the third dimension makes it possible to relieve
some of the pressure on channel length scaling and its many drawbacks from the viewpoint
of process complexity and reliability, well known in planar devices [52,53]: cell length in 3D
NAND is around 25–30 nm [54], with the additional advantage of becoming less dependent
on the availability of advanced lithography tools. A second advantage of this solution lies
in its manufacturing process: memory cells are not patterned individually, but they are
formed all at once as cylindrical holes are cut through the stacked wordlines, creating
the strings. This procedure entails that the elementary cell becomes a gate-all-around,
vertical-channel transistor, with the advantage of a better electrostatic control from the gate.
A schematic view of such a device is shown in Figure 1 (right): starting from the outside we
meet a contacted wordline, a blocking dielectric and a charge-storage layer, that can either
be a floating gate [47,55–59], similar to planar NAND devices, or a charge-trap layer [60–64],
followed by the tunnel oxide. Beyond the oxide, we can notice a thin silicon region and
an inner oxide filling the central region of the cylinder, labeled filler oxide for simplicity.
This structure, where the conductive channel is a hollow cylinder, is referred to as a
“Macaroni” MOSFET, and is the result of clever device engineering in 3D NAND: in fact,
after the vertical high-aspect ratio holes have been etched in the structure of Figure 1 (left),
and the blocking, storage and tunnel layers deposited, the remaining part of the cylinder
must be filled with silicon. The result is a polycrystalline channel whose central region is
plagued by a large defectivity, impairing the device performance. To avoid such a drawback,
a very thin polysilicon layer is deposited on the gate dielectric, while the remaining central
region of the cylinder is filled with a dielectric [40], gaining two distinct advantages: first,
thinning of the silicon body results in reduced short-channel effects and better electrostatic
control from the gate; second, defect removal further contributes to better subthreshold
slope and array performance.
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Figure 1. (Left) Conceptual view of a vertical-channel 3D NAND array with its main elements
(SSL = source select line, WLs = wordlines, DSL = drain select line, BLs = bitlines). (Right) pictorial
view of an array string highlighting the structure of the elementary memory cells.

3. Polysilicon Conduction

The overview on the memory cell design given in the previous section already sug-
gested that the polycrystalline character of the conduction channel is a key parameter from
the viewpoint of device performance. A polycrystalline material, in fact, is formed by
single-crystal regions labeled grains, with different crystallographic orientations. Such
regions are separated by highly-defective interfaces, or grain boundaries (GBs) [65]. A pic-
torial view of a NAND string of ten cells with its inner polysilicon region and grains is
shown in Figure 2: note the random structure of grains and GBs, that are the key elements
affecting device current and variability.

Figure 2. Pictorial view of a ten-cell memory string (left) and of the inner polysilicon regions
separated into polycrystalline grains (right). The example is the result of a TCAD simulation of
the cell structure where polysilicon grains are obtained via Voronoi tessellation of the silicon region.

One of the key properties of polysilicon is its trap density, whose value has been
estimated by several works, based on either direct optical or electrical experimental mea-
surements [66–74] or via numerical device simulations [75–79]. Many of such results
point to a double-exponential energy distribution of donor-like and acceptor-like states
of the form (for acceptor-like states in the upper half of the energy gap):

NGB(E) = NTe−(E−EC)/ET + NDe−(E−EC)/ED , (1)

where the reported range for the acceptor-like states parameters is listed in Table 1. Note
that the first exponential distribution is characterized by a large peak density NT and a
small characteristic energy ET , and is usually referred to as tail states distribution, as a con-
sequence of its location near the edge of the gap. The second has a lower peak density
ND but a higher energy ED, and is usually labeled deep states distribution. Note also that
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trap densities are given as volumetric densities: this was useful in early simulation works,
where a uniform trap density in the semiconductor body was assumed for simplicity. From
a physical viewpoint, however, traps are expected to be mainly located at GBs, and an areal
density σ is then needed. A conversion between volumetric and areal densities is readily
achieved assuming for simplicity a spherical grain size with radius rG, and placing all
volume traps on the sphere surface. This leads to

4πr2
Gσ =

4
3

πr3
G NGB ⇒ σ =

rG
3

NGB, (2)

or a very similar conversion factor as in [79].

Table 1. Range of parameter values for the acceptor-like states in the polysilicon, according to the lit-
erature (see text for references).

NT [cm−3 eV−1] ET [meV] ND [cm−3 eV−1] ED [meV]

9 × 1019–1021 16.6–80 1.2 × 1018–9 ×1019 80–500

Electron transport in polysilicon has been studied since the 70s, as this material found
applications in resistors, interconnections, and silicon-gate MOSFETs. From the viewpoint
of current conduction, we can identify two modeling approaches, that differ in the way GBs
are treated: one approach is to extend the drift-diffusion model usually adopted in monocrys-
talline silicon, describing GBs as trapping centers with a reduced mobility [80–82]; the other is
based on a thermionic emission model at the GBs [83–87]. Although the latter seems to be
gaining traction in recent literature, a definitive conclusion has not been reached, yet, and a
recent study of the different dependences implied by such models can be found in [88,89].

The above-mentioned numerical models of conduction have been used to investigate
the effect of GBs on variability in nanowires [90–95] and 3D NAND devices [96,97]. A re-
cent study based on a drift-diffusion transport within the grains and thermionic emission at
the GBs [98–101] has demonstrated a good capability to reproduce several features of
experimental data, including its temperature dependence. Figure 3 (left) shows a typical
conduction-band profile along the channel of a 3D NAND string, for increasing values
of the control-gate bias, as resulting from such model. Note that the profile is not smooth,
featuring peaks in correspondence of the highly-defective GBs. As gate bias is increased,
the band bending lowers the conduction-band profile, increasing the localized trap occu-
pation and sharpening the peaks, which become the true bottlenecks of conduction [100].
This result makes clear that GBs are an additional source of non-uniformity in the current
conduction, which means that they might be expected to play a main role in RTN. This
is even more apparent if we consider that GB trap densities (see Table 1) are much larger
than typical doping concentrations used in 3D NAND strings. A similar approach was also
followed by [102].

The above-mentioned model has been applied to investigate the impact of GB traps
on RTN [99,101] within a Monte Carlo approach: random configuration of GBs are first
generated in the silicon region after a Voronoi tessellation [92], and traps are placed at
the interfaces following the previously-discussed energy distribution. Drain current is
computed up to a specified threshold, defined at a constant current level, after which
an additional RTN trap is filled with an electron and the resulting VT shift computed.
Results for a template device are also reported in Figure 3, for the case of a single trap
placed at one random position in a GB, and for a trap placed at a random position at the
silicon/gate oxide interface. It is clear that GB traps are much more effective in modulating
the electron conduction and result in larger VT fluctuations.
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Figure 3. (Left) Conduction band profile for a 3D NAND string at different current levels. (right)
RTN complementary cumulative distribution functions (ccdfs) for traps placed at the GBs or at
the gate/oxide interface for a template device.

In spite of these encouraging results, several important features of this model still
have to be assessed, such as the actual grain size [103–105], the mobility degradation and
conduction process at the grain boundaries [106,107], and the impact of all these quantities,
including architectural parameters and cell design, on RTN.

4. Experimental Data

The previous section was meant to provide a framework for the interpretation of the most
relevant experimental data presented in the literature, that are discussed in the following. It
must be noted, however, that RTN, as well as other reliability concerns in 3D NAND memories,
remains a highly-confidential matter and very few data are published. We begin our analysis
of RTN with single-trap data, moving then to statistical distributions and impact on device
performance.

4.1. Single-Trap Data

Investigation of the microscopic properties of RTN single traps in 3D NAND de-
vices can be found in [108,109], where a statistical analysis of the noise power spectral
density was also carried out. In those papers it was reported that the string current fluctua-
tions due to single-trap RTN depend on the sensing current: as the current is increased,
its fluctuations also increase when measured in absolute terms, but decrease in terms
of relative change. Such a dependence was also found in [110] for the above-threshold
region, and ascribed to the effect of traps at the silicon-oxide interfaces. These depen-
dences reflect similar behaviors observed both experimentally and numerically in planar
or cylindrical devices [111–113], where the increased screening exerted by the mobile
carriers as the gate bias is raised, mitigating the effect of the RTN trap, was invoked as
an explanation. Several works reported investigations of the capture and emission time
constants and their dependence on gate bias and temperature, including the activation en-
ergies [114–117]. Their results do not point to any particular difference in the microscopic
nature of such traps with respect to those active in planar devices (apart from a faster cap-
ture/emission dynamics suggested in [114]): this of course is not surprising and supports
an interpretation of the RTN phenomenon based on the spatial distribution of such traps
rather than on some peculiar characteristics.

4.2. Array Statistical Data

From the viewpoint of the memory performance, the statistical distribution of the RTN-
induced ΔVT is the main parameter. This kind of fluctuations in poly-Si channels were
first shown (to our knowledge) in [118], on a nanowire structure (no filler oxide), showing
an exponential distribution for ΔVT , which is a typical result of a percolation process.
The same exponential dependence was reported on vertical NAND devices in [119–123],
suggesting that the RTN distribution in arrays follows an e−ΔVT/λ law, and can be effectively
characterized by the slope λ of the exponential distribution.

31



Micromachines 2021, 12, 703

A comparison between 3D and planar cell RTN is reported in [124], where a larger
RTN distribution was reported for the former, while an opposite result was claimed
in [121]. It is obviously difficult if not impossible to critically assess those results and
search for the reason of this discrepancy. However, from a general standpoint, the slope λ
is related to both the trap density (affecting the percolation centers) and the electrostatic
impact of a single trapped electron, that have an opposite trend when moving from planar
to 3D devices: 3D cells are expected to have a higher trap density thanks to the presence
of GBs, but feature also a larger cell (i.e., a larger capacitance and a lower electrostatic
impact of a single electron). So, the different results might just be a consequence of different
cell designs.

The impact of GB traps on RTN can also be noted in the comparison reported in [125,126]
and carried out as a function of temperature in the range from −10 to 125 ◦C, that is shown
in Figure 4 (left). First, please note that the shape of the two distributions is different: in 2D
cells we notice clear exponential tails due to RTN departing from a central distribution,
related to measurement noise in cells not affected by RTN; in 3D arrays, instead, we notice a
single exponential distribution, suggesting that the large majority of cells in the 3D array are
affected by RTN. A second point to stress is that the slope of the exponential distribution is
reduced with respect to planar technologies [121,125,127]. Given the previous point, such
an improvement seems mainly a consequence of the larger cell size of 3D arrays, although a
role could also be played by the different conduction mechanism and percolation in planar
and 3D devices (see for example [113] for a discussion on the RTN dependences in 3D
devices). Finally, different temperature dependences are also apparent: while planar
device RTN is temperature-independent [128], 3D NAND exhibit a decrease in λ at higher
temperatures, as also reported in [115,116].

Figure 4. (Left) RTN cumulative density function (cdf) and its complementary (ccdf) for 2D and 3D
NAND arrays at different temperatures [125,126], © 2017, IEEE. (Right) VT fluctuations due to single
RTN traps at different temperatures.

Such a different temperature dependence is important from a reliability standpoint
and deserves further investigation. To this aim, the right side of Figure 4 shows the behav-
ior of a single RTN trap as a function of time, for different temperatures. Besides a decrease
in the absolute value of VT for higher temperatures, reflecting an increase in the current, it
is obvious that the fluctuation amplitude is decreasing as well. This behavior has been ob-
served on a number of traps [126] and is the responsible for the improved RTN distribution.
At first glance, the temperature dependence could be simply related to the thermal energy
of the electrons and their better or worse capability to overcome the energy barriers, but this
would not explain the difference between planar and 3D dependences. So, we must assume
that temperature affects the percolation itself. To check this, we conducted simulations with
the model presented in the previous section [98–101], for a template 3D NAND device at
different temperatures. Results are presented in Figure 5 (left). Note that the decrease of the
RTN slope at higher temperature is accounted for by the model, allowing to exploit its
results to provide some more insight: to this aim, we have simulated a template device with
a single GB orthogonal to the current flow and placed at the middle of the gate. Results
for the conduction band at threshold at different temperatures are reported in Figure 5
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(right), and feature significant differences: indeed, the conduction band peak, located at
the GB and due to the localized trapped charge, becomes sharper at low temperatures,
meaning that there is an increased trapped charge at low temperatures, resulting in more
percolation centers. A reason for this lies in our definition of the threshold condition, that
is a constant-current (10 nA) criterion. When temperature is lowered, thermal emission is
reduced, and the string current lowers. To reach the same 10 nA value, gate bias must be
increased, lowering the conduction band and leading to additional trap filling. Note also
that this phenomenon does not take place in planar devices, where the percolation centers
are the ionized dopants, whose density obviously does not change with the gate bias.

Figure 5. (Left) Simulation results for the RTN ccdf in a template 3D NAND device for different
temperatures. (Right) Conduction band profile at different temperatures for a template device with a
single GB located at the center of the channel.

Additional dependences exhibited by random telegraph noise in 3D NAND were
reported by [108,122] with reference to read current and pass voltage. Figure 6 (left)
shows RTN data for cells on different wordlines as a function of the read current and pass
voltage. While some cells do not exhibit significant RTN, the one labelled as WL2 features a
decreasing relative fluctuation of the current as the read current is increased, in agreement
with data previously discussed. However, data also show a dependence on the pass voltage,
whose increase leads to a higher RTN. Similar data are reported in Figure 6 (right), where
the RTN distribution is shown. Data show that the tail slope of the bitline current increases
as the pass voltage is increased. This result was related to the previous one by the authors
of [122], as increasing the pass voltage means a reduction of the read threshold voltage
and an increase in the RTN fluctuations. However, further analysis are needed to clarify
the link between the string operating conditions and the measured RTN.

Figure 6. RTN ccdf as a function of the read current (left) and of the pass bias, at a read current
of 100 nA (right). From [122], © 2016, IEEE.

Finally, the effect of cycling on RTN in 3D arrays has been investigated in [110,119,126]
and data from [126] are reported in Figure 7 (left). Note that the RTN ΔVT data for a fresh
and a cycled array show only a minimal increase in the height and slope of the distribution,
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which is again different from the noticeable increase in the RTN distribution reported
in planar devices (see [128,129]). Such a difference can also be appreciated in Figure 7 (right),
depicting the average number of traps 〈Nt〉 extracted from fitting the RTN distributions
with a simplified model [32]: note that the departing of 〈Nt〉 from the initial value takes
place at much higher cycling doses in the 3D NAND case than in the planar array. While this
suggests an increased hardening of 3D cells against cycling-induced defects, it should not
be forgotten that 3D cells feature a native trap density higher than their planar counterparts
(see Figure 4, left), mostly due to the GB traps not present in crystalline silicon, which
may hide the initial-stage growth of cycling-induced defects. It is also interesting to note
that a stronger dependence on cycling in 3D arrays was instead reported in [119], which
might be ascribed to either a larger trap generation rate due to different cycling conditions
or to a lower number of native traps, as fewer traps in the NAND cells would result in a
more noticeable increment due to cycling. Furthermore, a transient effect related to a
non-stationary condition, as hinted by the asymmetric RTN distribution there reported
(see [130] for discussion) could also affect the evaluation.

Figure 7. (Left) RTN cdf for a 3D NAND before and after cycling to 10k cycles [126], © 2018, IEEE.
(Right) Average number of RTN traps as a function of cycling [126], © 2018, IEEE.

It is also interesting to note that data reported in Figure 7 were taken with programmed
cells. However, in [110,131] a higher sensitivity of RTN to cycling was reported when cells
are measured in the erased state (Figure 8). In the authors’ view, this result is not a
consequence of a different generation rate or annealing of stress-induced traps, but rather
the result of different conduction profiles of the electrons as a consequence of the charge
stored in the cells, enhancing the impact of newly-created traps at the interface. Such results
demonstrate that the RTN picture is still not complete, notwithstanding the excellent work
put forward by the scientific community.

Figure 8. RTN cdf before and after cycling for the case of erased (a) and programmed (b) cells [110],
© 2014, IEEE.
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5. Conclusions

Ever since its first detection in MOS devices, RTN has retained two opposite faces,
being a remarkable probe into the microscopic physics of carrier interactions with de-
fects on one side, and a reliability threat on the other. It appears safe to say that even
the transition to 3D NAND has not affected such characters, that are instead enhanced
by the additional challenges built by the polycrystalline conduction channel. In this frame,
this work has presented a review of the most significant experimental results in the field
of random telegraph noise in 3D NAND, highlighting its current understanding and some
open issues that require further efforts from the scientific and technological communities.
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Abstract: NAND flash memory is widely used in communications, commercial servers, and cloud
storage devices with a series of advantages such as high density, low cost, high speed, anti-magnetic,
and anti-vibration. However, the reliability is increasingly getting worse while process improvements
and technological advancements have brought higher storage densities to NAND flash memory.
The degradation of reliability not only reduces the lifetime of the NAND flash memory but also
causes the devices to be replaced prematurely based on the nominal value far below the minimum
actual value, resulting in a great waste of lifetime. Using machine learning algorithms to accurately
predict endurance levels can optimize wear-leveling strategies and warn bad memory blocks, which
is of great significance for effectively extending the lifetime of NAND flash memory devices and
avoiding serious losses caused by sudden failures. In this work, a multi-class endurance prediction
scheme based on the SVM algorithm is proposed, which can predict the remaining P-E cycle level
and the raw bit error level after various P-E cycles. Feature analysis based on endurance data
is used to determine the basic elements of the model. Based on the error features, we present a
variety of targeted optimization strategies, such as extracting the numerical features closely related
to the endurance, and reducing the noise interference of transient faults through short-term repeated
operations. Besides a high-parallel flash test platform supporting multiple protocols, a feature
preprocessing module is constructed based on the ZYNQ-7030 chip. The pipelined module of SVM
decision model can complete a single prediction within 37 us.

Keywords: NAND flash memory; test platform; endurance; support vector machine; raw bit error

1. Introduction

With the development of smart devices and cloud computing, flash memory has
gained great popularity in various fields [1]. NAND flash memory has achieved larger
storage capacity and higher storage speed than NOR flash memory by virtue of the design
mode of storage units connected in series, becoming an important large-scale data storage
medium. In order to pursue higher storage density, a variety of technologies have been
developed in the field of NAND flash memory. Three-dimensional structure technology [2]
is committed to transforming a planar structure into a three-dimensional structure, which
increases the storage capacity under the same area. Multi-bit memory cell technology [3]
focuses on improving the number of bits in the storage unit in order to achieve a mul-
tiple increase in storage capacity. With gradual in-depth study of the two technologies,
researchers have found that while the storage density of NAND flash memory has doubled,
the data reliability problem has worsened.

Data reliability marks the accuracy of data storage. If data errors occur during use,
serious consequences will be immeasurable. In the field of NAND flash memory, data
reliability problems are mainly reflected in retention [4] and endurance. The former reflects
the data retention time without re-erasing, while the latter is the problem of reliability
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degradation caused by structural damage to the memory cell during use. Compared
to retention, endurance has a greater impact on the actual product. As the number of
programming increases, the endurance of the flash memory decreases and the number
Raw Bit Error (RBE) gradually rises. The RBE number is the number of bits of difference
between the actual read data and the actual programmed data without error correction,
which is an important parameter to characterize the degree of endurance change. When
the RBE numbers exceeds a certain limit, the flash memory will not continue to be used
normally.

It has become an important direction for academia to suppress data errors caused
by reduced endurance. The Error Correcting Code (ECC) error correction algorithm uses
special coding rules to check and correct the original data [5], so the endurance of the
flash memory can be indirectly improved by optimizing the error correction algorithm.
However, limited by the storage space, the optimization effect is not ideal. Wear-Leveling
technology [6] indirectly delays the occurrence of user data failure by balancing the number
of programming and erasing of each block. However, the total endurance of the regions
in the flash memory is not equal; there is room for further optimization of the technology.
The Read-Retry technology reduces data errors by modifying the hard-decision reference
voltage of the read operation, but this will increase the operating time and reduce the
performance.

However, the real dilemma of flash memory reliability research lies in the uncertainty
of endurance, which will lead to huge waste. The minimum actual endurance of flash
memory is often dozens or even a hundred times the manufacturer’s nominal value [7].
The reason why manufacturers specify the nominal value so conservatively is the huge
difference in endurance between the same type of flash memory particles [8]. Even if the
manufacturer inspects and screens the wafers before they leave the factory, there are still
several times or even ten times the endurance difference between the same model and the
same batch of flash memory particles. Besides, the particle-level inspection is destructive
and extremely time-consuming. If the endurance can be accurately predicted and an early
warning be made, the user can adjust the critical value of the data transfer process and
greatly extend the service life of the flash memory.

Using machine learning algorithms to accurately predict changes in flash memory
endurance-related parameters have become an important means to solve the flash mem-
ory reliability dilemma. It can greatly optimize the existing flash memory management
strategies and implement accurate endurance warnings. Damien Hogan tried to combine
a supervised Genetic Programming (GP) algorithm with the endurance prediction of 2D
Multi-level Cell (MLC) flash memory to determine whether the sample flash memory
with different levels of Program-Erase (P-E) cycles will generate uncorrectable data er-
rors [9]. However, the GP two-category prediction model finally obtained in the study has
a prediction accuracy of only 83.5% on the test set when the decision boundary is 35,000.
Barry Fitzgerald observed through a large amount of experimental data that the word line
(WL) number, page type, and page parity in MLC flash memory will affect the code word
error rate (CWER), the programming, and erasing duration [10]. Using the feature, the
study proposed a sampling method based on the error probability density function [11],
and constructed eight different two-class machine learning models. However, the study
neglected the class balance of the data set. The number of negative samples representing
the number of codeword errors exceeding 100 only accounted for 0.03% of the total number
of samples, which led to a significant decrease in the reliability of the model accuracy
results. Ruixiang Ma considered that the predictive model may lose its validity due to
changes in the flash memory usage environment, so the incremental changes in endurance
parameters are used to update the predictive model to adapt to the parameter changes
at different endurance stages [12]. However, this solution did not take into account the
hardware complexity and application limitations of using the same flash memory pre-data
to predict the later endurance.
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On the one hand, the endurance prediction model established by existing studies
performs two-class prediction of the RBE numbers, and the RBE numbers corresponding to
the classification boundary is close to the upper limit of the ECC error correction algorithm,
which limits the application scenarios of the prediction model. On the other hand, existing
research does not consider the disturbance of electrical effects such as transient errors
in NAND flash memory on the prediction results, which greatly reduces the prediction
accuracy. In order to solve the endurance prediction problem, this paper designs a set of
NAND flash memory endurance class prediction method based on SVM algorithm based
on a large amount of experimental test data and combined with micro-mechanism analysis.
The main contents of the paper are as follows:

(1) The multi-classification model describes the endurance level with the remaining P-E
cycle number and RBE numbers. The output result has multiple levels and labels,
which greatly expands the application scenarios.

(2) This paper has carried out a number of targeted optimization strategies for the
disturbance factors in the flash memory. By preprocessing the input features, the
prediction model still has a high accuracy rate when the output categories increase.

(3) We further use FPGA to implement the SVM prediction circuit module, which can be
actually applied to solid-state hard disk controller chips. Compared with common
embedded software implementations, the prediction circuit module designed in the
paper has a faster prediction speed, with less hardware resources, and has broad
application prospects.

2. Flash Error Mechanism and Prediction Algorithm

2.1. Flash Error Mechanism

The cause of the NAND flash memory endurance problem lies in its unique memory
cell and array structure. The basic memory cell structure of flash memory is based on the
development and evolution of the Floating Gate (FG) Field Effect Transistor (FET). The
internal electrical disturbance phenomenon of the NAND flash memory is closely related
to its array structure. The NAND flash memory will produce the decrease of reliability due
to many physical effects in actual scenarios. There are several kinds of mechanisms.

2.1.1. Unit Wear-Out

Unit cell wear is the direct cause of reduced endurance of flash memory. Wear-out
and aging often occur in the process of charge tunneling and transfer during programming
and erasing operations. Wear-out causes the atomic bonds at the interface between the
charge trap layer and the insulating layer to break, resulting in interface traps that interfere
with the charge transport process and cause the threshold voltage to deviate from the ideal
value. Therefore, the interface traps are the main reason for the endurance of the flash
memory cell to decrease and the occurrence of error bit flips. The wear-out and aging of
the unit caused by the P-E cycle is small but irreversible, and the number of P-E cycles is
correlated with the endurance.

