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Abstract

Replacing HDDs with NAND flash-based storage devices (SSDs) has
been one of the major challenges in modern computing systems especially in
regards to better performance and higher mobility. Although uninterrupted
semiconductor process scaling and multi-leveling techniques lower the price
of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND
flash memory, as a side effect of recent advanced device technologies, is
emerging as one of the major barriers to the wide adoption of SSDs in high-
performance computing systems.

In this dissertation, we propose new cross-layer optimization techniques
to extend the lifetime (in particular, endurance) of NAND flash memory. Our
techniques are motivated by our key observation that erasing a NAND block
with a lower voltage or at a slower speed can significantly improve NAND
endurance. However, using a lower voltage in erase operations causes ad-
verse side effects on other NAND characteristics such as write performance
and retention capability. The main goal of the proposed techniques is to im-
prove NAND endurance without affecting the other NAND requirements.

We first present Dynamic Erase Voltage and Time Scaling (DeVTS),
a unified framework to enable a system software to exploit the tradeoff re-
lationship between the endurance and erase voltages/times of NAND flash
memory. DeVTS includes erase voltage/time scaling and write capability
tuning, each of which brings a different impact on the endurance, perfor-

mance, and retention capabilities of NAND flash memory.



Second, we propose a lifetime improvement technique which takes ad-
vantage of idle times between write requests when erasing a NAND block
with a slower speed or when writing data to a NAND block erased with a
lower voltage. We have implemented a DeVTS-enabled FTL, called dvs-
FTL, which optimally adjusts the erase voltage/time and write performance

of NAND devices in an automatic fashion. Our experimental results show

that dvsFTL can improve NAND endurance by 62%, on average, over DeVTS-

unaware FTL with a negligible decrease in the overall write performance.

Third, we suggest a comprehensive lifetime improvement technique
which exploits variations of the retention requirements as well as the per-
formance requirement of SSDs when writing data to a NAND block erased
with a lower voltage. We have implemented dvsFTL+, an extended version
of dvsFTL, which fully utilizes DeVTS by accurately predicting the write
performance and retention requirements during run times. Our experimental
results show that dvsFTL+ can further improve NAND endurance by more
than 50% over dvsFTL while preserving all the NAND requirements.

Lastly, we present a reliability management technique which prevents
retention failure problems when aggressive retention-capability tuning tech-
niques are employed in real environments. Our measurement results show
that the proposed technique can recover corrupted data from retention fail-
ures up to 23 times faster over existing data recovery techniques. Further-
more, it can successfully recover severely retention-failed data, such as ones
experienced 8 times longer retention times than the retention-time specifi-
cation, that were not recoverable with the existing technique.

Based on the evaluation studies for the developed lifetime improve-
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ment techniques, we verified that the cross-layer optimization approach has
a significant impact on extending the lifetime of NAND flash-based storage
devices. We expect that our proposed techniques can positively contribute
to not only the wide adoption of NAND flash memory in datacenter envi-

ronments but also the gradual acceleration of using flash as main memory.

Keywords: NAND Flash Memory, Solid State Drive, Storage Management,
Storage Reliability, Storage Lifetime, Embedded Software

Student Number: 2012-30229
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Chapter 1

Introduction

1.1 Motivation

NAND flash-based solid-state drives (SSDs) are widely used in per-
sonal computing systems as well as mobile embedded systems. However,
in enterprise environments, SSDs are employed in only limited applications
because SSDs are not yet cost competitive with HDDs [1]. Fortunately, the
prices for SSDs have fallen to the comparable level of HDDs by continu-
ous semiconductor process scaling (e.g., 10 nm-node process [2]) combined
with multi-leveling technologies (e.g., MLC [3] and TLC [4]). However, the
limited endurance of NAND flash memory, which have declined further as
a side effect of the recent advanced device technologies, is emerging as an-
other major barrier to the wide adoption of SSDs. (NAND endurance is the
ability of a memory cell to endure program/erase (P/E) cycling, and is quan-
tified as the maximum number NIT/“E” of P/E cycles that the cell can tolerate
while maintaining its reliability requirements [5].) For example, although
the NAND capacity per die doubles every two years, the actual lifetime
(which is proportional to the total NAND capacity and NIT/“E”) of SSDs does
not increase as much as projected in the past seven years because Nl’?/ag has

declined by 70% during that period [6]. In order for SSDs to be common-

place in enterprise environments, the issues concerning NAND endurance



should be properly resolved.

Since the Lifetime L¢ of an SSD with the total capacity C' is propor-
tional to the maximum number NIT/“Ex of P/E cycles, and is inversely propor-
tional to the total written data W, per day, L¢ (in days) can be expressed

as follows (assuming a perfect wear leveling):

NpsE % C

Lo=-—2E— —
" Waay x WAF

(1.1)

where W AF is a write amplification factor which represents the efficiency
of an FTL algorithm. Many existing lifetime-enhancing techniques have
mainly focused on reducing W A F by increasing the efficiency of an FTL al-
gorithm. For example, by avoiding unnecessary data copies during garbage
collection, W AF' can be reduced [7]. In order to reduce Wy, various
system-level techniques were proposed. For example, data de-duplication [8],
data compression [9], and write traffic throttling [10] are such techniques.
On the other hand, only a few system/software-level techniques have been
proposed to increase NJZ"/‘IE. Although several conceptual device-level tech-
niques (e.g., a self-healing SSD [11]) were suggested regarding Nlﬁ””/‘g , it is
difficult for these to be employed in real systems because of their unrealistic
hardware settings and critical side-effects.

By exploiting the tradeoff relationships between the NAND character-
istics (e.g., capacity, performance, retention, and endurance), several cross-
layer optimization techniques have been suggested. In order to improve SSD
performance, for example, the retention relaxation technique [12] temporar-

ily relaxes the NAND retention capability while FlexFS [13] flexibly reorga-



nizes the NAND capacity between SLC and MLC regions. Although these
techniques exploited the device-level physical characteristics in the similar
fashion of our work, their main goals are quite different from ours. Up until
now, there have been a few particular suggestions to improve the NAND
endurance by exploiting the tradeoff relationships between the NAND ca-

pabilities.

1.2 Dissertation Goals

In this dissertation, we propose new cross-layer optimization techniques
to extend the lifetime of NAND flash-based storage devices by exploiting
the tradeoff relationship among NAND capabilities such as endurance, per-

formance, and retention. The primary goals of this dissertation is as follows:

* Enabling a system software to exploit the tradeoff relationship be-

tween the endurance and the other capabilities of NAND flash mem-

ory.

* Developing system-level techniques to improve NAND endurance while

maintaining the other NAND requirements.

* Providing reliability preservation techniques for NAND flash-based
storage systems when flash-optimization techniques are widely em-

ployed in real environments.



1.3 Contributions

The proposed cross-layer approach in this dissertation adds a new di-
mension to the decreasing lifetime problem of NAND flash-based storage

devices as follows:

* A unified NAND endurance model which captures the tradeoff re-
lationship between NAND endurance and the performance/retention
capabilities of NAND flash memory is proposed. We reveal that en-
durance degradation is primarily caused by excessive erase opera-
tions, and suggest effective device-level means (i.e., various write-
capability tuning techniques) of alleviating the negative impact of
erase operations on NAND endurance. Based on the proposed NAND
endurance model, a system software can adjust the internal operation

voltages and times of NAND flash memory in a reliable fashion.

* System-level lifetime improvement techniques for NAND flash-
based storage devices are presented. Based on the NAND endurance
model, the proposed techniques dynamically change the NAND per-
formance and retention capabilities for each program operation so that
endurance-enhancing erase operations can be frequently used. Since
the proposed lifetime improvement techniques can efficiently adapt
to varying characteristics of I/O workload by accurately predicting
the write performance and retention requirements, the overall perfor-
mance and reliability requirements of storage systems are maintained

while significantly improving NAND endurance.



* Reliability management techniques for NAND flash-based storage
systems are suggested. Since the proposed lifetime improvement tech-
niques aggressively tune down the NAND retention capability to im-
prove NAND endurance, the retention-failure problem can be a seri-
ous technical issue for power/temperature-unstable computing envi-
ronments. In order to preserve the data durability of the stored data in
NAND flash memory, we introduce a novel data recovery technique
which can efficiently and quickly recover corrupted data from reten-

tion failures.

Although this dissertation has mainly focused on improving NAND en-
durance, our proposed techniques can be extended to improve other require-
ments (e.g., performance, retention, and read-disturbs resistance) of storage
systems. Moreover, since our techniques are entirely independent on data
content, the existing flash-optimization techniques can be easily integrated

into our proposed framework.

1.4 Dissertation Structure

This dissertation consists of seven chapters. The first chapter presents
a introduction to this dissertation while the last chapter serves as a conclu-
sion with a summary and future work. The five intermediate chapters are
organized as follows:

Chapter 2 reviews the operational principles of NAND flash memory
and explains existing SSD lifetime improvement techniques closely related

to this dissertation.



Chapter 3 describes the dynamic NAND voltage and time scaling frame-
work which includes erase voltage/time scaling and write capability tun-
ing. Combining erase scaling and write tuning, a unified NAND endurance
model for estimating their effects on NAND endurance is also suggested.

Chapter 4 proposes an SSD lifetime improvement technique using write-
performance tuning. We explain how to use a lower voltage and a slower
speed for an erase operation and how to write data to a NAND block erased
with a lower voltage. In addition, the effect of the proposed technique on
NAND endurance is presented in detail.

Chapter 5 presents a comprehensive SSD lifetime improvement tech-
nique using both write-performance tuning and retention-capability tuning.
We describe reliable prediction schemes to accurately predict the write per-
formance and retention requirement and present efficient adaptation schemes
to manage the NAND capabilities. We then show how much NAND en-
durance is improved and whether the overall NAND requirements are pre-
served.

Chapter 6 suggests a reliability management technique in order to re-
cover data loss due to retention failures. Finally, we show how efficient the

proposed technique is in terms of data recovery power and speed.



Chapter 2

Background

In order to improve NAND endurance, reliability and performance pa-
rameters are dynamically changed during run time in this dissertation. In
this chapter, we review the basics of key V¢h design parameters and the

principals of a NAND program operation.

2.1 Threshold Voltage Window of NAND Flash

Memory

NAND flash memory stores data into cells by changing their Vth states
depending on bit information, and restores data from cells by sensing their
Vth states. Figure 1 illustrates an example of Vth distributions for an MLC
NAND device which stores two bits in a cell by using four distinct V¢h states
distinguished by three read reference voltages.

Aside from serving as a non-volatile storage medium, MLC NAND de-
vices are also required to meet the specified NAND requirements [5]. For
example, read and program operations of an MLC device should be com-
pleted within 100 us and 1,600 us, respectively [6]. Moreover, even after
3,000 P/E cycles, it is required to support up to 400,000 read operations [6]
as well as to retain its stored data for up to 1 year at 30 °C [14]. Since the

Vth design parameters shown in Figure 1 are closely related to the NAND
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Figure 1: An example of V#h distributions for MLC NAND flash memory
and primary Vth design parameters for the NAND requirements.

requirements, the overall Vth distributions should be carefully designed to
meet all the NAND requirements under the worst-case operating conditions
for a storage product.

The upper Vith target V795 of the E state is one of the key factors in

determining the total width Wy, of Vth distributions. As Vi77%% is lowered,
Wy, gets widened so that it is easier to optimize the Vth parameters for
higher performance or longer retention capability. However, as a side-effect
of the lowered V;77%% , NAND endurance may deteriorate because NAND
blocks are more deeply erased [15]. Conversely, when a higher V‘}Ee’;‘ij@ is
used, designing Vth distributions becomes more complex because less Wy,
is available.

The width Wp; of a Vth distribution is mostly determined by the NAND
write performance requirement. Since NAND flash memory generally uses
the incremental step pulse programming (ISPP) scheme to form Vth distri-
butions, Wp; and the program time are directly affected by the ISPP step
control. For example, when a fine-grained ISPP step control is used for

a program operation, Wp; can be shortened while the program time in-

creases [15]. As a result, Wp; is determined by the minimum achievable



width of a V¢h distribution under the given program-time requirement.

The Vth gap Mp; between two adjacent states is mainly determined
by the NAND retention requirement. When NAND memory cells are pro-
grammed and left for a long time, charge loss may occur because stress-
induced damage in the tunnel oxide layer is likely to loosen stored charges.
Since this charge-loss phenomenon may cause Vth changes, it is necessary
for a sufficient Mp; to tolerate the Vth changes. In order to guarantee the
NAND retention requirement under the worst-case operating condition, Mp;
is determined by the maximum Vth change after the maximum number of
P/E cycles and the specified retention time.

The Vih gap Mp;s: between the E state and V2! , primarily affects the
program-disturbance resistance and read-disturbance resistance of NAND
flash memory. When NAND memory cells are programmed or read, neigh-
bor cells that belong to the E state may be softly programmed so that
their Vths move to the right [5][16]. In order to compensate for the Vih
changes due to these disturbances, a sufficient Mp;,; should be reserved in
the Vth window as shown in Figure 1. Typically, Mp;: is decided by the Vth
changes after the maximum number of P/E cycles followed by the maximum
number of read cycles.

The read pass voltage V%% which affects the NAND read disturbance
is another key factor in deciding the value of Wy ;. Since the NAND read
disturbance has an exponential dependence on the V255 [17], V2455 is usu-
ally fixed as low as possible in device design times. The Vth gap Mpgss
between the P3 state and V223 is also essential to fully turn on all the

NAND memory cells in a block [5].



When the Vth design parameters are designated accordingly, all the
Vith states are placed between V7745 and V%55, Therefore, the total width
Wy of the Vth window is expressed as follows (for an MLC NAND de-

vice):

__ 1/ Pass Erase
Wvih = Viead — VWerify
2.1

3 3
= Mpist + Y _Wpi+ Y Mp; + Mpeqa.
i=1 i=1

Since the Vth design parameters are highly related to one another, if a certain
design parameter is to be changed, we should check its effect on the whole

Vth window.

2.2 NAND Program Operation

In order to form a threshold voltage distribution within a desired re-
gion, NAND flash memory generally uses the incremental step pulse pro-
gramming (ISPP) scheme. As shown in Figure 2, the ISPP scheme gradu-
ally increases the program voltage by the V;gpp step until all the memory
cells in a page are located in a desired threshold voltage region. While re-
peating ISPP loops, once NAND cells are verified to have been sufficiently
programmed, those cells are excluded from subsequent ISPP loops.

Since the program time is proportional to the number of ISPP loops

(which are inversely proportional to V;spp), the program time Tprog can

10



< \end

) PGM
©
=
o
> [ Program
Vstart —»
PGM [N N ] - Verlfy
-
Ll
Loop k—> time
< S|
< 21
TeroG

Figure 2: A conceptual timing diagram of the ISPP scheme.

be expressed as follows:

Vl:e'gdlw — Vlggﬁ . (22)

TproG <
Vispp

Figure 3 shows normalized Tprog variations over different Vispp
scaling ratios. (When a Vjgpp scaling ratio is set to x%, Vigpp is reduced
by £% of the nominal V;gpp.) When a narrow threshold voltage distribution
is needed, Vrspp should be reduced for a fine-grained control, thus increas-
ing the program time. Since the width of a threshold voltage distribution is
proportional to Vigpp [18], for example, if the nominal Vrgpp is 0.5 V and
the width of a threshold voltage distribution is reduced by 0.25 V, Vispp
also needs to be reduced by 0.25 V (i.e., a Vigpp scaling ratio is 0.5), thus

increasing Tprog by 100%.

2.3 Related Work

Since the lifetime of SSDs is inversely proportional to the total writ-
ten data Wy, per day and the write amplification factor W AF', existing

lifetime-enhancing studies for SSDs have mainly focused on reducing Wy,
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Figure 3: Normalized Tpro¢ variations over different Vg pp scaling ratios.

or WAF. In this section, we briefly review typical examples of existing
lifetime-enhancing techniques that reduce Wy, and WAF, and explain
a device-level technique for improving NAND endurance. Finally, we de-
scribe one of the cross-layer optimization techniques for better SSD perfor-

mance, which is an integral motivation behind our work.

2.3.1 System-Level SSD Lifetime Improvement Tech-

niques
Data Compression Technique

In order to reduce W,,, many types of flash-aware data compression
techniques have been proposed to reduce the logical amount of write traffic
to NAND chips. For example, the compression-aware flash translation layer
(CaFTL) [9] was suggested to make key FTL modules (e.g., address map-
ping table and garbage collector) compression-aware so that compression
efficiency could be maximized. Figure 4 shows the overall architecture of

CaFTL with a page mapping table and a specially-designed data structure

12



(i.e., a data chunk table) for managing compressed data.

