
Clemson University Clemson University 

TigerPrints TigerPrints 

All Dissertations Dissertations 

12-2022 

High-Performance VLSI Architectures for Lattice-Based High-Performance VLSI Architectures for Lattice-Based 

Cryptography Cryptography 

Weihang Tan 
wtan@g.clemson.edu 

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations 

 Part of the VLSI and Circuits, Embedded and Hardware Systems Commons 

Recommended Citation Recommended Citation 
Tan, Weihang, "High-Performance VLSI Architectures for Lattice-Based Cryptography" (2022). All 
Dissertations. 3171. 
https://tigerprints.clemson.edu/all_dissertations/3171 

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been 
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, 
please contact kokeefe@clemson.edu. 

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/277?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3171?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


High-Performance VLSI Architectures for Lattice-Based
Cryptography

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Electrical Engineering

by

Weihang Tan

December 2022

Accepted by:

Dr. Yingjie Lao, Committee Chair

Dr. Jon C. Calhoun

Dr. Shuhong Gao

Dr. Rajendra Singh



Abstract

Lattice-based cryptography is a cryptographic primitive built upon the hard problems on

point lattices. Cryptosystems relying on lattice-based cryptography have attracted huge attention in

the last decade since they have post-quantum-resistant security and the remarkable construction of

the algorithm. In particular, homomorphic encryption (HE) and post-quantum cryptography (PQC)

are the two main applications of lattice-based cryptography. Meanwhile, the efficient hardware imple-

mentations for these advanced cryptography schemes are demanding to achieve a high-performance

implementation.

This dissertation aims to investigate the novel and high-performance very large-scale integra-

tion (VLSI) architectures for lattice-based cryptography, including the HE and PQC schemes. This

dissertation first presents different architectures for the number-theoretic transform (NTT)-based

polynomial multiplication, one of the crucial parts of the fundamental arithmetic for lattice-based

HE and PQC schemes. Then a high-speed modular integer multiplier is proposed, particularly for

lattice-based cryptography. In addition, a novel modular polynomial multiplier is presented to ex-

ploit the fast finite impulse response (FIR) filter architecture to reduce the computational complexity

of the schoolbook modular polynomial multiplication for lattice-based PQC scheme. Afterward, an

NTT and Chinese remainder theorem (CRT)-based high-speed modular polynomial multiplier is

presented for HE schemes whose moduli are large integers.
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Chapter 1

Introduction

The Internet is a system interconnecting computer networks worldwide. There were 307.2

million internet users in the United States in January 2022, which shows the internet penetration

rate stood at 92.0% of the total population at the start of 2022 [1]. As the advantages of the Internet,

people are more and more dependent on it in their daily lives. However, the interaction between users

and the internet servers makes the users’ data more vulnerable to leak to threats and unauthorized

parties. Therefore, safeguarding users’ identities and sensitive data is one of the important research

topics. In order to avoid information leakage in the network communication between the users and

internet servers, a secure communication system is needed.

A secure communication system is required for data transmission in some untrusted plat-

forms. As shown in Fig. 1.1, the cryptography scheme plays a crucial role during secure commu-

nication to prevent the eavesdropper from learning the knowledge in the communication channel.

In general, four goals are desired to protect information security using cryptographic schemes [2].

The confidentiality of a cryptosystem is to prevent the information from leaking to the unauthorized

party, which is also called the security of the information. Data integrity ensures that the unau-

thorized party does not manipulate the content of the information. Authentication is to guarantee

that two parties have to identify with each other before the communication. Non-repudiation is

to prevent any party from denying the previous actions and sent information. During the encryp-

tion and decryption processes, a cryptographic scheme is needed, where private-key and public-key

cryptography are two of the most important topics in modern cryptography. Private key encryption

uses the same key to convert the plaintext (information) to the ciphertext (encrypted data), which

1
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Figure 1.1: Secure communication system block diagram [3].

requires two parties to hold the same key for encryption and decryption. Such a setting requires

two parties to agree on and share a private key in advance. In contrast, public key encryption holds

two different keys during secure communication. The keys are generated by the receiver, called the

private and public keys. The public key is shared with the sender, so the senders can encrypt the

information using the public key. Only the private key holder (receiver) can use the private key to

decrypt the ciphertext and receive the information. Public key encryption only requires the receiver

to keep a private secret, but the public key can be shared with any party in the public channel.

Various public key encryption schemes such as RSA and elliptic-curve are currently em-

ployed for secure communication. Though the above public-key cryptosystems showed excellent

performance on security previously, they are no longer secure in the world of quantum computing.

It has been shown that quantum computers can efficiently break these cryptosystems relying on

the computational difficulty in factoring large integers. As a result, it is crucial to develop new

cryptosystems that can withstand attacks under quantum computers and classic computers, known

as post-quantum cryptography (PQC) [4].

The PQC schemes, building on the lattice-based cryptographic primitive, are the most

popular cryptosystems during the National Institute of Standards and Technology (NIST) PQC

standardization process since 2017 [4].

In addition, lattice-based cryptographic primitive has also been utilized in an important

cryptographic method for secure processing, called homomorphic encryption (HE) [5]. HE allows

the processing of the data directly on the ciphertexts without decryption. HE is a revolutionary

breakthrough for privacy-preserving applications. It differs from private-key or public-key encryption

schemes that cannot prevent information leakage on the cloud since the data must be decrypted to

plaintext before the computation.

These powerful schemes provide the preliminary that shows superior performance compared

2



to the conventional cryptosystems in many perspectives. However, the software implementation is

still inefficient because of the high computational complexity of the lattice-based schemes. For exam-

ple, the computations inside lattice-based cryptography involve arithmetic over the polynomial ring,

which also requires a large number of polynomial multiplication, and additions over the ring. Due

to the long polynomial degree and long word-length of the coefficient modulus, such computations

are expensive. Thus a hardware acceleration for the lattice-based PQC and HE schemes is desired.

This dissertation considers high-performance hardware implementations for lattice-based

cryptography. In particular, this dissertation proposes different hardware accelerators to fulfill di-

verse lattice-based cryptography applications. Modular polynomial multiplier design is one of the

targets of this dissertation, where number theoretic transform (NTT)-based modular polynomial

multiplication is first presented in this dissertation to improve the performance of the HE and PQC

schemes. Besides, the novel schoolbook-based modular polynomial multiplier is considered for the

schemes whose parameters or mathematical primitives do not allow using the NTT for modular

polynomial multiplication. Finally, the other functional blocks customized for the specific schemes

are also presented in this dissertation.

• The first work in Chapter 3 presents a hardware accelerator for the external product step of

the recent FHE schemes [6, 7]. In this work, we mainly study an ultra-high parallel number

theoretic transform (NTT)-based modular polynomial multiplier. This hardware accelerator

leverages a memory-based design framework to achieve a scalable and reconfigurable architec-

ture. The result of this work is published in [8, 9].

• The second work in Chapter 4 introduces another NTT architecture along with an efficient

Barrett reduction-based modular (integer) multiplier. This architecture targets not only the

acceleration for the FHE schemes but also the lattice-based PQC schemes. The result of this

work is published in [10].

• Chapter 5 introduces the third work that targets the hardware and software co-optimization

for the modular (integer) multiplication for lattice-based cryptography. This work utilizes the

Karatsuba-based algorithm and explores the special prime to accelerate modular multiplica-

tion. The result of this work is published in [11].

• The fourth work investigates the schoolbook modular polynomial multiplier by exploiting

the fast finite impulse response (FIR) filter-like and scalable architecture, which is presented
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in Chapter 6. Note that this work targets the schemes whose parameters or mathematical

primitives do not allow using the NTT for modular polynomial multiplication. Furthermore,

this work utilizes the Saber PQC scheme as a case study. The result of this work is presented

in [12].

• In Chapter 7, we present a high-speed long polynomial multiplication architecture, PaReNTT,

for the HE schemes. This architecture first investigates a feed-forward NTT-based polynomial

multiplier with low clock cycle consumption by using a novel folding transformation technique.

Moreover, since the moduli used in the HE schemes are large, decomposing the moduli based

on the Chinese remainder theorem (CRT) and executing the operations in parallel allows the

modular polynomial multiplier has a better timing performance. Therefore, efficient architec-

tures for the pre-processing and post-processing in the CRT are also studied in this chapter.

The outline of this dissertation is as follows. This preliminary and mathematical back-

ground of this dissertation is reviewed in Chapter 2. Afterward, we proposed our novel architectures

and designs in Chapters 3, 4, 5, 6, and 7. Finally, Chapter 8 concludes the contributions of this

dissertation and future work.
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Chapter 2

Background

In this chapter, the mathematical background closely related to this dissertation is intro-

duced, which is helpful for understanding the proposed hardware designs. This chapter first reviews

modular arithmetic, which is a foundation for cryptography. Then, the preliminary for the lattice-

based cryptography is also reviewed.

2.1 Modular Arithmetic

Modular arithmetic is system arithmetic that requires the results to fall in the range [0, q−1],

where q is called modulus.

2.1.1 Congruence

The modular arithmetic is based on the congruence relation, defined as follows.

Given an integer q ̸= 0. If x− y is divisible by q (i.e., x− y = kq for the integer k), then q

is the modulus and y is the remainder of integer x with respect to modulus q:

x ≡ y (mod q). (2.1)

It can also be denoted as y = [x]q.

Specifically, all the integers congruent to x modulo q is called the congruence class (residue)

5



of x modulo q:

[x]q = {z ∈ Z | x− z = kq for k ∈ Z}. (2.2)

2.1.2 Modular Arithmetic Operations

Modular addition, modular subtraction, and multiplication are three essential operations

for modular arithmetic. In particular, modular addition and modular subtraction are relatively

simple, and the algorithms are shown in Algorithms 1 and 2. Such algorithms are straightforward

to implement in software and hardware. However, the modular multiplication is non-trivial, one

of the targeted blocks to be optimized in the prior works. The high-level expression for modular

multiplication is illustrated as

c = a · b mod q (2.3)

= a · b− k · q, (2.4)

where k ∈ Z.

Besides, the division operation of a and b in modular arithmetic is based on the modular

multiplication of the reciprocal of the divisor (i.e., the multiplicative inverse):

c = a · b−1, (2.5)

where b−1 can be calculated by Fermat’s little theorem [13] if q is a prime number:

b−1 ≡ bq−2 mod q, b ∤ q. (2.6)

Algorithm 1 Modular Addition

Input: a and b ∈ [0, q − 1]
Output: c = a+ b mod q,

1: c = a+ b
2: if c >= q then
3: c = c− q
4: end if
5: return c
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Algorithm 2 Modular Subtraction

Input: a and b ∈ [0, q − 1]
Output: c = a− b mod q,

1: c = a− b
2: if c < 0 then
3: c = c+ q
4: end if
5: return c

2.2 Lattice-based Cryptography

Lattice-based cryptography represents the cryptographic schemes that are based on the

hardness of the lattice problem. The learning with errors (LWE) problem is a computational prob-

lem built upon the lattice problem, which is NP-hard for quantum computers [14, 15]. Due to its

arithmetic simplicity and strong security performance, cryptosystems related to the LWE problem

are widely studied for post-quantum secure applications.

Ring-LWE (RLWE) is a ring-based analogue for the LWE problem [15]. The RLWE problem

has been adopted in the recent popular HE schemes [16–18]. For an RLWE-based scheme, the

polynomial computation is computed over ring Rq = Zq/(x
n + 1), where xn + 1 is an irreducible

polynomial of degree (dimension) n, and the polynomial coefficient modulus is q. The RLWE sample

(a(x), b(x)) ∈ Rq × Rq is defined as follows: a(x) is an uniformly random polynomial over ring Rq,

and the corresponding b(x) is expressed as

b(x) = a(x) · s(x) + e(x) ∈ Rq, (2.7)

where s(x) ∈ Rq is the secret, and e(x) ∈ Rq is the error term. These two polynomials are random

polynomials sampled from a discrete Gaussian distribution with standard deviation σ [19]. The key

generation, encryption, and decryption steps of the RLWE problem can be defined based on the

above setting.

The key generation step is used to obtain the public key (a(x), p(x)) and private key r2(x),

where a(x) ∈ Rq is taken from the uniform distribution. Two polynomials r1(x), r2(x) ∈ Rq are

firstly sampled from the discrete Gaussian distribution, and then compute p(x) by

p(x) = r1(x)− a(x) · r2(x) ∈ Rq. (2.8)
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During the encryption step, a pair of ciphertexts (c1(x), c2(x)) is calculated based on the

public key. In particular, c1(x) as well as c2(x) are expressed as

c1(x) = a(x) · e1(x) + e2(x) ∈ Rq,

c2(x) = p(x) · e1(x) + e3(x) + m̂(x) ∈ Rq, (2.9)

where m̂(x) is encoded from message m(x), and three error terms e1(x), e2(x), e3(x) ∈ Rq are also

sampled from the discrete Gaussian distribution.

For decryption step, polynomials m′(x) = c1(x) · r2(x) + c2(x) ∈ Rq is computed by using

the private key r2(x), which will then be decoded to m(x).

Besides, the Module-LWE (MLWE) is another important computational problem used in

CRYSTALS-KYBER scheme [20], a candidate has chosen to be standardized by NIST. The con-

struction of RLWE and MLWE-based variants are similar, while the only difference is s(x) and

a(x) are vectors, and their entries are polynomials in Rq (i.e., s(x), a(x) ∈ (Rq)
d), where d is the

dimension of the vector.
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Chapter 3

An Ultra-Highly Parallel

Polynomial Multiplier for the

Bootstrapping Algorithm in A

Fully Homomorphic Encryption

Scheme

Fully homomorphic encryption (FHE) is a post-quantum secure cryptographic technology

that enables privacy-preserving computing on an untrusted platform without divulging any secret

or sensitive information. The core of FHE is the bootstrapping algorithm, which is the intermedi-

ate refreshing procedure of a processed ciphertext. However, this step has been the computational

bottleneck that prevents real-world deployments among various FHE schemes. This chapter, to the

best of our knowledge, for the first time, presents a scalable and ultra-highly parallel design for the

number theoretic transform (NTT)-based polynomial multiplier with a variable number of reconfig-

urable processing elements (PEs). Hence, the highest degree of acceleration can be achieved for any

targeted hardware platform by implementing as many PEs as possible under resource constraints.

The corresponding addressing and scheduling schemes are also proposed to avoid memory access
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conflict for the PEs, which yields an extremely high utilization ratio of 99.18% on average. In ad-

dition, the latency of the proposed design with the general negative wrapped convolution algorithm

is reduced by 59.20% compared to prior works. 1

3.1 Introduction

The recent development of cloud computing and the Internet of Things (IoT) demands an

efficient cryptosystem to protect sensitive data through public networks and computing platforms.

To this end, fully homomorphic encryption (FHE) has emerged as a promising secure function eval-

uation (SFE) scheme that allows operations on encrypted data without decryption. As opposed to

conventional encryption methods, data can remain encrypted under the user’s secret key, and hence

only the secret key owner has access to the plaintext. In addition, different from partially or some-

what homomorphic encryption which only permits a limited type or a limited number of operations,

FHE allows the function to be directly evaluated using the encrypted data for an unlimited number

of operations.

However, FHE schemes are still computationally expensive, especially for the bootstrapping

step, which is the intermediate refreshing procedure of a processed ciphertext. Hence, one approach

to improve the efficiency is to bypass the bootstrapping but only allow a limited number of homomor-

phic operations (i.e., implement somewhat homomorphic encryption instead) [16,21]. Alternatively,

many works in past years aimed at reducing the complexity of homomorphic computation, including

the bootstrapping or recryption steps. Some recent breakthroughs have significantly reduced the

computation time of bootstrapping by utilizing GSW-based scheme [17, 22] and some novel homo-

morphic embedding [16, 23, 24]. However, their schemes still have large cipher expansions (i.e., the

ratio between the ciphertext and the plaintext), according to [22]. Meanwhile, our recent works

successfully reduce the cipher expansion to 6 with private-key encryption and 20 with public-key

encryption in [6], which are further optimized to 2.5 with private-key encryption and 6.5 with public-

key encryption for a 4-bit plaintext space in [7].

In this chapter, we present a scalable and ultra-highly parallel design with a variable number

of processing elements (PEs) for the most computational-intensive step in this efficient FHE scheme,

i.e., external product in the bootstrapping, whose fundamental operation is polynomial multiplica-

1This work is presented in [8, 9].
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tion over the ring. This chapter is extended from our prior work in [8]. The proposed PE can be

reconfigured as either a butterfly processor for computing the NTT/iNTT or a modular multiplier.

Additionally, the reconfigurable PE eliminates the need for other individual computational units,

which helps increase the parallelism of the computation for eventually reducing the latency.

The main contributions of this chapter are summarized as follows:

• We introduce an ultra-highly parallel and scalable design by extending our prior work [8] to

a variable number of reconfigurable PEs without the power-of-two constraint. The optimal

setup between the number of PEs and out-of-chip memory banks is also proposed.

• The corresponding novel conflict-free memory management and the scheduling schemes help

the proposed architecture to achieve a nearly full utilization ratio. Specifically, a special read-

and-write pattern for the memory addressing organizes the data-flow in an optimal order across

the PEs.

• As opposed to most prior works on hardware implementations of homomorphic encryption that

usually bypass the expensive bootstrapping step (i.e., somewhat homomorphic encryption) [25–

29], our proposed design for the bootstrapping algorithm in [6,7,22] could ensure homomorphic

operations can be performed in an arbitrary depth.

• The proposed reconfigurable architecture and scheduling schemes can be easily extended to

other FHE schemes that involve polynomial multiplications, facilitating more efficient archi-

tectures for future deployment of FHE.

The rest of this chapter is organized as follows: Section 3.2 reviews the mathematical back-

ground and the existing hardware implementations of homomorphic encryption. Section 3.3 intro-

duces the details of our proposed hardware architecture design and conflict-free memory management

scheme. The performance of our proposed architecture is presented and analyzed in Section 3.4. Fi-

nally, Section 3.5 presents the conclusion and discusses future work.

3.2 Background

Table 3.1 summarizes essential notations that are used in this chapter.

A high-level diagram of homomorphic encryption in the cloud computing scenario is il-

lustrated in Fig. 3.1. The users will first generate two keys: private key sk and public key pk.

Specifically, pk is used for encrypting, bootstrapping, or recryption the data, which can be accessed
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Table 3.1: Notation used in this chapter

Notation Explanation
N Degree of polynomial
Q Modulus of coefficient in the polynomial
S Current global stage of polynomial multiplication
k Current stage of NTT/iNTT
L Number of PE(s)
M Number of memory banks
R Number of words in each memory bank
P Number of steps in each type of operation
v Index of memory bank
Rb Index in binary of the word in memory bank

by anyone and stored in any untrusted platform. In contrast, sk should be securely kept by the

users. Operations on the cloud are only performed on the encrypted data. As a result, the cloud

server can only access the ciphertexts Ci, public key pk, and the homomorphic computation function

ĥ(·). Finally, the ciphertext-form results will be returned to the users, who can then decrypt with

the private key sk to obtain the result y. The result should be the same as the operation directly

performed in the plaintext domain using the function h(·).

Users

...

Cloud Server

User Data: 
m1, m2, … ,mt

Homomorphic Computation: 
z = Hom(pk,h(ꞏ),C1, C2, … ,Ct)

Function: 
f(ꞏ)

No Decryption

Encryption:
Ci = Esk(mi)

Decryption:
y = Dsk(z)

Key Generation: 
h(ꞏ)

Private Key: sk
(Kept by users)

Public Key: pk 
(Stored in cloud)

Figure 3.1: FHE-based computation on the cloud.

Currently, the models of existing homomorphic encryption schemes can be broadly classified

into integer-based [16, 21] and Boolean logic-based [6, 7, 22]. On the one hand, the plaintext of the

integer-based schemes is represented by an integer. Their computations in the ciphertext domain

are based on homomorphic addition, multiplication, and bit shifting. This model of schemes usually

requires a large prime in order to be capable of limited (leveled) multiplication. On the other

hand, the plaintext of Boolean logic-based is bit representation, whose basic components on the
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homomorphic computations are the encrypted ciphertext-forms of logic AND, OR, and XOR. Fig. 3.2

shows the relationship between the plaintext domain and the ciphertext domain of the Boolean logic-

based model.

y2y1 yq...

mi mj

m'

*

m2m1 mL...

^

^ ...

z2z1 zq...

C2C1 CL...

Ci Cj

C'1

BP

C'2 C'3

BP BP

   Ci = Esk(mi)

   yi = Dsk(zi)

Boolean Logic Homomorphic Boolean 
Logic

h ĥ

Input:

Output:

*: ⊕, ∧, ∨ 

C'1 = Esk(Ci ⊕ Cj),
C'2 = Esk(Ci ∧ Cj),
C'3 = Esk(Ci ∨ Cj).

Ci = Esk(mi),
Cj = Esk(mi).

BP: Bootstrapping 
Processor

Figure 3.2: Homomorphic computation of Boolean logic-based FHE schemes.

3.2.1 External Product of the Bootstrapping Algorithm

Our recently proposed FHE schemes significantly reduced the cipher expansion [6, 7]. The

bootstrapping algorithm involves λ iterations, where λ is the bit length of the private key. All

the time-consuming external product steps need to be performed between a trivial RLWE cipher

(REsk(t(x))) and all the GSW ciphers (from GSW(xu0sk0) to GSW(xuλ−1skλ−1)), which can be

defined as:

REsk(t(x))⊙GSW(xu0sk0)⊙ · · · ⊙GSW(xun−1skλ−1), (3.1)

where ⊙ represents the operand of the external product [7].

In general, the external product in each iteration ϵ ∈ [0, λ − 1] generates the new RLWE

cipher (f(x)[ϵ]) based on the previous RLWE cipher (f(x)[ϵ−1]) and the GSW cipher (GSW(xuϵskϵ)):

f(x)[ϵ] = f(x)[ϵ− 1]⊙GSW(xuϵskϵ), (3.2)

where uϵ and skϵ are the ϵ-th coefficients in the sum of two LWE ciphers u and ϵ-th bit of secret
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key sk, respectively.

The iterative data-flow for the external product is shown in Fig. 3.3. Specifically, the RLWE

cipher can be represented as two N -degree polynomials f(x)0 and f(x)1 (i.e., a 1 × 2 matrix) over

the ring RN,Q, which are then transformed into a 1 × 4 matrix by the random flattening step.

Consequently, a random flattening step is used to split each polynomial into a lower half (f(x)0L

or f(x)1L) and a higher half (f(x)0H or f(x)1H) [7]. Then, in order to perform an efficient point-

wise multiplication with GSW cipher, we transform these four polynomials into the NTT-domain as

F (x)0L, F (x)1L, F (x)0H , and F (x)1H .

f(x)0L f(x)1L f(x)1H

f(x)1

F(x)0L F(x)1LF(x)1H

GSW cipher

f(x)0H

f(x)0

F(x)0H

NTT

Flattening

Addition of the partial products

A1(x)A0(x)
iNTT

Point-wise modular multiplication of 
each entry

A0LP0 A1LP4 A1HP6A0HP2+ + +

A0LP1 A1LP5 A1HP7A0HP3+ + +

f(x)[ε-1]:

A[ε](x)

F(x)0LP(x)0+F(x)0HP(x)2+F(x)1LP(x)4+F(x)1HP(x)6

F(x)0LP(x)1+F(x)0HP(x)3+F(x)1LP(x)5+F(x)1HP(x)7

F(x)1F(x)0

F(x)[ε]:
iNTT

P(x)0

P(x)2

P(x)4

P(x)6

P(x)1

P(x)3

P(x)5

P(x)7

Figure 3.3: Data-flow for the external product f(x)⊙GSW(xuϵskϵ).

