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Abstract

Replacing HDDs with NAND flash-based storage devices (SSDs) has

been one of the major challenges in modern computing systems especially in

regards to better performance and higher mobility. Although uninterrupted

semiconductor process scaling and multi-leveling techniques lower the price

of SSDs to the comparable level of HDDs, the decreasing lifetime of NAND

flash memory, as a side effect of recent advanced device technologies, is

emerging as one of the major barriers to the wide adoption of SSDs in high-

performance computing systems.

In this dissertation, we propose new cross-layer optimization techniques

to extend the lifetime (in particular, endurance) of NAND flash memory. Our

techniques are motivated by our key observation that erasing a NAND block

with a lower voltage or at a slower speed can significantly improve NAND

endurance. However, using a lower voltage in erase operations causes ad-

verse side effects on other NAND characteristics such as write performance

and retention capability. The main goal of the proposed techniques is to im-

prove NAND endurance without affecting the other NAND requirements.

We first present Dynamic Erase Voltage and Time Scaling (DeVTS),

a unified framework to enable a system software to exploit the tradeoff re-

lationship between the endurance and erase voltages/times of NAND flash

memory. DeVTS includes erase voltage/time scaling and write capability

tuning, each of which brings a different impact on the endurance, perfor-

mance, and retention capabilities of NAND flash memory.
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Second, we propose a lifetime improvement technique which takes ad-

vantage of idle times between write requests when erasing a NAND block

with a slower speed or when writing data to a NAND block erased with a

lower voltage. We have implemented a DeVTS-enabled FTL, called dvs-

FTL, which optimally adjusts the erase voltage/time and write performance

of NAND devices in an automatic fashion. Our experimental results show

that dvsFTL can improve NAND endurance by 62%, on average, over DeVTS-

unaware FTL with a negligible decrease in the overall write performance.

Third, we suggest a comprehensive lifetime improvement technique

which exploits variations of the retention requirements as well as the per-

formance requirement of SSDs when writing data to a NAND block erased

with a lower voltage. We have implemented dvsFTL+, an extended version

of dvsFTL, which fully utilizes DeVTS by accurately predicting the write

performance and retention requirements during run times. Our experimental

results show that dvsFTL+ can further improve NAND endurance by more

than 50% over dvsFTL while preserving all the NAND requirements.

Lastly, we present a reliability management technique which prevents

retention failure problems when aggressive retention-capability tuning tech-

niques are employed in real environments. Our measurement results show

that the proposed technique can recover corrupted data from retention fail-

ures up to 23 times faster over existing data recovery techniques. Further-

more, it can successfully recover severely retention-failed data, such as ones

experienced 8 times longer retention times than the retention-time specifi-

cation, that were not recoverable with the existing technique.

Based on the evaluation studies for the developed lifetime improve-
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ment techniques, we verified that the cross-layer optimization approach has

a significant impact on extending the lifetime of NAND flash-based storage

devices. We expect that our proposed techniques can positively contribute

to not only the wide adoption of NAND flash memory in datacenter envi-

ronments but also the gradual acceleration of using flash as main memory.

Keywords: NAND Flash Memory, Solid State Drive, Storage Management,

Storage Reliability, Storage Lifetime, Embedded Software

Student Number: 2012-30229
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Chapter 1

Introduction

1.1 Motivation

NAND flash-based solid-state drives (SSDs) are widely used in per-

sonal computing systems as well as mobile embedded systems. However,

in enterprise environments, SSDs are employed in only limited applications

because SSDs are not yet cost competitive with HDDs [1]. Fortunately, the

prices for SSDs have fallen to the comparable level of HDDs by continu-

ous semiconductor process scaling (e.g., 10 nm-node process [2]) combined

with multi-leveling technologies (e.g., MLC [3] and TLC [4]). However, the

limited endurance of NAND flash memory, which have declined further as

a side effect of the recent advanced device technologies, is emerging as an-

other major barrier to the wide adoption of SSDs. (NAND endurance is the

ability of a memory cell to endure program/erase (P/E) cycling, and is quan-

tified as the maximum number Nmax
P/E of P/E cycles that the cell can tolerate

while maintaining its reliability requirements [5].) For example, although

the NAND capacity per die doubles every two years, the actual lifetime

(which is proportional to the total NAND capacity and Nmax
P/E ) of SSDs does

not increase as much as projected in the past seven years because Nmax
P/E has

declined by 70% during that period [6]. In order for SSDs to be common-

place in enterprise environments, the issues concerning NAND endurance
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should be properly resolved.

Since the Lifetime LC of an SSD with the total capacity C is propor-

tional to the maximum number Nmax
P/E of P/E cycles, and is inversely propor-

tional to the total written data Wday per day, LC (in days) can be expressed

as follows (assuming a perfect wear leveling):

LC =
Nmax

P/E × C

Wday × WAF
, (1.1)

where WAF is a write amplification factor which represents the efficiency

of an FTL algorithm. Many existing lifetime-enhancing techniques have

mainly focused on reducing WAF by increasing the efficiency of an FTL al-

gorithm. For example, by avoiding unnecessary data copies during garbage

collection, WAF can be reduced [7]. In order to reduce Wday , various

system-level techniques were proposed. For example, data de-duplication [8],

data compression [9], and write traffic throttling [10] are such techniques.

On the other hand, only a few system/software-level techniques have been

proposed to increase Nmax
P/E . Although several conceptual device-level tech-

niques (e.g., a self-healing SSD [11]) were suggested regarding Nmax
P/E , it is

difficult for these to be employed in real systems because of their unrealistic

hardware settings and critical side-effects.

By exploiting the tradeoff relationships between the NAND character-

istics (e.g., capacity, performance, retention, and endurance), several cross-

layer optimization techniques have been suggested. In order to improve SSD

performance, for example, the retention relaxation technique [12] temporar-

ily relaxes the NAND retention capability while FlexFS [13] flexibly reorga-
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nizes the NAND capacity between SLC and MLC regions. Although these

techniques exploited the device-level physical characteristics in the similar

fashion of our work, their main goals are quite different from ours. Up until

now, there have been a few particular suggestions to improve the NAND

endurance by exploiting the tradeoff relationships between the NAND ca-

pabilities.

1.2 Dissertation Goals

In this dissertation, we propose new cross-layer optimization techniques

to extend the lifetime of NAND flash-based storage devices by exploiting

the tradeoff relationship among NAND capabilities such as endurance, per-

formance, and retention. The primary goals of this dissertation is as follows:

• Enabling a system software to exploit the tradeoff relationship be-

tween the endurance and the other capabilities of NAND flash mem-

ory.

• Developing system-level techniques to improve NAND endurance while

maintaining the other NAND requirements.

• Providing reliability preservation techniques for NAND flash-based

storage systems when flash-optimization techniques are widely em-

ployed in real environments.
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1.3 Contributions

The proposed cross-layer approach in this dissertation adds a new di-

mension to the decreasing lifetime problem of NAND flash-based storage

devices as follows:

• A unified NAND endurance model which captures the tradeoff re-

lationship between NAND endurance and the performance/retention

capabilities of NAND flash memory is proposed. We reveal that en-

durance degradation is primarily caused by excessive erase opera-

tions, and suggest effective device-level means (i.e., various write-

capability tuning techniques) of alleviating the negative impact of

erase operations on NAND endurance. Based on the proposed NAND

endurance model, a system software can adjust the internal operation

voltages and times of NAND flash memory in a reliable fashion.

• System-level lifetime improvement techniques for NAND flash-

based storage devices are presented. Based on the NAND endurance

model, the proposed techniques dynamically change the NAND per-

formance and retention capabilities for each program operation so that

endurance-enhancing erase operations can be frequently used. Since

the proposed lifetime improvement techniques can efficiently adapt

to varying characteristics of I/O workload by accurately predicting

the write performance and retention requirements, the overall perfor-

mance and reliability requirements of storage systems are maintained

while significantly improving NAND endurance.
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• Reliability management techniques for NAND flash-based storage

systems are suggested. Since the proposed lifetime improvement tech-

niques aggressively tune down the NAND retention capability to im-

prove NAND endurance, the retention-failure problem can be a seri-

ous technical issue for power/temperature-unstable computing envi-

ronments. In order to preserve the data durability of the stored data in

NAND flash memory, we introduce a novel data recovery technique

which can efficiently and quickly recover corrupted data from reten-

tion failures.

Although this dissertation has mainly focused on improving NAND en-

durance, our proposed techniques can be extended to improve other require-

ments (e.g., performance, retention, and read-disturbs resistance) of storage

systems. Moreover, since our techniques are entirely independent on data

content, the existing flash-optimization techniques can be easily integrated

into our proposed framework.

1.4 Dissertation Structure

This dissertation consists of seven chapters. The first chapter presents

a introduction to this dissertation while the last chapter serves as a conclu-

sion with a summary and future work. The five intermediate chapters are

organized as follows:

Chapter 2 reviews the operational principles of NAND flash memory

and explains existing SSD lifetime improvement techniques closely related

to this dissertation.
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Chapter 3 describes the dynamic NAND voltage and time scaling frame-

work which includes erase voltage/time scaling and write capability tun-

ing. Combining erase scaling and write tuning, a unified NAND endurance

model for estimating their effects on NAND endurance is also suggested.

Chapter 4 proposes an SSD lifetime improvement technique using write-

performance tuning. We explain how to use a lower voltage and a slower

speed for an erase operation and how to write data to a NAND block erased

with a lower voltage. In addition, the effect of the proposed technique on

NAND endurance is presented in detail.

Chapter 5 presents a comprehensive SSD lifetime improvement tech-

nique using both write-performance tuning and retention-capability tuning.

We describe reliable prediction schemes to accurately predict the write per-

formance and retention requirement and present efficient adaptation schemes

to manage the NAND capabilities. We then show how much NAND en-

durance is improved and whether the overall NAND requirements are pre-

served.

Chapter 6 suggests a reliability management technique in order to re-

cover data loss due to retention failures. Finally, we show how efficient the

proposed technique is in terms of data recovery power and speed.
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Chapter 2

Background

In order to improve NAND endurance, reliability and performance pa-

rameters are dynamically changed during run time in this dissertation. In

this chapter, we review the basics of key Vth design parameters and the

principals of a NAND program operation.

2.1 Threshold Voltage Window of NAND Flash

Memory

NAND flash memory stores data into cells by changing their Vth states

depending on bit information, and restores data from cells by sensing their

Vth states. Figure 1 illustrates an example of Vth distributions for an MLC

NAND device which stores two bits in a cell by using four distinct Vth states

distinguished by three read reference voltages.

Aside from serving as a non-volatile storage medium, MLC NAND de-

vices are also required to meet the specified NAND requirements [5]. For

example, read and program operations of an MLC device should be com-

pleted within 100 µs and 1,600 µs, respectively [6]. Moreover, even after

3,000 P/E cycles, it is required to support up to 400,000 read operations [6]

as well as to retain its stored data for up to 1 year at 30 ◦C [14]. Since the

Vth design parameters shown in Figure 1 are closely related to the NAND
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Figure 1: An example of Vth distributions for MLC NAND flash memory

and primary Vth design parameters for the NAND requirements.

requirements, the overall Vth distributions should be carefully designed to

meet all the NAND requirements under the worst-case operating conditions

for a storage product.

The upper Vth target V Erase
V erify of the E state is one of the key factors in

determining the total width WV th of Vth distributions. As V Erase
V erify is lowered,

WV th gets widened so that it is easier to optimize the Vth parameters for

higher performance or longer retention capability. However, as a side-effect

of the lowered V Erase
V erify , NAND endurance may deteriorate because NAND

blocks are more deeply erased [15]. Conversely, when a higher V Erase
V erify is

used, designing Vth distributions becomes more complex because less WV th

is available.

The width WPi of a Vth distribution is mostly determined by the NAND

write performance requirement. Since NAND flash memory generally uses

the incremental step pulse programming (ISPP) scheme to form Vth distri-

butions, WPi and the program time are directly affected by the ISPP step

control. For example, when a fine-grained ISPP step control is used for

a program operation, WPi can be shortened while the program time in-

creases [15]. As a result, WPi is determined by the minimum achievable
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width of a Vth distribution under the given program-time requirement.

The Vth gap MPi between two adjacent states is mainly determined

by the NAND retention requirement. When NAND memory cells are pro-

grammed and left for a long time, charge loss may occur because stress-

induced damage in the tunnel oxide layer is likely to loosen stored charges.

Since this charge-loss phenomenon may cause Vth changes, it is necessary

for a sufficient MPi to tolerate the Vth changes. In order to guarantee the

NAND retention requirement under the worst-case operating condition, MPi

is determined by the maximum Vth change after the maximum number of

P/E cycles and the specified retention time.

The Vth gap MDist between the E state and V P1
Read primarily affects the

program-disturbance resistance and read-disturbance resistance of NAND

flash memory. When NAND memory cells are programmed or read, neigh-

bor cells that belong to the E state may be softly programmed so that

their Vths move to the right [5][16]. In order to compensate for the Vth

changes due to these disturbances, a sufficient MDist should be reserved in

the Vth window as shown in Figure 1. Typically, MDist is decided by the Vth

changes after the maximum number of P/E cycles followed by the maximum

number of read cycles.

The read pass voltage V Pass
Read which affects the NAND read disturbance

is another key factor in deciding the value of WV th. Since the NAND read

disturbance has an exponential dependence on the V Pass
Read [17], V Pass

Read is usu-

ally fixed as low as possible in device design times. The Vth gap MPass

between the P3 state and V Pass
Read is also essential to fully turn on all the

NAND memory cells in a block [5].
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When the Vth design parameters are designated accordingly, all the

Vth states are placed between V Erase
V erify and V Pass

Read . Therefore, the total width

WV th of the Vth window is expressed as follows (for an MLC NAND de-

vice):

WV th = V Pass
Read − V Erase

V erify

= MDist +

3
∑

i=1

WPi +

3
∑

i=1

MPi +MRead.
(2.1)

Since the Vth design parameters are highly related to one another, if a certain

design parameter is to be changed, we should check its effect on the whole

Vth window.

2.2 NAND Program Operation

In order to form a threshold voltage distribution within a desired re-

gion, NAND flash memory generally uses the incremental step pulse pro-

gramming (ISPP) scheme. As shown in Figure 2, the ISPP scheme gradu-

ally increases the program voltage by the VISPP step until all the memory

cells in a page are located in a desired threshold voltage region. While re-

peating ISPP loops, once NAND cells are verified to have been sufficiently

programmed, those cells are excluded from subsequent ISPP loops.

Since the program time is proportional to the number of ISPP loops

(which are inversely proportional to VISPP ), the program time TPROG can
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Figure 2: A conceptual timing diagram of the ISPP scheme.

be expressed as follows:

TPROG ∝
V end
PGM − V start

PGM

VISPP
. (2.2)

Figure 3 shows normalized TPROG variations over different VISPP

scaling ratios. (When a VISPP scaling ratio is set to x%, VISPP is reduced

by x% of the nominal VISPP .) When a narrow threshold voltage distribution

is needed, VISPP should be reduced for a fine-grained control, thus increas-

ing the program time. Since the width of a threshold voltage distribution is

proportional to VISPP [18], for example, if the nominal VISPP is 0.5 V and

the width of a threshold voltage distribution is reduced by 0.25 V, VISPP

also needs to be reduced by 0.25 V (i.e., a VISPP scaling ratio is 0.5), thus

increasing TPROG by 100%.

2.3 Related Work

Since the lifetime of SSDs is inversely proportional to the total writ-

ten data Wday per day and the write amplification factor WAF , existing

lifetime-enhancing studies for SSDs have mainly focused on reducing Wday
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Figure 3: Normalized TPROG variations over different VISPP scaling ratios.

or WAF . In this section, we briefly review typical examples of existing

lifetime-enhancing techniques that reduce Wday and WAF , and explain

a device-level technique for improving NAND endurance. Finally, we de-

scribe one of the cross-layer optimization techniques for better SSD perfor-

mance, which is an integral motivation behind our work.

2.3.1 System-Level SSD Lifetime Improvement Tech-

niques

Data Compression Technique

In order to reduce Wday , many types of flash-aware data compression

techniques have been proposed to reduce the logical amount of write traffic

to NAND chips. For example, the compression-aware flash translation layer

(CaFTL) [9] was suggested to make key FTL modules (e.g., address map-

ping table and garbage collector) compression-aware so that compression

efficiency could be maximized. Figure 4 shows the overall architecture of

CaFTL with a page mapping table and a specially-designed data structure

12



(i.e., a data chunk table) for managing compressed data.

Figure 4: An overall organization of CaFTL.

In order to mitigate page fragmentation issues, CaFTL temporarily

stores compressed data in a data buffer, and flushes four stored pages to

NAND flash memory simultaneously. After flushing, compression-related

information as shown in Figure 4 is updated to the data chunk table. Based

on the data chunk table, CaFTL efficiently handles read requests and finds

the most appropriate victim block during garbage collection. Moreover, CaFTL

monitors the compression-ratio changes of input data so that unnecessary

compression is avoided. Although data compression is an effective solution

for reducing Wday in general, when poorly compressed data (e.g., multime-

dia data) are continuously incoming, the method’s effectiveness in extend-

ing the SSD lifetime is significantly degraded. However, since our proposed

techniques does not depend on data content, it can improve SSD lifetime
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even when all the requested data is not compressed.