Page Mapping Table Data Chunk Table
Logical Page| Physical Page Physical Page Valid No. of Compression
Address Address Address  |Page Counter Physical Pages| Indicator
301 2311 2310 3 4 0
302 2311 2311 4 3 1
: : 2312 4 3 1
507 2311 2313 4 3 1
508 | 2311 : H 2
Invalid Page [ Normal Page
Physical Page Address: 2307 2308’,,’/’2309 2310 2;"11 2312 2313 P Compressed Page
Flash 7
Memory

Uncompressed ‘Compressed
Data Chunk Data Chunk

Figure 4: An overall organization of CaFTL.

In order to mitigate page fragmentation issues, CaFTL temporarily
stores compressed data in a data buffer, and flushes four stored pages to
NAND flash memory simultaneously. After flushing, compression-related
information as shown in Figure 4 is updated to the data chunk table. Based
on the data chunk table, CaFTL efficiently handles read requests and finds
the most appropriate victim block during garbage collection. Moreover, CaFTL
monitors the compression-ratio changes of input data so that unnecessary
compression is avoided. Although data compression is an effective solution
for reducing Wy, in general, when poorly compressed data (e.g., multime-
dia data) are continuously incoming, the method’s effectiveness in extend-
ing the SSD lifetime is significantly degraded. However, since our proposed

techniques does not depend on data content, it can improve SSD lifetime
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even when all the requested data is not compressed.

Data Separation Technique

Since NAND flash memory does not allow in-place-updates, unneces-
sary data copies occur during garbage collection so that the logical amount
of written data is actually amplified by W AF'. In order to minimize W AF’,
several flash optimization techniques (e.g., advanced mapping schemes, TRIM
command and data separation techniques) have been introduced. For exam-
ple, Hsieh et al. suggested a multi-hash function based data separation tech-
nique for separating hot data (i.e., frequently updated data) and cold data
(i.e., rarely updated data) with a reasonable hardware overhead [7]. Since
hot data are updated within a short time, if such hot data are aggregated in
the same NAND block, there is a high probability that a dead block (i.e., a
NAND block where all the pages are invalidated) or a near-dead block can
be selected during garbage collection, thus reducing W AF'. Figure 5 shows
an example of the hot data identification process with K independent hash
functions to hash a given LBA into the multiple entries of an M -entry hash
table [7]. Whenever write requests are issed, each counter entry correspond-
ing to a hashed value is incremented. In order to capture recent hot data, all
the counter entries are decayed every predefined number of input requests. If
the H most significant bits of every counter corresponding to K hash func-
tions contain a non-zero value, that LBA is classified as hot data. Although
the main purpose of the data separation technique is quite different from our
proposed technique, its ability to identify hot data can contribute to increas-

ing the efficiency of the proposed lifetime improvement techniques. For ex-
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(a) the counter updating of an LBA (b) the hot data identification of an LBA

Figure 5: Examples of the counter updating and the hot data identification
of an LBA.

ample, if the data separator can accurately identify hot data, the retention-
time requirements of such hot data can be relaxed because hot data will be

updated in the near-future.

2.3.2 Device-Level Endurance-Enhancing Technique

Wu et al. presented a device-level endurance enhancement technique
that boosts self-recovery speed by heating a flash chip under high temper-
ature [11]. Figure 6 shows the self-healing SSD architecture and its self-

healing process. When a sick chip (i.e., a NAND chip that is almost worn-
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Figure 6: Illustration of self-healing SSD and an example of self-healing
process.
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Figure 7: The effect of the self-heating on increasing IT/“E

out) is detected, its entire data is copied to the extra backup chip during
device idle times. After data copy operations are completed, a sick chip is
heated at 200 °C for 35 minutes. Figure 7 shows the effect of self-heating
on increasing NIT/“Ex. By leveraging the temperature-accelerated recovery, it
improved the endurance of SSDs up to fivefold. A major drawback of this
approach is that it requires extra energy consumption to heat flash chips and

lowers the reliability of a storage device. Our proposed technique improves
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Figure 8: Example distributions of the data retention requirements.

the endurance of NAND devices by lowering the erase voltage and slowing

down the erase speed without any serious side effects.

2.3.3 Cross-Layer Optimization Techniques Exploiting
NAND Tradeoffs

Liu et al. proposed a retention relaxation technique to improve SSDs by
relaxing their NAND retention capabilities [12]. This technique is motivated
by their observation that in typical enterprise workloads, a considerable por-
tion of written data to SSDs is likely to be updated soon (e.g., less than a
day as shown in Figure 8). Since this observed updated time is much shorter
than the NAND retention-time specification (i.e., 1 year), the retention re-
laxation technique increases the ISPP step voltage so that the NAND write
performance is increased while shortening the retention capability.

Figure 9(a) shows how much the write speed increases as the retention-
time requirements are relaxed. For example, if the retention-time require-

ment is relaxed to 2 weeks, the NAND write speed can be increased to 2.33x

17



10 weeks 2 weeks

3 ‘ :

I
= Typical case

|
|
|
Corner cases |
|
|

Retention  Speedup
Clyer  1x

10 weeks 1.86x

2 weeks 2.33x

NAND Flash Write Speedup
N

1 0.1 0.01
Data Retention (Year)

(a) Relationship between the NAND retention times
and the NAND write speedup.

[ Baseline H RR-10week M RR-2week

Write Response Time Speedup
o = [ [¥8) = w (93]

Workload

(b) SSD write response time speedup.

Figure 9: Experimental results for the SSD write response time speedup.

of the write speed when 1-year retention-time is required. Figure 9(b) shows
the overall write speedup of SSDs for 11 workloads under different reten-
tion capabilities. When the retention capability is relaxed to only 2 weeks,
the overall SSD write response time was reduced by 160% on average.

The main weakness of this technique is that its effectiveness on im-

proving SSD performance is entirely dependent on the workload conditions.
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Since this technique always relaxes the NAND retention capability without
consideration of data characteristics (e.g., the update frequency), when most
of the written data are not updated within a predefined retention time, this
data should be rewritten by a background data refresh process. When there
is enough idle times between consecutive write requests, the side-effect of
such background data refresh operations can be hidden as shown in the hdl
and hd2 cases of Figure 9(b). However, when the idle time is not sufficient,
the write performance speedup may decrease as shown in the prn_0 case of
Figure 9(b).

Another technical issue is that this technique did not take into account
retention-failure problems. When a power failure occurs and continues for a
long time, retention-relaxed data may not be retrieved because a background
data refresh process does not work during power failures. In order for this
kind of aggressive flash optimization techniques to be widely employed, the
retention-failure problem should be adequately resolved.

Although the main goal of this technique is quite different from ours,
its technical concept is one of the important motivations in the way that it
actively exploited the tradeoff relationships between the NAND capabilities.
For example, the concept of a retention relaxation substantially contributed

to the development of our write-age tuning mode.
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Chapter 3

Dynamic Erase Voltage and Time

Scaling

In this chapter, we propose a unified framework, called Dynamic Erase
Voltage and Time Scaling (DeVTS), which enables a system software to
exploit the tradeoff relationship between the NAND endurance and erase
voltages/times. The DeVTS framework is motivated by our NAND device
physics study that NAND endurance is degraded primarily during erase op-
erations. Since the probability of oxide damage (which is known as the
main cause of endurance degradation) has an exponential dependence on the
stress voltage [19], reducing the stress voltage (i.e., the erase voltage) is the
most effective means of improving NAND endurance. Moreover, given an
erase operation, since a nominal erase voltage tends to excessively damage
NAND memory cells in the beginning of an erase operation [20], slowing
down the erase speed (i.e., monotonically increasing the erase voltage from
a low voltage to the nominal voltage over a sufficiently long time period)
can minimize the damage [15][21], thus additionally improving NAND en-
durance. By modifying a NAND device to support multiple erase voltage
and time scaling modes (which have different impacts on NAND endurance),
and allowing a flash software to select the most appropriate erase scaling

modes depending on a workload, DeVTS has a significant potential to in-
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crease NIT/“E”.

However, in order to write data to a NAND block erased with a lower
erase voltage, it is required to use special write modes that can form thresh-
old voltage (Vth) distributions within a narrower Vth window. Since the Vth
window (i.e., the total width of V#h margins for a NAND cell) is tightly de-
signed to guarantee all the specified NAND requirements (i.e., endurance,
performance and retention), in order to assign more Vth margin to the en-
durance, the Vth margin for the other requirements needs to be reduced in-
stead. For example, a slow write mode with a fine-grained program control
can shorten the width of a Vi distribution so that the required Vth margin
for performance can be saved while the NAND program time increases [15].
Similarly, a short-retention write mode, which reduces the Vth gap between
two adjacent Vrh states, can save the required V#h margin for retention while
the retention capability is sacrificed [16] [12].

In order to estimate the impact of the special write modes (i.e., slow
write modes or short-retention write modes) on NAND endurance, we de-

velop a unified NAND endurance model which accurately captures the trade-

off relationships between NAND endurance and NAND performance/retention

capabilities. Based on the NAND endurance model, when a slow or short-
retention write mode is used at the expense of the performance or retention
capability, we can estimate how much the erase voltage can be lowered and

its impact on NAND endurance.
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3.1 Erase Voltage and Time Scaling

3.1.1 Motivation

The physical mechanism of endurance degradation is closely related
to stress-induced damage in the tunnel oxide layer of a NAND memory
cell [16]. Since the probability of oxide damage has an exponential depen-
dence on the stress voltage [19], lowering the stress voltage (i.e., the pro-
gram voltage Vpg, or the erase voltage Vg, qse) during P/E cycles can be an
effective means of improving NAND endurance.

Although the maximum Vp,,, to complete a program operation is usu-
ally higher than Vg,qs., NAND endurance is primarily degraded during
erase operations. This is because the stress time interval of an erase op-
eration is about 100 times longer than that of a program operation. Further-
more, since written data on a certain cell is likely to be changed randomly,
the probability that the cell consecutively experiences the maximum Vpg,,
during P/E cycles is very low. On the contrary, all the cells in a NAND block
experience VE,qse at all times during P/E cycles. Therefore, we can assume
that changing Vg,..se has a more significant impact on NAND endurance.

In order to verify our assumption, we evaluated the effects of two dif-
ferent stress-voltage-reduction policies, shown in Figure 10(a), on NAND
endurance. In the ‘lowering Vg, qse” policy, Wy 4, shrinks to the right direc-
tion (compared to the default case) so that Vg, is lowered by 1 V while
Vpgm is not changed. On the other hand, in the ‘lowering Vpg,,” policy,
Wiy, shrinks to the left direction so that the maximum Vpg,, is reduced

by 1 V while Vg, 4se is maintained. In our evaluation, ten blocks out of two
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Figure 10: Comparison of the impacts of lowering Vpg,, and Vg,qse On
NAND retention errors.

20-nm node NAND chips were selected for each policy. As the main eval-
uation metric, we measured the number of retention errors (i.e., bit errors
after 3K pre-cycling and 1 hour’s baking at 100°C [22]) per 1-KB cells
because it reflects the effective degree of NAND wearing [15]. As shown
in Figure 10(b), when the ‘lowering Vpyy,” policy was used, the number
of retention errors was reduced by only 5.3%, on average, over the default
case. However, when the ‘lowering Vg, qse’ policy was used, the number of
retention errors was reduced by 34.7%, on average, over the default case.
These results clearly show that lowering Vg, is much more effective than

lowering Vpy, in improving NAND endurance.

3.1.2 Erase Voltage Scaling

In order to evaluate the effect of erase voltage scaling on NAND en-

durance, we performed NAND cycling tests by using different Vg q4.’s. Ina
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Figure 11: The effect of erase voltage scaling on NAND endurance.

cycling test, program and erase operations are repeated 3,000 times. Our cy-
cling tests for each case were performed with 100 blocks out of five 20-nm
node NAND chips. After cycling tests, we measured the NAND retention
BER (i.e., the number of retention errors divided by the total number of
cells) for each block as a measure of wearing degree of NAND memory
cells. The measured BERs were normalized over the retention BER when

the nominal erase voltage Vpominal

Toreee @ was used. Figure 11(a) shows how the

retention BER changes, on average, as the number of P/E cycles increases
while different Vg, qse’s are used. We represent different Vg,.qs.’s using an
erase voltage scaling ratio 7¢, (0 < ¢y, < 1). When 7, is set to z, Vgyase 1S
reduced by (1 — z)x Vpominal Aq shown in Figure 11(a), the more Vigygse
is reduced (i.e., the lower r.,’s), the lower the retention BERs. For example,
when 7., is set to 0.93, the normalized retention BER is reduced by 30%
after 3K P/E cycles over the Vominal cage,

Since different Vg,4se’s affect NAND endurance by different amounts,
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we introduce a new endurance metric, called effective wearing, which rep-
resents the effective degree of NAND wearing per a P/E cycle. Based on a
linear approximation model' which simplifies the NAND wear-out behav-
ior over P/E cycles as shown in Figure 11(a), we represent effective wearing
with a normalized retention BER after 3K P/E cycles. For example, when
ngg;i”“l is used (i.e., 7, = 1.00), effective wearing is 1.00. On the other
hand, when Vg,.qs is reduced by 7% (i.e., ., = 0.93), effective wear-
ing becomes 0.70. As shown in Figure 11(b), since effective wearing has a
near-linear dependence on r,, effective wearing for a different r, can be
estimated by a linear regression model. In this dissertation, we will use a
NAND endurance model with five erase voltage modes EVmode;’s which
have five different r.,’s.

The effect of lowering Vg,qse on NAND endurance can be estimated
by accumulating effective wearing for each P/E cycle. After 3K P/E cycles,
for example, the total sum S EW of effective wearing with Vzominal jg
3,000 (= 1.00 x 3000), but when ., is set to 0.93, SEW is only 2,100
(= 0.70 x 3000). Since NAND reliability is maintained until ¥ EW reaches
3,000, Npjp7 can be increased by 1,286 (= (3000 — 2100)/0.70) when
VErase is reduced by 7% over Vominal,

Since we did not have access to NAND chips from different manufac-

turers, we could not prove that our test results can be generalized. However,

'In this dissertation, we use a linear approximation model which simplifies the wear-out
behavior over P/E cycles. Our current linear model can overestimate the effective wear-
ing under low erase voltage scaling ratios while it can underestimate the effective wearing
under high erase voltage scaling ratios. We verified that, by the combinations of over-/under-
estimations of the effective wearing in our model, the current linear model achieves a rea-
sonable accuracy with an up to 10% overestimation [20] while supporting a simple software
implementation.
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since our tests are based on widely-known device physics which have been
investigated by many device engineers and researchers, we are convinced
that the consistency of our results would be maintained as long as NAND
flash memories use the same physical mechanism (i.e., FN-tunneling) for
program and erase operations. We believe that our results will also be effec-
tive for future NAND devices as long as their operations are based on the
FN-tunneling mechanism. It is expected that current 2D NAND devices will
gradually be replaced by 3D NAND devices, but the basis of 3D NAND is

still the FN-tunneling mechanism.

3.1.3 Erase Time Scaling

Endurance degradation is directly proportional to Vg,qse in an erase
operation as described in Section 3.1.2. When Vg4 is applied to a NAND
block, however, NAND memory cells are likely to be over-damaged by
VErase- Since the actual voltage across the tunnel oxide layer is the sum
of VErase and the Vth of a cell [20], an unintended higher (than Vg,4se)
voltage may cause additional damage (which is dependent on the cell’s Vih)
to the cell until all the programmed cells are sufficiently erased. For exam-
ple, NAND memory cells which have higher Vih’s (e.g., the P3 state) are
more damaged than those that have lower Vii’s (e.g., the E state).

In order to minimize oxide damage in the beginning of an erase opera-
tion, it is necessary to properly control the applied Vg,qse SO that the actual
voltage across the tunnel oxide layer does not exceed Vg4 throughout the
erase operation. We implemented this idea by modifying the existing incre-

mental step pulse erasing (ISPE) scheme [23] so that the applied Vg qse
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Figure 13: The effect of erase time scaling on NAND endurance.

gradually increases from a low voltage (e.g., VErqse — the average Vth of
the P3 state) to Vg,qse Over a sufficiently long time period as shown in Fig-
ure 12. However, when the modified ISPE scheme is used for an erase oper-
ation, the erase time (e.g., Tgl;’a“g . shown in Figure 12) inevitably increases
because more ISPE loops are needed to complete the erase operation.

As shown in Figure 13(a), effective wearing decreases near-linearly as
the erase time increases. For example, when the erase time increases three-

fold, effective wearing is reduced, on average, by 19%. We represent the

erase speed mode with a default erase time by ESmode f,4; While that with
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a long erase time is represented by ESmode g4,,. As shown in Figure 13(b),
the effect of ESmodey,, on improving NAND endurance can be exploited

whenever longer erase times are acceptable regardless of r¢,,.

3.2 Write Capability Tuning

If a NAND block is shallowly erased (i.e., erased with a lower volt-
age), the available Vth window for a program operation is also reduced.