2.1.2. Disturbance

Certain electrical effects caused by the special array structure of flash memory can
cause threshold voltage shifts. The most common effect is the disturbance phenomenon [13].
Disturbance is not permanently structurally destructive. The memory cell is restored to
its original state by erasing. And the severity of disturbance is closely related to the
programming pattern. The specific programming pattern significantly stimulates some
disturbances. Multiple read operations on the same memory cell before the erase operation
will cause reads disturbance, which causes the threshold voltage of the affected memory
cell to shift in the positive direction. When the shifted threshold voltage exceeds the hard-
decision reference voltage between different programming states, data errors will occur.
Program disturbance and pass disturbance will occur during the programming operation.
Edge word line disturbance also occurs during programming operations. The edge word
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line unit generates a large number of electron-hole pairs due to the large gate-induced
drain leakage [14]. The electrons are accelerated to the channel and injected into the storage
layer in the edge word line unit, leading to a surge in threshold voltage and data errors.

2.1.3. Transient Error

Transient error refers to the data error flipping caused by some uncertain transient
factors during the operation of the flash memory. Because of the uncertainty of inducing
factors, these transient errors are difficult to limit by conventional means. The most typical
transient error is the uncertainty error caused by the Random Telegraph Noise (RTN)
phenomenon. The error causes uncertain fluctuations in the drain current [15], which in
turn causes the threshold voltage to fluctuate uncertainly.

2.2. Prediction Algorithm

The SVM algorithm has been developed rapidly through the efforts of many scholars
since it was proposed in 1963. It is based on slack variables [16] and VC dimension [17],
and has strong sparsity and generalization capabilities. The ultimate goal of linear SVM is
to find the optimal hyperplane Pk : ωTX + b = 0 that can divide the sample space correctly.
However, the actual classification problem is often a non-linear problem, which requires a
certain non-linear transformation to achieve spatial upscaling, so that a hyperplane that
can be correctly classified in the high-dimensional feature space reappears. The kernel
function can reduce the complexity of high-dimensional inner product operations. The SVM
algorithm often uses Radial Basis Function as a kernel function in practical applications.

The SVM decision model only supports two classifications. The One-against-One
(OAO) method [18] groups the training data according to the output categories, and builds
a separate two-class SVM model between each two categories. A total of K(K − 1)/2
decision boundaries are obtained, and K is the total number of categories. When facing the
new data to be classified, the OAO method inputs it into K(K − 1)/2 models to obtain the
corresponding classification results, respectively. Finally, according to the voting strategy,
the category with the most votes among all the results is counted as the final classification
results.

The Decision Tree (DT) classifier can perform fast and effective classification in the
face of a large amount of data input. However, weak generalization will cause serious
overfitting in the sample space where the total number of categories is unbalanced. At
the same time, the instability of the DT classifier will cause it to be very sensitive to
high-frequency jitter in the flash memory training data, and generate very different DT
models.

The implementation method, the K-Nearest Neighbor (KNN) classifier, is simple, and
for the simplest KNN classifier, it does not even need to be trained. But if the training set
sample points are not clipped, the method needs to store all sample points and calculate
the distance from the sample points to be classified to all the sample points. The storage
space and calculation resources required are very huge, which is not suitable for circuit
realization.

3. Endurance Prediction Method

3.1. The Process of Endurance Prediction Method

Figure 1 shows the process of the SVM-based endurance prediction method; the SVM-
based NAND Flash endurance prediction method includes two phases: Training phase
and testing phase. The purpose of the training phase is to obtain sample data sets and use
machine learning algorithms to establish a decision model suitable for Flash endurance
prediction. The testing phase uses the established decision model to predict endurance.
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Figure 1. The process of SVM-based endurance prediction method.

3.1.1. Training Phase

Training phase includes data set extraction and model training. Data set extraction
performs repeated P-E cycles on memory blocks of different flash memory particles with
the same model to obtain flash memory endurance-related data in a certain rule. Model
training uses the acquired flash memory endurance-related data set to train the machine
learning model to obtain the decision function.

(a) Sample Selection

Select a certain number of flash memory blocks of the same model with suitable
locations as samples. In order to avoid over-fitting, the number of flash memory blocks
selected in each flash memory particle needs to be consistent.

(b) Parameter Setting

Set flash memory specification information, including interface protocol type, storage
unit type, block size, page size, and the total number of blocks in a single logical unit.
At the same time, set the test information, such as the used programming pattern, test
mode, bad block characteristic error rate, etc. The random programming pattern can
simulate various programming levels and combinations, fitting the programming pressure
in practical applications to the greatest extent, which sets it as the default programming
pattern in the proposed prediction method.

(c) P-E Cycle

Tα P-E cycles are performed on flash memory particles to be tested to accelerate the
wear of the memory unit. The number of P-E cycles Nc will be increased by one each time
a cycle is completed. When performing P-E cycles on flash memory particles to accelerate
memory cell wear, it is necessary to keep the idle period interval between programming
and erasing operations in each cycle fixed to eliminate the difference in actual endurance
caused by different idle period intervals.

(d) P-R-E Cycle and Data Sampling

Tε Program-Read-Erase (P-R-E) cycles are performed on the flash memory particles
to be tested to obtain the data required for modeling. Update the current cycle number
Nc = N′

c + Tε, and N′
c is the cycle number before the update. Multiple P-R-E cycle oper-

ations in a short period of time help reduce the negative effects of transient errors. Each
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P-R-E cycle compares the read data with the written original data to obtain the RBE num-
bers of each flash page. At the same time, the current cycle number Nc and the duration
of the flash operation are recorded during each P-R-E cycle as the original model training
data set.

Repeat steps c and d until it is detected that the RBE numbers of a page in the block
exceeds the ECC error correction. In order to ensure that there are enough samples in each
endurance stage, continue to perform Te PE cycles and then stop sampling.

3.1.2. Testing Phase

The main purpose of the actual application process of the model is to extract the
parameters of the trained model and implement it with a specific circuit, and then face the
new data in the actual use scene, call the prediction model circuit, and get the prediction
result.

3.2. Analysis of Prediction Model
3.2.1. Prediction Object Selection

The object of programming operation is flash memory page, and scholars have focused
more on prediction research in the past. However, various disturbances seriously affect the
accuracy of these prediction models in actual scenarios. This paper takes the flash memory
block as an independent prediction object. The decision was based on the following
reasons:

1. Obvious Endurance Difference between Flash Memory Pages

As shown in Figure 2a, take Intel’s 29F32B2ALCMG3 NAND Flash particles as an
example, different pages show different RBE numbers. In the interval where the page
number is lower than 200, the RBE numbers of some pages is significantly higher, showing
a more obvious trend of rising with the increase in number of P-E cycles. While other
flash memory pages have significantly lower RBE numbers, the change trend is also very
irregular. Even after ignoring the high-frequency jitter, there is a local feature where the
RBE numbers decreases with the increase in the number of P-E cycles.

 
Figure 2. The relationship between the RBE on the page and the P-E cycle number: (a) Early and mid in lifecycle; (b) End of
lifecycle.

The memory cells of different pages have differences in structural size and attributes [19],
which leads to inconsistency of the actual tunneling charges suffered by different pages
under the same macro programming pressure, directly affecting the degree of cell wear.
Moreover, the new three-dimensional multilayer process will bring more serious physical
structure differences and disturbance effects [20], resulting in more significant differences
in the endurance of flash memory pages. If the flash memory page is used as the prediction
object for modeling, the difference in the degree of wear and change trend will greatly
reduce the accuracy of the model’s prediction results.
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2. The Integrity of the Flash Memory Block

There is also a significant integrity between different pages in the same flash memory
block, such as the “cliff” phenomenon. As shown in Figure 2b, even if the wear degree
and RBE numbers of different pages are different, the RBE numbers of all pages in the
flash memory block jumps at the same time at the end of the life and surges to more
than 60,000. Considering that the page capacity of the selected flash is 16 KB and the
pattern used is pseudo-random, page RBE numbers as high as half of the page capacity
means that the block has lost its storage function. The structural traps generated by the
cell wear form fine “cracks” [21], which is very common in many types of flash memory
particles. When the “cracks” accumulate to a certain extent, the insulating layer is broken
down, forming a penetration path, which causes a large area of memory cells to fail. Pages
with large differences in physical characteristics show the same end-of-life endurance
performance, which makes it difficult to predict the endurance of the flash memory page
as an independent object.

3. Array Coupling and Bad Block Management

On the one hand, the word line wear in a multi-bit memory cell will be reflected in the
RBE number of multiple pages, which means that coupling relationship between different
pages affects each other. On the other hand, the difference and randomness of the written
original data will lead to the difference in the degree of influence of the array interference
phenomenon on different pages. The difference is very significant locally, which seriously
affects the accuracy of the prediction.

3.2.2. Input Features

The selection and processing of input features determine whether the prediction
algorithm can achieve good results in practical applications.

1. Number of P-E Cycles

From the perspective of application scenarios, the number of remaining P-E cycles is a
direct indicator of the endurance of the flash memory. Therefore, the number of P-E cycles
is the most direct feature of endurance level prediction.

The total endurance of the actual flash memory block is affected by the programming
pressure. Factors such as temperature, programming pattern, and idle period time inter-
val will cause differences in programming pressure, resulting in differences in the total
endurance of the flash memory block. Process variation can also cause a huge difference in
endurance between flash memory particles. Even with the same batch of flash memory
particles of the same process, it is impossible to guarantee that all the particles have the
same constitution, which results in a large degree of dispersion of the total P-E cycle num-
ber between flash memory particles. Thus, the P-E cycle number cannot be used as a single
feature for endurance prediction.

2. Raw Bit Errors

RBE measures the degree of unit wear from the perspective of bad block judgment
standards. With the increase in the number of P-E cycles, the RBE numbers of each page
of the flash memory particle has increased to varying degrees. The dominant reason for
the change of RBE numbers is that the interface traps caused by cell wear cause charge
escape/combination and cause the threshold voltage to shift.

3. Erasing Duration

Both programming and erasing operations involve the charge tunneling effect. The
interface traps caused by the effect will change the electrical parameters of the memory
cell, affecting the tunneling efficiency, which indirectly leads to changes in the operating
time. The flash programming strategy causes the programming duration to change with
the decrease in endurance, but the programming duration as an input feature is not ideal
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in actual application scenarios due to great differences in different types of pages in the
multi-bit memory cell structure.

The erase operation applies a positive pulse on the substrate to initialize all data in
the block to an erased state, and also uses threshold voltage verification to determine
whether to apply an additional pulse. However, contrary to the programming operation,
the interface traps hinder the tunneling of the charge from the storage layer to the substrate
and cause the number of erase pulses to increase, which in turn increases the erase duration.

3.2.3. Label

The endurance judgment is related to the ECC error correction algorithm. When the
RBE numbers exceeds the upper limit of the algorithm error correction, the endurance will
return to zero. In addition, the garbage collection and out-of-place update mechanisms in
the SSD controller [22] lead to amplification effects. Therefore, the number of P-E cycles
available at the SSD level is much less than the number of P-E cycles available at the flash
block level.

According to the endurance criterion described above, the number of P-E cycles is
the metric, and the RBE numbers is the criterion. The endurance level prediction model
provides a basis for the endurance level evaluation of the SSD wear leveling algorithm. In
addition, the endurance level prediction model can be used to warn and mark the flash
memory blocks that will become bad blocks. The number of remaining P-E cycles and RBE
numbers are both competent for endurance level prediction.

3.3. Optimization Strategy
3.3.1. RBE Preprocessing

Certain inducing factors will increase the RBE numbers of the partial page in the block.
In addition, the arithmetic average can weaken the endurance difference caused by the
increase of the RBE numbers of the partial page, reflecting the overall level of endurance of
the flash memory block. The erase operation acts on all pages in the flash memory block.
If the RBE numbers of a page exceeds the upper limit of ECC error correction, the block
will be marked as a bad block. Therefore, the maximum value of page RBE is an effective
endurance level predictive input feature.

The standard deviation of the RBE numbers between pages can effectively reflect
the difference in endurance between pages. The difference in endurance between pages
increases as the endurance decreases, which means that the standard deviation of the
RBE numbers can reflect changes in endurance. At the same time, when some non-local
disturbances cause overall changes in the RBE numbers of pages within a block, the
arithmetic mean will be greatly affected. However, the standard deviation describing the
degree of difference can well shield these integrity negative effects of disturbances.

Figure 3 shows a statistical graph of the maximum value of the RBE numbers and
standard deviation of a certain block of pages as the number of P-E cycles increases. After
ignoring the jitter, the figure shows a monotonous upward trend with the number of P-E
cycles, which provides significant rules for machine learning algorithms to learn.
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Figure 3. (a) The relationship between the maximum RBE numbers of flash memory page and P-E cycle number; (b) The
relationship between page standard deviation and P-E cycle number.

3.3.2. Transient Error

The transient error caused by the RTN phenomenon has uncertainty: the uncertain
drain current causes the threshold voltage to shift randomly, resulting in an uncertain
change in the page RBE numbers. Therefore, the page RBE numbers obtained by the test
jitters violently as the number of P-E cycles Nc increases, causing significant noise. Since
the page RBE numbers is small at the initial stage of wear, and the amount of page RBE
change caused by the increase in Nc is not significant, this kind of jitter noise has a great
negative impact on endurance level prediction accuracy.

Repeating the P-R-E cycle for a predefined duration and taking the average value of
the page RBE can effectively reduce the page RBE numbers noise caused by the RTN phe-
nomenon. However, continuous read operation cannot be used instead of continuous P-R-E
operation. Performing a continuous read operation after a single programming operation
can ensure that the page RBE numbers obtained each time is under the same Nc. However,
in multiple consecutive reading operations, the reading disturbance makes each reading
operation affect the result of subsequent reading, and the multiple reading operations are
not independent. After the erase operation, the memory cell is approximately restored
to the same state, so each P-R-E cycle can be considered independent and does not affect
each other. In addition, the RTN phenomenon mainly occurs during the programming
operation and for a period of time after it. The RTN phenomenon does not significantly
disturb the threshold voltage during multiple continuous read operations. Therefore, the
continuous read operation after programming does not improve the negative impact of the
RTN phenomenon. Because the maximum value operation is a nonlinear transformation,
the sequence of page RBE numbers preprocessing and transient error optimization strategy
will have a potential impact on prediction accuracy.

4. Experiments and Analysis

4.1. Test Platform
4.1.1. Test Platform Architecture

A scheme is realized by the Xilinx ZYNQ-7000 series xc7z030ffg676-2 SoC chip (here-
after referred to as ZYNQ-7030) to build a NAND Flash test platform. The test platform
consists of a host computer and multiple test boards, as shown in Figure 4. A graphical
user interface (GUI) test program runs in the host computer, and multiple test boards are
controlled by USB transmission. There are eight test sockets on the test board, and eight
BGA132/152 packaged flash memory particles can be tested in parallel at the same time.
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Figure 4. Overview of the Flash test platform.

The test machine is responsible for flash memory specification setting, test process
setting, and data storage. Each test board has a ZYNQ-7030 chip, which exchanges data
with eight test flash memory particles through GPIO. ZYNQ-7030 can be divided into
Processing System (PS) running firmware and Programming Logic (PL) based on Kintex-7
FPGA. The core of the PS is dual-core Cortex-A9, which is mainly responsible for flash
memory particle initialization, test flow control, programming pattern drawing, etc. The
firmware will automatically generate a test process loop according to the test process
parameters transmitted by the host computer, and control the PL-side Flash interface
protocol controller module to complete the corresponding command operations through
the AXI bus register.

The PL is mainly responsible for functions such as flash interface control, test data
processing, and endurance class prediction, including Flash interface protocol controller
module, input acquisition and preprocessing module, machine learning prediction al-
gorithm module, SPI protocol control module, etc. There are eight independent Flash
interface protocol controller modules, each of which controls the flash memory particles
of the channel. The controller module interacts with the PS firmware through the AXI
bus register, and the information obtained during the test will pass through the input
acquisition and preprocessing module, and then be transmitted to the PS. The SPI protocol
control module controls the external 16 bit resolution ADC chip, which can obtain the
current value of the flash memory particles at any time and calculate the instantaneous
power consumption based on this.

4.1.2. Test Platform Cost

The test platform can test 64 × 8 flash memory particles at the same time. For a single
flash memory particle with a block size of 1024, 50,000 P-E cycles only need 1213 min,
and 5 repeated PRE cycles for 1000 blocks only need 261 min. The former corresponds to
the data acquisition of the model building process, and the latter corresponds to the data
acquisition of the actual application process.

In terms of predictive circuit modules, the use of PL-side FPGA can greatly shorten
the time-consuming prediction of endurance levels. After testing, a single prediction of
the prediction module under a 100 Mhz clock requires only about 37 us, while a single
prediction implemented by PS-side embedded programming requires 108 us.

In terms of resource consumption, the PL-side FPGA hardware resource occupancy is
shown in Table 1. The test platform and its proportion are calculated in the case of a 32-bit
wide arithmetic unit. In order to achieve highly parallel testing, a single ZYNQ-7030 chip
has eight channels internally instantiated, and each channel is divided into four parallel
modules to realize multi-CE embedded testing. Each way, the parallel module supports
three kinds of interface protocols. In the prediction circuit module, the CORDIC calculation
module occupies a higher number of LUTs and Registers resources, which occupy 3925
and 3904, respectively. When the bit width of the calculation unit is reduced to 16 bit, the
related resource consumption of the CORDIC calculation module drops significantly to
1159 and 1148.
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Table 1. PL Hardware Resource Cost.

Resource
Test Plat-Form

(32 bit)

Prediction Circuit Ratio
(32 bit)32 bit 16 bit

Slice LUTs 34,199 5947 1701 44%
Slice Registers 33,732 7689 1941 21%

RAMB36E1 142 28 14 54%
RAMB18E1 9 0 0 2%
DSP48E1s 20 20 8 5%

4.2. Experiment Methodology
4.2.1. Experiment Method

The flash memory particles selected in the experiment are the same batch of MT29F25
6G08EBHAFJ4 (NW911) chips from Micron. The flash memory particle type of this model is
3D TLC, whose block size is 2304, and the page capacity is 18,588 bytes. In the experiment,
the number of consecutive P-R-E cycles Tε = 5, Tα + Tε = 50, a set of sample data can
be obtained every 50 times of programming, and a total of 96 flash memory blocks are
tested for each endurance stage. The programming pattern adopts a PS/PL mixed pseudo-
random pattern.

The experiment uses a multi-classification model. There are four labels in the output
result of this experiment, which are the maximum level of RBE on the page after 100, 200,
and 500 P-E cycles and the level of the number of remaining P-E cycles, which are marked
as labels 1–4 in order. As shown in Table 2, each label contains four categories:

• (a) When the number of P-E cycles is used as the dimension, the level of the remaining
P-E cycles is used as the output. The category boundaries between different levels are
500, 2500, and 4500 remaining cycles. The four levels of the remaining P-E cycles are
[0 , 500), [500 , 2500), [2500 , 4500), [4500 , ∞), recorded as level 1–4.

• (b) When RBE is the dimension, the level of the maximum page RBE when the number
of P-E cycles Nc = N′

c + Ni is output as the sample point when Nc = N′
c, and the

category boundaries are 400, 700, and 1000 bits. The four levels of the maximum
value of the page RBE are [0 , 400), [400 , 700), [700 , 1000), [1000 , ∞), marked as level
1–4. The values of Ni are 100, 200, 500, and there are three tags depending on the
difference of Ni.

Table 2. The labels and categories.

Labels Category 1 Category 2 Category 3 Category 4

1 (P-E cycles) [0 , 500) [500 , 2500) [2500 , 4500) [4500 , ∞)
2 (RBE when

Ni = 100) [0 , 400) [400 , 700) [700 , 1000) [1000 , ∞)

3 (RBE when
Ni = 200) [0 , 400) [400 , 700) [700 , 1000) [1000 , ∞)

4 (RBE when
Ni = 500) [0 , 400) [400 , 700) [700 , 1000) [1000 , ∞)

The experiment uses SVM algorithm for model training by default, and the verification
method uses five-fold cross-validation. We conducted four independent model trainings.
Each training is based on the training data set of one label, and the training data of the
remaining three labels is discarded. Since the total number of P-E cycles of the sample flash
memory block is wide, and the maximum RBE value at the initial stage of life is generally
higher than 300, it is very close to the category boundary 400 of category 1 and category 2.
This phenomenon leads to an imbalance in the number of samples in different categories
for each label, and the imbalance in the number of samples in different categories is not
consistent on different labels. Therefore, before four independent model trainings, we
balance the number of samples of different categories for each label, and reduce the number
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of samples of the three larger categories to the smallest number of category samples by
random selection—the total number of samples for label 1 was found to be 6576, label 2
was 8272, label 3 was 8952, and label 4 was 15,208.

4.2.2. Evaluation Indicators

1. Confusion Matrix

The confusion matrix is a visual numerical matrix used to reflect the classification
results of a supervised machine learning model. Various indicators of the classifier model
are calculated based on the confusion matrix. The confusion matrix of the L classifier model
is a square matrix of L × L, which can intuitively reflect the distribution of each actual
category and output category. Each row of the confusion matrix belongs to the same actual
category, and each column belongs to the same output category.

2. Numerical Indicators

The two-class model commonly uses Accuracy (A), Precision (P), Recall (R), and
F1-score (F1) to measure the pros and cons of the model. However, in the multi-class
model, the increase in the number of rows and columns of the confusion matrix leads to
ambiguous indicator definitions, so corresponding changes are needed. The expression
and meaning of the numerical indicators of the classification model are shown in Table 3.
Among them, the accuracy and recall rate in the multi-classification model are divided into
three categories: macro, micro, and weighted, and the Kappa coefficient is introduced.

Table 3. The expression and meaning of the numerical indicators of the classification model.

Indicators Two-Class Multi-Class Meaning

Accuracy TP+TN
TP+TN+FP+FN

1
S · ∑m Am,m Overall prediction accuracy rate

Precision TP
TP+FP

macro − P = 1
L ∑n

An,n
∑m Am,n

micro − P = Accuracy
weighted − P = ∑n

An,n ·∑m An,m
S·∑m Am,n

Ratio of correct predicted value

Recall TP
TP+FN

macro − R = 1
L ∑m

Am,m
∑n Am,n

micro − R = weighted − R = A
Ratio of correct true value

F1-score 2P·R
P+R

2P·R
P+R Precision/recall rate trade-off value

Kappa S·∑m Am,m−∑n(∑m Am,n)(∑m An,m)
S2−∑n(∑m Am,n)(∑m An,m)

Biased consistency indicators

3. ROC Curve

The ROC curve is often used for model comparison and threshold screening in the
case of classification. The AUC value of the area under the curve can intuitively reflect the
pros and cons of performance. The larger the AUC value, the better the performance. In a
multi-class model, each category corresponds to a ROC curve, and it is necessary to ensure
that the categories are the same when comparing models.

In summary, when comparing the prediction results, we will compare the accuracy rate
A, macro accuracy macro−P, macro recall rate macro−R, macro-F1 score, Kappa coefficient
K, and roc curve.

4.3. Analysis
4.3.1. Comparison of the Results of Different Labels

This experiment uses Binary Relevance technology to transform the multi-label multi-
classification model into L single-label multi-classification models. Each label is trained
separately to obtain the prediction result, and the results of different labels are compared.
The numerical indicator results are shown in Table 4.
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Table 4. Statistical table of model numerical indicators of different labels.

Labels A macro−P macro−R macro−F1 K

1 0.958222 0.958532 0.958222 0.958377 0.944296
2 0.952369 0.953216 0.952369 0.952793 0.936493
3 0.939173 0.940106 0.939173 0.939639 0.918897
4 0.897679 0.897441 0.897679 0.897561 0.863572

The numerical indicators of label 1 are the best. The first four indicators all reach
95.8%, the Kappa coefficient is about 94.4%, and the K value greater than 90% means that
the model has extremely high consistency. The effect of the numerical indicators of label 2
is followed closely. The first four indicators are about 95.2–95.3%; the gap is not big. The
prediction effect of the model of label 4 is the worst. The first four indicators are about
89.7%, and the K value is only 86.4%.