Data Separation Technique

Since NAND flash memory does not allow in-place-updates, unneces-

sary data copies occur during garbage collection so that the logical amount

of written data is actually amplified by WAF . In order to minimize WAF ,

several flash optimization techniques (e.g., advanced mapping schemes, TRIM

command and data separation techniques) have been introduced. For exam-

ple, Hsieh et al. suggested a multi-hash function based data separation tech-

nique for separating hot data (i.e., frequently updated data) and cold data

(i.e., rarely updated data) with a reasonable hardware overhead [7]. Since

hot data are updated within a short time, if such hot data are aggregated in

the same NAND block, there is a high probability that a dead block (i.e., a

NAND block where all the pages are invalidated) or a near-dead block can

be selected during garbage collection, thus reducing WAF . Figure 5 shows

an example of the hot data identification process with K independent hash

functions to hash a given LBA into the multiple entries of an M -entry hash

table [7]. Whenever write requests are issed, each counter entry correspond-

ing to a hashed value is incremented. In order to capture recent hot data, all

the counter entries are decayed every predefined number of input requests. If

the H most significant bits of every counter corresponding to K hash func-

tions contain a non-zero value, that LBA is classified as hot data. Although

the main purpose of the data separation technique is quite different from our

proposed technique, its ability to identify hot data can contribute to increas-

ing the efficiency of the proposed lifetime improvement techniques. For ex-
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Figure 5: Examples of the counter updating and the hot data identification

of an LBA.

ample, if the data separator can accurately identify hot data, the retention-

time requirements of such hot data can be relaxed because hot data will be

updated in the near-future.

2.3.2 Device-Level Endurance-Enhancing Technique

Wu et al. presented a device-level endurance enhancement technique

that boosts self-recovery speed by heating a flash chip under high temper-

ature [11]. Figure 6 shows the self-healing SSD architecture and its self-

healing process. When a sick chip (i.e., a NAND chip that is almost worn-
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Figure 6: Illustration of self-healing SSD and an example of self-healing

process.

Figure 7: The effect of the self-heating on increasing Nmax
P/E .

out) is detected, its entire data is copied to the extra backup chip during

device idle times. After data copy operations are completed, a sick chip is

heated at 200 ◦C for 35 minutes. Figure 7 shows the effect of self-heating

on increasing Nmax
P/E . By leveraging the temperature-accelerated recovery, it

improved the endurance of SSDs up to fivefold. A major drawback of this

approach is that it requires extra energy consumption to heat flash chips and

lowers the reliability of a storage device. Our proposed technique improves
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Figure 8: Example distributions of the data retention requirements.

the endurance of NAND devices by lowering the erase voltage and slowing

down the erase speed without any serious side effects.

2.3.3 Cross-Layer Optimization Techniques Exploiting

NAND Tradeoffs

Liu et al. proposed a retention relaxation technique to improve SSDs by

relaxing their NAND retention capabilities [12]. This technique is motivated

by their observation that in typical enterprise workloads, a considerable por-

tion of written data to SSDs is likely to be updated soon (e.g., less than a

day as shown in Figure 8). Since this observed updated time is much shorter

than the NAND retention-time specification (i.e., 1 year), the retention re-

laxation technique increases the ISPP step voltage so that the NAND write

performance is increased while shortening the retention capability.

Figure 9(a) shows how much the write speed increases as the retention-

time requirements are relaxed. For example, if the retention-time require-

ment is relaxed to 2 weeks, the NAND write speed can be increased to 2.33x
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(a) Relationship between the NAND retention times

and the NAND write speedup.

(b) SSD write response time speedup.

Figure 9: Experimental results for the SSD write response time speedup.

of the write speed when 1-year retention-time is required. Figure 9(b) shows

the overall write speedup of SSDs for 11 workloads under different reten-

tion capabilities. When the retention capability is relaxed to only 2 weeks,

the overall SSD write response time was reduced by 160% on average.

The main weakness of this technique is that its effectiveness on im-

proving SSD performance is entirely dependent on the workload conditions.
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Since this technique always relaxes the NAND retention capability without

consideration of data characteristics (e.g., the update frequency), when most

of the written data are not updated within a predefined retention time, this

data should be rewritten by a background data refresh process. When there

is enough idle times between consecutive write requests, the side-effect of

such background data refresh operations can be hidden as shown in the hd1

and hd2 cases of Figure 9(b). However, when the idle time is not sufficient,

the write performance speedup may decrease as shown in the prn 0 case of

Figure 9(b).

Another technical issue is that this technique did not take into account

retention-failure problems. When a power failure occurs and continues for a

long time, retention-relaxed data may not be retrieved because a background

data refresh process does not work during power failures. In order for this

kind of aggressive flash optimization techniques to be widely employed, the

retention-failure problem should be adequately resolved.

Although the main goal of this technique is quite different from ours,

its technical concept is one of the important motivations in the way that it

actively exploited the tradeoff relationships between the NAND capabilities.

For example, the concept of a retention relaxation substantially contributed

to the development of our write-age tuning mode.
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Chapter 3

Dynamic Erase Voltage and Time

Scaling

In this chapter, we propose a unified framework, called Dynamic Erase

Voltage and Time Scaling (DeVTS), which enables a system software to

exploit the tradeoff relationship between the NAND endurance and erase

voltages/times. The DeVTS framework is motivated by our NAND device

physics study that NAND endurance is degraded primarily during erase op-

erations. Since the probability of oxide damage (which is known as the

main cause of endurance degradation) has an exponential dependence on the

stress voltage [19], reducing the stress voltage (i.e., the erase voltage) is the

most effective means of improving NAND endurance. Moreover, given an

erase operation, since a nominal erase voltage tends to excessively damage

NAND memory cells in the beginning of an erase operation [20], slowing

down the erase speed (i.e., monotonically increasing the erase voltage from

a low voltage to the nominal voltage over a sufficiently long time period)

can minimize the damage [15][21], thus additionally improving NAND en-

durance. By modifying a NAND device to support multiple erase voltage

and time scaling modes (which have different impacts on NAND endurance),

and allowing a flash software to select the most appropriate erase scaling

modes depending on a workload, DeVTS has a significant potential to in-
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crease Nmax
P/E .

However, in order to write data to a NAND block erased with a lower

erase voltage, it is required to use special write modes that can form thresh-

old voltage (Vth) distributions within a narrower Vth window. Since the Vth

window (i.e., the total width of Vth margins for a NAND cell) is tightly de-

signed to guarantee all the specified NAND requirements (i.e., endurance,

performance and retention), in order to assign more Vth margin to the en-

durance, the Vth margin for the other requirements needs to be reduced in-

stead. For example, a slow write mode with a fine-grained program control

can shorten the width of a Vth distribution so that the required Vth margin

for performance can be saved while the NAND program time increases [15].

Similarly, a short-retention write mode, which reduces the Vth gap between

two adjacent Vth states, can save the required Vth margin for retention while

the retention capability is sacrificed [16] [12].

In order to estimate the impact of the special write modes (i.e., slow

write modes or short-retention write modes) on NAND endurance, we de-

velop a unified NAND endurance model which accurately captures the trade-

off relationships between NAND endurance and NAND performance/retention

capabilities. Based on the NAND endurance model, when a slow or short-

retention write mode is used at the expense of the performance or retention

capability, we can estimate how much the erase voltage can be lowered and

its impact on NAND endurance.
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3.1 Erase Voltage and Time Scaling

3.1.1 Motivation

The physical mechanism of endurance degradation is closely related

to stress-induced damage in the tunnel oxide layer of a NAND memory

cell [16]. Since the probability of oxide damage has an exponential depen-

dence on the stress voltage [19], lowering the stress voltage (i.e., the pro-

gram voltage VPgm or the erase voltage VErase) during P/E cycles can be an

effective means of improving NAND endurance.

Although the maximum VPgm to complete a program operation is usu-

ally higher than VErase, NAND endurance is primarily degraded during

erase operations. This is because the stress time interval of an erase op-

eration is about 100 times longer than that of a program operation. Further-

more, since written data on a certain cell is likely to be changed randomly,

the probability that the cell consecutively experiences the maximum VPgm

during P/E cycles is very low. On the contrary, all the cells in a NAND block

experience VErase at all times during P/E cycles. Therefore, we can assume

that changing VErase has a more significant impact on NAND endurance.

In order to verify our assumption, we evaluated the effects of two dif-

ferent stress-voltage-reduction policies, shown in Figure 10(a), on NAND

endurance. In the ‘lowering VErase’ policy, WV th shrinks to the right direc-

tion (compared to the default case) so that VErase is lowered by 1 V while

VPgm is not changed. On the other hand, in the ‘lowering VPgm’ policy,

WV th shrinks to the left direction so that the maximum VPgm is reduced

by 1 V while VErase is maintained. In our evaluation, ten blocks out of two

22



E P1 P2 P3

WVth (Default)

E P1 P2 P3

E P1 P2 P3

WVth (Reduced)

WVth (Reduced)

Lowering
  VErase

Lowering
      VPgm

(a) Illustrations of two different stress-

voltage-reduction policies over the de-

fault case.

0

5

10

15

20

25

30

N
u

m
b

e
r 

o
f 

R
e

te
n

ti
o

n
 

E
rr

o
rs

 p
e

r 
1

 K
B

Default Lowering
VPgm

Lowering
VErase

15.0 14.2

9.8

(b) Variations of the numbers of retention

errors per 1 KB under three different poli-

cies.

Figure 10: Comparison of the impacts of lowering VPgm and VErase on

NAND retention errors.

20-nm node NAND chips were selected for each policy. As the main eval-

uation metric, we measured the number of retention errors (i.e., bit errors

after 3K pre-cycling and 1 hour’s baking at 100 ◦C [22]) per 1-KB cells

because it reflects the effective degree of NAND wearing [15]. As shown

in Figure 10(b), when the ‘lowering VPgm’ policy was used, the number

of retention errors was reduced by only 5.3%, on average, over the default

case. However, when the ‘lowering VErase’ policy was used, the number of

retention errors was reduced by 34.7%, on average, over the default case.

These results clearly show that lowering VErase is much more effective than

lowering VPgm in improving NAND endurance.

3.1.2 Erase Voltage Scaling

In order to evaluate the effect of erase voltage scaling on NAND en-

durance, we performed NAND cycling tests by using different VErase’s. In a
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Figure 11: The effect of erase voltage scaling on NAND endurance.

cycling test, program and erase operations are repeated 3,000 times. Our cy-

cling tests for each case were performed with 100 blocks out of five 20-nm

node NAND chips. After cycling tests, we measured the NAND retention

BER (i.e., the number of retention errors divided by the total number of

cells) for each block as a measure of wearing degree of NAND memory

cells. The measured BERs were normalized over the retention BER when

the nominal erase voltage V nominal
Erase was used. Figure 11(a) shows how the

retention BER changes, on average, as the number of P/E cycles increases

while different VErase’s are used. We represent different VErase’s using an

erase voltage scaling ratio rev (0 ≤ rev ≤ 1). When rev is set to x, VErase is

reduced by (1 − x)×V nominal
Erase . As shown in Figure 11(a), the more VErase

is reduced (i.e., the lower rev’s), the lower the retention BERs. For example,

when rev is set to 0.93, the normalized retention BER is reduced by 30%

after 3K P/E cycles over the V nominal
Erase case.

Since different VErase’s affect NAND endurance by different amounts,
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we introduce a new endurance metric, called effective wearing, which rep-

resents the effective degree of NAND wearing per a P/E cycle. Based on a

linear approximation model1 which simplifies the NAND wear-out behav-

ior over P/E cycles as shown in Figure 11(a), we represent effective wearing

with a normalized retention BER after 3K P/E cycles. For example, when

V nominal
Erase is used (i.e., rev = 1.00), effective wearing is 1.00. On the other

hand, when VErase is reduced by 7% (i.e., rev = 0.93), effective wear-

ing becomes 0.70. As shown in Figure 11(b), since effective wearing has a

near-linear dependence on rev, effective wearing for a different rev can be

estimated by a linear regression model. In this dissertation, we will use a

NAND endurance model with five erase voltage modes EVmodei’s which

have five different rev’s.

The effect of lowering VErase on NAND endurance can be estimated

by accumulating effective wearing for each P/E cycle. After 3K P/E cycles,

for example, the total sum ΣEW of effective wearing with V nominal
Erase is

3,000 (= 1.00 × 3000), but when rev is set to 0.93, ΣEW is only 2,100

(= 0.70×3000). Since NAND reliability is maintained until ΣEW reaches

3,000, Nmax
P/E can be increased by 1,286 (= (3000 − 2100)/0.70) when

VErase is reduced by 7% over V nominal
Erase .

Since we did not have access to NAND chips from different manufac-

turers, we could not prove that our test results can be generalized. However,

1In this dissertation, we use a linear approximation model which simplifies the wear-out

behavior over P/E cycles. Our current linear model can overestimate the effective wear-

ing under low erase voltage scaling ratios while it can underestimate the effective wearing

under high erase voltage scaling ratios. We verified that, by the combinations of over-/under-

estimations of the effective wearing in our model, the current linear model achieves a rea-

sonable accuracy with an up to 10% overestimation [20] while supporting a simple software

implementation.
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since our tests are based on widely-known device physics which have been

investigated by many device engineers and researchers, we are convinced

that the consistency of our results would be maintained as long as NAND

flash memories use the same physical mechanism (i.e., FN-tunneling) for

program and erase operations. We believe that our results will also be effec-

tive for future NAND devices as long as their operations are based on the

FN-tunneling mechanism. It is expected that current 2D NAND devices will

gradually be replaced by 3D NAND devices, but the basis of 3D NAND is

still the FN-tunneling mechanism.

3.1.3 Erase Time Scaling

Endurance degradation is directly proportional to VErase in an erase

operation as described in Section 3.1.2. When VErase is applied to a NAND

block, however, NAND memory cells are likely to be over-damaged by

VErase. Since the actual voltage across the tunnel oxide layer is the sum

of VErase and the Vth of a cell [20], an unintended higher (than VErase)

voltage may cause additional damage (which is dependent on the cell’s Vth)

to the cell until all the programmed cells are sufficiently erased. For exam-

ple, NAND memory cells which have higher Vth’s (e.g., the P3 state) are

more damaged than those that have lower Vth’s (e.g., the E state).

In order to minimize oxide damage in the beginning of an erase opera-

tion, it is necessary to properly control the applied VErase so that the actual

voltage across the tunnel oxide layer does not exceed VErase throughout the

erase operation. We implemented this idea by modifying the existing incre-

mental step pulse erasing (ISPE) scheme [23] so that the applied VErase
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Figure 13: The effect of erase time scaling on NAND endurance.

gradually increases from a low voltage (e.g., VErase − the average Vth of

the P3 state) to VErase over a sufficiently long time period as shown in Fig-

ure 12. However, when the modified ISPE scheme is used for an erase oper-

ation, the erase time (e.g., T slow
Erase shown in Figure 12) inevitably increases

because more ISPE loops are needed to complete the erase operation.

As shown in Figure 13(a), effective wearing decreases near-linearly as

the erase time increases. For example, when the erase time increases three-

fold, effective wearing is reduced, on average, by 19%. We represent the

erase speed mode with a default erase time by ESmodefast while that with
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a long erase time is represented by ESmodeslow. As shown in Figure 13(b),

the effect of ESmodeslow on improving NAND endurance can be exploited

whenever longer erase times are acceptable regardless of rev.

3.2 Write Capability Tuning

If a NAND block is shallowly erased (i.e., erased with a lower volt-

age), the available Vth window for a program operation is also reduced.

This is because WV th is mainly affected by V Erase
V erify (which determines the

requirement of VErase) as explained in Section 2.1. For example, as shown

in Figure 14, if a NAND block is shallowly erased with a low erase voltage

V low
Erase (which is lower than V nominal

Erase ), WV th is reduced by a saved Vth

margin ∆WV th (which is proportional to the voltage difference between

V nominal
Erase and V low

Erase). Since Vth distributions should be formed within the

given Vth window, when V low
Erase is used in an erase operation, it is necessary

to use special write modes which adjust Vth design parameters (e.g., WPi,

MPi and MDist) so that WV th is reduced by at least ∆WV th. In this sec-
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VVerify

MDist

Erase

MP� WP� 

WVth
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V Verify
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MRead
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Figure 14: An example of NAND capability tuning for writing data to a

shallowly erased NAND block.
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tion, we describe several write capability tuning techniques to save WV th,

and present the NAND endurance model to estimate the impact of the pro-

posed tuning techniques on NAND endurance.

3.2.1 Write Performance Tuning

In order to reduce WPi’s, a fine-grained ISPP step control is needed

because WPi is directly proportional to the ISPP step voltage VISPP [18].

However, since the number of ISPP loops to complete a program operation

is inversely proportional to VISPP [15], the program time TPgm inevitably

increases as shown in Figure 15(a) if narrow Vth distributions are required.

Figure 15(b) shows how much VISPP can be reduced as TPgm increases.

TPgm was normalized over the nominal program time T nominal
Pgm (e.g., 1,300

µs [3]). We denote VISPP scaling ratio over the nominal ISPP step voltage

V nominal
ISPP by rISPP (0 ≤ rISPP ≤ 1). When rISPP is set to x, VISPP is

reduced by (1− x) × V nominal
ISPP .
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VPgm
start

VPgm
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V ISPP
nominal

VPgm
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V ISPP
tuned

TPgm
tuned

VPgm
start

(a) An illustration of the write per-

formance tuning technique.
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Figure 15: The proposed write performance tuning.
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In our proposed write-performance tuning technique, we define three

different write-speed modes, WSmode0, WSmode1, and WSmode2, as shown

in Figure 15(b). WSmode0 is the fastest write mode which has the same

TPgm as that of the nominal write mode, but cannot reduce VISPP . Alterna-

tively, WSmode2, the slowest write mode, has a TPgm two times longer (i.e.,

the normalized TPgm is 2.0) than the nominal write mode, but can reduce

VISPP by 50% (i.e., rISPP is 0.50) over V nominal
ISPP .