This is because Wy, is mainly affected by Vﬁ’;‘i;‘; (which determines the

requirement of Vg,..se) as explained in Section 2.1. For example, as shown
in Figure 14, if a NAND block is shallowly erased with a low erase voltage

View (which is lower than Vzominaly 17, is reduced by a saved Vih

margin AWy, (which is proportional to the voltage difference between

ypominal and Vlow ) Since Vih distributions should be formed within the
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Figure 14: An example of NAND capability tuning for writing data to a
shallowly erased NAND block.
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tion, we describe several write capability tuning techniques to save Wy,
and present the NAND endurance model to estimate the impact of the pro-

posed tuning techniques on NAND endurance.

3.2.1 Write Performance Tuning

In order to reduce Wp;’s, a fine-grained ISPP step control is needed
because Wp; is directly proportional to the ISPP step voltage Vigpp [18].
However, since the number of ISPP loops to complete a program operation
is inversely proportional to Vispp [15], the program time Tpg,;, inevitably
increases as shown in Figure 15(a) if narrow Vth distributions are required.
Figure 15(b) shows how much Vispp can be reduced as Tpy,, increases.
Tpgym was normalized over the nominal program time Tﬁ;’rn’im“l (e.g., 1,300
s [3]). We denote Vigpp scaling ratio over the nominal ISPP step voltage
vpeminal by rropp (0 < rrgpp < 1). When r7gpp is set to z, Vigpp is

reduced by (1 — x) x {/Irfgc)]rjn]gnal.
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Figure 15: The proposed write performance tuning.
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In our proposed write-performance tuning technique, we define three
different write-speed modes, WSmodeq, WSmode, and WSmodes, as shown
in Figure 15(b). WSmode is the fastest write mode which has the same
Tpym as that of the nominal write mode, but cannot reduce V;spp. Alterna-
tively, WSmodesy, the slowest write mode, has a T'/py;,, two times longer (i.e.,
the normalized T’pgy, is 2.0) than the nominal write mode, but can reduce
Vispp by 50% (i.e., rrspp is 0.50) over V[QO]TIQ"“I.

Since Wp; has a linear dependence on Vrgpp (which is determined by
the write-performance requirement as shown in Figure 15(b)), AWy, by

tuning T'py,, is expressed as follows (for an MLC NAND device):

3

3
AWy, => AWpi=> (1 —rispp) x Vigpp.  @3.1)
i=1 i=1

For example, if V;¥minal is 400 mV, and a longer Tpy,,, two times as long

as Treminal jg acceptable, Wy, can be reduced by 600 mV (= 3 x ((1 —
Pgm P y

0.50) x 400 mV)).

3.2.2 Retention Capability Tuning

NAND flash memory is required to retain its stored data for the spec-
ified retention time (e.g., 1 year at 30 °C [14]). In order to guarantee the
NAND retention requirement throughout the storage lifespan, Mp;’s are
usually fixed during device design times to cover the maximum Vth change
under the worst-case operating condition (i.e., the maximum number of P/E
cycles and the specified retention time). However, since such worst-case op-

erating conditions rarely occur, Mp;’s are not fully needed in most common
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cases. For example, since the Vth change due to the charge-loss phenomenon
is proportional to the number of P/E cycles [16], only part of M p; is enough
for young NAND memory cells (that have experienced fewer P/E cycles)
to meet the retention-time requirement. Moreover, since the Vth change is
also proportional to a retention time [16], when written data are updated
frequently within a short time period, Mp; for such data can be further re-

duced.

Static Retention Tuning

In order to determine how much Mp; is required as the number of
P/E cycles increases, we performed NAND cycling tests over varying P/E
cycles. A cycling test for each case was performed with more than 2,000
NAND pages (from 20 blocks out of 2 NAND chips). After the cycling tests,
we measured the average change in Vth for each block after 1 hour’s baking
at 100°C. Measured average Vth change was normalized over the maxi-
mum required Vrh margin M 2" under the worst-case operating condition
(i.e., 3K P/E cycles and 1-year retention time). We represent the normalized
average Vth change over varying P/E cycles as the static M p; scaling ratio
.- Figure 16(a) shows r; , variations over varying P/E cycles. After 0.5K
P/E cycles, for example, only 71% of M is required (i.e., 75, 1s 0.71).
Based on the measurement results, we constructed a simplified static Mp;
scaling model where r;,, changes every 0.5K P/E cycles as shown by the

dotted line in Figure 16(a). For a given number of P/E cycles, AWy, by

tuning the NAND retention capability is expressed as follows (for an MLC
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Figure 16: The simplified M p; scaling models for retention capability tun-
ing.

NAND device):

3 3
AWy, = ZAMPi = Z(l — Trer) X MPET. (3.2)

i=1 i=1

For example, if the sum of three M 2**’s is 900 mV, and the number of P/E
cycles is less than 0.5K, Wy, is reduced by 261 mV (= (1 — 0.71) x 900

mV).

Dynamic Retention Tuning

In order to determine how much M p; is required as the retention time
increases, we performed NAND cycling tests over varying retention times
and measured the average change in Vth for each retention time interval.
Measured average Vih change was normalized over Mp**. We represent
the normalized average V¢h change over varying retention times as the dy-

namic M p; scaling ratio r%,. The solid lines in Figure 16(b) show rd,, vari-
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ations over varying retention times with more than 2,000 NAND pages. In
order to minimize the management overhead, we simplify the r%,, changes
over varying retention times into two different write-retention modes (i.e.,
WRmode sport and WRmode;,p4) as shown by the dotted line in Figure 16(b).
WRmode g is the long-retention write mode which fully supports the spec-
ified retention time (i.e., 1 year), but cannot reduce Mp; (i.e., 7%, is 1.00).
Alternatively, WRmode ¢ is the short-retention write mode which sup-
ports only a 0.07-day retention time while requiring only 33% of Mp**

(i.e., %, is 0.33). By combining 7*_, with r&
ret y g

et <.¢» Equation 3.2 is re-expressed

as follows:

3

3
AWy =3 AMp;i =3 (1 =15, x i) x M. (3.3)
=1 =1

For example, when P/E cycle count is less than 0.5K, and the retention re-
quirement is less than 0.07 days, Wy, is reduced by 689 mV (= (1—0.71x
0.33) x 900 mV).

3.2.3 Disturbance Resistance Tuning

Since the program disturbance and the read disturbance of NAND flash
memory are proportional to the number of P/E cycles [16], we measured
how much Mp;s is required as the number of P/E cycles increases. Af-
ter performing NAND cycling tests with varying P/E cycles and a specified
number (i.e., 400K [6]) of read cycles, we measured the average change in
Vth in the E state. Our tests were performed with more than 2,000 NAND

pages. Measured average Vrh change was normalized over the maximum
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Table 1: A simplified r4;5; model over varying P/E cycles.
P/E Cycles [K] | 05 | 1.0 | 1.5 | 20 | 25 [ 3.0
raise | 0431057074090 | 095 | 1.00

required Vih margin Mpy{t7 under the worst-case operating condition (i.e.,
3K P/E cycles and 400K read cycles). We represent the normalized average
Vth change caused by NAND disturbance as 4 (0 < 7455t < 1). Table 1
summarizes our simplified r4;5; model over varying P/E cycles. For exam-
ple, after 0.5K P/E cycles, only 43% of M}/ is required (i.e., 74;s¢ 18 0.43).
For a given number of P/E cycles, AWy, by tuning the NAND disturbance

resistance can be expressed as follows:

AWy, = AMpisi = (1 — rgisr) X Mpyi; . (3.4)

Given that M7)%7 is 400 mV, and the number of P/E cycles is less than 0.5K,

W4, is reduced by 228 mV (= (1 — 0.43) x 400 mV).

3.3 NAND Endurance Model

Combining the proposed NAND capability tuning (i.e., write-performance
tuning, retention-capability tuning, and disturbance-resistance tuning) with
erase voltage/time scaling, we developed a novel NAND endurance model
which can be used with DeVTS-enabled NAND chips. In order to construct
the NAND endurance model, we calculate AWy, for each combination of
NAND capability tuning modes by using Equations 3.1, 3.3, and 3.4. Since

areduced erase voltage (= (1 —7¢y) X ngg’gé"“l) is proportional to AWy,
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Table 2: An example of a parameter set used to estimate effective wearing.

Parameter | Vigeminal | Mper | vigggel | Y Mpe | a
Value 14V 400 mV 400 mV 900 mV 0.6

Ty can be re-expressed as follows:

oy = 1 — _ AWy (3.5)

nominal )
VErase X G

where a. is the empirical scaling parameter which represents the impact of
the VE,qse change on the Vih window. For example, if a is 0.60 and Vg, qse
is reduced by 1.00 V, Wy, can be effectively reduced by 0.60 V. When
Tey 18 calculated from Equation 3.5 for a given AWy, the correspond-
ing effective wearing can be estimated by the linear equation described in
Section 3.1.2. Table 2 summarizes the parameter set used to construct the
NAND endurance model in this dissertation. All the data in our model is
based on measurement results with 20-nm node NAND chips.

As summarized in Table 3, EVmode;’s are decided by the combina-
tions of two write-retention modes (i.e., WRmodey,, and WRmode sp,or¢)
and five write-speed modes (i.e., WSmodeg ~ WSmode,) because r¢,’s are
different for each combination. Figures 17 and 18 show our DeVTS-enabled
NAND endurance (i.e., the effective wearing) model with two erase speed
modes (i.e., ESmode f44 and ESmodey,) and two write-retention modes
(i.e., WRmode o,y and WRmode z40,¢). Since AWyy,’s are also affected by
static retention-capability tuning and disturbance-resistance tuning, the val-

ues of effective wearing vary whenever X E'W exceeds 0.5K. If the total
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Evmode | 0 [ 1 [ 2 [ 3[4 5s5]e6e]7]8]09
wsmode | O [ 1 [ 23 ]4]o]1]|2]3]4
WRmode long short

Table 3: The EVmode; decision rule.

sum of the effective wearing is less than 0.5K, for example, when a NAND
block is slowly erased before writing with the short-retention write mode
(i.e., WRmode ) and the slowest write-speed mode (i.e., WSmodey), the
lowest erase voltage (i.e., EVmodeg) can be used for an erase operation. In
this case, the effective wearing is only 0.29. The NAND endurance model
not only presents effective wearing for each combination of EVmode; and
ESmodey, used in an erase operation, but also specifies corresponding write
capability tuning modes (i.e., WSmode; and WRmode,,,) when writing data

to a NAND block erased with EVmode;.
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Figure 17: The proposed NAND endurance models for DeVTS-enabled
NAND chips when long-retention write mode WRmode,,4 is used.
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Chapter 4

Lifetime Improvement Technique

Using Write-Performance Tuning

In this chapter, we propose an SSD lifetime improvement technique,
called Dynamic Erase Voltage and Time scaling with Write Performance
Tuning (DeVTS-wPT), using the write-performance tuning technique based
on the DeVTS framework. Our DeVTS-wPT technique exploits the trade-
off relationships between the NAND endurance and erase voltages/speeds
at the firmware-level (or the software level in general) so that NAND en-
durance is improved while the overall write throughput is not affected. For
example, since the maximum performance of NAND flash memory is not
always needed in real workloads, a DeVTS-wPT based technique can ex-
ploit idle times between consecutive write requests for shortening the width
of threshold voltage distributions so that shallowly erased NAND blocks,
which were erased by lower erase voltages, can be used for most write re-
quests. Idle times can be also used for slowing down the erase speed. If such
idle times can be automatically estimated by a firmware/system software,
the DeVTS-wPT based technique can choose the most appropriate write
speed for each write request or select the most suitable erase voltage/speed
for each erase operation. By aggressively selecting endurance-enhancing

erase modes (i.e., a slow erase with a lower erase voltage) when a large idle
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time is available, NAND endurance can be significantly improved because
less damaging erase operations are more frequently used.

We have implemented the first DeVTS-wPT aware FTL, called dvs-
FTL, which dynamically adjusts write and erase modes in an automatic
fashion, thus improving NAND endurance with a negligible degradation in
the overall write throughput. In dvsFTL, we also revised key FTL software
modules (such as garbage collector and wear-leveler) to make them DeVTS-
wPT aware for maximizing the effect of DeVTS-wPT on NAND endurance.
Since no NAND chip currently allows an FTL firmware to change its pro-
gram and erase voltages/times dynamically, we evaluated the effectiveness
of dvsFTL with the extFlashBench emulation environment [24] using a
DeVTS-wPT-enabled NAND simulation model (which supports multiple
write and erase modes). Our experimental results using various I/O traces
show that dvsFTL can improve N]T/“g by 61.2% over an existing DeVTS-
wPT-unaware FTL with less than 2.2% decrease in the overall write through-

put.

4.1 Design and Implementation of dvsFTL

4.1.1 Overview

Based on our NAND endurance model presented in Section 3.3, we
have implemented dvsFTL, the first DeVTS-wPT-aware FTL, which auto-
matically changes write and erase modes depending on write throughput
requirements. dvsFTL is based on a page-level mapping FTL with addi-

tional modules for DeVTS-wPT support. Figure 19 shows an organizational
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overview of dvsFTL. The DVS manager, which is the core module of dvs-
FTL, selects a write-speed mode WSmode; for a write request and decides
both an appropriate erase voltage mode EVmode; and erase speed mode
ESmodey, for each erase operation. In determining appropriate modes, the
mode selector bases its decisions on the estimated write throughput require-
ment using a circular buffer. dvsFTL maintains per-block mode information
and NAND setting information as well as logical-to-physical mapping infor-
mation in the extended mapping table. The per-block mode table keeps track
of the current write mode and the total sum of the effective wearing for each
block. The NAND setting table is used to choose appropriate device settings
for the selected write and erase modes, which are sent to NAND chips via
a new interface DeviceSettings between dvsFTL and NAND chips. dvsFTL
also extends both the garbage collector and wear leveler to be DeVTS-wPT-

aware.

4.1.2 Write-Speed Mode Selection

In order to select the most appropriate write-speed mode (i.e., the slow-
est write mode among available write-speed modes which does not affect the
overall write performance), the Wmode selector in the DVS manager esti-
mates the write-performance requirement for a given write request based on
the utilization u™® of a write buffer. Since the write buffer queues incoming
requests before they are written, u"*® changes depending on the difference
between the incoming rate 7 of write requests from a host system and the
outgoing rate r°“ to NAND devices. When writes are requested in a spo-

radic fashion (i.e., r® < rout), uwb may decrease. In this case, the Wmode
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Figure 19: An organizational overview of dvsFTL.

selector estimates that the maximum write performance of NAND devices is
not fully needed. On the contrary, when write requests are so intensive (i.e.,
P > oty that u™? increases, it is estimated that queued requests should
be written as fast as possible.

Figure 20 shows an overview of the write-speed mode selection in dvs-
FTL. In our implementation, the write-performance requirement is classified
into five levels by four buffer utilization boundaries as shown in Figure 20.
For example, when «™? is lower than 0.20, the requests queued in the write
buffer is written to a NAND page with WSmodey, the slowest write mode.
However, when u? is higher than 0.80, in order to satisfy the urgent require-
ment of write performance, the write-speed mode is changed to WSmodey,

the fastest write mode.
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Our proposed write-speed mode selection technique can efficiently adapt

to varying r*" as well as °“! (which is proportional to the number of avail-
able NAND chips that are ready to be written). When NAND chips are
not available due to garbage collection, r°“ is significantly reduced [25].
For example, when garbage collection operations are performed in half of
NAND chips, 7°"¢ is reduced by 50%. If r°“ reaches below 7" so that u?
increases, a faster write mode is more suited to mitigate the side effect of
garbage collection. Since our estimation metric is based on u™® which de-
pends on both r°“! and 7", the Wmode selector can determine the most
proper write-speed mode by taking into account the variations in both "

and 7°“* during run times.
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4.1.3 Erase Voltage Mode Selection
On-Demand Selection

Selecting the most appropriate erase-voltage mode is the most essen-
tial step in dvsFTL because the erase voltage has a significant impact on
NAND endurance as well as the overall write performance as described in
Sections 3.1.2 and 3.2.1, respectively. When EVmodes (which uses the low-
est erase voltage) is always used in erase operations, NAND endurance can
be improved to the fullest extent. However, since a NAND block erased with
EVmodey allows only WSmodey (which is the slowest write-speed mode)
in a program operation, when intensive write operations are requested, the
write performance can be degraded significantly. On the contrary, when
EVmodeq (which uses the highest erase voltage) is used at all times, DeVTS-
wPT cannot reach its full potential while still maintaining the overall write-
performance requirement. Therefore, similar to the write mode selections,
estimating the requirements of future write requests is also a critical step in
selecting the right erase-voltage mode.

When a foreground garbage collection process is invoked, since the
write-speed mode and write-retention mode of a received write request have
already been chosen by the Wmode selector, the victim block can be erased
with the corresponding erase-voltage mode as defined in the NAND en-
durance model. For example, if XEW is less than 0.5K for a victim block,
and WSmode( has been chosen, the Emode selector decides EVmode( as
the appropriate erase-voltage mode.

