55 research outputs found

    Design and Implementation of an RNS-based 2D DWT Processor

    Get PDF
    No abstract availabl

    Residue Number System Based Building Blocks for Applications in Digital Signal Processing

    Get PDF
    Předkládaná disertační práce se zabývá návrhem základních bloků v systému zbytkových tříd pro zvýšení výkonu aplikací určených pro digitální zpracování signálů (DSP). Systém zbytkových tříd (RNS) je neváhová číselná soustava, jež umožňuje provádět paralelizovatelné, vysokorychlostní, bezpečné a proti chybám odolné aritmetické operace, které jsou zpracovávány bez přenosu mezi řády. Tyto vlastnosti jej činí značně perspektivním pro použití v DSP aplikacích náročných na výpočetní výkon a odolných proti chybám. Typický RNS systém se skládá ze tří hlavních částí: převodníku z binárního kódu do RNS, který počítá ekvivalent vstupních binárních hodnot v systému zbytkových tříd, dále jsou to paralelně řazené RNS aritmetické jednotky, které provádějí aritmetické operace s operandy již převedenými do RNS. Poslední část pak tvoří převodník z RNS do binárního kódu, který převádí výsledek zpět do výchozího binárního kódu. Hlavním cílem této disertační práce bylo navrhnout nové struktury základních bloků výše zmiňovaného systému zbytkových tříd, které mohou být využity v aplikacích DSP. Tato disertační práce předkládá zlepšení a návrhy nových struktur komponent RNS, simulaci a také ověření jejich funkčnosti prostřednictvím implementace v obvodech FPGA. Kromě návrhů nové struktury základních komponentů RNS je prezentován také podrobný výzkum různých sad modulů, který je srovnává a determinuje nejefektivnější sadu pro různé dynamické rozsahy. Dalším z klíčových přínosů disertační práce je objevení a ověření podmínky určující výběr optimální sady modulů, která umožňuje zvýšit výkonnost aplikací DSP. Dále byla navržena aplikace pro zpracování obrazu využívající RNS, která má vůči klasické binární implementanci nižší spotřebu a vyšší maximální pracovní frekvenci. V závěru práce byla vyhodnocena hlavní kritéria při rozhodování, zda je vhodnější pro danou aplikaci využít binární číselnou soustavu nebo RNS.This doctoral thesis deals with designing residue number system based building blocks to enhance the performance of digital signal processing applications. The residue number system (RNS) is a non-weighted number system that provides carry-free, parallel, high speed, secure and fault tolerant arithmetic operations. These features make it very attractive to be used in high-performance and fault tolerant digital signal processing (DSP) applications. A typical RNS system consists of three main components; the first one is the binary to residue converter that computes the RNS equivalent of the inputs represented in the binary number system. The second component in this system is parallel residue arithmetic units that perform arithmetic operations on the operands already represented in RNS. The last component is the residue to binary converter, which converts the outputs back into their binary representation. The main aim of this thesis was to propose novel structures of the basic components of this system in order to be later used as fundamental units in DSP applications. This thesis encloses improving and designing novel structures of these components, simulating and verifying their efficiency via FPGA implementation. In addition to suggesting novel structures of basic RNS components, a detailed study on different moduli sets that compares and determines the most efficient one for different dynamic range requirements is also presented. One of the main outcomes of this thesis is concluding and verifying the main condition that should be met when choosing a moduli set, in order to improve the timing performance of a DSP application. An RNS-based image processing application is also proposed. Its efficiency, in terms of timing performance and power consumption, is proved via comparing it with a binary-based one. Finally, the main considerations that should be taken into account when choosing to use the binary number system or RNS are also discussed in details.

    Residue Number Systems: a Survey

    Get PDF

    A Comparative Performance of Discrete Wavelet Transform Implementations Using Multiplierless

    Get PDF
    Using discrete wavelet transform (DWT) in high-speed signal-processing applications imposes a high degree of care to hardware resource availability, latency, and power consumption. In this chapter, the design aspects and performance of multiplierless DWT is analyzed. We presented the two key multiplierless approaches, namely the distributed arithmetic algorithm (DAA) and the residue number system (RNS). We aim to estimate the performance requirements and hardware resources for each approach, allowing for the selection of proper algorithm and implementation of multi-level DAA- and RNS-based DWT. The design has been implemented and synthesized in Xilinx Virtex 6 ML605, taking advantage of Virtex 6’s embedded block RAMs (BRAMs)

    Emerging Design Methodology And Its Implementation Through Rns And Qca

    Get PDF
    Digital logic technology has been changing dramatically from integrated circuits, to a Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits. Research focused on increasing the speed and reducing the size of the circuit design. Residue Number System (RNS) architecture has ability to support high speed concurrent arithmetic applications. To reduce the size, Quantum-Dot Cellular Automata (QCA) has become one of the new nanotechnology research field and has received a lot of attention within the engineering community due to its small size and ultralow power. In the last decade, residue number system has received increased attention due to its ability to support high speed concurrent arithmetic applications such as Fast Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in addition and multiplication. In spite of its effectiveness, RNS has remained more an academic challenge and has very little impact in practical applications due to the complexity involved in the conversion process, magnitude comparison, overflow detection, sign detection, parity detection, scaling and division. The advancements in very large scale integration technology and demand for parallelism computation have enabled researchers to consider RNS as an alternative approach to high speed concurrent arithmetic. Novel parallel - prefix structure binary to residue number system conversion method and RNS novel scaling method are presented in this thesis. Quantum-dot cellular automata has become one of the new nanotechnology research field and has received a lot of attention within engineering community due to its extremely small feature size and ultralow power consumption compared to COMS technology. Novel methodology for generating QCA Boolean circuits from multi-output Boolean circuits is presented. Our methodology takes as its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an equivalent majority gate circuits. During the past decade, quantum-dot cellular automata showed the ability to implement both combinational and sequential logic devices. Unlike conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks is majority gate. With combining these QCA gates with NOT gates any combinational or sequential logical device can be constructed from QCA cells. We present an implementation of generalized pipeline cellular array using quantum-dot cellular automata cells. The proposed QCA pipeline array can perform all basic operations such as multiplication, division, squaring and square rooting. The different mode of operations are controlled by a single control line