Since WPi has a linear dependence on VISPP (which is determined by

the write-performance requirement as shown in Figure 15(b)), ∆WV th by

tuning TPgm is expressed as follows (for an MLC NAND device):

∆WV th =

3
∑

i=1

∆WPi =

3
∑

i=1

(1− rISPP )× V nominal
ISPP . (3.1)

For example, if V nominal
ISPP is 400 mV, and a longer TPgm two times as long

as T nominal
Pgm is acceptable, WV th can be reduced by 600 mV (= 3 × ((1 −

0.50) × 400 mV)).

3.2.2 Retention Capability Tuning

NAND flash memory is required to retain its stored data for the spec-

ified retention time (e.g., 1 year at 30 ◦C [14]). In order to guarantee the

NAND retention requirement throughout the storage lifespan, MPi’s are

usually fixed during device design times to cover the maximum Vth change

under the worst-case operating condition (i.e., the maximum number of P/E

cycles and the specified retention time). However, since such worst-case op-

erating conditions rarely occur, MPi’s are not fully needed in most common
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cases. For example, since the Vth change due to the charge-loss phenomenon

is proportional to the number of P/E cycles [16], only part of MPi is enough

for young NAND memory cells (that have experienced fewer P/E cycles)

to meet the retention-time requirement. Moreover, since the Vth change is

also proportional to a retention time [16], when written data are updated

frequently within a short time period, MPi for such data can be further re-

duced.

Static Retention Tuning

In order to determine how much MPi is required as the number of

P/E cycles increases, we performed NAND cycling tests over varying P/E

cycles. A cycling test for each case was performed with more than 2,000

NAND pages (from 20 blocks out of 2 NAND chips). After the cycling tests,

we measured the average change in Vth for each block after 1 hour’s baking

at 100 ◦C. Measured average Vth change was normalized over the maxi-

mum required Vth margin Mmax
Pi under the worst-case operating condition

(i.e., 3K P/E cycles and 1-year retention time). We represent the normalized

average Vth change over varying P/E cycles as the static MPi scaling ratio

rsret. Figure 16(a) shows rsret variations over varying P/E cycles. After 0.5K

P/E cycles, for example, only 71% of Mmax
Pi is required (i.e., rsret is 0.71).

Based on the measurement results, we constructed a simplified static MPi

scaling model where rsret changes every 0.5K P/E cycles as shown by the

dotted line in Figure 16(a). For a given number of P/E cycles, ∆WV th by

tuning the NAND retention capability is expressed as follows (for an MLC
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ing.

NAND device):

∆WV th =

3
∑

i=1

∆MPi =

3
∑

i=1

(1− rsret)×Mmax
Pi . (3.2)

For example, if the sum of three Mmax
Pi ’s is 900 mV, and the number of P/E

cycles is less than 0.5K, WV th is reduced by 261 mV (= (1 − 0.71) × 900

mV).

Dynamic Retention Tuning

In order to determine how much MPi is required as the retention time

increases, we performed NAND cycling tests over varying retention times

and measured the average change in Vth for each retention time interval.

Measured average Vth change was normalized over Mmax
Pi . We represent

the normalized average Vth change over varying retention times as the dy-

namic MPi scaling ratio rdret. The solid lines in Figure 16(b) show rdret vari-
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ations over varying retention times with more than 2,000 NAND pages. In

order to minimize the management overhead, we simplify the rdret changes

over varying retention times into two different write-retention modes (i.e.,

WRmodeshort and WRmodelong) as shown by the dotted line in Figure 16(b).

WRmodelong is the long-retention write mode which fully supports the spec-

ified retention time (i.e., 1 year), but cannot reduce MPi (i.e., rdret is 1.00).

Alternatively, WRmodeshort is the short-retention write mode which sup-

ports only a 0.07-day retention time while requiring only 33% of Mmax
Pi

(i.e., rdret is 0.33). By combining rsret with rdret, Equation 3.2 is re-expressed

as follows:

∆WV th =

3
∑

i=1

∆MPi =

3
∑

i=1

(1− rsret × rdret)×Mmax
Pi . (3.3)

For example, when P/E cycle count is less than 0.5K, and the retention re-

quirement is less than 0.07 days, WV th is reduced by 689 mV (= (1−0.71×

0.33) × 900 mV).

3.2.3 Disturbance Resistance Tuning

Since the program disturbance and the read disturbance of NAND flash

memory are proportional to the number of P/E cycles [16], we measured

how much MDist is required as the number of P/E cycles increases. Af-

ter performing NAND cycling tests with varying P/E cycles and a specified

number (i.e., 400K [6]) of read cycles, we measured the average change in

Vth in the E state. Our tests were performed with more than 2,000 NAND

pages. Measured average Vth change was normalized over the maximum
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Table 1: A simplified rdist model over varying P/E cycles.

P/E Cycles [K] 0.5 1.0 1.5 2.0 2.5 3.0

rdist 0.43 0.57 0.74 0.90 0.95 1.00

required Vth margin Mmax
Dist under the worst-case operating condition (i.e.,

3K P/E cycles and 400K read cycles). We represent the normalized average

Vth change caused by NAND disturbance as rdist (0 ≤ rdist ≤ 1). Table 1

summarizes our simplified rdist model over varying P/E cycles. For exam-

ple, after 0.5K P/E cycles, only 43% of Mmax
Dist is required (i.e., rdist is 0.43).

For a given number of P/E cycles, ∆WV th by tuning the NAND disturbance

resistance can be expressed as follows:

∆WV th = ∆MDist = (1− rdist)×Mmax
Dist . (3.4)

Given that Mmax
Dist is 400 mV, and the number of P/E cycles is less than 0.5K,

WV th is reduced by 228 mV (= (1− 0.43) × 400 mV).

3.3 NAND Endurance Model

Combining the proposed NAND capability tuning (i.e., write-performance

tuning, retention-capability tuning, and disturbance-resistance tuning) with

erase voltage/time scaling, we developed a novel NAND endurance model

which can be used with DeVTS-enabled NAND chips. In order to construct

the NAND endurance model, we calculate ∆WV th for each combination of

NAND capability tuning modes by using Equations 3.1, 3.3, and 3.4. Since

a reduced erase voltage (= (1−rev)×V nominal
Erase ) is proportional to ∆WV th,
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Table 2: An example of a parameter set used to estimate effective wearing.

Parameter V nominal
Erase Mmax

Dist V nominal
ISPP

∑

Mmax
Pi αc

Value 14 V 400 mV 400 mV 900 mV 0.6

rev can be re-expressed as follows:

rev = 1−
∆WV th

V nominal
Erase × αc

, (3.5)

where αc is the empirical scaling parameter which represents the impact of

the VErase change on the Vth window. For example, if αc is 0.60 and VErase

is reduced by 1.00 V, WV th can be effectively reduced by 0.60 V. When

rev is calculated from Equation 3.5 for a given ∆WV th, the correspond-

ing effective wearing can be estimated by the linear equation described in

Section 3.1.2. Table 2 summarizes the parameter set used to construct the

NAND endurance model in this dissertation. All the data in our model is

based on measurement results with 20-nm node NAND chips.

As summarized in Table 3, EVmodej’s are decided by the combina-

tions of two write-retention modes (i.e., WRmodelong and WRmodeshort)

and five write-speed modes (i.e., WSmode0 ∼ WSmode4) because rev’s are

different for each combination. Figures 17 and 18 show our DeVTS-enabled

NAND endurance (i.e., the effective wearing) model with two erase speed

modes (i.e., ESmodefast and ESmodeslow) and two write-retention modes

(i.e., WRmodelong and WRmodeshort). Since ∆WV th’s are also affected by

static retention-capability tuning and disturbance-resistance tuning, the val-

ues of effective wearing vary whenever ΣEW exceeds 0.5K. If the total
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EVmode 0 1 2 3 4 5 6 7 8 9

WSmode 0 1 2 3 4 0 1 2 3 4

WRmode long short

Table 3: The EVmodej decision rule.

sum of the effective wearing is less than 0.5K, for example, when a NAND

block is slowly erased before writing with the short-retention write mode

(i.e., WRmodeshort) and the slowest write-speed mode (i.e., WSmode4), the

lowest erase voltage (i.e., EVmode9) can be used for an erase operation. In

this case, the effective wearing is only 0.29. The NAND endurance model

not only presents effective wearing for each combination of EVmodej and

ESmodek used in an erase operation, but also specifies corresponding write

capability tuning modes (i.e., WSmodei and WRmodem) when writing data

to a NAND block erased with EVmodej.
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(a) The endurance model for ESmodefast under five write speed

modes.
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(b) The endurance model for ESmodeslow under five write

speed modes.

Figure 17: The proposed NAND endurance models for DeVTS-enabled

NAND chips when long-retention write mode WRmodelong is used.
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(b) The endurance model for ESmodeslow under five write

speed modes.

Figure 18: The proposed NAND endurance models for DeVTS-enabled

NAND chips when short-retention write mode WRmodeshort is used.
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Chapter 4

Lifetime Improvement Technique

Using Write-Performance Tuning

In this chapter, we propose an SSD lifetime improvement technique,

called Dynamic Erase Voltage and Time scaling with Write Performance

Tuning (DeVTS-wPT), using the write-performance tuning technique based

on the DeVTS framework. Our DeVTS-wPT technique exploits the trade-

off relationships between the NAND endurance and erase voltages/speeds

at the firmware-level (or the software level in general) so that NAND en-

durance is improved while the overall write throughput is not affected. For

example, since the maximum performance of NAND flash memory is not

always needed in real workloads, a DeVTS-wPT based technique can ex-

ploit idle times between consecutive write requests for shortening the width

of threshold voltage distributions so that shallowly erased NAND blocks,

which were erased by lower erase voltages, can be used for most write re-

quests. Idle times can be also used for slowing down the erase speed. If such

idle times can be automatically estimated by a firmware/system software,

the DeVTS-wPT based technique can choose the most appropriate write

speed for each write request or select the most suitable erase voltage/speed

for each erase operation. By aggressively selecting endurance-enhancing

erase modes (i.e., a slow erase with a lower erase voltage) when a large idle
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time is available, NAND endurance can be significantly improved because

less damaging erase operations are more frequently used.

We have implemented the first DeVTS-wPT aware FTL, called dvs-

FTL, which dynamically adjusts write and erase modes in an automatic

fashion, thus improving NAND endurance with a negligible degradation in

the overall write throughput. In dvsFTL, we also revised key FTL software

modules (such as garbage collector and wear-leveler) to make them DeVTS-

wPT aware for maximizing the effect of DeVTS-wPT on NAND endurance.

Since no NAND chip currently allows an FTL firmware to change its pro-

gram and erase voltages/times dynamically, we evaluated the effectiveness

of dvsFTL with the extFlashBench emulation environment [24] using a

DeVTS-wPT-enabled NAND simulation model (which supports multiple

write and erase modes). Our experimental results using various I/O traces

show that dvsFTL can improve Nmax
P/E by 61.2% over an existing DeVTS-

wPT-unaware FTL with less than 2.2% decrease in the overall write through-

put.

4.1 Design and Implementation of dvsFTL

4.1.1 Overview

Based on our NAND endurance model presented in Section 3.3, we

have implemented dvsFTL, the first DeVTS-wPT-aware FTL, which auto-

matically changes write and erase modes depending on write throughput

requirements. dvsFTL is based on a page-level mapping FTL with addi-

tional modules for DeVTS-wPT support. Figure 19 shows an organizational
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overview of dvsFTL. The DVS manager, which is the core module of dvs-

FTL, selects a write-speed mode WSmodei for a write request and decides

both an appropriate erase voltage mode EVmodej and erase speed mode

ESmodek for each erase operation. In determining appropriate modes, the

mode selector bases its decisions on the estimated write throughput require-

ment using a circular buffer. dvsFTL maintains per-block mode information

and NAND setting information as well as logical-to-physical mapping infor-

mation in the extended mapping table. The per-block mode table keeps track

of the current write mode and the total sum of the effective wearing for each

block. The NAND setting table is used to choose appropriate device settings

for the selected write and erase modes, which are sent to NAND chips via

a new interface DeviceSettings between dvsFTL and NAND chips. dvsFTL

also extends both the garbage collector and wear leveler to be DeVTS-wPT-

aware.

4.1.2 Write-Speed Mode Selection

In order to select the most appropriate write-speed mode (i.e., the slow-

est write mode among available write-speed modes which does not affect the

overall write performance), the Wmode selector in the DVS manager esti-

mates the write-performance requirement for a given write request based on

the utilization uwb of a write buffer. Since the write buffer queues incoming

requests before they are written, uwb changes depending on the difference

between the incoming rate rin of write requests from a host system and the

outgoing rate rout to NAND devices. When writes are requested in a spo-

radic fashion (i.e., rin < rout), uwb may decrease. In this case, the Wmode
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Figure 19: An organizational overview of dvsFTL.

selector estimates that the maximum write performance of NAND devices is

not fully needed. On the contrary, when write requests are so intensive (i.e.,

rin > rout) that uwb increases, it is estimated that queued requests should

be written as fast as possible.

Figure 20 shows an overview of the write-speed mode selection in dvs-

FTL. In our implementation, the write-performance requirement is classified

into five levels by four buffer utilization boundaries as shown in Figure 20.

For example, when uwb is lower than 0.20, the requests queued in the write

buffer is written to a NAND page with WSmode4, the slowest write mode.

However, when uwb is higher than 0.80, in order to satisfy the urgent require-

ment of write performance, the write-speed mode is changed to WSmode0,

the fastest write mode.
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Our proposed write-speed mode selection technique can efficiently adapt

to varying rin as well as rout (which is proportional to the number of avail-

able NAND chips that are ready to be written). When NAND chips are

not available due to garbage collection, rout is significantly reduced [25].

For example, when garbage collection operations are performed in half of

NAND chips, rout is reduced by 50%. If rout reaches below rin so that uwb

increases, a faster write mode is more suited to mitigate the side effect of

garbage collection. Since our estimation metric is based on uwb which de-

pends on both rout and rin, the Wmode selector can determine the most

proper write-speed mode by taking into account the variations in both rin

and rout during run times.

43



4.1.3 Erase Voltage Mode Selection

On-Demand Selection

Selecting the most appropriate erase-voltage mode is the most essen-

tial step in dvsFTL because the erase voltage has a significant impact on

NAND endurance as well as the overall write performance as described in

Sections 3.1.2 and 3.2.1, respectively. When EVmode5 (which uses the low-

est erase voltage) is always used in erase operations, NAND endurance can

be improved to the fullest extent. However, since a NAND block erased with

EVmode4 allows only WSmode4 (which is the slowest write-speed mode)

in a program operation, when intensive write operations are requested, the

write performance can be degraded significantly. On the contrary, when

EVmode0 (which uses the highest erase voltage) is used at all times, DeVTS-

wPT cannot reach its full potential while still maintaining the overall write-

performance requirement. Therefore, similar to the write mode selections,

estimating the requirements of future write requests is also a critical step in

selecting the right erase-voltage mode.

When a foreground garbage collection process is invoked, since the

write-speed mode and write-retention mode of a received write request have

already been chosen by the Wmode selector, the victim block can be erased

with the corresponding erase-voltage mode as defined in the NAND en-

durance model. For example, if ΣEW is less than 0.5K for a victim block,

and WSmode0 has been chosen, the Emode selector decides EVmode0 as

the appropriate erase-voltage mode.

However, when a background garbage collection process is invoked, it
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is difficult to estimate the requirements of subsequent write requests. This

is because background garbage collection is activated when write requests

are not issued for more than the threshold time interval so that the recent

history of write requests is nearly initialized. In our implementation, the

Emode selector postpones deciding the right erase-voltage mode and selects

EVmode4 as the default so that a victim block is shallowly erased (with

the lowest erase voltage) during the background garbage collection process.

The right erase-voltage mode is lazily decided when the next phase of write

requests (after the background garbage collection process) is written to that

block. If the selected write modes are not compatible with EVmode4, the

selected block is additionally erased using the lazy erase operation (of which

latency is about 1,000 µs), described in the next section. Although the write

latency for the first page in the block is increased by 77% because the lazy

erase operation is performed in advance of the first-page write, its negative

impact on the overall write performance is less than 0.6% while the potential

of DeVTS-wPT can be fully utilized in terms of the lifetime improvement.

Lazy Selection

As explained in Section 3.2.1, when a NAND block was erased with

EVmodei, a page in the shallowly erased block can be programmed using

specific WSmodej’s (where j ≥ i) only because the requirement of the

saved threshold voltage margin cannot be satisfied with a faster write-speed

mode WSmodek (k < i). In order to write data with a faster write-speed

mode to the shallowly erased NAND block, the shallowly erased block

should be erased further before it is written. We propose a lazy erase scheme
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which additionally erases the shallowly erased NAND block, when neces-

sary, with a small extra erase time (i.e., 20% of the nominal erase time).