GSW cipher (a 4× 2 matrix) is used to maintain the same size for the ciphertext by using

the idea of the gadget matrix [17], which can be defined as:

GSW(xuϵskϵ) = G+ (xuϵ − 1)bkϵ,

G =



1 0

B 0

0 1

0 B


, bkϵ =



a1ϵ(x) b1ϵ(x)

a2ϵ(x) b2ϵ(x)

a3ϵ(x) b3ϵ(x)

a4ϵ(x) b4ϵ(x)


+ skϵG,

(3.3)
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where G and bkϵ represent the gadget matrix (B inside the matrix represents a selected prime

number) and bootstrapping key, respectively. Note that the entries of the GSW cipher are denoted

from P (x)0 to P (x)7 in Fig. 3.3. More details can be found in papers [6, 7].

The RLWE cipher and the GSW cipher perform an N -degree polynomial multiplication to

generate the new F (x)0 and F (x)1 for the next iteration. These operations take most part of the

entire computational time, which is the bottleneck of the external product step.

3.2.2 NTT-based Polynomial Multiplication over Ring

Most of the recent schemes are based on the RLWE problem that requires the computations

over the ring RN,Q = Z[x]/(xN+1, Q), where (xN+1, Q) is the ideal of Z[x] generated by xN+1 and

Q [19]. In this case, all the polynomials are reduced so that their degree is smaller than N , while the

integer-based coefficients of the polynomial are bounded by Q − 1. For the binary operations over

the ring RN,Q, the polynomial additions are fairly simple. However, the polynomial multiplications

have a quadratic complexity (i.e., O(N2)) by using the schoolbook polynomial multiplication. In

prior works, the polynomial multiplication modulo xN − 1 is usually accelerated using the NTT to

achieve a complexity of O(N logN), which is also referred as FFT over the finite field [30]. An

N -point NTT is formally expressed as:

Ai =

N−1∑
j=0

ajα
ij , 0 ≤ i ≤ N − 1, (3.4)

where α is the primitive N -th root modulo Q. For its inverse form (iNTT), the expression is given

by:

ai = N−1
N−1∑
j=0

Ajα
−ij , 0 ≤ i ≤ N − 1, (3.5)

where N−1 is the modular multiplicative inverse of N modulo Q, which can be pre-calculated by

the extended Euclidean algorithm [31]. Note that N is required to be a power-of-two in order to

perform the radix-2 NTT transform.

In previous designs, the zero-padding steps need to be used for the polynomial multiplier

with the modulus xN + 1, which will extend the length to 2N [32]. In order to address this issue of

doubling the length, one can use a weighted operation on coefficients to reduce the multiplication

of two polynomials modulo xN + 1 to the multiplication of two polynomials modulo xN − 1. More
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precisely, let Q be a prime such that 2N divides Q − 1, so there is an integer ϕ that has order 2N

modulo Q, hence α = ϕ2 has order N . Then all the roots of xN + 1 are

ϕ2i+1 = ϕαi, 0 ≤ i ≤ N − 1,

and all the roots of xN − 1 are

ϕ2i = αi, 0 ≤ i ≤ N − 1.

Then, for any polynomial a(x) =
∑N−1

j=0 ajx
j , we have

a(ϕ2i+1) =

N−1∑
j=0

ajϕ
jαij = ã(αi), 0 ≤ i ≤ N − 1, (3.6)

where ã(x) =
∑N−1

j=0 (ajϕ
j)xj . Hence the weighted operation from a(x) to ã(x) is to multiply the

coefficient of xj by ϕj and ϕ−j before the NTT and after the iNTT operation, respectively, where

0 ≤ j ≤ N − 1.

The negative wrapped convolution is illustrated in Algorithm 3, and its data-flow chart is

shown in Fig. 3.4. Two polynomials a(x) and b(x) will have the weighted operation by multiplying

the corresponding ϕj to generate two new polynomials ã(x) and b̃(x). Then, these two weighted

polynomials will perform the NTT transform based on Equation (3.4), followed by a point-wise

(element-wise) multiplication in the NTT-domain. Finally, g(x) (i.e., the product of a(x) and b(x))

in the NTT-domain will be converted using the iNTT transform in Equation (3.5) and another

weighted operation to obtain the final result.

Algorithm 3 Negative Wrapped Convolution [33]

Input: a(x) =
∑N−1

j=0 ajx
j , b(x) =

∑N−1
j=0 bjx

j

Output: g(x) = a(x) · b(x) mod (xN + 1)

1: ã(x) =
∑N−1

j=0 ajϕ
jxj //Weighted a(x)

2: b̃(x) =
∑N−1

j=0 bjϕ
jxj //Weighted b(x)

3: Ã(x) = NTT(ã(x))

4: B̃(x) = NTT(̃b(x))

5: Ã(x) ◦ B̃(x) =
∑N−1

i=0 ÃiB̃ix
i //Point-wise multipl.

6: g̃(x) = iNTT(Ã(x) ◦ B̃(x))

7: g(x) =
∑N−1

j=0 ã · b̃ϕ−jxj

8: return g(x)
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Figure 3.4: NTT-based multiplier with modulus xN + 1.

3.2.3 Prior Works of FHE Implementation

Several software open-source libraries have been implemented for various schemes: SEAL [34],

cuHE [35], HElib [36], and TFHE [22]. Specifically, SEAL, cuHE, and HElib implemented somewhat

homomorphic encryption schemes, which allow for fixed depths of multiplication but are not limited

to additions. TFHE involves the bootstrapping step after every operation, and hence it can perform

unlimited homomorphic operations. These software implementations are still fairly slow to be used

in real-world applications since the computational time for recryption in the somewhat homomorphic

encryption schemes or the bootstrapping steps in FHE is prohibitively long.

For practical deployment of FHE, customized hardware acceleration has emerged as a not

only promising but also essential direction. In fact, FPGA and ASIC designs have shown superior

performance compared to software implementations on CPU or GPU. This effort has yielded a factor

of almost 3,000 in the acceleration of FHE implementation from the first FHE implementation. In

past years, a number of VLSI architectures for several homomorphic encryption schemes have been

proposed [27–29, 32, 37, 38]. Most of these architectures are integer-based schemes utilizing large

integer multiplications and RLWE-based schemes with polynomial multiplications, as these achieve

superior computational efficiency compared to early lattice-based schemes that usually involve rel-

atively large public keys and ciphertext sizes. The effort of the hardware accelerations has mainly

focused on the large integer or polynomial multiplication, as it is the major performance bottleneck

in homomorphic encryption.

For architectures considering the entire schemes, the costly bootstrapping step is usually

not included, which thus only supports a limited number of homomorphic operations. FV [16],

BGV [21], YASHE [24], and CKKS [39] schemes are generally adopted in these hardware architec-

tures. For instance, some recent works presented the optimized architectures for the evaluation step
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of the FV scheme by increasing the parallelism [28] or using the Chinese remainder theorem (CRT)

representation for the polynomials [25].

Moreover, the first custom FHE architecture was developed in [40], which includes a recryp-

tion step that is homomorphically evaluating the decryption circuit using encrypted secret key bits

on the noisy ciphertext. Hardware acceleration for the SEAL library [34], which includes the FV

and CKKS schemes was done by applying 4 NTT cores and 2 iNTT cores in parallel to improve

the efficiency [29]. Similar designs with 4 NTT cores and special addressing schemes are proposed

in [34, 41]. Furthermore, an architecture for a recryption box is also proposed in [27] to ignore the

costly bootstrapping operation and accelerate the homomorphic evaluation.

In most of the existing polynomial multiplier architectures, PEs are designed separately

for computing different components: NTT, iNTT, point-wise multipliers, and so on [26, 38, 42]. In

general, the NTT requires two times the resources as the iNTT, since one polynomial multiplication

involves two NTTs on both inputs and only one iNTT after point-wise multiplication. Several prior

works consider sharing the same PE between NTT and iNTT [26,40,42–45], which could reduce the

hardware area usage. However, the parallel property of NTT architectures is not exploited in these

works.

Besides, the prior designs have demonstrated that increasing the parallelism of the NTT

cores (PEs) can accelerate the computation time compared with the single-core/PE design. However,

these designs usually have a fixed number of PEs, which are not scalable or applicable to an arbitrary

number of PEs.

3.3 Proposed Architecture

In this section, we propose an efficient architecture of polynomial multiplier for the external

product, which leverages the advantages that our specific data-flow brings. As shown in Fig. 3.3, the

external product is basically a matrix multiplication between a 1× 4 and a 4× 2 matrix. The NTT

domain GSW cipher can be easily computed in the customized software implementation for each

iteration since it does not require a standard NTT transform for the special polynomial (xuϵ−1) [7].

As a result, the NTT transforms for all the multiplicands (i.e., the 4 × 2 matrix) in hardware are

eliminated. In addition, the matrix multiplication results in 8 point-wise multiplications, which are

required to be summed up in a group of 4 by using the adder tree. Finally, iNTT is performed
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individually on each of the two sums. To summarize, there are 4 separate NTT operations, 8 point-

wise multiplications, 6 modular additions, and 2 separate iNTT operations in our external product

step.

3.3.1 Reconfigurable PE

To this end, we first propose a novel time-multiplexed polynomial multiplier architecture

with multiple PEs by exploring the parallelism of our scheme. Each PE can be reconfigured to

use for NTT, iNTT, and point-wise multiplication (marked in the dashed circle in Fig. 3.3). The

proposed reconfigurable PE is customized from the memory-based decimation-in-frequency (DIF)

butterfly unit, as shown in Fig. 3.5.
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   0

   1

      0

      1

Configurable PE

aj[k] or c[j]
 From RAMv

GSW Cipher, N-1 
& Twiddle Factor 
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   0

   1

   0

   1

   0

   1

Mode 
Selector

Commutator
 Back to 
 RAMv

cs  
0: Pass
1: Switch

aj[k+1]

 From 
 RAMv'

cm
0: 0
1: y[i]

 Back to 
RAMv'/RAMv

aj+2
n-1-k[k]

0

Figure 3.5: The proposed reconfigurable PE.

Each PE consists of one modular multiplier, three multiplexers (MUXs), one modular

adder, and one modular subtractor. Specifically, the mode selector (the MUX on the left-hand

side in Fig. 3.5) acts as a switch between a butterfly operation and a basic modular multiplication

controlled by the signal cm. When cm is 1, the PE will be configured as a butterfly unit, whose

mathematical expression is given as

aj [k + 1] = aj [k] + aj+2n−1−k [k],

aj+2n−1−k [k + 1] = aj [k]− aj+2n−1−k [k]αij .

(3.7)

Fig. 3.6 illustrates the corresponding data-flow in this mode. In each stage, k, two inputs (i.e., aj [k]

and aj+2n−1−k [k]) are read from the corresponding RAMs for each PE. The difference between the

two inputs will perform modular multiplication with the twiddle factors in the bottom path. The
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intermediate results will then be written back to the memory through the commutator for the next

stage (k + 1).

aj+2
n-1-k[k+1] 

      0

      1

0
   0

   1

   0

   1

   0

   1

aj[k] 

aj+2
n-1-k[k] Twiddle Factor:

 αij or α-ij 

aj[k+1]

Figure 3.6: Reconfigurable PE in butterfly mode.

When cm is 0, the modular multiplication mode will be activated, as shown in Fig. 3.7.

Consequently, the upper input c[j] will multiply with an integer, which is expressed as

C[j] = c[j]σ, (3.8)

where σ can be ϕj , ϕ−j , N−1, or the GSW cipher, while the lower input is always 0. In this case,

only one input and one output will be used.

0
   0

   1

   0

   1

   0

   1

aj+2
n-1-k[k]

 Φj, Φ-j 

or GSW Cipher 

aj[k+1]
c[j]

C[j]

Figure 3.7: Reconfigurable PE in multiplication mode.

3.3.2 Ultra-Highly Parallel Architecture with Variable Number of PEs

Our proposed top-level architecture of the polynomial multiplier is shown in Fig. 3.8, which

mainly consists of three components: memories, control units, and arithmetic units. We use the

read-only memory (ROM) to store pre-computed values (i.e., twiddle factors ϕj , αij for NTT, ϕ−j ,

α−ij for iNTT, N−1 and the NTT-domain form of the GSW ciphers), and random-access memory

(RAM) for the intermediate results of each iteration. Since each PE still requires a significant amount
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of computational resources in the existing FHE schemes, it is impractical to implement fully-parallel

architectures on most of the current hardware platforms [25,38,46]. In addition, it is also of interest

to deploy on embedded or edge devices with fewer resources.

RAM0 RAM1 RAMM

M×L MUX L×M DeMUX

Master Control & 
Addressing Unit

ROM (GSW cipher, 
twiddle factor & N-1)

...

...

...

...

...

...

...

...
Adder Tree

Reconfigurable

PE1

Reconfigurable

PE2

Reconfigurable

PEL

Figure 3.8: NTT-based polynomial multiplier with L PEs.

In general, we wish to implement as many PEs as possible on the targeted hardware platform

under the resource constraint so that the highest degree of acceleration is achieved. In fact, the

proposed reconfigurable PE eliminates the need for other individual computational units, which

also increases the number of PEs that a hardware platform can accommodate. To this end, a

proper method for scheduling PE operations is critical. Better scheduling could improve hardware

utilization as well as reduce the overall latency of the architecture.

In this chapter, instead of restricting the number of PEs to be a power-of-two form as in

our prior work [8] and other existing designs, we consider the general case of L PEs in parallel in

the arithmetic unit, where L ∈ Z+.

In our prior scheme, each PE has two I/Os, and hence there are 2L memory banks in total.

However, when L is not a power-of-two, directly using 2L memory banks will lead some PEs to be

not fully used, which consequently reduces the overall utilization ratio.

Instead, we choose to use M memory banks in the generalized scheme, where M is defined
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as

M = 2⌈log2(L)⌉+1 = 2m. (3.9)

Among these memory banks, 2⌊log2 L⌋ PEs will have direct access to half of the memory banks while

the other half can be selected by the rest (L− 2⌊log2 L⌋) PEs.

There are R = 2r words in each memory bank, where r is given by:

r = log2N − log2M − 1, r ∈ Z+. (3.10)

Each word in the memory bank has a size of W , which is determined by the selected

modulus Q, i.e., W = ⌈log2Q⌉. Additionally, we denote the index of each word by an (r-1)-bit

binary representation:

Rb = er−1er−2 · · · e0. (3.11)

Note that our design requires dual-port memories that allow us to read the inputs and write

the outputs of the PEs simultaneously.

3.3.3 Conflict-Free Memory Addressing and Scheduling Scheme

Memory addressing schemes for NTT-based FHE or lattice-based cryptosystems with one

or two PEs have been extensively studied in the literature [29, 38, 43, 46]. However, these works

generate irregular memory patterns after the computation, which cannot be used in our scheme that

involves multiple iterations. To this end, we develop a conflict-free memory management scheme to

integrate all the stages of each polynomial multiplication based on the schedule of L reconfigurable

PEs, as presented in Table 3.2. We use P = Pend − Pbegin + 1 to denote the number of steps in

each type of operation, where every step involves R clock cycles for the words in the memory banks.

Thus, the global stage S represents the parallel computations of all L PEs by simply using L to

divide the steps P .

When L is a power-of-two [8], the number of steps in each type of operation P is always

divisible by L, which implies that all PEs are always in the same type of operation. Besides, when

computing NTT/iNTT, since the base of L is the same as the radix of NTT/iNTT, all the PEs are

always operating in the same NTT/iNTT stage as well. However, when L is an arbitrary integer,
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Table 3.2: Schedule of L reconfigurable PEs in each polynomial multiplication

Pbegin Pend Type of Operations Lower Input Multiplier Input
1 M weighted (ϕj) 0 twiddle factor

M + 1 M +M/2(log2N) butterfly y[j] twiddle factor
M +M/2(log2N) + 1 2M +M/2(log2N) point-wise MUL 0 GSW cipher
2M +M/2(log2N) + 1 2M +M(log2N) butterfly y[j] twiddle factor
2M +M(log2N) + 1 3M +M(log2N) weighted (ϕ−j) 0 twiddle factor
3M +M(log2N) + 1 4M +M(log2N) × N−1 0 N−1

PEs have to be loaded with different operations for certain clock cycles in order to maintain a high

utilization ratio.

It can be seen from Table 3.2 that P is not always divisible by L if L ̸= 2l, so the global

stage S in this type of operation cannot be denoted as an integer. Instead, we express the operations

of PEs in global stage S by using a mixed fraction:

P

L
= Sfu +

Lused

L
, (3.12)

where Sfu is the number of global stages fully using all L PEs and Lused = [0, L− 1] is the number

of PE(s) additionally used in the current type of operation with P steps. We also define the first

global stage as S = 1.

We illustrate the proposed concept by an example with M = 8 and L = 3. The number

of steps in the weighted operation is P = Pend − Pbegin + 1 = 8 − 1 + 1 = 8 which can be further

represented as Sfu = 2 and Lused = 2, according to Equation (3.12). In other words, the weighted

operation fully uses all the 3 PEs in the first and second stages (S = 1, 2), and an additional 2

PEs in the third stage. Thus, the next type of operation, i.e., NTT transform, will start with the

remaining single PE (L− Lused = 3− 2 = 1). In other words, the last computation of the weighted

operation and the beginning of the NTT operation are in the same global stage S = 3.

In the beginning, we set the coefficients aj in each RAMv to be initially located as:

j = R⌊v
2
⌋+ 2θ +mod(v, 2), (3.13)

where θ ∈ [0, R − 1], and v ∈ [0,M − 1] that is the index of the RAM. An example of the initial

ordering of N = 32 is shown in the blue dashed box of Fig. 3.9.
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3.3.3.1 RAM Selection
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Figure 3.9: An addressing example for the NTT and iNTT with N = 32 and L = 4.

The RAM selection controlled by the addressing unit is important for the NTT/iNTT

operations to avoid memory access conflict. According to Table 3.2, when the PEs are in the

NTT/iNTT operations (i.e., configure in the butterfly mode, cm = 0), two banks will be selected

to process the data. Therefore, the memory banks chosen by the butterfly mode PEs are always in

pairs. For each RAMv, the other entry in the pair RAMv′ is generally determined by v′ = v+2m−ξ,

where ξ ∈ [1,m]. We use β to denote a sequence of such pairs (i.e., RAMv and RAMv′) for the

NTT/iNTT. The overall addressing scheme is presented in Algorithm 4, while the corresponding

tree-based diagram is illustrated in Fig. 3.10. A total of 2m−1 pairs of the RAMs will be selected

(0,2m-2) (1,1+2m-2)…(2m-3,2m-3+2m-2)

k = 2

(2m-1+2m-2-1,2m-1)

…

(0,2m-1) (1,1+2m-1) (2m-1-1,2m-1)

(0,1) (21,21+1)
…
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β=0 β=1 β=2m-1-1β=2

…
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Figure 3.10: Tree-based diagram of the scheduling scheme for NTT/iNTT.
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in each stage. We denote the first stage of each NTT/iNTT operation as k = 1. As shown in

Algorithm 4, when k ∈ [1,m − 1], each pair of RAMs will fetch the coefficients from RAMv(k, β)

and RAMv′(k, β). After the NTT operation is finished, the data in the RAMs will then be used

for point-wise multiplication (i.e., the PEs will be in modular multiplier mode). When the PEs are

configured as modular multipliers (i.e., cm = 1), each PE can directly read from and write to the

same RAM.

Algorithm 4 Conflict-Free Addressing/Scheduling Scheme - RAM Selection (NTT/iNTT)

Input: m
Result: RAMv(k, β), RAMv′(k, β),

k ∈ [1, n], β ∈ [0, 2m−1 − 1]

1: for k = 1 to m− 1 do
2: for η = 0 to 2k−1 − 1 do
3: for γ = 0 to 2m−k−1 − 1 do
4: for ψ = 0 to 1 do
5: β = mod((η + γ + ψ2m−k−1), 2m−1)
6: v = γ + η2m−k+1 + ψ2m−k−1

7: v′ = γ + η2m−k+1 + ψ2m−k−1 + 2m−k

8: end for
9: end for

10: end for
11: end for
12: for k = m to n− 1 do
13: for η = 0 to 2m−2 − 1 do
14: for γ = 0 to 1 do
15: β = mod(η, 2m−1)
16: v = γ + 4η
17: v′ = γ + 4η + 2
18: end for
19: end for
20: end for
21: if k = n then
22: for η = 0 to 2m−1 − 1 do
23: β = mod(η, 2m−1)
24: v = 2η
25: v′ = 2η + 1
26: end for
27: end if

Thus, in order to achieve a high utilization ratio, we also ensure the data is stored in

the memory banks properly and continuously. Therefore, we merge the scheduling scheme of the

NTT/iNTT into memory management in Algorithm 4. As shown in Fig. 3.10, the indices of the

second pair RAMs in the first stage are selected as RAMv=2m−2 along with its corresponding pair
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RAMv′=2m−2+2m−1 , since the data in RAM0 need to operate with the data in RAM2m−2 at the

beginning of the next stage. Thus, this scheduling will lead to no conflict even if two NTT/iNTT

stages are overlapped in a single global stage.

3.3.3.2 Read and Write Pattern of NTT/iNTT

In order to realize the proposed scheduling, the commutator in each PE, as shown in Fig. 3.5,

is used to control the memory banks of the upper and lower outputs to assist addressing for the

NTT/iNTT operation by using a parameter cs. For example, in the NTT that adopts a DIF FFT

data-flow, the interval between the two inputs of the butterfly operation starts from N
2 for the first

stage and then decreases by a factor of two for each subsequent stage.

The commutator switches the outputs to avoid memory conflict at the first NTT operation

only when k ≥ m− 1. The write pattern of the RAM banks is controlled by a counter w, which is

expressed as:

w = n− k − 1. (3.14)

When the w-th bit of Rb (i.e., bw) is 1, the two outputs of the PEs will be switched (i.e.,

cs = 1); otherwise, the two outputs are written back to the same RAMs directly. Based on our

special initial ordering as shown in Equation (3.13), the iNTT operations do not require switching

since it only depends on the read pattern to access the words in the memory.

For all NTT/iNTT operations at stage k ∈ [m,n − 1], the read pattern of the addressing

unit is dependent on the written pattern of the commutator. The words located in RAMv can be fed

into the corresponding PE directly, while the words in RAMv′ will be accessed based on the binary

representation of its read pattern:

R
′

b = er−1 . . . er−z . . . e0, (3.15)

where z ∈ [1, r].

An example for N = 32 with four PEs (L = 4) is shown in Fig. 3.9. In this case, m =

log2 8 = 3 and n = log2 32 = 5. For the RAM selection, the banks with the same color indicate that

the words in these two RAMs will be fed into the same PE. Then, when the second stage of the

NTT operation begins, data whose indices with the most significant bit (MSB) of 1 (i.e., ew = 1)

will be switched by the commutator.
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In the next stage, the data with indices, whose second significant bit equals to 1 and 0, will be

switched and passed, respectively. However, the rest of the NTT/iNTT and modular multiplication

operations in each iteration will bypass the switches.

According to the read pattern of NTT/iNTT, the first input of all the PEs (aj [k + 1]

in Fig. 3.5) will read from RAMv, while the other input (aj+2n−1−k [k + 1] in Fig. 3.5) will read the

words with the indices of R
′

b = e1e0 or R
′

b = e1e0 from RAMv′ for the stages 3 or 4 of the NTT.

3.3.3.3 Scheduling of the Global Stages

When L ̸= 2l, since the PEs might perform different types of operations in the same global

stage, we need to guarantee that all the operations in this global stage are uncorrelated, even though

they correspond to different types of operations. The scheduling scheme for NTT/iNTT is illustrated

in Algorithm 4. Meanwhile, we also propose a scheduling scheme for the modular multiplication

operation to assist with the NTT/iNTT operation, which is summarized in Algorithm 5. The output

of the algorithm is the order set D, which is used by L PEs in the modular multiplication mode.