However, when a background garbage collection process is invoked, it

44



is difficult to estimate the requirements of subsequent write requests. This
is because background garbage collection is activated when write requests
are not issued for more than the threshold time interval so that the recent
history of write requests is nearly initialized. In our implementation, the
Emode selector postpones deciding the right erase-voltage mode and selects
EVmodey as the default so that a victim block is shallowly erased (with
the lowest erase voltage) during the background garbage collection process.
The right erase-voltage mode is lazily decided when the next phase of write
requests (after the background garbage collection process) is written to that
block. If the selected write modes are not compatible with Evmodey, the
selected block is additionally erased using the lazy erase operation (of which
latency is about 1,000 us), described in the next section. Although the write
latency for the first page in the block is increased by 77% because the lazy
erase operation is performed in advance of the first-page write, its negative
impact on the overall write performance is less than 0.6% while the potential

of DeVTS-wPT can be fully utilized in terms of the lifetime improvement.

Lazy Selection

As explained in Section 3.2.1, when a NAND block was erased with
EVmode;, a page in the shallowly erased block can be programmed using
specific WSmode;’s (where j > ) only because the requirement of the
saved threshold voltage margin cannot be satisfied with a faster write-speed
mode WSmodey, (kK < 4). In order to write data with a faster write-speed
mode to the shallowly erased NAND block, the shallowly erased block

should be erased further before it is written. We propose a lazy erase scheme
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which additionally erases the shallowly erased NAND block, when neces-
sary, with a small extra erase time (i.e., 20% of the nominal erase time).
Since the effective wearing mainly depends on the maximum erase voltage
used, erasing a NAND block by a high erase voltage in a lazy fashion does
not incur any extra damage than erasing it with the initially high erase volt-
age. Although it takes a longer erase time, the total sum of the effective
wearing by lazily erasing a shallowly erased block is less than that by eras-
ing with the initially high erase voltage. This can be explained in a similar
fashion as why the erase time scaling is effective in improving the NAND
endurance as discussed in Section 3.1.3. The endurance gain from using
two different starting erase voltages is higher than the endurance loss from

a longer erase time.

4.1.4 Erase Speed Mode Selection

The Emode selector chooses a proper erase-speed mode which can of-
fer an additional lifetime benefit without affecting the overall write per-
formance. Since write requests waiting in the write buffer cannot be pro-
grammed to NAND chips during an erase operation, when writes are contin-
uously requested, the buffer utilization will increase. The increase Au®"*%¢
in the buffer utilization due to the erase operation can be estimated by how
many write requests are fulfilled during that time interval. As a result, the
effective buffer utilization * after the erase operation is expressed as the
sum of the current buffer utilization u™® and Auc"®*¢. In selecting an erase-
speed mode, the Emode selector first checks whether or not erasing with

ESmodegyy, raises u* above 1.0. If it is estimated that u* will be higher
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than 1.0, in order to avoid buffer overflow, ESmode 44 is selected. Other-
wise, the Emode selector additionally checks whether or not erasing with
ESmodegj,, causes a change in the current write-speed mode. If «* is in-
creased above the current buffer utilization boundary (e.g., 0.20, 0.40, 0.60,
0.80, or 1.00 as shown in Figure 20), subsequent write requests will be writ-
ten with a faster write mode. In this case, since the endurance gain by us-
ing a slower erase mode is smaller than the endurance gain lost by using
a faster write mode as shown in Figures 17 and 18, ESmode,,, is not a
suitable choice in terms of the lifetime improvement. If it is confirmed that
ESmode gy, Will not affect the overall write performance and actually has

a lifetime benefit, it is then selected for the erase operation.

4.1.5 DeVTS-wPT Aware FTL Modules
Extended Mapping Table

Since erase operations are performed at the NAND block level, the
per-block mode table maintains five linked lists of blocks which were erased
using the same erase voltage mode. When the DVS manager decides a write-
speed mode for a write request, the corresponding linked list is consulted to
locate a destination block for the write request. Also, the DVS manager
informs a NAND chip how to configure appropriate device settings (e.g.,
ISPP/ISPE voltages, the erase voltage, and reference voltages for read/verify
operations) for the current write-speed mode using the per-block mode table.
Once NAND chips are set to a certain mode, an additional setting is not

necessary as long as the write and the erase modes are maintained. For a
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read request, since different write-speed modes require different reference
voltages for read operations, the per-block mode table keeps track of the
current write mode for each block so that a NAND chip changes its read
references before serving a read request.

In order to retrieve the per-block mode table, maintained in volatile
RAM, after an SSD is rebooted, dvsFTL writes the device-setting informa-
tion for each block into the spare area of the first page of that block. Since
the read reference voltages for a block is also unknown just after rebooting,
dvsFTL first searches the right reference voltages among the predefined set
of the read reference voltages corresponding to each erase mode. After ap-
propriate voltages are found, the device-setting information for that block

can be recovered by reading the spare area of its first page.

DeVTS-wPT Enabled Garbage Collection

When a garbage collection process is invoked, selecting the most suit-
able write-speed mode for data copy operations is also a challenging is-
sue to maximize the efficiency of DeVTS-wPT. If valid data is copied with
the fastest write mode at all times, the performance overhead of a garbage
collection process can be minimized. However, since free pages in deeply
erased blocks (which are compatible with the fastest write mode) are fre-
quently used, the probability of erasing blocks with the highest erase voltage
is increased inevitably. Conversely, if the slowest write mode is always used
in data copy operations, the overall write performance may be significantly
degraded. Since write requests waiting in the write buffer cannot be pro-

grammed to NAND chips during data copy operations, the buffer utilization
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may be effectively increased by Au“°PY which is proportional to the number
of valid pages to be copied. Consequently, the effective buffer utilization «*
after the data copy operation is expressed as the sum of the current buffer
utilization u*? and AuPY. Similar to the erase-speed mode selection, if it
is estimated that «* will be raised above 1.0, the Wmode selector selects
the fastest write mode (i.e., WSmode(). Otherwise, the Wmode selector se-
lects the fastest write mode among available write-speed modes that does

not change the current write-speed mode.

DeVTS-wPT Enabled Wear leveling

Since different erase voltage/time affects the NAND endurance differ-
ently as described in Section 3.1, the reliability metric (based on the number
of P/E cycles) of the existing wear leveling algorithm [26] is no longer valid
in a DeVTS-wPT-enabled NAND flash chip. In dvsFTL, the DeVTS-wPT-
aware wear leveler uses the total sum of the effective wearing instead of the
number of P/E cycles as a reliability metric, and tries to evenly distribute the

total sum of the effective wearing among NAND blocks.

Device Setting Interfaces

As semiconductor technologies reach their physical limitations, it is
necessary to use cross-layer optimization between system software and NAND
devices. As aresult, some of internal device interfaces are gradually opened
to public in the form of additional ‘user interface’. For example, in order

to track bit errors caused by data retention, a new ‘device setting interface’
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which adjusts the internal reference voltages for read operations is recently
opened to public [27][28]. There are already many set and get functions for
modifying or monitoring NAND internal configurations in the up-to-date
NAND specifications such as the toggle mode interface and ONFI. For the
measurements presented here, we were fortunately able to work in conjunc-

tion with a flash manufacturer to adjust erase voltage as we wanted.

4.2 Experimental Results

4.2.1 Experimental Settings

We evaluated the effectiveness of the proposed dvsFTL with extextFlash-
Bench, an extended version of an existing unified development environ-
ment for NAND flash-based storage systems [24]. In order to keep track
of temporal interactions among various NAND operations, extFlashBench
emulates the key operations of DeVTS-wPT-enabled NAND devices in a
timing-accurate fashion using high-resolution timers (or hrtimers) (which
are available in a recent Linux kernel [29]).. Our validation results on an
8-core Linux server system show that the extFlashBench is very accurate.
For example, variations on the program time and erase time of our DRAM-
based NAND emulation models are less than 0.8% of Trrog and 0.3% of
Trrs, respectively.

For our evaluation, we modified a NAND flash model in extFlashBench
to support DeVTS-wPT-enabled NAND flash chips with five write modes,
five erase voltage modes, and two erase speed modes. Each NAND flash

chip employed 128 blocks which were composed of 128 8-KB pages. The
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Table 4: The latency variations of NAND functions used in the experiments.

NAND function Speed mode Latency [3]
WSmodeq 1,300 us

WSmodeq 1,482 us

Program WSmodes 1,729 us
WSmodes 2,080 us

WSmodey 2,600 us

ESmode fqst 5,000 us

Erase ESmodegoy 20,000 us
Read - 100 us

maximum number of P/E cycles was set to 3,000. The nominal page pro-
gram time (i.e., Tprog) and the nominal block erase time (i.e., Tgrg) were
set to 1.3 ms and 5.0 ms, respectively. Table 4 summarizes the latency vari-
ations of write-speed modes and erase-speed modes used in our evaluations.

We evaluated the proposed dvsFTL in two different environments, mo-
bile and enterprise environments. Since the organizations of mobile stor-
age systems and enterprise storage systems are quite different, we used two
extFlashBench configurations for different environments as summarized in
Table 5. For a mobile environment, extFlashBench was configured to have
two channels, and each channel has a single NAND chip. Since mobile sys-
tems are generally resource-limited, the size of a circular buffer for a mo-
bile environment was set to 80 KB only (i.e., equivalently 10 8-KB pages).
For an enterprise environment, extFlashBench was configured to have eight

channels, each of which was composed of four NAND chips. Since enter-
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Environments Channels Chips Buffer

Mobile 2 2 80 KB
Enterprise 8 32 32 MB

Table 5: Summary of two extFlashBench configurations.

prise systems can utilize more resources, the size of a circular buffer was
set to 32 MB (which is a typical size of data buffer in HDD) for enterprise
environments.

We carried out our evaluations with two different techniques: baseline
and dvsFTL. Baseline is an existing DeVTS-wPT-unaware FTL that always
uses the highest erase voltage mode and the fast erase mode for erasing
NAND blocks, and the fastest write mode for writing data to NAND blocks.
dvsFTL is the proposed DeVTS-wPT-aware FTL which decides the erase
voltage and the erase time depending on the characteristic of a workload and
the write-performance tuning techniques, described in Sections 3.1, 3.2.1
and 4.1, so it can maximally exploit the benefits of dynamic program and
erase scaling.

Our evaluations were conducted with various I/O traces from mobile
and enterprise environments. In order to replay I/O traces on top of the
extFlashBench, we developed a trace replayer. The trace replayer fetches I/O
commands from I/O traces and then issues them to the extFlashBench ac-
cording to their inter-arrival times to a storage device. After running traces,
we measured the maximum number of P/E cycles, Nlﬁ””/‘g, which was actu-
ally conducted until flash memory became unreliable. We then compared it

with that of Baseline. The overall write throughput is an important metric
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that shows the side-effect of dvsFTL on storage performance. For this rea-
son, we also measured the overall write throughput while running each I/O

trace.

4.2.2 Workload Characteristics

We used 8 different I/O traces collected from Android-based smart-
phones and real-world enterprise servers. The m_down trace was recorded
while downloading a system installation file (whose size is about 700 MB)
using a mobile web-browser through 3G network. The m_p2p1l trace in-
cluded I/O activities when downloading multimedia files using a mobile P2P
application from a lot of rich seeders. Six enterprise traces, hm_0, proj_0,
prxy_0,srcl_2, stg-0,and web_0, were from the MS-Cambridge bench-
marks [30]. However, since enterprise traces were collected from old HDD-
based server systems, their write throughputs were too low to evaluate the
performance of modern NAND flash-based storage systems. In order to
partially compensate for low write throughput of old HDD-based storage
traces, we accelerated all the enterprise traces by 100 times so that the peak
throughput of the most intensive trace (i.e., src1_2) can fully consume
the maximum write throughput of our NAND configuration. (In our evalu-
ations, therefore, all the enterprise traces are 100x-accelerated versions of
the original traces.)

Since recent enterprise SSDs utilize lots of inter-chip parallelism (mul-
tiple channels) and intra-chip parallelism (multiple planes), peak through-
put is significantly higher than that of conventional HDDs. We tried to find

appropriate enterprise traces which satisfied our requirements to (1) have
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public confidence; (2) can fully consume the maximum throughput of our
NAND configuration; (3) reflect real user behaviors in enterprise environ-
ments; (4) are extracted from under SSD-based storage systems. To the best
of our knowledge, we could not find any workload which met all of the
requirements at the same time. In particular, there are few enterprise SSD
workloads which are opened to public.

Table 6 summarizes the distributions of inter-arrival times of our I/O
traces. Inter-arrival times were normalized over T;goegwe which reflects

parallel NAND operations supported by multiple channels and multiple chips

per channel in the extFlashBench. For example, for an enterprise environ-

Teffective

ment, since up to 32 chips can serve write requests simultaneously, 7555

is about 40 us (i.e., 1300 us of Tproq is divided by 32 chips.). On the
other hand, for a mobile environment, since there are only 2 chips can
serve write requests at the same time, Tﬁgoegm is 650 ps. Although the
mobile traces collected from Android smartphones (i.e., m_down [31] and
m_p2p1l)exhibit very long inter-arrival times, normalized inter-arrival times
over T;goegm are not much different from the enterprise traces, except that

the mobile traces show distinct bimodal distributions which no write re-

quests in 1 <t< 2.

4.2.3 Endurance Gain Analysis

In order to understand how much Nlﬁ””/ag is improved by DeVTS-wPT,

each trace was repeated until the total sum of the effective wearing reached

3K. Measured Nlﬁ””/‘g values were normalized over that of Baseline. Fig-

ure 21 shows normalized Nl’?/ag ratios for eight traces with two different
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Distributions of normalized

Trace inter-arrival times ¢ over T;J;zfégive [%]
t<1 1 <t< 2 t>2
pro3.0 40.6% 47.0% 12.4%
srcl.2 41.0% 55.6% 3.4%
hm_0 14.2% 72.1% 13.7%
prxy. 0 8.9% 34.6% 56.5%
stg-0 7.1% 81.5% 11.4%
web_0 5.4% 36.7% 56.9%
m_down 45.9% 0.0% 54.1%
m_p2pl 49.5% 0.0% 50.5%

Table 6: Normalized inter-arrival times of write requests for eight traces
used for evaluations.

techniques. Overall, the improvement on NIT/“E” is proportional to inter-
arrival times as summarized in Table 6; the longer inter-arrival times are,
the more likely slow write modes are selected.

dvsFTL improves Nlﬁ””/ag by 69%, on average, over baseline for the
enterprise traces. For proj_0 and src1_2 traces, improvements on NlT/aEx
are less than 50% because inter-arrival times of more than 40% of write
requests are shorter than T;goegwe so that it is difficult to use the lowest
erase voltage mode. For the other enterprise traces, Ng“g is improved by
79%, on average, over baseline.

On the other hand, for the mobile traces, dvsFTL improves Nl’?/ag by
only 38%, on average, over baseline. Although more than 50% of write re-
quests have inter-arrival times twice longer than T;goegwe, dvsFTL could
not improve NJ'% as much as expected. This is because the size of the

P/E
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Figure 21: Comparisons of normalized Nl’?/ag ratios for eight traces.

circular buffer is too small for buffering the increase in the buffer utiliza-
tion caused by the garbage collection. For example, when a NAND block
is erased by the fast speed erase mode, the buffer utilization is increased by
40% for the mobile environment while the effect of the fast erase mode on
the buffer utilization is less than 0.1% for the enterprise environment. More-
over, by the same reason, the slow erase speed mode cannot be used in the

mobile environment.

4.2.4 Overall Write Throughput Analysis

Although dvsFTL uses slow write modes frequently, the decrease in
the overall write throughput over Baseline is less than 2.2% as shown in
Figure 22. For proj_0 trace, the overall write throughput is decreased by
2.2%. This is because, in pro j_0 trace, the circular buffer may become full
by highly clustered write requests. When the circular buffer becomes full,
if the foreground garbage collection should be invoked, the write response

time of NAND chips can be directly affected. Although inter-arrival times
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Figure 22: Comparisons of normalized overall write throughputs for eight
traces.

in prxy_0 trace are relatively long over other enterprise traces, the overall
write throughput is degraded more than the other enterprise traces. This is
because almost all the write requests exhibit inter-arrival times shorter than
10 ms so that the background garbage collection is not invoked at all. (In
our dvsFTL setting, the background garbage collection is invoked when a
idle time between two consecutive requests is longer than 300 ms.) As a
result, the foreground garbage collection is more frequently invoked, thus
increasing the write response time.

We also evaluated if there is an extra delay from a host in sending a
write request to the circular buffer because of DeVTS-wPT. Although dvs-
FTL introduced a few extra queueing delay for the host, the increase in the
average queueing delay per request was negligible compared to T;goecéwe.
For example, for src1_2 trace, 0.4% of the total programmed pages were
delayed, and the average queueing delay per request was 2.6 us. For stg_0
trace, less than 0.1% of the total programmed pages were delayed, and the

average queueing delay per request was 0.1 us.
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4.2.5 Detailed Analysis

We performed a detailed analysis on the relationship between the erase
voltage/speed modes and the improvement of NIT/“Ex. Figure 23 presents dis-
tributions of EVmode’s used for eight I/O traces. Distributions of EVmode’s
exactly correspond to the improvements of IT/“E as shown in Figures 17
and 18; the more frequently a low erase voltage mode is used, the higher
the endurance gain is. In our evaluations for eight I/O traces, lazy erases are
rarely used for all the traces.