Since the effective wearing mainly depends on the maximum erase voltage

used, erasing a NAND block by a high erase voltage in a lazy fashion does

not incur any extra damage than erasing it with the initially high erase volt-

age. Although it takes a longer erase time, the total sum of the effective

wearing by lazily erasing a shallowly erased block is less than that by eras-

ing with the initially high erase voltage. This can be explained in a similar

fashion as why the erase time scaling is effective in improving the NAND

endurance as discussed in Section 3.1.3. The endurance gain from using

two different starting erase voltages is higher than the endurance loss from

a longer erase time.

4.1.4 Erase Speed Mode Selection

The Emode selector chooses a proper erase-speed mode which can of-

fer an additional lifetime benefit without affecting the overall write per-

formance. Since write requests waiting in the write buffer cannot be pro-

grammed to NAND chips during an erase operation, when writes are contin-

uously requested, the buffer utilization will increase. The increase ∆uerase

in the buffer utilization due to the erase operation can be estimated by how

many write requests are fulfilled during that time interval. As a result, the

effective buffer utilization u∗ after the erase operation is expressed as the

sum of the current buffer utilization uwb and ∆uerase. In selecting an erase-

speed mode, the Emode selector first checks whether or not erasing with

ESmodeslow raises u∗ above 1.0. If it is estimated that u∗ will be higher
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than 1.0, in order to avoid buffer overflow, ESmodefast is selected. Other-

wise, the Emode selector additionally checks whether or not erasing with

ESmodeslow causes a change in the current write-speed mode. If u∗ is in-

creased above the current buffer utilization boundary (e.g., 0.20, 0.40, 0.60,

0.80, or 1.00 as shown in Figure 20), subsequent write requests will be writ-

ten with a faster write mode. In this case, since the endurance gain by us-

ing a slower erase mode is smaller than the endurance gain lost by using

a faster write mode as shown in Figures 17 and 18, ESmodeslow is not a

suitable choice in terms of the lifetime improvement. If it is confirmed that

ESmodeslow will not affect the overall write performance and actually has

a lifetime benefit, it is then selected for the erase operation.

4.1.5 DeVTS-wPT Aware FTL Modules

Extended Mapping Table

Since erase operations are performed at the NAND block level, the

per-block mode table maintains five linked lists of blocks which were erased

using the same erase voltage mode. When the DVS manager decides a write-

speed mode for a write request, the corresponding linked list is consulted to

locate a destination block for the write request. Also, the DVS manager

informs a NAND chip how to configure appropriate device settings (e.g.,

ISPP/ISPE voltages, the erase voltage, and reference voltages for read/verify

operations) for the current write-speed mode using the per-block mode table.

Once NAND chips are set to a certain mode, an additional setting is not

necessary as long as the write and the erase modes are maintained. For a
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read request, since different write-speed modes require different reference

voltages for read operations, the per-block mode table keeps track of the

current write mode for each block so that a NAND chip changes its read

references before serving a read request.

In order to retrieve the per-block mode table, maintained in volatile

RAM, after an SSD is rebooted, dvsFTL writes the device-setting informa-

tion for each block into the spare area of the first page of that block. Since

the read reference voltages for a block is also unknown just after rebooting,

dvsFTL first searches the right reference voltages among the predefined set

of the read reference voltages corresponding to each erase mode. After ap-

propriate voltages are found, the device-setting information for that block

can be recovered by reading the spare area of its first page.

DeVTS-wPT Enabled Garbage Collection

When a garbage collection process is invoked, selecting the most suit-

able write-speed mode for data copy operations is also a challenging is-

sue to maximize the efficiency of DeVTS-wPT. If valid data is copied with

the fastest write mode at all times, the performance overhead of a garbage

collection process can be minimized. However, since free pages in deeply

erased blocks (which are compatible with the fastest write mode) are fre-

quently used, the probability of erasing blocks with the highest erase voltage

is increased inevitably. Conversely, if the slowest write mode is always used

in data copy operations, the overall write performance may be significantly

degraded. Since write requests waiting in the write buffer cannot be pro-

grammed to NAND chips during data copy operations, the buffer utilization
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may be effectively increased by ∆ucopy which is proportional to the number

of valid pages to be copied. Consequently, the effective buffer utilization u∗

after the data copy operation is expressed as the sum of the current buffer

utilization uwb and ∆ucopy. Similar to the erase-speed mode selection, if it

is estimated that u∗ will be raised above 1.0, the Wmode selector selects

the fastest write mode (i.e., WSmode0). Otherwise, the Wmode selector se-

lects the fastest write mode among available write-speed modes that does

not change the current write-speed mode.

DeVTS-wPT Enabled Wear leveling

Since different erase voltage/time affects the NAND endurance differ-

ently as described in Section 3.1, the reliability metric (based on the number

of P/E cycles) of the existing wear leveling algorithm [26] is no longer valid

in a DeVTS-wPT-enabled NAND flash chip. In dvsFTL, the DeVTS-wPT-

aware wear leveler uses the total sum of the effective wearing instead of the

number of P/E cycles as a reliability metric, and tries to evenly distribute the

total sum of the effective wearing among NAND blocks.

Device Setting Interfaces

As semiconductor technologies reach their physical limitations, it is

necessary to use cross-layer optimization between system software and NAND

devices. As a result, some of internal device interfaces are gradually opened

to public in the form of additional ‘user interface’. For example, in order

to track bit errors caused by data retention, a new ‘device setting interface’

49



which adjusts the internal reference voltages for read operations is recently

opened to public [27][28]. There are already many set and get functions for

modifying or monitoring NAND internal configurations in the up-to-date

NAND specifications such as the toggle mode interface and ONFI. For the

measurements presented here, we were fortunately able to work in conjunc-

tion with a flash manufacturer to adjust erase voltage as we wanted.

4.2 Experimental Results

4.2.1 Experimental Settings

We evaluated the effectiveness of the proposed dvsFTL with extextFlash-

Bench, an extended version of an existing unified development environ-

ment for NAND flash-based storage systems [24]. In order to keep track

of temporal interactions among various NAND operations, extFlashBench

emulates the key operations of DeVTS-wPT-enabled NAND devices in a

timing-accurate fashion using high-resolution timers (or hrtimers) (which

are available in a recent Linux kernel [29]).. Our validation results on an

8-core Linux server system show that the extFlashBench is very accurate.

For example, variations on the program time and erase time of our DRAM-

based NAND emulation models are less than 0.8% of TPROG and 0.3% of

TERS , respectively.

For our evaluation, we modified a NAND flash model in extFlashBench

to support DeVTS-wPT-enabled NAND flash chips with five write modes,

five erase voltage modes, and two erase speed modes. Each NAND flash

chip employed 128 blocks which were composed of 128 8-KB pages. The
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Table 4: The latency variations of NAND functions used in the experiments.

NAND function Speed mode Latency [3]

WSmode0 1,300 µs

WSmode1 1,482 µs

Program WSmode2 1,729 µs

WSmode3 2,080 µs

WSmode4 2,600 µs

Erase
ESmodefast 5,000 µs

ESmodeslow 20,000 µs

Read - 100 µs

maximum number of P/E cycles was set to 3,000. The nominal page pro-

gram time (i.e., TPROG) and the nominal block erase time (i.e., TERS) were

set to 1.3 ms and 5.0 ms, respectively. Table 4 summarizes the latency vari-

ations of write-speed modes and erase-speed modes used in our evaluations.

We evaluated the proposed dvsFTL in two different environments, mo-

bile and enterprise environments. Since the organizations of mobile stor-

age systems and enterprise storage systems are quite different, we used two

extFlashBench configurations for different environments as summarized in

Table 5. For a mobile environment, extFlashBench was configured to have

two channels, and each channel has a single NAND chip. Since mobile sys-

tems are generally resource-limited, the size of a circular buffer for a mo-

bile environment was set to 80 KB only (i.e., equivalently 10 8-KB pages).

For an enterprise environment, extFlashBench was configured to have eight

channels, each of which was composed of four NAND chips. Since enter-
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Environments Channels Chips Buffer

Mobile 2 2 80 KB

Enterprise 8 32 32 MB

Table 5: Summary of two extFlashBench configurations.

prise systems can utilize more resources, the size of a circular buffer was

set to 32 MB (which is a typical size of data buffer in HDD) for enterprise

environments.

We carried out our evaluations with two different techniques: baseline

and dvsFTL. Baseline is an existing DeVTS-wPT-unaware FTL that always

uses the highest erase voltage mode and the fast erase mode for erasing

NAND blocks, and the fastest write mode for writing data to NAND blocks.

dvsFTL is the proposed DeVTS-wPT-aware FTL which decides the erase

voltage and the erase time depending on the characteristic of a workload and

the write-performance tuning techniques, described in Sections 3.1, 3.2.1

and 4.1, so it can maximally exploit the benefits of dynamic program and

erase scaling.

Our evaluations were conducted with various I/O traces from mobile

and enterprise environments. In order to replay I/O traces on top of the

extFlashBench, we developed a trace replayer. The trace replayer fetches I/O

commands from I/O traces and then issues them to the extFlashBench ac-

cording to their inter-arrival times to a storage device. After running traces,

we measured the maximum number of P/E cycles, Nmax
P/E , which was actu-

ally conducted until flash memory became unreliable. We then compared it

with that of Baseline. The overall write throughput is an important metric
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that shows the side-effect of dvsFTL on storage performance. For this rea-

son, we also measured the overall write throughput while running each I/O

trace.

4.2.2 Workload Characteristics

We used 8 different I/O traces collected from Android-based smart-

phones and real-world enterprise servers. The m down trace was recorded

while downloading a system installation file (whose size is about 700 MB)

using a mobile web-browser through 3G network. The m p2p1 trace in-

cluded I/O activities when downloading multimedia files using a mobile P2P

application from a lot of rich seeders. Six enterprise traces, hm 0, proj 0,

prxy 0,src1 2, stg 0, and web 0, were from the MS-Cambridge bench-

marks [30]. However, since enterprise traces were collected from old HDD-

based server systems, their write throughputs were too low to evaluate the

performance of modern NAND flash-based storage systems. In order to

partially compensate for low write throughput of old HDD-based storage

traces, we accelerated all the enterprise traces by 100 times so that the peak

throughput of the most intensive trace (i.e., src1 2) can fully consume

the maximum write throughput of our NAND configuration. (In our evalu-

ations, therefore, all the enterprise traces are 100x-accelerated versions of

the original traces.)

Since recent enterprise SSDs utilize lots of inter-chip parallelism (mul-

tiple channels) and intra-chip parallelism (multiple planes), peak through-

put is significantly higher than that of conventional HDDs. We tried to find

appropriate enterprise traces which satisfied our requirements to (1) have
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public confidence; (2) can fully consume the maximum throughput of our

NAND configuration; (3) reflect real user behaviors in enterprise environ-

ments; (4) are extracted from under SSD-based storage systems. To the best

of our knowledge, we could not find any workload which met all of the

requirements at the same time. In particular, there are few enterprise SSD

workloads which are opened to public.

Table 6 summarizes the distributions of inter-arrival times of our I/O

traces. Inter-arrival times were normalized over T effective
PROG which reflects

parallel NAND operations supported by multiple channels and multiple chips

per channel in the extFlashBench. For example, for an enterprise environ-

ment, since up to 32 chips can serve write requests simultaneously, T effective
PROG

is about 40 µs (i.e., 1300 µs of TPROG is divided by 32 chips.). On the

other hand, for a mobile environment, since there are only 2 chips can

serve write requests at the same time, T effective
PROG is 650 µs. Although the

mobile traces collected from Android smartphones (i.e., m down [31] and

m p2p1) exhibit very long inter-arrival times, normalized inter-arrival times

over T effective
PROG are not much different from the enterprise traces, except that

the mobile traces show distinct bimodal distributions which no write re-

quests in 1 <t≤ 2.

4.2.3 Endurance Gain Analysis

In order to understand how much Nmax
P/E is improved by DeVTS-wPT,

each trace was repeated until the total sum of the effective wearing reached

3K. Measured Nmax
P/E values were normalized over that of Baseline. Fig-

ure 21 shows normalized Nmax
P/E ratios for eight traces with two different
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Trace

Distributions of normalized

inter-arrival times t over T effective
PROG [%]

t ≤ 1 1 <t≤ 2 t > 2

proj 0 40.6% 47.0% 12.4%

src1 2 41.0% 55.6% 3.4%

hm 0 14.2% 72.1% 13.7%

prxy 0 8.9% 34.6% 56.5%

stg 0 7.1% 81.5% 11.4%

web 0 5.4% 36.7% 56.9%

m down 45.9% 0.0% 54.1%

m p2p1 49.5% 0.0% 50.5%

Table 6: Normalized inter-arrival times of write requests for eight traces

used for evaluations.

techniques. Overall, the improvement on Nmax
P/E is proportional to inter-

arrival times as summarized in Table 6; the longer inter-arrival times are,

the more likely slow write modes are selected.

dvsFTL improves Nmax
P/E by 69%, on average, over baseline for the

enterprise traces. For proj 0 and src1 2 traces, improvements on Nmax
P/E

are less than 50% because inter-arrival times of more than 40% of write

requests are shorter than T effective
PROG so that it is difficult to use the lowest

erase voltage mode. For the other enterprise traces, Nmax
P/E is improved by

79%, on average, over baseline.

On the other hand, for the mobile traces, dvsFTL improves Nmax
P/E by

only 38%, on average, over baseline. Although more than 50% of write re-

quests have inter-arrival times twice longer than T effective
PROG , dvsFTL could

not improve Nmax
P/E as much as expected. This is because the size of the
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Figure 21: Comparisons of normalized Nmax
P/E ratios for eight traces.

circular buffer is too small for buffering the increase in the buffer utiliza-

tion caused by the garbage collection. For example, when a NAND block

is erased by the fast speed erase mode, the buffer utilization is increased by

40% for the mobile environment while the effect of the fast erase mode on

the buffer utilization is less than 0.1% for the enterprise environment. More-

over, by the same reason, the slow erase speed mode cannot be used in the

mobile environment.

4.2.4 Overall Write Throughput Analysis

Although dvsFTL uses slow write modes frequently, the decrease in

the overall write throughput over Baseline is less than 2.2% as shown in

Figure 22. For proj 0 trace, the overall write throughput is decreased by

2.2%. This is because, in proj 0 trace, the circular buffer may become full

by highly clustered write requests. When the circular buffer becomes full,

if the foreground garbage collection should be invoked, the write response

time of NAND chips can be directly affected. Although inter-arrival times
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Figure 22: Comparisons of normalized overall write throughputs for eight

traces.

in prxy 0 trace are relatively long over other enterprise traces, the overall

write throughput is degraded more than the other enterprise traces. This is

because almost all the write requests exhibit inter-arrival times shorter than

10 ms so that the background garbage collection is not invoked at all. (In

our dvsFTL setting, the background garbage collection is invoked when a

idle time between two consecutive requests is longer than 300 ms.) As a

result, the foreground garbage collection is more frequently invoked, thus

increasing the write response time.

We also evaluated if there is an extra delay from a host in sending a

write request to the circular buffer because of DeVTS-wPT. Although dvs-

FTL introduced a few extra queueing delay for the host, the increase in the

average queueing delay per request was negligible compared to T effective
PROG .

For example, for src1 2 trace, 0.4% of the total programmed pages were

delayed, and the average queueing delay per request was 2.6 µs. For stg 0

trace, less than 0.1% of the total programmed pages were delayed, and the

average queueing delay per request was 0.1 µs.
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Figure 23: Distributions of EVmode’s used.

4.2.5 Detailed Analysis

We performed a detailed analysis on the relationship between the erase

voltage/speed modes and the improvement of Nmax
P/E . Figure 23 presents dis-

tributions of EVmode’s used for eight I/O traces. Distributions of EVmode’s

exactly correspond to the improvements of Nmax
P/E as shown in Figures 17

and 18; the more frequently a low erase voltage mode is used, the higher

the endurance gain is. In our evaluations for eight I/O traces, lazy erases are

rarely used for all the traces.

Figure 24(a) shows distributions of ESmode’s for eight I/O traces.

Since the slow erase mode is selected by using the effective buffer utiliza-

tion, there are little chances for selecting the slow erase mode for the mobile

traces because the size of the circular buffer is only 80 KB. On the other

hand, for the enterprise environment, there are more opportunities for select-

ing the slow erase mode. Even for the traces with short inter-arrival times

such as proj 0 and src1 2, only 5%∼10% of block erases used the fast

erase mode.
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Figure 24: Distributions of ESmode’s used and the effect of ESmode’s on

Nmax
P/E .

We also evaluated the effect of the slow erase mode on the improve-

ment of Nmax
P/E . For this for evaluation, we modified our dvsFTL so that

ESmodefast is always used when NAND blocks are erased. (We represent

this technique by dvsFTL−.) As shown in Figure 24(b), the slow erase mode

can improve the NAND endurance gain up to 18%. Although the slow erase

mode can increase the buffer utilization, its effect on the write throughput

was almost negligible.
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Chapter 5

Lifetime Improvement Technique

Using Retention-Capability Tuning

In this chapter, we propose a comprehensive SSD lifetime improve-

ment technique, called Dynamic Erase Voltage and Time Scaling with Write

Performance and Retention Capability Tuning (DeVTS-wPRT), which uti-

lizes both the write performance tuning and retention capability tuning so

that the potential of the DeVTS framework reaches the fullest extent. Our

DeVTS-wPRT technique actively exploits the tradeoff relationships between

the NAND requirements at a software level so that NAND endurance can be

improved while the overall write performance and retention requirements

of SSDs are not affected. For example, when incoming write requests are

not so intensive that the maximum performance of NAND devices is not

fully required, a DeVTS-wPRT-enabled technique takes advantage of idle

times between consecutive write requests to tune down the program or the

erase speed as slowly as possible. In addition, when some of data is updated

frequently such that a long retention time is not needed, a DeVTS-wPRT-

enabled technique decides to tune down the retention capability of such

data as low as possible. If such a low-performance requirement or short-

retention requirement is detected, the DeVTS-wPRT-enabled technique se-

lects the most proper speed and age modes for each program operation, or
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chooses the most suitable voltage and speed modes for each erase operation.