Algorithm 5 Scheduling Scheme of Modular Multiplier for L ̸= 2l

Input: m
Result: Order set D,

1: Initialization: Empty vector D
2: for ψ = 0 to 1 do
3: D� v = ψ //�: push back at the end of vector
4: D� v = 2m−1 + ψ
5: for ρ = 2 : m− 1 do
6: D� v = 2m−ρ + ψ
7: D� v = 2m−ρ + ψ + 2m−1

8: end for
9: end for

An example of the scheduling for N = 32 and L = 3 is shown in Fig. 3.11. The weighted

operations (i.e., PEs will be in the modular multiplication mode) will be computed at the beginning

of the polynomial multiplication. Based on the order set D generated from Algorithm 5, the data in

RAMv={0,4,2} will be firstly fed into 3 PEs and data in RAMv={6,1,5} will follow in the next global

stage. Then, there are two types of operations when S = 3, which involve weighted operation for the

data in RAMv={3,7} and one NTT operation for the data in pair RAMs (RAM0 and RAM4). Then,

the next global stage (S = 4) only includes the NTT operation to compute the data in RAMv={2,1,3}

along with the data in another RAMv′={6,5,7} in the 3 PEs. The rest of the global stages remain in
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the same pattern. The entire polynomial multiplication will be completed at global stage 25.
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Figure 3.11: Scheduling example for the polynomial multiplication with N = 32 and L = 3.

Note that the proposed scheduling and memory management methods can also be extended

to other FHE schemes that involve polynomial multiplications.

3.4 Experimental Results

3.4.1 Evaluation of NTT-based Polynomial Multiplication

One objective of our design is to achieve a high utilization ratio for all the PEs. In our

prior work for a power-of-two number of PEs [8], the utilization ratio is always 100% based on the

properties of radix-2 NTT transform. However, in this proposed design with a variable number of

PEs, the last global stage, in some cases, will not fully use all L PEs. Overall, the utilization ratio

is calculated as:

U =
⌊M(4 + n)/L⌋(L+mod(M(4 + n), L))

StotalL
, (3.16)

where Stotal = ⌈M(4 + n)/L⌉ is the total number of global stages.

We plot the utilization ratio of our design for the number of PEs from 1 to 16 and the

polynomial degree from 32 to 4096, as shown in Fig. 3.12. It can be observed that our design
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achieves a very high utilization ratio, as all samples are located in the interval between 96% to

100%, with an average of 99.18%.
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Figure 3.12: Utilization ratio of proposed design (L = [1, 16]) with N = 2n, n ∈ [5, 12].

In addition, we also expect our proposed design can significantly improve efficiency by ex-

ploring the reconfigurability of the PE and maximizing the number of PEs for the targeted hardware

platform. For a fair comparison, we define a general form of polynomial multiplication by using the

negative wrapped convolution as shown in Fig. 3.4, which consists of two NTT, one iNTT, and three

modular multiplication operations. The latency expression of our proposed architecture with degree

N polynomial multiplication is given by:

Tpoly = (3N/2(log2N) + 3N)/L. (3.17)

Meanwhile, by following a similar expression, the latency in the works of Chen [38] and Pöppelmann [47]

are 3N/4(log2N) +N/4 and 3N/2(log2N) + 11N/2, respectively. The comparison for a wide range

of polynomial degrees with four PEs is illustrated in Fig. 3.13. Clearly, our proposed design has

the lowest latency under any polynomial degree. Averagely, the latency in our proposed design is

reduced by 39.84% and 78.55%.

To evaluate the hardware cost, we implement our proposed design with different PEs using
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Figure 3.13: Comparison of latency with prior works: Chen [38], Pöppelmann [47]

Verilog HDL, which are then mapped into a 32nm technology node based on Synopsys SAED library.

We select a 32-bit prime Q and polynomial degrees as N = 1024, 4096. Table 3.3 summarizes the

experimental results of area, latency, and area-time product (ATP) from single PE to 16 PEs. We

also plot the relationship between area and latency in Fig. 3.14. As expected, area consumption

increases, and the latency drops with the increase in the number of PEs. Since our proposed scheme

has the flexibility to increase the number of PEs without a power-of-two constraint, our proposed

scheme has the potential to further decrease the latency compared to prior works.

3.4.2 Comparison of External Product Implementations

To further evaluate and analyze the performance of our proposed design, we compare our

synthesized results with some prior works in [38, 47] by implementing our recently proposed FHE

scheme [7]. Since the cost of the control flow or addressing units in these prior works is not presented,

we only compare the performance of the arithmetic units. In fact, according to our experimental

results, the overhead of the control logic yielded from our proposed addressing scheme is rather

negligible, compared to the cost of the PEs. We set the modulo Q as a 71-bit prime, which is

consistent with the schemes in [7]. Although the number of PEs in our design can vary for different
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Table 3.3: Performance of proposed design (L = [1, 16]) with N = 1024, 4096

Area Latency ATP[×108]
L Gates [µm2] 1024 4096 1024 4096
1 10353 15530 18432 86016 1.91 7.63
2 20712 31068 9216 43008 1.91 7.64
3 30617 45925 6144 28672 1.88 7.46
4 40458 60687 4608 21504 1.86 7.57
5 51311 76966 3687 17204 1.89 7.42
6 60353 90529 3072 14336 1.85 7.42
7 69474 104211 2634 12288 1.83 7.32
8 78367 117550 2304 10752 1.80 7.22
9 86628 129942 2048 9558 1.77 7.09
10 101350 152025 1844 8602 1.87 7.47
11 111938 167908 1676 7820 1.88 7.50
12 121110 181665 1536 7168 1.86 7.44
13 125954 188931 1418 6617 1.79 7.14
14 135074 202612 1317 6144 1.78 7.11
15 144681 217022 1229 5735 1.78 7.11
16 153386 230083 1152 5376 1.77 7.07

1 PE

2 PEs

3 PEs

4 PEs

5 PEs

6 PEs

7 PEs
8 PEs

9 PEs
10 PEs

11 PEs
12 PEs 13 PEs

14 PEs
15 PEs

16 PEs

Area Constrained

Low Latency

Figure 3.14: Performance of L = [1, 16]: Area vs. Latency
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hardware platforms, we present the performance of the proposed design with the same number of

modular multipliers as the previous works for a fair comparison. The results are summarized in

Table 3.4.

The latency of our design implemented in the external product in [7] is

T = (3N log2N + 8N)/L. (3.18)

In particular, for the architecture with one PE, the NTT and weighted operations take

4(N2 (log2N − 1)+N) cycles. In addition, 8 polynomial multiplications consume 8N cycles in total.

Then, the two iNTT operations, along with the weighted step and multiplying by N−1, require

2(N2 (log2N − 1) + 2N) cycles.

Note that since the α−ij at the last stage of NTT and the first stage of iNTT are 1, the

modular multiplication can be bypassed for these butterfly operations. For the architecture with L

PEs, the latency is reduced by a factor of L, given that all the PEs are fully utilized.

It can be seen from Table 3.4 that our proposed design reduces the ATP by 43.44% and

39.08% on average, compared to [47] and [38], respectively. Furthermore, as the proposed method

could achieve full utilization in this case for all the PEs, and the latency is also significantly reduced,

i.e., by 42.03% compared to that of the 4-PE architecture in [38].

Table 3.4: Performance of the proposed method and comparison

Proposed
(L = 1)

Pöppelmann [47]
Proposed
(L = 4)

Chen [38]

# Mod. Multipliers 1 1 4 4
# Area [µm2] 57071 87422 205181 195449
# NAND Gates 38047 58281 136787 130299
Power [×104µW] 2.30 3.03 8.64 8.64

N Cycles
ATP
(×109) Cycles

ATP
(×109) Cycles

ATP
(×109) Cycles

ATP
(×109)

512 20992 0.79 24064 1.40 5120 0.70 8704 1.13
1024 45056 1.71 51200 2.98 11008 1.50 18944 2.47
4096 204800 7.79 229376 13.33 51200 6.86 88064 11.4
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3.5 Conclusion

This chapter presented a novel ultra-highly parallel polynomial multiplier for accelerating

homomorphic computations. The architecture employs a novel reconfigurable PE, which can be used

as a butterfly operation for the NTT/iNTT or modular multiplication.

Our design, to the best of our knowledge, for the first time, considers a variable number of

PEs to accelerate the polynomial multiplication of external products in the bootstrapping algorithm.

In addition, efficient conflict-free memory management and scheduling schemes are also proposed to

ensure the architecture has a nearly full utilization ratio. Comprehensive experimental results are

presented to verify the effectiveness of the proposed design.

Future work will be directed towards further increasing the parallelism of our architecture

by applying the CRT to split the large prime into several small primes.
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Chapter 4

Pipelined High-throughput NTT

Architecture for Lattice-Based

Cryptography

Lattice-based cryptography is a powerful cryptographic primitive that can achieve post-

quantum security. The most computationally-intensive operations in the lattice-based cryptographic

schemes are the polynomial multiplications over the ring, which can be accelerated by adopting the

number theoretic transform (NTT) in practical applications. This chapter proposes a novel hardware

accelerator for the NTT algorithm for lattice-based cryptography applications, which can achieve full

utilization for all the hardware components. The key ideas involve exploiting well-designed folding

sets and applying the folding transformations to adapt the fast Fourier transform (FFT) multi-path

delay commutator architectures and a lightweight modular multiplier. 1

4.1 Introduction

Lattice-based cryptography has emerged as a promising technique for both post-quantum

cryptography (PQC) [4] and homomorphic encryption (HE) [5]. PQC schemes, including quantum-

resistant public-key encryption, key encapsulation mechanism (KEM) algorithms, and digital signa-

1This work is presented in [10].
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ture algorithms, are believed to be secure even under attacks from quantum computers. Besides,

HE is a cryptographic method that allows processing the data (e.g., multiplication and addition)

directly on the ciphertexts without endangering data privacy.

However, the computations over the polynomial ring in lattice-based cryptography, including

polynomial multiplication and polynomial addition, are quite expensive. Specifically, the polynomial

multiplication over the ring is the main bottleneck since the degree and coefficients’ moduli for the

polynomial are typically large in order to ensure high-level security of the cryptosystems and have

sufficient space to carry the information in the ciphertext. Therefore, hardware accelerations for

the polynomial multiplication over the ring are essential in facilitating the practical deployment of

real-world applications. Most prior works of hardware accelerations for lattice-based cryptography

applied the number theoretic transform (NTT) algorithm to the polynomial multiplication, which

can reduce the quadratic complexity to the log-linear complexity [33].

These prior works only utilize a limited number of processing elements (PEs) (only one or

two PEs) due to the resource-constrained hardware platforms [48–50], resulting in a long processing

time. Fortunately, recent efficient PE designs [9,51], along with the technology scaling and significant

advances in computing power, enable parallelizing more PEs in FPGA boards or ASIC platforms. In

this chapter, we propose a high-throughput and efficient accelerator for the NTT-based polynomial

multiplication with log2 n PEs operating in parallel by adopting the techniques from fast Fourier

transform (FFT) multi-path delay commutator (MDC) architectures, where n is the degree of the

polynomial. The contributions are summarized below:

• A pipelined NTT architecture is developed to accelerate polynomial multiplication for lattice-

based cryptography, which achieves full hardware utilization and a higher level of parallelism.

• The proposed architecture utilizes a lightweight Barrett reduction algorithm-based modular

multiplier, which allows more PEs to process in parallel while only incurring a small resource

overhead than prior works.

• Our experimental results show that the proposed design can significantly improve the through-

put and area-time product (ATP), compared to prior works.

The rest of this chapter is organized as follows: Section 4.2 reviews the mathematical back-

ground for the NTT-based polynomial multiplication and the corresponding hardware architectures

in prior works. Section 4.3 presents the details of our hardware architecture design. The performance
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of our proposed architecture is provided and analyzed in Section 4.4. Finally, Section 4.5 presents

remarks and concludes the chapter.

4.2 Background

4.2.1 Basic Notations

The element (polynomial) of the ring Rn,q = Zq[x]/(x
n+1) is denoted as a(x), where n is a

power-of-two number and q is a prime. The i-th coefficient inside the polynomial a(x) is represented

as ai, i.e., a(x) =
∑n−1

i=0 aix
i. We also denote the total stages of the NTT transform as m where

m = log2 n, and k is the current stage of the NTT transform in the rest of this chapter.

4.2.2 NTT-based Polynomial Multiplication

In general, the polynomial multiplication between two polynomials

a(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1, (4.1)

and

b(x) = b0 + b1x+ b2x
2 + ...+ bn−1x

n−1 (4.2)

over ring Rn,q can be represented as

p(x) = a(x) · b(x) mod (xn + 1, q). (4.3)

This operation requires the coefficients of the produced polynomial p(x) to be less than q but

greater or equal to zero, and the degree of p(x) to be less than n. For the lattice-based cryptography

applications, the polynomial degree n can be in the range of hundreds of thousands for the PQC and

HE schemes, which becomes the bottleneck for the implementations in both software and hardware.

Using the conventional schoolbook yields a complexity of O(n2). In this case, acceleration by

adapting NTT can reduce the time complexity to O(n log n).

NTT-based polynomial multiplication first converts the polynomials a(x) and b(x) to their

NTT-domain A(x) and B(x), respectively. Next, the point-wise multiplication is executed to gen-

erate the NTT-domain produced polynomial P (x). Then, an inverse NTT (iNTT) transform is
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followed to transform P (x) back to the original algebraic domain polynomial p(x). Thus, an n-point

NTT transform is mathematically expressed as:

Ai =

n−1∑
j=0

ajα
ij mod q, i ∈ [0, n− 1], (4.4)

where α is the primitive n-th root of unity modulo q (i.e., twiddle factor), which satisfies αn ≡ 1

mod q. For its inverse form (iNTT), the expression is given by:

ai = n−1
n−1∑
j=0

Ajα
−ij mod q, i ∈ [0, n− 1], (4.5)

where n−1 is the modular multiplicative inverse of n with respect to modulo q, calculated by the

extended Euclidean algorithm. The conventional NTT-based polynomial multiplication for a ring

xn + 1 employs zero padding to pad additional n zeros and performs 2n-point NTT transform for

each polynomial. A more efficient method, namely negative wrapped convolution, is able to apply

an n-point NTT transform to reduce the redundant computations for the NTT transform as in

conventional methods [33]. The negative wrapped convolution is illustrated in Algorithm 6. The

input polynomials a(x) and b(x) need to be multiplied by the weights ϕ to generate ã(x) and b̃(x)

before performing the NTT transform, where ϕ is the primitive 2n-th root of unity modulo q. A

similar weighted operation needs to be applied after the iNTT transform (as described in Step 4 of

Algorithm 6). Note that an NTT-compatible prime is also required, i.e., q must satisfy that (q − 1)

is divisible by 2n.

Algorithm 6 Negative Wrapped Convolution [33]

Input: a(x), b(x) ∈ Rn,q

Output: p(x) = a(x) · b(x) mod (xn + 1, q)

1: ã(x) =
∑n−1

j=0 ajϕ
jxj , b̃(x) =

∑n−1
j=0 bjϕ

jxj

2: Ã(x) = NTT(ã(x)), B̃(x) = NTT(̃b(x))

3: P̃ (x) = Ã(x) ◦ B̃(x) =
∑n−1

i=0 ÃiB̃ix
i

4: p̃(x) = iNTT(P̃ (x))

5: p(x) =
∑n−1

j=0 p̃jϕ
−jxj
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4.2.3 Prior Works of NTT-based Polynomial Multiplier

In the literature, NTT-based polynomial multiplication for lattice-based cryptography can

be broadly classified into two categories: the memory-based architecture [9, 49–51] and pipelined

architecture [52–54].

The memory-based architecture typically consists of a small number of the PEs along with

the external memory to communicate with the PEs for each addition/subtraction and multiplication

(i.e., the butterfly operation for NTT). Such architectures allow the designers to reconfigure the

number of PEs under the area budget for different performance requirements. However, since all

the intermediate results need to be read from and written to memory, the incurred communication

overhead is very large. Besides, based on the construction of the NTT algorithm, complicated

addressing and control schemes are often required to feed data to the correct PEs.

The pipelined architectures have also been studied recently for both PQC and HE schemes [53,

54]. All of these works adopt the original radix-2 multi-path delay commutator (R2MDC) FFT archi-

tecture. The R2MDC architectures maintain a low area consumption compared to the fully parallel

architecture while still achieving a low latency compared to the prior memory-based designs with

only a few PEs. However, to the best of our knowledge, these prior R2MDC-based architectures

only achieve 50% hardware utilization. In this chapter, we propose a novel design with full hardware

utilization.

4.3 Hardware Architecture for Proposed Design

4.3.1 Processing Element for Butterfly Operation

The core step for the NTT-based polynomial multiplication is the butterfly operation. The

architecture for the butterfly operation is shown in Fig. 4.1, and the data-flow graph is the same

as the radix-2 decimation-in-frequency (DIF) FFT algorithm [55]. This PE mainly consists of one

modular adder, one modular subtractor, and one modular multiplier.

The modular adder and modular subtractor are simply constructed by two adders/sub-

tractors. However, the modular multiplier is much more costly than the general multiplier. The

requirement that the modulus of the modular multiplier has to be an NTT-compatible prime makes

the modular reduction method more expensive than the case with a power-of-two modulus.
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Figure 4.1: PE of the DIF-based butterfly operation.

Modular multiplication for PQC in the literature typically employs a Barrett reduction-

based algorithm [56]. Barrett reduction algorithm uses integer multiplications instead of expensive

division to compute the modular reduction by mapping the product of two integers back to Zq.

Since the bit-lengths of the moduli used in PQC KEM schemes are usually less than twenty bits,

the integer multiplication in the Barrett reduction algorithm can be completed in a short period of

time using only one DSP unit or a small amount of look-up tables (LUTs) in an FPGA. The Barrett

reduction for the product z of integer u times v (u, v ∈ [0, q − 1]) can be expressed as

p ≈ z −
(
(z · qinv)≫ len(z)

)
· q, (4.6)

where p is the modular product in the range of [0, q − 1], len(z) is equal to or slightly less than the

bit-length of z, qinv = ⌊2len(z)/q⌋, while “≫” represents the right shift operation [56].

To reduce the implementation cost, the modulus is constructed such that it can be expressed

using few positive or negative power-of-two terms as is the case in most of the PQC standards. For

example, a commonly used modulus format is q = 2r1 + 2r2 + 1, where r1 > r2. The multiplication

between this q and the intermediate result zk (zk = (z · qinv)≫ len(z)) is calculated as

zq = zk · q = zk ≪ r1 + zk ≪ r2 + zk

=
(
(zk + (zk ≪ d1)) + (zk ≫ r2)

)∣∣∣∣∣∣(zk[r2− 1 : 0]
)
, (4.7)

where d1 = r1− r2, and “≪”, “||” represent the left shift and concatenation of two binary numbers,

respectively. zk[r2− 1 : 0] denotes the bits from the (r2− 1)-th bit to the least-significant bit (LSB)

of zk.

Based on Equations (4.6) and (4.7), the architecture for this modular multiplier using the

Barrett reduction algorithm is shown in Fig. 4.2. Specifically, the components boxed in green
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implement the operations of Equation (4.7), which only has two adders with short bit-lengths (around

the same bit-length of q). Then, zq is subtracted by the product z, which generates an intermediate

result p′ of desired modular product p. Finally, a multiplexer (MUX) selects the correct result for p

by comparing p′ with q. If it is higher than q, p′ needs to be subtracted by q. Otherwise, p = p′.

Apart from the algorithm-based optimization, three pipelining stages are added to this modular

multiplier to reduce the critical path for achieving a higher frequency.

As opposed to PQC, the modular multiplications for the HE schemes are usually accelerated

by applying the Karatsuba multiplication along with simplifications of the modular reduction based

on special NTT-compatible primes. For example, the work in [11] introduced an efficient modular

multiplier design for certain prime patterns, which only requires several additions/subtractions to

combine the short bit-length partial products into the modular product. During each butterfly

operation, the indices of two inputs (aj [k] and aj+2m−1−k [k]) vary in different stages k, which is

another main challenge for the NTT transform hardware design.
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Figure 4.2: Barrett reduction-based modular multiplier architecture.

4.3.2 Top-level Architecture Using Optimized Folding Transformation

For each NTT transform, there are mn
2 butterfly operations in total. Using a fully parallel

design is not feasible since the hardware cost of each PE is expensive, and the polynomial degree is

large. Compared to memory-based architectures as in prior works, the pipelined architectures can

significantly reduce the communication time between the PEs and the memory in each butterfly
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operation. However, as we discussed in Section 4.2.3, the existing pipelined designs suffer from low

hardware utilization, which results in low throughput.

A pipelined architecture applies folding transformation to map several operations from the

fully parallel design to a single PE in a time-multiplexed manner [57, 58]. A common method for

the pipelined FFT/NTT architectures is to reduce the number of PEs from mn
2 to m. In a folded

architecture, the intermediate results are stored in the registers of the data-path, which are allocated

to an appropriate PE for computation by the control unit. The data-flow graph for the 16-point

forward NTT transform is shown in Fig. 4.3, which includes steps 1 and 2 for the polynomial

a(x) in Algorithm 6. Each colored circle represents one butterfly operation. The index differences of

butterfly operation are halved from the first stage to the last stage. Since all the butterfly operations

in the same stage have the same index difference for the two inputs, they can be executed using

the same PE after folding. As in this 16-point example, butterfly operations in the same color are

operated in a single PE, where the input index differences of these four PEs are reduced from 8 in

stage 0 to 1 in stage 3.

a0

a8

a1

a9

a2

a10

a4

a12

Stage 1 Stage 2 Stage 3Weighted Stage 0

a6

a14

a5

a13

a3

a11

a7

a15

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7 0

1

2

3

4

5

7

6

0

1

2

3

4

5

6

7

Figure 4.3: Data-flow graph of the 16-point forward NTT transform. Folding orders for each stage
are highlighted in red in circles. Operations in the same color will be fed into the same PE. Note
that the multiplications and additions/subtractions are omitted in this diagram.

To control the data for each PE, a conventional method for the NTT-based polynomial

multiplier using the R2MDC architectures is to add an identical amount of registers as the index

differences in both the upper and lower paths with an additional commutator, which results in a low-

throughput and utilization [53,54]. As opposed to these prior methods, we improve the throughput
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Figure 4.4: Top-level architecture of the R2MDC NTT transform.

and utilization by optimizing the folding transformation. To address this issue, we adopt the design

of a folding set (i.e., the folding orders of the butterfly operations in each PE) in [59] to achieve a

100% utilization for the PEs. Fig. 4.3 shows the optimized folding order of butterfly operations for

each PE, which is highlighted in red in the circles. To ensure the data is transmitted from one PE to

the next stage PE properly, retiming and pipelining techniques are also incorporated to optimize the

registers in the data path. The proposed top-level R2MDC architecture for an m-stage NTT-based

polynomial multiplier is shown in Fig. 4.4, where each stage consists of one PE, one upper register

set, one lower register set, and one switch. Based on the folding order described in Fig. 4.3, two

data with the indices j and j + n/2, where 0 ≤ j ≤ n/2− 1, are loaded into the inputs in parallel.

Two modular multipliers perform the weighted operations for the input data before executing the

DIF-based butterfly operation. Then the intermediate results are stored in the upper/lower registers

or fed into the PE in the next stage. The register sets and switch ensure the sequence of butterfly

operations is the same as the folding order. In general, the number of registers (delay elements) τ

for the k-th stage upper/lower register set is expressed as

τ [k] =


n

2k+2 , k ∈ [0,m− 2],

n
2 , k = m− 1.