Figure 5a visually compares the correct rate A and Kappa coefficient K of the models
of different labels through the bar graph. The difference between labels 1 to 3 is not big,
label 1 is the best, and label 4 is obviously different. The indicator gap between the four
labels is related to the classification basis. Labels 1 to 3 are divided into categories based
on the RBE numbers, which essentially predicts the changes of certain parameters after
a certain number of times in the future. At the same time, the difference between tags 1
to 3 is that the value of Ni is different. In addition, the value of Ni reflects the number
of times the predicted target is away from the current state. Tag 1 has the smallest gap
and tag 3 has the largest. The smaller the gap means the smaller the change based on
the current state, and the higher the accuracy of the prediction will naturally be. Tag 4 is
divided into categories based on the number of P-E cycles. Essentially, it judges the current
endurance stage based on the characterization of the current endurance parameters, and
it also needs to determine the total endurance range. The large difference in endurance
and mischaracterization between the flash memory particles greatly weakens the model’s
ability to judge.

Figure 5. (a) Comparison of model accuracy and Kappa coefficient of different labels; (b) Comparison of the accuracy of
models in other studies.

The comparison between the models corresponding to the four labels and the en-
durance prediction models of other researchers is shown in Figure 5b. Barry’s scheme
worked best, achieving a 99.4% correct rate. However, the number of negative samples
in the study only accounted for 0.03%, which greatly reduced its reliability. The correct
rates of labels 1–3 and Lin’s models in this scheme are about 94–96%, followed by label
4. These models are ahead of the 83.5% correct rate of Damien’s scheme. Excluding the
unreliable Barry scheme due to extremely unbalanced samples, the model accuracy rate
of this scheme is in the first echelon in this field. Compared with the two-class judgment
of other schemes, this scheme adopts a multi-classification model, and the increase in the
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number of categories makes it more abundant in application scenarios. In addition to basic
bad block warning, the model of this solution can also be used for wear leveling strategies,
factory screening and rating, etc.

Since the AUC value of category 4 of each model is about 0.99, the upper left corner area is
enlarged to the lower right corner for display. As shown in Figure 6a, the AUC value relationship
of tags 1–3 is consistent with the correct rate relationship, that is, AUC1 > AUC2 > AUC3.

 
Figure 6. (a) ROC curves of models with different labels; (b) ROC curves of different algorithms; (c) ROC curves of models
with or without transient error optimization; (d) ROC curves of models with different verification method.

The ROC curve of category 4 of labels 1 to 3 reflects the model’s prediction of bad
blocks, because the boundary of category 4 is close to the critical value of bad block
judgment. This shows that the pros and cons of the bad blocks predicted by tags 1–3 are
also consistent with the overall pros and cons of the model. However, the special case
is that the ROC curves of label 4 and label 3 are very close, but there is a gap between
the two in numerical indicators. There are two main reasons for this phenomenon: first,
the classification dimensions of label 3 and label 4 are not consistent, and the meaning of
category 4 is not the same. It is meaningless to directly compare the ROC curves of the two
categories 4; second, the selected numerical indicators. It reflects the overall situation of
the four categories, and there are differences between the local and the whole. In fact, the
correct rate A of each category is calculated separately, and the correct rates A of label 3 and
label 4 to category 4 are 96.27% and 96.26%, respectively, which are very close. However,
the correct rate A of label 3 for categories 2 and 3 is 97.64% and 95.26%, while the correct
rate A of label 4 for categories 2 and 3 is only 93.55% and 92.18%, which is a large gap.

Considering the evaluation indicators and actual application scenarios, this paper
believes that the prediction model of label 3 is the best because the numerical indicator of
label 4 is low. When the difference between the internal numerical indicators of labels 1 to
3 is not large, the value of Ni of label 3 is larger, which means that label 3 can make early
warning and decision-making in actual application scenarios. Therefore, when comparing
other variables in the follow-up, they will all be discussed in the case of label 3.

4.3.2. Comparison of Results of Different Algorithms

In addition to the default SVM algorithm, we also use the DT algorithm and the KNN
algorithm to perform model training on the same training set. The results are shown in the
Table 5. Figure 7 shows Accuracy and Kappa coefficient of different algorithms. The SVM
algorithm has achieved the best results in all the numerical indicators in the table, which is
about 3% to 4% higher than the DT algorithm, and about 5% to 8% higher than the KNN
algorithm. At the same time, this experiment has conducted sample balance processing
between each category, considering the KNN algorithm’s classification disadvantages of
unbalanced sample data sets; in actual situations, when the endurance level prediction
scheme is applied, the KNN algorithm may be more disadvantageous in accuracy.

54



Micromachines 2021, 12, 746

Table 5. Statistical table of model numerical indicators of different algorithms.

Labels A macro−P macro−R macro−F1 K

SVM 0.939173 0.940106 0.939173 0.939639 0.918897

DT 0.907391 0.909162 0.907391 0.908275 0.876521

KNN 0.880779 0.889564 0.880779 0.885149 0.841038

Figure 7. Comparison of model accuracy and Kappa coefficient of different algorithms.

It can be seen from the ROC curve in Figure 6b that the SVM algorithm is still the
best in performance of the AUC value, while the DT algorithm is the worst, and the
gap is obvious. Because the ROC curve for category 4 reflects the model’s classification
performance in the critical value of bad block judgment, and is an important indicator of
the pros and cons of the bad block early warning function, the DT algorithm has a great
disadvantage in this important function.

4.3.3. Analysis of Transient Error Optimization Effect

1. Comparison of Optimized and No Optimization

Comparing the effect of optimization with or without transient errors will inevitably
lead to an imbalance in the number of category samples in one of the cases. Therefore, the
weighted-P indicator is added to the statistical table of numerical indicators of the model
with or without optimization, as shown in Table 6.

Table 6. Statistical table of numerical indicators of optimization and no optimization.

Labels A macro−P macro−R macro−F1 K

Optimized 0.939173 0.940106 0.939173 0.939639 0.940106

No
optimization 0.860097 0.8575992 0.858039 0.857819 0.864401

The input of the non-optimized model takes the last time of the Tα cycle, and the input
of the optimized model uses the first average processing method. From a comparison of
Table 6, it can be seen that there is a huge gap in the numerical indicators of the model
with or without transient error optimization. The accuracy rate A of the optimized model
is 7.9% higher than that of the non-optimized model. Among the other five indicators,
the optimized model is about 7% to 10% higher than the non-optimized model, which is
a significant improvement. This is because the transient error optimization strategy can
significantly reduce the jitter noise in the endurance data, so that the machine learning
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algorithm can better analyze the intrinsic relationship between the endurance level and the
input vector.

The ROC curve in Figure 6c shows that the AUC value of the optimized model is
higher than that of the non-optimized model, so the optimized model judges bad blocks
more accurately. The comparison result fully illustrates the necessity and correctness of the
transient error optimization strategy.

2. Comparison of Optimization Order

The sequence problem of the maximum/standard deviation operation and the tran-
sient error optimization operation will cause the difference of the input vector after the
transient error optimization, which is essentially caused by the characteristics of the non-
linear transformation. The previous forecasting models are all optimized before processing.
Table 7 shows the numerical indicator results of earlier transient optimization and later
transient optimization.

Table 7. Statistical table of numerical indicators of optimization order.

Labels A macro−P macro−R macro−F1 K

Pre-optimization 0.939173 0.940106 0.939173 0.939639 0.940106

Post-optimization 0.915602 0.915280 0.917297 0.916288 0.916810

It can be seen from the table that pre-optimization is better in the prediction results.
The accuracy rate A has achieved a lead of 2.4%, and the other indicators have achieved
a lead of 2% to 3%. The result is related to the theoretical basis of the optimization
strategy. The transient error optimization strategy is based on the theoretical situation
that probability p = ψ(Nc) can be considered as a fixed value, when Nc is approximately
constant. However, the function ϕ(Nc) of different storage units is different, owing to which
the theoretical situation applies only to the same storage unit or page. Post-optimization
will cause the optimization strategy to deviate from the theoretical situation. At the same
time, in the early stage of endurance when the page RBE numbers change little, the gap
between the RBE numbers pages is little. The errors caused by various disturbance factors
account for a relatively large amount. The post-optimization will greatly weaken the effect
of transient error optimization. The pre-optimization can ensure that the input vector of
f (Sk) comes from the same flash page, so that the theoretical situation is applicable and
no negative effects will occur. Therefore, the pre-optimization method can achieve better
optimization results.

4.3.4. Analysis of Validation Method and Feature Correlation

1. Comparison of Different Validation Methods

The performance of classification model results is evaluated and compared in a five-
fold cross-validation method. The advantage of this method is to reduce the statistical
uncertainty of the average test error estimation, so as to facilitate model comparison
and result analysis. In order to avoid misjudgments caused by differences in validation
methods, we also compared the prediction results of the five-fold cross-validation and
different ratios of Hold-Out validation methods. The Hold-Out ratios are selected as 20%,
25%, and 30%.

According to the comparison results of the indicators in Table 8, the best indicator is
the Hold-Out method with a ratio of 20%, and the worst is the Hold-Out method with a
ratio of 30%. The accuracy difference between the two is about 1.7%. The Kappa coefficient
gap is about 2.3%. In fact, the prediction result of the Hold-Out method changes greatly due
to the difference in the selection of the test set. Taking the 20% ratio Hold-Out method as an
example, the accuracy rates A of the five repetitive training models with the same data set
are 94.52%, 92.99%, 93.83%, 93.60%, and 94.66%, and the difference between the maximum
and minimum values is about 1.67%. Taking into account the indicator fluctuations caused
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by the difference in the selection of the test set, it can be considered that the numerical
indicators of the models in the four cases are very close.

Table 8. Statistical table of numerical indicators of different validation methods.

Labels A macro−P macro−R macro−F1 K

Five-fold
cross-validation 0.939173 0.940106 0.939173 0.939639 0.918897

20% Hold-Out 0.945247 0.945659601 0.94525632 0.945457917 0.92699593

25% Hold-Out 0.934307 0.936912156 0.934306569 0.935607549 0.912408759

30% Hold-Out 0.927992 0.929085804 0.927991886 0.928538523 0.903989182

The ROC curve in Figure 6d also confirms this conclusion. The ROC curves of the
four models are very close. Therefore, the Hold-Out method with a separate test set can
still obtain almost the same evaluation index, indicating that the model obtained by the
endurance level prediction scheme can still achieve excellent prediction results in the
additional test set.

2. Feature Correlation

At present, the features of the experiment are the arithmetic mean, maximum, and
standard deviation of the page RBE numbers, as well as the number of P-E cycles and the
duration of erasure. When performing feature analysis, the Pearson correlation coefficient r
can be used to measure the linear correlation between the various dimensions of the input
vector. When its value is close to 1, it means that the redundancy of the input vector space
is large, and the dimension of the input vector can be simplified. Through calculation, the
Pearson correlation coefficient r(RBEa, RBEs) between the arithmetic mean of the page
RBE numbers and the standard deviation is:

r(RBEa, RBEs) =
∑i

(
Xi − X

)(
Yi − Y

)
√

∑i
(
Xi − X

)2
√

∑i
(
Yi − Y

)2
= 0.9790 (1)

The value is extremely close to 1, which means that there is a strong linear correlation
between the two vectors. When the two are used as the model input vector dimensions
at the same time, the recognition of the feature relationship between the input and the
output is of minimal help. At the same time, the prediction circuit needs to perform parallel
calculations on various dimensions of input. If the input dimensions can be reduced, the
hardware resource consumption will be greatly reduced.

As shown in Table 9, the PCA dimensionality reduction method reduces the input
from five dimensions to four. Through comparison, it can be found that the complete input
still achieves the best prediction effect, but the lead is extremely small. Excluding the two
cases of RBE arithmetic mean/standard deviation, the difference is too small to be ignored.
Considering that the arithmetic mean can shield the local disturbance, and the standard
deviation can shield the overall disturbance, the linear correlation between the two vectors
is extremely strong, indicating that the impact of the endurance change on the overall
disturbance and the local disturbance is positively correlated.

Table 9. Statistical table of numerical indicators of input dimension reduction.

Labels A macro−P macro−R macro−F1 K

Five inputs 0.939173 0.940106 0.939173 0.939639 0.918897

No arithmetic mean 0.934002 0.935897511 0.934002433 0.934949012 0.912003244

No standard deviation 0.933394 0.935000947 0.933394161 0.934196863 0.911192214

PCA method 0.937196 0.939040182 0.937195864 0.938117116 0.916261152
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Figure 8 shows that the arithmetic mean and standard deviation are roughly linear
distributions, which are consistent with the results. The model indicator using the PCA
dimensionality reduction method is very close to the complete input model indicator, but
this method requires dimensionality reduction through a certain function transformation,
which will add additional hardware resources. The method of removing the arithmetic
mean/standard deviation of the page RBE reduces the consumption of hardware resources
on the premise that the difference between the arithmetic mean/standard deviation and
the complete input is negligible. Therefore, the input of the standard deviation will be
removed in the implementation of the specific scheme.

Figure 8. The distribution of the arithmetic mean and standard deviation of the sample points of the
data set.

4.4. Application

The endurance level prediction model has many practical application scenarios. The
paper designs a simple warning strategy for bad blocks based on the prediction scheme
introduced. In the actual application scenario of bad block warning, the prediction model
will face the problem of recall rate. Assuming that a block will become a bad block after
a certain number of programming times, the recall rate determines the probability that
the prediction model can be used to successfully judge and give an early warning. The
recall rate is the most important evaluation indicator in the early warning of bad blocks. In
data-sensitive fields, users stop using the flash memory when the usage of flash memory
reaches half of the nominal value because the method can make the recall rate reach 100%.
Even if the method will cause the real usage rate of flash memory to be much lower than
10%, it is necessary to ensure that no bad blocks are missed. Therefore, the prediction
model applied to the bad block early warning strategy needs to achieve the following goals:

(1) Improve the recall rate of the bad block warning strategy as much as possible.
(2) On the premise of ensuring goal 1, try to increase the real utilization rate of flash

memory, that is, postpone the bad block warning time.
(3) Reduce the wake-up frequency of the prediction program and prediction circuit to

reduce the burden on the SSD controller.

Based on the above objectives, this paper designs a comprehensive strategy for early
warning of bad blocks. Take Figure 9 as an example—the curve in the figure represents a
schematic curve of the error rate of the flash memory block as a function of the number of
P-E cycles. Assuming that the flash memory reaches the critical value of bad blocks at point
N, an uncorrectable data error occurs. The number of P-E cycles between point M and point
N differs by 500. Point P is the first time that the predictive model judges the block to be a
positive type (assuming that Bad block) moment. Before point P, the bad block warning
strategy wakes up the endurance level prediction circuit during every A programming
operation. After the P point, it is changed to wake up once every B programming operation,
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B < A. In this way, the prediction circuit can be called with a lower wake-up frequency
during the endurance stage with lower risk, and frequent predictions when approaching
the end of the endurance period, in order to take into account resource consumption and
the accuracy of the early warning strategy. In the judgment of bad blocks, the category 4 of
the prediction model labels 1 to 3 or category 1 of the label 4 are regarded as the positive
type, because they both mean that the prediction result of the flash memory block is located
at point M and to the right. The prediction circuit is frequently awakened after point P. If C
consecutive prediction results are positive, an early warning is sent to the controller.

Figure 9. Schematic diagram of the flash block error rate and the number of P-E cycles.

Let A be 200 and B be 50, and use the prediction model of label 3 to test. After testing
96 sample blocks, the program successfully provided early warning for 93 blocks, with a
success rate of about 96.9%. The recall rate of the model category 4 is only 89.90%, which
shows that the bad block early warning strategy can successfully improve the accuracy of
the endurance class prediction model in practical applications under the condition of low
wake-up rate.

5. Conclusions

In order to effectively prolong the service life of flash memory and avoid the loss
caused by sudden failure, this paper conducts related research on flash memory endurance,
proposes a flash memory endurance grade prediction scheme based on the SVM algorithm,
and designs a high parallel test platform and low time-consuming endurance prediction
module based on FPGA. We research and analyze the feature quantities closely related to
the endurance changes in the flash memory, and determine that the model takes the block
as the object. The page RBE numbers, the number of P-E cycles, and the erase duration in
the block are used as the input feature quantity, and the output is the remaining lifetime
level, or RBE numbers level after 100/200/500 P-E cycles. This scheme adopts a variety of
strategies to reduce the negative interference in the forecasting process in a targeted manner.
The prediction module is realized based on the ZYNQ-7030 chip. The SVM decision model
is deconstructed and the parallel multiplication structure is designed to realize the highly
multiplexed pipelined calculation. The prediction module only needs 37 us per time, which
greatly reduces the time consumption of prediction.

The method uses multi-category evaluation indicators to analyze five aspects: four
tags achieved 89.77–95.82% accuracy, each evaluation indicator is in the leading echelon,
and the increase in the number of categories expands the scope of application. Compared
with DT and KNN, the SVM model of the RBF kernel function achieved a lead of 3–8%. The
model using the transient error optimization strategy achieved an indicator increase of 7–
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10%, and pre-optimization leads up to 2% to 3%. Cross-validation and Hold-Out validation
results show that the model can still achieve the same prediction effect in the additional test
set. Pearson correlation coefficient analysis shows that the impact of the endurance change
on the overall disturbance and the local disturbance is positively correlated. Finally, the
bad block early warning strategy designed based on the proposed model can successfully
achieve early warning for 96.9% of the blocks.
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Abstract: Data randomization has been a widely adopted Flash Signal Processing technique for
reducing or suppressing errors since the inception of mass storage platforms based on planar NAND
Flash technology. However, the paradigm change represented by the 3D memory integration concept
has complicated the randomization task due to the increased dimensions of the memory array,
especially along the bitlines. In this work, we propose an easy to implement, cost effective, and fully
scalable with memory dimensions, randomization scheme that guarantees optimal randomization
along the wordline and the bitline dimensions. At the same time, we guarantee an upper bound
on the maximum length of consecutive ones and zeros along the bitline to improve the memory
reliability. Our method has been validated on commercial off-the-shelf TLC 3D NAND Flash memory
with respect to the Raw Bit Error Rate metric extracted in different memory working conditions.

Keywords: 3D NAND Flash; RBER; reliability; flash signal processing; randomization scheme

1. Introduction

The 3D NAND Flash technology is the primary choice for non-volatile mass storage
platforms such as Multimedia Cards (MMCs) and Solid State Drives (SSDs) [1]. Compared
with its planar predecessor, this technology offers a significantly higher storage density and
better scaling features [2,3]. From the reliability standpoint, the 3D NAND Flash technology
inherits the issues already documented for planar NAND Flash, such as wear-out failures
due to repeated data writing/erasing (i.e., endurance failures [4]), high temperature sen-
sitivity either in static (i.e., data retention [5]) or in dynamic (i.e., cross-temperature [6])
working conditions, and disturbances due to frequent access to the memory (e.g., read
disturb [7]). On top of these, novel reliability threats specifically belonging to the physical
nature of 3D devices come into play [8,9]. At the system level, all these reliability detractors
are perceived through an increase of the Fail Bits Count (FBC) exposed by the 3D NAND
Flash after operation. An efficient way to handle the ever-growing FBC during the entire
memory lifetime is to rely on complex Error Correction Code (ECC) engines [10] that work
on a translation of the FBC concept into an equivalent Raw Bit Error Rate (RBER) to perform
the error recovery. However, the RBER is highly dependent on the pattern applied to write
the data on the memory; therefore, without decoupling it from the intrinsic 3D NAND
Flash reliability, we would experience some unfortunate situations where RBER is higher
than the Shannon’s limit [11].

A fundamental component in storage systems, the goal of which is to avoid these
events, is the randomizer. This object ensures that the memory data programming is
achieved in the most efficient way, making the probability of a worst-case data pattern
statistically negligible. The idea behind data randomization is to perform a transformation
from original user data by simply inserting an exclusive OR (XOR) operation between
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the data path and the output of a Linear Feedback Shift Register (LFSR) initialized by
a seed [12,13]. The seed is the starting value to be loaded into the LFSR to enable the
generation of random patterns. The value of the seed is usually selected to avoid pattern
repetitions and must be greater than zero to start the generation of pseudo-random se-
quences. Additionally, multiple seeds can be exploited to reduce the correlation effects
between different LFSRs’ random number generations. The randomizer block can be
implemented either on-chip in the circuit periphery close to the memory array [14,15],
or off-chip by implementing its function in the storage controller when its architectural
complexity requires additional logical operations, such as for example, those required
for seed generation [16]. Despite the importance of this component, we must note that
the focus of these implementations is on the random value patterns’ generation primarily
in the horizontal dimension (i.e., page- or wordline-wise), while being less effective in
the vertical dimension (i.e., string- or bitline-wise) of the memory. Most randomization
schemes do not bother with the maximum number of consecutive ones or zeros along the
bitline that could impair the sensing operation, thus resulting in a localized RBER increase.

In the literature, cumbersome methodologies based on multiple chained LFSRs, or
even on look-up tables exploited for seed generation with arithmetic functions based on
heuristics, are adopted [16]. However, all the proposed solutions lack information in terms
of the mathematical approach required to achieve randomization. From the storage system
designer point of view, this will be a limiting factor since every time there is a technology
update of the storage medium (e.g., a change to the memory density, storage paradigm,
etc.), there will be a forced change of the randomization scheme.

In this work, we tackle the data randomization challenge in Triple Level Cell (TLC)
3D NAND Flash memories by presenting a simple yet scalable bi-dimensional randomizer
that guarantees both the horizontal and the vertical randomization while defining an
upper bound on the maximum sequence length of consecutive ones and zeros along
the dimensions.

The contributions of this paper can be summarized as follows:

1. We show that a chained structure of two k-bits LFSRs can provide, from a statistical
standpoint, both the horizontal and vertical data randomization while guaranteeing a
k-bit upper bound on the maximum sequence length of consecutive ones and zeros;

2. We show that our proposed randomization scheme introduces a low-complexity
hardware overhead, most of which scales automatically with the memory size and
is independent of cumbersome heuristics, to achieve seed randomization or look-
up tables (LUTs) for seed storage, to potentially be adopted by different memory
technologies and vendors;

3. We benchmark the effectiveness of our scheme by measuring the RBER characteristics
of a Triple Level Cell (TLC) 3D NAND Flash memory during both endurance and
data retention stress.

2. Background

2.1. 3D NAND Flash Memory Architecture and Randomization Fundamentals

The architecture of a 3D NAND Flash is described in the sketch in Figure 1a. The
primary element of the array is the stack of Control Gates (CGs), also indicated as Layers.
Associated with each CG, there are several wordlines that depend on the specific integration
concept for the memory [17]. The bottom of the memory architecture is represented by the
Source Line and the Source Line Selectors of the 3D NAND Flash string. Multiple holes
are drilled through the CG stacks and plugged with poly-silicon in order to form a series
of vertically arranged 3D NAND Flash memory cells. In TLC architectures, all the cells
belonging to a wordline can store up to three bits per cell, defined as Lower Significant Bit
(LSB), Central Significant Bit (CSB) and Most Significant Bit (MSB); Bitline selectors and
bitline (BL) contacts are on top of the structure.
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Figure 1. (a) The TLC 3D NAND Flash architecture. Reprinted with permission from [9] under Creative Commons License
4.0 (CC-BY). (b) Sequence of operations during program operation considering on-chip randomization. (c) Sequence of
operations during read operation considering on-chip randomization. (d) Sequence of operations during program operation
considering off-chip randomization. (e) Sequence of operations during read operation considering off-chip randomization.

The goal of the data randomization is that this operation will scramble the data to be
sent for programming in the different memory wordlines after the data input from the host
interfaces with the memory, and the de-randomization operation happens before the data
output from the memory to the host starts [12,14]. Figure 1b,c shows the operation flow,
considering the case of an on-chip implemented randomizer. The random seed is loaded
into an internal circuit of the 3D NAND Flash memory, called a page buffer, via the memory
data-path. Then, additional circuits take the seed and execute bit-wise XOR of the original
data input from the host and random sequence in the page buffers. The program algorithm
can then start. On the contrary, de-randomizing operations happen during read mode: first,
the data from the memory are sensed, then the seed is loaded into a page buffer and, finally,
a bit-wise XOR of sensed data and random sequence is executed making the original data
available to the host. In the case of on-chip randomizers, the time for on-chip randomizing
is added to the program (tPROG)/read (tR) time. Off-chip randomizers can help to reduce
the former times by providing a scrambled version of the data to be programmed in the
memory, but in this case, it is the host that needs to take care of both randomization and
de-randomization (see Figure 1d,e).

2.2. Randomizers Based on LFSRs

The principal solutions adopted for data randomization utilize a k-bit ALFSR (Au-
tonomous Linear Feedback Shift Register), as shown in Figure 2. Feedback functions exist
for any k value [18], guaranteeing that, once initialized in any state but “all zeros”, the
register evolves through all the 2k − 1 states before returning to the initial state.