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations

    Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation

    Get PDF
    This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS adder, factors such as the radix, digit set, and moduli must be taken into account. There are many avenues still to explore. For example, implementing other arithmetic systems in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues relating to relative performance

    PaReNTT: Low-Latency Parallel Residue Number System and NTT-Based Long Polynomial Modular Multiplication for Homomorphic Encryption

    Full text link
    High-speed long polynomial multiplication is important for applications in homomorphic encryption (HE) and lattice-based cryptosystems. This paper addresses low-latency hardware architectures for long polynomial modular multiplication using the number-theoretic transform (NTT) and inverse NTT (iNTT). Chinese remainder theorem (CRT) is used to decompose the modulus into multiple smaller moduli. Our proposed architecture, namely PaReNTT, makes four novel contributions. First, parallel NTT and iNTT architectures are proposed to reduce the number of clock cycles to process the polynomials. This can enable real-time processing for HE applications, as the number of clock cycles to process the polynomial is inversely proportional to the level of parallelism. Second, the proposed architecture eliminates the need for permuting the NTT outputs before their product is input to the iNTT. This reduces latency by n/4 clock cycles, where n is the length of the polynomial, and reduces buffer requirement by one delay-switch-delay circuit of size n. Third, an approach to select special moduli is presented where the moduli can be expressed in terms of a few signed power-of-two terms. Fourth, novel architectures for pre-processing for computing residual polynomials using the CRT and post-processing for combining the residual polynomials are proposed. These architectures significantly reduce the area consumption of the pre-processing and post-processing steps. The proposed long modular polynomial multiplications are ideal for applications that require low latency and high sample rate as these feed-forward architectures can be pipelined at arbitrary levels

    Application of Residue Arithmetic in Communication and Signal Processing

    Get PDF
    Residue Number System (RNS) is a non-weighted number system. In RNS, the arithmetic operations are split into smaller parallel operations which are independent of each other. There is no carry propagation between these operations. Hence devices operating in this principle inherit property of high speed and low power consumption. But this property makes overflow detection is very difficult. Hence the moduli set is chosen such that there is no carry generated. In this thesis, the use of residue number system (RNS) is portrayed in designing solution to various applications of Communication and Signal Processing. RNS finds its application where integer arithmetic is authoritative process, since residue arithmetic operates efficiently on integers. New moduli set selection process, magnitude comparison routine and sign detection methods were limed on the onset of this dissertation. A good example of integer arithmetic is digital image. The pixels are represented by 8 bit unsigned number. Thus the operations are primarily unsigned and restricted to a small range. Hereby, in this thesis, a novel image encryption technique is depicted. The results show the robustness and timeliness of this technique. This technique is further compared to some of industry standard encryption algorithms for analysis based on robustness, encryption time and various other paradigms. Filters are signal conditioners. Each filter functions by accepting an input signal, blocking pre-specified frequency components, and passing the original signal minus those components to the output. A lowpass filter allows only low frequency signals (below some specified cutoff) through to its output, so it can be used to eliminate high frequencies. A novel design approach for a low pass filter based on residue arithmetic was also proposed. Some trite techniques as well as novel approaches were adopted to solve the design challenges. A technique for mapping the data in another space providing the liberty to work with floating numbers with a precision was adopted. PN sequence generator based on residue arithmetic is also formulated. This algorithm generates a pseudo-noise sequence which further was used to evince a spread spectrum multiuser communication system. The results are compared with trite techniques like Gold and Kasami sequence generators

    High-Performance VLSI Architectures for Lattice-Based Cryptography

    Get PDF
    Lattice-based cryptography is a cryptographic primitive built upon the hard problems on point lattices. Cryptosystems relying on lattice-based cryptography have attracted huge attention in the last decade since they have post-quantum-resistant security and the remarkable construction of the algorithm. In particular, homomorphic encryption (HE) and post-quantum cryptography (PQC) are the two main applications of lattice-based cryptography. Meanwhile, the efficient hardware implementations for these advanced cryptography schemes are demanding to achieve a high-performance implementation. This dissertation aims to investigate the novel and high-performance very large-scale integration (VLSI) architectures for lattice-based cryptography, including the HE and PQC schemes. This dissertation first presents different architectures for the number-theoretic transform (NTT)-based polynomial multiplication, one of the crucial parts of the fundamental arithmetic for lattice-based HE and PQC schemes. Then a high-speed modular integer multiplier is proposed, particularly for lattice-based cryptography. In addition, a novel modular polynomial multiplier is presented to exploit the fast finite impulse response (FIR) filter architecture to reduce the computational complexity of the schoolbook modular polynomial multiplication for lattice-based PQC scheme. Afterward, an NTT and Chinese remainder theorem (CRT)-based high-speed modular polynomial multiplier is presented for HE schemes whose moduli are large integers
    corecore