(4.8)

Note that the proposed optimized folding transformation does not increase the total number

of registers compared with the prior works [52–54]. Compared to prior works, our design 1) performs

butterfly operations that are adjacent in the data-flow graph consecutively, instead of performing

the butterfly operations in the natural order; 2) allocates the upper/lower registers set with n/2

delay elements at the last stage rather than the first stage as in prior works. These two properties

enable all the PEs to be fully utilized during the computations. As opposed to prior works where

the next NTT transform has to wait for the previous NTT transform to be completed, both the

input and output nodes in the proposed architecture can have a continuous flow even between two
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NTT transforms. Thus, we can achieve a high-throughput performance with two output samples

per clock cycle. In this case, our proposed architecture can yield better overall timing performance

for processing multiple consecutive operations. The total latency (i.e., first data in and last data

out) in our design for L NTT transforms is expressed as

TLat = m · Tpp + n/2 + n/2 · L, (4.9)

where Tpp is the clock cycles consumed by one PE. In our design, we add one pipelining cut-set in

each PE, as shown in Fig. 4.1, in order to avoid a long critical path in a chain of modular adders.

4.3.3 Schemes for the Control and Addressing Units

Another advantage of the proposed pipelined architecture over memory-based architectures

is a simple control unit. The control unit (denoted as “switch” in Fig. 4.4) is easily implemented

as two MUXs, which propagates the signals to go to either the upper register set or the PE in the

next stage. This 1-bit select signal ctrl[k] is controlled by an m-bit global counter β. The control

signals for the first and last stages are the (m− 2)-th bit of β, while the other stages’ control signals

are connected to the (m− 2− k)-th bit of β in k-th stage. The rationale behind this is to study the

switch rate of the signals that are always in power-of-two, which is mapped to the global counter

with the same changing rate in its bits.

We also propose an efficient addressing scheme for the twiddle factor αij . In our design,

the number of twiddle factors that need to be stored is decreased from n/2 in the first stage to 2

in (m− 2)-th stage. Note that no twiddle factor or modular multiplier is required in the last stage

since the twiddle factor is always equal to 1.

Each addressing unit outputs an (m − 1 − k)-bit signal δk to select the twiddle factors,

where the first (m − 2 − k) bits of δk (i.e., δk[m − 2 − k : 1]) is generated from a counter with the

same bit-length, and the last bit (i.e., δk[0]) is derived from the following fashion. In k-th stage, if

all bits in β[m − 3 : m − 3 − k] are 1, δk[0] = β[m− 2] (i.e., the inverse of β[m − 2]); otherwise,

δk[0] = β[m− 2].
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4.4 Experimental Results

Our design is implemented using Verilog HDL and then mapped to the Xilinx Artix-7 series

FPGA board. We select prior works that report results on the same FPGA board [48–50] for a fair

comparison. We apply one of the most commonly used parameters (n = 1024 and q = 12289), which

is also the same as in [49–51]. Under this parameter set, our design is instantiated as ten stages

of PEs (m = 10). The experimental results, including the area performance (LUTs, FFs, DSPs,

and BRAM) and timing performance (frequency and actual computational time in µs) for the NTT

transforms, are presented in Table 4.1.

Table 4.1: Performance comparison of our proposed design and prior works

Design Oder [48] Xing [49] Kuo [50] Ours
LUTs 1390 4823 2832 5386

ATP (LUT) 35.9(×105) 3.6(×105) 4.5(×105) 1.7(×105)
FFs 615 2901 1381 2056
DSPs 2 8 8 11

ATP (DSP) 51.6(×102) 6.0(×102) 12.6(×102) 3.4(×102)
BRAM 1 – 10 0

Freq.[MHz] 125 153 150 167
1 NTT: cc (µs) 35845 (286.8) 1280 (8.4) 2616 (17.4) 1064 (6.3)
9 NTTs: cc (µs) 322605 (2580.8) 11520 (75.3) 23544 (157.0) 5160 (30.8)

Our proposed lightweight modular multiplier only consumes one DSP for the first multipli-

cation between two inputs, while the second multiplication with a fixed input only uses the LUTs

after synthesis. Overall, our NTT architecture consumes 5386 LUTs and only 11 DSPs, which can

be operated at a 167 MHz frequency. For one NTT transform, our design reduces the computational

time by 25.0%, 63.8% and 97.8% compared to the works in [49], [50] and [48], respectively. We also

evaluate the performance of nine consecutive NTT transforms, as many of the LWE schemes involve

matrix multiplication with a three-dimensional vector corresponding to nine polynomial multiplica-

tions. Due to the advantages of high-throughput and full utilization of the architecture, our design

is even more superior when considering the actual time of computing nine NTT transforms, which

achieves 59.1%, 80.4%, and 98.8% reductions, respectively, compared to the same prior works. When

we take the hardware cost into account, our design still significantly outperforms prior works, as seen

from the ATP in Table 4.1. Note that the ATP results are calculated by multiplying the number of

LUTs or DSPs with the actual computation time for nine NTT transforms. It can be observed that

our design has 52.8% (43.3%), 62.2% (72.9%), and 95.3% (93.4%) lower ATPs on LUTs (DSPs),
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compared to these prior works.

4.5 Conclusion

This chapter proposed a novel pipelined high-throughput architecture to accelerate the NTT

algorithm for lattice-based cryptography. We exploited the FFT MDC architecture and a lightweight

Barrett reduction algorithm-based modular multiplier to optimize the efficiency of the proposed

architecture. The effectiveness of the proposed design was verified by comprehensive experimental

results.

Future work will be directed towards a high radix NTT algorithm to improve the efficiency

of polynomial multiplication architecture.
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Chapter 5

High-Speed Modular Multiplier for

Lattice-Based Cryptosystems

Thanks to the inherent post-quantum resistant properties, lattice-based cryptography has

gained increasing attention in various cryptographic applications recently. To facilitate the practical

deployment, efficient hardware architectures are demanded to accelerate the operations and reduce

the computational resources, especially for polynomial multiplication, which is the bottleneck of

lattice-based cryptosystems. In this chapter, we present a novel high-speed modular multiplier

architecture for polynomial multiplication. The proposed architecture employs a divide-and-conquer

strategy and exploits a special modulus to increase the parallelism and speed up the calculation while

enabling wider applications across various cryptosystems. The experimental results show that our

work achieves around 27% and 39% reduction in the area consumption and delay, respectively,

compared to prior designs.1

5.1 Introduction

Post-quantum cryptography (PQC) is a category of cryptographic algorithms that are be-

lieved to be able to protect sensitive information in the world of quantum computers. The National

Institute of Standards and Technology (NIST) is currently in the process of standardizing PQC.

More than half of the second round and three out of four of the third round PQC candidates are

1This work is presented in [11].
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lattice-based schemes [60]. Meanwhile, lattice-based schemes are also prevalent in the field of homo-

morphic encryption (HE), whose goal is to enable secure function evaluation on encrypted data so

that user privacy can be protected [5].

The lattice-based cryptography is built upon the NP-hard lattice problems that even quan-

tum computers cannot solve efficiently. One example of the lattice problem is the shortest vec-

tor problem (SVP), whose security relies on the hardness of approximating SVP in the Euclidean

norm [5]. Modular multiplication is a fundamental yet the most computationally-intensive operation

in the polynomial multiplication of lattice-based cryptography. Therefore, improving the efficiency

of modular multiplication, especially under the umbrella of resource-constrained platforms such as

IoT and mobile devices, is critical to the practical deployment of lattice-based cryptosystems.

This chapter proposes an efficient and high-speed modular multiplier by innovatively utiliz-

ing the Karatsuba multiplication [61] to generate several partial products that can then be processed

by a low-cost and efficient modular reduction unit. The main contributions of this chapter are sum-

marized below:

• We utilize a divide-and-conquer strategy, and exploit a special modulus to increase the paral-

lelism and speed up the calculation, while simultaneously reducing the hardware complexity.

• Our design shortens the bit-lengths of intermediate values by performing the modular reduction

directly on the partial products. The largest bit-length among all the intermediate values is

only (3v + 2)-bit for multiplication modulo a 2v-bit prime.

• In contrast to some previous works that only support one specific prime [53, 62], our design

can be reconfigured as various moduli (primes) with arbitrary bit-lengths, which is suitable

for both PQC and HE schemes.

The rest of this chapter is organized as follows: Section 5.2 reviews the mathematical back-

ground and the prior works on the hardware implementation of modular multipliers for different

lattice-based cryptographic algorithms. Section 5.3 introduces the details of our optimized mod-

ular multiplication algorithm. The proposed novel hardware architecture and its performance are

presented and analyzed in Section 5.4. Finally, Section 5.5 concludes the chapter.
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5.2 Background

5.2.1 Modular Multiplication

The operations in lattice-based cryptography in a ring such as Rn,Q := Z[x]/(xn + 1, Q) [7]

are computationally heavy, where n is a power of two. The multiplication modulo Q in a polynomial

multiplication can be expressed as:

a · b = t (mod Q), (5.1)

where 0 ≤ a, b, t < Q.

In the literature, various algorithms have been proposed to improve the efficiency of modular

multiplication, including Montgomery reduction [63] and Barrett reduction [56].

The Montgomery reduction requires two 2v-bit inputs a and b to multiply with a factor

r = 22v. Then, the reduction can be achieved by

t = a · b · r−1, (5.2)

where r−1 is the inverse of r modulo Q. Barrett reduction also first computes the product t

from the general integer multiplication of a and b. Different from Montgomery reduction, it reduces

t back to the range [0, Q− 1] by

t = t− ((t ·m) >> 4v) ·Q, (5.3)

where Q is the modulus and m = ⌊24v/Q⌋ [56].

5.2.2 Hardware Implementation for Modular Multiplication

Besides the theoretical improvement, many hardware optimization techniques for modular

multiplication as well as polynomial multiplication have been developed recently [8, 9, 41, 64]. The

majority of modular multipliers for HE and PQC are based on Barrett reduction [29, 62], as the

primes are usually fixed in these applications. It has been shown that the Barrett reduction can be

implemented by using multipliers and shifting operations only [29, 62]. Recently, a method called

Shift-Add-Multiply-Subtract-Subtract (SAMS2) has been proposed [65], which uses the addition
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and shifting instead of the expensive multiplication/division in Barrett reduction and hence leads to

more efficient hardware implementation [53]. Hardware optimization methods based on Montgomery

reduction have also been developed for both HE [28] and PQC digital signature [66] schemes.

However, for a 2v-bit prime, most of these previous designs need to expand their results

to 4v-bit, followed by a modular reduction unit (i.e., use either multiplications or subtractions to

reduce the results modulo Q). In contrast, our work shortens the bit-lengths in the intermediate

values to improve efficiency.

5.3 Optimized Modular Karatsuba Multiplication

Different from the Barrett reduction or Montgomery reduction, our proposed design calcu-

lates several partial products in parallel and then performs reduction before merging them, which

has the potential to accelerate the operation as well as reduce the area consumption of the hard-

ware implementation. Besides, while the modular Karatsuba multiplication for other applications

has been studied by the prior works [67, 68], to the best of our knowledge, our design is the first

work that leverages the Karatsuba multiplication for the coefficient multiplication of the polynomial

multiplication in the lattice-based cryptosystems.

5.3.1 Base B Decomposition

We first perform a base B decomposition to split the operands and then reduce the partial

products. For positive integers Q,B, ℓ, if Q < Bℓ, then any integer y ∈ [0, Q− 1] can be expressed

uniquely in base B as

y = y0 + y1B + y2B
2 + · · ·+ yℓ−1B

ℓ−1 (5.4)

where 0 ≤ yi < B. If B is a power-of-two integer (i.e., B = 2v), it is simple to convert from the

binary representation into its base B decomposition. In this case, yi = [(i+ 1)v − 1, iv], where i is

an integer and 0 ≤ i ≤ ℓ− 1.

5.3.2 Optimally Chosen Prime

NTT-based multiplication is advantageous, especially when the polynomial degree is large.

An NTT-compatible prime Q must satisfy that 2n divides (Q−1). To further optimize the modular
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multiplication, we choose the prime to have a “sparse” representation, similar to the idea of Solinas

prime in [67]. We use a power-of-two base B, and a prime Q that is less than B2 in our algorithm.

In particular, for integers v1 and v2, where v2 < v1 ≤ v − 2, we consider the primes in these two

forms:

Q = 22v − 2v1 ± 2v2 + 1, (5.5)

and

Q = 22v − 2v1 + 1. (5.6)

We refer to the forms in Equations (5.5) and (5.6) as 4-sparse and 3-sparse primes, respectively.

The rationale behind using these primes are: 1) our technique represents the inputs as two base

B digits based on the fact that Q < 22v = B2. Thus we must subtract the power 2v1 ; 2) the

condition of v1 ≤ v − 2 allows for further optimization in hardware implementation; 3) the least

significant bit (LSB) of a prime has to be one. Otherwise, Q is even; 4) in contrast to the original

Solinas prime [67], we add rather than subtract one so that Q−1 will be divisible by a power-of-two,

becoming NTT-friendly; 5) finally, 2v2 is added to enable more prime choices.

In order to support an NTT in rings with large n (e.g., the Ring Learning with Errors

(RLWE) problem [69] with a strong security level), v2 and v1 need to be large in the cases of

4-sparse and 3-sparse primes, respectively.

For example, a 64-bit prime Q = 264 − 224 + 1 supports an NTT with n up to 23 bits. For

other applications such as schoolbook polynomial multiplication in [70, 71], we may choose a prime

with small v1 and v2 for better efficiency, e.g., a 12-bit prime Q = 212 − 23 + 21 + 1.

5.3.3 Proposed Algorithm for the Modular Karatsuba Multiplication

For simplicity, we integrate the 4-sparse and 3-sparse cases together by representing Q as

22v − 2v1 + e2v2 + 1 where e ∈ {0,±1}. The only modification is that for the case of e = −1, the

proof of Lemma 2 requires an additional assumption of v1 ≤ v − 3.

Algorithm 7 describes our optimized modular multiplication, which also takes the hardware

implementation into consideration. Only three small multiplications are required, while the other

operations are simple shifting and additions/subtractions since multiplication with a power-of-two

integer can be realized as shifting. The corresponding data-flow chart is shown in Fig. 5.1.

We first represent a and b in base B as a = a0 + a1B and b = b0 + b1B. Then, similar to
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Algorithm 7 Optimized Modular Multiplication

Input: a, b and Q = 22v − 2v1 + e2v2 + 1
where 0 ⩽ a, b < Q < 22v.

Output: t = a · b mod Q

1: Initialization: Let B = 2v, 0 ⩽ a0, a1, b0, b1 < B
a = a0 + a1B //split a as two parts
b = b0 + b1B // split b as two parts

2: c0 = a0b0 // v-bit multiplication
c1 = a1b1 // v-bit multiplication
c2 = (a0 + a1)(b0 + b1) // (v + 1)-bit multiplication

3: c = c0 + (c2 − (c1 + c0))B + c1(2
v1 − e2v2 − 1)

4: f0 = c[2v − 1 : 0]
f1 = c[3v − 1 : 2v]
f2 = c[3v + 1 : 3v]

5: f = f0 + f1(2
v1 − e2v2 − 1) + f2(2

v1 − e2v2 − 1)B
6: if f ≥ Q then
7: t = f −Q
8: else
9: t = f

10: end if
11: return t

the original Karatsuba multiplication, we generate the partial products of c0 = a0b0, c1 = a1b1, and

c2 = (a0+a1)(b0+b1) in Step 2. As a result, the product a·b = (a0+a1B)(b0+b1B) can be expressed

in terms of these three partial products as a · b = c0 + (c2 − (c1 + c0))B + c1B
2 [61]. As opposed

+
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Figure 5.1: Data-flow of the optimized modular multiplication.

to multiplying c1 by B2 as in the original Karatsuba algorithm, we multiply it by (2v1 − e2v2 − 1)

since B2 = 22v ≡ 2v1 − e2v2 − 1 (mod Q). We note this intermediate value in Step 3 as

c := c0 + (c2 − (c1 + c0))B + c1(2
v1 − e2v2 − 1). (5.7)

At this point, c is not guaranteed to be in the range [0, Q− 1].
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Lemma 1 The intermediate value c obtained in Step 3 can be strictly upper-bounded by 23v+2, i.e.,

c = c0 + (c2 − (c1 + c0))B + c1(2
v1 − e2v2 − 1) < 23v+2.

According to Lemma 1, our optimized parameter yields smaller bit-lengths of intermediate

values than prior works in the reduction process. Hence, efficiency can be improved.

In Step 4, we split c in a base B decomposition as

c = f0 + f1B
2 + f2B

3, (5.8)

where 0 ≤ f0 < B2, 0 ≤ f1 < B and 0 ≤ f2 < 22. It is important to note that f2 is only 2-bit,

according to the upper bound in Lemma 1. Thus, as opposed to a chain of multiplexers (i.e., several

if-else condition statements) as the work in [53], we only need one multiplexer in Step 6.

Since B3 ≡ (2v1 − e2v2 − 1)2v (mod Q), we reduce this modulo Q in Step 5 as

f = f0 + f1(2
v1 − e2v2 − 1) + f2(2

v1 − e2v2 − 1)2v. (5.9)

Under the conditions as described in Lemma 2, we only need to check whether f ≥ Q is in Step 6.

If this is the case, one subtraction by Q is enough to reduce it to the range [0, Q− 1].

Lemma 2 Given Q = 22v − 2v1 + e2v2 + 1,

1) if v2 < v1 ≤ v − 2 in the case that e = 0, 1, f is always less than 2Q− 1. When Q is in

3-sparse form, the v2 term is eliminated;

2) if v2 < v1 ≤ v − 3 in the case that e = −1, f is always less than 2Q− 1. When Q is in

3-sparse form, the v2 term is eliminated.

Note that the selection of our special primes also helps address the issue of overflow by

setting the upper-bound of signals.

5.4 High-Speed Modular Multiplier

Our proposed high-speed modular multiplier mainly consists of two blocks: a semi-Karatsuba

multiplier and a partial product reduction unit. The semi-Karatsuba multiplier is used to calculate
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the partial products that will then be fed into the partial product reduction unit to generate the

final result. Note that, as opposed to the pipelined modular multiplier in [66], these two blocks are

operated at the same clock cycle in order to avoid any potential timing attack [62], but still remain

a short critical path.

5.4.1 Semi-Karatsuba Multiplier

The architecture for Steps 1 and 2 in Algorithm 7 is shown in Fig. 5.2. As described in

Section 5.3, two inputs a and b will first be split into a higher half (i.e., higher v bits) and a lower

half (i.e., lower v bits). It then computes three v-bit multiplications in parallel, which is faster than

a direct 2v-bit multiplication. In the original Karatsuba multiplication algorithm, two v-bit and one

v-bitv-bit

a b

v v + 1 v + 1

vv

v

a1 a0 b1 b0

c0 c1

2v2v

2v
2v+2

2v

c2

Figure 5.2: Semi-Karatsuba multiplier.

(v+1)-bit multipliers are used to generate three partial products c0, c1 and c2, as shown in Step 2 of

Algorithm 7. The addition of between a0 and a1 or between b0 and b1 may introduce an additional

carry bit into the multiplication. Therefore, a (v + 1)-bit multiplier is used to avoid overflow.

To better integrate modular reduction into the multiplication, we only use the split and

multiplication steps from the original Karatsuba multiplication for the semi-Karatsuba multiplier,

which will then connect its outputs c0, c1, and c2 to the inputs of the partial product reduction unit.
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5.4.2 Architecture for Partial Product Reduction Unit

The novel partial product reduction unit only consists of adders/subtractors and one multi-

plexer. In addition, this unit can be easily reconfigured for different moduli according to the choice

of the prime form as defined in Equations (5.5) and (5.6) by changing the parameter of v1, v2 and

v, which only requires to adjust the bit-length of adders/subtractors at the compile time.

Fig. 5.3 depicts the architecture for the prime Q = 22v−2v1±2v2 +1. For a 3-sparse prime,

the components in the blue dashed box can be eliminated, which saves three adders/subtractors.

Besides, the operation in the form of x(2v1±2v2) can be calculated as (x2d±x)2v2 , where d = v1−v2.

As a result, the adders/subtractor can be reduced from (m(x) + v1)-bit to (m(x) + d)-bit, where

m(x) is the bit-length of x. If d = 1, this operation is eliminated.

At the beginning of this unit, two 2v-bit and one (2v+2)-bit output signals from the semi-

Karatsuba multiplier are used to compute the value c based on Step 3 in Algorithm 7. After that,

c is divided into f0, f1 and f2 according to the base B decomposition. Then, the reduction process

converts them to three new signals that are added into a (2v+1)-bit value f . Finally, one multiplexer

is used to select either f or f −Q as the final output t.

f ≥ Q
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Figure 5.3: Architecture for partial product reduction unit.
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5.4.3 Experimental Results

We implement our proposed design using Verilog HDL, which is then mapped to the

Synopsys SAED 32nm technology node. For comparison, we also implement several recent de-

signs [28,29,53,62,66]. These prior works are selected to include a wide range of modular multipli-

cation methods used in different algorithm classes, including the Montgomery reduction, SAMS2,

and the Barrett reduction. Besides, the comparison also includes designs employing the special

primes in [28,53,62].

Experimental results of efficiencies and hardware complexities are presented in Table 5.1.

In order to reduce the deviation from the optimization process by the electronic design automation

(EDA) tools to achieve a fairer comparison, we map all the designs to the same gate-level arithmetic

blocks, which is consistent with the work in [62].

Table 5.1: Comparisons of the proposed architecture with prior works

Designs Proposed Mert [28] Riazi [29] Wang [66] Proposed Mej́ıa [53] Banerjee [62]
Scheme HE HE HE PQC PQC PQC PQC

Algorithm
Class

Karat. Mont. Barrett Mont. Karat. SAMS2 Barrett

Prime
Bit-length

32 32 32 30 14 14 14

# Add. a 12.09 6.03 4 4 13.5 7.85 7
# Mul. a 0.78 1.67 2.06 3 0.82 2 3

Area [µm2] 16226 17787 32967 17957 3393 4394 5574
# Gate 10817 11858 21978 11971 2262 2929 3716

Delay [ns] 10.90 15.22 23.23 13.23 6.32 11.85 11.34
Power [µW] 768 576 776 725 163 165 231

ADP b 17.69 27.07 76.58 23.76 2.14 5.2 6.32

a Normalized the additions/subtractions and multiplications to 2v-bit (i.e., the bit-length of Q).
b ADP: ns × µm2 ×104

Since our design has high flexibility in various primes, we pick the most representative

parameters for primes Q in the HE and PQC schemes (i.e., 32-bit and 14-bit primes) and configure

the architectures by changing the bit-lengths for multipliers, adders, and subtractors. Note that, the

modulus for most of the lattice-based cryptosystems is constant during the polynomial multiplication

when the parameters are determined [60]. For example, we set 32-bit prime as Q = 232−213−212+1

that can allow the degree of NTT-based polynomial multiplication to be n = 2048, which can mostly

support the existing HE schemes to ensure a high-security level. Moreover, we use the 4-sparse

primes for our experiments, as shown in Table 5.1, to show a worse-case comparison. If a 3-sparse

prime is used, the performance of our proposed architecture will be further improved.

55



For better illustration, we normalize the cost of all the adders/subtractors and multipliers

with respect to 2v-bit (i.e., the bit-length of the prime). It can be seen from Table 5.1 that the

proposed architecture has the lowest number of multipliers, while the designs in [29, 62, 66] employ

the most multiplications among these designs. The architecture in [53] only has two multipliers but

requires relatively large numbers of adders/subtractors.