The initial state is generally denoted as the register Seed. If the sequence generated by
the ALFSR—for instance, that collected at exit Yk−1—is sufficiently long, pseudorandom
characteristics are guaranteed: the probability of having bits equal to 0 is 0.5, that of having
any 2-bit sequence (00, 01, 10, 11) is 0.25, that of having any 3-bit sequence (000, 001, · · · ,
111) is 0.125 and so on.

Besides these important statistical properties, for the problem at hand it must be
observed that the maximum number of consecutive zeros is equal to k − 1, whereas the
maximum number of ones is equal to k. The former statement derives from the fact that
k consecutive zeros correspond to the “all zeros” register state, which does not belong to
the state diagram (otherwise the register would remain in that state because of the absence
of any input). The latter derives from the fact that, when k consecutive bits equal to one
are encountered, the ALFSR is in the “all one” state and, consequently, the next state must
be 0111 · · · 111 (otherwise the ALFSR would remain in the same state, contradicting its
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cycling properties). The sequences of k − 1 zeros and those of k ones occur just once in an
entire 2k − 1 bit sequence.

Figure 2. Schematic representation of an ALFSR. It is realized by k D-flip-flop (FF0÷ FFk−1) and
a feedback path where some XOR Ci may be present. The feedback function depends on the
presence/absence of the XOR (at least one must be present). Preset signals for register initialization
are not shown. The autonomous property indicates that no input is present, so that once initialized
in any state but all zeros, the cycling diagrams depend only on the feedback function.

Two possible schemes adopted to randomize the data to be stored in a memory page
are shown in Figure 3. In the former, at any clock cycle c, input data d(c) is XORed with the
content of the last register bit Yk−1(c); in the latter, the ALFSR is cycled for k clock cycles,
then all the register content Y0(c + k), · · · , Yk−1(c + k) is XORed with k input data (d(c),
· · · , d(c + k)) and this procedure is repeated until all page data are randomized. If the same
Seed in considered, the two schemes are fully equivalent in terms of randomization since,
for the same data input sequence, they produce the same data sequence to be stored in the
memory page.

Figure 3. Possible schemes used to randomize data in a memory page. (a) at any clock cycle c,
the input data d(c) is XORed with the last register bit Yk−1(c); (b) k clock pulses are applied to the
register, then the register content is XORed with k input data and the procedure is repeated until all
page data are randomized.

A 3D NAND Flash memory block is constituted by NP pages featuring NB cells each.
NB is in the range of 4 kB ÷ 16 kB (corresponding to 215 ÷ 217 cells) whereas NP is in the
range of 256 ÷ 1024 (i.e., 28 ÷ 210). The typical ALFSR length adopted in the randomizing
schemes is k = 32, so that a sequence of NL = 232 − 1 can be generated by the register before
returning to its initial state. Since NB � NL, it is clear that the statistical properties of the
ALFSR are not fully exploited. A 32-bit ALFSR is generally considered a good player in
data randomization.
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The same ALFSR is used to randomize data for all pages in a block by changing its
Seed for each page. The different Seeds can be picked from an LUT and then stored in a
table, or generated internally by manipulating the page address, depending on the strategy
adopted by the memory manufacturer. Unfortunately, this technique, even if providing
a relatively good randomization for data stored in a page, fails at guaranteeing a good
vertical data randomization along the bitline.

To illustrate the problem, Table 1 shows the sequences generated by a 4-bit ALFSR
considering NB = NP = 15, obtained by randomly picking the initial Seed. As can be seen in
the 4th column, all ones and all zeros are clustered, confirming that, whereas ALFSRs can be
conveniently used to randomize data in the horizontal direction, no statistical predictions
can be drawn when looking at a single bitline.

Table 1. Each row shows the sequence of 24 − 1 bits Y3(c) generated by a 4-bit ALFSR whose initial
seed is selected randomly. The 4th column enlightens the presence of long sequences of 0 or 1.

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1

1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

0 1 0 1 1 1 1 0 0 0 1 0 0 1 1

1 0 1 1 1 1 0 0 0 1 0 0 1 1 0

0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

1 0 1 0 1 1 1 1 0 0 0 1 0 0 1

1 1 1 0 0 0 1 0 0 1 1 0 1 0 1

1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

To analyze the problem in real cases, we performed simulations using a 32-bit ALFSR
considering NP = 256 pages, each of NB = 217 cells (i.e., 16 kB). Two procedures have been
selected to determine the ALFSR’s Seeds: in the former, each Seed is a linear manipulation
(7 ∗ p + 1) of the page address p; in the latter, each Seed is picked randomly among all the
232 − 1 possibilities.

Figure 4 shows, for the two cases, the frequency of the maximal length of zeros per
bitline. Similar results are expected for ones. It must be noted that, in the first case, we
observe more than 128 consecutive zeros along the bitline, thus resulting in potential
reliability issues for the 3D NAND Flash memory. Figure 5 shows the distributions of
the probabilities of zeros in a bitline for the two cases. Once again, we observe that the
first case is critical since there are some bitlines where the number of ones and zeros is
strongly unbalanced.

When the ALFSR Seeds are mathematically derived from the address page, the prob-
ability of producing a specific maximum length cluster shows a discrete spectrum: in
particular, in 85 bitlines, all data are zeros. On the contrary, with the set of randomly
selected Seeds used in this case, no clusters longer than the ALFSR length are found. How-
ever, it can be verified that, since the probability of zeros in a bitline shows a Gaussian-like
distribution, the length of zero runs, and the probability of zeros per bitline may range
over all their possible values.
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However, since generally NP � 2k − 1, it is possible to simulate the behavior of
an ALFSR considering a random Seed for each page and repeat the simulation until
a set of NP Seeds is found to guarantee, for each bitline, a number of zeros close to
50% and a predefined maximum length of clusters of consecutive ones or zeros. Then,
these Seeds can be stored in an LUT integrated either on-chip or off-chip in the storage
controller. Unfortunately, the quality of the set of Seeds depends on NP and on NB so
that the procedure determining a good set of Seeds must be repeated from scratch when
considering a different memory architecture.

Figure 4. Percentage of bitlines as a function of the maximum number of consecutive zeros in a bitlines. Analysis has been
performed considering a 32-bit ALFSR on a memory array of NP = 256 pages and NB = 217 cells. Case (a): Seeds derived
from a mathematical manipulation of the page address; case (b): seeds generated randomly.

Figure 5. Distributions (occurrences) of the zeros probability in a bitline. Analysis has been performed considering a
32-bit ALFSR on a memory array of NP = 256 pages and NB = 217 cells. Case (a): Seeds derived from a mathematical
manipulation of the page address; case (b): seeds generated randomly.

To explore the impact of random seeds selection, we randomly generated 10,000 sets,
each of them containing 256 random seeds. Each set is used to feed the initial states of a
32-bit ALFSR that is used to write an array of NP × B = 256 × 217 cells (i.e., 16 kB). For
each of these 10,000 arrays, we extracted some worst case statistical parameters, namely:
(i) the maximal length of consecutive zeros (ones); (ii) the maximal number of zeros (ones)
in a bitline. In case (i), Figure 6a shows the number of arrays featuring a given maximal
length. As can be seen, while the mean value is in the interval number of 23–24, outliers
are present, featuring runs of more than 30 consecutive values. Figure 6b, instead, shows
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the number of arrays featuring a given maximum value of zeros. In this case, the figure
also shows that outliers exist that feature a number of zeros per bitline that is larger than
the average. Moreover, we must note that, as the dimension of the bitlines scales up (32 kB
as shown in Figure 6), the formerly defined statistical parameters worsen.

This means that any selected set of random weights should be simulated and possibly
discarded to optimize these parameters. Random selected seeds, therefore, do not represent
an effective solution for the problem considered in this work. In the remainder of this work,
we will propose a randomization scheme independent of the dimension of the bitlines.

Figure 6. (a) Maximum consecutive number of zeros in a bitline per generated sample as a function of the bitlines’ dimension;
(b) Maximum number of zeros in a bitline per generated sample as a function of the bitlines’ dimension. In these simulations
we consider 256 wordlines.

3. The Proposed Solution

The solution proposed here guarantees the correct data randomization in a memory
page and, at the same time, provides an upper bound for the maximum length of clusters
of ones and zeros and an almost equal percentage of ones and zeros for all bitlines. The
solution can be conveniently described by means of the following example: consider,
for the sake of simplicity, a 4-bit ALFSR initialized with a random seed and consider the
24 − 1 bit-long sequence generated as reported in the first row of Table 2. Then, consider the
2nd row as the 1st one left-shifted by one position, the 3rd row as the 2nd one left-shifted
by one position and so on. We can observe that the resulting matrix is symmetrical.

By construction, it can be observed that any ith column is equal to the ith row (for
instance, the 5th row and column in Table 2 are highlighted.) Therefore the statistical
properties guaranteed in a 2k − 1 long sequence produced by a k-bit ALFSR can be found
in any column: (i) the number of ones is 2k−1 whereas that of the zeros is 2k−1 − 1; (ii) the
length of the maximum sequence of ones is equal to k whereas that of the zeros is equal to
k − 1. In addition, as already stated, the sequence of k − 1 zeros and that of k ones occurs
just once in an entire 2k − 1 bit-long sequence.
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Table 2. The first row shows the sequence of 24 − 1 bits Y3(c) generated by a 4-bit ALFSR whose
initial seed is selected randomly. Each following row is equal to the previous one left-shifted by
1 position. The resulting array is symmetrical since, by construction, any ith row and column are
identical (for instance, the 5th row and column are enlightened).

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1

0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

1 0 1 0 1 1 1 1 0 0 0 1 0 0 1

0 1 0 1 1 1 1 0 0 0 1 0 0 1 1

1 0 1 1 1 1 0 0 0 1 0 0 1 1 0

0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

1 1 1 1 0 0 0 1 0 0 1 1 0 1 0

1 1 1 0 0 0 1 0 0 1 1 0 1 0 1

1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 0 0 1 0 0 1 1 0 1 0 1 1 1 0

Hardware Realization

The proposed solution can be easily implemented for any 3D NAND Flash memory
architecture. It makes use of two k-bit ALFSRs, where k = 
log2 NP� (i.e., k = 8 for NP = 256;
k = 9 for 257 < NP ≤ 512, and so on). As shown in Figure 7, one ALFSR is used to generate
the Seeds for the second ALFSR, which is used to generate the sequence randomizing the
data in a page.

Figure 7. Proposed scheme for data randomization. For each memory page, ALFSR_1 generates the
seed initializing ALFSR_2 whose content is used to randomize the data to be stored. k = 
log2 NP�.

The algorithm to be applied is the following:

1. After a block erase operation, initialize ALFSR1 with SEEDIN . SEEDIN can always be
the same or, more conveniently to avoid a reliability degradation of 3D NAND Flash
cells during endurance stress, can be generated randomly and saved in a memory
location. It is mandatory to retrieve the selected SEEDIN since it must be used to
reconstruct the data sequence during a read operation;

2. Download the content of ALFSR1 into ALFSR2. In practice, the Seed of ALFSR2 is the
present state of ALFSR1;
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3. Program the memory page by cycling ALFSR2 until the completion of the page
programming while keeping ALFSR1 on hold, preventing an evolution of its internal
state;

4. Send a clock pulse to ALFSR1 that moves to the next state;
5. Repeat steps 2 to 4 until the completion of the block programming.

By considering a NP = 256 × NB = 217 memory block and an 8-bit ALFSR, the data
provided by the proposed method consist of a sequence of 514 pseudo symmetrical arrays,
each with 256 rows and 255 columns, as shown in Figure 8. In any array, the statistical
properties provided by the 8-bit ALFRS are guaranteed. Since the ALFSR period is 2k − 1,
we can avoid issues related to the logical period that are powers of two.

Figure 8. When applied to a NP = 256 × NB = 217 memory block, the data provided by an 8-bit
ALFSR consist of a sequence of 256 × 255 arrays.

A k-bit counter is required if the memory block is not programmed sequentially page
after page. The counter is preset with the index of the page to be programmed. ALFSR1 is
initialized with SEEDIN as in point 1 of the described algorithm. Then a countdown starts
and, with every clock pulse, ALFSR1 moves to the next state. When the counter reaches the
zero state, the content of ALFSR1 is downloaded to ALFSR2 (as in point 2 of the algorithm)
since it represents the correct Seed for the page to be programmed.

When the memory block is read sequentially page after page, the same procedure used
for data programming is applied. When a single page is to be read, the procedure used for
non-sequential programming is applied with the counter initialized with the page address.

Data stored in the memory array can be easily reconstructed by XORing the data saved
in the memory cells with the ALFRS2 content, depending on the randomizing scheme
(see Figure 9).

Figure 9. Possible schemes used to reconstruct data read from a memory page. (a) At any clock
cycle c the read data is XORed with the last register bit Yk−1(c) to provide d(c); (b) k clock pulses are
applied to ALFSR2, then the register content is XORed with k data read and the procedure is repeated
until all page data are read.

4. Experimental Validation

The experimental validation of a randomization scheme requires the assessment of
the memory reliability according to the data pattern written within. In this work, this
activity took place by characterizing the RBER of an off-the-shelf N (N < 100) layers TLC
3D NAND Flash technology featuring M (M < 16) wordlines per layer, where its input
data were supplied either by a Horizontal Centric (HC) randomizer (i.e., a randomizer that
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does not properly control the vertical randomization) or by our proposed method. The
RBER characterization has been performed in two well-defined corners of the memory
lifetime, namely after an endurance stress test (i.e., repeatedly writing and erasing the
memory blocks) and after a data retention test at high temperatures. The standards
adopted for endurance stress and data retention were chosen according to the JEDEC tests
specifications for the 3D NAND Flash enterprise qualification procedure [19], resulting
in 3000 Program/Erase cycles (that is the technology rated endurance) at a temperature
of 61 ◦C for 500 h cycle time and a retention stress test performed on cycled devices for
3 months at 40 ◦C.

The experimental setup described in [20] has been exploited for both characterizations.
To rule out any topological artifacts in the measurements, we disabled any error correction
functionality of the chip, and we did not apply any modification to the standard working
voltages of the devices and no special test modes were exploited to filter the RBER. We
also ruled out the presence of on-chip randomizer circuitry that could alter the findings.
The data analysis was performed on all the wordlines within a memory block considering
all the TLC page types. The size of a page is 16 kB, along with the parity left for error
correction code purposes, divided into 4 kB chunks, which are the minimum units read
during tests by the characterization system. The testing lasted several months.

Figure 10 shows the Complementary Cumulative Distribution Function (1-CDF) as
a function of the TLC page type of the RBER in a 3D NAND Flash block programmed
with an HC randomizer (cases a and c) or with our proposed method (cases b and d). For
the endurance stress cases we observe that an HC randomizer could dangerously induce
an RBER close to the error correction capacity of many advanced schemes (we refer here
to the case of a 100 b/1 kB that is a maximum allowable RBER of 1.1 × 10−2) [21,22],
whereas with our proposed method, we still have a sufficient margin with respect to that
reliability limit. In the HC randomizer, we remember that there is neither a control of
the patterns of ones and zeros achieved along the bitline (i.e., vertical dimension) nor
an upper bound to their maximum length. This can result in some fortunate patterns
(as observed in these experiments for the CSB pages), where the RBER appears as the
best; however, this is at the expense of inducing the worst patterns on the other TLC
pages (i.e., LSB and MSB). From the statistical standpoint, we observe an imbalanced
situation where the optimal patterns are concentrated only in one TLC page type. With
our proposed methodology, we guarantee a good pattern balancing among the TLC pages,
thus significantly reducing the worst RBER case and homogenizing the behavior of all
the 3D NAND Flash memory locations. This leads to a better control of the 3D NAND
Flash reliability and in turn to a reduced system-level effort in coping with endurance and
retention errors using complex error correction codes or secondary correction schemes. We
also want to stress that, due to the different architectural and integration options of 3D
NAND Flash technology [17], we expect that the RBER behavior may expose a different
trend for memories manufactured with a different process/architecture with respect to
that characterized in this work. However, our proposed randomization methodology is
still foreseen to yield the same RBER improvements, while the HC randomizer will still
evidence shortcomings in terms of the worst case RBER.

If we consider the retention test case, which is an additive RBER factor with respect to
what we observed during the endurance test (retention tests are performed after that), we
observe that all TLC pages written with an HC randomizer become uncorrectable since
their RBER crosses the 1.1 × 10−2 limit, whereas in our method, only the MSB pages are
above it. This suggests that, while with our method we may think to develop secondary
error correction schemes [23–25] targeted only at MSB pages in retention conditions, with
an HC randomizer we are forced to deal with an additional effort to recover the data every
time we access the 3D NAND Flash after a data retention stress.
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Figure 10. Complementary Cumulative Distribution Function (1-CDF) of the RBER in a 3D NAND Flash memory for
Endurance and Retention working corners when the input data come from an HC randomizer (a–c) or from our proposed
method (b–d).

Finally, Figure 11 shows the results of a topological characterization of the RBER in a
3D NAND Flash block. As can be seen, there are specific areas (i.e., layers and wordlines)
for which the use of a good quality randomizer could help in terms of improving the
reliability during both endurance and retention working conditions. We must note that, in
the HC randomizer, the presence of uncontrolled sequences of consecutive ones and zeros,
coupled with the non-perfect randomization along the vertical dimension of the memory,
severely affects the sensing operation of the data with the consequent burden on the RBER.
In 3D NAND Flash memory architectures (please refer to Figure 1a), the layers are the
contacts stacked along the vertical dimension (let us refer to it as the y-axis) also referred
to as the control gates to which the voltages for programming and reading the memory
are applied. For each layer, there are several wordlines associated and connected in the
direction of the z-axis, so that a single layer (control gate) can drive the signal in parallel
on multiple wordlines. The bitlines are in the x-axis direction. Let us assume a total of
five wordlines per layer. Since we have a TLC storage paradigm, we will come up with
five wordlines associated with LSB, five wordlines for CSB, and five wordlines for MSB.
That is why we have well-defined “stripes” in the plots of Figure 11. The higher wordline
indexes are associated with MSB pages and the lower indexes to LSB. In this case, Figure 11
reflects the same behavior as observed in Figure 10. Concerning the variability of RBER
characteristics along the layers and the wordlines, we must note that the 3D NAND Flash
manufacturing process is not easy to control, so there is a well-known sensitivity of the
RBER’s layers that depends exactly on the peculiar processing steps of the memory devices,
which, unfortunately, are not disclosed to us.
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Figure 11. Topological characterization of the RBER in a 3D NAND Flash memory for Endurance and Retention working
corners when the input data come from an HC randomizer (a,c) or from our proposed method (b,d).

5. Conclusions

In this work, we proposed a randomization scheme for 3D NAND Flash memory
technology that allows a good degree of randomization in both memory dimensions (i.e.,
wordline and bitline) without requiring a complex implementation methodology while
relying only on a proper arrangement of LFSRs circuits. The simulation results show that
our methodology imposes a guard band on the maximum number of consecutive ones and
zeros along the bitline dimensions (no more than 25) to keep the read failure probability
during the data readout phase under control.

Further, we demonstrate by construction that our randomization scheme has better
control of the number of zeros or ones along the bitline, proving a good balancing of the
write data to the memory, thus representing an optimal case for reliability.

Finally, we experimentally validated our proposed methodology on an off-the-shelf
TLC 3D NAND Flash memory chip, showing that, under JEDEC-style endurance and
data retention stress, we can achieve RBER for LSB and CSB pages that is always below
the correction limit imposed by a 100 b/1 kB Error Correction Code. Our randomization
methodology can therefore be exploited by storage system designers to keep the memory
reliability under control.
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Abbreviations

The following abbreviations are used in this manuscript:

MMC MultiMedia Card
SSD Solid State Drive
RBER Raw Bit Error Rate
LFSR Linear Feedback Shift Register
LUT Look Up Table
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Abstract: The recent development of 3D flash memories has promoted the widespread application of
SSDs in modern storage systems by providing large storage capacity and low cost. Garbage collection
(GC) as a time-consuming but necessary operation in flash memories largely affects the performance.
In this paper, we perform a comprehensive experimental study on how garbage collection impacts
the performance of flash-based SSDs, in the view of performance cliff that closely relates to Quality
of Service (QoS). According to the study results using real-world workloads, we first observe that GC
occasionally causes response time spikes, which we call the performance cliff problem. Then, we find
that 3D SSDs exacerbate the situation by inducing a much higher number of page migrations during
GC. To relieve the performance cliff problem, we propose PreGC to assist normal GC. The key idea
is to distribute the page migrations into the period before normal GC, thus leading to a reduction
in page migrations during the GC period. Comprehensive experiments with real-world workloads
have been performed on the SSDsim simulator. Experimental results show that PreGC can efficiently
relieve the performance cliff by reducing the tail latency from the 90th to 99.99th percentiles while
inducing a little extra write amplification.

Keywords: solid-state drives; 3D flash memory; performance cliff; tail latency; garbage collection

1. Introduction

Due to shock-resistance, high access speed, low energy consumption, and increased
capacity, Solid-State Drives (SSDs) [1–3] gradually gain popularity as the main storage
device or data buffer on modern big data or AI applications [4–8]. The development of new
flash memories such as 3D-stacked charge-trap (CT)-based ones largely benefits the storage
density of modern SSDs. Meanwhile, they show some new physical characteristics, e.g.,
the increased block size and layer speed variation, the effect of which on performance have
not been fully investigated [9].

Garbage collection (GC) is responsible for reclaiming blocks with a large proportion
of invalid pages. A GC operation consists of two main phases: valid page migration and
block erase. GC often has a great impact on system performance. Paik et al. [10] and
Wu et al. [11] considered avoiding GC blocking on read requests by directly delaying GC
or by exploiting the data redundancy of multiple SSD arrays. Chen et al. [12] proposed
an erase efficiency boosting strategy to reduce block erase latency by exploiting the multi-
block erase characteristic of 3D CT-based SSDs. ShadowGC [13] was designed to hide GC
latency by exploiting the host-side and device-side write buffers. Yan et al. [14] proposed
a Tiny-Tail Flash to hide GC latency in paralleled and redundant SSD structures. Choi
et al. [15] and Guo et al. [16] proposed scheduling I/O requests and GC operations together
by considering the paralleled structure of SSDs. Shahidi et al. [17] combined a cache
management policy with GC and proposed CachedGC to postpone writing back valid
pages during the GC.
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In this paper, we perform a comprehensive experimental study on how garbage col-
lection affects the system performance of SSDs in the view of performance cliff that closely
relates to tail latency and affects Quality of Service (QoS). According to preliminary study
results, we first observe that SSD response time shows occasional spikes. By comparing
with 2D SSDs, these spikes in 3D SSDs have much higher values and occur more frequently,
which makes the performance situation worse. We call this phenomenon of response time
spikes the problem of “performance cliff”. This directly induces the sharp increase of tail
latency that is often used as the evaluation of Quality of Service (QoS) by the industry.

In order to study the cause of performance cliff, we collect some experimental results
about garbage collection and obtain two extra observations. On the one hand, the number
of page migrations during GC sharply increases, especially in 3D SSDs. On the other hand,
page migration latency takes up the majority of GC latency while block erase only takes up
a small proportion.

According to the above observations, we propose a GC-assisting method, called PreGC
to mitigate the GC latency and to optimize tail latency. The key idea of PreGC is to migrate
part of valid pages in advance of normal GC, which can distribute heavy page migrations
into the other system time. The challenge to implement PreGC is to decide when and how
many pages to migrate. PreGC is invoked near by the normal GC and migrates valid pages
during system idle time in a fine-grained incremental way. In this way, it can mitigate
unnecessary migrations that overlap with page updates between PreGC and normal GC
and reduces the effect of pre-migrations on normal requests.

In order to evaluate the proposed PreGC, we perform a comprehensive experiment on
the SSDsim simulator with real-world workloads. From the experimental results, we show
that PreGC is effective in reducing page migrations and optimizing system performance
with reduced 90th to 99.99th percentile tail latencies.

The contributions of this paper are listed as follows:

• We perform a preliminary experimental study on the response time and tail latency of
SSDs and observe the performance cliff problem.

• We uncover that the main cause of the performance cliff problem is the significantly
increased latency of garbage collection. These increased latency are mostly caused
by the increased number of page migrations in 3D SSDs.

• According to the above observations, we propose a GC-assisting method called PreGC
to relieve the performance cliff. By pre-migrating a part of valid pages ahead of
normal GC time, page migration latency can be distributed into other system time
and thus can be largely reduced during GC period.