Figure 24(a) shows distributions of ESmode’s for eight I/O traces.
Since the slow erase mode is selected by using the effective buffer utiliza-
tion, there are little chances for selecting the slow erase mode for the mobile
traces because the size of the circular buffer is only 80 KB. On the other
hand, for the enterprise environment, there are more opportunities for select-
ing the slow erase mode. Even for the traces with short inter-arrival times

such as proj_0 and src1_2, only 5%~10% of block erases used the fast

erase mode.

58



O ESmode 45t B ESmode gjow

K
L
< 1.0
Q
g 08
()
w
w 06
o
2 04
o
=] 0.2
=
% 0.0 1 1 1 1 1 1 1 1
o+
N2 . Q Vv Q Q Q Q $<\ Q\’
e 7/ 7/ Ve e 7/
(=) Q@\ é(',\/ $ QCF\ &% \$Q‘§> RS Q’\/
N
(a) Distributions of ESmode’s used.
o 3.0
= C OdvsFTL — B dvsFTL
© 2.5 o
— R e e
> r
g§ 2.0 'E
2 E +14% +13%
— 1.5 VE
(] Nion el e
2 10 F
© o
€ o5 [
) 3
Z 00 C L L

proj 0  srcl_2 hm_0 prxy_0 stg 0 web_0

max

(b) The effect of ESmodesiow On improving Np/s.
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We also evaluated the effect of the slow erase mode on the improve-
ment of NIT/“E. For this for evaluation, we modified our dvsFTL so that
ESmode rqq 1s always used when NAND blocks are erased. (We represent
this technique by dvsFTL~.) As shown in Figure 24(b), the slow erase mode
can improve the NAND endurance gain up to 18%. Although the slow erase

mode can increase the buffer utilization, its effect on the write throughput

was almost negligible.
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Chapter 5

Lifetime Improvement Technique

Using Retention-Capability Tuning

In this chapter, we propose a comprehensive SSD lifetime improve-
ment technique, called Dynamic Erase Voltage and Time Scaling with Write
Performance and Retention Capability Tuning (DeVTS-wPRT), which uti-
lizes both the write performance tuning and retention capability tuning so
that the potential of the DeVTS framework reaches the fullest extent. Our
DeVTS-wPRT technique actively exploits the tradeoff relationships between
the NAND requirements at a software level so that NAND endurance can be
improved while the overall write performance and retention requirements
of SSDs are not affected. For example, when incoming write requests are
not so intensive that the maximum performance of NAND devices is not
fully required, a DeVTS-wPRT-enabled technique takes advantage of idle
times between consecutive write requests to tune down the program or the
erase speed as slowly as possible. In addition, when some of data is updated
frequently such that a long retention time is not needed, a DeVTS-wPRT-
enabled technique decides to tune down the retention capability of such
data as low as possible. If such a low-performance requirement or short-
retention requirement is detected, the DeVTS-wPRT-enabled technique se-

lects the most proper speed and age modes for each program operation, or
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chooses the most suitable voltage and speed modes for each erase operation.
By actively employing endurance-enhancing erase modes (i.e., a slow erase
mode with a lower erase voltage) depending on workload conditions, NIT/“Ex
is significantly increased because less damaging erase operations are more
frequently used.

We have implemented a DeVTS-wPRT-aware FTL, called dvsFTL+,
which dynamically adjusts the erase voltage and speed modes by properly
tuning the performance and retention capabilities of write requests. dvs-
FTL+ selects the most proper write speed mode and erase voltage/speed
modes based on the utilization of a write buffer. In order to decide the most
appropriate write-retention mode, an existing data separator in SSDs is re-
designed to securely predict the future update time of the current write re-
quest. When it predicts that the written data will not be updated until its
retention deadline expires, a data reclaim process is proactively invoked to
avoid retention failures. The existing key FTL modules (e.g., mapping ta-
ble, garbage collector and wear leveler) were also revised to make them
DeVTS-wPRT-aware to maximize the efficiency of dvsFTL+. We evalu-
ated the effectiveness of dvsFTL+ with an extFlashBench emulation en-
vironment [24] where the DeVTS-wPRT-enabled NAND emulation model
was integrated. Our experimental results using various I/O traces, collected
from enterprise servers, show that dvsFTL+ can increase NIT/“E” by 52%,
on average, over dvsFTL (which exploits only write-performance tuning).
dvsFTL+ can increase N ]T/“g by 94%, on average, over an existing DeVTS-
wPRT-unaware FTL without sacrificing the performance and retention re-

quirements of SSDs.
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5.1 Design and Implementation of dvsFTL+

5.1.1 Overview

In order to improve NAND endurance without affecting the other NAND
requirements, we have implemented a DeVTS-wPRT-aware FTL, dvsFTL+,
which dynamically changes erase scaling modes and write capability tuning
modes based on the NAND endurance model. Figure 25 illustrates an orga-
nizational overview of dvsFTL+ based on an existing page-level mapping
FTL with additional modules for supporting DeVTS-wPRT. The DVS man-
ager is the key module which selects the most appropriate erase scaling
mode and write capability tuning mode for a given write request depend-
ing on the performance and retention requirements. Firstly, the write-speed
mode (WSmode;) and erase-speed mode (ESmodey) are selected based on
the write-performance requirement estimated using the write buffer. Sec-
ondly, the write-retention mode (WRmode,,,) is chosen based on the re-
tention requirement predicted by the retention-time predictor. Finally, the
DVS manager decides the erase-voltage mode (EVmode;) by considering
selected write capability tuning modes. In order to preserve the retention re-
quirement, the retention keeper periodically checks the remaining retention
time of written data and rewrites them to another NAND page when their
retention deadline approaches.

The Wmode selector decides the most proper write-retention mode
for a given write request based on the predicted future update time (i.e.,
retention-time requirement) of that request. If it is predicted that a request

will be updated within the predefined time period, which is much shorter
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Figure 25: An organizational overview of dvsFTL+.

than the nominal retention-time specification of NAND devices, the Wmode
selector selects the short-retention write mode (i.e., WRmodep,,-+) for that
request. When a prediction regarding the future retention-time requirement
is incorrect, a reclaim process [28] should be performed to preserve the
durability of retention tuned data. However, since too frequent reclaim op-
erations can substantially cancel the lifetime benefit of retention-capability
tuning as well as interfere with foreground activities to serve user requests,
it is required to minimize the number of reclaimed pages and the overhead

of a reclaim operation.
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5.1.2 Retention Requirement Prediction

Our proposed retention-time predictor estimates the future retention-
time requirement of a write request based on the average update interval
for recent requests. Since there are only two write-retention modes in our
NAND endurance model, it is necessary to classify whether or not the aver-
age update interval is shorter than the predefined short retention-time inter-
val Tﬁe@f” (e.g., 0.07 days as defined in Section 3.2.2). In our implementa-
tion, the retention-time predictor is based on an existing data separator [26]
with a different control policy for capturing the average update interval and
for making a reliable decision on the write-retention mode (as will be de-
scribed in Section 5.1.3).

Each LBA is mapped to multi-dimensional counters incremented when-
ever corresponding write requests are issued. In order to compare the update
interval to 75707 all the counters are decayed regularly after a designated

ret

time interval Tjecq, (in this dissertation, 7gecqy = Tﬁg"”). If the update in-
terval of an LBA is shorter than T4y, the corresponding counter value will
increase. Otherwise, the counter values will decrease. After multiple decay-
ing intervals, when the counter value is greater than the predefined threshold
value, the retention-time predictor decides that the recent update interval of
that LBA is shorter than 732" on average. In this case, the retention-time
predictor predicts that the current write request will be also updated within
Tshert by exploiting the temporal locality of I/O requests.

Figure 26 shows a functional overview of our proposed retention-time

predictor. Since maintaining all the counters for each LBA is too expensive
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Figure 26: A functional overview of the write-retention mode selection and
retention requirement management procedures.

to be implemented in practice, the proposed retention-time predictor keeps
only a limited number of counters which are referenced by three hash func-
tions. In deciding the retention-time requirement of an LBA, all the counters
corresponding to that LBA are considered simultaneously. The retention-
time predictor can be implemented with a small space overhead (i.e., 64
KB per 1-GB storage capacity). Furthermore, if the data separator is already
employed in a storage system, the retention-time predicting scheme can be
easily implemented by revising the existing data separator with a negligible

space overhead.
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5.1.3 Maximization of Endurance Benefit

In order to maximize the endurance benefit of retention-capability tun-
ing, minimizing reclaimed pages is one of the key design challenges of the

write-retention mode selection.

Misprediction Control

One of the main sources behind misprediction is hash collisions in the
hashing table as shown in Figure 26. When counters corresponding to cold
data (which are rarely updated) are unintentionally incremented due to hash
collisions, such cold data can be mispredicted as short-retention data. (We
denote this misprediction as false-short.) Once mispredicted data is written
with WRmodeport, Such data will be eventually reclaimed before Tﬁe@(’”.

In order to minimize the false-short ratio due to hash collisions, we
introduce a misprediction control technique based on the past false-short
history. As shown in Figure 26, each counter has an additional feedback
register which is set to one when the written data is reclaimed. The purpose
of these feedback registers is to impose a penalty for the mispredicted write
so that consecutive mispredictions for that request is prevented. If all the
corresponding feedback registers were already set, the retention-time pre-
dictor determines the retention-time requirement in a conservative fashion
by raising the decision threshold level. For example, when the counter val-
ues of arequest are 15, 12, and 4, and all the dedicated feedback registers are
already set, this request is classified as long-retention data instead of short-

retention data because the decision threshold level is raised from the normal
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level (e.g., 4) to the higher level (e.g., 8). When prediction is correct (i.e.,
data written with WRmode 4p,,+ is updated within 7] ﬁg"”), the feedback reg-

isters are reset so that the decision threshold is reverted back to the normal

level.

Selective Retention Tuning

When the update characteristics of I/O requests are changed so that too
many retention-tuned pages are reclaimed, it is more beneficial to suspend
retention-capability tuning. For example, if the number of pages per a block
is 100, in order to write 5,000 pages with a combination of WRmode g, and
WSmodeg, 50 blocks erased with Evmodes (of which effective wearing is
0.59 as summarized in Figures 17 and 18) are consumed. In this case, the to-
tal endurance gain of retention-tuned writes is 20.50 (= (1.00—0.59) x 50).
However, when 60 pages per block are reclaimed with WRmode;ypg, 30
(= 60 x 50/100) blocks erased with EVmode (of which effective wearing
is 0.78) are consumed during reclaim operations. In this case, the total en-
durance loss of reclaimed writes is 23.40 (= 0.78 x 30). Since the endurance
loss is larger than the endurance gain in this example, it is better not to use
the short-retention write mode. In order to make such a decision, we esti-
mate the break-even point at which the endurance gain of retention-tuned
writes is equal to the endurance loss of reclaimed writes. In the previous
example, the break-even number (i.e., N*¢) of reclaimed pages per a block
is 52.6 (= (1.00 — 0.59)/0.78 x 100). The retention keeper continuously
monitors the average number of reclaimed pages per a block. When the av-

erage number of reclaimed pages becomes greater than N, the retention
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keeper switches the retention-tuning phase from the enable phase to the
suspend phase. In the suspend phase, the Wmode selector always selects
WRmode,,y regardless of retention-time prediction results. When benefi-
cial I/O characteristics are detected, the retention keeper resumes retention-

capability tuning again.

5.1.4 Minimization of Reclaim Overhead

Since it is difficult to completely eliminate mispredicted writes, min-
imizing the overhead of a reclaim operation is also required in order not
to affect foreground activities. The main goal of the reclaim operation is to
preserve the durability of stored data written with WRmode 4. In order
to reliably rewrite mispredicted data before its retention deadlines expire,
the retention keeper periodically (e.g., one tenth of the short retention-time
interval) checks its remaining retention time. However, since maintaining
the retention deadline for each written page requires excessive system re-
sources as well as high checking overheads, we have developed a simple
but effective reclaim technique. As shown in Figure 26, data for each write-
retention mode is written to different regions, i.e, the short-retention region
and the long-retention region. This separation technique can provide another
advantage in reducing the write amplification factor over the existing data
separation technique [26]. Since data written with WRmode 4.+ are likely
to be updated within 7%, when such a block is chosen in the garbage
collection process, if it is not yet reclaimed, the number of unnecessary data
copies can be significantly reduced. After short-retention data is written to

a free block chosen from the free region, the block id is inserted into the
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retention queue in the retention keeper with the written time. Although fol-
lowing data is written to the block at different times, the worst-case retention
deadline is still determined by the earliest written time. Since the retention
queue maintains its entries in a FIFO fashion, the remaining retention times
for each block are automatically sorted in ascending order, thus simplifying
the checking process. When the retention keeper identifies a block whose
retention deadline has almost expired, mispredicted pages in the identified
block are reclaimed to a free block, selected from the free region, with a de-
moted write-retention mode (i.e., WRmode;,,4). After reclaim operation is

completed, the newly written block is inserted into the long-retention region.

5.2 Experimental Results

5.2.1 Experimental Settings

We evaluated the effectiveness of the proposed dvsFTL+ with extFlash-
Bench, an extended version of an existing unified development environ-
ment for NAND flash-based storage systems [24]. extFlashBench emulates
the key operations of DeVTS-wPRT-enabled NAND devices in a timing-
accurate fashion so that it is possible to keep track of temporal interactions
among various NAND operations [15]. In order to reflect the chip-level par-
allelism (which is one of the key factors affecting the maximum write per-
formance of an SSD), extFlashBench was configured to have eight channels,
each of which was composed of four NAND chips. Each NAND chip em-
ployed 512 blocks which were composed of 128 8-KB pages. The size of

a write buffer was set to 16 MB which was about 0.1% of the total NAND
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capacity. In recent SSDs, the total DRAM capacity is usually set to about
1% of the total NAND capacity. However, since most of the DRAM area
is already being used to maintain the meta data such as a mapping table,
we set the buffer size to only 10% of the available DRAM capacity. In Sec-
tion 5.2.6, we discuss the effect of the different buffer size in detail.

Our evaluations were performed with two different techniques: base-
line and dvsFTL+. Baseline is an existing DeVTS-wPRT-unaware FTL that
does not use the erase scaling modes and the write tuning modes. dvsFTL+
is the proposed DeVTS-wPRT-aware FTL which fully exploits DeVTS-
wPRT-enabling techniques, described in Sections 3.1 and 3.2, depending on
workload characteristics so that the lifetime benefit of DeVTS-wPRT can be
maximally achieved while still satisfying all the NAND requirements. Each
technique was evaluated by replaying various I/O traces on top of extFlash-
Bench. When I/O requests were issued according to their timing informa-
tion in the trace files, corresponding NAND operations were performed in
extFlashBench. We continuously replayed the traces on NAND blocks until
they became unreliable and measured the maximum number of P/E cycles,
Nlﬁ””/‘g. We also measured the overall write throughput and retention times

which are related to the side effect of DeVTS-wPRT.

5.2.2 Workload Characteristics

In our evaluation, we used six I/O traces, proj_0, srcl_2, prxy_0, hm_0,
stg_0, and usr_0, selected from the MSR Cambridge traces [30]. Although
these traces include I/O characteristics in real-world enterprise servers, their

I/O rates were too low to meaningfully stimulate the temporal behavior of
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high-performance NAND flash-based storage systems. In order to utilize
these traces in our evaluations, we accelerated I/0 rates of all the traces
by 100 times so that the peak I/O rate of the most write intensive trace
is comparable to the maximum write performance of our extFlashBench
configuration [15][32].

Figure 27(a) shows the distributions of the inter-arrival times for write
requests of six traces. Inter-arrival times were normalized over the effective
program time TEJ;{; clive of extFlashBench. Since up to 32 NAND chips can
serve write requests simultaneously, T;{;{fcme is 32 times shorter than the
nominal program time T'p,, (i.¢., the write latency of WSmode() of a single
chip. When there were multiple pages in a write request, their inter-arrival
times ¢ were classified as the ‘¢ = 0’ case in Figure 27(a). Alternatively,
when write requests, containing only one page, were issued in a sporadic
fashion, they were classified as the ‘¢ > 32’ case. It is expected that the over-
all endurance gain for a sporadic trace (e.g., prxy_0) will be higher than that
for an intensive trace (e.g., proj_0) because slower write and erase modes
can be more frequently used in a sporadic trace.