Compared to the 32-bit prime, our design achieves a more significant reduction for the 14-bit

prime in both area consumption and delay. Note that the pipelining technique is not applied in our

evaluation in order to perform a fair comparison with prior works that are without the pipelining

(e.g., [53, 62]). Even so, our design still remains a short critical path. Overall, the proposed design

achieves 27.01% and 39.25% reductions on average for the area consumption and delay, respectively.

By considering area and delay jointly, the area-delay product (ADP) of the proposed design is 54.10%

less than the best among these prior works.

5.5 Conclusion

This chapter presented a novel high-speed modular multiplier along with optimized modular

multiplication. The proposed architecture parallelizes partial product computation and modular

reduction to improve efficiency. Comprehensive experimental results were provided to verify the

effectiveness of the proposed design.

Proofs in This Chapter

Proof of Lemma 1: We have c2 = (a0 + a1)(b0 + b1), c1 = a1b1, and c0 = a0b0, so

c2− (c1 + c0) simplifies to a0b1 + a1b0. Since a0, a1, b0, b1 ≤ 2v − 1, all the products a0b0, a1b1, a0b1,

and a1b0 are less than or equal to (2v − 1)2. Thus, we can first simplify and then express c as

c = c0 + (a0b1 + a1b0)B + c1(2
v1 − e2v2 − 1)

≤ (2v − 1)2 + 2(2v − 1)22v + (2v − 1)2(2v1 − e2v2 − 1)

= (2v − 1)2[1 + 2v+1 + 2v1 − e2v2 − 1]

= (2v − 1)2[2v+1 + 2v1 − e2v2 ],
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since the terms contribute positively.

Since v1 < v, we have 2v1 ≤ 2v+1. As (2v − 1)2 < 22v, and in the case of e = 0, 1, we drop

the term −e2v2 and upper bound of c as

c < (2v − 1)2[2v+1 + 2v]

< 22v(2v+2) = 23v+2.

In the case e = −1, we use v2 < v1 ≤ v − 3 to upper bound c as

c < 22v(2v+1 + 2v−3 + 2v−4)

≤ 22v(2v+1 + 2v+1) = 23v+2. □

Proof of Lemma 2: We have f0 ≤ 22v − 1, f1 ≤ 2v − 1 and f2 ≤ 22 − 1 from Lemma 1.

Thus, we can define f as

f = f0 + f1(2
v1 − e2v2 − 1) + f22

v(2v1 − e2v2 − 1)

≤ 22v − 1 + (2v − 1 + 3 · 2v)(2v1 − e2v2 − 1)

We drop some negative terms,

f ≤ 22v − 1 + (2v1 − e2v2 − 1)[2v+2 − 1]

< 22v + (2v1 − e2v2 − 1)2v+2.

Then in the case e = 0, 1 we can drop the term −2v2 and use the assumption that v1 ≤ v − 2 to

show 2v1 ≤ 2v−2, so the upper-bound of f is

f < 22v + (2v−2 − 1)2v+2

= 22v+1 − 2v+2

< 2Q− 2.
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In the case e = −1, we use v2 < v1 ≤ v − 3 to upper bound f as

f < 22v + (2v1 + 2v2 − 1)2v+2

≤ 22v + (2v−3 + 2v−4 − 1)2v+2

= 22v + (22v−1 + 22v−2 − 2v+2)

< 22v + 22v − 2v+2

= 22v+1 − 2v+2

< 2Q− 2. □
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Chapter 6

High-Speed VLSI Architectures for

Modular Polynomial Multiplication

via Fast Filtering and Applications

to Lattice-Based Cryptography

This chapter presents a low-latency hardware accelerator for modular polynomial multi-

plication for lattice-based post-quantum cryptography and homomorphic encryption applications.

The proposed novel modular polynomial multiplier exploits the fast finite impulse response (FIR)

filter architecture to reduce the computational complexity of the schoolbook modular polynomial

multiplication. We also extend this structure to fast M -parallel architectures while achieving low-

latency, high-speed, and full hardware utilization. We comprehensively evaluate the performance

of the proposed architectures under various polynomial settings as well as in the Saber scheme for

post-quantum cryptography as a case study. The experimental results show that our design reduces

the computational time and area-time product by 61% and 32%, respectively, compared to the

state-of-the-art designs. 1

1This work is presented in [12].
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6.1 Introduction

Modular polynomial multiplication is commonly used in lattice-based post-quantum cryp-

tography (PQC) and homomorphic encryption applications. While homomorphic encryption aims

at allowing computations to be directly carried out in the encrypted domain without decryption [5],

lattice-based cryptographic algorithms are also designed to be resistant against attacks from both

traditional and quantum computers and are thus well suited for PQC. Three out of the four finalists

for the ongoing NIST PQC standardization in round-3 fall into the category of lattice-based cryptog-

raphy [60]. In prior works, the modular polynomial multiplication for the lattice-based cryptography

scheme has mostly been implemented by schoolbook polynomial multiplication [72], number theo-

retic transform (NTT) [73] or the Karatsuba multiplication [74]. Different from the prior works,

this chapter proposes novel high-speed architectures by exploiting the fast finite impulse response

(FIR) parallel filter architecture [57, 75–77]. The chapter also proposes a novel weight-stationary

systolic array for modular polynomial multiplication; these are used as building blocks for the fast

parallel architecture. The proposed architecture is feed-forward and can be pipelined at arbitrary

levels to achieve the desired speed. To the best of our knowledge, this is the first work to utilize the

fast parallel filter architecture to accelerate the modular polynomial multiplication for lattice-based

schemes.

Exploiting the fast parallel filter approach to modular polynomial multiplication is neither

straightforward nor trivial. Since the fast parallel filters contain several subfilters and merging

operations, the modular operations must be incorporated at the subfilter level and at the merging

level. No prior work has addressed these design aspects. The subfilters should correspond to single-

input single-output architectures that should integrate the modular operation and should operate

in real-time with no hardware under-utilization. These should also require simpler control circuits.

Such designs have not been presented before.

The contributions of this chapter are four-fold. First, using systolic mapping methodol-

ogy [57, 78–80], we derive a sequential weight-stationary systolic array for modular polynomial op-

eration. This structure is partly similar to the transpose-form FIR digital filter [57] and is the main

building block of the proposed architecture. The low-latency systolic array achieves full hardware

utilization. Second, we propose a low-latency fast modular polynomial multiplication architecture

that integrates the modular reduction at the merging level, achieves full hardware utilization and
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minimizes latency. Third, using iterated fast parallel filter design approach, we propose highly paral-

lel architectures where the level of parallelism is the product of short lengths. The modular operation

is also carried out at the merging step of each iteration to reduce overall latency and achieve full

hardware utilization. Fourth, the advantages of the proposed architecture are demonstrated using

the Saber scheme as a PQC benchmark.

The rest of the chapter is organized as follows: Section 6.2 reviews the mathematical back-

ground and the prior works on modular polynomial multiplication. Section 6.3 and Section 6.4

present the details of the proposed hardware architecture, including the modular polynomial multi-

plier and fastM -parallel architecture. Section 6.5 describes the experimental results and comparisons

with the state-of-the-art designs. Finally, Section 6.6 concludes the chapter.

6.2 Background and Related Work

Since this chapter targets the schoolbook polynomial multiplication, we briefly review the

essential notations, mathematical background, and related works of the schoolbook polynomial mul-

tiplication.

6.2.1 Lattice-based Cryptography

Lattice-based cryptography relies on the NP-hard lattice problems that even quantum com-

puters cannot solve efficiently. One example of the lattice problems is the shortest vector problem

(SVP), whose security relies on the hardness of approximating SVP in the Euclidean norm [5].

There are several representative schemes for homomorphic encryption and PQC based on the

lattice-based cryptography primitive. For example, in lattice-based homomorphic encryption, BFV

scheme [16] and CKKS scheme [39] support a limited number of homomorphic computations, which

are also categorized as somewhat homomorphic encryption (SHE) schemes. The fully homomorphic

encryption (FHE) schemes such as [5,17] allow an unlimited number of homomorphic computations

by using the bootstrapping algorithm.

On the other hand, the NIST finalist lattice-based PQC schemes can be classified as either

NTRU-based (e.g., NTRU [81]) and learning with errors-based (LWE) (e.g., Crystals-Kyber [20] and

Saber [82]) in general.

In this chapter, we evaluate and compare the performance of our proposed architectures used
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in the Saber scheme [82] as a case study. Saber is indistinguishability under chosen-ciphertext attack

secure Key Encapsulation Mechanism (KEM), which consists of three algorithms: key generation

(KeyGen), encapsulation (Encaps), and decapsulation (Decaps), which are outlined in Algorithms 8,

9, and 10, respectively [82].

For the key generation in Algorithm 8, the pseudo-random matrix A is first constructed

from the SHAKE-128 function [83] using the uniform random seed seedA and the secret key s that

is sampled from the centered binomial distribution βµ. Then, vector b is generated by the matrix

and vector multiplication along with the rounding operation and becomes the public key (pk) by

grouping with the seed seedA. Note that distinct from other LWE-based PQC schemes, Saber does

not require adding error from the random distribution since it is replaced by the rounding operation.

The encryption process encrypts a 256-bit message m(x) ∈ R2 to generate a ciphertext c,

as described in Algorithm 9. The first five steps are similar to the key generation algorithm with an

additional inner product between vectors bT and (s′ mod p), which will generate the polynomial

v′(x). The polynomial is then used to produce the elements of ciphertext cm(x). Finally, the

ciphertext c = (cm(x),b′) will be returned and used for decryption.

During the decryption process, as illustrated in Algorithm 10, the polynomial v(x) is com-

puted from the inner product between one of the elements of ciphertext (b′) and the secret key s at

first. Then, the decrypted message m′(x) can be obtained using simple shift and addition operations

based on v(x).

Algorithm 8 Saber.PKE.KeyGen()

1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×l

q

3: r = U({0, 1}256)
4: s = βµ(R

l×1
q ; r)

5: b = (AT s+ h mod q) >> (ϵq − ϵp) ∈ Rl×1
p

6: return pk := (seedA,b), sk := s

Algorithm 9 Saber.PKE.Enc(pk := (seedA,b), m ∈ R2; r)

1: A = gen(seedA) ∈ Rl×l
q

2: s′ = βµ(R
l×l
q ; r)

3: b′ = (As′ + h mod q) >> (ϵq − ϵp) ∈ Rl×1
p

4: v′(x) = bT (s′ mod p) ∈ Rp

5: cm(x) = (v′(x) + h1(x)− 2ϵp−1m(x) mod p) >> (ϵp − ϵT ) ∈ RT

6: return c := (cm(x),b′)
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Algorithm 10 Saber.PKE.Dec(s, c = (cm(x),b′)

1: v(x) = bT (s mod p) ∈ Rp

2: m′(x) = ((v(x)− 2ϵp−ϵT cm(x) + h2(x)) mod p) >> (ϵp − 1) ∈ R2

3: return m′(x)

More specifically, the primitive of the Saber scheme is based on the hardness of the module-

learning with rounding (M-LWR) problem and the use of the Fujisaki-Okamoto transform [84].

Besides, IND-CCA KEM (i.e., Saber.KEM) can be constructed based on the Saber.PKE, which

requires more hash functions operated on the public key, message, and ciphertext to ensure higher

security. More details are explained in [82]. In the Saber scheme, the polynomial degree n is always

fixed as 256. The lattice dimension relies on l ·n, where l can be chosen as 2/3/4, which correspond

to three different security levels, i.e., LightSaber (lightweight), Saber (Standard), and FireSaber

(high security), where Table 6.1 summarizes the number of polynomial multiplications for the Saber

scheme in different security levels. The bit-lengths ϵ of the moduli q and p are given as ϵq = 13 and

ϵp = 10, respectively, while the bit-length of modulus T is varied across the three different security

levels, i.e., ϵT = 3/4/5.

Table 6.1: The number of polynomial multiplication for different security levels for Saber.

Security Level KeyGen Encapsulation Decapsulation
l l2 l2 + l l2 + 2l

Lightweight (l = 2) 4 6 8
Standard (l = 3) 9 12 15

Fire (l = 4) 16 20 24

Among all the steps in the Saber scheme, the most widely used functions are the matrix-

vector multiplication and inner product of two vectors i.e., degree-256 modular polynomial multi-

plication. For the medium-security level of Saber (post-quantum security level similar to AES-192),

there are 9, 12, and 15 polynomial multiplications in the key generation, encapsulation, and decap-

sulation, respectively. In this chapter, we only consider the medium-security level.

Modular polynomial multiplication is a fundamental and yet the most computationally

intensive operation of lattice-based cryptography. For the lattice-based PQC, modular polynomial

multiplication dominates the computations across key-generation, encryption, and decryption steps

in the prior works [72, 85]. Similarly, the most expensive operation for homomorphic encryption

schemes is also modular polynomial multiplication. Therefore, improving the efficiency of modular

polynomial multiplication is critical to the practical deployment of lattice-based PQC schemes and
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homomorphic encryption.

6.2.2 Schoolbook Modular Polynomial Multiplication

For the product P (x) of two polynomials

A(x) = a[0] + a[1]x+ a[2]x2 + ...+ a[n− 1]xn−1, (6.1)

B(x) = b[0] + b[1]x+ b[2]x2 + ...+ b[n− 1]xn−1, (6.2)

over Rq, all the coefficients of P (x) need to be less than q but non-negative integers, while the degree

of P (x) should be less than n, where Rq = Zq/(x
n +1) is ring of the polynomial, and Zq is the ring

of integers modulo a integer q. The schoolbook modular polynomial multiplication between A(x)

and B(x) modulo (xn + 1, q) can be described as

A(x) ·B(x)

=

n−1∑
i=0

n−1∑
j=0

a[i]b[j]xi+j mod (xn + 1, q) (6.3)

=

n−1∑
i=0

( n−1∑
j=0

(−1)⌊(i+j)/n⌋a[i]b[j] mod q
)
· x(i+j) mod n.

For the schoolbook modular polynomial multiplication, the moduli are not required to be

prime, which is different from the NTT-based polynomial multiplication. Consequently, the poly-

nomial multiplication used in the M-LWR problem [86] and ring-learning with errors (R-LWE)

problem [19] can benefit from these moduli. In these cases, since all the moduli can be selected as

power-of-two integers, the modular reduction for the coefficients on the schoolbook polynomial mul-

tiplication can be simply performed by keeping the least significant ϵ bits (ϵ is the bit-length of the

modulus q, i.e., ϵ = ⌈log2(q)⌉) instead of using the expensive Barrett reduction [56] or Montgomery

modular multiplication [63]. Meanwhile, schemes based on the M-LWR problem (such as the Saber

scheme) obtain the error term by rounding, while naturally aligning with the power-of-two modulus.

Besides, recent work shows that a power-of-two modulus can simplify and improve the polynomial

multiplication for the R-LWE-based homomorphic encryption schemes without affecting the com-

putational hardness [87]. The modulus in this format has been applied in some popular schemes

such as BFV scheme [16]. Based on this advantage, shortening the word-length of the operand
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and eliminating the modular reduction for the coefficients can increase the resource available which

can then enable the designer to increase the level of parallelism to achieve a high-speed modular

polynomial multiplier.

It may be noted that the use of the power-of-two moduli, as needed in the Saber scheme,

cannot leverage the acceleration from the NTT-based polynomial multiplication without further

expensive transformation. However, NTT-based polynomial multiplication has been widely applied

in many lattice-based cryptography schemes when the moduli are not power-of-two [10, 27, 62, 73,

88–91].

6.2.3 Karatsuba Polynomial Multiplication

To improve the efficiency and reduce the complexity of schoolbook polynomial multiplica-

tion, methods based on the divide-and-conquer strategy to increase parallelism are of great interest.

One of the examples is the Karatsuba algorithm [61], which has been utilized in some prior mod-

ular polynomial multiplier designs for Saber scheme [85, 92]. The 2-level Karatsuba polynomial

multiplication first decomposes the input polynomials into higher-degree and lower-degree parts as

A(x) = A0(x) +A1(x) · xn/2 and B(x) = B0(x) +B1(x) · xn/2 and computes

C0(x) = A0(x) ·B0(x)

C1(x) = (A0(x) +A1(x)) · (B0(x) +B1(x))

C2(x) = A1(x) ·B1(x). (6.4)

Then the above products are summed up and polynomial modular reduction is carried out

to derive the product P (x) over the ring as

P (x) = C0(x) + C3(x) · xn/2 + C2(x) · xn mod (xn + 1), (6.5)

where

C3(x) = (C1(x)− C0(x)− C2(x)). (6.6)

Note that the degrees of C3(x) · xn/2 and C2(x) · xn are 3
2n and 2n, respectively. Hence polynomial
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subtractions are needed to perform the modular reduction by xn + 1. Based on this divide-and-

conquer strategy of the Karatsuba algorithm, the number of coefficient multiplications is reduced

from n2 to 3(n/2)2.

6.2.4 Prior Hardware Implementations

Several hardware accelerators for lattice-based cryptography without using the NTT algo-

rithm have been proposed recently [70,72,85,92–96]. As expected, optimizing the polynomial multi-

plier is the main focus of these works, since it is the bottleneck. The hardware/software co-design for

the modular polynomial multiplication accelerator in [93] shows a significant acceleration compared

with the software implementation. Subsequently, the work in [85] introduced the compact hard-

ware/software interfacing design, which applies a hybrid method of Toom-Cook multiplication [97]

(a generalized form of Karatsuba algorithm) and a degree-64 schoolbook polynomial multiplier to op-

timize the modular polynomial multiplication. A full hardware implementation is proposed in [72],

which utilizes a memory-based schoolbook polynomial multiplier. This design achieves a higher

speed where each degree-256 polynomial multiplication only consumes 256 clock cycles. Later, an

extended work of [72] is presented in [98], which is based on a design called centralized multiplier ar-

chitecture. This optimized design retains the same timing performance but requires fewer hardware

resources since each multiply-and-accumulate (MAC) is replaced by one multiplexer (MUX) and one

adder. Furthermore, an 8-level recursive split hierarchical Karatsuba algorithm-based implementa-

tion is introduced in [92], which reduces a degree-256 polynomial multiplication to only 81 clock

cycles without considering the pipelining startup time. Besides, several architectures of modular

polynomial multipliers for the R-LWE schemes are introduced in [71, 74, 95]. The works in [71, 95]

investigate the low-area design for the schoolbook modular polynomial multiplication, which only

consumes a small amount of LUTs and DSPs. Meanwhile, the design in [74] proposes a modular

polynomial multiplier using the Karatsuba algorithm and reduces the complexity by merging the

polynomial modular reduction on the post-processing stage of the Karatsuba algorithm.

However, these designs cannot consider an architecture using the fast filtering technique to

reduce the latency. Also, the architectures based on the Karatsuba algorithm generally consider the

polynomial modular reduction after the multiplication. These designs do not reduce the number of

addition operations. Therefore, it is possible to further reduce the number of additions/subtractions

at the post-processing stage thereby reducing the total number of addition/subtraction operations.
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Since our objective is to improve the speed under a given hardware budget, we define the following

two metrics in evaluating the performance from the speed perspective:

• Response time: clock cycles between the first input and the first output sample.

• Total latency: clock cycles between the first input and the last output sample.

6.3 Modular Polynomial Multiplier Based onWeight-Stationary

Systolic Array

Consider the design of a degree-n modular polynomial multiplier described by Equation 6.3.

In this section, we use n = 4 as an example to illustrate our proposed novel modular polynomial

multiplier. The modular polynomial multiplication is described by:

P (x) = A(x) ·B(x) mod (x4 + 1, q) (6.7)

= p[0] + p[1]x+ p[2]x2 + p[3]x3,

where

A(x) = a[0] + a[1]x+ a[2]x2 + a[3]x3,

B(x) = b[0] + b[1]x+ b[2]x2 + b[3]x3.

The polynomial multiplication of A(x) and B(x) leads to

P ′(x) = p′[0] + p′[1]x+ p′[2]x2 + p′[3]x3

+ p′[4]x4 + p′[5]x5 + p′[6]x6. (6.8)

Since the polynomial multiplication has a degree higher than three, the terms x4, x5, and

x6 are replaced by −1, −x, and −x2, respectively, to perform the modular reduction. Thus, the
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coefficients of the modular polynomial multiplication are:

p[3] = a[3]b[0] + a[2]b[1] + a[1]b[2] + a[0]b[3],

p[2] = a[2]b[0] + a[1]b[1] + a[0]b[2]− a[3]b[3],

p[1] = a[1]b[0] + a[0]b[1]− a[3]b[2]− a[2]b[3],

p[0] = a[0]b[0]− a[3]b[1]− a[2]b[2]− a[1]b[3]. (6.9)

A dependence graph (DG) of the modular polynomial multiplication for the n = 4 example

is shown in Fig. 6.1.

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

b[0] b[1] b[2] b[3]

a[3] a[2] a[1] a[0]

0

0

0

0 p[3]

p[2]

p[1]

p[0]

_

_ _

_ _ _

: Modular Multiplier

: Modular Adder

Figure 6.1: DG of the modular polynomial multiplication when n = 4. The DG is mapped to a
systolic array using the projection vector shown in blue.

6.3.1 Architecture of Modular Polynomial Multiplier Using Transpose-

Form FIR Filter

Given the similarity between modular polynomial multiplication and FIR filter, it is useful

to consider three common types of FIR filter structures [57], i.e., direct-form, transpose-form, and

hybrid-form, respectively, as shown in Fig. 6.2, Fig. 6.3, Fig. 6.4.

FIR filter is one of the digital filters that is used to modify the frequency properties of the
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b[3]b[2]b[1]b[0]

D
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p[i]

Figure 6.2: Direct-form FIR filter architecture when n = 4.

b[0]b[1]b[2]b[3]

D D D

a[i]

p[i]

Figure 6.3: Transpose-form FIR filter architecture when n = 4.

input signal to achieve specific design requirements [57]. It can also be mathematically expressed as

a discrete convolution of two signals, which can be defined as

p[n] =

n−1∑
j=0

b[j]a[n− j], (6.10)

where n is the number of taps, a[n] is the input signal, b[j] is value of the impulse response at

the j-th instant (j ∈ [0, n − 1]), and p[n] is the output signal. Though using any of the FIR filter

structures in Fig. 6.2, Fig. 6.3, Fig. 6.4. can sufficiently instantiate Equation 6.10 and show a

negligible difference in the overall performance in most of the digital signal processing applications,

the FIR structure for modular polynomial multiplication needs to be carefully selected.

b[3]b[2]b[1]b[0]

D

D D
a[i]

p[i]

Figure 6.4: Hybrid-form FIR filter architecture when n = 4.
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The direct-form FIR filter is shown in Fig. 6.2. leads to a long critical path, which consists of

one multiplier and n adders. It can also be observed from Fig. 6.4 that the hybrid-form architecture

generates its first output immediately after loading the first input, and requires additional registers

to store the intermediate results; however, the architecture is not feed-forward and has a slightly

longer critical path than the transpose-form. Thus, the best choice for implementing polynomial

multiplication in lattice-based schemes is the transpose-form as shown in Fig. 6.3 as it has the

least critical path and a feed-forward datapath. Fortunately, the DG in Fig. 6.1 can be mapped to a

weight-stationary systolic array using the projection vector shown in blue in the figure. Alternatively,

the systolic array can also be derived using the folding algorithm [58]. Note that all multiplications

with coefficient b[j] are mapped to the same hardware multiplier.

Fig. 6.5 shows an example systolic architecture for modular polynomial multiplication for

a degree-4 where the components in each tap (node) are illustrated in Fig. 6.6. The systolic array

contains additional switches and a shift register of size-n (see the top of Fig. 6.5) for continuous

processing of input polynomials and polynomial modular reduction. Note that using a conventional

transpose-form-like structure to perform the polynomial multiplication would require padding zeros

until the entire operation finishes; otherwise, it will lead to conflicts and produce wrong results.