By actively employing endurance-enhancing erase modes (i.e., a slow erase

mode with a lower erase voltage) depending on workload conditions, Nmax
P/E

is significantly increased because less damaging erase operations are more

frequently used.

We have implemented a DeVTS-wPRT-aware FTL, called dvsFTL+,

which dynamically adjusts the erase voltage and speed modes by properly

tuning the performance and retention capabilities of write requests. dvs-

FTL+ selects the most proper write speed mode and erase voltage/speed

modes based on the utilization of a write buffer. In order to decide the most

appropriate write-retention mode, an existing data separator in SSDs is re-

designed to securely predict the future update time of the current write re-

quest. When it predicts that the written data will not be updated until its

retention deadline expires, a data reclaim process is proactively invoked to

avoid retention failures. The existing key FTL modules (e.g., mapping ta-

ble, garbage collector and wear leveler) were also revised to make them

DeVTS-wPRT-aware to maximize the efficiency of dvsFTL+. We evalu-

ated the effectiveness of dvsFTL+ with an extFlashBench emulation en-

vironment [24] where the DeVTS-wPRT-enabled NAND emulation model

was integrated. Our experimental results using various I/O traces, collected

from enterprise servers, show that dvsFTL+ can increase Nmax
P/E by 52%,

on average, over dvsFTL (which exploits only write-performance tuning).

dvsFTL+ can increase Nmax
P/E by 94%, on average, over an existing DeVTS-

wPRT-unaware FTL without sacrificing the performance and retention re-

quirements of SSDs.
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5.1 Design and Implementation of dvsFTL+

5.1.1 Overview

In order to improve NAND endurance without affecting the other NAND

requirements, we have implemented a DeVTS-wPRT-aware FTL, dvsFTL+,

which dynamically changes erase scaling modes and write capability tuning

modes based on the NAND endurance model. Figure 25 illustrates an orga-

nizational overview of dvsFTL+ based on an existing page-level mapping

FTL with additional modules for supporting DeVTS-wPRT. The DVS man-

ager is the key module which selects the most appropriate erase scaling

mode and write capability tuning mode for a given write request depend-

ing on the performance and retention requirements. Firstly, the write-speed

mode (WSmodei) and erase-speed mode (ESmodek) are selected based on

the write-performance requirement estimated using the write buffer. Sec-

ondly, the write-retention mode (WRmodem) is chosen based on the re-

tention requirement predicted by the retention-time predictor. Finally, the

DVS manager decides the erase-voltage mode (EVmodej) by considering

selected write capability tuning modes. In order to preserve the retention re-

quirement, the retention keeper periodically checks the remaining retention

time of written data and rewrites them to another NAND page when their

retention deadline approaches.

The Wmode selector decides the most proper write-retention mode

for a given write request based on the predicted future update time (i.e.,

retention-time requirement) of that request. If it is predicted that a request

will be updated within the predefined time period, which is much shorter
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Figure 25: An organizational overview of dvsFTL+.

than the nominal retention-time specification of NAND devices, the Wmode

selector selects the short-retention write mode (i.e., WRmodeshort) for that

request. When a prediction regarding the future retention-time requirement

is incorrect, a reclaim process [28] should be performed to preserve the

durability of retention tuned data. However, since too frequent reclaim op-

erations can substantially cancel the lifetime benefit of retention-capability

tuning as well as interfere with foreground activities to serve user requests,

it is required to minimize the number of reclaimed pages and the overhead

of a reclaim operation.
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5.1.2 Retention Requirement Prediction

Our proposed retention-time predictor estimates the future retention-

time requirement of a write request based on the average update interval

for recent requests. Since there are only two write-retention modes in our

NAND endurance model, it is necessary to classify whether or not the aver-

age update interval is shorter than the predefined short retention-time inter-

val T short
ret (e.g., 0.07 days as defined in Section 3.2.2). In our implementa-

tion, the retention-time predictor is based on an existing data separator [26]

with a different control policy for capturing the average update interval and

for making a reliable decision on the write-retention mode (as will be de-

scribed in Section 5.1.3).

Each LBA is mapped to multi-dimensional counters incremented when-

ever corresponding write requests are issued. In order to compare the update

interval to T short
ret , all the counters are decayed regularly after a designated

time interval Tdecay (in this dissertation, Tdecay = T short
ret ). If the update in-

terval of an LBA is shorter than Tdecay , the corresponding counter value will

increase. Otherwise, the counter values will decrease. After multiple decay-

ing intervals, when the counter value is greater than the predefined threshold

value, the retention-time predictor decides that the recent update interval of

that LBA is shorter than T short
ret on average. In this case, the retention-time

predictor predicts that the current write request will be also updated within

T short
ret by exploiting the temporal locality of I/O requests.

Figure 26 shows a functional overview of our proposed retention-time

predictor. Since maintaining all the counters for each LBA is too expensive
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retention requirement management procedures.

to be implemented in practice, the proposed retention-time predictor keeps

only a limited number of counters which are referenced by three hash func-

tions. In deciding the retention-time requirement of an LBA, all the counters

corresponding to that LBA are considered simultaneously. The retention-

time predictor can be implemented with a small space overhead (i.e., 64

KB per 1-GB storage capacity). Furthermore, if the data separator is already

employed in a storage system, the retention-time predicting scheme can be

easily implemented by revising the existing data separator with a negligible

space overhead.
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5.1.3 Maximization of Endurance Benefit

In order to maximize the endurance benefit of retention-capability tun-

ing, minimizing reclaimed pages is one of the key design challenges of the

write-retention mode selection.

Misprediction Control

One of the main sources behind misprediction is hash collisions in the

hashing table as shown in Figure 26. When counters corresponding to cold

data (which are rarely updated) are unintentionally incremented due to hash

collisions, such cold data can be mispredicted as short-retention data. (We

denote this misprediction as false-short.) Once mispredicted data is written

with WRmodeshort, such data will be eventually reclaimed before T short
ret .

In order to minimize the false-short ratio due to hash collisions, we

introduce a misprediction control technique based on the past false-short

history. As shown in Figure 26, each counter has an additional feedback

register which is set to one when the written data is reclaimed. The purpose

of these feedback registers is to impose a penalty for the mispredicted write

so that consecutive mispredictions for that request is prevented. If all the

corresponding feedback registers were already set, the retention-time pre-

dictor determines the retention-time requirement in a conservative fashion

by raising the decision threshold level. For example, when the counter val-

ues of a request are 15, 12, and 4, and all the dedicated feedback registers are

already set, this request is classified as long-retention data instead of short-

retention data because the decision threshold level is raised from the normal
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level (e.g., 4) to the higher level (e.g., 8). When prediction is correct (i.e.,

data written with WRmodeshort is updated within T short
ret ), the feedback reg-

isters are reset so that the decision threshold is reverted back to the normal

level.

Selective Retention Tuning

When the update characteristics of I/O requests are changed so that too

many retention-tuned pages are reclaimed, it is more beneficial to suspend

retention-capability tuning. For example, if the number of pages per a block

is 100, in order to write 5,000 pages with a combination of WRmodeshort and

WSmode0, 50 blocks erased with EVmode2 (of which effective wearing is

0.59 as summarized in Figures 17 and 18) are consumed. In this case, the to-

tal endurance gain of retention-tuned writes is 20.50 (= (1.00−0.59)×50).

However, when 60 pages per block are reclaimed with WRmodelong, 30

(= 60× 50/100) blocks erased with EVmode0 (of which effective wearing

is 0.78) are consumed during reclaim operations. In this case, the total en-

durance loss of reclaimed writes is 23.40 (= 0.78×30). Since the endurance

loss is larger than the endurance gain in this example, it is better not to use

the short-retention write mode. In order to make such a decision, we esti-

mate the break-even point at which the endurance gain of retention-tuned

writes is equal to the endurance loss of reclaimed writes. In the previous

example, the break-even number (i.e., N be) of reclaimed pages per a block

is 52.6 (= (1.00 − 0.59)/0.78 × 100). The retention keeper continuously

monitors the average number of reclaimed pages per a block. When the av-

erage number of reclaimed pages becomes greater than N be, the retention
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keeper switches the retention-tuning phase from the enable phase to the

suspend phase. In the suspend phase, the Wmode selector always selects

WRmodelong regardless of retention-time prediction results. When benefi-

cial I/O characteristics are detected, the retention keeper resumes retention-

capability tuning again.

5.1.4 Minimization of Reclaim Overhead

Since it is difficult to completely eliminate mispredicted writes, min-

imizing the overhead of a reclaim operation is also required in order not

to affect foreground activities. The main goal of the reclaim operation is to

preserve the durability of stored data written with WRmodeshort. In order

to reliably rewrite mispredicted data before its retention deadlines expire,

the retention keeper periodically (e.g., one tenth of the short retention-time

interval) checks its remaining retention time. However, since maintaining

the retention deadline for each written page requires excessive system re-

sources as well as high checking overheads, we have developed a simple

but effective reclaim technique. As shown in Figure 26, data for each write-

retention mode is written to different regions, i.e, the short-retention region

and the long-retention region. This separation technique can provide another

advantage in reducing the write amplification factor over the existing data

separation technique [26]. Since data written with WRmodeshort are likely

to be updated within T short
ret , when such a block is chosen in the garbage

collection process, if it is not yet reclaimed, the number of unnecessary data

copies can be significantly reduced. After short-retention data is written to

a free block chosen from the free region, the block id is inserted into the
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retention queue in the retention keeper with the written time. Although fol-

lowing data is written to the block at different times, the worst-case retention

deadline is still determined by the earliest written time. Since the retention

queue maintains its entries in a FIFO fashion, the remaining retention times

for each block are automatically sorted in ascending order, thus simplifying

the checking process. When the retention keeper identifies a block whose

retention deadline has almost expired, mispredicted pages in the identified

block are reclaimed to a free block, selected from the free region, with a de-

moted write-retention mode (i.e., WRmodelong). After reclaim operation is

completed, the newly written block is inserted into the long-retention region.

5.2 Experimental Results

5.2.1 Experimental Settings

We evaluated the effectiveness of the proposed dvsFTL+ with extFlash-

Bench, an extended version of an existing unified development environ-

ment for NAND flash-based storage systems [24]. extFlashBench emulates

the key operations of DeVTS-wPRT-enabled NAND devices in a timing-

accurate fashion so that it is possible to keep track of temporal interactions

among various NAND operations [15]. In order to reflect the chip-level par-

allelism (which is one of the key factors affecting the maximum write per-

formance of an SSD), extFlashBench was configured to have eight channels,

each of which was composed of four NAND chips. Each NAND chip em-

ployed 512 blocks which were composed of 128 8-KB pages. The size of

a write buffer was set to 16 MB which was about 0.1% of the total NAND
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capacity. In recent SSDs, the total DRAM capacity is usually set to about

1% of the total NAND capacity. However, since most of the DRAM area

is already being used to maintain the meta data such as a mapping table,

we set the buffer size to only 10% of the available DRAM capacity. In Sec-

tion 5.2.6, we discuss the effect of the different buffer size in detail.

Our evaluations were performed with two different techniques: base-

line and dvsFTL+. Baseline is an existing DeVTS-wPRT-unaware FTL that

does not use the erase scaling modes and the write tuning modes. dvsFTL+

is the proposed DeVTS-wPRT-aware FTL which fully exploits DeVTS-

wPRT-enabling techniques, described in Sections 3.1 and 3.2, depending on

workload characteristics so that the lifetime benefit of DeVTS-wPRT can be

maximally achieved while still satisfying all the NAND requirements. Each

technique was evaluated by replaying various I/O traces on top of extFlash-

Bench. When I/O requests were issued according to their timing informa-

tion in the trace files, corresponding NAND operations were performed in

extFlashBench. We continuously replayed the traces on NAND blocks until

they became unreliable and measured the maximum number of P/E cycles,

Nmax
P/E . We also measured the overall write throughput and retention times

which are related to the side effect of DeVTS-wPRT.

5.2.2 Workload Characteristics

In our evaluation, we used six I/O traces, proj 0, src1 2, prxy 0, hm 0,

stg 0, and usr 0, selected from the MSR Cambridge traces [30]. Although

these traces include I/O characteristics in real-world enterprise servers, their

I/O rates were too low to meaningfully stimulate the temporal behavior of
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high-performance NAND flash-based storage systems. In order to utilize

these traces in our evaluations, we accelerated I/O rates of all the traces

by 100 times so that the peak I/O rate of the most write intensive trace

is comparable to the maximum write performance of our extFlashBench

configuration [15][32].

Figure 27(a) shows the distributions of the inter-arrival times for write

requests of six traces. Inter-arrival times were normalized over the effective

program time T effective
Pgm of extFlashBench. Since up to 32 NAND chips can

serve write requests simultaneously, T effective
Pgm is 32 times shorter than the

nominal program time TPgm (i.e., the write latency of WSmode0) of a single

chip. When there were multiple pages in a write request, their inter-arrival

times t were classified as the ‘t = 0’ case in Figure 27(a). Alternatively,

when write requests, containing only one page, were issued in a sporadic

fashion, they were classified as the ‘t > 32’ case. It is expected that the over-

all endurance gain for a sporadic trace (e.g., prxy 0) will be higher than that

for an intensive trace (e.g., proj 0) because slower write and erase modes

can be more frequently used in a sporadic trace.

Figure 27(b) shows the distributions of the retention times for write

requests of six traces. The short-retention group and long-retention group

were classified by T short
ret (i.e., 0.07 days). In our evaluation, we set T short

ret

to 0.07 days as shown in Figure 16(b). This is because the total time of traces

was only about 1 day. If our DeVTS-wPRT technique is to be employed in

real systems, it is better to increase T short
ret to 1 day for more reliable re-

tention management. In this case, the lifetime benefit of dynamic retention

tuning is slightly reduced because corresponding rdret increases from 0.33
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Figure 27: Characteristics of write requests for six traces.

to 0.50. An interesting aspect is that there is a strong correlation between

the distribution of inter-arrival times and those of retention times (except

prxy 0). The more intensively write requests are issued, the more frequently

they are updated. Therefore, for intensive traces, it is expected that the weak-

ness of the write-speed tuning mode can be partly compensated for by the

write-retention tuning mode.

5.2.3 Endurance Gain Analysis

In order to measure Nmax
P/E (i.e., the effective lifetime of a NAND de-

vice as defined in Section 3.1.2), each trace was repeated until ΣEW reached

3K [6]. Measured Nmax
P/E values were normalized over 3K. Figure 28(a)

shows Nmax
P/E ratios for six traces with two different techniques. dvsFTL+

extends Nmax
P/E by 94%, on average, over Baseline.

As we expected, the improvements on Nmax
P/E for each trace clearly
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exhibit similar trends as the distributions of inter-arrival times and reten-

tion times as shown in Figures 27(a) and 27(b), respectively. In the case of

proj 0 trace, Nmax
P/E is improved by only 58% because most of the write re-

quests are issued instantaneously so that 40% of erase operations cannot take

advantage of endurance-enhancing modes at all as shown in Figure 28(b).

However, since a considerable part of the rest of erase operations exploits

the short-retention write mode, the limited Nmax
P/E ratio due to highly clus-

tered consecutive writes is partly compensated for. (For more detail, see

Section 5.2.6.) Alternatively, for the usr 0 trace, Nmax
P/E is improved by up

to 122% because more than half of erase operations are performed with the

lowest erase voltage. In particular, for the prxy 0 trace, the improvement

ratio of Nmax
P/E goes up to 140%. This is because most NAND operations

frequently utilize both the slow-speed write mode and short-retention write

mode as expected in the characteristics of prxy 0 trace.

5.2.4 NAND Requirements Analysis

Since the main goal of dvsFTL+ is to extend Nmax
P/E while the other

NAND requirements are left untouched, we checked whether or not the

overall write-performance and retention-time requirements were preserved.

Overall Write-Performance Requirement

When a write request is issued and the write buffer is full (i.e., u is 1.0),

serving that request is delayed until one of requests queued in the buffer is

written to a NAND chip so that u is decreased below 1.0. This delay time
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Figure 28: Comparisons of the endurance gain and distributions of the

EVmodei’s for six traces.

can be further amplified when the foreground garbage collection process is

performed in NAND chips. Although dvsFTL+ frequently uses slow-speed

write and erase modes, since such slow-speed modes are selected only when

the write-performance requirement is not urgent, dvsFTL+ does not incur an

additional delay over Baseline as summarized in Table 7.