• We evaluate the proposed PreGC with real-world workloads on the SSDsim simulator.
The results show that performance cliff can be significantly relieved by lowering down
the tail latency.

The rest of this paper is organized as follows. Section 2 presents the basics of 3D SSDs
and studies related works to SSD performance optimization. Section 3 illustrates the details
of our preliminary study experiment and observations on 2D SSDs and 3D SSDs. Section 4
describes the detailed designs of PreGC. The experiment setup and evaluation results of
PreGC are presented in Section 5. Section 6 concludes this paper.

2. Background and Related Works

This section first introduces the basic structure of 3D SSDs, in which the large block
problem is mentioned. Then, we illustrate the mechanism of garbage collection. At last,
layer speed variations are illustrated to show the uneven data hotness problem in 3D
charge-trap (CT) SSDs.

2.1. Basics of 3D SSDs

SSDs are composed of a controller and flash arrays. The controller is responsible
for organizing data access on flash arrays and for effectively using a flash. For example,
the flash translation layer is used to manage the mapping between physical addresses
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and logical addresses. The garbage collection mechanism cleans invalid data blocks to
overcome the out-of-place nature of flash memory. Moreover, error correction and wear
leveling are designed to make data reliable and to even cause wear on flash blocks.

The flash arrays in 3D SSDs are composed of 3D flash memory, which greatly increases
the capacity of SSDs by vertically stacking multiple layers. Figure 1 illustrates the physical
organization of flash cells in 3D flash memory. The control gates of the cells belonging to
the same layer are connected together to form a wordline. All cells with the same bitline
across multiple layers form a block. It can be found that the block size would be sharply
increased because of the layer stacking, compared with 2D flash memory. This induces the big
block problem that has been widely studied in existing works [18,19]. When the block size is
larger, the block erase time and migrated page numbers would be prolonged, which induces
worse garbage collection performance as well as long tail latency.

Block N+2
Block N+1

。
。
 

。
。

Block N

Wordline

BitlineLayers

Figure 1. The layer-stacked structure of 3D flash memory.

Due to the out-of-place update feature of flash memory, a lot of invalid data would
be generated after SSD has been used for a while. Garbage collection is used to reuse
the space occupied by these invalid data. The granularity to perform GC is a block, but
the basic unit of read and write is page. The process of GC is mainly divided into two
stages: valid data migration and block erase. After a victim block is selected, valid pages
are first migrated into another block. After all valid pages are migrated, block would be
erased to be a free block again. Thus, the latency of GC is decided not only by block erase
but also by page migrations.

2.2. Layer Speed Variations

This part introduces the charge trap (CT)-based flash memory, a special type of 3D flash
memory widely used in 3D SSDs, which utilizes an effective way to construct a vertical
flash structure. There are multiple gate stack layers and vertical cylinder channels in 3D CT
flash [20,21], as shown in Figure 2. A special chemical liquid is used to erode the stacked
layers. The physical properties of this liquid cause the upper layer to have a larger opening
than lower layers, which leads to asymmetric feature process size across the stacked layers.
The electric field strength of each layer is different, and for the larger opening, the electric
field strength would be high, which induces a slower access speed. Thus, access speed on
lower layers is faster than that on upper layers. This phenomenon is called the layer speed
variations.
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Figure 2. Three-dimensional CT-based flash.

2.3. Related Works

This paper focuses on optimizing the performance of 3D SSDs in the view of garbage
collection. As previous works related to garbage collection schemes have been discussed
in Section 1, this section investigates existing works that optimize 3D SSD performance,
most of which study or exploit the special characteristics of 3D layer-stacked structures.
In detail, these characteristics can be divided into two types: the logic in programming
and reads, and the physical feature of layer-to-layer structures such as process variations.
We discuss these existing works as follows.

By utilizing the logic in programming and reads, several works have been proposed.
Wu et al. [22] proposed a new data allocation policy to exploit the special one-shot program-
ming scheme in CT-based 3D flash memories. Logically sequential data are re-distributed
into different parallel units to enhance read parallelism. Shihab et al. [23] relieved the fast
voltage drift problem of 3D flash by applying an elastic read reference scheme (ERR)
to reduce read errors, which can decrease read latency with advanced ECC codes. Ap-
proxFTL [24] considers storing data by reducing the maximal threshold voltage and by
applying an approximate write operation to store error-resilient data Pletka et al. [25]
studied the shifts of threshold voltage distributions in 3D flash memory and proposed
a new framework to manage 3D TLC flash errors for high SSD performance and lifetime.
Ho et al. [26] proposed a one-shot program design to accelerate programming speed of 3D
flash memories and to reduce data error rates. Zhang et al. [27] considered to improve
the read performance of 3D SSDs in the view of ECC efficiency and proposed a RBER
aware multi-sensing scheme to decrease the number of read thresholds.

By exploiting the physical feature of layer-to-layer structures, other works have been
proposed. Chen et al. [28] exploited the asymmetric speed feature across layers of CT-based
3D flash and proposed a progressive scheme to boost access performance. Chen et al. [12]
optimized the garbage collection performance in the view of block erase efficiency and
proposed a multi-block erase strategy. Xiong et al. [29] and Wu et al. [30] studied the char-
acteristics and challenges of 3D flash memories with the floating-gate (FG) type and
the charge-trap (CT) type, respectively. Hung et al. [31] studied the cross-layer process
variation problems of 3D vertical-gate flash and proposed three layer-aware program-and-
read scheme to reduce P/E cycle numbers and to improve read performance. Liu et al. [32]
proposed a new read operation called “single-operation-multiple-location” for small reads
to enhance the chip-level parallelism of 3D NAND SSDs. Wang et al. [33] proposed a relia-
bility management method, named as P-Alloc to tolerate process variation of 3D CT flash.
As our proposed PreGC method considers the effect of layer-to-layer speed variations on
GC performance, it belongs to this category. In addition, we are the first work to uncover
the root cause of the performance cliff problem in 3D SSDs.

Different from the above method of hiding the necessary latency or a method of im-
proving the long tail latency by reducing the frequency of GC blocking I/O such as GFTL [34],
which provides deterministic service guarantees by leveraging the request intervals to
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perform partial GC, and AGC+DGC [35], which significantly reduces GC overhead to
provide stable SSD performance by scheduling GC operations from busy to idle periods,
our work assists GC in improving performance by reducing the time that GC blocks I/O
in a novel way and is orthogonal with these works.

3. Preliminary Study

This section presents our preliminary study on 3D SSD performance based on the two
problems of big block size and data unevenness. First, we introduce the experimental setup
of this study, including 3D SSD configurations and workloads. Then, three observations
from the studied results are explained in details. At last, through analysis and comparison,
it is concluded that sharply increased page migrations during GC are the main cause of
severe performance cliffs in 3D SSDs.

3.1. Experiment Setup

We used SSDsim to simulate 2D SSDs, and some of its components were modified
to simulate 3D SSDs by adding layer information for data. The parameter configurations
for 2D and 3D SSDs are shown in Table 1. The variation of the layer difference was
simulated as the fastest layer speed was twice the speed of the slowest layer, and the middle
layer gradually increased in speed. The number of pages per block in 3D SSDs were set
as the double of that in 2D SSDs and the other parameters were set as the same value to
reflect the big block size problem.

Table 1. Parameter configurations of 2D SSDs and 3D SSDs.

Parameter vs. Type 2D SSDs 3D SSDs

Overall capacity 16 G 16 G
Page size 4 k 16 k

Page number per block 64 128
Page read latency (μs) 20 90
Page write latency (μs) 200 1100
Block erase latency (μs) 1500 10,000

GC Threshold (μs) 10% 10%
Over-provisioning (μs) 20% 20%

Six real-world workloads [36] were chosen and are shown in Table 2, in which
usr0 is a user workload and the remaining five are the workloads from the server. As
the read/write request ratios and average request interval time of these workload are
different, the experiment results are more representative for various applications.

Table 2. Statistics of six real-world workloads.

Trace vs. Stat Reads Writes Read Ratio
Averge Interval

Time (ns)

usr0 903,491 1,333,345 40% 27,037,999,239
src0 176,729 1,381,085 11% 44,862,657
ts0 316,689 1,484,799 18% 38,800,309

rsrch0 133,625 1,300,030 9% 42,185,614
fiu_web 78,613 5,604,382 1% 105,356,789

mds1 133,625 1,300,030 93% 36,646,192

3.2. Observations on SSD Performance

Based on these settings, the SSD performance cliff by GC was first observed by analyz-
ing request response time series. Then, in order to find the reason behind this phenomenon,
extra two experimental results including migrated page numbers and latency distribution
in the GC period were then shown and analyzed.
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3.2.1. The Problem of Performance Cliff

A main indicator for SSD performance is its response time, which is the latency in
processing read and write requests. Request response time during a period of about two
milion requests in the workload hm0 was collected and shown in Figure 3 and Figure 4. It
can be seen that response time peaks occasionally appear both in 2D and 3D SSDs, which
we call the performance cliff problem. In addition, through the comparison of two figures,
it can be seen that the performance cliff of 3D SSDs is far more serious than that of 2D SSDs.
We further study this phenomenon in the following sections.

Figure 3. Request response time distribution in 2D SSDs.

Figure 4. Request response time distribution in 3D SSDs.The performance cliff phenomenon of 3D
SSDs is much more serious than that of 2D, which is manifested in a sudden high latency as shown
in the figure.

3.2.2. The Number of Page Migrations

As GC performance in 3D SSDS is affected by the big block problem, which would
induce increased page migrations, we collected page migrations numbers of each GC in
workload hm0, as shown in Figure 5. From the figure, we can see that the number of valid
pages to be migrated in GC of 3D SSDs has a sharp increase with respect to 2D SSDs when
serving the same traces. Additionally, when the GC number increased, the page migration
difference between two SSDs increases greatly. These results show that 3D SSDs migrated
more pages as a larger block size was used, latency induced by these migrations would
also be high, as shown in the next study.
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Figure 5. The number of page migrations in garbage collection. The abscissa in the figure is the serial
number of GC, and the ordinate represents the number of page migrations in the current GC.
The number of GC page migrations is significantly higher in 3D SSDs (blue broken line) than in 2D
SSDs (red broken line).

3.2.3. Latency Distribution in GC

As illustrated in Section 2.1, the latency caused by GC is mainly composed of the la-
tency of page migrations and block erase. This section analyzes the latency distribution
of these two stages among the overall GC latency, as shown in Table 3. In this table, not
only the latency distribution in GC but also the times of page migrations on block erase
are presented. It can be seen from the results that the proportion of page migrations in 3D
SSDs significantly increases when compared with that in 2D SSDs. For the workload src0,
the latency of page migrations can reach up to 11.45 times that of block erase in 3D SSDs,
while this value only reaches to 5.23 in 2D SSDs.

Table 3. Distribution of GC latency on page migration and block erase.

Ratio vs. Workload usr0 src0 ts0 rsrch0 wdev0

2D erase 44% 16% 40% 89% 34%
2D migration 56% 84% 60% 11% 66%

migration/erase 1.28 5.25 1.52 0.12 1.95
3D erase 9% 8% 20% 23% 26%

3D migration 91% 92% 80% 77% 74%
migration/erase 9.98 11.45 4.10 3.29 2.85

As the block erase time for both SSDs is similar because of the technology develop-
ment of 3D flash memory, the latency of page migrations is the main cause of high GC
latency. Therefore, the server performance cliff problem of 3D SSDs uncovered above is
mainly caused by the sharply increased number of page migrations. According to this con-
clusion, this paper proposes a reduction in page migrations for 3D SSDs by pre-migrating
valid pages near the time when GC is invoked. Next, the detailed design of our method
would be presented.

4. The PreGC Method

This section introduces our proposed PreGC method from three aspects: overview,
workflow, and cooperation with normal GC. First, the architectural overview of PreGC
is presented. Then, the workflow of PreGC is illustrated to show when to trigger PreGC,
how to perform page migrations in PreGC, and when to stop these migrations. Lastly, how
PreGC can assist normal GC for performance cliff reduction is shown.
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4.1. Overview

The overview of 3D SSDs with PreGC is shown in Figure 6, in which the SSD con-
troller acts as the medium for communication between the host and the storage. The
SSD controller mainly includes some components such as host interface, RAM, processor,
and FTL. The host interface is used to interact with the host, the RAM is used to store
mapping tables between physical addresses, and logical addresses are used to facilitate
data read and placement. The processor manages the request flows and performs some
basic computations for SSD control algorithms.

As PreGC is a method of performing partial page migrations ahead of normal GC
time, it has to work together with existing GC methods. PreGC mainly contains two
components to judge when to invoke and stop the pre-migration operations: invoking
and stopping. Briefly speaking, the invoking condition depends on the ratio of free blocks,
which is similar to that in normal GC. However, in order to make a balance between write
amplification and GC page migration reduction, the threshold ratio for invoking PreGC
should be deliberately designed. The stopping condition of PreGC depends on how many
valid pages exist in the victim block. As there is no need to migrate all valid pages, which
may make normal GC ahead of its original, the threshold ratio is set to a value a little
below the invoking threshold of normal GC. Details of the workflow to use PreGC within
the right module of Figure 6 are presented next.

Figure 6. Overview of PreGC in 3D SSD controller. The Pregc mechanism is located in the SSD
controller and works with the FTL, processor, etc., including the invoking module and the stopping
module; the workflow of Pregc is shown on the right.

4.2. Workflow of PreGC

In order to better describe the specific implementation process of PreGC, a workflow
chart is presented in the right part of Figure 6. It mainly involves three judgements,
the invoking and stopping conditions of page pre-migration operations, and the current
system status. Two threshold parameters are involved in PreGC, Tblock indicating the ratio
of free blocks and Tpage indicating the ratio of valid pages. The workflow of PreGC performs
as follows. First, PreGC judges whether the current number of free blocks is less than
Tblock. When this condition is satisfied, the victim block with the least valid pages would
be determined according to the greedy algorithm. Then, the valid page ratio Tpage in this
block is further detected. Once the valid page ratio is less than this threshold, the current
system status would be judged. Once system becomes idle, one valid page in the victim
block would be migrated. When the first migration is finished, system status should be
judged again to avoid delaying subsequent requests for long. Moreover, the valid page
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ratio would also be re-checked again. Thus, the conditions to stop PreGC can be triggered
when the system becomes busy or when the valid page ratio is larger than Tpage.

From the above workflow, we can find that the effectiveness of PreGC largely depends
on system idle time as well as the pre-migration numbers. Thus, it would be evaluated
comprehensively with multiple workloads having varied system idle time and with multi-
ple parameter settings of Tblock and Tpage as the sensitivity study. Details of the evaluation
would be presented in Section 5.

4.3. Cooperating with Normal GC

PreGC is a novel method to improve the performance of SSD by working together
with GC and is actually not a replacement for existing GC methods that we call normal GC
in this paper. Thus, PreGC is orthogonal with normal GC methods. This section presents
how PreGC assists the normal GC to reduce page migrations. PreGC is often used before
the normal GC on the victim block, as shown in Figure 7. In the period of 3D SSDs in
Figure 7, PreGC and normal GC are both used. When the system is idle, part of the pages
in a victim block are migrated during the yellow time slot. Then, the system becomes busy;
as shown in the dark gray time slot, the migrations are stopped because of the system
status. When the system becomes idle again, pre-migrations begin again. In this invoking,
PreGC is stopped because that valid page ratio is satisfied. Consequently, normal GC is
invoked and normal page migrations occur. From the changes of valid page distribution
among several blocks, as shown in Figure 7, PreGC actually increases the number of valid
pages. This also means that PreGC increases the extra write number for the case that valid
pages are updated during the period between PreGC and normal GC. Thus, PreGC would
induce write amplification, which also would be evaluated in Section 5.

PreGC Normal GC 

valid data 
invalid data 

system idle 
pre-migrated data 

system busy 

Pre-migrations 

System status 

Figure 7. The cooperation between PreGC and normal GC. The box on the lower side of the figure
represents the system status progress bar in the SSD, while the box on the upper side represents
the page status. The figure shows the system status that will trigger PreGC and Normal GC as well
as the current page status and the PreGC process that occurs between them.

5. Experiment and Evaluation

This section first describes the experiment platform and parameter configurations
to evaluate our proposed PreGC. Then, the experimental results about performance and
overhead of PreGC are shown and analyzed under five real-world workloads by comparing
with the original GC method.

5.1. Experiment Setup

The experiment designed for PreGC evaluation is illustrated from the following
four aspects. First, SSD configurations using the SSDsim simulator [37] are presented
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and the five real-world workloads are introduced. Then, the parameters settings in our
experiment and sensitivity study are described. Lastly, we compare methods to evaluate
the proposed PreGC method.

SSD configurations: The proposed PreGC method was integrated into the controller
of 3D SSDs, and all experiments were conducted on a flash simulator named SSDsim [37],
which is a reliable platform that has been widely used in many research works about
SSDs [14,38,39].

Real-world workloads: To evaluate the effectiveness of PreGC on performance cliff
and tail latency reduction, five real-world workloads with different features were chosen
from Umass [40], as listed in Table 2. In our experiment, the duration of these workloads
was about 18 hours.

Parameter settings: There were two thresholds involved in the PreGC flow chart,
as illustrated earlier, which are the free block ratio threshold Tblock used to invoke page
migrations in PreGC and the valid page ratio threshold Tpage used to determine whether to
proceed PreGC. By conducting a series of threshold value tests, we determined Tblock to
be 11% and Tpage to be 10% for all workloads. The trigger condition of normal GC is when
the free block ratio reaches to 10%.

Compared methods: Our PreGC method is designed to assist the traditional GC
methods, and we are the first to propose such a GC assistance from the aspect of page
migrations. Thus, we compare the performance and overhead of SSD systems with and
without ProGC together with the original GC method, and the excellent partial GC method
GFTL. Moreover, we combined PreGC and GFTL to prove that our approach can work
with other methods. The four compared methods are denoted as PreGC, Original, GFTL,
and GFTL after PreGC.

It is worth mentioning that the comparison of the methods from GFTL and PreGC
shows in Figure 8. The GFTL method divides the GC into several operations with a required
time less than or equal to one erase latency after the GC condition is triggered and executes
it one by one in the request interval, which is equivalent to delaying the normal foreground
GC into a background GC to hide its latency, so it also requires a large amount of space as a
buffer, for example, 16% in this experiment. The PreGC we proposed was to migrate valid
pages of to be erased blocks ahead of time before the GC condition was triggered and to
move one page at a time, thus reducing the current GC latency and avoiding blocking I/O
for too long. PreGC does not interfere with normal GC operation because the GC operation
is indispensable although it has some bad effects. In summary, PreGC has the following
advantages: First, it does not interfere with the execution of normal GC but cooperates
with it. Second, no additional buffer space is required. Finally, the time granularity of
the step-by-step operation is smaller and more flexible.

Figure 8. Comparison of two methods. The box in the figure represents the non-idle system state,
and different colors indicate different states. The upper side of the figure shows the existing GFTL
method, while the lower side shows the PreGC method proposed in this paper.
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5.2. Results and Analysis

We first analyze the results of PreGC on normal page migration, which indicates
the number of migrated pages when GC happens. As PreGC migrates some valid pages in
advance, page migrations when GC happens are reduced, noting that our PreGC method
does not reduce the overall migrated pages. We call page migrations in GC normal. Details
about the reduction are presented in Table 4. Then, the performance results including
the prorformance cliff phenomenon and tail latency after pre-migrating valid pages are
presented to verify the effectiveness of PreGC. Moreover, the overhead of PreGC on the
write amplification is also evaluated. Lastly, the workload characteristics are discussed in
which PreGC can play the role more effectively.

Table 4. Page migration statistics.

Trace vs. Stat Mig w/o PreGC Mig w/ PreGC Reduction NPreGC PreMIG

usr0 44 31 29.5% 13,095 63
src0 60 42 30% 10,351 29
hm0 22 13 40.9% 5763 27
ts0 17 10 41.2% 11,851 23

rsrch0 25 14 44% 9116 25
wdev0 16 10 37.5% 1926 44
Avg. 30.6 20 34.6% 8684 35.2

5.2.1. The Number of Normally Migrated Pages in GC

In order to show the effect PreGC on page migrations, the average number of normally
migrated pages is computed as Equation (1), in which MIGGC is the totally migrated pages
when GC happens and the NGC represents the overall GC number. Moreover, the average
number of pre-migrated pages for each workload computed according to Equation (2),
in which MIGPreGC represents the total page migrations induced by PreGC and NPreGC
indicates the overall number of PreGC invoking.

MIGaverage =
MIGGC

NGC
(1)

PreMIGaverage =
MIGPreGC

NPreGC
(2)

The comparison results without and with PreGC, the numbers of invoked PreGC, and
the average pre-migration numbers by PreGC are presented in Table 4. According to these
results, we can first find that the number of migrated pages are different for workloads.
This is because that the situations that invoke PreGC for each workload are different from
each other. It depends on the number of overall GC during the investigated period of this
workload and mainly depends on the access density of workloads. The page reduction
for workload rsrch0 is the highest, and the average migration reduction is 34.6% for these
six workloads.

By analyzing the results of PreGC numbers and average pre-migrated page numbers,
it can be found that pre-migrated page numbers are larger than normal page migration
reduction and varies among workloads. These results are largely affected by the system
idle time in workloads; due to that, page pre-migration can only be performed during
the system is idle, the system status should be detected after each page pre-migration
operation, and the next page pre-migration operation continues when the detection result
of system status is idle. From Table 5, the average request interval time for workloads
are varied, and it is one of the reasons for different pre-migrated page numbers between
the workloads.
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Table 5. Statistics of six real-world workloads.

Trace Method MIGGC NGC MIGaverage

usr0 Original 477,346 15,575 30.65
PreGC 89,023 14,839 6.00

src0 Original 12,595 5498 2.29
PreGC 6667 5467 1.22

ts0 Original 15,532 9212 1.69
PreGC 11,074 9188 1.21

rsrch0 Original 8367 7580 1.10
PreGC 7587 7576 1.00

fiu_web Original 8,046,570 118,757 67.76
PreGC 942,405 114,740 8.21

mds1 Original 2638 579 4.56
PreGC 635 541 1.17

Average Original 1,427,174.67 26,200.17 18.01
PreGC 176,231.83 25,391.83 3.14

5.2.2. Performance Improvement

This section presents the performance results of the original and PreGC in terms of
performance cliff and tail latency.

Performance cliff: In order to intuitively compare the performance results before and
after applying our proposed PreGC method, the performance cliff for workload hm0 is
shown in Figure 9, which corresponds to the investigated period in Figure 4. It can be seen
that performance cliff is relieved by PreGC when compared with the original and GFTL.
Detailed results would be presented in the following sections.

Figure 9. Comparison of process time. The figure shows the request response of the workload hm0,
the abscissa is the request serial number, and the ordinate is the response time of the request.

Tail latency: Another quantitative evaluation of tail latency results with the 95th
percentile and 99th percentile are presented in Figure 10. It can be observed that the two
metrics have been significantly reduced by PreGC. The improvements in the 99th percentile
are especially more obvious, which means that PreGC can bring about a more efficient
reduction on the end of the long tail latency. Moreover, it can also found that the im-
provements are different among workloads. For the workload ts0, the latency is reduced
most. On average, the tail latency can be reduced by 38.2%. These performance results
show that our proposed PreGC can improve the SSD system performance and can relieve
the performance cliff problem as well as long tail latency is induced by GC.
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Figure 10. Comparison of tail latency related to GC. The figure shows the the normalized comparison
result of the tail latancy of requests that may be affected by GC in original 3D SSDs and 3D SSDs
with PreGC. Among them, based on the results of original 3D SSDs, the request tail latency of 2D
SSDs is 50% less than that of 3D SSDs with PreGC on average.

5.2.3. Overhead on Write Amplification

As PreGC would migrate valid pages in advance before normal GC is invoked, the mi-
grated pages might be updated during the pre-migration period and the victim block
chosen in PreGC may not be the victim block in normal GC. Thus, PreGC would induce an
extra write amplification, the results of which are shown in Figure 11. From the results, we
can see that the write amplification for several traces is high but others are not. This is also
decided by the characteristics of workloads. However, the average write amplification is
under 1%, which can be negligible.

Figure 11. Write amplication contrast. The figure shows the comparison of the write amplification
factor of original 3D SSDs and 3D SSDs with PreGC for different workloads.