Figure 27(b) shows the distributions of the retention times for write
requests of six traces. The short-retention group and long-retention group
were classified by 7257 (i.e., 0.07 days). In our evaluation, we set T:%ort
to 0.07 days as shown in Figure 16(b). This is because the total time of traces
was only about 1 day. If our DeVTS-wPRT technique is to be employed in
real systems, it is better to increase 7% to 1 day for more reliable re-

tention management. In this case, the lifetime benefit of dynamic retention

tuning is slightly reduced because corresponding r,, increases from 0.33
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Figure 27: Characteristics of write requests for six traces.

to 0.50. An interesting aspect is that there is a strong correlation between
the distribution of inter-arrival times and those of retention times (except
prxy_0). The more intensively write requests are issued, the more frequently
they are updated. Therefore, for intensive traces, it is expected that the weak-
ness of the write-speed tuning mode can be partly compensated for by the

write-retention tuning mode.

5.2.3 Endurance Gain Analysis

In order to measure NIE"/“E“E (i.e., the effective lifetime of a NAND de-

vice as defined in Section 3.1.2), each trace was repeated until X EW reached

3K [6]. Measured NIT/“E values were normalized over 3K. Figure 28(a)

shows NIE"/“E“E ratios for six traces with two different techniques. dvsFTL+

extends NIT/“E by 94%, on average, over Baseline.

As we expected, the improvements on NIT/“; for each trace clearly
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exhibit similar trends as the distributions of inter-arrival times and reten-
tion times as shown in Figures 27(a) and 27(b), respectively. In the case of
proj_0 trace, Ng“g is improved by only 58% because most of the write re-
quests are issued instantaneously so that 40% of erase operations cannot take
advantage of endurance-enhancing modes at all as shown in Figure 28(b).
However, since a considerable part of the rest of erase operations exploits
the short-retention write mode, the limited NIT/“E” ratio due to highly clus-
tered consecutive writes is partly compensated for. (For more detail, see
Section 5.2.6.) Alternatively, for the usr_0 trace, NlT/aEx is improved by up
to 122% because more than half of erase operations are performed with the
lowest erase voltage. In particular, for the prxy_0 trace, the improvement
ratio of Nlﬁ””/‘g goes up to 140%. This is because most NAND operations

frequently utilize both the slow-speed write mode and short-retention write

mode as expected in the characteristics of prxy_0 trace.

5.2.4 NAND Requirements Analysis

Since the main goal of dvsFTL+ is to extend NIT/“E” while the other
NAND requirements are left untouched, we checked whether or not the

overall write-performance and retention-time requirements were preserved.

Overall Write-Performance Requirement

When a write request is issued and the write buffer is full (i.e., v is 1.0),
serving that request is delayed until one of requests queued in the buffer is

written to a NAND chip so that u is decreased below 1.0. This delay time
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Figure 28: Comparisons of the endurance gain and distributions of the
EVmode;’s for six traces.

can be further amplified when the foreground garbage collection process is
performed in NAND chips. Although dvsFTL+ frequently uses slow-speed
write and erase modes, since such slow-speed modes are selected only when
the write-performance requirement is not urgent, dvsFTL+ does not incur an
additional delay over Baseline as summarized in Table 7.

For the proj_0 trace, the overall write throughput is improved by 0.5%

) A 2t &k



Table 7: Comparisons of the overall write performance for six traces.

proj_0|srcl 2| prxy_0|hm_0|stg_0|usr_0

Overall Write Baseline | 23.65 | 7.59 | 14.15 | 3.95 | 2.74 | 2.27
Throughput [MB/s] |dvsFTL+| 23.78 | 7.60 | 14.16 | 3.95 | 2.74 | 2.27
Average Read Baseline| 315 | 242 | 333 | 258 | 208 | 194
Response Time [us] | dvsFTL+| 310 | 245 300 | 288 | 206 | 194

Portion of Baseline | 5.6% | 1.1% | 0.1% |0.2%|0.0% | 0.0%
Queuing Delay  |dvsFTL+| 4.8% | 1.0% | 0.0% |0.1%|0.0% | 0.0%

Baseline| 1.15 | 1.07 | 1.11 | 1.14|1.25]| 1.09
dvsFTL+| 1.10 | 1.07 | 1.03 | 1.06 | 1.13 | 1.05

WAF

because the worst-case delay time due to the garbage collection process is
reduced. For example, the write amplification factor (WAF), which repre-
sents the average garbage collection overhead, is reduced by about 0.4% so
that the portion of delayed requests among total requests is reduced from
5.6% to 4.8%. For other traces, the overall write throughput and portion of
delayed requests of dvsFTL+ are maintained at the same level as those of

Baseline.

Overall Retention Requirement

Since WRmodegp,+ aggressively reduces the retention capability of
NAND pages, in order to guarantee the durability of the stored data, mis-
predicted pages whose retention deadlines are imminent should be properly

reclaimed. However, when there are too many mispredicted pages, retention
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failures may occur because the number of reclaimable pages for the given
checking period is limited. For example, if the retention checking period
is 60 s and the shortest program latency is 1,300 us, the retention keeper
can reclaim up to 46,153 pages (which is 2.2% of the total NAND pages in
extFlashBench). Although dvsFTL+ frequently uses WRmode gp,4,¢ fOr writ-
ing data onto NAND pages, retention failures did not occur in our evalu-
ations. This is mainly because the misprediction ratio is sufficiently sup-
pressed by the misprediction control techniques, described in Section 5.1.3,
so that the numbers of mispredicted pages are maintained below the maxi-
mum number of reclaimable pages at all times.

In this dissertation, we assume that the power is always supplied. How-
ever, if the power is cut off, since the retention keeper cannot work without
the power supply, retention failures may occur. This predictable data loss
can be prevented by rewriting valid pages written with WRmode gp,,¢ to other
NAND pages with WRmode,,4 during the power hold-up time supported by

a storage system [33].
5.2.5 Detailed Analysis of Retention-Time Predictor

The Overall Accuracy of Retention Time Predictor

In order to predict the retention-time requirement of future write re-
quests, we proposed the retention-time predictor as described in Section 5.1.2.
Since the main goal of the retention-time predictor is to minimize the mis-
prediction (in particular, false-short) ratio with a reasonable resource over-

head, we performed a detailed analysis on how accurate our proposed resource-
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optimized predictor is. Table 8 summarizes the analysis results for four
traces with four different techniques: History, DA H_noFB, and H_FB. History
is a history-based prediction technique which directly utilizes the previous
update time interval to predict the next update time [34]. DA, H_noFB, and
H_FB are retention-time prediction techniques based on the recent update
frequency maintained in multiple update counters, but with different con-
figurations. DA uses a direct-address mapping which keeps the number of
counters as many as that of LBAs. Alternatively, since H.noFB has a lim-
ited number of counters mapped to corresponding LBAs by hash functions,
mispredictions may occur due to hash collisions. H_FB is the proposed pre-
diction technique which employs additional feedback registers and makes
an adaptive decision so that the misprediction ratio is substantially reduced.

For the srcl_2 trace, the false-short ratio under History is too high (i.e.,
4.8%) to avoid retention failures while the ratio under H_FB is sufficiently
suppressed below the tolerable level. Comparing H-FB with H_noFB, the
false-short ratio is reduced from 2.3% to 0.9%, a value similar to that of
DA. For the other traces, the false-short ratios are also maintained at a low
level. These results clearly indicate that our proposed misprediction con-
trol technique can efficiently reduce the misprediction ratio, caused by hash
collisions, to the comparable level of DA.

However, as summarized in Table 8, another misprediction ratio, i.e.,
the false-long ratio, is increased for write-intensive traces (e.g., srcl_2). This
is because the retention-time predictor in this dissertation mostly focuses
on minimizing the false-short ratio. If the false-long ratio is too high, the

potential of retention-capability tuning cannot be fully exploited. In order
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Table 8: Accuracy of the retention-time predictor under different data sepa-

ration techniques.

Pre- proj_0 srcl_2
Result
diction History] DA |noFB| FB |History| DA |noFB| FB
sh True 192.5%|55.2%75.1% |47.9%|81.9% |49.4%|60.9% |42.6%
ort
False | 2.7% | 0.4% | 1.6% | 0.7% | 4.8% | 0.8% | 2.3% | 0.9%
L True | 1.8% | 4.1% | 2.9% | 3.8% | 8.3% [12.3%|10.8%|12.2%
ong
False | 3.0% [40.2%20.4%|47.6% | 5.0% |37.5%26.0%|44.3%
Pre- prxy_0 hm_0
Result
diction History] DA |noFB| FB |History| DA |noFB| FB
sh True 194.3% |89.3%89.8% |85.4%|43.3%|28.1%28.8% |28.1%
ort
False | 1.3% | 0.5% | 0.6% | 0.6% | 5.9% | 0.5% | 0.7% | 0.8%
L True | 2.9% | 3.6% | 3.5% | 3.6% |44.2%|49.6%|49.4% |49.3%
ong
False | 1.5% | 6.5% | 6.1% |10.5%| 6.6% (21.8%|21.1%|21.8%
Pre- stg_0 usr_0
Result
diction History] DA |noFB| FB |History| DA |noFB| FB
sh True 156.8%|30.7%30.9% |29.6%|63.6% |52.8%|53.1%52.1%
ort
False | 3.2% | 0.3% | 0.3% | 0.3% | 4.5% | 0.9% | 1.0% | 1.1%
L True 36.4%39.3%39.3% |39.2%26.2%|29.7%29.7% |29.6%
ong
False | 3.6% [29.7%29.6%|30.8%| 5.7% [16.6%|16.3%|17.3%

to further extend N};‘/‘IEE for write-intensive traces, reducing the false-long

ratio is also required. Our future work involves developing a more accu-

rate retention-time predictor capable of consistent performance regardless
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of varying characteristics of I/O workload.

Sensitivity of Number of Hash Table Entries

The accuracy of the proposed retention-time predictor mainly depends
on the number M of hash table entries as shown in Figure 26. Since the
probability of hash collisions, which cause mispredictions, is inversely pro-
portional to M, too small M may lower the prediction accuracy. On the
contrary, although large M can improve the prediction accuracy, the space
overhead may increase. In this dissertation, M was set to 65,536 which
is 0.006% of the total storage capacity (i.e., 16 GB) as described in Sec-
tion 5.1.2. In order to understand how sensitive M is to the prediction accu-
racy and to check whether or not our selected M is reasonable in terms of
both cost and accuracy, we evaluated the prediction accuracy over different
M’s. Figure 29(c) shows variations of the false-short ratios (i.e., the proba-
bility that the prediction of ‘short retention’ is false) over different M’s for
six traces. As we expected, the false-short ratios decrease as M increases.
In order to reduce the false-short ratio below the target level (i.e., 1% in this
dissertation), M is required to be larger than 65,536.

On the other hand, for proj_0 and srcl_2 traces, the false-long ratios
(i.e., the probability that the prediction of ‘long retention’ is false) increase
as M increases. This is because our proposed retention-time predictor es-
timates the retention-time requirement of a write request by comparing its
counter value (which reflects the previous update history for that request)
with the predefined threshold level. When M is small (e.g., 1,024), since

the counter can be incremented not only by the request corresponding to
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Figure 29: Variations of the prediction accuracy over different numbers of

hash table entries.

that counter, but also by other requests due to hash collisions, the counter

value is likely to be raised unintentionally depending on the probability of

hash collisions. As a result, when the probability of hash collisions is too

high (e.g., M < 16,384), the false-short ratio increases while lowering the

false-long ratio as shown in Figures 29(c) and (d). On the contrary, since the

probability of hash collisions is very low when M is sufficiently large (e.g.,

M > 65,536), the counter value can be incremented only by the correspond-

ing request. As a result, a frequently-updated request may be mispredicted

as ‘long-retention’ data until the counter value exceeds the threshold level.
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Figure 30: The effects of different numbers of hash functions on the accu-
racy of the retention-time predictor.

Sensitivity of Number of Hash Functions

The number Ny,,4, of hash functions is also one of key design param-
eters in our proposed retention-time predictor. Although using large Ny s
has a positive impact on the identification accuracy, too large Ny, can un-
intentionally increase the probability of hash collisions as a side effect. In
this dissertation, we used three hash functions in the retention-time predic-
tor. In order to understand how sensitive Ny, is to the prediction accu-
racy, we performed evaluations with different Np,¢’s (i.e., 1, 2, 3, and 4)

as shown in Figures 30 (a), (b), (c), and (d).

81

A&t



As we expected, the overall accuracy is improved as more hash func-
tions are used. For example, when NN, increases from one to four, the
true-short ratio and false-long ratio are improved by 14% and 10%, respec-
tively, as shown in Figures 30 (a) and (d). However, as a side effect of large
Nhash, the false-short ratio also increases as shown in Figure 30 (c). For ex-
ample, when Ny, is four, the average false-short ratio is 0.76%. Although
the false-short ratio does not exceed 1% (i.e., the target accuracy) in this
case, we set Npqsp to three instead of four to minimize the negative impact

of reclaim operations on the foreground activities.

Sensitivity of Retention Decision Level

Our proposed retention-time predictor determines the retention-time
requirement of a write request as ‘short’ when the counter value is higher
than the predefined threshold level Ny, (e.g., 4) as shown in Figure 26. In
this comparison process, an appropriate Ny, is the key parameter to achieve
a reasonable prediction accuracy. In this dissertation, we set Ny, to four.
In order to understand how sensitive Ny, is to the prediction accuracy, we
compared the accuracy over different Ny,’s as shown in Figure 31. When
Ny, is set to two, the false-short ratio as well as the true-short ratio are
higher than those when Ny, is four because the retention-time predictor is
more likely to select ‘short retention’ in this case. On the contrary, when
Ny, 1s set to eight, those two ratios are reduced significantly because it is
difficult for the predictor to select ‘short retention’. Although the false-short
ratio is extremely minimized in this case, the endurance benefit of DeVTS

cannot be fully achieved because there are little requests classified as ‘short
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Figure 31: The effects of different decision levels on the accuracy of the
retention-time predictor.

retention’. Therefore, we conclude that four is the most optimized setting in

our retention-time prediction scheme.

5.2.6 Detailed Analysis of Endurance Gain
Breakdown of Endurance Gain

In order to understand the effect of each endurance-enhancing tech-
nique on the overall ]T/ag improvement ratio in detail, we modified our
dvsFTL+ so that each technique can be enabled separately. Figure 32 shows

the increase in IT/“E ratios for six traces when each endurance-enhancing

83



I Baseline @ST @ST+WPT BST+WPT+ETT B (ST+WPT+ETT) + DRCT

3.0

: +98.6% +50.0%
25 | 240 8% '
[ +57.4% +72.0% B X

2.0

g
N
©

1.5

1.0

0.5

Normalized Np/%" Ratio

7777777 &
77777772 B

0.0

I~
!

proj_0 srcl_2 prxy_0 stg 0 usr_0

Figure 32: Variations of the normalized Nl’?/“g ratios under different
endurance-enhancing techniques for six traces.

technique (i.e., ST, WPT, ETT and DRCT) is enabled one by one on top
of baseline. ST is the Static Tuning technique described in Sections 3.2.2
and 3.2.3. WPT is the Write-Performance Tuning technique, and ETT is the
Erase-Time Tuning technique, as described in Sections 3.2.1 and 3.1.3, re-
spectively. DRCT is the Dynamic Retention-Capability Tuning technique de-
scribed in Section 3.2.2. Our proposed dvsFTL+ fully utilizes all the afore-
mentioned techniques.

Among the endurance-enhancing techniques implemented in dvsFTL+,
DRCT has the most significant impact on extending NJT/%' DRCT is respon-
sible for 34%, on average, of the total endurance gain. The effect of DRCT
strongly depends on the true-short ratio summarized in Table 8. For exam-
ple, for the prxy_O trace, predicting short-retention requests is very accu-
rate (i.e., 85.4%). As a result, NJZ"/‘IEE is significantly extended (i.e., 98.6%)
by DRCT. However, for the Am_0 trace, its effect is marginal. The effect of

WPT is comparable to that of DRCT. The effects of ETT and ST account for
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about 20% and 12%, respectively, of the total endurance gain. In the lifetime
improvement technique using write-performance tuning (i.e., dvsFTL) pre-
sented in Chapter 4, only ST, WPT, and ETT were employed. In this case, the
average NIT/“E” ratio is only 1.62. Our proposed dvsFTL+ (where DRCT has
been added) further extends NV ]Z”/“g by about 52% over dvsFTL. As shown in
Figure 32, since DRCT is more effective for write-intensive traces where the
effect of WPT is limited, DRCT can substantially make up for the weaknesses

of WPT.

Sensitivity of Buffer Size

The large size of the write buffer offers an advantage to extend NIT/“E”
because the probability of using the slow write and erase modes is increased.
However, since an excessively large buffer size is not cost effective in most
practical storage systems, we set the buffer size to only 16 MB, only 0.1% of
the total storage capacity. In order to understand how sensitive ]T/“g ratio is
to the buffer size, we performed evaluations with different write buffer sizes
as summarized in Table 9. When the buffer size is reduced to 4 MB, the
average ]T/“g is decreased by 3.6%. Alternatively, with a 64 MB-size write
buffer, the average NIT/“Ex ratio is increased by 4.1% as we expected. The

effect of a reduced-size buffer on the overall write throughput is negligible

because the Wmode selector efficiently chooses the proper write mode.
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Table 9: Variations of NIT/‘IE ratios and the overall write throughput over
different buffer sizes for six traces.