Furthermore, to perform polynomial modular reduction, the shift register as well as the switches can

control the signals (coefficients of polynomial A(x)) properly based on the expression in Equation 6.9.

b[0]

b[2]

b[3]

b[1]

4D
4l+{1,2,3} 4l+{2,3} 4l+{3}

4l+0 4l+{0,1} 4l+{0,1,2}

 a[0] a[1] a[2] a[3]

 p[0] p[1] p[2] p[3]

B(x) Mod
A(x) P(x) 

(Pipelining 
cut-set)

_

+
(First tap) (Last tap)

D

crtlsw[0] crtlsw[1] crtlsw[2]

(Switching 
instance)

Figure 6.5: Top-level architecture of degree-4 weight-stationary systolic modular polynomial multi-
plier.
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Figure 6.6: Details of each tap in the architecture of degree-4 weight-stationary systolic modular
polynomial multiplier.

Specifically, the coefficients of polynomial A(x) with the negative signs are extracted from

the shift register in its negative form. Then, the switches select either the negative form or the

original form coefficients from polynomial A(x) in different clock cycles. As shown in Fig. 6.5, the

proposed degree-4 modular polynomial multiplier consists of four modular multipliers, three modular

adders, three delay elements, three switches, and one shift register. Specifically, the shift register

consists of four delay elements, and the switches are constructed using multiplexers (MUXs). The

design in Fig. 6.5 can be easily extended to degree-n. A degree-n modular polynomial multiplier

requires n modular multipliers, (n−1) modular adders, (n−1) delay elements, (n−1) switches at the

lower data paths, and one shift register (consists of n delay elements). For one modular polynomial

multiplication, the response time is n clock cycles, while the total latency is (2n − 1) clock cycles.

For L polynomial multiplications, the response time remains the same, while the total latency in

clock cycles is given by:

Tlat = n · (L+ 1)− 1. (6.11)

This architecture also has a full hardware utilization after the first output is computed. Hard-

ware utilization is the percentage of the components inside this circuit that are performing useful

operations, and full hardware utilization means no component is performing null operations.

The modular reduction can be performed by simply keeping the least ϵ bits for a 2ϵ modulus.

For the lattice-based cryptography schemes, the degrees of the polynomial are relatively large, i.e.,

n can be up to hundreds or thousands, which could cause a high fan-out issue on the output of

the shift register and the input node. To overcome this, buffers (registers) are inserted after the

switches, as shown in the green dashed line in Fig. 6.5. As a result, the critical path is one modular

multiplier and one modular adder.
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6.3.2 Scheduling for the Modular Polynomial Multiplier

The scheduling and control logic in the proposed architecture are very simple and efficient.

The coefficients of polynomial A(x) are loaded sequentially from the most significant (highest degree)

coefficient to the least significant (lowest degree) coefficient, while the coefficients of polynomial B(x)

are stored starting with the least significant coefficient to the most significant coefficient from left

to right. Finally, the result coefficients are output in the same order as A(x) (i.e., from the most

significant coefficient to the least significant coefficient).

The notation 4l+{0,1,2,3} represents the switch instances with a switch period of 4 clock

cycles. Hence, l can be interpreted as the l-th period (iteration). For example, the left node will be

connected when the switch instances are 4l+ {1, 2, and 3}, while the right node will be connected at

switch instance of 4l+0. Each switch is controlled by a one-bit signal from the (n−1)-bit controller

ctrlsw: if this bit is equal to 1, the operand from polynomial A(x) of the modular multiplier is loaded

from the input node; otherwise, it is loaded from the shift register. These control signals ctrlsw can

be simply generated by a counter (ranging from 0 to (n− 1)), as:

ctrlsw =

 {0, ..., 0, 0}, if counter = 0,

{ctrlsw[n− 2 : 1], 1}, otherwise.
(6.12)

After resetting the counter, all (n−1)-bit control signals ctrlsw are zeros. Then, in every subsequent

clock cycle, ctrlsw shifts left by padding a “1” to the least significant bit (LSB).

6.4 Fast Polynomial Multiplier Using Fast M-Parallel Filter

Architecture

In this section, we derive a highly parallel hardware architecture for the polynomial multi-

plication based on the fast parallel filter algorithm [57,75–77].

The proposed design requires less resource overhead than prior Karatsuba-based polynomial

multipliers in the post-processing stage. Parallel structures for modular polynomial multiplication

for small lengths are first derived. These can then be iterated to obtain architectures for larger levels

of parallelism. For example, a fast 2-parallel (i.e., M = 2) modular polynomial multiplier can be

iterated twice (or thrice) to design a 4-parallel (or 8-parallel) multiplier.

72



6.4.1 Fast 2-parallel Architecture

The fast 2-parallel modular polynomial multiplication, referred to as Fast.2.PolyMult, is de-

scribed in Algorithm 11, which mainly consists of three stages: pre-processing (Step 1), intermediate

polynomial multiplication (Step 2), and post-processing (Steps 3 and 4).

Algorithm 11 Fast.2.PolyMult(A(x), B(x))

Input: A(x) and B(x) ∈ Rq

Output: P (x) = (P0(x
2), P1(x

2))
//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
2) +A1(x

2) · x
//split A(x) as two parts based odd and even indices
B(x) = B0(x

2) +B1(x
2) · x

//split B(x) as two parts based odd and even indices
2: U(y) = A0(y)B0(y) mod (yn/2 + 1, q), where y = x2

// intermediate polynomial multiplication
V (y) = A1(y)B1(y) mod (yn/2 + 1, q)
W (y) = (A0(y) +A1(y))(B0(y) +B1(y))

mod (yn/2 + 1, q)
3: P0(y) = U(y) + V (y) · y mod (yn/2 + 1, q)
P1(y) =W (y)− (U(y) + V (y)) mod (yn/2 + 1, q)

4: P (x) = P0(x
2) + P1(x

2) · x, where y = x2

5: return P (x)

We first decompose the polynomials A(x) and B(x) based on the even and odd indices, as

shown in Step 1, also called polyphase decomposition [57]. We denote y = x2, and the polynomial

A(x) is expressed as:

A(x) = A0(x
2) +A1(x

2) · x = A0(y) +A1(y) · x, (6.13)

where the even indexed polynomial A0(y) and the odd indexed polynomial A1(y) are expressed as:

A0(y) = a[0] + a[2]y + a[4]y2 + . . .

+ a[n− 2]yn/2−1 mod (yn/2 + 1), (6.14)

A1(y) = a[1] + a[3]y + a[5]y2 + . . .

+ a[n− 1]yn/2−1 mod (yn/2 + 1). (6.15)

A similar decomposition is applied to B(x) to obtain its even and odd polynomials B0(y) and B1(y).
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The product P (x) can be computed as:

P (x) = P0 (y) + P1 (y) · x

=(A0(y) +A1(y) · x) · (B0(y) +B1(y) · x)

=A0 (y)B0 (y) + [A0 (y)B1 (y) +A1 (y)B0 (y)] · x

+ [A1 (y)B1 (y)] · y (6.16)

The polyphase decomposition describes one polynomial multiplication of length-n in terms

of four polynomial multiplications of length-n/2. While this step in itself does not reduce the

computation complexity, it is an essential first step. In Step 2, the fast filter algorithm describes the

modular polynomial multiplication in terms of three polynomial multiplications of half-length; this

reduces the complexity by 25%. Denote the three intermediate modular polynomial multiplication

outputs as U(y), V (y), and W (y). In the fast algorithm, P1(y) is computed as:

P1 (y) = A0 (y)B1 (y) +A1 (y)B0 (y) ,

= (A0 (y) +A1 (y)) (B0 (y) +B1 (y))

−A0 (y)B0 (y)−A1 (y)B1 (y) (6.17)

=W (y)− (U(y) + V (y)), (6.18)

where

U(y) = A0(y)B0(y), (6.19)

V (y) = A1(y)B1(y), (6.20)

W (y) = (A0(y) +A1(y))(B0(y) +B1(y)). (6.21)

Note that unlike P1(y), P0(y) = U(y) + V (y) · y mod (yn/2 + 1) requires further modular

polynomial reduction, which is achieved in the post-processing step. Since V (y) needs to be multi-

plied by y before adding the coefficients of U(y), the highest degree of coefficient exceeds the range

of the ring (yn/2 + 1), (i.e., U(y) + V (y) · y = u[0] + p0[1]y + p0[2]y
2 + ... + v[n/2 − 1]yn/2). As a
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result, the even polynomial P0(y) requires an additional subtraction and is computed as:

P0(y) =(u[0]− v[n/2− 1]) + p0[1]y + p0[2]y
2

+ . . .+ p0[n/2− 1]yn/2−1. (6.22)

The data-flow of the proposed fast parallel architecture is shown in Fig. 6.7. Different

from the traditional methods that execute the polynomial modular reduction during or after post-

processing (i.e., combining the intermediate polynomials back to a single polynomial) [74, 85], we

integrate polynomial modular reduction into the three intermediate polynomial multiplications. This

is achieved by using the sequential systolic modular polynomial multiplication described in the

previous section. A 2-level Karatsuba polynomial multiplication requires at least (n−1) clock cycles

to output n coefficients sequentially for the three intermediate polynomials and ( 72n− 4) or (3n− 3)

modular additions/subtractions for post-processing [74].
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Figure 6.7: Data-flow of the Fast.2.PolyMult algorithm.

In contrast, by employing the sequential weight-stationary systolic polynomial modular

multiplier as shown in Fig. 6.6, n
2 coefficients of U(y), V (y), and W (y) are output in the same

(n− 1) clock cycles without requiring additional elements. As these three intermediate polynomials

are already in the ring Rq, the post-processing stage has a lower cost, which only needs 3
2n modular

additions/subtractions.

Fig. 6.8 depicts the proposed hardware architecture for Algorithm 11 for a degree-n polyno-

mial multiplication. It mainly consists of four adders/subtractors, three registers, and three degree-n2

modular polynomial multipliers that also include three shift registers of length-n2 (as described in

Fig. 6.5). Besides, the bottom path can store v[n/2 − 1] (coefficient from V (y)) for n clock cycles
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and feed its negative form (−v[n/2 − 1]) to the adder at the upper path in each iteration l. This

operation is controlled by two switches. When the left switch’s instance is at (n/2)l+0, the output

coefficient of V (y) is loaded into a register, while the right switch will release the stored data to the

next operation at (n/2)l + (n/2− 1).

B0(y) 

(B0(y)+B1(y))

B1(y)

A0(y)

A1(y)

P0(y)

P1(y)

D

(Pre-processing) (Post-processing)(Intermediate Poly. Mult.)

D
v[n/2-1] -v[n/2-1]

U(y)

V(y)

W(y)

(Pipelining Cut-set)

D

Mod

Mod

Mod

_

_
(n/2)l+(n/2-1)(n/2)l+0

(n/2)l+{0, 1,..., (n/2-2)}(n/2)l+{1, 2,..., (n/2-1)}

Figure 6.8: Fast 2-parallel modular polynomial multiplier.

The coefficients of P1(y) can be simply obtained by using two subtractors, while the co-

efficients for P0(y) are more complicated to generate. The addition between U(y) and V (y) · y is

explained using the timing diagrams for n = 8 shown in Fig. 6.9.

u[3] u[2] u[1] u[0]U(y):
v[3] v[2] v[1] v[0]V(y):

u[3] u[2] u[1] u[0]U(y):
v[3] v[2] v[1] v[0]V(y)ꞏy:

u[3] u[2] u[1]U:
v[2] v[1] v[0]V:
p0[3] p0[2] p0[1]

(a) (b) (c)

u[0]
-v[3]
p0[0]

4 5 6 7clk: 4 5 6 7clk: 8 4 5 6 7clk: 8

Figure 6.9: Timing diagram for P0[y] at post-processing stage when n = 8.

As the coefficients of U(y) and V (y) are generated in the same pattern as shown in Fig. 6.9(a),

directly calculating P0(y) is infeasible without multiplying y for V (y). However, delaying U(y) by

one cycle can enable the addition operation as shown in Fig. 6.9(b). Furthermore, to perform the

polynomial modular reduction as in Equation 6.22, as described in Fig. 6.9(c), two switches and

two delay elements are required. For the subtraction of v[3] from u[0], the first switch passes v[3]

to the delay element and the second switch releases its negative after four clock cycles (n2 clock

cycles for general case), as u[0] is output four clock cycles (n2 clock cycles for general case) after

v[3]. Note that no additional adder/subtractor is needed and full hardware utilization is retained

for all the components in the circuit. Moreover, this optimization technique still allows continuous

processing of modular polynomial multiplications without requiring any null operations. To align

the coefficients of P1(y) with P0(y), one delay element is placed at the end of P1(y)’s output.
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While the fast modular polynomial multiplier structure is similar to the fast parallel filter,

there is one fundamental difference. Unlike the fast parallel filter where all computations are causal,

the computation V (y) · y is inherently a non-causal operation. This is transformed into a causal

operation by introducing a latency of one clock cycle; this can be achieved by placing delays at one

feed-forward cut-set in the post-processing step. The proposed novel approach of computing V (y) ·y

does not increase the latency beyond one clock cycle and preserves the feed-forward property of the

architecture and continuous data-flow property.

6.4.2 Fast 4-parallel Architecture

A fast 4-parallel architecture can be derived by iterating the fast 2-parallel architecture

twice [57,75–77]. The fast 4-parallel schoolbook modular polynomial multiplication algorithm (also

denoted as Fast.4.PolyMult) is presented in Algorithm 12, while Fig. 6.10 shows the corresponding

architecture.

Algorithm 12 Fast.4.PolyMult(A(x), B(x))

Input: A(x) and B(x) ∈ Rq

Output: P (x) = (P0(x
4), P1(x

4), P2(x
4), P3(x

4)),
//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
2) +A1(x

2) · x2
//split A(x) as two parts based odd and even indices
B(x) = B0(x

2) +B1(x
2) · x2

//split B(x) as two parts based odd and even indices
2: (C0(y), C1(y)) = Fast.2.PolyMult(A0(x

2), B0(x
2)),

where y = x4

(C2(y), C3(y)) = Fast.2.PolyMult
(
(A0(x

2) +A1(x
2)),

(B0(x
2) +B1(x

2))
)

(C4(y), C5(y)) = Fast.2.PolyMult(A1(x
2), B1(x

2))
3: P0(y) = C0(y) + C5(y) · y mod (yn/4 + 1, q)
P1(y) = C2(y)− C1(y)− C4(y) mod (yn/4 + 1, q)
P2(y) = C1(y) + C4(y) mod (yn/4 + 1, q)
P3(y) = C3(y)− C0(y)− C5(y) mod (yn/4 + 1, q)

4: P (x) = P0(x
4) + P1(x

4) · x+ P2(x
4) · x2 + P3(x

4) · x3, where y = x4

5: return P (x)

The Fast.4.PolyMult algorithm has four steps. In Step 1 of Algorithm 12, A(x) is split

into two parts based on the odd and even indices. Then, A0(x
2), A1(x

2), and their sum (A0(x
2) +

A1(x
2)) are further split based on Step 1 in Fast.2.PolyMult (Algorithm 11). A0(x

2) and A1(x
2)

are decomposed as four polynomials (A00(x
4), A01(x

4), A10(x
4), A11(x

4)) which are fed to upper
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Figure 6.10: Fast 4-parallel modular polynomial multiplier.

and lower fast 2-parallel modular polynomial multipliers (denoted Fast-2 PolyMult. in Fig. 6.10),

respectively. Meanwhile, as the fast 2-parallel modular polynomial multiplier has two inputs in

parallel, (A0(x
2) + A1(x

2)) in Step 2 is simply implemented as two adders in the middle fast 2-

parallel modular polynomial multiplier, i.e., (A00(x
4) + A10(x

4)) and (A01(x
4) + A11(x

4)). Let y

represent x4; Hence the four polynomials decomposed from A0(x
2) and A1(x

2) can be expressed as

A00(y) = a[0] + a[4]y + a[8]y2 + ...

+ a[n− 4]yn/4−1 mod (yn/4 + 1), (6.23)

A10(y) = a[1] + a[5]y + a[9]y2 + ...

+ a[n− 3]yn/4−1 mod (yn/4 + 1), (6.24)

A01(y) = a[2] + a[6]y + a[10]y2 + ...

+ a[n− 2]yn/4−1 mod (yn/4 + 1), (6.25)

A11(y) = a[3] + a[7]y + a[11]y2 + ...

+ a[n− 1]yn/4−1 mod (yn/4 + 1), (6.26)

where

A(x) = A00(x
4) +A10(x

4) · x+A01(x
4) · x2 +A11(x

4) · x3. (6.27)

B(x) can be decomposed in a similar manner.
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In the intermediate polynomial multiplication stage, three degree-n4 fast 2-parallel modular

polynomial multipliers (Fig. 6.8) generate six degree-n4 polynomials, C0(y), C1(y), . . . , C5(y). As

shown in Fig. 6.10, 3
2n additions/subtractions are carried out by six adders/subtractors, where each

adder/subtractor performs n
4 additions/subtractions. Finally, polynomial modular reduction for

C5(y) and C0(y) are performed in a manner similar to the fast 2-parallel architecture (Fig. 6.8).

6.4.3 Fast 3-parallel Architecture

We also present the design for a fast 3-parallel schoolbook modular polynomial multiplication

algorithm (denoted as Fast.3.PolyMult), allowing M to be a multiple of 3, enabling various levels of

parallelism.

Algorithm 13 Fast.3.PolyMult(A(x), B(x))

Input: A(x) and B(x) ∈ Rq

Output: P (x) = (P0(x
3), P1(x

3), P2(x
3)),

//P (x) = A(x) ·B(x) mod (xn + 1, q)

1: A(x) = A0(x
3) +A1(x

3) · x+A2(x
3) · x2

B(x) = B0(x
3) +B1(x

3) · x+B2(x
3) · x2

2: C0(y) = A0(y)B0(y) mod (yn/3 + 1, q)
C1(y) = A1(y)B1(y) mod (yn/3 + 1, q)
C2(y) = A2(y)B2(y) mod (yn/3 + 1, q)
C3(y) =

(
A0(y) +A1(y)

)(
B0(y) +B1(y)

)
mod (yn/3 + 1, q)

C4(y) =
(
A1(y) +A2(y)

)(
B1(y) +B2(y)

)
mod (yn/3 + 1, q)

C5(y) =
(
A0(y) +A1(y) +A2(y)

)(
B0(y) +B1(y) +B2(y)

)
mod (yn/3 + 1, q), where y = x3

3: D0(y) = C3(y)− C1(y) mod (yn/3 + 1, q)
D1(y) = C4(y)− C1(y) mod (yn/3 + 1, q)
D2(y) = C0(y)− C2(y) · y mod (yn/3 + 1, q)
D3(y) = C5(y) mod (yn/3 + 1, q)

4: P0(y) = D2(y) +D1(y) · y mod (yn/3 + 1, q)
P1(y) = D0(y)−D2(y) mod (yn/3 + 1, q)
P2(y) = D3(y)−D0(y)−D1(y) mod (yn/3 + 1, q)

5: P (x) = P0(x
3) + P1(x

3) · x+ P2(x
3) · x2, where y = x3

6: return P (x)

Fast.3.PolyMult algorithm also consists of three stages, which is illustrated in Algorithm

13. During the polyphase decomposition (pre-processing stage), polynomial A(x) is decomposed as

A(x) = A0(x
3) +A1(x

3) · x+A2(x
3) · x2. (6.28)
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The modular multiplication result P (x) can be defined as:

P (x) = P0(y) + P1(y) · x+ P2(y) · x2, (6.29)

where y = x3, and these three sub-polynomials are presented in Step 4 in Algorithm 13. The

derivation of the fast 3-parallel modular multiplier is similar to the fast parallel filter derivation; the

reader is referred to [57,75,77].
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Figure 6.11: Fast 3-parallel modular polynomial multiplier.

The architecture for the Fast.3.PolyMult algorithm is shown in Fig. 6.11, which consists of

six degree-n3 modular polynomial multipliers, thirteen modular adders/subtractors with additional

delay elements. These six degree-n3 modular multipliers compute the intermediate polynomials C0(y)

to C5(y) with an additional pipelining stage at the end of the modular multipliers’ output.

In the post-processing stage, six intermediate polynomials are used to generate four new

intermediate polynomials D0(y) to D3(y) before computing the outputs P0(y), P1(y), and P2(y)

using less number of additions/subtractions.

6.4.4 Fast M-parallel Architecture

Using iterated approach, we can use fast 2-parallel architecture and/or fast 3-parallel archi-

tecture to achieve higher levels of parallelism. Therefore, we can implement various fast M -parallel

architectures, where the level of parallelismM can be a power-of-two integer, power-of-three integer,

or product of any power-of-two and power-of-three.
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The high-level overview of the generalized fastM -parallel architecture is shown in Fig. 6.12.

This architecture mainly has M sub-modular polynomial multipliers of degree-n/M operating in

parallel to generate M sub-polynomials of P (x). In addition, the components for post-processing

as well as the control unit are used to align the coefficients from all the output sub-polynomials of

P (x). This is similar to inserting a pipelining cut-set to transform non-causal operations into causal

operations, at the expense of an increase in latency by one cycle.

During the computation, the data can be either accessed from the host’s personal computer

(PC) to achieve the input polynomials’ coefficients directly or communicated to the FPGA’s RAM.

The timing performance can be theoretically derived as follows. The fast M -parallel design

can reduce the response time to approximately n/M clock cycles. In general, the total latency of an

M -parallel modular polynomial multiplier for L polynomial multiplications can be expressed as:

Tlat = n(1 + L)/M + ⌈log2(M)⌉. (6.30)

E
xt

er
n

al
 C

o
m

m
. N

et
w

o
rk

 Fast M-parallel PolyMult.

FIR-Basd 
Poly Mult.

(CPU & memory)

… 

(M sub-filter in 
parallel)

FIR-Basd 
Poly Mult.

FIR-Basd 
Poly Mult.

Control 
Unit

Pre-Proc. 
Components

Post-Proc. 
Components

(or)

(To Interface 
other blocks)

Host’s PC

FPGA 
RAM 

Figure 6.12: High-level overview of generalized fast M -parallel modular polynomial multiplier.

6.5 Experimental Results

The performance of the proposed modular polynomial multiplication is demonstrated for

the Saber scheme using Verilog HDL implementation. Several changes are adopted specifically for

the Saber scheme.
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6.5.1 Basic Arithmetic Units for Saber

Due to the Saber scheme’s advantages, the basic components do not consume a large number

of hardware resources. In particular, the modular multiplier discussed in Section 6.3 can be replaced

by a few adders since the coefficients of polynomial B(x) are in the range of [−4, 4] [82]. As the

moduli are power-of-two integers, the modular reduction can again be performed by simply keeping

the lower bits. Note that, the coefficients in both polynomials A(x) and B(x) are represented in the

sign-magnitude form, and the word-lengths of the magnitudes of these two polynomials are 13-bit

and 3-bit, respectively. The modular adder calculates the 13-bit sum (sum) by adding the product

(prod) of the corresponding a[i] and b[j], and the output from the register acc as shown in Fig. 6.6,

which can also be mathematically expressed as:

sum =


acc− prod, if asign

⊕
bsign = 1,

acc+ prod, otherwise,

(6.31)

where asign and bsign are the sign bits of the two operands a[i] and b[j], respectively. Note that all

the modular polynomial multiplications correspond to degree n = 256.