5.2.4. Sensitivity Study

The above results have already verified the effectiveness of our proposed PreGC
method under specific parameters. This section presents the performance result for more
settings on key parameters in our implementation. Figures 12 and 13 show the compre-
hensive results when setting the threshold on free block proportion (Tblock), and valid page
ratio in a block (Tpage). According to the results, three conclusions can be made. First, when
Tblock increases below a certain value, the tail latency decreases. However, when Tblock
exceeds a value, such as 10.75% that can be seen in the figure, the tail latency increases
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as the Tblock increases. This is because, initially, an increase in Tblock means that the PreGC
threshold is easier to reach and it is easier to trigger PreGC to migrate the valid page in
advance, thereby reducing GC latency and further reducing tail latency.

However, if the value continues to increase after a suitable value, it will cause the valid
pages to be migrated too early, which will lead to a lot of invalid data to be generated and
results in more GC; then, the request may be suspended for a longer period of time, which
makes the tail latency longer. Second, the 99th tail latency increases as the value of Tpage
increases, but the 95th tail delay reaches a local peak when Tpage is 10. This is because
an increase in Tpage means that the number of pages that a PreGC needs to pre-migrate
increases, so that a more severe write amplification works in conjunction with a smaller
number of valid pages included in the victim block in the short term, causing the above-
described change in tail latency. These parameters can be adjusted in practice according to
the performance requirement.

Figure 12. Sensitivity study results on the parameter of free block proportion to invoke PreGC.

Figure 13. Sensitivity study results on the parameter of valid page ratio to invoke PreGC.

5.3. Discussion

Our PreGC method provides an assistance to existing GC methods and are orthog-
onal with many GC optimization methods. The pre-migrations would happen between
the PreGC invoking time and normal GC invoking time when SSD system is idle. Thus,
the effectiveness of PreGC can be largely exploited for workloads that have long system
idle time close to the GC invoking time. Although PreGC can relieve performance im-
provements on tail latency, the problem of write amplification caused by the pre-migration
of valid pages, that is, the amount of data actually written in the SSDs, is many times
the amount of data that the host requests to write. Although it is inevitable for pre-
migrations to cause write amplification, PreGC applies a mechanism to stop it in time to
alleviate the problem. Therefore, the write amplification brought about by this method is
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within the small range. The other overhead is to store two thresholds for triggering and
stopping PreGC. As the two parameters only take up a small space, the storage overhead
caused by our method can be ignored.

6. Conclusions

In order to satisfy the increased concerns about SSD performance, this paper studied
GC performance, which closely relates to system performance, in the view of performance
cliff and tail latency. Several observations have been found from our preliminary experi-
ments. The root cause of performance cliff, increased page migrations, has been figured out.
A new garbage collection method, PreGC, is proposed to invoke partial page migrations in
advance, which can reduce the GC latency effectively. Experimental results have shown
the effectiveness of PreGC. As our method is also suitable for optimizing wear leveling
schemes, we will study this problem in our future work.
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Abstract: The multilevel per cell technology and continued scaling down process technology sig-
nificantly improves the storage density of NAND flash memory but also brings about a challenge
in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise
mitigation technologies have been proposed. However, they only mitigate one of the noises of the
NAND flash memory channel. In this paper, we consider all the main noises and present a novel
neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level
cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural
network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we trans-
form the bit detection into a clustering problem and propose to employ a neural network to learn the
error characteristics of the NAND flash memory channel. Therefore, the trained neural network has
optimized performances of bit error detection. Simulation results show that our proposed scheme
can significantly improve the performance of the bit error detection and increase the endurance of
NAND flash memory.

Keywords: NAND flash memory; artificial neural network; error correction code; reliability

1. Introduction

NAND flash memories have been widely used in smartphones, personal computers,
data centers, etc. Thanks to these two key technologies: (1) continued scaling down process
technology and (2) multilevel (e.g., MLC, TLC) cell data coding, the storage density of a
NAND flash memory has been significantly increased over previous decades [1]. However,
these two key technologies bring about a challenge in that the data stored in NAND flash
memory may suffer from low reliability [2–4]. Furthermore, there are two major sources of
noise in flash memory: cell-to-cell interference (CCI) and retention noise. Numerous works
have been proposed to mitigate noises in NAND flash memory. For example, the data
post compensation and predistortion technique [5] and detector design using a neighbor-a-
priori information technique [6] exploit the a-priori information of the neighboring cells to
mitigate the CCI. However, when considering retention noise, the voltage offset of flash
memory cell tends to become unknown. It may be hard to use the a-priori information
of the neighboring cells to compensate for the voltage shift caused by CCI. In addition,
the CCI removal technique proposed by Lin [7] suffers from a similar problem in that the
proposed technique ignores the impact of noise. In addition, Reference [8] proposed a
retention-aware belief-propagation (BP) decoding scheme to mitigate the retention noise
effect but did not take CCI into consideration.

Against the above background, the recent advances in neural networks and machine
learning provide a new perspective to increase the reliability of MLC NAND flash memory.
The key idea of the neural network is to learn an optimal network model from the massive
training data, instead of using a definitive algorithm that is derived from a pre-defined
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model [9]. A pioneering work is reported in [10,11], which utilizes an artificial neural
network to predict the threshold voltage distribution of NAND flash memory. In the
pretesting, the above method assumes that the prior information of the retention time
is informed in advance. When the flash controller is powered off, we cannot obtain the
retention time.

In this paper, we use the neural network to learn an optimal network model to detect
the bits errors in the cells that are disturbed by both CCI and retention noise and propose
a neural network-assisted error correction scheme. However, it is difficult to record the
retention time in a practical system, which means that accurate LLR values cannot be
calculated. Therefore, we propose using relative LLR to estimate the actual LLR. The
relative LLR is affected little by retention time, so we do not require retention time as an
input parameter of the neural network.

In this paper, we first model the threshold voltage distribution as a Gaussian mixture
model, which is fairly close to the voltage distribution of the practical NAND flash memory,
and we calculate the LLR of the theoretical threshold distribution using a quantization
scheme. Then, the corresponding LLR of the actual threshold distribution is mapped
according to the relative position of the optimal reading reference voltage. It is found
that this idea makes the relative LLR values remain relatively steady throughout retention
time, which allows us to avoid using retention time as an input parameter of the neural
network. Finally, using the relative LLR to estimate the actual LLR, we train the neural
network and use the trained network to recovery the bits that may be wrongly detected in
the soft-decision detection or hard-decision detection.

The rest of this paper is organized as follows. The flash channel model is presented
in Section 2. Section 3 introduces our proposed ANNAEC scheme. Numerical simulation
results are presented in Section 4. The conclusions are drawn in Section 5.

2. Channel Model

Without loss of generality, the proposed ANNAEC is performed over a model-based
MLC NAND flash memory. Based on [5,8,12], we can model threshold voltage, Vth, by

Vth = V + nRTN +VCCI − nretention, (1)

where V denotes the desired voltage level, nRTN denotes random telegraph noise (RTN),
VCCI denotes the shift caused by CCI noise, and nretention denotes retention noise.

2.1. The Voltage Distribution of Programmed and Erased Cell

The number of charges in the NAND flash memory cell can be altered in the program
and erase operation. It is well known that before being programmed, a flash memory cell
must be erased. In the erase operation, the charges in the memory cell are removed from the
floating gate, and the threshold voltage of the erased cell will be set to the lowest voltage.
The threshold voltage distribution of an erased cell follows a Gaussian distribution, which
is given by

pe(x) =
1

σe
√

2π
e
− (x−μe)2

2σ2
e = N (μe, σ2

e ), (2)

where σe and μe are the standard deviation and the mean of the threshold voltage of the
erased cell, respectively.

According to [5,8], the threshold voltage of a programmed cell follows a Gaussian
distribution shown below:

pp(x) =
1

σp
√

2π
e
− (x−μp)2

2σ2
p = N (μp, σ2

p), (3)

where σp and μp ∈ {μp01 , μp00 , μp10} are the standard deviation and the mean of the
threshold voltage of a programmed cell.
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2.2. RTN

The electron capture and emission at the floating gate near the interface generate RTN,
which is greatly impacted by flash memory P/E cycles [13]. As P/E cycles increase, the
tunnel oxide of the floating gate transistor is gradually damaged and generates charge
trapping in the oxide and interface states. RTN leads to a random fluctuation of cell
threshold voltage and widens the voltage distribution. Hence, RTN is modeled with a
Gaussian-like distribution [8], given as

pr(x) =
1

σr
√

2π
e
− x2

2σ2
r = N (0, σ2

r ), (4)

where σr = 0.00027 × PE0.62, denotes the noise standard deviation.

2.3. CCI

Because of the parasitic capacitance-coupling effect among adjacent cells in flash
memory, the threshold voltage of the victim cell increases as the threshold voltage of an
adjacent cell increases. The immediate adjacent cells are the major noise source of the CCI.
We consider an all bit-line structure. As shown in Figure 1, when the (k+1)-th wordline
(WL) has been programmed, the cell on the k-th WL can be programmed. Hence, the victim
cell is influenced by three immediate adjacent cells. The threshold-voltage shift of the
victim cell can be modeled as a linear combination of the threshold voltage changes of
those immediate adjacent cells. We can estimate the threshold-voltage shift caused by CCI
as

Vvictim = ∑
n
(V(n)

t · γ(n)), (5)

where V(n)
t is the change of an immediate adjacent cell, which is programmed after the

victim cell and γ(n) represents the coupling ratio. We assume the vertical and the diagonal
coupling ratio are γy and γxy, respectively. According to the cell-to-cell coupling strength
factor s, we can set γy = 0.08s and γxy = 0.006s [12].

Figure 1. Illustration of the parasitic coupling capacitances among adjacent cells.

2.4. Retention

After a cell is programmed, the number of charges in the NAND flash memory cell con-
tinually reduce over time due to trap-assisted tunneling and charge detrapping [1]. Reten-

tion noise is modeled as a Gaussian distribution, i.e., pt(x) = N (μt, σ2
t ) =

1√
2πσt

e
− (x−μt)

2

2σ2
t .

The mean μt, and the standard deviation σt, are given by

μt = Vt[At(PE)αi + Bt(PE)αo ] log(1 + T), (6)

σt = 0.3|μt|, (7)

where Vt is the cell voltage change before and after being programmed, T donates
memory retention time and PE is the number of PE cycles.

97



Micromachines 2021, 12, 879

The conditional probability distribution function of the threshold voltage after being
disturbed by RTN, CCI and retention are given as follows:

p(Vth|k ∈ {11, 01, 00, 01}) = 1
64

[N (μk − μt, σ2
k

+ σ2
t + σ2

r ) + A + B + C], (8)

A = ∑
μp

[2N (γxy(μp − μe) + μk − μt, γ2
xy(σ

2
p + σ2

e + 2σ2
r )

+ σ2
k + σ2

t ) +N (γy(μp − μe) + μk − μt, γ2
y(σ

2
p + σ2

e

+ 2σ2
r ) + σ2

k + σ2
t )], (9)

B = ∑
μ
(1)
p

∑
μ
(2)
p

∑
μ
(3)
p

N (γxy(μ
(1)
p + μ

(2)
p − 2μe) + γy(μ

(2)
p − μe)

+ μk − μt, (2γ2
xy + γ2

y)(σ
2
p + σ2

e + 2σ2
r ) + σ2

k + σ2
t ), (10)

C = ∑
μ
(1)
p

∑
μ
(2)
p

N (γxy(μ
(1)
p − μe) + γy(μ

(2)
p − μe) + μk

− μt, (γ2
xy + γ2

y)(σ
2
p + σ2

e + 2σ2
r + σ2

k + σ2
t ))

+ ∑
μ
(2)
p

∑
μ
(3)
p

N (γxy(μ
(3)
p − μe) + γy(μ

(2)
p − μe) + μk

− μt, (γ2
xy + γ2

y)(σ
2
p + σ2

e + 2σ2
r ) + σ2

k + σ2
t )

+ ∑
μ
(1)
p

∑
μ
(3)
p

N (γxy(μ
(1)
p + μ

(2)
p − 2μe) + μk

− μt, 2γ2
xy(σ

2
p + σ2

e + 2σ2
r ) + σ2

k + σ2
t ), (11)

where μ
(1)
p , μ

(2)
p and μ

(3)
p are the means of cells 1–3, respectively, which are shown in

Figure 2, μk and σk are the mean and standard deviation of the victim cell.

Figure 2. Illustration of 15-level uniform sensing quantization for multi-level cell (MLC) flash
memory.

In this paper, we set the flash memory parameters as follows: μp11 = 1.2, μp01 = 2.55,
μp00 = 3, μp10 = 3.45, σp = 0.05, σe = 0.35, At = 0.000035, Bt = 0.000235, αi = 0.62 and
αo = 0.30.

3. Artificial Neural Network-Assisted Error Correction

In this section, we first present the idea of relative LLR calculation. Then we explain
why an artificial neural network is useful for NAND flash memory. Finally, we introduce
our proposed ANNAEC scheme.
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3.1. Relative LLR

For soft decision belief-propagation (BP) decoding, a soft quantization scheme has
been proposed. As an example, Figure 2 shows a 15-level uniform sensing quantization [12].

The overlap region is obtained by the entropy of the cell’s threshold voltage [12,14].
When the threshold voltage falls into the range (Rn−1, Rn], where Rn is the n-th reference
voltage, R0 = −∞ and R16 = +∞, the LLR values of the least significant bit (LSB) and the
most significant bit (MSB) in the i-th cell can be calculated by (12) and (13), respectively:

LLRlsb(Rn−1, Rn) = log

∫ Rn
Rn−1

p(Vth|11) + p(Vth|01)d x∫ Rn
Rn−1

p(Vth|00) + p(Vth|10)d x
, (12)

LLRmsb(Rn−1, Rn) = log

∫ Rn
Rn−1

p(Vth|11) + p(Vth|10)d x∫ Rn
Rn−1

p(Vth|01) + p(Vth|00)d x
. (13)

However, it may be hard to accurately calculate the LLR values due to the retention
noise. Even though retention noise is modeled as Gaussian distribution, the mean and
the standard deviation are random, since Vt is random as described in (6) and (7).
Furthermore, it is difficult to obtain accurate retention time in a practical system. To deal
with those problems, we can estimate LLR, based on the relative reference voltage positions,
given as

LLR′
lsb(Rn−1 − Vrv + V′

rv, Rn − Vrv + V′
rv)

= log

∫ Rn−Vrv+V′
rv

Rn−1−Vrv+V′
rv

p′(Vth|11) + p′(Vth|01)d x∫ Rn−Vrv+V′
rv

Rn−1−Vrv+V′
rv

p′(Vth|00) + p′(Vth|10)d x
, (14)

LLR′
msb(Rn−1 − Vrv + V′

rv, Rn − Vrv + V′
rv)

= log

∫ Rn−Vrv+V′
rv

Rn−1−Vrv+V′
rv

p′(Vth|11) + p′(Vth|10)d x∫ Rn−Vrv+V′
rv

Rn−1−Vrv+V′
rv

p′(Vth|01) + p′(Vth|00)d x
, (15)

where p′ means that we estimate Vt in Equations (6) and (7) as Vt ≈ μk − μe, Vrv
and V′

rv are the reference voltages of the actual threshold distribution and the theoretical
threshold distribution, respectively, as shown in Figure 3, where Vrv is obtained by voltage
optimization [1] and V′

rv is obtained by theoretical calculations, such as minimizing entropy
of the cell’s threshold voltage [12,14]. In (14) and (15), we first calculate the LLR of the
theoretical threshold distribution using a quantization scheme. Then, the corresponding
LLR of the actual threshold distribution is mapped according to the relative position of the
optimal reference voltage.

We depict the relative LLR versus data retention time in Figure 4. The relative LLR
values remain relatively steady, which allows the neural network to not require retention
time as an input parameter. In addition, LLR calculation is offline in a flash memory
controller [15]. It may be difficult for a controller to estimate the characteristics of the
memory channel because online estimation leads to a significant increase in the power
consumption and read latency of the flash controller. Therefore, the proposed relative LLR
can estimate the actual LLR over a time range, which can also help reduce the number of
LLR tables stored in the controller.
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Figure 3. Illustration of the statistic distribution and mathematical distribution at s = 1 and PE = 1K.
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Figure 4. Plot of the relative log-likelihood ratio (LLR) versus data retention time at PE = 1K,
 = 0.05 and s = 1.

3.2. Why Are Artificial Neural Networks Useful for NAND Flash Memory?

To simplify the analysis, this subsection first discusses the case that the CCI is only gen-
erated by the vertical neighboring cell. In this case, the conditional probability distribution
function of the threshold voltage, (8), is simplified to (16):

p(Vth|k ∈ {11, 01, 00, 01}) = 1
4
[N (μk − μt, σ2

k + σ2
t + σ2

r )

+ ∑
μp

N (μk + γy(μp − μe)− μt, σk
2 + γ2

y(σ
2
p + σ2

e

+ 2σ2
r ) + σ2

t + σ2
r )]. (16)

In (16), it is seen that the threshold voltage distribution can be divided into four parts:
the distribution of cells with CCI from “11”-state, “01”-state, “00”-state and “10”-state,
which are also shown in Figure 4. In an overlap region, the bits with different CCI noise
levels may have different error rates. For instance, in the overlap region between “01”-
state and “00”-state, the bits of the cells in “00”-state with CCI from neighboring cells in
“11”-state may be wrongly detected as “1” in LSB. In general, we want to find the optimal
reading reference voltage at the intersecting point of the distributions of two states, such

100



Micromachines 2021, 12, 879

as the red dotted line in Figure 5. However, once we know the programmed state or
the threshold voltage of the cells that donate the CCI to victim cells, the optimal reading
reference voltage may change. For example, the optimal reading reference voltage should
be selected by the blue dotted line in Figure 5, when the vertical neighboring cell is in the
erased state.

the distribution of cell with CCI from state"11"

the distribution of cell with CCI from state"01"

the distribution of cell with CCI from state"00"

the distribution of cell with CCI from state"10"

the whole distribution

01 00 10

11

MSB LSB

read reference voltage

Figure 5. Illustration of the distribution of NAND flash memory at s = 1.4 (the cell-to-cell coupling
strength factor), PE = 1K and Retention time = 105.

In this paper, we expand the two-dimensional coordinates to three-dimensional, as
shown in Figure 6a. The X-axis is the victim cell’s voltage, and the Y-axis is the threshold
voltage of vertical neighboring cell. By doing so, one can easily find the incorrectly detected
cells, marked with red dots. Moreover, we have two important observations:

1. The correct cells (the blue dots) and the incorrect cells (the red dots) are not interlaced
in the three-dimensional space. It means that the correct cells (or the incorrect cells)
have similar features, which may be used for clustering them from the incorrect ones.

2. The hard decision may not be the optimal decision when the surrounding cells have
been read. In Figure 6a, the gray plane is the hard-decision plane, but not optimal.
Suppose that there is a decision plane, shown as Figure 6b, and then we apply this
plane to the same data in Figure 6a. One can see that the decision performance by the
plane gets significantly improved compared to the plane in Figure 6a.

(a) (b)

Figure 6. Illustration of the decision of least significant bit (LSB) in the NAND flash memory. (a) The conventional
hard-decision plane in the three-dimensional coordinates. (b) The optimal plane.

These two observations reveal that the detection of bits in a cell can be transformed into
a clustering problem, which is to obtain an optimal classification hyperplane. When more
surrounding cells are considered, the clustering problem will become more complex and the
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dimensions of the classification hyperplane will increase beyond three. To address this issue,
We propose to use the neural network, which is good at solving various clustering problems.

3.3. Proposed Artificial Neural Network-Assisted Error Correction (ANNAEC) Scheme

The main idea of the proposed ANNAEC scheme is shown in Figure 7. In general,
the flash memory controller uses soft-decision error correction [12], read-retry [1,16] and
voltage optimization, which has been widely used in practical systems, to ensure the
reliability of data stored in NAND flash memory. When these techniques are not effective
in suppressing flash channel noise, the flash memory controller attempts to operate the
proposed ANNAEC scheme to correct error bits. Moreover, it can reduce the power
consumption and computation burden of the controller, since the cells in an overlap region
take a relatively small part of the cells on a page.

Figure 7. Block diagram of the proposed ANNAEC scheme in NAND flash memory.

In general, the host implements data writing and reading to the NAND flash memory
chip by communicating with the memory controller, which communicates with the NAND
flash memory chip. First, the host transfers data to the flash controller. The flash controller
then encodes the data and writes it into the NAND flash memory chip. When the host reads
the data, the flash controller communicates with the NAND flash chip. During this process,
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the NAND flash chip reads the data from the cell and sends it to the flash controller by
reading the sensing circuit. After that, the flash controller corrects and restores the original
data through the decoding algorithm and sends it to the host. The proposed a neural
network assisted error correction algorithm is used as an alternative decoding algorithm.
When the decoding of the flash controller fails, the neural network model is used to first
correct the data and then perform decoding.

We label the positions of the cells in an overlap region, which is at the N-th word-line
and the M-th bit-line in the block as (N, M), shown in Figure 7. The input parameters of the
neural network are summarized in Table 1. X1 and X2 are the bits of cell-(N, M) in MLC
memory, respectively. X3∼X8 are the LLRs of LSB and MSB of the immediate adjacent
cells, i.e., cell-(N + 1, M − 1), cell-(N + 1, M) and cell-(N + 1, M + 1). X9 is the flag of page
type. If the current reading page is LSB, we set X9 to “0”; otherwise, X9 is set to “1”. X10
is the number of PE cycles. There are two reasons for choosing those parameters: (1) the
threshold voltage is difficult to be obtained in a practical system, but the LLR and bits in
a cell can help to locate the range of threshold voltage; (2) the vertical and the diagonal
neighboring cells contribute about 81% of the CCI [17,18].

Table 1. Summary of input parameters.

Notation Physical Meaning

X1, X2 bit of the cell (N, M)
X3, X4 LLRs of LSB and MSB of the cell-(N + 1, M − 1)
X5, X6 LLRs of LSB and MSB of the cell-(N + 1, M)
X7, X8 LLRs of LSB and MSB of the cell-(N + 1, M + 1)

X9 page type (LSB:0; MSB:1)
X10 PE cycle

Afterward, we send the parameters into the back propagation neural network to
correct error bits. The sigmoid function is selected as the activation function of the back
propagation neural network, given as

f (x) =
1

1 + e−x . (17)

The cost function is chosen as the typical mean square error (MSE) cost function [19],
given by

E =
1
2
[(Ty0 − y0)

2 + (Ty1 − y1)
2], (18)

where the outputs of neural networks y0 and y1 are the reliabilities of “0” and “1”, and
T denotes the desired reliability in the data set. The relative LLR is calculated offline in
the flash memory controller. It is difficult to recalculate the relative LLR, since the online
characteristic estimation of the memory channel causes longer read latency. Since the
accurate relative LLR is hard to recalculate, we update relative LLR by

LLRupdate = (−1)ε+1
∣∣∣LLRoriginal

∣∣∣, (19)

where LLRoriginal denotes original relative LLR obtained in the sensing operation, and ε is
given by

ε =

{
1 if y1 > y0
0 else.

(20)

Although (19) does not update the accurate LLR to decode, it can estimate the value
of LLR. Moreover, (19) is used to correct the sign of LLR, which is more important than the
absolute value of LLR, since fewer error signs of LLRs fewer less error bits.
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4. Experiment Results

4.1. Training

Throughout all experiments, we used a rate-0.9 (4544, 4096) QC-LDPC code and the
BP decoding algorithm. The experimental platform is implemented in Matlab. The channel
parameters, which are used to generate the training dataset, are shown in Table 2. Since
the parasitic coupling capacitances of CCI are invariable in a flash memory ship, without
loss of generality, we set the cell-to-cell coupling strength factor to be s = 1. According
to the raw bit error rate (RBER), we generate the dataset at PE = {3000, 4000, 5000} and
divide the dataset into two parts: error and correct bits, which are to be corrected, e.g., the
cell-(N, M) in Figure 7. In total, the sizes of the training and validation data are 336,000 and
84,000, respectively. According to the performance of neural network versus the different
numbers of hidden layer node, shown in Figure 8, the basic neural network structure is set
to be {10, 3, 2}, meaning that there are 10 nodes in the input layer, 3 nodes in the hidden
layer and 2 nodes in the output layer.

Table 2. Training dataset (s = 1).