Buffer Size|proj_0|srcl_2|prxy_0|hm_0|stg_0|usr_0| Avg.

Normalized 4 MB 1.54 | 1.53 | 2.17 | 1.81|1.97|2.18 |1.87
NJT/GL;E 16 MB | 1.58 | 1.61 | 2.40 | 1.86]1.98|2.22 |1.94
Ratio 64MB | 1.66 | 1.72 | 2.57 | 1.93]2.00|2.26 |2.02

Overall Write| 4MB |23.70| 7.59 | 14.11 | 3.95|2.74 | 2.28 |9.06
Throughput | 16 MB |23.78 | 7.60 | 14.16 | 3.95|2.74 | 2.27 |9.08
[MB/s] 64 MB |24.14| 7.61 | 14.15]3.94|2.74|2.27 |9.14
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Chapter 6

Reliability Management Technique for
NAND Flash Memory

NAND flash memory is a non-volatile memory device which can re-
tain stored data even when power is turned off. Since NAND flash memory
stores data as quantities of charges held on floating gates (that are electri-
cally isolated by insulating layers), in theory, NAND flash memory can per-
manently store its data without a power source if the insulating layers work
perfectly. However, actual NAND cells are limited in their data retention
capability because various defects in the insulating layers occur during pro-
gram/erase (P/E) operations. These defects in the NAND cells make charges
in the floating gate loosened, thus guaranteeing the integrity of stored data
only up to a finite retention time [5]. Since the probability of charge loss due
to defects has an exponential dependence on temperature [16], the NAND
retention time is specified under a specific operating temperature. For ex-
ample, NAND flash memory for client-class applications is often required
to retain its stored data for at least 1 year at 25°C [14].

If NAND flash memory is used beyond the specified retention time, the
data stored in the NAND flash memory may not be correctly retrieved be-
cause of excessive retention errors. For example, when NAND flash memory

is left for more than two times longer than the specified retention time, reten-
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tion failures may occur, losing the stored data. Moreover, since the NAND
retention time decreases exponentially as temperature rises [35], an increase
in temperature can significantly degrade the NAND retention capability. For
example, when temperature rises to 70 °C, the specified NAND retention
time of 1 year (at 25°C) may be reduced to only 32 hours'. Furthermore,
the retention-failure problem can be a more serious technical issue when
more aggressive flash-optimization techniques (e.g., [12][34]) are widely
employed. Since these flash optimization techniques aggressively reduce
the NAND retention capability during run time for higher NAND perfor-
mance [12] or longer NAND endurance [34], retention errors are likely to
increase. Thus, there is a strong demand for efficient on-line data recovery
techniques for retention failures in NAND flash memory.

In order to deal with the NAND retention-failure problem, several data

recovery techniques such as the retention failure recovery (RFR) technique [36]

and the data retention-error recovery pulse (RFR) technique [37] have been
proposed. However, since REFR requires to heat NAND chips, it can be used
only as an off-line recovery solution. Although RFR can be implemented as
an on-line recovery solution, it is quite limited because its recovering pro-
cess is very slow and its recovery capability is rather restricted for recent

20-nm node (or below) NAND flash memory.

'This estimation is based on the Arrhenius equation used to calculate thermal accelera-
tion factors for NAND devices [35].
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6.1 Overview

In this chapter, we propose an efficient on-line data recovery technique,
called Flash Defibrillator (FD), which can be effective for recent NAND
flash memory [38]. The proposed FD technique is motivated by our observa-
tions on the characteristics of retention-failed NAND cells in recent 20-nm
node NAND flash memory. The key finding is that when read operations
are repeated, highly-damaged cells (that probably contributed to retention
failures) are more likely to experience abnormal charge-transient behavior
(e.g., random charge fluctuation [39] or charge detrapping [40]). Since the
abnormal charge-transient behavior of NAND cells (under repeated reads)
were rarely observed in 3x-nm NAND flash memory, the existing technique
such as RFR (which was developed for 3x-nm NAND flash memory) can-
not adequately handle retention errors from this new charge movement phe-
nomenon. The proposed FD takes this behavior (as well as retention loss)
into account of recovering retention-failed cells, thus resulting in a more
efficient on-line data recovery solution.

The proposed FD technique consists of two main steps, a diagnostic
step and a post-processing step. In the diagnostic step of FD, as done in
RER [37], a sequence of diagnostic pulses (i.e., effectively read operations)
is applied to NAND cells. The main goal of the diagnostic step is to recharge
retention-loss cells so that these cells can be read at the correct state. Since
diagnostic pulses add extra charges to NAND cells, a threshold voltage (Vth)
distribution tends to shift to the right after the diagnostic step, thus making

some of retention-failed cells be recovered.
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In the following post-processing step, FD identifies retention-failed
cells as ones whose Vth states were shifted to the right. This heuristic,
as used in RFR [37], reversely exploits the retention-loss mechanism in
that highly retention-loss cells are more likely to be recharged with a low
voltage. Furthermore, in order to avoid the negative effect of the abnormal
charge movements on the F'D’s recovery capability, FD identifies retention-
failed data in a progressive fashion using a selective error-correction pro-
cedure. The selective error-correction procedure, which identifies retention-
recovered cells as early as possible, is based on a simple but effective heuris-
tic: If a NAND cell c is shifted to a higher Vth state after the diagnostic step,
the cell ¢ is identified as a retention-failed cell and its Vth state is corrected
to the higher Vth state. As soon as the cell ¢ is corrected by our heuristic, it
is no longer considered in the remaining steps of FD. Although our heuristic
seems to be very simple, it is quite effective in handling abnormal charge
movements (after the diagnostic step) observed in recent NAND flash mem-
ory, thus significantly improving FD’s data recovery capability over RFR.
The result of the post-processing step is stored to an internal buffer. If bit
errors of the buffered data can be fully corrected by ECC, FD completes its
recovery procedure and the fully recovered data are rewritten to a free page.
Otherwise, two FD steps are repeated to the buffered data. After a pre-set

maximum iteration count is reached, FD stops the recovery procedure.
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6.2 Motivation

6.2.1 Limitations of the Existing Retention-Error

Management Policy

When NAND flash memory is programmed and left for a long time,
retention errors may occur due to retention loss. Figure 33(a) illustrates an
example of Vth-distribution changes after 3K P/E cycling and a 1-year reten-
tion time. Since the overall Vth distributions shift down after a long retention
time, a lot of bit errors may occur when the initial read reference voltages
(Rp;’s) are used in a read operation. If the number of bit errors exceeds the
error-correction capability (e.g., 40 bits per 1 KB for an MLC device [6])
of ECC, a read-retry procedure is invoked to manage retention errors [27].
Read retry is a searching algorithm for the optimal read reference voltage,
which iteratively performs read-and-check routines with different read ref-
erence voltages until all the bit errors are corrected. For example, as shown
in Figure 33(b), read retry was performed two times to find the optimal read
reference voltages (Rgi) ’s).

However, if NAND flash memory is left beyond the specified retention
time, the stored data cannot be retrieved even with read retry. This is be-
cause read retry cannot actively reduce bit errors, but just find the optimal
read reference voltages where the number of bit errors can be minimized
for given Vth distributions. Since retention loss tends to cause shifting the
overall Vth distributions as well as widening Wp;’s, after a long retention
time, two adjacent Vrh distributions may overlap each other. For example,

as shown in Figure 33(a), since Wp3(t=1y) after 1-year retention time gets
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Figure 33: Examples of a NAND retention-error management policy.

wider than Wp3(t=0), the P3 state is overlapped with the P2 state. As a re-
sult, remaining bit errors cannot be further reduced by read retry as shown
in Figure 33(b). If there are more bit errors than the error-correction capa-
bility at the optimal read reference voltages, there is no way of retrieving

the stored data with the existing error management policy.

6.2.2 Limitations of the Existing Retention-Failure

Recovery Technique

Before we describe the proposed FD technique in detail, we present
our evaluation results of an existing data recovery technique for recovering
retention failed cells in recent 20-nm node NAND flash memory. For our

evaluation, we used the data retention-error recovery pulse (DRRP) tech-
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nique [8], which was considered as one of the most effective data recovery
techniques for 3x-nm NAND chips. As will be discussed below, our evalu-
ation results strongly suggest a need for better data recovery techniques for
recent 20-nm node (or below) NAND flash memory, which was the main

motivation for developing our proposed FD technique.

In order to recover retention-failed cells, DRRP repeatedly applies weak
stress pulses (e.g., 3 V [37]) to retention-failed cells so that the Vih’s of
retention-failed cells can be recovered to their original Vth state. Measure-
ment results with 3x-nm node NAND chips showed that DRRP could reduce
the RBER of severely retention-failed cells (who experienced 3K P/E cy-
cling and 3 days’ baking at 85 °C) by 56%, on average, after applying 500
weak-stress pulses [37].

However, our measurement results show that the effectiveness of DRRP
as an on-line recovery solution is quite limited because its data recovery pro-
cess is very slow for recent 20-nm node (more advanced technology over
3x-nm node by about two generations) NAND flash memory. Since apply-
ing a weak-stress pulse is not allowed in our test environment, we used read
operations (which can apply the read voltage of about 6 V) instead of the
weak-stress pulse. Figure 34(a) shows worst-case RBER (i.e., the RBER of
a 1-KB sector which has the highest number of bit errors) variations over
different numbers of read operations after 3K P/E cycling and 2-year re-
tention times. The measured RBERs were normalized over the maximum
error-correction capability of ECC. We denote the normalized worst-case
RBER by W-RBER. When the default Rp;’s were used, DRRP could re-

duce W-RBER by 36%. However, it could not lower W-RBER below 1.00.
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Figure 34: Normalized worst-case RBER (W-RBER) variations over vary-
ing numbers of read operations under DRRP.

On the other hand, when the optimal Rp;’s were used, DRRP could reduce
W-RBER below 1.00. Howeyver, this reduction was reached after 100 read
operations. If the average page read time is 100 us, for example, it takes
about 10 ms for each NAND page to be recovered, which is too slow to be
employed as an on-line run-time technique.

Moreover, the data recovery capability of DRRP is quite restricted in
recent NAND flash memory. Figure 34(b) shows W-RBER changes with
varying numbers of read operations after 8-year retention times (8x longer
than the specified retention time). When the optimal Rp;’s were used, DRRP
could reduce W-RBER by up to 31%, however, W-RBER was not reduced
below 1.00 until 1000 read operations. In the 4-year retention case, DRRP
still could not reduce W-RBER below 1.00. These measurement results
show that DRRP can recover retention-failed data which experienced up to

2x longer retention time than the specified retention time.
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Our evaluation results show that DRRP is less effective with recent 20-
nm NAND flash memory in recovering retention-failed data and its recover-
ing speed is very slow. Our main goal was to improve DRRP so that it can be
as effective with 20-nm NAND chips as with 3x-nm NAND chips while its
recovering speed is fast enough so that it can be used as an on-line run-time

solution.

6.3 Retention Error Recovery Technique

In this section, we describe a charge movement model which can cap-
ture abnormal charge-transient behavior observed in recent 20-nm node (or
below) NAND flash memory. Based on the charge movement model, we
present a selective error-correction procedure and the implementation of our

proposed FD technique in detail.

6.3.1 Charge Movement Model

Since applying multiple read pulses can partially recharge retention-
loss cells, Vth’s of these cells can shift to the right [37]. On the other hand,
it is reported that as a side-effect of recent advanced NAND technologies,
another type of charge loss may occur due to multiple read pulses [40] so
that Vth’s of some highly-damaged cells can shift to the left. If these ab-
normal charge-loss components are not negligible, the effectiveness of the
recharging process can be substantially cancelled. Furthermore, it is also
reported that in recent advanced NAND cells, Vth’s of some weak cells

may randomly fluctuate because several charges are periodically trapped
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Figure 35: An example of charge movement after n read pulse applications.

and detrapped due to the random telegraph noise (RTN) effect [39]. These
randomly-fluctuated components may negatively affect the recharging pro-
cess.

In order to understand how read pulses affect NAND cells, we built a
simple charge movement (CM) model. Figure 35, the CM model can be
expressed based on this set definition. We denote C! as a set of cells that
are read as the " state after the m!” read pulse. For example, in Figure 35,
Cit = {c1,¢e3,c4, - } while Ci, = {cg,--- }. After the n read pulses are
applied, if the read value of a cell ¢; changes from P(i—1) to Pi (for exam-
ple, because of recharging), we say the cell ¢; belongs to the set Ccli—D—,

That is,

aeCitnct,, =Cct-b=1 (6.1)

On the other hand, if the read value of a cell c3 changes from Pi to P(i—1)
(for example, because of charge detrapping), we say the cell co belongs to

the set C*(=1) That is,

ceC nC-l —=cii-b), (6.2)

m+n
Finally, if the read value of a cell c3 periodically changes between P(i—1)
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and Pi (for example, because of random charge fluctuation), we say the cell
c3 belongs to the set C—1) That is,

N -
3 eCHINCE ,NCHL, N

m-+n

m Cinian] N

k=0

6.3
_ oli—Dei ©3)

= ﬂ Cfn+(2k+1)~n
k=0

After applying the m'" read pulse, since the number EC2ERP of bit
errors under DRRP decreases by the number of recharged cells while it in-
creases by the number of additionally detrapped cells, ECPREP can be ex-

pressed as follows:
ECTQRRP — ECO o |C(’L—1)—>Z| + |(Ci—>('i—1)|’ (64)

where ECj is the initial number of bit errors before applying read pulses.
This estimation is based on the assumption that the Vth states of the upper-
tail cells (e.g, a cell ¢4 in Figure 35) in a widened Vth distribution (due to
retention loss) rarely change from P(i—1) to Pi after read pulse applica-
tions. When retention loss occurs, a Vth distribution gets widen as shown in
Figure 33(a), which reflects that the lower-tail cells are more likely to lose
charges over the upper-tail cells. As a result, the upper-tail cells have a much
lower probability to be recharged over the lower-tail cells so that their effect
on the error-correction process can be ignored. Moreover, it is not necessary
to include the number |C*~1<?| of randomly-fluctuated cells in ECDRRP
because DRRP does not distinguish the set C(—1) from the set C(i—1)—1

or the set C—(i=1),
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Figure 36: Measurement results for tracing the ¢ M-component changes in
response to multiple read pulses.

In order to trace the overall trend of C'M-element changes in response
to read pulses, we measured the average number of each C'M element (per
1-KB unit) every ten read pulses. Figure 36(a) shows ECPHEP variations
over varying numbers (e.g., m = 0 ~ 1000) of read operations after 3K P/E
cycling and the 8-year (equivalent) retention times. In this example, ECy
was 66 while EC1go after 1,000 read pulses is reduced to 48. Figure 36(b)
shows measurement results for each CM element, which can explain the
cause of retention-error reductions as shown in Figure 36(a). As read oper-
ations are repeated, |C(*~1)=%| grows rapidly in the early stage (i.e., ~100
read pulses) but slowly at the end. (Note that the z-axis of Figure 36(b) is
a log scale.) On the other hand, |C*~(#~1| grows slowly from beginning to
the end. Since the differences between |C(~1) | and |C*(~1)| are nearly
saturated after one thousand read pulses, further read pulses have little effect

on reducing ECEPERP Measurement result of the total bit-error count (e.g.,

8 :
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ECRERP— 48) almost matched the estimation (i.e., 66 — 27+ 9 = 48) from
Equation 6.4. An interesting observation is that |C*~1)<| starts with non-
zero counts which is comparable with [C~1=?| in the early stage. How-

ever, since DRRP expects only C(i—1)—

elements after multiple read pulses,
C=D elements (as well as C*=(—1) elements) are not considered in its

error-correcting process.

6.3.2 A Selective Error-Correction Procedure

By progressively taking CM elements into account of a data recov-
ery process, the proposed FD can more efficiently recover retention failures
over DRRP. Since non-zero |C*~ (1) indicates the occurrence of additional
charge loss during the recovery process, if those elements can be identified
from the read data, the data recovery capability can be enhanced. Moreover,
since random charge fluctuation is more active in highly-damaged cells [39]
(which probably contributed to retention errors [16]), taking C~1¢ ele-
ments as retention-failed cells can be an effective way of correcting reten-
tion errors. Another important advantage of considering C~ 1 elements

i=1) glements

is that the data recovery speed can be accelerated. Since (ol
are frequently observed even in the early stage of the recovery process as
shown in Figure 36(b), if the error-correction process can consider these
elements, the error-correction capability nearly doubles in the early stage.

Since each C'M element can be separately extracted from the read data as

shown in Figure 36(b), conceptually, the total number ECEP of bit errors
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under FD after the m!” read pulse can be expressed as follows:
ECELD _ ECgRRP - lcz%(zfl)‘ - ‘C(zfl)(—m, (6.5)

For example, if |C~D=7|, |C2 (=D and |[CU—D7| are 21, 3 and 6, re-
spectively, after 1000 read pulses as shown in Figure 36(b), ECREEP is 48
(= 66 — 21 + 3) while ECE5, is only 39 (= 66 — 21 — 6). In this example,
DRRP reduces retention errors by 27% while FD reduces retention errors by

41%.