For the proj 0 trace, the overall write throughput is improved by 0.5%
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Table 7: Comparisons of the overall write performance for six traces.

proj 0 src1 2 prxy 0 hm 0 stg 0 usr 0

Overall Write Baseline 23.65 7.59 14.15 3.95 2.74 2.27

Throughput [MB/s] dvsFTL+ 23.78 7.60 14.16 3.95 2.74 2.27

Average Read Baseline 315 242 333 258 208 194

Response Time [us] dvsFTL+ 310 245 300 288 206 194

Portion of Baseline 5.6% 1.1% 0.1% 0.2% 0.0% 0.0%

Queuing Delay dvsFTL+ 4.8% 1.0% 0.0% 0.1% 0.0% 0.0%

WAF
Baseline 1.15 1.07 1.11 1.14 1.25 1.09

dvsFTL+ 1.10 1.07 1.03 1.06 1.13 1.05

because the worst-case delay time due to the garbage collection process is

reduced. For example, the write amplification factor (WAF), which repre-

sents the average garbage collection overhead, is reduced by about 0.4% so

that the portion of delayed requests among total requests is reduced from

5.6% to 4.8%. For other traces, the overall write throughput and portion of

delayed requests of dvsFTL+ are maintained at the same level as those of

Baseline.

Overall Retention Requirement

Since WRmodeshort aggressively reduces the retention capability of

NAND pages, in order to guarantee the durability of the stored data, mis-

predicted pages whose retention deadlines are imminent should be properly

reclaimed. However, when there are too many mispredicted pages, retention
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failures may occur because the number of reclaimable pages for the given

checking period is limited. For example, if the retention checking period

is 60 s and the shortest program latency is 1,300 µs, the retention keeper

can reclaim up to 46,153 pages (which is 2.2% of the total NAND pages in

extFlashBench). Although dvsFTL+ frequently uses WRmodeshort for writ-

ing data onto NAND pages, retention failures did not occur in our evalu-

ations. This is mainly because the misprediction ratio is sufficiently sup-

pressed by the misprediction control techniques, described in Section 5.1.3,

so that the numbers of mispredicted pages are maintained below the maxi-

mum number of reclaimable pages at all times.

In this dissertation, we assume that the power is always supplied. How-

ever, if the power is cut off, since the retention keeper cannot work without

the power supply, retention failures may occur. This predictable data loss

can be prevented by rewriting valid pages written with WRmodeshort to other

NAND pages with WRmodelong during the power hold-up time supported by

a storage system [33].

5.2.5 Detailed Analysis of Retention-Time Predictor

The Overall Accuracy of Retention Time Predictor

In order to predict the retention-time requirement of future write re-

quests, we proposed the retention-time predictor as described in Section 5.1.2.

Since the main goal of the retention-time predictor is to minimize the mis-

prediction (in particular, false-short) ratio with a reasonable resource over-

head, we performed a detailed analysis on how accurate our proposed resource-
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optimized predictor is. Table 8 summarizes the analysis results for four

traces with four different techniques: History, DA H noFB, and H FB. History

is a history-based prediction technique which directly utilizes the previous

update time interval to predict the next update time [34]. DA, H noFB, and

H FB are retention-time prediction techniques based on the recent update

frequency maintained in multiple update counters, but with different con-

figurations. DA uses a direct-address mapping which keeps the number of

counters as many as that of LBAs. Alternatively, since H noFB has a lim-

ited number of counters mapped to corresponding LBAs by hash functions,

mispredictions may occur due to hash collisions. H FB is the proposed pre-

diction technique which employs additional feedback registers and makes

an adaptive decision so that the misprediction ratio is substantially reduced.

For the src1 2 trace, the false-short ratio under History is too high (i.e.,

4.8%) to avoid retention failures while the ratio under H FB is sufficiently

suppressed below the tolerable level. Comparing H FB with H noFB, the

false-short ratio is reduced from 2.3% to 0.9%, a value similar to that of

DA. For the other traces, the false-short ratios are also maintained at a low

level. These results clearly indicate that our proposed misprediction con-

trol technique can efficiently reduce the misprediction ratio, caused by hash

collisions, to the comparable level of DA.

However, as summarized in Table 8, another misprediction ratio, i.e.,

the false-long ratio, is increased for write-intensive traces (e.g., src1 2). This

is because the retention-time predictor in this dissertation mostly focuses

on minimizing the false-short ratio. If the false-long ratio is too high, the

potential of retention-capability tuning cannot be fully exploited. In order
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Table 8: Accuracy of the retention-time predictor under different data sepa-

ration techniques.

Pre-
Result

proj 0 src1 2

diction History DA no FB FB History DA no FB FB

Short
True 92.5% 55.2% 75.1% 47.9% 81.9% 49.4% 60.9% 42.6%

False 2.7% 0.4% 1.6% 0.7% 4.8% 0.8% 2.3% 0.9%

Long
True 1.8% 4.1% 2.9% 3.8% 8.3% 12.3% 10.8% 12.2%

False 3.0% 40.2% 20.4% 47.6% 5.0% 37.5% 26.0% 44.3%

Pre-
Result

prxy 0 hm 0

diction History DA no FB FB History DA no FB FB

Short
True 94.3% 89.3% 89.8% 85.4% 43.3% 28.1% 28.8% 28.1%

False 1.3% 0.5% 0.6% 0.6% 5.9% 0.5% 0.7% 0.8%

Long
True 2.9% 3.6% 3.5% 3.6% 44.2% 49.6% 49.4% 49.3%

False 1.5% 6.5% 6.1% 10.5% 6.6% 21.8% 21.1% 21.8%

Pre-
Result

stg 0 usr 0

diction History DA no FB FB History DA no FB FB

Short
True 56.8% 30.7% 30.9% 29.6% 63.6% 52.8% 53.1% 52.1%

False 3.2% 0.3% 0.3% 0.3% 4.5% 0.9% 1.0% 1.1%

Long
True 36.4% 39.3% 39.3% 39.2% 26.2% 29.7% 29.7% 29.6%

False 3.6% 29.7% 29.6% 30.8% 5.7% 16.6% 16.3% 17.3%

to further extend Nmax
P/E for write-intensive traces, reducing the false-long

ratio is also required. Our future work involves developing a more accu-

rate retention-time predictor capable of consistent performance regardless
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of varying characteristics of I/O workload.

Sensitivity of Number of Hash Table Entries

The accuracy of the proposed retention-time predictor mainly depends

on the number M of hash table entries as shown in Figure 26. Since the

probability of hash collisions, which cause mispredictions, is inversely pro-

portional to M , too small M may lower the prediction accuracy. On the

contrary, although large M can improve the prediction accuracy, the space

overhead may increase. In this dissertation, M was set to 65,536 which

is 0.006% of the total storage capacity (i.e., 16 GB) as described in Sec-

tion 5.1.2. In order to understand how sensitive M is to the prediction accu-

racy and to check whether or not our selected M is reasonable in terms of

both cost and accuracy, we evaluated the prediction accuracy over different

M ’s. Figure 29(c) shows variations of the false-short ratios (i.e., the proba-

bility that the prediction of ‘short retention’ is false) over different M ’s for

six traces. As we expected, the false-short ratios decrease as M increases.

In order to reduce the false-short ratio below the target level (i.e., 1% in this

dissertation), M is required to be larger than 65,536.

On the other hand, for proj 0 and src1 2 traces, the false-long ratios

(i.e., the probability that the prediction of ‘long retention’ is false) increase

as M increases. This is because our proposed retention-time predictor es-

timates the retention-time requirement of a write request by comparing its

counter value (which reflects the previous update history for that request)

with the predefined threshold level. When M is small (e.g., 1,024), since

the counter can be incremented not only by the request corresponding to
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Figure 29: Variations of the prediction accuracy over different numbers of

hash table entries.

that counter, but also by other requests due to hash collisions, the counter

value is likely to be raised unintentionally depending on the probability of

hash collisions. As a result, when the probability of hash collisions is too

high (e.g., M ≤ 16,384), the false-short ratio increases while lowering the

false-long ratio as shown in Figures 29(c) and (d). On the contrary, since the

probability of hash collisions is very low when M is sufficiently large (e.g.,

M ≥ 65,536), the counter value can be incremented only by the correspond-

ing request. As a result, a frequently-updated request may be mispredicted

as ‘long-retention’ data until the counter value exceeds the threshold level.
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Figure 30: The effects of different numbers of hash functions on the accu-

racy of the retention-time predictor.

Sensitivity of Number of Hash Functions

The number Nhash of hash functions is also one of key design param-

eters in our proposed retention-time predictor. Although using large Nhash

has a positive impact on the identification accuracy, too large Nhash can un-

intentionally increase the probability of hash collisions as a side effect. In

this dissertation, we used three hash functions in the retention-time predic-

tor. In order to understand how sensitive Nhash is to the prediction accu-

racy, we performed evaluations with different Nhash’s (i.e., 1, 2, 3, and 4)

as shown in Figures 30 (a), (b), (c), and (d).
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As we expected, the overall accuracy is improved as more hash func-

tions are used. For example, when Nhash increases from one to four, the

true-short ratio and false-long ratio are improved by 14% and 10%, respec-

tively, as shown in Figures 30 (a) and (d). However, as a side effect of large

Nhash, the false-short ratio also increases as shown in Figure 30 (c). For ex-

ample, when Nhash is four, the average false-short ratio is 0.76%. Although

the false-short ratio does not exceed 1% (i.e., the target accuracy) in this

case, we set Nhash to three instead of four to minimize the negative impact

of reclaim operations on the foreground activities.

Sensitivity of Retention Decision Level

Our proposed retention-time predictor determines the retention-time

requirement of a write request as ‘short’ when the counter value is higher

than the predefined threshold level Nth (e.g., 4) as shown in Figure 26. In

this comparison process, an appropriate Nth is the key parameter to achieve

a reasonable prediction accuracy. In this dissertation, we set Nth to four.

In order to understand how sensitive Nth is to the prediction accuracy, we

compared the accuracy over different Nth’s as shown in Figure 31. When

Nth is set to two, the false-short ratio as well as the true-short ratio are

higher than those when Nth is four because the retention-time predictor is

more likely to select ‘short retention’ in this case. On the contrary, when

Nth is set to eight, those two ratios are reduced significantly because it is

difficult for the predictor to select ‘short retention’. Although the false-short

ratio is extremely minimized in this case, the endurance benefit of DeVTS

cannot be fully achieved because there are little requests classified as ‘short
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Figure 31: The effects of different decision levels on the accuracy of the

retention-time predictor.

retention’. Therefore, we conclude that four is the most optimized setting in

our retention-time prediction scheme.

5.2.6 Detailed Analysis of Endurance Gain

Breakdown of Endurance Gain

In order to understand the effect of each endurance-enhancing tech-

nique on the overall Nmax
P/E improvement ratio in detail, we modified our

dvsFTL+ so that each technique can be enabled separately. Figure 32 shows

the increase in Nmax
P/E ratios for six traces when each endurance-enhancing

83



1.11 1.11 1.11 1.11 1.11 1.11 
1.22 1.24 

1.49 1.47 
1.57 1.58 

1.37 1.35 

1.71 1.69 
1.80 1.81 

1.58 1.61 

2.40 

1.86 
1.98 

2.22 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

proj_0 src1_2 prxy_0 hm_0 stg_0 usr_0

Baseline ST ST+WPT ST+WPT+ETT (ST+WPT+ETT) + DRCT

+ 57.4% + 72.0%

+ 23.8%
+ 22.8%

+ 50.0%+ 98.6%

N
o

r
m

a
li

z
e

d
 �

�
/
�

�
�
�

R
a

t
io

Figure 32: Variations of the normalized Nmax
P/E ratios under different

endurance-enhancing techniques for six traces.

technique (i.e., ST, WPT, ETT and DRCT) is enabled one by one on top

of baseline. ST is the Static Tuning technique described in Sections 3.2.2

and 3.2.3. WPT is the Write-Performance Tuning technique, and ETT is the

Erase-Time Tuning technique, as described in Sections 3.2.1 and 3.1.3, re-

spectively. DRCT is the Dynamic Retention-Capability Tuning technique de-

scribed in Section 3.2.2. Our proposed dvsFTL+ fully utilizes all the afore-

mentioned techniques.

Among the endurance-enhancing techniques implemented in dvsFTL+,

DRCT has the most significant impact on extending Nmax
P/E . DRCT is respon-

sible for 34%, on average, of the total endurance gain. The effect of DRCT

strongly depends on the true-short ratio summarized in Table 8. For exam-

ple, for the prxy 0 trace, predicting short-retention requests is very accu-

rate (i.e., 85.4%). As a result, Nmax
P/E is significantly extended (i.e., 98.6%)

by DRCT. However, for the hm 0 trace, its effect is marginal. The effect of

WPT is comparable to that of DRCT. The effects of ETT and ST account for
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about 20% and 12%, respectively, of the total endurance gain. In the lifetime

improvement technique using write-performance tuning (i.e., dvsFTL) pre-

sented in Chapter 4, only ST, WPT, and ETT were employed. In this case, the

average Nmax
P/E ratio is only 1.62. Our proposed dvsFTL+ (where DRCT has

been added) further extends Nmax
P/E by about 52% over dvsFTL. As shown in

Figure 32, since DRCT is more effective for write-intensive traces where the

effect of WPT is limited, DRCT can substantially make up for the weaknesses

of WPT.

Sensitivity of Buffer Size

The large size of the write buffer offers an advantage to extend Nmax
P/E

because the probability of using the slow write and erase modes is increased.

However, since an excessively large buffer size is not cost effective in most

practical storage systems, we set the buffer size to only 16 MB, only 0.1% of

the total storage capacity. In order to understand how sensitive Nmax
P/E ratio is

to the buffer size, we performed evaluations with different write buffer sizes

as summarized in Table 9. When the buffer size is reduced to 4 MB, the

average Nmax
P/E is decreased by 3.6%. Alternatively, with a 64 MB-size write

buffer, the average Nmax
P/E ratio is increased by 4.1% as we expected. The

effect of a reduced-size buffer on the overall write throughput is negligible

because the Wmode selector efficiently chooses the proper write mode.
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Table 9: Variations of Nmax
P/E ratios and the overall write throughput over

different buffer sizes for six traces.

Buffer Size proj 0 src1 2 prxy 0 hm 0 stg 0 usr 0 Avg.

Normalized 4 MB 1.54 1.53 2.17 1.81 1.97 2.18 1.87

Nmax
P/E 16 MB 1.58 1.61 2.40 1.86 1.98 2.22 1.94

Ratio 64 MB 1.66 1.72 2.57 1.93 2.00 2.26 2.02

Overall Write 4 MB 23.70 7.59 14.11 3.95 2.74 2.28 9.06

Throughput 16 MB 23.78 7.60 14.16 3.95 2.74 2.27 9.08

[MB/s] 64 MB 24.14 7.61 14.15 3.94 2.74 2.27 9.14
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Chapter 6

Reliability Management Technique for

NAND Flash Memory

NAND flash memory is a non-volatile memory device which can re-

tain stored data even when power is turned off. Since NAND flash memory

stores data as quantities of charges held on floating gates (that are electri-

cally isolated by insulating layers), in theory, NAND flash memory can per-

manently store its data without a power source if the insulating layers work

perfectly. However, actual NAND cells are limited in their data retention

capability because various defects in the insulating layers occur during pro-

gram/erase (P/E) operations. These defects in the NAND cells make charges

in the floating gate loosened, thus guaranteeing the integrity of stored data

only up to a finite retention time [5]. Since the probability of charge loss due

to defects has an exponential dependence on temperature [16], the NAND

retention time is specified under a specific operating temperature. For ex-

ample, NAND flash memory for client-class applications is often required

to retain its stored data for at least 1 year at 25 ◦C [14].

If NAND flash memory is used beyond the specified retention time, the

data stored in the NAND flash memory may not be correctly retrieved be-

cause of excessive retention errors. For example, when NAND flash memory

is left for more than two times longer than the specified retention time, reten-
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tion failures may occur, losing the stored data. Moreover, since the NAND

retention time decreases exponentially as temperature rises [35], an increase

in temperature can significantly degrade the NAND retention capability. For

example, when temperature rises to 70 ◦C, the specified NAND retention

time of 1 year (at 25 ◦C) may be reduced to only 32 hours1. Furthermore,

the retention-failure problem can be a more serious technical issue when

more aggressive flash-optimization techniques (e.g., [12][34]) are widely

employed. Since these flash optimization techniques aggressively reduce

the NAND retention capability during run time for higher NAND perfor-

mance [12] or longer NAND endurance [34], retention errors are likely to

increase. Thus, there is a strong demand for efficient on-line data recovery

techniques for retention failures in NAND flash memory.

In order to deal with the NAND retention-failure problem, several data

recovery techniques such as the retention failure recovery (RFR) technique [36]

and the data retention-error recovery pulse (RFR) technique [37] have been

proposed. However, since RFR requires to heat NAND chips, it can be used

only as an off-line recovery solution. Although RFR can be implemented as

an on-line recovery solution, it is quite limited because its recovering pro-

cess is very slow and its recovery capability is rather restricted for recent

20-nm node (or below) NAND flash memory.

1This estimation is based on the Arrhenius equation used to calculate thermal accelera-

tion factors for NAND devices [35].
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6.1 Overview

In this chapter, we propose an efficient on-line data recovery technique,

called Flash Defibrillator (FD), which can be effective for recent NAND

flash memory [38]. The proposed FD technique is motivated by our observa-

tions on the characteristics of retention-failed NAND cells in recent 20-nm

node NAND flash memory. The key finding is that when read operations

are repeated, highly-damaged cells (that probably contributed to retention

failures) are more likely to experience abnormal charge-transient behavior

(e.g., random charge fluctuation [39] or charge detrapping [40]). Since the

abnormal charge-transient behavior of NAND cells (under repeated reads)

were rarely observed in 3x-nm NAND flash memory, the existing technique

such as RFR (which was developed for 3x-nm NAND flash memory) can-

not adequately handle retention errors from this new charge movement phe-

nomenon. The proposed FD takes this behavior (as well as retention loss)

into account of recovering retention-failed cells, thus resulting in a more

efficient on-line data recovery solution.