RBER

Retention Time (h) PE
3000 4000 5000

≈6 × 10−3 1 × 105 2 × 104 1 × 104

≈7 × 10−3 2 × 105 4 × 104 1.5 × 104

≈8 × 10−3 3 × 105 5 × 104 2 × 104

≈9 × 10−3 5 × 105 1 × 105 3 × 104

≈1 × 10−2 1 × 106 5 × 105 1 × 105

Size of the training data 336,000
Size of the validation data 84,000

1 2 3 4 5 6 7 8 9 10
The Number of Node in Hidden Layer

10-2

10-1

100

Er
ro

r R
at

e

Figure 8. Performance of neural network under the different numbers of hidden layer nodes.

4.2. Performance

In Figure 9a,b, we compare RBER and frame error rate (FER) using ANN-LDPC [11],
the proposed method and the original method without the neural network versus data
retention time at s = 1. We can observe that the proposed ANNAEC significantly reduces
the RBER in comparison with the ANN-LDPC and original method.

For instance, in Figure 9a, the data retention time is about 3 × 104 h at PE = 5000
and RBER = 2 × 10−2, using the scheme without ANNAEC. Compared to the proposed
ANNAEC scheme, Figure 9b shows that for the same performance, the ANN-LDPC can
make the flash memory endure up to 3 × 105 h and the proposed method provides a
performance gain of approximately 67% of data retention, which makes the retention time

104



Micromachines 2021, 12, 879

of flash endure up to 5 × 105 h. In addition, the proposed method has a more stable error
correction performance, when the memory suffers from a weak interference. Similarly, we
can notice that the proposed ANNAEC improves the FER performance by up to an error
rate of 1 × 10−3 at a retention time of 4 × 106 h and PE = 3000. The ANN-LDPC has a FER
performance of approximately 5 × 10−3.

104 105 106 107
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10-3

10-2

10-1

R
B

E
R

original at PE=5K
original at PE=4K
original at PE=3K
proposed at PE=5K
proposed at PE=4K
proposed at PE=3K
ANNLDPC at PE=5K
ANNLDPC at PE=4K
ANNLDPC at PE=3K
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(b)

Figure 9. (a) Comparison of the raw bit error rate (RBER) performance of NAND flash memory with and without ANNAEC
scheme versus data retention time at s = 1. (b) Comparison of the frame error rate (FER) performance of low-density
parity-check (LDPC) coded NAND flash memory with and without the ANNAEC scheme versus data retention time at
s = 1.

5. Conclusions

In this paper, we have proposed to use the relative LLR calculation to estimate the
actual LLR. Furthermore, in three-dimensional coordinates, we have transformed the bit
detection problem into a clustering problem, which allows us to apply an artificial neural
network in the memory channel. To solve the clustering problem, we proposed an artificial
neural network-assisted error correction scheme, which has been shown by experiments to
be effective in correcting the error bit when the conventional method without the neural
network fails to decode. Simulation results have shown that the FER performance of our
ANNAEC is significantly better than that of ANN-LDPC. For example, the ANN-LDPC
can make the flash memory endure up to 3 × 105 h, and the proposed method provides the
performance gain of approximately 67% of data retention, which makes the retention time
of flash endure up to 5 × 105 h. Furthermore, our proposed approach can be extended to
TLC or QLC flash memories.
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Abstract: We studied the metal gate work function of different metal electrode and high-k dielectric
combinations by monitoring the flat band voltage shift with dielectric thicknesses using capacitance–
voltage measurements. We investigated the impact of different thermal treatments on the work
function and linked any shift in the work function, leading to an effective work function, to the
dipole formation at the metal/high-k and/or high-k/SiO2 interface. We corroborated the findings
with the erase performance of metal/high-k/ONO/Si (MHONOS) capacitors that are identical to the
gate stack in three-dimensional (3D) NAND flash. We demonstrate that though the work function
extraction is convoluted by the dipole formation, the erase performance is not significantly affected
by it.

Keywords: work function; effective work function; dipole; metal gate; high-k; SiO2; interfacial
reaction; MHONOS; erase performance; 3D NAND flash memory

1. Introduction

When it comes to low-cost and large density non-volatile memory, three-dimensional
(3D) NAND flash memory technology is the industry standard [1,2]. The memory stack
used in 3D NAND is inspired by a typical SONOS memory cell, which allows easy vertical
integration and is addressed by horizontal word lines (WL). To improve the bit density, the
number of cells in the vertical 3D NAND string is increased. This requires the stacking of
many WLs, which need to be as thin as possible to limit the total height and mechanical
stress of the structure [3]. Tungsten (W) metal-based WL is currently being used by the
industry. However, novel materials with lower resistivity are being considered as future
candidates to reduce the high resistive-capacitive (RC) delay that results as a consequence
of WL thinning and continued stacking of the WLs (i.e., downscaling the metal thickness)
in the vertical direction.

Moreover, the WL metal can act as an enabler to improve the 3D NAND erase oper-
ation. It was shown that high work function metals, such as TiN and Ru, can delay the
electron injection from the gate (i.e., electrons tunneling from the gate into the charge-trap
layer), thereby improving the erase window [4]. It has also been demonstrated [5] that
when a metal gate is used in combination with a thin high-k liner, such as Al2O3, HfO2,
or ZrO2 (i.e., a Metal/High-k/ONO/Si (MHONOS) structure), the erase performance can
be further improved. Figure 1 plots the erase saturation levels (lowest possible threshold
voltage, VTH, shift achievable) for different scenarios, with and without a high-k liner, as
simulated using our in-house developed 1D simulator [6]. The high-k liner helps to lower
the injecting field for the electrons at the gate, and even proves to have a larger impact
than the metal work function (WF). The erase is found to be penalized when the MHONOS
stack is treated with a high thermal budget [3]. To thoroughly investigate the WL metal and
high-k liner combination, and its effect on erase operation, metal work function extraction
experiments have been proposed and studied in this work.
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Figure 1. Simulations of erase saturation levels in a memory stack without high-k liner, or with 2 nm
Al2O3 or ZrO2. Addition of a high-k liner shows more benefit than (work function) WF.

WF analysis of metal gate electrodes on high-k dielectrics, by monitoring flat-band
voltage, VFB (or threshold voltage, VTH), have been demonstrated in the literature [7–12].
The studies report an undesirable shift in the VFB (or VTH) of metal-oxide-semiconductor
(MOS) devices. The origins are unclear, leading to an effective work function (eWF) for the
metal, different from the bulk values. Some reports in the literature attribute this shift to
Fermi level pinning (FLP) caused either by metal-induced gap states [13–15] or charged
defects/oxygen transfers, at the metal/high-k interface [12,16,17]. Dipole formation at the
high-k/SiO2 interface due to oxygen vacancies [18,19], and/or the energy offsets between
the high-k and SiO2 [20], have also been suggested in the literature as possible root causes
for an eWF. Though, these studies suggest a notable dependence of eWF on the choice of
high-k used, other process parameters such as gate electrode deposition and annealing
conditions have been found to affect the eWF in a significant way as well [21].

In this paper, we investigate the change in WF (i.e., eWF) of metal electrodes deposited
on high-k dielectrics. Based on the process conditions used, we evidence it to either the
interfacial reactions at the WL-to-high-k contact or between the high-k and the oxide. The
aim of this work is to understand the origins and consequences of WF shifts based on
process conditions within the context of 3D NAND flash memory devices. Therefore, we
also analyze various MHONOS stacks containing Al2O3, ZrO2, HfO2 high-k liners and TiN,
Ru, Mo as gate metal, and corroborate the eWF with the erase performance of these stacks.

2. Materials and Methods

Capacitors with and without the charge trap layer were fabricated on 300 mm p-doped
Si (100) wafers for erase analysis and WF extraction, respectively.

2.1. Work Function Extraction Methodology

The WF of a metal on high-k is determined by extracting VFB from capacitance–voltage
(CV) measurements on a metal-insulator-semiconductor (MIS) structure [22]. The schematic
in Figure 2 shows the energy band diagram of an MIS structure. From this, we note that
the metal work function can be expressed as follows

ΦM = VFB + χSi + [EC − EF], (1)

where ΦM is metal work function, VFB is flat-band voltage computed from CV measure-
ments, χSi is electron affinity of Si substrate, EC and EF are the conduction band minima
and fermi level.
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Figure 2. Schematic of the energy band diagram of a metal-insulator-semiconductor (MIS) capacitor.

However, the charges present in the bulk and at the interfaces of the oxides [23] can
affect the VFB as follows

ΔVFB =
∫ tox

0

ρ(z)(tox − z)
ε(z)ε0

dz, (2)

From the above equation, it is clear that the effect of these oxide charges can be
cancelled out by extracting the VFB at zero oxide thickness. This calls for variations in SiO2
and high-k thicknesses. With the help of a slant etch technique, the thickness of SiO2 was
varied across the wafer as shown in schematic in Figure 3. For each electrode, a set of
3 wafers with different high-k thicknesses (typically 3 nm, 5 nm, 7 nm) was used to provide
enough variation and extract the WF conveniently. Typical CV measurements and VFB
extraction procedure are discussed in Appendix A.

 

Figure 3. Schematic of MIS capacitor with slant etch for SiO2. Corresponding oxide charge densities
are indicated.

The impact of oxide charges on VFB can be mathematically expressed in terms of
equivalent oxide thickness (EOT) and the corresponding charge densities as follows [24]

VFB = ΦMS + q·ρHK·εHK·EOT2
HK

2·ε2
ox·εo

+ q·σHK·EOTHK
εox·εo

+ q·ρSiO2 ·
0.5·T2

SiO2
+

(
εHK
εox

)
·TSiO2 ·EOTHK

εox·εo
+ q·σSiO2 ·

EOTtotal
εox·εo

, (3)
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where q is the electron charge, ρHK and σHK are the bulk and interface charge densities
of high-k dielectric, respectively. The terms ρSIO2 and σSIO2 are the corresponding bulk
and interface charge densities of SiO2, respectively. EOTHK, TSiO2, and EOTtotal are the
equivalent oxide thickness of high-k, thickness of SiO2, and both combined, respectively.
The EOTtotal is in fact the measured EOT computed from the CV measurement of the
MIS capacitors. The terms εHK, εox, εo are the relative permittivity of high-k, SiO2 and
permittivity of free space, respectively. The ΦMS in the above equation, from which the
metal WF is extracted, is later computed by extrapolating VFB at EOT (both high-k and
SiO2) = 0.

First, a 30 nm thick layer of high quality SiO2 was thermally grown at 900 ◦C. This
was then etched back with a slant profile (as shown in Figure 3) by slowly immersing (at a
constant rate) the wafer in a 1.9% hydrofluoric acid (HF) solution. The desired thickness
range of SiO2 is obtained across the wafer by modifying the rate of immersion accordingly.
A nominal thickness range of 3–12 nm was used in this work. Then, after the slant etch, a
3 nm plasma enhanced atomic layer deposition (PEALD) SiO2 was uniformly deposited at
300 ◦C, to mimic the blocking oxide in a 3D NAND device. Little wafer-to-wafer variations
were observed in the oxide thickness, as measured by ellipsometry (see Figure 4a). The
total EOT measured from CV will vary across the wafer due to the slant etch of thermal
oxide, as shown in Figure 4b (bubble size represents magnitude of EOT).

 

(a) (b) 

Figure 4. (a) Thickness of SiO2, after slant etch and plasma enhanced atomic layer deposition (PEALD) oxide deposition,
measured across multiple wafers using ellipsometry; (b) Equivalent oxide thickness (EOT) computed from capacitance–
voltage (CV) measurement. Bubble size represents EOT magnitude.

After this, high-k liners, such as Al2O3, ZrO2, and HfO2, were deposited at 300 ◦C
to their desired thicknesses, using atomic layer deposition (ALD). Finally, 20 nm ALD Ru
or ALD TiN or PVD Mo were then deposited as the gate electrode. In order to isolate the
impact of thermal treatment on individual layers, a high temperature anneal (Tanneal) was
performed at different stages of the stack formation (as shown in Figure 5). For instance,
some of the capacitors were subjected to a post metallization anneal (PMA) for 20 min at
750 ◦C in N2 ambient. A few others were subjected to a post high-k deposition anneal
(PDA), where the entire stack sans the metal electrode received a thermal treatment for
1 min at 1050 ◦C for Al2O3-based stacks and 1 min at 750 ◦C for the rest, all in N2 ambient.
All wafers received a final sintering anneal in 5 atm H2 ambient at 450 ◦C for 30 min.
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Figure 5. Schematic indicating different anneal types and the corresponding layers that received
the process.

CV measurements were performed on 70 × 70 μm2 capacitors at a frequency of
100 kHz. The parameters needed for the WF extraction, namely, VFB, the substrate doping
concentration and the total EOT, EOTtotal, are estimated (see Appendix A) with the help of
NCSU’s CVC model fitting software [25]. Based on the expression for VFB from Equation (3),
we can express VFB as a second order polynomial equation in terms of the EOT, as the
one below

VFB = ΦMS + a·EOT2
HK + b·EOTHK + p·T2

SiO2
+ q·TSiO2 , (4)

where a, b, p, and q contain the charge densities of high-k and SiO2.
From the above equation, we can first eliminate the effect of charges in SiO2 with a

second order polynomial fit of the VFB with the thickness of SiO2, TSiO2. A sample fit is
shown in Figure 6. The intercept from the first fit contains the polynomial equation with
high-k EOT, EOTHK and hence is used to eliminate the charges from high-k in a second fit.

Figure 6. The VFB measured from CV is plotted as a function of SiO2 thickness. A second order fit is
performed to isolate the terms p and q containing the charge densities in its bulk and interface.

As mentioned earlier, we have the EOTtotal of the stack as measured from CV. In order
to get the TSiO2 to be used in the first fit, we make use of the ellipsometry data that was
measured at preset locations across the wafer, after the slant etch and PEALD deposition.
This data is then compared with corresponding dies for which the CV was measured. The
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difference between the measured EOTtotal and this ellipsometry data will give an estimate
of the EOTHK.

The three curves shown in Figure 6 represent the three wafers with three different
high-k thicknesses needed for sufficient variation to eliminate the charges affecting the VFB.
The corresponding intercept from the 2nd order fit of the above curves is then used in a
second fit, as shown in Figure 7 below.

Figure 7. The intercepts from the part 1 fit are plotted as a function of high-k EOT. A second order fit
is performed to extract the metal work function.

The intercepts vs. the EOTHK will now help to eliminate the charges in high-k. The
intercept from this second fit is the ΦMS from which the WF is computed using the formula

WF = 4.05 + ΦMS + EC − EF, (5)

where EC − EF(in eV) = 1.12 − 0.0257 ∗ ln
(

1.83E19
median doping concentration in the substrate

)
.

2.2. NAND Flash Erase Analysis

Incremental Step Pulse Erase (ISPE) characteristics were studied by monitoring the
shift in VTH of MHONOS capacitors from their fresh state. The erase operation is divided
into a number of steps with increasing amplitude (for a duration of 1 ms) in applied voltage
and at the end of each of them a verify operation is applied to check the VTH. The amplitude
and rate of change in VTH is considered as a measure of erase performance.

Large MHONOS capacitors (50 × 50 μm2) were fabricated on 300 mm p-doped Si
(100) wafers, as shown in Figure 8b. N+-doped rings were processed, surrounding the
active area of the capacitors, to provide minority carriers for program operation. In a study
reported elsewhere [3], we have demonstrated a 3D NAND test structure with 5 layers and
showed that the memory characteristics of the stack (see Figure 8a) are qualitatively similar
to that of the planar test structures that we typically use (see Figure 8b). Moreover, the gate
stack deposited in this work mimics the one of 3D NAND in production [3,26] in terms of
annealing processes and high-k/metal gate depositions performed. Therefore, we could
fairly say that the results obtained from the planar capacitors in this work are relevant for
3D NAND flash memory devices.
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(a) (b) 

Figure 8. (a) Cross-section schematic of the memory gate stack in a vertical three-dimensional (3D) NAND device;
(b) schematic of a planar test structure used in this work. The components of the gate stack are indicated in the figure.

The MHONO stack, as seen from the TEM image in Figure 9a, consists of a 6 nm
SiON (with 20% N-to-O ratio) tunnel layer deposited using CVD at 780 ◦C, 6 nm LPCVD
Si3N4 charge trap layer deposited at 690 ◦C, 7 nm PEALD SiO2 blocking oxide deposited at
300 ◦C, and 2 nm ALD Al2O3 or ZrO2 or HfO2 high-k liner deposited at 300 ◦C. A total of
20 nm ALD Ru or ALD TiN or PVD Mo were then deposited as the gate electrode (WL,
wordline). Similar to the study of WF extraction, a post metallization anneal, PMA for
20 min at 750 ◦C in N2 ambient, and a post deposition anneal, PDA for 2 min at 1050 ◦C for
Al2O3 based stacks and 1 min at 750 ◦C for the rest, all in N2 ambient, were performed for
some of the capacitors (see Figure 9b). All wafers were subject to a final sintering anneal
either in forming gas at 420 ◦C for 20 min or in 5 atm H2 ambient at 450 ◦C for 30 min. We
may note that the sintering anneal has little influence on the final erase saturation levels.

 
 

(a) (b) 

Figure 9. (a) Transmission electron microscope (TEM) image of a memory stack fabricated in this work; (b) different anneal
types and the corresponding MHONOS layers that received the anneal.

3. Results and Discussion

The metal WF extracted in this work are listed as a histogram plot in Figure 10 for a few
metal/high-k combinations. No high temperature anneals were performed for these splits.
W Ref represents the CVD W/thin (3 nm) ALD TiN/Al2O3 liner stack similar to the one
used currently in 3D NAND production. We could note that the WF of TiN in combination
with Al2O3 is estimated to be about 4.53 eV and is in close agreement with the actual TiN
WF reported in the literature [27,28]. What is surprising is the WF of Ru in combination
with Al2O3, which is about 200–300 meV less than those reported in the literature for Ru
metal [29,30]. It has been demonstrated, using internal photoemission experiments [31],
that subtle changes in the chemical bonding at the metal/high-k interface can cause
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a significant impact on the barrier height (Φb, as shown in Figure 2) at this interface.
Such chemical modifications could occur from various processing, such as conditions of
deposition, thermal budget, and ambient of annealing process. As a consequence, this
could lead to a shift in the WF of the metal. However, it is possible to avert this interfacial
reaction by using appropriate interfacial layer (IL), as can be seen from Figure 10. The WF
of Ru improves to 4.8 eV by adding a thin (3 nm) TiN liner between Ru and Al2O3.

Figure 10. Metal work function listed for a few metal/high-k combinations from this work. No high temperature anneals
were performed for these stacks.

In order to verify whether these shifts, measured in WF of Ru, reflect the actual change
in metal WF, we compared the erase performance of these stacks. Figure 11 shows the ISPE
curves for MHONOS stacks containing the metal/high-k combinations from Figure 10.
The erase saturation (lowest VT shift achieved in ISPE) for TiN and Ru on Al2O3 (WF
~4.6 eV) is comparable after accounting for the differences in the starting VTH, while that of
W Ref (WF ~4.9 eV) is better, corroborating the WF difference between these stacks. With
the addition of TiN liner, the WF of Ru improves, and so does the erase saturation.

Figure 11. Incremental Step Pulse Erase (ISPE) of (Metal/High-k/ONO/Si) MHONOS, for different
metal/high-k combinations from Figure 10.
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We may note that the WF extracted from the Ru/TiN/Al2O3 stack is slightly less
than that of W Ref, i.e., W/TiN/Al2O3 stack, yet the erase is better with Ru. Before
addressing this, let us look at Figure 12a,b, which display the WF extracted for Ru, Mo, and
TiN in combination with HfO2, ZrO2, and Al2O3 after different annealing conditions, as
described in Figure 5. From Figure 12a, we could note a significant reduction (>500 meV)
in the WF of Ru after the thermal treatment, irrespective of whether the metal electrode
received the anneal (PMA) or not (PDA). The ISPE curves for these stacks are shown
in Figure 13a. The stack that received the PDA does not change in erase while the one
that received a PMA degrades both in erase slope and saturation level. We can also note
from Figures 12b and 13b that without any high temperature anneals, both Ru and Mo
show similar WF and erase saturation levels in combination with ZrO2. Though after a
thermal treatment (PMA or PDA), the WF reduces irrespective of the metal or high-k used,
the erase saturation depends on the type of anneal applied. These observations (made
from Figure 10, Figure 12, Figure 13) hint that (a) the WF alone is not the reason for erase
functionality, and (b) an extra factor, unaccounted in the extraction, is affecting the WF,
resulting in an effective work function, eWF, being measured from the experiments.

Figure 12. WF extracted for multiple metal and high-k combinations after different annealing conditions. (a) Ru with HfO2;
(b) Ru, Mo with ZrO2, and TiN with Al2O3.

Figure 13. ISPE of MHONOS stacks for (a) Ru/HfO2. Erase performance degrades with post metallization anneal (PMA)
while no change after a post high-k deposition anneal (PDA); (b) Ru and Mo with ZrO2 and TiN with Al2O3. Similar
degradation after PMA as in the case with HfO2. However, worse performance with Al2O3.

It is important to note that in the case of TiN with Al2O3 (PDA performed at 2min
1050 ◦C), the degradation in erase saturation is much worse, which is unlike the obser-
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vations made for HfO2- and ZrO2-based stacks, and definitely not reflected in the WF
reduction in TiN. A closer study on the high-k material properties reported elsewhere [32],
investigated by trap spectroscopy, revealed that worse erase saturation levels at increased
thermal budgets could be due to an increase in defect density in the high-k rather than
a reduction in the metal WF itself. Higher defect density could increase trap-assisted
tunneling [33], thereby increasing the leakage current during the erase operation (a typical
band diagram during erase can be seen in Figure 14).

Figure 14. A typical band diagram of MHONOS during erase. Higher trap density reduces the
tunneling path for gate electrons resulting in poor erase.

As discussed before, Fermi level pinning (FLP) at the metal/high-k interface, dipole
formation at the high-k/SiO2 interface, and/or the energy offsets between the high-k and
SiO2 have been suggested in the literature as possible root causes for an eWF. If the metal
fermi level is pinned, then the Φb at the interface should be different, which reflects in
the erase saturation levels. Based on the observations made from Figure 11 for Ru with
TiN liner and Figure 13 for Ru stacks after PDA, this effect can be ruled out. A common
opinion in the literature [21,34–36] is that a dipole formed at the high-k/SiO2 interface is
the dominant factor causing appreciable shifts in VFB, and hence, the WF extracted from
it. Many physical models exist to explain this dipole formation, attributing it to dielectric
contact induced gap states [37] or dictated by the electronegativity and ionic radii of the
cations (from the high-k) [38], However, the most acceptable explanation seems to be oxygen
vacancies driven by structural stabilization at the high-k/SiO2 interface [18–21,34,39,40].
Moreover, the dipole formation at the high-k/SiO2 interface should not affect the erase
performance of flash memory, which is determined by the electron injection dynamics at
the gate contact.

To further clarify the impact of dipole formation on erase performance of flash memory,
dipole-forming interlayers (DIL) [36,41,42], namely, Al2O3 and La2O3 (0.6 nm each), were
studied as part of the MHONOS stack (shown in Figure 15). The DIL were deposited
between metal and high-k or high-k and SiO2, with TiN/HfO2 being used as the control
gate electrode and high-k dielectric. All the stacks received a PDA for 1.5 s at 1050 ◦C in
N2 ambient. The corresponding shifts in VFB caused by the interlayers were extracted from
CV measurements using CVC fitting (as can be seen in Figure 16).
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Figure 15. Schematic of MHONOS stacks with dipole-forming interlayers at different locations. Al2O3 and La2O3, each
0.6 nm thin, were used as interlayers with HfO2 used for high-k value.

Figure 16. Flat band voltage monitored from CV traces, for MHONOS stacks with different dipole interlayers from Figure 15
(a) without any PMA and (b) with PMA for 20 min at 750 ◦C in N2 ambient.

We could note from Figure 16a that with the addition of Al2O3 DIL between HfO2
and SiO2, the VFB positively increases by about 120 meV, while it remains unchanged
when Al2O3 is inserted between the metal and high-k. Though much higher VFB shifts are
theoretically reported for Al2O3 [18], the processing conditions and thickness of the DIL
play a major role in determining the magnitude of the VFB shifts [21,42,43]. Furthermore, if
we add 0.6 nm La2O3 DIL between HfO2 and SiO2 while keeping the Al2O3 between TiN
and HfO2, we notice a negative drop of about 140 meV in the VFB, which is in line with
trends reported in the literature [44,45]. It is worth to note that the trend in VFB remains
unchanged after a PMA for 20 min at 750 ◦C in N2 ambient (see Figure 16b).