6.5.2 Unified Hash Function Block

The hash functions used in Saber are SHA3-256, SHA3-512, and SHAKE-128 extendable

output functions (XOF), which are from the Keccak family [83]. For any message (input to the hash

function), the length of the digest (hashed output) is always fixed. SHA3-256 and SHA3-512 produce

256 bits and 512 bits, respectively, while SHAKE-128 runs the permutation iteratively and stops

until the results reach the required output length. In the Saber scheme, the SHAKE-128 function

is used to generate pseudo-random matrix A, the secret key s, and s′ as described in Algorithms

8 and 9. SHA3-256 and SHA3-512 are applied only in the IND-CCA secure case for enhancing the

protection of the keys, message, and ciphertext. These functions share an identical underlying sponge

function Keccak-f[1600] with different rates, paddings, and output patterns. Therefore, similar to

prior works [72,89,99], we also consider a unified hash block in our LARK architecture.

As the sponge function Keccak-f[1600] has been standardized and widely used in many hard-

ware implementations for cryptographic algorithms, many architectures for PQC schemes directly

adopt the open-source packages to design a unified hash function block [72,73,89]. Most open-source
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packages add stages of pipelining to achieve a high frequency (low critical path) design in order to

adapt to general applications [100]. However, the critical path among the prior works is under the

NTT-based or schoolbook modular polynomial multiplier that requires addition or multiplication,

which is much higher than the Keccak core provided in the open-source packages, thus implying that

the pipelines are redundant. Different from the prior works, we implement our own unified hash

function block as we aim to reduce the total latency for computing the hash functions by eliminating

unnecessary pipelining stages.

The Keccak hash functions generally divide into two parts, i.e., absorb and squeeze, with

both including 24 rounds of permutation to handle different input and output length require-

ments [83]. The absorb step truncates the input message to equal or less than the given rate

and permutes the new states generated by bitwise XOR of previous states and message. The process

is completed when all input messages are absorbed and permutations are finished. The squeeze

process operates the 24 rounds of permutation after absorb generates the required length of digest

using the state at the end of every 24 rounds of permutations.

The unified hash function block consists of three steps: message input, permutation, and

digest output. In particular, 24 rounds of permutation are finished in 24 clock cycles to a single

round for permutation in a single clock cycle, which has less latency compared with the works in [72]

(28 clock cycles) and [89] (25 clock cycles) for the same rounds of permutation. Moreover, the

message input and digest output are transmitted in 64-bit per clock cycle, thus the required clock

cycles are determined by the bit-length of the message and digest. Besides, our unified hash function

block needs to be alternatively reconfigured as SHA3-256, SHA3-512, and SHAKE-128, whereby we

construct the control logic to handle varied input and output requirements in permutation rounds

of the absorb and squeeze processes. However, there is a bottleneck in that the bit-lengths of the

message or digest are in thousands or hundreds of bits, which requires many clock cycles to load

or output the data. Similar to the prior works [72], we buffer the new message/calculated digest

during the permutation without interfering with the permutations to improve the utilization of the

permutation core as shown in Fig. 6.13.

The experiment is performed on the Xilinx Artix-7 AC701 FPGA board since Artix-7 fam-

ily FPGA boards are recommended by NIST for PQC hardware implementation. In addition, since

several prior works also used the high-performance Xilinx UltraScale+ FPGA board, we also demon-

strate the performance of our architecture on this board for more comparisons. The communication
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Figure 6.13: Architecture for unified hash function block.

and data transmission between FPGA and PC use the universal asynchronous receiver transmitter

(UART) module provided by the AC701 device for functionality verification.

6.5.3 Evaluation of Modular Polynomial Multiplier

We first examine the performance of our proposed modular polynomial multipliers, including

the FIR filter-based (Fig. 6.5), fast 2-parallel architecture, and fast 4-parallel architecture.

The experimental results and comparison with prior works [72, 85, 92, 98] are summarized

in Table 6.2. A further comparison of the timing performance is presented in Tables 6.3 and 6.4.

The clock frequencies are set as 250MHz and 133MHz for UltraScale+ and Artix-7, respectively.

Tables 6.3 and 6.4 summarize the number of clock cycles and actual latency for one modular polyno-

mial multiplication (PolyMult.), and all the modular polynomial multiplications in KeyGen, Encaps,

and Decaps steps of Saber scheme with the medium security level. Note that the number of modular

polynomial multiplications in encryption (decryption) is the same as in Encaps (Decaps). It can be

seen from Table 6.2 that our design has a shorter critical path than those of the designs in [85, 92]

and the same as the work in [72,98].

For a fair comparison, we focus on the evaluation against the architecture [72], and its

extended work [98] since both works use the same clock frequency and target high-speed design. Note

that the high-speed designs in [98] do not provide the timing performance in the KeyGen, Encaps,

and Decaps steps for Saber scheme but only the result for one modular polynomial multiplication,

so we adopt the number of clock cycles from their previous work [72] and present in Table 6.3. In

particular, the framework and the timing performance (including the number of clock cycles and

frequency) for one modular polynomial multiplication of [98] are maintained to be the same as their
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Table 6.2: Comparison of area consumption and frequency for modular polynomial multiplier when
n = 256

Design Device LUTs FFs DSPs BRAM Freq. [MHz]
Roy (1 Mult.) [72] Ultrascale+ 17406 5083 0 0 250
Roy (2 Mult.) [72] Ultrascale+ 31853 8844 0 0 250

Zhu [92] Ultrascale+ 13954 3943 85 6 100
Basso (HS-I 256) [98] Ultrascale+ 10844 5150 0 0 250
Basso (HS-I 512) [98] Ultrascale+ 22118 4920 0 0 250

FIR.PolyMult Ultrascale+ 16971 8755 0 0 250
Fast.2.PolyMult Ultrascale+ 25831 12850 0 0 250
Fast.4.PolyMult Ultrascale+ 35306 19143 64 0 250

Mera [85] Artix-7 7400 7331 38 2 125
FIR.PolyMult Artix-7 16902 8755 0 0 133
Fast.2.PolyMult Artix-7 25854 12850 0 0 133
Fast.4.PolyMult Artix-7 35396 19143 64 0 133

Table 6.3: Timing performance of modular polynomial multiplier when n = 256 in medium security
level of Saber based on Ultrascale+ FPGA board

Design 1 PolyMult. KeyGen Encaps Decaps ATP-LUTb

Roy (1 Mult.) [72] 256c (1.02)a 2685 (10.74) 3592 (14.37) 4484 (17.94) 7.49 ×105
Roy (2 Mult.) [72] 128c (0.51) 1552 (6.21) 2205 (8.82) 2911 (11.64) 8.50 ×105

Zhu [92] 81 (0.81) (Not Reported) 978 (9.78) 1227 (12.27) -
Basso (HS-I 256) [98] 256c (1.02) 2685 (10.74) 3592 (14.37) 4484 (17.94) 4.67 ×105
Basso (HS-I 512) [98] 128c (0.51) 1552 (6.21) 2205 (8.82) 2911 (11.64) 5.89 ×105

FIR.PolyMult 511 (2.04) 2560 (10.24) 3328 (13.31) 4096 (16.38) 6.77 ×105
Fast.2.PolyMult 255 (1.02) 1281 (5.12) 1665 (6.66) 2049 (8.20) 5.16 ×105
Fast.4.PolyMult 127 (0.51) 642 (2.57) 834 (3.34) 1026 (4.10) 3.50 ×105

a: Total latency in the unit of clock cycles (actual latency in the unit of µs) of one modular polyno-
mial multiplication, or all the modular polynomial multiplications in Saber’s specific step
b: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times the sum of
actual latency (µs) of the total number of modular polynomial multiplications in KeyGen, Encaps,
and Decaps steps
c: Clock cycles for reading and writing operations are not counted

Table 6.4: Timing performance of modular polynomial multiplier when n = 256 in medium security
level of Saber based on Artix-7 FPGA board

Design 1 PolyMult. KeyGen Encaps Decaps ATP-LUTb

Mera [85] 1299 (10.30) 11592 (92.74) 15456 (123.65) 19320 (154.56) 27.45 ×105
FIR.PolyMult 511 (3.83) 2560 (19.25) 3328 (25.02) 4096 (30.80) 12.66 ×105
Fast.2.PolyMult 255 (1.92) 1281 (9.63) 1665 (12.52) 2049 (15.41) 9.71 ×105
Fast.4.PolyMult 127 (0.95) 642 (4.83) 834 (6.27) 1026 (7.71) 6.65 ×105
a: Total latency in the unit of clock cycles (actual latency in the unit of µs) of one modular polyno-
mial multiplication, or all the modular polynomial multiplications in Saber’s specific step
b: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times the sum of
actual latency (µs) of the total number of modular polynomial multiplications in KeyGen, Encaps,
and Decaps steps
c: Clock cycles for reading and writing operations are not counted
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Table 6.5: Performance of modular polynomial multiplier using fast M -parallel architecture when
n = 180 based on Artix-7 FPGA board

Design Fast.2.PolyMult Fast.3.PolyMult Fast.4.PolyMult
LUTs 17902 21729 25110
FFs 9096 11996 13633
DSPs 0 60 45

Freq. [MHz] 133 133 133
1 PolyMult.∗ 181 (1.36)a 122 (0.91) 92 (0.69)
9 PolyMult.∗ 901 (6.77) 602 (4.53) 452 (3.40)
ATP-LUTa 1.21 ×105 0.98 ×105 0.85 ×105
Throughputc 2 3 4
a: Total latency in the unit of clock cycles (actual latency in the unit of µs)
b: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs
times the sum of actual latency (µs) of nine modular polynomial multiplications
c: Throughput in the unit of samples per clock cycle

previous work [72], while their optimized centralized multiplier design for the MAC unit in [98]

significantly reduces LUTs. Besides, these two works present the general design and parallel design.

In Tables 6.2 and 6.3, the general designs correspond to Roy (1 Mult.) as well as Basso (HS-I 256),

and parallel designs correspond to Roy (2 Mult.) as well as Basso (HS-I 512).

Compared to the general design in [72], our proposed FIR filter-based modular polynomial

multiplier (i.e., FIR.PolyMult) has slightly less number of LUTs and less total latency in the modular

polynomial multiplications used in three steps of the Saber scheme; however, a higher number of

flip-flops (FFs) is needed due to the additional shift registers. Note that the clock cycles used in one

modular polynomial multiplication in Roy (1 Mult.) are only 256 clock cycles due to the fact that

their result does not count the number of clock cycles used for reading and writing operations [98],

which is same as the response time in our proposed FIR.PolyMult design. When compared to Roy

(2 Mult.), our fast 2-parallel architecture achieves 18.91%, 25.08%, and 39.88% reduction on the

number of LUTs, latency, and area-time product of LUTs (ATP-LUT), respectively.

Besides, their extended work [98] is also taken into comparison. Our FIR.PolyMult and fast

2-parallel architectures require a larger number of LUTs compared to their general design (Basso

(HS-I 256)) and parallel design (Basso (HS-I 512)), but the latency of our two proposed designs is

smaller than theirs. In this case, the performance of ATP-LUT is utilized for a fair comparison. The

Basso (HS-I 256) design has 31.02% reduction compared to our FIR.PolyMult architecture. However,

the ATP-LUT product of our fast 2-parallel architecture is reduced by 13.24% compared to the Basso

(HS-I 512). This result implies that our fastM -parallel design has a superior performance compared
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to conventional parallel processing techniques.

Even though our design requires more FFs in the data-path and shift registers, we argue

that it has a small influence on the overall performance of UltraScale+ and Artix-7 FPGA boards

since both devices have a much higher resource budget for FFs than LUTs [101].

Furthermore, both the modular polynomial multiplier in LWRpro [92] and the compact

modular polynomial multiplier in [85, 92] use the Toom-Cook/Karatsuba algorithm with 8-level

and 4-level, respectively. The compact polynomial multiplier in [85] has a long critical path of

five adders/subtractors and two multipliers in the interpolation part, which requires two pipelining

stages to reduce the critical path for maintaining a high frequency. This design targets the low-area

performance, which only requires limited numbers of LUTs, FFs, and only 38 DSP units, as shown in

Table 6.2. While this design has lower LUT usage than our architecture, it suffers from a low speed

since their degree-64 polynomial multipliers require 1168 clock cycles for each computation, which

causes the actual latency in such a compact design to be around 19 times of the latency in our fast

4-parallel architecture as presented in Table 6.4. If we consider the ATP-LUT as the performance

metric to compare our proposed fast 4-parallel architecture and this prior low-area design, it shows

that our design achieves a 75.77% reduction.

Besides, the modular polynomial multiplier in [92] requires the lowest number of clock cycles

among all the prior works, while having the lower clock frequency as illustrated in Table 6.3. In

comparison, our fast 4-parallel architecture requires 15.65% less number of clock cycles and achieves

a 66.26% reduction in the actual latency for all the modular polynomial multiplications in the

Encaps and Decaps steps. Considering the area performance of this work, their modular polynomial

multiplier uses 60.48% fewer LUTs but 24.71% more DSPs compared to the proposed fast 4-parallel

architecture. Thus, the ATP products of DSP and LUT need to be considered separately. Since the

clock cycles used for KeyGen are not reported in [92], the ATP-LUT (ATP-DSP) for the comparison

with this work is defined as the number of LUTs (DSPs) times the sum of actual latency (µs)

of the total number of modular polynomial multiplications in two steps only, Encaps and Decaps.

Specifically, the ATP-LUT and ATP-DSP in their modular polynomial multiplier are 3.08×105 and

1874.20, respectively. The ATP-LUT and ATP-DSP in the fast 4-parallel architecture are 2.63×105

and 476.16, respectively. Under this comparison, ATP-LUT and ATP-DSP are reduced by 14.61%

and 75.07%, respectively, in our design.

Thus, we can conclude that our design achieves a significant reduction in the latency or the
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delay (critical path) which leads to reductions in ATP when compared to the two prior works that

employ the Karatsuba/Toom-Cook algorithm-based modular polynomial multiplication.

Our proposed modular polynomial multipliers can be sufficient to support different security

levels of Saber without any change of the area consumption and the frequency presented in Table 6.2,

but only requires the different number of clock cycles.

6.5.4 Parallel Architectures

The works in [72] and [98] also present a parallel architecture, which is a scaled version. The

parallel design in [72] (Roy (2 Mult.)) uses two multipliers in one MAC unit, and the parallel design

in [98] (Basso (HS-I 512)) doubles their MAC units (each MAC unit has one MUX and one adder).

When compared to the Roy (2 Mult.) design, our fast 2-parallel architecture achieves a significant

reduction in the area overhead and latency. In particular, our fast 2-parallel architecture consumes

only about 34% higher area consumption than the FIR filter polynomial multiplier while reducing

latency by 50%, while their scaled version of the parallel modular polynomial multiplier has 45%

overhead compared with the general design architecture (Roy (1 Mult.)). Along with parallelization,

the delay also increases, as the critical path will change from one multiplication and one addition to

one multiplication and two additions. In this case, an additional pipeline is added in the design of

Roy (2 Mult.) [72] to maintain the same high frequency. Under the same number of pipeline stages,

our fast 2-parallel architecture achieves a lower critical path and hence can be driven by a clock with

a higher frequency.

Table 6.6: Comparison with recent Saber scheme implementation in medium security level

Design Roy [72] Ours Ours
Platform UltraScale+ UltraScale+ Artix-7

Time in (µs): KeyGen/Encaps/Decaps 21.8/26.5/32.1 10.2/12.6/15.6 19.2/23.6/29.2
Freq. [MHz] 250 250 133

Area: LUTs/FFs/DSPs/BRAM 23.6k/9.8k/0/2 41.5k/22.3k/64/2 41.5k/22.3k/64/2
ATP-LUTa 1.9 ×106 1.6 ×106 3.0 ×106

a: ATP-LUT (area-time product of LUTs) is calculated from the number of LUTs times
the sum of actual latency (µs) of KeyGen, Encaps, and Decaps steps

We also compare different fast M -parallel architectures for n = 180 in Table 6.5. It can

be noticed that when the level of parallelism increases (M becomes larger), the actual latency is

reduced at the expense of higher area consumption. Besides, the throughput of the designs are
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increased when M becomes larger. The ATP-LUT product for the fast 2-parallel, 3-parallel, and

4-parallel architectures are listed for computing nine modular polynomial multiplications, which

indicates that a higher level of parallelism can provide a more efficient design if sufficient resource

budget is available.

6.5.5 Comparison with Saber PQC Scheme Implementations

For the implementation of the entire Saber scheme, the modular polynomial multiplication

is implemented by the proposed fast 4-parallel architecture, while other simple functional blocks are

modified from the open-source codes provided in [82] and [72].

Table 6.6 presents the comparison of the FPGA performance with recent hardware imple-

mentation [72] for the Saber PQC scheme at a medium security level. The latency in our design

is 52% less than the latency in [72] with the cost of more LUTs and DSPs consumed. In fact, the

reduction is mainly from our optimized low-latency modular polynomial multiplier. Besides, instead

of directly adopting the open-source SHA3 hash function block as in [72], we also implement the hash

function block when implementing the entire scheme. For example, the total latency of SHA3-256

(needs to process 32-byte, 64-byte, 992-byte, and 1088-byte seeds) operating in the hash function

block is reduced from 585 clock cycles to 526 clock cycles in the Saber Encaps. The rationale behind

this latency reduction is as follows. Most open-source packages add stages of pipelining to achieve

a high frequency (low critical path) design in order to adapt to general applications [100]. However,

the critical path of the modular polynomial multiplier that requires addition or multiplication from

prior work is much higher than the Keccak core provided in the open-source packages, thus imply-

ing that some pipelines are redundant. Different from the prior work, we implement our own hash

function block as we aim to reduce the total latency for computing the hash functions by eliminating

unnecessary pipelining stages.

For the area performance, although we have increased hardware costs, both Artix-7 and Ul-

traScale+ FPGA boards still have sufficient resources to accommodate our fast 4-parallel design. In

other words, our proposed fast 4-parallel architecture is under the constraint of hardware complexity

specified by NIST (Artix-7).
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6.6 Conclusion

This chapter has presented a novel modular polynomial multiplier and demonstrated its

applications for lattice-based cryptography. The proposed hardware design exploits the fast filtering

technique to achieve low latency, high scalability, and full hardware utilization. We proposed efficient

parallel architectures with much lower hardware overhead and latency than prior works. Our design

can be easily generalized across different levels of parallelism. Comprehensive experimental results

are presented. We show that our design achieves superior performance than the state-of-the-art

modular polynomial multipliers based on schoolbook polynomial multiplication or the Karatsuba

algorithm. A case study of instantiating Saber scheme is also presented, which shows that our

proposed design can accelerate the computation and reduce the actual latency of the cryptosystem

compared with the prior work.

90



Chapter 7

PaReNTT: Low-Latency Parallel

Residue Number System and

NTT-Based Long Polynomial

Modular Multiplication for

Homomorphic Encryption

High-speed long polynomial multiplication is important for applications in homomorphic

encryption (HE) and lattice-based cryptosystems. This chapter addresses low-latency hardware ar-

chitectures for long polynomial modular multiplication using the number-theoretic transform (NTT)

and inverse NTT (iNTT). Chinese remainder theorem (CRT) is used to decompose the modulus into

multiple smaller moduli. Our proposed architecture, namely PaReNTT, makes four novel contri-

butions. First, parallel NTT and iNTT architectures are proposed to reduce the number of clock

cycles to process the polynomials. This can enable real-time processing for HE applications, as

the number of clock cycles to process the polynomial is inversely proportional to the level of par-

allelism. Second, the proposed architecture eliminates the need for permuting the NTT outputs

before their product is input to the iNTT. This reduces latency by n/4 clock cycles, where n is the
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length of the polynomial, and reduces buffer requirement by one delay-switch-delay circuit of size n.

Third, an approach to select special moduli is presented where the moduli can be expressed in terms

of a few signed power-of-two terms. Fourth, novel architectures for pre-processing for computing

residual polynomials using the CRT and post-processing for combining the residual polynomials are

proposed. These architectures significantly reduce the area consumption of the pre-processing and

post-processing steps. The proposed long modular polynomial multiplications are ideal for appli-

cations that require low latency and high sample rate as these feed-forward architectures can be

pipelined at arbitrary levels. The experimental results show that the proposed architecture reduces

the area-block processing product (ABP) by a factor of 43.2 times with respect to LUT and 11.5

times with respect to DSP, when compared without the use of CRT, for a polynomial degree of 4096

and word-length of 192 bits, for a two-parallel architecture.

7.1 Introduction

Privacy-preserving protocols and the security of the information are essential for cloud com-

puting. To this end, cloud platforms typically encrypt the data by certain conventional symmetric-

key or asymmetric-key cryptosystems to protect user privacy. However, these methods cannot

prevent information leakage during the computation on the cloud since the data must be decrypted

before the computation. To further enhance privacy, homomorphic encryption (HE) has emerged

as a promising tool that can guarantee the confidentiality of information in an untrusted cloud.

Homomorphic encryption is also deployed in privacy-preserving federated learning [102] and neural

network inference [103].

Homomorphic multiplication and homomorphic addition are two fundamental operations

for the HE schemes. Most of the existing HE schemes are constructed from the ring-learning with

errors (R-LWE) problem [19] that adds some noise to the ciphertext to ensure post-quantum security.

However, the quadratic noise growth of homomorphic multiplication requires the ciphertext modulus

to be very large, which results in inefficient arithmetic operations. One possible solution to address

this issue is to decompose the modulus and execute it in parallel. This approach has been used in

residue number system (RNS) representation. In the literature, RNS-based implementations have

been employed in several software [34, 104] and hardware implementations [25, 29, 37]. However,

RNS relies on the Chinese remainder theorem (CRT), which requires additional pre-processing and
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post-processing operations. The hardware building blocks for these steps need to be optimized;

otherwise, the complexity of the RNS system will negate the advantages of parallelism of the RNS.

Meanwhile, modular polynomial multiplication is one of the essential arithmetic operations for the

R-LWE problem-based cryptosystems and, indeed, HE schemes. The complexity of the number-

theoretic transform (NTT)-based modular polynomial multiplication can be reduced dramatically

compared to the schoolbook-based modular polynomial multiplication.

Different modular long polynomial multiplier architectures can be adopted for different ap-

plications. For example, a low-area time-multiplexed architecture is well-suited for an edge device.

However, the cloud requires very high-speed architectures where multiple coefficients of the polyno-

mial need to be processed in a clock cycle. This inherently requires a parallel architecture where the

level of parallelism corresponds to the number of coefficients processed in a clock cycle. While sub-

stantial research has been devoted to designing and implementing sequential and time-multiplexed

architectures, much less research on parallel NTT-based architectures has been presented. Comput-

ing the inverse NTT (iNTT) of the product of NTT of the two polynomials can lead to long latency

and extra buffer requirement if its scheduling aspects are not considered as the product needs to be

shuffled before the iNTT is computed.

Although parallel NTT-based architectures can achieve low latency and high speed, these

require a large silicon area for the arithmetic operations as the word-lengths of the coefficients

can be large. To reduce the area, residue arithmetic is used to convert the coefficient into several

smaller coefficients that can be implemented using shorter word-lengths. This chapter proposes

parallel residue arithmetic and NTT-based modular long polynomial multiplication referred to as

PaReNTT. The use of different scheduling (folding) of the NTT and iNTT operations eliminates

the need for additional buffers. Thus, the latency of the complete operation is reduced. The use of

parallel NTT architecture reduces the number of clock cycles needed to process the long polynomial

modular multiplication. The proposed parallel NTT and iNTT architectures are completely feed-

forward and achieve full hardware utilization. These can be pipelined at any arbitrary level. To the

best of our knowledge, the proposed architecture is the first approach for feed-forward and parallel

NTT-based implementation that eliminates intermediate shuffling or buffer requirement.