6.3.3 Implementation

Based on the charge movement model, we have implemented ¥D with
the selective error-correction procedure. Figure 37 shows an overview of the
current FD implementation which consists of two main steps, a diagnostic
step and a post-processing step.

In the diagnostic step, a sequence of diagnostic pulses is applied to
retention-failed cells. The main role of the diagnostic step is two-fold. First,
it recharges retention-loss cells (same as DRRP [37]). Second, it senses
the Vth changes in response to diagnostic pulses for the following post-
processing step. In order to achieve these two functions at the same time,
we use a read operation as a diagnostic pulse. Since a read operation senses
the data of a selected page while it applies the read voltage (e.g., ~6 V) to
unselected pages in a NAND block, when read operations are sequentially
executed to all of pages in a block, recharging the unselected pages and sens-

ing the selected page can be executed in a pipelined fashion. Since the effect

100



of just one read pulse on recharging may not be noticeable for causing Vth
changes, it is more efficient to use a sequence of (consecutive) read pulses
as a unit operation of the diagnostic step. For example, ten consecutive read
pulses are required to cause Vth changes in our measurements. On the other
hand, in order to detect randomly-fluctuated cells (i.e., cells in C(i_l)‘_’i) as
early as possible, the post-processing step is invoked after every read oper-
ations in the early stage (e.g., less than one hundred read pulses) of FD. If
the number of consecutive read pulses is conditionally changed (we call this
policy the variable-length sequence policy), although the data recovery ca-
pability may not be improved, the data recovery speed may be substantially
enhanced.

In the following post-processing step, FD identifies retention-loss cells

by a selective error-correction procedure so that retention errors can be pro-
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Figure 37: An overview of the current FD implementation with a selective
error-correction procedure.
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gressively corrected. Since C'M is based on Vth states as presented in Sec-
tion 6.3.1, it is necessary to convert raw data to Vrh states before the post-
processing step as shown in Figure 37. The selective error-correction pro-
cedure is based on simple, but effective heuristics: (1) When a buffer state
is P(i), if the corresponding read state is P(i—1) or Pi, then the buffer
state is not changed. On the other hand, (2) when a buffer state is P(i—1),
if the corresponding read state is P(i), then the buffer state is changed to
P(i) . The first heuristic can avoid the negative impacts of Vh-decreased
cells (i.e., cells in C* (=1 or C—1*%) on correcting retention errors. On
the other hand, the second heuristic takes Vth-increased cells (i.e., cells in
Cl-D=i o C(i_l)‘_’i) as retention-failed cells so that retention errors can
be selectively corrected. In FD, once a retention-failed cell is corrected by
the second heuristic, then the corrected cell is no longer considered in the
remaining post-processing steps by the first heuristic. However, since DRRP
takes only a cell belongs to a set {(CE)*1 N Ci.} (after the m" read pulse) as
a retention-failed cell regardless of the error-correction history, DRRP can-
not properly handle the negative impacts of Vth-decreased cells on its data
recovery capability.

The result of the post-processing step is updated to the data buffer as
shown in Figure 37 so that retention errors in the buffer can be progressively
corrected. If the buffered data is correctable by ECC, FD completes its re-
covery procedure and rewrites the recovered data to a free page. Otherwise,
two FD steps are repeated until a pre-set maximum iteration count (e.g., one
thousand) is reached.

Our proposed FD implementation as shown in Figure 37 requires a data
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buffer with a single block size (e.g., 1 MB in an MLC device) and several
state registers with a single page size (e.g., 8 KB). Moreover, since the post-
processing step and the diagnostic step can be performed independently for
each other, FD can exploit a pipelined execution between the diagnostic step
and the post-processing step so that the total FD execution time can be par-

tially reduced.

6.4 Experimental Results

We evaluated the effectiveness of FD for recovering retention failures
with ten blocks (pre-cycled for 3K P/E cycles) out of five 20-nm node
NAND chips. As a main evaluation metric, we measured RBERs of about
10,000 sectors and computed W-RBER (i.e., the normalized worst-case RBER
as defined in Section 6.2.2) among measured sectors. In order to emulate
a long retention state such as a 2-year retention time condition, we baked
selected chips at 100 °C for a equivalent retention time (e.g., 4 hours) esti-
mated by the Arrhenius equation [35].

In order to compare the data recovery capability of DRRP and FD, we
measured W-RBER while varying the number of read pulses in a very long
range (without applying the stopping condition of the error-correction pro-
cedures). Figure 38(a) shows the data recovery capability of both techniques
in the 8-year retention case. Since DRRP cannot lower its W-RBER even
with 1,000 read pulses, it cannot recover retention-failed data under the 8-
year retention condition. On the other hand, FD can recover retention-failed

data under the same retention condition after about 360 read pluses. In order
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Figure 38: Comparisons of the data recovery capability under different data
recovery techniques.

to compare the data recovery capability of various techniques under vary-
ing retention time conditions, we computed the minimum achievable W-
RBER, denoted as W-RBER,,.;», of each technique for a given retention
condition. For example, in Figure 38(a), W-RBER,,,;,, of FD is 0.87 while
W-RBE R, of DRRP is 1.95. Intuitively, W-RBFER,,;, indicates the max-
imum data recovery power of a given technique. Figure 38(b) shows W-
RBER,,;, variations under different retention time conditions for several
different techniques. As shown in Figure 38(b), FD can effectively extend
the NAND retention capability by up to 8 years (which is eight times longer
than the retention-time specification) while DRRP can guarantee only 2-year
retention times.
The enhanced error-correction capability of D over DRRP mainly comes

from the selective error-correction procedure which can efficiently identify

retention-loss cells by finely distinguishing C*~*¢~1) and C*~ D elements
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Figure 39: Comparisons of the data recovery speed between DRRP and FD.

as explained in Section 6.3.2. In order to understand the impact of the fine-
grained cell classification on the data recovery capability, we disabled the
Cli=D+ jdentification step from FD. We denote this modified FD technique
by FD™. The only difference between DRRP and FD~ is for FD™ to filter
cells in C*(~1_ As shown in Figure 38(b), DRRP can extend the NAND
retention capability by up to 2 years. On the other hand, FD™ can extend the
NAND retention capability by up to 4 years while FD can extend it by up
to 8 years. This result indicates that identifying cells in C~ D in the data
recovery procedure significantly strengthens the data recovery capability of
FDover FD™.

In order to compare the data recovery speed of DRRP and FD, we tested
both techniques under three different retention conditions. Figure 39(a) shows
the data recovery speed of DRRP and FD in the 2-year retention condition.

In DRRP, W-RBER slowly decreases as read pulses are repeated, and all the
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Table 10: Required numbers of read pulses to complete FD.

L Variable-length Fixed-length
Retention time
sequence policy sequence policy
2 years 3 10
4 years 12 30
8 years 360 370

retention errors are corrected (i.e., W-RBER < 1.0) after applying 70 read
pulses. On the other hand, in F'D, retention errors can be fully corrected only
after 3 read pulses. Once all the data are correctable, FD is completed. As a
result, FD can recover retention failures up to 23x faster over DRRP for the
2-year retention case. When the average page read time is, for example, 100
s, it takes about 7 ms for DRRP to recover retention failures while only 300
ws is required for FD. In order to further compare the data recovery speed
in longer retention cases, we performed additional experiments for 4-year
and 8-year retention conditions. As shown in Figure 39(b), in the 4-year and
8-year retention cases, FD can successfully recover retention failures after
applying 12 and 360 read pulses, respectively. On the other hand, in both
cases, DRRP could not recover retention failures until 1,000 read pulses. (In
our evaluations, the maximum number of read pulses was set to 1,000.)

We also evaluate if the variable-length sequence policy (described in
Section 6.3.3) is effective in speeding up the overall data recovery pro-
cedure. Under the variable-length sequence policy, until the total number
of read pulses reaches 100, a single diagnostic pulse is applied to NAND

cells between consecutive post-processing step. Once the total number of
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read pulses reaches 100, ten consecutive read pulses are applied in a row
between consecutive post-processing step. In order to evaluate the effec-
tiveness of the variable-length sequence policy, we compared it with the
the fixed-length sequence policy (which always applies ten consecutive read
pulses at a time). As summarized in Table 10, in the 2-year and 4-year re-
tention cases, the variable-length sequence policy can reduce the total data
recovery time by 70% and 60%, respectively, over the fixed-length sequence
policy. This is because, in an early stage of FD, frequently reading retention-
failed cells can increase the probability of detecting cells in CU=D# 50 that
they can be excluded quickly from the remaining data recovery procedure.
However, in the 8-year retention case, the variable-length sequence policy
has a little benefit over the fixed-length sequence policy. This is because the
main advantage of the variable-length sequence policy is to detect cells in
Clim1)er early. For severely retention-failed data such as the 8-year reten-

tion case, after most of cells in C(i—1«

are detected early, other compo-
nents such as CO~D= (not yet classified) are the dominant source of the
retention errors. As a result, the overall recovery time of FD is decided by
how long it takes to find cells in C“~1= (which is similar under two po-
lices).

Our experimental results with 20-nm node NAND chips show that FD
can recover retention failures up to 23x faster over the existing DRRP tech-
nique. Furthermore, since FD can recover severely retention-failed data, it
effectively extends the NAND retention time. Our result indicates that the

NAND retention time can be effectively extended by up to 8x over the spec-

ified retention time.

107 =P



Chapter 7

Conclusions

7.1 Summary and Conclusions

The cost-per-bit of NAND flash-based solid-state drives (i.e., SSDs)
has steadily improved through uninterrupted semiconductor process scaling
and multi-leveling so that they are how widely employed in not only mo-
bile embedded systems but also personal computing systems. However, the
limited lifetime of NAND flash memory, as a side effect of recent advanced
device technologies, is emerging as one of the major concerns for recent
high-performance SSDs, especially for datacenter applications.

In this dissertation, we proposed several cross-layer optimization tech-
niques to improve the lifetime (particularly endurance) of NAND flash mem-
ory. Although the performance and reliability requirements of NAND flash
memory are designed under the worst-case operating conditions of a stor-
age product, the maximum capabilities of NAND devices are not fully uti-
lized in most cases. This observation has motivated us to propose a versatile
device-level framework (i.e., DeVTS), including a NAND endurance model
and newly defined device setting interfaces, that allows a flash software to
exploit the tradeoffs between the endurance and performance/retention ca-
pabilities of NAND flash memory.

We have developed several SSD lifetime improvement techniques based

108 4



on the DeVTS framework that supports various erase scaling modes and
write capability tuning modes, each of which has a different impact on
NAND endurance. By accurately predicting the NAND requirements of
write requests, our proposed techniques optimally tune the performance and
retention capabilities of NAND devices. We have implemented dvsFTL+,
based on the DeVTS framework and proposed lifetime improvement tech-
niques, that dynamically selects erase voltage/time scaling modes and write
performance/retention capability tuning modes depending on varying work-
load conditions. The existing garbage collector and wear leveler are also re-
designed to maximize the efficiency of dvsFTL+. Since the performance and
retention capabilities of NAND devices are frequently relaxed, dvsFTL+
manages the NAND requirements in a reliable fashion.

In order to evaluate the effectiveness of the proposed lifetime improve-
ment techniques, we have built a timing-accurate NAND simulation envi-
ronment which accurately emulates temporal interactions between varying
I/0 requests and various NAND operations. Our experimental results show
that when the write-performance tuning technique is employed, NAND en-
durance is improved by 62% on average. When the retention-capability tun-
ing technique is added to dvsFTL+, NAND endurance is further improved
by 94%, on average, over an existing DeVTS-unaware FTL. In our evalu-
ation, the overall write performance and retention requirements of storage
systems are reliably maintained.

Since our proposed lifetime improvement techniques aggressively tune
down the retention capability of NAND flash memory, data loss may occur

due to retention failures when power is suddenly cut off. Consequently, we
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have suggested a new data recovery technique to recover corrupted data
from retention failures by exploiting the unique retention loss mechanism
of NAND flash memory. Our experimental results show that our proposed
data recovery technique can recover from retention failures up to 23x faster
over the existing recovery technique. Furthermore, it effectively extends the
NAND retention time by up to 8x over the specified retention time.

Since the proposed lifetime improvement techniques and reliability
management techniques require only a small resource overhead and a negli-
gible time overhead, they can easily be implemented into the existing NAND
flash-based storage systems with minimal changes in flash software mod-

ules.

7.2 Future Work

7.2.1 Lifetime Improvement Technique Exploiting
The Other NAND Tradeoffs

The lifetime improvement techniques in this dissertation take advan-
tage of variations in the write performance and retention requirements. How-
ever, if variations in the maximum required number of read counts for each
NAND page is additionally exploited, NAND endurance can be further im-
proved. For example, if the maximum read count of an MLC NAND block
is reduced from 1,000K [41] to 1,000, the Vth window can be additionally
saved by about 500 mV. Since the saved Vth window by retention-capability
tuning is about 500 mV, the effect of read-disturb resistance tuning on im-

proving NAND endurance will be comparable to that of retention-capability
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tuning.

However, unlike the performance and retention capability tuning tech-
niques, there is a challenging issue in the implementation of a read-disturb
resistance tuning technique. Since the proposed performance and retention
capability tuning techniques exploit the spatial and temporal locality of
write requests, it is possible to accurately predict the characteristics of the
near-future write requests. On the contrary, it is difficult to predict the fu-
ture read intensity of the current write request in a storage software layer.
In order to decide whether or not the read-disturb resistance of the current
write request can be relaxed, it is necessary to exploit more higher-level
hints from file systems or applications. If such useful information for the
future read intensity of write requests can be exploited, the endurance gain

of the proposed techniques is maximized.

7.2.2 Development of Extended Techniques for
DRAM-Flash Hybrid Main Memory Systems

As big data analytics based on massive data, rapidly generated and
processed, become commonplace in real environments, there is a strong de-
mand on high-performance computing systems that can efficiently store and
process such massive data in real time. The most critical requirement on the
next-generation information systems, such as intelligent self-driving control
systems, based on the big data analytics is to keep extremely high perfor-
mance in a consistent manner. In order to satisfy such a requirement, most

of existing optimization techniques have mainly focused on in-memory pro-

111



cessing that can prevent from accessing to slow storage systems. The exist-
ing DRAM-based main memory system, however, is not a practical solution
for such big data applications because of its pool cost/energy efficiencies. In
order to implement a cost-efficient main memory system with a huge capac-
ity as well as low power consumption, several system-level approaches have
been suggested by taking advantage of both DRAM and NAND flash mem-
ory through a new software architecture [42] or hardware architecture [43].
However, the limited lifetime of NAND flash memory can be also a serious
reliability issue when such DRAM-Flash hybrid main memory systems are
actively employed in real environments.

If the operating systems can directly manage the proposed lifetime
improvement techniques by exploiting various new interactions between
DRAM and NAND flash under an NVDIMM-like setting, it is possible to
extend the lifetime of NAND flash to the fullest extent. For example, by ex-
ploiting many useful hints, disappeared while passing through I/O stacks, in
the host system, the performance and retention requirements of the requests
can be more reliably and directly classified. Moreover, since our proposed
techniques can easily be combined with existing data reduction techniques
such as data compression and data de-duplication, NAND lifetime can be
further extended. Our proposed lifetime improvement techniques can be a

crucial breakthrough in the new type of main memory systems.

7.2.3 Development of Specialized SSDs

Recently, in order to optimally exploit the unique superiorities (e.g.,

non-volatility, high write throughput, and low access latency) of NAND de-
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vices, several types of specialized SSDs are required in datacenter environ-
ments [44]. For example, when SSDs are used as cache, lower latency as
well as higher endurance is needed. On the other hand, when SSDs are used
as a cold storage, a higher capacity with a longer retention time is more
preferable. However, existing SSD products do not fulfil such various re-
quirements in a single device because most of capabilities of NAND flash
memory usually fixed during device design times. In order to meet such
requirements from datacenter applications, it is required to develop a multi-
purpose SSD whose capabilities can be flexibly adjusted on demand.

The primary goal of this dissertation is to improve NAND endurance by
conditionally tuning down the other NAND capabilities. In order to achieve
this research goal, we propose the NAND endurance model which accu-
rately captures the tradeoff relationship among the NAND capabilities. Since
the relationship between each NAND capability is expressed as the saved
Vth window by each tuning technique, the proposed NAND endurance model
can be utilized for other purpose such as booting the write performance or
retention capability of a storage device. For example, when urgent write
requests are issued to a storage system, the write performance of NAND
devices can be rapidly boosted by temporarily sacrificing the endurance and
retention capabilities of NAND devices. Similarly, when cold data are to be
written, the retention capability of NAND devices can be further enhanced

by sacrificing the write performance of NAND devices.
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