The proposed FD technique consists of two main steps, a diagnostic

step and a post-processing step. In the diagnostic step of FD, as done in

RFR [37], a sequence of diagnostic pulses (i.e., effectively read operations)

is applied to NAND cells. The main goal of the diagnostic step is to recharge

retention-loss cells so that these cells can be read at the correct state. Since

diagnostic pulses add extra charges to NAND cells, a threshold voltage (Vth)

distribution tends to shift to the right after the diagnostic step, thus making

some of retention-failed cells be recovered.
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In the following post-processing step, FD identifies retention-failed

cells as ones whose Vth states were shifted to the right. This heuristic,

as used in RFR [37], reversely exploits the retention-loss mechanism in

that highly retention-loss cells are more likely to be recharged with a low

voltage. Furthermore, in order to avoid the negative effect of the abnormal

charge movements on the FD’s recovery capability, FD identifies retention-

failed data in a progressive fashion using a selective error-correction pro-

cedure. The selective error-correction procedure, which identifies retention-

recovered cells as early as possible, is based on a simple but effective heuris-

tic: If a NAND cell c is shifted to a higher Vth state after the diagnostic step,

the cell c is identified as a retention-failed cell and its Vth state is corrected

to the higher Vth state. As soon as the cell c is corrected by our heuristic, it

is no longer considered in the remaining steps of FD. Although our heuristic

seems to be very simple, it is quite effective in handling abnormal charge

movements (after the diagnostic step) observed in recent NAND flash mem-

ory, thus significantly improving FD’s data recovery capability over RFR.

The result of the post-processing step is stored to an internal buffer. If bit

errors of the buffered data can be fully corrected by ECC, FD completes its

recovery procedure and the fully recovered data are rewritten to a free page.

Otherwise, two FD steps are repeated to the buffered data. After a pre-set

maximum iteration count is reached, FD stops the recovery procedure.
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6.2 Motivation

6.2.1 Limitations of the Existing Retention-Error

Management Policy

When NAND flash memory is programmed and left for a long time,

retention errors may occur due to retention loss. Figure 33(a) illustrates an

example of Vth-distribution changes after 3K P/E cycling and a 1-year reten-

tion time. Since the overall Vth distributions shift down after a long retention

time, a lot of bit errors may occur when the initial read reference voltages

(RPi’s) are used in a read operation. If the number of bit errors exceeds the

error-correction capability (e.g., 40 bits per 1 KB for an MLC device [6])

of ECC, a read-retry procedure is invoked to manage retention errors [27].

Read retry is a searching algorithm for the optimal read reference voltage,

which iteratively performs read-and-check routines with different read ref-

erence voltages until all the bit errors are corrected. For example, as shown

in Figure 33(b), read retry was performed two times to find the optimal read

reference voltages (R
(2)
Pi ’s).

However, if NAND flash memory is left beyond the specified retention

time, the stored data cannot be retrieved even with read retry. This is be-

cause read retry cannot actively reduce bit errors, but just find the optimal

read reference voltages where the number of bit errors can be minimized

for given Vth distributions. Since retention loss tends to cause shifting the

overall Vth distributions as well as widening WPi’s, after a long retention

time, two adjacent Vth distributions may overlap each other. For example,

as shown in Figure 33(a), since WP3(t=1y) after 1-year retention time gets
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Figure 33: Examples of a NAND retention-error management policy.

wider than WP3(t=0), the P3 state is overlapped with the P2 state. As a re-

sult, remaining bit errors cannot be further reduced by read retry as shown

in Figure 33(b). If there are more bit errors than the error-correction capa-

bility at the optimal read reference voltages, there is no way of retrieving

the stored data with the existing error management policy.

6.2.2 Limitations of the Existing Retention-Failure

Recovery Technique

Before we describe the proposed FD technique in detail, we present

our evaluation results of an existing data recovery technique for recovering

retention failed cells in recent 20-nm node NAND flash memory. For our

evaluation, we used the data retention-error recovery pulse (DRRP) tech-
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nique [8], which was considered as one of the most effective data recovery

techniques for 3x-nm NAND chips. As will be discussed below, our evalu-

ation results strongly suggest a need for better data recovery techniques for

recent 20-nm node (or below) NAND flash memory, which was the main

motivation for developing our proposed FD technique.

In order to recover retention-failed cells, DRRP repeatedly applies weak-

stress pulses (e.g., 3 V [37]) to retention-failed cells so that the Vth’s of

retention-failed cells can be recovered to their original Vth state. Measure-

ment results with 3x-nm node NAND chips showed that DRRP could reduce

the RBER of severely retention-failed cells (who experienced 3K P/E cy-

cling and 3 days’ baking at 85 ◦C) by 56%, on average, after applying 500

weak-stress pulses [37].

However, our measurement results show that the effectiveness of DRRP

as an on-line recovery solution is quite limited because its data recovery pro-

cess is very slow for recent 20-nm node (more advanced technology over

3x-nm node by about two generations) NAND flash memory. Since apply-

ing a weak-stress pulse is not allowed in our test environment, we used read

operations (which can apply the read voltage of about 6 V) instead of the

weak-stress pulse. Figure 34(a) shows worst-case RBER (i.e., the RBER of

a 1-KB sector which has the highest number of bit errors) variations over

different numbers of read operations after 3K P/E cycling and 2-year re-

tention times. The measured RBERs were normalized over the maximum

error-correction capability of ECC. We denote the normalized worst-case

RBER by W-RBER. When the default RPi’s were used, DRRP could re-

duce W-RBER by 36%. However, it could not lower W-RBER below 1.00.
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Figure 34: Normalized worst-case RBER (W-RBER) variations over vary-

ing numbers of read operations under DRRP.

On the other hand, when the optimal RPi’s were used, DRRP could reduce

W-RBER below 1.00. However, this reduction was reached after 100 read

operations. If the average page read time is 100 µs, for example, it takes

about 10 ms for each NAND page to be recovered, which is too slow to be

employed as an on-line run-time technique.

Moreover, the data recovery capability of DRRP is quite restricted in

recent NAND flash memory. Figure 34(b) shows W-RBER changes with

varying numbers of read operations after 8-year retention times (8x longer

than the specified retention time). When the optimal RPi’s were used, DRRP

could reduce W-RBER by up to 31%, however, W-RBER was not reduced

below 1.00 until 1000 read operations. In the 4-year retention case, DRRP

still could not reduce W-RBER below 1.00. These measurement results

show that DRRP can recover retention-failed data which experienced up to

2x longer retention time than the specified retention time.
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Our evaluation results show that DRRP is less effective with recent 20-

nm NAND flash memory in recovering retention-failed data and its recover-

ing speed is very slow. Our main goal was to improve DRRP so that it can be

as effective with 20-nm NAND chips as with 3x-nm NAND chips while its

recovering speed is fast enough so that it can be used as an on-line run-time

solution.

6.3 Retention Error Recovery Technique

In this section, we describe a charge movement model which can cap-

ture abnormal charge-transient behavior observed in recent 20-nm node (or

below) NAND flash memory. Based on the charge movement model, we

present a selective error-correction procedure and the implementation of our

proposed FD technique in detail.

6.3.1 Charge Movement Model

Since applying multiple read pulses can partially recharge retention-

loss cells, Vth’s of these cells can shift to the right [37]. On the other hand,

it is reported that as a side-effect of recent advanced NAND technologies,

another type of charge loss may occur due to multiple read pulses [40] so

that Vth’s of some highly-damaged cells can shift to the left. If these ab-

normal charge-loss components are not negligible, the effectiveness of the

recharging process can be substantially cancelled. Furthermore, it is also

reported that in recent advanced NAND cells, Vth’s of some weak cells

may randomly fluctuate because several charges are periodically trapped
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Figure 35: An example of charge movement after n read pulse applications.

and detrapped due to the random telegraph noise (RTN) effect [39]. These

randomly-fluctuated components may negatively affect the recharging pro-

cess.

In order to understand how read pulses affect NAND cells, we built a

simple charge movement (CM ) model. Figure 35, the CM model can be

expressed based on this set definition. We denote C
i
m as a set of cells that

are read as the ith state after the mth read pulse. For example, in Figure 35,

C
i−1
m = {c1, c3, c4, · · · } while C

i
m = {c2, · · · }. After the n read pulses are

applied, if the read value of a cell c1 changes from P (i−1) to Pi (for exam-

ple, because of recharging), we say the cell c1 belongs to the set C(i−1)→i.

That is,

c1 ∈ C
i−1
m ∩ C

i
m+n = C

(i−1)→i. (6.1)

On the other hand, if the read value of a cell c2 changes from Pi to P (i−1)

(for example, because of charge detrapping), we say the cell c2 belongs to

the set Ci→(i−1). That is,

c2 ∈ C
i
m ∩C

i−1
m+n = C

i→(i−1). (6.2)

Finally, if the read value of a cell c3 periodically changes between P (i−1)
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and Pi (for example, because of random charge fluctuation), we say the cell

c3 belongs to the set C(i−1)↔i. That is,

c3 ∈ C
i−1
m ∩C

i
m+n ∩ C

i−1
m+2n ∩ · · ·

=

[

⋂

k=0

C
i−1
m+2k·n

]

∩

[

⋂

k=0

C
i
m+(2k+1)·n

]

= C
(i−1)↔i.

(6.3)

After applying the mth read pulse, since the number ECDRRP
m of bit

errors under DRRP decreases by the number of recharged cells while it in-

creases by the number of additionally detrapped cells, ECDRRP
m can be ex-

pressed as follows:

ECDRRP
m = EC0 − |C(i−1)→i|+ |Ci→(i−1)|, (6.4)

where EC0 is the initial number of bit errors before applying read pulses.

This estimation is based on the assumption that the Vth states of the upper-

tail cells (e.g, a cell c4 in Figure 35) in a widened Vth distribution (due to

retention loss) rarely change from P (i−1) to Pi after read pulse applica-

tions. When retention loss occurs, a Vth distribution gets widen as shown in

Figure 33(a), which reflects that the lower-tail cells are more likely to lose

charges over the upper-tail cells. As a result, the upper-tail cells have a much

lower probability to be recharged over the lower-tail cells so that their effect

on the error-correction process can be ignored. Moreover, it is not necessary

to include the number |C(i−1)↔i| of randomly-fluctuated cells in ECDRRP
m

because DRRP does not distinguish the set C(i−1)↔i from the set C(i−1)→i

or the set Ci→(i−1).
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Figure 36: Measurement results for tracing the CM-component changes in

response to multiple read pulses.

In order to trace the overall trend of CM -element changes in response

to read pulses, we measured the average number of each CM element (per

1-KB unit) every ten read pulses. Figure 36(a) shows ECDRRP variations

over varying numbers (e.g., m = 0 ∼ 1000) of read operations after 3K P/E

cycling and the 8-year (equivalent) retention times. In this example, EC0

was 66 while EC1000 after 1,000 read pulses is reduced to 48. Figure 36(b)

shows measurement results for each CM element, which can explain the

cause of retention-error reductions as shown in Figure 36(a). As read oper-

ations are repeated, |C(i−1)→i| grows rapidly in the early stage (i.e., ∼100

read pulses) but slowly at the end. (Note that the x-axis of Figure 36(b) is

a log scale.) On the other hand, |Ci→(i−1)| grows slowly from beginning to

the end. Since the differences between |C(i−1)→i| and |Ci→(i−1)| are nearly

saturated after one thousand read pulses, further read pulses have little effect

on reducing ECDRRP
m . Measurement result of the total bit-error count (e.g.,
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ECDRRP
1000 = 48) almost matched the estimation (i.e., 66−27+9 = 48) from

Equation 6.4. An interesting observation is that |C(i−1)↔i| starts with non-

zero counts which is comparable with |C(i−1)→i| in the early stage. How-

ever, since DRRP expects only C
(i−1)→i elements after multiple read pulses,

C
(i−1)↔i elements (as well as Ci→(i−1) elements) are not considered in its

error-correcting process.

6.3.2 A Selective Error-Correction Procedure

By progressively taking CM elements into account of a data recov-

ery process, the proposed FD can more efficiently recover retention failures

over DRRP. Since non-zero |Ci→(i−1)| indicates the occurrence of additional

charge loss during the recovery process, if those elements can be identified

from the read data, the data recovery capability can be enhanced. Moreover,

since random charge fluctuation is more active in highly-damaged cells [39]

(which probably contributed to retention errors [16]), taking C
(i−1)↔i ele-

ments as retention-failed cells can be an effective way of correcting reten-

tion errors. Another important advantage of considering C
(i−1)↔i elements

is that the data recovery speed can be accelerated. Since C
(i−1)↔i elements

are frequently observed even in the early stage of the recovery process as

shown in Figure 36(b), if the error-correction process can consider these

elements, the error-correction capability nearly doubles in the early stage.

Since each CM element can be separately extracted from the read data as

shown in Figure 36(b), conceptually, the total number ECFD
m of bit errors
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under FD after the mth read pulse can be expressed as follows:

ECFD
m = ECDRRP

m − |Ci→(i−1)| − |C(i−1)↔i| (6.5)

For example, if |C(i−1)→i|, |Ci→(i−1)| and |C(i−1)↔i| are 21, 3 and 6, re-

spectively, after 1000 read pulses as shown in Figure 36(b), ECDRRP
1000 is 48

(= 66− 21 + 3) while ECFD
1000 is only 39 (= 66− 21− 6). In this example,

DRRP reduces retention errors by 27% while FD reduces retention errors by

41%.

6.3.3 Implementation

Based on the charge movement model, we have implemented FD with

the selective error-correction procedure. Figure 37 shows an overview of the

current FD implementation which consists of two main steps, a diagnostic

step and a post-processing step.

In the diagnostic step, a sequence of diagnostic pulses is applied to

retention-failed cells. The main role of the diagnostic step is two-fold. First,

it recharges retention-loss cells (same as DRRP [37]). Second, it senses

the Vth changes in response to diagnostic pulses for the following post-

processing step. In order to achieve these two functions at the same time,

we use a read operation as a diagnostic pulse. Since a read operation senses

the data of a selected page while it applies the read voltage (e.g., ∼6 V) to

unselected pages in a NAND block, when read operations are sequentially

executed to all of pages in a block, recharging the unselected pages and sens-

ing the selected page can be executed in a pipelined fashion. Since the effect
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of just one read pulse on recharging may not be noticeable for causing Vth

changes, it is more efficient to use a sequence of (consecutive) read pulses

as a unit operation of the diagnostic step. For example, ten consecutive read

pulses are required to cause Vth changes in our measurements. On the other

hand, in order to detect randomly-fluctuated cells (i.e., cells in C
(i−1)↔i) as

early as possible, the post-processing step is invoked after every read oper-

ations in the early stage (e.g., less than one hundred read pulses) of FD. If

the number of consecutive read pulses is conditionally changed (we call this

policy the variable-length sequence policy), although the data recovery ca-

pability may not be improved, the data recovery speed may be substantially

enhanced.

In the following post-processing step, FD identifies retention-loss cells

by a selective error-correction procedure so that retention errors can be pro-
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Figure 37: An overview of the current FD implementation with a selective

error-correction procedure.
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gressively corrected. Since CM is based on Vth states as presented in Sec-

tion 6.3.1, it is necessary to convert raw data to Vth states before the post-

processing step as shown in Figure 37. The selective error-correction pro-

cedure is based on simple, but effective heuristics: (1) When a buffer state

is P (i), if the corresponding read state is P (i−1) or Pi, then the buffer

state is not changed. On the other hand, (2) when a buffer state is P (i−1),

if the corresponding read state is P (i), then the buffer state is changed to

P (i) . The first heuristic can avoid the negative impacts of Vth-decreased

cells (i.e., cells in C
i→(i−1) or C(i−1)↔i) on correcting retention errors. On

the other hand, the second heuristic takes Vth-increased cells (i.e., cells in

C
(i−1)→i or C(i−1)↔i) as retention-failed cells so that retention errors can

be selectively corrected. In FD, once a retention-failed cell is corrected by

the second heuristic, then the corrected cell is no longer considered in the

remaining post-processing steps by the first heuristic. However, since DRRP

takes only a cell belongs to a set {Ci−1
0 ∩C

i
m} (after the mth read pulse) as

a retention-failed cell regardless of the error-correction history, DRRP can-

not properly handle the negative impacts of Vth-decreased cells on its data

recovery capability.

The result of the post-processing step is updated to the data buffer as

shown in Figure 37 so that retention errors in the buffer can be progressively

corrected. If the buffered data is correctable by ECC, FD completes its re-

covery procedure and rewrites the recovered data to a free page. Otherwise,

two FD steps are repeated until a pre-set maximum iteration count (e.g., one

thousand) is reached.

Our proposed FD implementation as shown in Figure 37 requires a data
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buffer with a single block size (e.g., 1 MB in an MLC device) and several

state registers with a single page size (e.g., 8 KB). Moreover, since the post-

processing step and the diagnostic step can be performed independently for

each other, FD can exploit a pipelined execution between the diagnostic step

and the post-processing step so that the total FD execution time can be par-

tially reduced.