The ISPE curves for these stacks without PMA are shown in Figure 17a. We could
note, despite the differences in VFB, that there is no difference in the erase performance of
these stacks. On the contrary, when the stacks were subjected to PMA, the erase depends
on the material present in the stack, as can be seen in Figure 17b. The control sample with
only TiN and HfO2 shows slight degradation after PMA. However, the stacks with DIL
show higher reduction in erase, even worse when the Al2O3 is present next to the blocking
oxide, though it shows a positive VFB shift (indicating a higher eWF). It is well known that
Al2O3 dielectric suffers from a wider band of defect profile [46]. Recalling the discussion
from before on the possible impact of defect density in the high-k on erase (see Figure 14),
we could fairly say that the above results corroborate this hypothesis.
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Figure 17. ISPE of MHONOS, for metal/high-k combinations from Figure 16. (a) Without any PMA; (b) with PMA for
20 min at 750 ◦C in N2 ambient.

4. Conclusions

We have extracted and studied the shifts in metal work function (i.e., effective work
function, eWF), in response to different processing parameters, such as gate electrode and
high-k dielectric materials, and variations in annealing conditions. By studying the work
function in combination with the erase performance of NAND flash memory, we were
able to narrow down the origin of eWF to dipole formation due to (a) interfacial reactions
at the metal/high-k interface and/or (b) possible oxygen vacancies driven by structural
stabilization at the high-k/SiO2 interface. It must be noted that based on the above studies,
we did not observe fermi level pinning at the metal/high-k interface.

We also verified and validated the negligible impact of dipole on erase performance
by studying different dipole forming interlayers in the memory cell. It is clear that the
metal WF extraction is convoluted by dipole formation, while the erase performance of
a flash memory cell is affected more by the trap profile in the high-k liner than any other
factors that cause shift in flat band voltage.
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Appendix A

Figure A1 shows the typical capacitance and conductance curves obtained on 70 × 70 μm2

capacitors at a frequency of 100 kHz. The capacitors were fabricated on a p-doped, 300 mm
Si substrate with SiO2 bevel. Data is shown for 3 nm HfO2 high-k liner and Ru gate
electrode. The capacitors are sequentially measured at different voltage sweep ranges
(i) 1 V to −1 V, (ii) 2 V to −2 V, (iii) 3 V to −3 V. We could notice that there is little impact of
the voltage sweep on the hysteresis of the curves. Capacitance data from the 2 V to −2 V
voltage sweep range is then used to subsequently extract the flat band voltage, VFB.

Figure A1. Typical (a) capacitance and (b) conductance measurements performed in this work. Data shown for Ru/HfO2
combination on a SiO2 bevel (slant etch) on a p-type Si substrate. The capacitors are sequentially measured at different
voltage sweep ranges (i) 1 V to −1 V, (ii) 2 V to −2 V, (iii) 3 V to −3 V.

Figure A2 shows the schematic of an automated VFB extraction with a robust and
traceable procedure. Test for gate leakage is performed in the measurement routine (not
shown) and warnings are issued if any issues are encountered. Only those data with
appropriate fit errors are filtered for further analysis. The rest of the analysis follows as
discussed in the main article (see page 5 onwards).

Figure A2. Example procedure of data extraction from measurement.
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Abstract: Temperature effects should be well considered when designing flash-based memory sys-
tems, because they are a fundamental factor that affect both the performance and the reliability of
NAND flash memories. In this work, aiming to comprehensively understanding the temperature
effects on 3D NAND flash memory, triple-level-cell (TLC) mode charge-trap (CT) 3D NAND flash
memory chips were characterized systematically in a wide temperature range (−30~70 ◦C), by
focusing on the raw bit error rate (RBER) degradation during program/erase (P/E) cycling (en-
durance) and frequent reading (read disturb). It was observed that (1) the program time showed
strong dependences on the temperature and P/E cycles, which could be well fitted by the pro-
posed temperature-dependent cycling program time (TCPT) model; (2) RBER could be suppressed
at higher temperatures, while its degradation weakly depended on the temperature, indicating
that high-temperature operations would not accelerate the memory cells’ degradation; (3) read
disturbs were much more serious at low temperatures, while it helped to recover a part of RBER at
high temperatures.

Keywords: 3D NAND flash memory; temperature; endurance; read disturb

1. Introduction

After a decade of rapid technological developments, 3D NAND flash memory has
been widely utilized in various kinds of storage applications, especially in file memory-
related products such as laptops and data centers. Due to the fact of its ultra-high bit
density, lower bit cost, and better performances as well as reliabilities, 3D NAND flash
is substituting its 2D counterpart step by step. For charge-trap (CT) 3D NAND flash
memory, the endurance can largely be improved because the effects of the tunneling layer
degradations are weak, and the program time can be faster because the effects of inter-
cell interference (ICI) are well suppressed with larger cell-to-cell space. Recently, a 3D
NAND with more than 170 layers was announced by the NAND flash makers [1,2]; more
impressively, quadruple-level-cell (QLC, 4 bits/cell), penta-level-cell (PLC, 5 bits/cell), and
even hexa-level-cell (HLC, 6 bits/cell) operation modes have been demonstrated [3,4]. All
these fundamental developments as well as design-technology co-optimizations (DTCO)
will drive 3D NAND flash to the mainstream non-volatile memories in the near future [5].

In NAND flash-based memory systems, a major issue that affects both the performance
and reliability is the temperature. In conventional 2D NAND flash with a floating gate
(FG) structure, as operation temperature increases, the raw bit error rate (RBER) will
increase, and the degradation will become more serious. Therefore, on the one hand, the
temperature monitor and controller are necessary in NAND flash-based memory systems
with robust reliabilities, and on the other hand, the temperature dependence can be utilized
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as an accelerator to build a lifetime prediction model in a short-time using the Arrhenius
model [6], which shows high accuracy in 2D FG NAND flash. However, due to the special
structures of cells and the arrays in CT 3D NAND flash, the failure mechanisms are much
more complex, and the temperature effects are quite different. This can explain why the
conventional lifetime prediction model loses accuracy when it is applied to 3D NAND
flashes [7]. Accordingly, comprehensive understandings of the temperature impacts on a
3D NAND flash are strongly required.

In this paper, systematic characterizations of the temperature dependences have been
conducted on CT-type 3D TLC NAND flash memories from −30~70 ◦C, with focus on the
RBER modulations in P/E degradations and read disturbs. By using the FPGA-based raw
NAND chip tester, it was experimentally observed that the program/erase time and the
RBER in the P/E cycling and read disturbs were highly dependent on the temperature.
However, temperature had negligible impacts on the cells’ degradation, indicating that
the CT 3D NAND is suitable for work at high temperatures with no need to worry about
accelerated degradations.

The main contributions of this paper are as follows:

• We characterized the P/E cycling in CT 3D NAND flash memory from −30~70 ◦C
using the raw NAND chip tester. An effective TCPT model was proposed to simulate
the program time changes by the P/E cycles and the temperature;

• We characterized the cross-temperature measurements to study the temperature-
dependent degradations, indicating that high-temperature operations will not acceler-
ate the degradation of the memory cells;

• We characterized the measurements of temperature-dependent read disturbs. It
showed that read disturb degrades at cold temperature, but it helps to recover a part
of RBER at high temperatures. The underlying origins are analyzed in detail.

The rest of the paper is organized as follows: Section 2 introduces the background and
related work; Section 3 presents the evaluation setup; Section 4 describes the measured
results of P/E cycling; Section 5 shows the temperature-dependent read disturbs; finally,
Section 6 concludes this work.

2. Background and Related Work

In 2D NAND flash memory, memory cells use FG to store electrons. However, as
scaling the cell size to sub-1X nm, serious issues occur from the large cell-to-cell interference
and variations in stored charges in FG. It turns out to be extremely difficult to increase
the bit density while also guaranteeing the reliability. Different from 2D NAND flash, 3D
NAND flash utilizes stacked storage layers to increase the bit density, which settles the
problem of flat area scaling and, thus, the key issue turns to be how many layers can be
stacked. The comparisons between the two different NAND flash structures are shown
in Figure 1a. In a 3D CT NAND flash cell, besides the core oxide and poly-Si channel, the
gate stack contains an oxide tunneling layer, silicon–nitride CT layer, oxide blocking layer,
and a control gate (CG).

In NAND flash operations, there includes single-level-cell (SLC, 1 bit/cell), multiple-
level-cell (MLC, 2 bits/cell), triple-level-cell (TLC, 3 bits/cell), QLC, PLC, and HLC. For
2D NAND flash, SLC and MLC modes are adopted in accordance with the products’
requirements; while for a 3D NAND flash, TLC mode has been widely used because of
the well-tuned reliability and high cost–performance ratio. A typical threshold voltage
(Vth) distribution of TLC in a 3D CT NAND flash is shown in Figure 1b, wherein seven
program states from A to G levels can be well distinguished. Only a part of the erase state
(ER) can be observed due to the negative Vth values. Each word-line (WL) consists of three
pages, the most significant bit (MSB) page, the central significant bit (CSB) page, and the
least significant bit page (LSB). When reading the data from the chip, error bits occur at
the overlapping regions between the neighbor states, such as A(B) to B(A) error bits when
reading the CSB page at V2 level. Thus, suppressing overlapping regions or optimizing
reading voltages are challenges to designing highly reliable NAND flash memory. In
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addition, for a 3D CT NAND flash, one special concern is the shared common CT layer
between neighboring cells.

 
 

(a) (b) 

Figure 1. (a) A schematic of a 2D NAND string and a 3D NAND string, wherein a 3D NAND cell unit contains core oxide,
poly-Si channel, tunneling layer, CT layer, blocking layer, a and control gate; (b) TLC operations by storing 3 bits in each cell
at three pages: MSB, CSB, and LSB; V1~V7 denote read voltages with the definitions of Vth down-shift and up-shift errors.

This makes the reliability mechanisms more complex because the spatial redistri-
butions of stored charges will seriously affect the data retention and read disturbs [8].
It was also reported that the P/E cycling stress affects the charge redistributions more
seriously [9]. In other words, in a 2D FG NAND flash, the failure mechanism is simple,
and the temperature effects can be monitored, while for a 3D CT NAND flash, the special
cell structure makes the failure mechanisms complex and previous temperature-related
models are no longer suitable. In the following, several related works are briefly described.

The 3D NAND flash was developed more than ten years ago in 2007 [10], and the
first TLC 3D BiCS flash memory with 32 stacked layers was demonstrated by Toshiba in
2015 [11]. Currently, 174 staking storage layers [1,2] as well as HLC operation mode [4]
have been realized and demonstrated. So far, 3D NAND flash has been utilized in many
kinds of storage products, especially in smartphones, personal computers, and data centers.
To assure the robust reliability and high performance of those products, environmental
temperature effects should be well considered, and the effects should be included in the
system design. Cai et al. studied MLC NAND flash memory and noticed that the error bits
from read disturb were much more likely to take place in cells with lower Vth values [12].
Zambelli et al. studied cross-temperature effects in 2D and 3D NAND flash memories
and found that there was a large number of fail-bits when the memory was read at a
temperature different from that exercised during the program [13]. Wu et al. found that
cell Vth values had various offset and velocities for different temperate operations, and
it can be reduced by shortening the interval time from erase to program during cross-
temperature write–read stages [14]. Kong et al. studied the read disturbs in a 3D CT
NAND flash memory, and observed that read disturbs were strongly correlated to retention
time and temperatures, and proposed the schemes of precharge-the-storage-layer (PCSL)
and thermally-stabilize-the-storage-layer (TSSL) to suppress read disturbs [8]. Luo et al.
observed that the temperature effects increase retention loss speed at a super-linear rate
and increases program variations and concluded that prior models for planer 2D NAND
flash were not suitable for 3D NAND flash [15]. Resnati et al. investigated the temperature
dependence of cell Vth, string currents, and random telegraph noise (RTN) distributions in
3D NAND, showing that Vth distributions will be tight at high temperatures but widened
at low temperatures [16]. In order to minimize the Vth distribution widening at low
temperature and cross-temperature operations, Venkatesan et al. reviewed the 3D NAND
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technologies and pointed out that polysilicon channel engineering was necessary [17]. H.
Shin et al. investigated the dominant failure mechanisms in 3D NAND after cycling [18]
and drew their conclusions that failure mechanisms in 3D NAND are complex; it is not
reliable to use temperature as an accelerator for burn-in tests on the basis of the Arrhenius
model [7].

As a key factor impacting on NAND flash performance and reliability, temperature
effects should be well understood. Thus far, in previous reports, temperature effects have
been discussed from material-to-device viewpoints or system-level viewpoints, and most
of them focused on data retention. It is necessary to have a comprehensive understanding
of the temperature effects to conduct device-to-technology co-optimizations (DTCO) and
to provide fundamental information for NAND-based applications in a wide temperature
range. In this paper, using a high-performance raw NAND chip tester, temperature-
dependent characterizations were performed from −30 to 70 ◦C by focusing on the RBER
in P/E cycling, read disturbs, and cross-temperature degradations.

3. Evaluation Setup

Raw NAND chips were characterized using an FPGA-based raw NAND chip tester
with eight parallel sockets and high-speed PCIE interfaces with a maximum data transfer
speed up to 200 MHz. The tester was specially designed with a capability to withstand
wide temperature operations from −40 to 100 ◦C, and a customized software was used
as the interface to carry out data program/erase/read scripts and detailed data analysis.
Moreover, a high–low temperature test chamber with precise controllability to the tempera-
ture and humidity was used to perform cross-temperature tests. In our experiments, we
chose the 3D CT TLC NAND flash memory chip with 64 stacking storage layers, 5912 valid
blocks, with block containing 768 logical pages with 18,336 bytes per page [19]. As shown
in Algorithm 1, experiment processes were divided into the following:

• P/E cycling: With combined “Block Program” and “Block Erase” scripts, random
data were programmed to the NAND chip and then erased alternately. Here, the
generated random data were different in each P/E cycle to ensure the randomness of
the characterizations for fair analysis;

• Read Disturb: After data programming, repeated data reading operations were trans-
ferred to the tester controller to perform block data reading. The data were not
dumped to the controller until we performed a “Block Read Dump” script;

• Data Analysis: The programmed data was read out to the customized software
using the “Block Read Dump” operation, and data in the TLC NAND chips were
downloaded to a text file. By comparing the programmed data and the read-out data,
error bit information could be analyzed.

4. P/E Cycling

The NAND flash memory tested in this experiment was a 3D CT TLC NAND flash
chip, and the stored data were divided into eight states according to the Vth of the storage
cell. Ideally, the Vth between adjacent states has a wide read margin, but the Vth of adjacent
states had overlapping regions in practice, and these overlapping regions were the source
of error bits. It should be noted, due to the limited memory window for programming in a
high-bit density NAND flash, such as TLC mode, overlapping regions do exist as shown in
Figure 1b. The experimental procedure was as follows: firstly, we raised the temperature
to the set value; then, we performed 3000 P/E cycles in randomly selected blocks in the
chip, and several blocks were characterized to make sure that our results were reliable and
stable; finally, the program/erase times of each P/E cycle was recorded in real-time, and
the data were exported for analysis.
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Algorithm 1. The process of experiment.

Definitions:

1: Pn: the number of P/E cycles, be initialized to 0;
2: T: the temperature of experiment;
3: Ttarget: the target temperature of experiment;
4: Rcount: the number of read cycles, be initialized to 0;
5: MAX Rn: the maximum number of read cycles;

Process:

6: if T < Ttarget or T > Ttarget then

7: Raise T to Ttarget;
8: else

9: Wait 5 min;
10: for Pcount ≤ Pn do

11: Execute erase/program operation;
12: Pcount + = 1;
13: Collect program time and erase time;
14: if Pcount == 1 || Pcount % 200 == 0 then

15: Excute the dump operation;
16: Calculate RBER;
17: end if

18: end for

19: Change NAND block;
20: While Rcount ≤ MAX Rn do

21: Excute sequential read operation on NAND block;
22: Rcount + = 1;
23: if Rcount == 1 || Rcount % 100 == 0 then

24: Excute the dump operation;
25: Compare and calculate RBER;
26: Collect error classification;
27: end if

28: end while

29: end if

Figure 2 shows the program time (tprog) and the erase time (terase) when performing
P/E cycling at various temperatures. In the case of terase, it had a strong dependence on
the temperature, but the effects of P/E cycles were negligible. The higher the temperature,
the shorter terase. However, tprog depended on both P/E cycles and the temperature as
shown in Figure 2b. For blocks after a certain number of P/E cycles, the higher ambient
temperature of the NAND flash memory, the less time it took to execute the program oper-
ation. While at the same ambient temperature, tprog decreased with P/E cycles. Thereby,
we propose a temperature-dependent cycling program time (TCPT) model on the basis of
following equation:

tprog = α(T)·npe + β(T) (1)

α(T) = k1·T + k2, β(T) = k3·T + k4 (2)

T, npe, and tprog are the temperature, P/E cycles, and program time, respectively. α(T)
and β(T) are the temperature-related functions with fitting parameters kn (n = 1~4). As
shown in Figure 2b, for blocks with higher than 100 P/E cycles, simulation curves agreed
well with the experimental data, indicating that the model was effective at predicting the
program latency in a wide temperature range. The values of the fitting parameters are
listed in Table 1.
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(a) (b) 

Figure 2. Measured operation times during P/E cycling at different temperatures: (a) erase time (terase) and (b) program
time (tprog). terase depends on the temperature, while tprog depends on both the temperature and P/E cycles, which agreed
well with the simulation curves in the blocks with higher than 100 P/E cycles.

Table 1. The values of fitting parameters in α(T) and β(T).

Fitting Parameter k1 k2 k3 k4

α(T) −0.0214 −0.13205 / /
β(T) / / −391.98 707913

Figure 3 shows the measured RBER when the P/E cycling was performed at dif-
ferent temperatures. No matter what the temperature we choose, RBER has an initially
higher value at the fresh state with a decreasing trend in sub-200 P/E cycles, and then
it increases during subsequent P/E cycling. Initial higher RBER could possibly come
from the unstable initial stage after factory, and the gradually increased RBER can be
explained by P/E cycling stress caused cell degradation. During the P/E cycling, defects
generated in both the tunneling layer and CT layer and the stability of the NAND cells
became worse. The most important thing was that RBER could be suppressed at high
temperatures, while it degraded at cold temperatures. These results can be explained
by the Vth distributions’ changes that depended on the temperature. According to the
simulated results by Resnati et al. [16], Vth distributions are tight at high temperatures
(narrower overlap regions cause fewer error bits) but widened at cold temperatures (wider
overlap regions cause more error bits). Furthermore, by normalizing the RBER, it was
observed that, although RBER increasing at a rate of 70 ◦C was greater than that at 0 ◦C,
the degradation tendencies did not show a clear temperature dependence in the whole
temperature range as shown in Figure 3b. Considering that different Vth distributions had
different sensitivities to the cells’ degradations, it was necessary to use a unified criterion
to study the cells’ degradations by cycling stress at different temperatures.

Next, for further evidence, cross-temperature characterizations were conducted to
study the temperature effects on P/E cycling stress-related cell degradations. As shown in
Figure 4, we designed the following experiment: firstly, we selected three groups of blocks,
and all groups performed 1000 P/E cycles at 25 ◦C (Stage-1); secondly, 1000 P/E cycles
were executed in three groups, −30, 25, and 70 ◦C (Stage-2); then, the temperatures were
lowered to 25 ◦C, and 1000 P/E cycles were subsequently performed on all groups (Stage-3).
Finally, each group operated 3000 read cycles at 25 ◦C. It can be observed that, no matter
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what the temperature we chose in stage-2, the RBER degradation tendency trends were
almost the same in stage-3 and read cycles after cross-temperature P/E cycles. On the one
hand, it can be concluded that thermal experiences (up to 70 ◦C) have negligible impacts
on RBER degradation; on the other hand, the 3D NAND is suitable for high-temperature
operations because the RBER is lower and the effects of P/E cycling caused damage will not
be accelerated at higher temperatures. It should be noted that no matter what the operation
mode we adopted, operations at higher temperatures did cause larger degradations to
memory cells such as enhanced interface trap generation. Fortunately, these damages
do not cause worse error bits degradation using the same criteria (Stage-3) as shown in
Figure 4.

(a) (b) 

Figure 3. (a) Measured RBER with P/E cycling at different temperatures; (b) normalized RBER to study RBER degradation.

Figure 4. Cross-temperature characterizations to study degradation at various temperatures. The first
and third stages were fixed to 25 ◦C, while the second stage selected three different temperatures, −30,
25, and 70 ◦C. The RBER was normalized by the first point of the RBER to compare the degradation
trends of each condition.
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5. Read Disturb

It is known that high temperature can accelerate the speed of lateral charge migration
in the storage layer and modulate the threshold voltage distributions of memory cells [8].
These factors can cause read disturb properties to become more complex at various temper-
atures. To understand the temperature impacts, we designed the following experiment:
firstly, setting the work temperature of the chamber to the target temperature ranging
from −30 to 70 ◦C; then, programming randomized data with subsequent 3000 times read
cycling. For detail analysis, data were dumped and recorded every 100 times.

Measured read disturbs are summarized in Figure 5. Firstly, it was observed that
RBER degradation turned out to be much more serious at cold temperatures; secondly, for
high-temperature operations at 70 ◦C, a part of RBER can be recovered after serval times
reading. Considering that the total RBER included two parts, down-shift errors from the
charge loss and up-shift errors from charge accrual, we divided the total error bits to two
groups for in-depth analysis: down-shift errors and up-shift errors. As shown in Figure 6,
for read disturb-related RBER degradations, down-shift errors were the dominant part
with clear temperature dependences, indicating that RBER changes mainly originated from
the charge loss. Down-shift error degradation was much stronger at sub −25 ◦C, but it
could be well suppressed at high temperatures, which can be explained by the narrower
Vth distributions at high temperatures [16]. The interesting phenomenon was that read
disturbs from up-shift errors showed the opposite tendency while increasing the operating
temperature. For read cycling at 70 ◦C, up-shift error bits can be partly recovered with
read cycles. It was noticed that the decreasing error bits were mainly from cells with high
program levels, like F-to-G errors in F-level cells. It should be noted that, as shown in
Figure 6f, lower F-to-G error bits can be observed in the whole temperature range from
−30 to 70 ◦C. However, G-to-F up-shift error bits are largely suppressed at 70 ◦C. Thus,
with combined down-shift and up-shift errors, we observed abnormal “recovery” at 70 ◦C
while performing read cycling.

Figure 5. Read disturb characterizations at different temperatures from −30 to 70 ◦C.

For further understandings, the word-line (WL) dependences of fail bit counts (FBCs)
change at 70 ◦C were studied in detail. By comparing the data from the 1st and 3000th
read cycles, it was observed that the dependence of the major state error decreased on
the WL index. As shown in Figure 7, error bits from D-E, E-F, and F-G errors showed
obvious decreasing trends in higher WL index, and each read cycle in this experiment
followed the same observation. In other words, the WLs of the middle-to-low index were
the dominant origins for the lower up-shift errors that were attributed to the observed
error bits “recovery” at 70 ◦C.
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Read disturb-related RBER changes were divided into (a) down-shift errors and (d) up-shift errors from −30 to
70 ◦C; (b,c) compares B-to-A errors and G-to-F down-shift errors, respectively, while (e,f) compares A-to-B errors and F-to-G
up-shift errors, respectively, at −30, 25, and 70 ◦C.

Figure 7. Measured fail bit count (FBC) of different program levels: error bits from (a) D-to-E; (b) E-to-F; (c) F-to-G.

6. Conclusions

In this work, to achieve deep insights into the temperature impacts on the reliability
properties of the 3D NAND flash, the TLC (3 bits/cell) 3D CT NAND flash memory chip
was tested from −30 to 70 ◦C using the FPGA-based raw NAND chip tester together with
the temperature-controllable chamber. With comprehensive characterizations, firstly, it was

131



Micromachines 2021, 12, 1152

observed that program time had a clear dependence on both temperature and P/E cycles
by which the TCPT model was proposed; secondly, it was found that RBER can be well
suppressed at high temperatures and it degrades obviously at low temperature; then, by
the designed cross-temperature measurements, it was found that thermal experience had
negligible impacts on RBER degradation; finally, as for read disturbs, it was concluded that
read disturbs cause more RBER degradations at cold temperatures while part of RBER can
be recovered by read disturbs at high temperatures.
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