6.4 Experimental Results

We evaluated the effectiveness of FD for recovering retention failures

with ten blocks (pre-cycled for 3K P/E cycles) out of five 20-nm node

NAND chips. As a main evaluation metric, we measured RBERs of about

10,000 sectors and computed W-RBER (i.e., the normalized worst-case RBER

as defined in Section 6.2.2) among measured sectors. In order to emulate

a long retention state such as a 2-year retention time condition, we baked

selected chips at 100 ◦C for a equivalent retention time (e.g., 4 hours) esti-

mated by the Arrhenius equation [35].

In order to compare the data recovery capability of DRRP and FD, we

measured W-RBER while varying the number of read pulses in a very long

range (without applying the stopping condition of the error-correction pro-

cedures). Figure 38(a) shows the data recovery capability of both techniques

in the 8-year retention case. Since DRRP cannot lower its W-RBER even

with 1,000 read pulses, it cannot recover retention-failed data under the 8-

year retention condition. On the other hand, FD can recover retention-failed

data under the same retention condition after about 360 read pluses. In order
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Figure 38: Comparisons of the data recovery capability under different data

recovery techniques.

to compare the data recovery capability of various techniques under vary-

ing retention time conditions, we computed the minimum achievable W-

RBER, denoted as W -RBERmin, of each technique for a given retention

condition. For example, in Figure 38(a), W -RBERmin of FD is 0.87 while

W -RBERmin of DRRP is 1.95. Intuitively, W -RBERmin indicates the max-

imum data recovery power of a given technique. Figure 38(b) shows W -

RBERmin variations under different retention time conditions for several

different techniques. As shown in Figure 38(b), FD can effectively extend

the NAND retention capability by up to 8 years (which is eight times longer

than the retention-time specification) while DRRP can guarantee only 2-year

retention times.

The enhanced error-correction capability of FD over DRRPmainly comes

from the selective error-correction procedure which can efficiently identify

retention-loss cells by finely distinguishing C
i→(i−1) and C

(i−1)↔i elements
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as explained in Section 6.3.2. In order to understand the impact of the fine-

grained cell classification on the data recovery capability, we disabled the

C
(i−1)↔i identification step from FD. We denote this modified FD technique

by FD−. The only difference between DRRP and FD− is for FD− to filter

cells in C
i→(i−1). As shown in Figure 38(b), DRRP can extend the NAND

retention capability by up to 2 years. On the other hand, FD− can extend the

NAND retention capability by up to 4 years while FD can extend it by up

to 8 years. This result indicates that identifying cells in C
(i−1)↔i in the data

recovery procedure significantly strengthens the data recovery capability of

FD over FD−.

In order to compare the data recovery speed of DRRP and FD, we tested

both techniques under three different retention conditions. Figure 39(a) shows

the data recovery speed of DRRP and FD in the 2-year retention condition.

In DRRP, W-RBER slowly decreases as read pulses are repeated, and all the
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Table 10: Required numbers of read pulses to complete FD.

Retention time
Variable-length Fixed-length

sequence policy sequence policy

2 years 3 10

4 years 12 30

8 years 360 370

retention errors are corrected (i.e., W-RBER ≤ 1.0) after applying 70 read

pulses. On the other hand, in FD, retention errors can be fully corrected only

after 3 read pulses. Once all the data are correctable, FD is completed. As a

result, FD can recover retention failures up to 23x faster over DRRP for the

2-year retention case. When the average page read time is, for example, 100

µs, it takes about 7 ms for DRRP to recover retention failures while only 300

µs is required for FD. In order to further compare the data recovery speed

in longer retention cases, we performed additional experiments for 4-year

and 8-year retention conditions. As shown in Figure 39(b), in the 4-year and

8-year retention cases, FD can successfully recover retention failures after

applying 12 and 360 read pulses, respectively. On the other hand, in both

cases, DRRP could not recover retention failures until 1,000 read pulses. (In

our evaluations, the maximum number of read pulses was set to 1,000.)

We also evaluate if the variable-length sequence policy (described in

Section 6.3.3) is effective in speeding up the overall data recovery pro-

cedure. Under the variable-length sequence policy, until the total number

of read pulses reaches 100, a single diagnostic pulse is applied to NAND

cells between consecutive post-processing step. Once the total number of
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read pulses reaches 100, ten consecutive read pulses are applied in a row

between consecutive post-processing step. In order to evaluate the effec-

tiveness of the variable-length sequence policy, we compared it with the

the fixed-length sequence policy (which always applies ten consecutive read

pulses at a time). As summarized in Table 10, in the 2-year and 4-year re-

tention cases, the variable-length sequence policy can reduce the total data

recovery time by 70% and 60%, respectively, over the fixed-length sequence

policy. This is because, in an early stage of FD, frequently reading retention-

failed cells can increase the probability of detecting cells in C
(i−1)↔i so that

they can be excluded quickly from the remaining data recovery procedure.

However, in the 8-year retention case, the variable-length sequence policy

has a little benefit over the fixed-length sequence policy. This is because the

main advantage of the variable-length sequence policy is to detect cells in

C
(i−1)↔i early. For severely retention-failed data such as the 8-year reten-

tion case, after most of cells in C
(i−1)↔i are detected early, other compo-

nents such as C
(i−1)→i (not yet classified) are the dominant source of the

retention errors. As a result, the overall recovery time of FD is decided by

how long it takes to find cells in C
(i−1)→i (which is similar under two po-

lices).

Our experimental results with 20-nm node NAND chips show that FD

can recover retention failures up to 23x faster over the existing DRRP tech-

nique. Furthermore, since FD can recover severely retention-failed data, it

effectively extends the NAND retention time. Our result indicates that the

NAND retention time can be effectively extended by up to 8x over the spec-

ified retention time.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

The cost-per-bit of NAND flash-based solid-state drives (i.e., SSDs)

has steadily improved through uninterrupted semiconductor process scaling

and multi-leveling so that they are how widely employed in not only mo-

bile embedded systems but also personal computing systems. However, the

limited lifetime of NAND flash memory, as a side effect of recent advanced

device technologies, is emerging as one of the major concerns for recent

high-performance SSDs, especially for datacenter applications.

In this dissertation, we proposed several cross-layer optimization tech-

niques to improve the lifetime (particularly endurance) of NAND flash mem-

ory. Although the performance and reliability requirements of NAND flash

memory are designed under the worst-case operating conditions of a stor-

age product, the maximum capabilities of NAND devices are not fully uti-

lized in most cases. This observation has motivated us to propose a versatile

device-level framework (i.e., DeVTS), including a NAND endurance model

and newly defined device setting interfaces, that allows a flash software to

exploit the tradeoffs between the endurance and performance/retention ca-

pabilities of NAND flash memory.

We have developed several SSD lifetime improvement techniques based
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on the DeVTS framework that supports various erase scaling modes and

write capability tuning modes, each of which has a different impact on

NAND endurance. By accurately predicting the NAND requirements of

write requests, our proposed techniques optimally tune the performance and

retention capabilities of NAND devices. We have implemented dvsFTL+,

based on the DeVTS framework and proposed lifetime improvement tech-

niques, that dynamically selects erase voltage/time scaling modes and write

performance/retention capability tuning modes depending on varying work-

load conditions. The existing garbage collector and wear leveler are also re-

designed to maximize the efficiency of dvsFTL+. Since the performance and

retention capabilities of NAND devices are frequently relaxed, dvsFTL+

manages the NAND requirements in a reliable fashion.

In order to evaluate the effectiveness of the proposed lifetime improve-

ment techniques, we have built a timing-accurate NAND simulation envi-

ronment which accurately emulates temporal interactions between varying

I/O requests and various NAND operations. Our experimental results show

that when the write-performance tuning technique is employed, NAND en-

durance is improved by 62% on average. When the retention-capability tun-

ing technique is added to dvsFTL+, NAND endurance is further improved

by 94%, on average, over an existing DeVTS-unaware FTL. In our evalu-

ation, the overall write performance and retention requirements of storage

systems are reliably maintained.

Since our proposed lifetime improvement techniques aggressively tune

down the retention capability of NAND flash memory, data loss may occur

due to retention failures when power is suddenly cut off. Consequently, we
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have suggested a new data recovery technique to recover corrupted data

from retention failures by exploiting the unique retention loss mechanism

of NAND flash memory. Our experimental results show that our proposed

data recovery technique can recover from retention failures up to 23x faster

over the existing recovery technique. Furthermore, it effectively extends the

NAND retention time by up to 8x over the specified retention time.

Since the proposed lifetime improvement techniques and reliability

management techniques require only a small resource overhead and a negli-

gible time overhead, they can easily be implemented into the existing NAND

flash-based storage systems with minimal changes in flash software mod-

ules.

7.2 Future Work

7.2.1 Lifetime Improvement Technique Exploiting

The Other NAND Tradeoffs

The lifetime improvement techniques in this dissertation take advan-

tage of variations in the write performance and retention requirements. How-

ever, if variations in the maximum required number of read counts for each

NAND page is additionally exploited, NAND endurance can be further im-

proved. For example, if the maximum read count of an MLC NAND block

is reduced from 1,000K [41] to 1,000, the Vth window can be additionally

saved by about 500 mV. Since the saved Vth window by retention-capability

tuning is about 500 mV, the effect of read-disturb resistance tuning on im-

proving NAND endurance will be comparable to that of retention-capability
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tuning.

However, unlike the performance and retention capability tuning tech-

niques, there is a challenging issue in the implementation of a read-disturb

resistance tuning technique. Since the proposed performance and retention

capability tuning techniques exploit the spatial and temporal locality of

write requests, it is possible to accurately predict the characteristics of the

near-future write requests. On the contrary, it is difficult to predict the fu-

ture read intensity of the current write request in a storage software layer.

In order to decide whether or not the read-disturb resistance of the current

write request can be relaxed, it is necessary to exploit more higher-level

hints from file systems or applications. If such useful information for the

future read intensity of write requests can be exploited, the endurance gain

of the proposed techniques is maximized.

7.2.2 Development of Extended Techniques for

DRAM-Flash Hybrid Main Memory Systems

As big data analytics based on massive data, rapidly generated and

processed, become commonplace in real environments, there is a strong de-

mand on high-performance computing systems that can efficiently store and

process such massive data in real time. The most critical requirement on the

next-generation information systems, such as intelligent self-driving control

systems, based on the big data analytics is to keep extremely high perfor-

mance in a consistent manner. In order to satisfy such a requirement, most

of existing optimization techniques have mainly focused on in-memory pro-
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cessing that can prevent from accessing to slow storage systems. The exist-

ing DRAM-based main memory system, however, is not a practical solution

for such big data applications because of its pool cost/energy efficiencies. In

order to implement a cost-efficient main memory system with a huge capac-

ity as well as low power consumption, several system-level approaches have

been suggested by taking advantage of both DRAM and NAND flash mem-

ory through a new software architecture [42] or hardware architecture [43].

However, the limited lifetime of NAND flash memory can be also a serious

reliability issue when such DRAM-Flash hybrid main memory systems are

actively employed in real environments.

If the operating systems can directly manage the proposed lifetime

improvement techniques by exploiting various new interactions between

DRAM and NAND flash under an NVDIMM-like setting, it is possible to

extend the lifetime of NAND flash to the fullest extent. For example, by ex-

ploiting many useful hints, disappeared while passing through I/O stacks, in

the host system, the performance and retention requirements of the requests

can be more reliably and directly classified. Moreover, since our proposed

techniques can easily be combined with existing data reduction techniques

such as data compression and data de-duplication, NAND lifetime can be

further extended. Our proposed lifetime improvement techniques can be a

crucial breakthrough in the new type of main memory systems.

7.2.3 Development of Specialized SSDs

Recently, in order to optimally exploit the unique superiorities (e.g.,

non-volatility, high write throughput, and low access latency) of NAND de-
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vices, several types of specialized SSDs are required in datacenter environ-

ments [44]. For example, when SSDs are used as cache, lower latency as

well as higher endurance is needed. On the other hand, when SSDs are used

as a cold storage, a higher capacity with a longer retention time is more

preferable. However, existing SSD products do not fulfil such various re-

quirements in a single device because most of capabilities of NAND flash

memory usually fixed during device design times. In order to meet such

requirements from datacenter applications, it is required to develop a multi-

purpose SSD whose capabilities can be flexibly adjusted on demand.

The primary goal of this dissertation is to improve NAND endurance by

conditionally tuning down the other NAND capabilities. In order to achieve

this research goal, we propose the NAND endurance model which accu-

rately captures the tradeoff relationship among the NAND capabilities. Since

the relationship between each NAND capability is expressed as the saved

Vth window by each tuning technique, the proposed NAND endurance model

can be utilized for other purpose such as booting the write performance or

retention capability of a storage device. For example, when urgent write

requests are issued to a storage system, the write performance of NAND

devices can be rapidly boosted by temporarily sacrificing the endurance and

retention capabilities of NAND devices. Similarly, when cold data are to be

written, the retention capability of NAND devices can be further enhanced

by sacrificing the write performance of NAND devices.
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초록

컴퓨팅시스템의성능향상을위해,기존의느린 HDD를빠른낸드플래시

메모리 기반 저장장치(SSD)로 대체하고자 하는 연구가 최근 활발히 진행되고

있다.지난수십년에걸친반도체미세공정기술과다치화기술등의디바이스

수준의발전으로인해최근 SSD의가격은HDD수준으로낮아졌지만,이와같은

최신반도체 기술의 부작용으로낸드 플래시 메모리의수명이 급격히감소되는

문제가 지속적으로 제기되고 있다. 이와 같은 낮은 수명 문제는, SSD가 고성능

컴퓨팅시스템에널리사용되기위해반드시해결되어야하는가장중요한기술

적이슈중의하나이다.

본논문에서는,낸드플래시메모리의수명(특히,내구성)을향상시키기위

한, 디바이스와 시스템간의 계층 교차 최적화 기법을 제안한다. 제안하는 기법

들은 우리의 중요한 발견, 즉 낸드 블락을 낮은 전압으로 그리고 느린 속도로

소거할수록 낸드의 내구성이 현격히 개선된다는 새로운 사실을 기반으로 개발

되었다. 그러나, 소거 동작에서 낮은 전압을 사용할 수록, 쓰기 성능 및 데이터

보존능력등의디바이스의특성이저하되는부작용이발생한다.제안된기법의

주된목표는,전체적으로저장장치의특성에미치는부작용없이낸드디바이스

의내구성을향상시킴으로써, SSD의수명을개선하고자하는것이다.

첫번째로,시스템소프트웨어가낸드플래시메모리의내구성과소거전압/

시간 간의 보상관계를 직접적으로 활용할 수 있는 기반이 되는, 동적 소거 전압

및 시간조절 기법(DeVTS)이제안된다. DeVTS는 소거 전압/시간및 쓰기 능력

을변경하는다양한모드를제공하는데,이와같은모드를이용하여낸드플래시

메모리의 내구성, 성능 그리고 데이터 보존 능력을 상황에 맞게 서로 다르게 조

절할수있게된다.

두번째로, 낸드 블락을 느리게 소거하거나 또는 낮은 전압으로 소거된 블

락에 데이터를 쓸 때, 쓰기 요청들 간의 유휴 시간을 활용하여, 전체적인 성능

저하없이 SSD의수명을 향상시킬수있는기법이 제안된다.또한,이와 같은기

법이 적용된 dvsFTL이라는 FTL (Flash Translation Layer)이 제안되는데, 이는
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낸드 디바이스의 소거 전압/속도와 쓰기 성능을 상황에 맞게 자동적으로 조절

함으로써 낸드 디바이스의 내구성을극대화하는 기능을 구비한다. 실험 결과에

의하면, dvsFTL은낸드디바이스의내구성을평균적으로 62%개선하는효과를

보이고,이때전체적인 SSD의성능저하는극히미미한수준이었다.

세번째로, 낮은 전압으로 소거된 블락에 데이터를 쓸 때, SSD에 요구되는

성능 및 데이터 보존 시간에 대한 변동을 종합적으로 활용하여, SSD의 수명 향

상효과를극대화시키는기법이제안된다.이어서, dvsFTL대비개선된 FTL인,

dvsFTL+가 제안되는데, 이는 쓰기 성능 및 데이터 보존 시간에 대한 요구량의

변화를실시간으로정확하게예측함으로써, SSD의수명개선효과를보다향상

시킬수있게한다.실험결과에의하면, dvsFTL+는 dvsFTL보다낸드디바이스

의 내구성을 50% 이상 더 향상시킬 수 있고, 이때 저장 장치에 대한 모든 요구

수준을충분히보장할수있었다.

마지막으로,데이터보존능력을적극적으로조절하는기법이실제컴퓨팅

환경에적용되는경우발생할수있는,데이터유실문제를해결하기위한신뢰성

개선기법이추가로제안된다.실험결과에의하면,제안된기법은,기존에낸드

플래시메모리가보장하는데이터보존시간을최대 8배향상시킬수있을뿐아

니라,기존에제시된데이터복구기법들보다최대 23배빠르게손상된데이터를

복구할수있었다.

지금까지 제시된 다양한 실험 결과를 바탕으로, 우리는 제안된 계층 교차

최적화기법들이낸드플래시기반저장장치의수명향상에큰효과가있음을확

인하였다.향후제안된기법들이보다발전된다면,낸드플래시메모리가초고속

컴퓨팅시스템의주저장장치로널리사용될수있을뿐아니라메인메모리로도

충분히활용될수있을것으로기대된다.

키워드: 낸드 플래시 메모리, 플래시 기반 저장장치, 저장장치 제어, 저장장치

신뢰성,저장장치수명,임베디드소프트웨어

학번: 2012-30229
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