Fig. 7.1 shows the overview of the proposed PaReNTT architecture, which can be bro-

ken down into three steps. The first step, referred to as residual polynomials computations (pre-

processing operation), splits the two input polynomials into several polynomials whose coefficients
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are small. Then, instead of using only one modular polynomial multiplier, several modular poly-

nomial multiplications are executed in parallel in the residual domain. Finally, the post-processing

operation performs the inverse mapping for the product polynomials to one polynomial using the

CRT. The result is the same as directly performing the modular polynomial multiplication for two

input polynomials. In the literature, most CRT and NTT-based modular polynomial multipliers are
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Figure 7.1: Overview of the use of residue arithmetic and CRT in the proposed PaReNTT architec-
ture.

based on feedback architectures with loops for executing multiple operations in a time-multiplexed

manner [25, 37, 105]. In particular, these prior works consider a unified architecture for the NTT

and iNTT architecture, which is typically constructed from a memory-based or folded architecture

framework. This design strategy can reduce the number of required processing elements (PEs).

However, a feedback architecture requires feeding the intermediate results to the storage (memories

or registers) and returning back to the input port of the architecture via the loops in multiple cycles.

This method does not allow continuous loading of the new inputs since the input/output unit (I/O)

is occupied by the intermediate results. Different from the prior works, our proposed architecture

exploits a feed-forward and parallel architecture. Our proposed architecture has no feedback loop-
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s/data paths. Therefore, the intermediate results can be executed and passed through to the next

stage PE, directly.

The contributions of this chapter are four-fold and are summarized below.

• We propose a novel parallel NTT-based polynomial multiplier where the number of clock

cycles to process the coefficients of the polynomials is inversely proportional to the level of

parallelism. This real-time architecture requires a linear increase in area with respect to the

level of parallelism.

• Our proposed architecture does not require intermediate shuffling operations. Different folding

sets for the NTT and iNTT are used such that the product of the two NTTs can be processed

immediately in the iNTT. This leads to a significant reduction in latency and complete elimi-

nation of intermediate buffer requirement.

• We propose a CRT-based implementation for the modular multiplication, which allows each

NTT-based polynomial multiplication to operate over a small prime (co-prime factor). A spe-

cial format of primes is also considered to reduce the cost of the implementation. Specifically,

all the primes are not only NTT-compatible and CRT-friendly but also have low Hamming

weights (i.e., these contain only a few signed power-of-two terms).

• Novel optimized architectures for pre-processing and post-processing for residue arithmetic

are proposed; these architectures reduce area and power consumption. Finally, the low-cost

pre-processing and post-processing blocks for the residue arithmetic are integrated into the

parallel NTT-based modular polynomial multiplier to achieve high speed, low latency, and low

area designs. In particular, optimizations in the pre-processing step can replace (t−1) Barrett

reduction units with only one Barrett reduction unit. The optimized post-processing step has

a lower cost since it bypasses any expensive modular multipliers over a large modulus q.

The rest of this chapter is organized as follows: Section 7.2 reviews the mathematical back-

ground for the RNS and NTT-based polynomial modular multiplication and the corresponding hard-

ware architectures in prior works. Section 7.3 presents a parallel architecture for the NTT-based

polynomial multiplication that eliminates intermediate storage requirements. Then, Section 7.4

introduces our optimized RNS and CRT-based polynomial multiplier. The performance of our pro-

posed architecture is presented and analyzed in Section 7.5. Finally, Section 7.6 concludes the

chapter.
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7.2 Background

7.2.1 Notation

For a polynomial ring Rn,q = Zq[x]/(x
n+1), its coefficients have to be modulo q (i.e., these

lie in the range [0, q−1]) and the degree of the polynomial is less than n (n is a power-of-two integer).

To ensure all the intermediate results will not exceed such a polynomial ring, a modular reduction

operation is needed, which is expressed as “mod (xn+1, q)” or [◦]q. The polynomial of the ring Rn,q

is denoted as a(x) =
∑n−1

j=0 ajx
j , where the j-th coefficient inside the polynomial a(x) is represented

as aj .

The addition and multiplication of two polynomials modulo (xn + 1, q) (i.e., modular poly-

nomial addition and multiplication) are written as a(x) + b(x) and a(x) · b(x), respectively. We also

use ⊙ to denote the point-wise multiplication over (xn+1, q) between two polynomials. Parameters

m = log2 n and s ∈ [0,m−1] represent the total number of stages and the current stage in the NTT

(iNTT), respectively.

7.2.2 Homomorphic Encryption and Residue Number System

HE allows the computations (e.g., multiplication, addition) directly on the ciphertext, with-

out decryption, so that the users can upload their data to any (even untrusted) cloud servers while

preserving privacy. The HE schemes can be broadly classified as fully HE (FHE) and somewhat HE

(SHE). The FHE schemes allow an arbitrary number of homomorphic evaluations while suffering

from high computational complexity [5]. SHE is an alternative solution with better efficiency than

the FHE, which only allows performing a limited number of operations without decryption [16,19,39].

High-level steps for HE schemes can be summarized in four stages: key generation, encryp-

tion, evaluation, and decryption. In particular, the key generation step is used to output three

keys: the secret key, public key, and relinearization key, based on the security parameter λ. Then,

using the public key, the encryption algorithm encrypts a message into a ciphertext ct. During the

evaluation step, a secure evaluation function performs a computation homomorphically for all input

ciphertexts and outputs a new ciphertext ct′ using the relinearization key. Finally, the result can be

obtained using the secret key and ct′ in the decryption step.

Key generation, encryption, and decryption steps are generally executed by the client. Mean-

while, the evaluation step is distributed to the cloud server for homomorphic computation. Different
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homomorphic evaluation functions have different computational costs. The homomorphic addition

is relatively simple since it is implemented by modular polynomial additions. However, homomor-

phic multiplication requires expensive modular polynomial multiplication. Thus the hardware or

software accelerations for the modular polynomial multiplier, especially under the HE parameters

with large degrees of polynomial and long word-length coefficients, are demanding.

As an example, performing a depth of four homomorphic multiplications with an 80-bit

security level requires a 180-bit ciphertext modulus and degree-4096 polynomial in prior works [37].

However, the computation involving the long word-length coefficients is not trivial, which is also

inefficient without high-level transformations. Since the moduli in most widely-used SHE schemes,

e.g., BGV [19], BFV [16], CKKS [39], are not restricted to be primes, it is possible to choose each

modulus to be a product of several distinct primes by using CRT, where each prime is an NTT-

compatible prime with a small word-length.

The CRT algorithm decomposes q to q1, q2, . . . , qt (i.e., q =
∏t

i=1 qi, qi’s are mutually

co-prime), and the ring isomorphism Rq ≡ Rq1 × Rq2 , . . . ,×Rqt . After this decomposition, ring

operation in each Rqi is performed separately, which thus can be executed in parallel. From the im-

plementation perspective, the larger the parameter t, the smaller each qi and the simpler arithmetic

operation over Rqi .

7.2.3 Prior Hardware Implementations

Several hardware architectures based on CRT-based optimization have been proposed in [25,

37,105,106]. The works in [25,37] introduce an approximate CRT method for the BFV scheme, which

involves the lifting and scaling operations to switch between a small ciphertext modulus q and a

large ciphertext modulus Q. Later, a multi-level parallel accelerator utilizing the RNS and NTT

algorithms is presented in [105]. Nevertheless, these works mainly focus on optimizing the NTT

blocks but not on the CRT system’s pre-processing and post-processing functional blocks.
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7.3 Parallel NTT-based Polynomial Multiplier without Shuf-

fling Operations

The long polynomial degree n can be in the range of thousands for the HE schemes, which

becomes the bottleneck for the implementations in both software and hardware [35,107]. Therefore,

an efficient NTT-based polynomial multiplication method with a time complexity of O(n log n) is

used. This method significantly reduces the time complexity compared to the O(n2) complexity

method of the schoolbook polynomial multiplication along with the modular polynomial reduction.

7.3.1 NTT-based Polynomial Multiplication Using Negative Wrapped

Convolution

The prior work in [33] presents an efficient algorithm for the NTT-based polynomial mul-

tiplication computing p(x) = a(x) · b(x) mod (xn + 1, q), namely negative wrapped convolution, as

shown in Algorithm 14. Note that the weighted operations are needed before NTT and after iNTT

during the negative wrapped convolution to avoid the expensive zero padding [33]. The core step of

Algorithm 14 Negative Wrapped Convolution [33]

Input: a(x), b(x) ∈ Rn,q

Output: p(x) = a(x) · b(x) mod (xn + 1, q)

1: ã(x) =
∑n−1

j=0 ajψ
j
2nx

j mod q

b̃(x) =
∑n−1

j=0 bjψ
j
2nx

j mod q

2: Ã(x) : Ak =
∑n−1

j=0 ãjω
kj
n mod q, k ∈ [0, n− 1]

B̃(x) : Bk =
∑n−1

j=0 b̃jω
kj
n mod q, k ∈ [0, n− 1]

3: P̃ (x) = Ã(x)⊙ B̃(x) =
∑n−1

k=0 ÃkB̃kx
k

4: p̃(x) = n−1
∑n−1

j=0 P̃jω
−kj
n mod q, k ∈ [0, n− 1]

5: p(x) =
∑n−1

j=0 p̃jψ
−j
2n x

j

this algorithm is the NTT that converts the polynomials a(x) and b(x) to their NTT-domain Ã(x)

and B̃(x) as in Step 2. The NTT for polynomial a(x) is mathematically expressed as

Ãk =

n−1∑
j=0

ajψ
j
2nω

kj
n mod q, k ∈ [0, n− 1]. (7.1)

Polynomial b(x) is similarly transformed to B̃(x). Specifically, ω is the primitive n-th root of unity

modulo q (i.e., twiddle factor), which satisfies ωn ≡ 1 mod q. ψ2n is the primitive 2n-th root of
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unity modulo q, and thus ω = ψ2
2n mod q. After using the NTT algorithm, the efficient point-wise

multiplication between Ã(x) and B̃(x) is performed, which is followed by the iNTT. The iNTT

transforms product, P̃ , to the original algebraic domain polynomial p(x), which is defined as

pk = n−1ψ−k
2n

n−1∑
j=0

P̃jω
−kj
n mod q, k ∈ [0, n− 1], (7.2)

where n−1 is the modular multiplicative inverse of n with respect to modulo q.

During the NTT and iNTT, the weighted operation requires the multiplication of the polyno-

mials by the weights ψj
2n mod q for NTT or ψ−j

2n mod q for iNTT. Furthermore, an NTT-compatible

prime is also utilized, i.e., q must satisfy that (q − 1) is divisible by 2n.

Since the weighted operations in NTT/iNTT require a large number of expensive modular

multiplications, the recent works in [73,108] present a new method to merge the weighted operations

into the butterfly operations. In particular, the new NTT in Equation 7.1 is re-represented as Ãk

and Ãk+n/2 by using the decimation-in-time (DIT) method:

Ãk = a3k + ψ2nω
k
na

2
k mod q, (7.3)

Ãk+n/2 = a3k − ψ2nω
k
na

2
k mod q, (7.4)

where k ∈ [0, n2 − 1] and

a3k =

n/2−1∑
j=0

a2jψ
j
nω

kj
n/2 mod q, (7.5)

a2k =

n/2−1∑
j=0

a2j+1ψ
j
nω

kj
n/2 mod q. (7.6)

Since ω = ψ2
2n mod q, the integers ψj

2n and ωkj
n/2 can be merged as an integer ψ

(2j+1)n/2s

2s+1

in the s-th stage; Thus, only one multiplication is required in the butterfly operation, and the

architecture is shown in Fig. 7.2.

The improved iNTT algorithm merges not only the weighted operation but also the multipli-

cation with constant n−1 into the butterfly operations, as presented in [73]. Based on Equation 7.2
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Figure 7.2: Architecture for DIT-based butterfly with merging the weighted operation in NTT.

and the decimation-in-frequency (DIF) method, the new iNTT algorithm is expressed as

p2k =
n

2

−1
ψ−k
n

n/2−1∑
j=0

P̃ even
j ω−kj

n/2 mod q, (7.7)

p2k+1 =
n

2

−1
ψ−k
n

n/2−1∑
j=0

P̃ odd
j ω−kj

n/2 mod q, (7.8)

where k ∈ [0, n2 − 1], and

P̃ even
j =

P̃j + P̃j+n/2

2
mod q (7.9)

P̃ odd
j =

P̃j − P̃j+n/2

2
ω−j
n ψ−1

2n mod q. (7.10)

Similarly, the integers ω−j
n and ψ−1

2n are combined as an integer ψ
−(2j+1)n/2s

2s+1 in the s-th stage.

Different from the NTT butterfly architecture, the modular addition and modular subtraction inter-

mediate results in the iNTT butterfly need to be divided by two. Fig. 7.3 shows a hardware-friendly

architecture, which only involves one left shift operation, one modular addition with constant q+1
2 ,

and one multiplexer (MUX) for one modular division by two [71].
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_Pj+2
m-1-s[s] Pj+2
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=

   

0

   

1

   

0

   

1

   

0

   

1

   

0

   

1

   

0

   

1

   

0

   

1

(q+1)/2

(q+1)/2

<<1

<<1

Ψ
-(2j+1)n/

   2
s+1

2
s

Ψ
-(2j+1)n/

   2
s+1

2
s

ModAdd[0]

ModSub[0]

Figure 7.3: Architecture for DIF-based butterfly with merging the weighted operation in iNTT.
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7.3.2 Two-Parallel Architecture

We propose a novel real-time, feed-forward, and parallel NTT-based polynomial multiplica-

tion architecture design that does not require intermediate shuffling, as shown in Fig. 7.4.

iNTT

Unit

iNTT

Unit

NTT

Unit

NTT

Unit

NTT

Unit
(Point-wise Mult)

aj

aj+n/2

pj

pj+n/2

bj

bj+n/2

NTT

Unit

NTT

Unit

Shuffling Circuit 

Eliminated

Figure 7.4: Architecture for the modular polynomial multiplier using two-parallel NTT and iNTT.

In particular, the NTT/iNTT units in Fig. 7.4 are based on a two-parallel architecture;

these are derived using appropriate folding sets and the folding transformation [57,58]. Fig. 7.5 and

Fig. 7.6 show the data-flow graphs for 16-point forward NTT of a(x) and iNTT for P (x), respectively,

where each circle represents one butterfly operation.

After applying the folding transformation, the operations in the same color are fed into

the same PE and then executed in a time-multiplexed manner. The order in which the butterfly

operations are executed in the same PE is referred to as the folding order. Also, the corresponding

clock cycle for each butterfly operation is highlighted in blue in Fig. 7.5 and Fig. 7.6. In this 16-point

example, the folding set (i.e., the ordered set of operations executed in each PE) of the forward NTT

is expressed as:

A = {A0,A1,A2,A3,A4,A5,A6,A7}

B = {B4, B5,B6, B7,B0, B1,B2, B3}

C = {C2, C3,C4, C5,C6, C7,C0, C1}

D = {D1,D2,D3,D4,D5,D6,D7,D0}. (7.11)

An additional shuffling circuit is typically used for reordering output data before computing iNTT.

However, such a shuffling circuit requires a large number of clock cycles and registers.

In the proposed novel architecture, the two-parallel products are fed into a two-parallel

iNTT architecture such that no intermediate buffer is needed. Thus, the outputs of the product
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Figure 7.5: Data-flow graph of the 16-point forward NTT.

are executed immediately by the iNTT. This is possible as we can select different folding sets for

the NTT and iNTT. It may be noted that reconfigurable memory-based NTT-based polynomial
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Figure 7.6: Data-flow graph of the 16-point iNTT.

multipliers have been published in [73, 89, 105, 109–111]. However, the intermediate results and the

twiddle factors in the NTT/iNTT algorithm have data dependencies. As a result, the memory-based

architectures easily have control/data hazards and cause bubbles in the pipeline, which will waste

extra clock cycles [25].

In order to avoid intermediate buffer or data format conversion from NTT to iNTT, the

102



output samples from the last PE in the NTT unit should be fed into the first PE in the iNTT unit

at the same clock cycle. This is achieved using the following folding set for the iNTT:

A = {A4,A2,A6,A1,A5,A3,A7, A0}

B = {B0, B4,B2, B6,B1, B5,B3, B7}

C = {C3, C7,C0, C4,C2, C6,C1, C5}

D = {D2,D6,D1,D5,D3,D7,D0,D4}. (7.12)

The NTT and iNTT designs are inspired by the design of parallel FFT architectures based

on folding sets [59,112]. Parallel NTT architectures based on folding sets was presented in our earlier

work [10]. The NTT architecture in Fig. 7.7 is derived using the folding sets shown in Equation 7.11.

Specifically, this architecture has four PEs and three delay-switch-delays (DSDs), where the struc-

tures for PE and DSD are illustrated in Fig. 7.2 and Fig. 7.8. Besides, the DSD block utilizes two

MUXs and two register sets, such that it can store the specific data in the data-path and then either

switch or pass the data to the PE. Note that the number of registers inside each register set is varied

in different stages. In the s-th stage, each register set has 2m−s−2 registers in the DSD block for the

NTT architecture.

NTT

PE0

aj

aj+n/2

4DSD
NTT

PE1

2DSD
NTT

PE2

1DSD
NTT

PE3

Aj

Aj+n/2

Figure 7.7: Architecture of the 16-point forward NTT unit.
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Figure 7.8: Architecture for DSD unit.

Furthermore, the architecture for iNTT is shown in Fig. 7.9, and its components are de-
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scribed in Fig. 7.3 and Fig. 7.8. One of the main differences between NTT and iNTT architectures is

the number of registers located inside each DSD block since they are determined by the folding set as

in Equation 7.12. Specifically, 2s registers are required for each register set in the s-th stage for the

iNTT architecture. Even though the operations of NTT and iNTT are very similar, we consider two

separate architectures instead of considering a unified and reconfigurable architecture. The rationale

is as follows. Since modular multiplications are heavily used in homomorphic multiplication, using

two different architectures for NTT and iNTT allows a continuous flow of the input polynomials and

thus can highly accelerate the HE multiplication.

iNTT

PE0

Pj

Pj+n/2

1DSD
iNTT

PE1

2DSD
iNTT

PE2

4DSD
iNTT

PE3

pj

pj+n/2

Figure 7.9: Architecture of the 16-point iNTT unit.

The 16-point architectures in Fig. 7.7 and Fig. 7.9 can also be easily generalized to any

power-of-two length n by having m PEs and (m − 1) DSDs blocks. Furthermore, the general case

NTT and iNTT folding sets are defined as follows. We denote the PE in s-th stage as PEs, and

the NTT folding set for the butterfly operations performing inside this PE is expressed in Table

7.1. The entries in the Table describe the node index of the node of that stage in the data-flow

graph. The folding order describes the clock partition at which the node is executed. For example,

a folding order s implies that the node is executed at clock cycle (n/2)l + s where l is an integer.

The cardinality of the folding set is n/2 as there are n/2 operations (nodes) in an NTT stage. Thus

the scheduling period is n/2.

Table 7.1: Generalized folding order for NTT

Folding Order 0 1 l n
2 − 1

PE0 0 1 ... l ... n
2 − 1

PE1 2m−2 2m−2 + 1 ... 2m−2 + l mod n
2 ... 2m−2 − 1

...
PEs 2m−s−1 2m−s−1 + 1 ... 2m−s−1 + l mod n

2 ... 2m−s−1 − 1 mod n
2

...
PEm−1 1 2 ... l + 1 ... 0

The folding set for iNTT can also be generalized as in Table 7.2, where the symbol ⟨◦⟩

means the bit-reverse representation for the folding set with respect to a (m − 1)-bit integer (e.g.,
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⟨1⟩ = ⟨001b⟩ = 100b = 4 when m = 4). Specifically, if a node i in the NTT has folding order i, the

folding order of the corresponding node in iNTT is ⟨i⟩ − 1 modulo (n/2). While the bit-reversed

scheduling has been known to eliminate latency and buffer requirements at the data-flow graph level,

the observation that the same property holds in a parallel NTT-iNTT cascade is non-intuitive and

new.

Note that if the iNTT was designed using the same folding set in Equation 7.11, the product

would need to be input to a DSD of size 4 (n/4 in general). This would introduce an additional

latency of 4 (n/4 in general) clock cycles. The use of different folding sets for NTT and iNTT

eliminates any additional DSD circuit and its associated latency.

Table 7.2: Generalized folding order for iNTT

Folding Order 0 1 l n
2 − 1

PE0 ⟨1⟩ ⟨2⟩ ... ⟨l + 1⟩ ... ⟨0⟩
PE1 ⟨0⟩ ⟨1⟩ ... ⟨l⟩ ... ⟨2m−1 − 1⟩

...
PEs ⟨2− 2s mod n

2 ⟩ ⟨2− 2s + 1 mod n
2 ⟩ ... ⟨2− 2s + l mod n

2 ⟩ ... ⟨2− 2s − 1 mod n
2 ⟩

...
PEm−1 ⟨2⟩ ⟨3⟩ ... ⟨l + 2 mod n

2 ⟩ ... ⟨1⟩

7.4 Moduli Selection and Architectures for Pre-Processing

and Post-Processing for CRT

The CRT and NTT-based modular polynomial multiplication can be divided into three

stages: pre-processing, NTT-based polynomial multiplication over Rn,qi , and post-processing, with

high-level architecture shown in Fig. 7.10.

7.4.1 Special NTT-Compatible and CRT-Friendly Primes Selection

As opposed to the prior works that randomly select the co-primes, this work studies and

utilizes the property of the special co-primes to reduce the computational cost and the silicon area.

The main idea of this optimization is to trade the flexibility of the co-primes selection for the

timing/area performance of the architectures.

In the proposed architecture, each qi not only needs to be an NTT-compatible prime but
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Figure 7.10: High-level block diagram of CRT and NTT-based modular polynomial multiplication.

also has a short word-length, which is defined as

qi = 2v − βi, βi = 2v1i ± 2v2i ± 2v3i ± . . .− 1, (7.13)

where v is the word-length of qi. ⌈ v−1
t−1 ⌉ > v1i > v2i, which can ensure qi to be also CRT-friendly

for our later optimization. A CRT-friendly prime leads to an optimized hardware architecture with

respect to the overall timing and area performance for the pre-processing and post-processing steps.

Our exhaustive approach generates qi that are similar to the Solinas prime, and contain a few signed

power-of-two terms [11,67].

The integer multipliers have a larger area consumption and longer delay than the integer

adders for the hardware implementation. Besides, the area and delay are proportional to the word-

length. Therefore, one possible direction to optimize the modular multiplier, pre-processing stage,

and post-processing stage architectures is to reduce the number of integer multipliers, especially the

long integer multipliers. In the proposed approach, all the integer multipliers are eliminated when

multiplying by qi, which significantly reduces the computation cost.
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7.4.2 Residual Polynomials Computation Unit

The pre-processing stage maps the input polynomials to their residual polynomials by ap-

plying the CRT algorithm. For the polynomial a(x), its residual polynomials are

ai(x) = [a(x)]qi =

n−1∑
j=0

(ai,j mod qi)x
j , i ∈ [1, t]. (7.14)

The same method is applied to the polynomial b(x) to obtain its residual polynomials.

However, this process is not trivial since the word-length of q is much larger than that of

qi. One of the key steps in the pre-processing stage is modular reduction. While Barrett reduction

is widely used in modular reduction algorithms for the HE schemes [56], it cannot be directly used

in this process since the input for the efficient Barrett reduction algorithm has to be smaller than

q2i when qi is the modulus. Note that the original Barrett reduction in [56] utilizes a while-loop

at the end of the algorithm so there is no restriction for the input word-length. However, it is

inefficient for hardware implementation. A more popular hardware implementation method uses an

efficient Barrett reduction that replaces the while-loop by a simple if-else statement and restricts the

input word-length. To utilize the efficient Barrett reduction algorithm for the residual polynomial

computation, further transformations in the pre-processing stage are needed.

Algorithm 15 presents a novel and hardware-friendly optimization to implement Equa-

tion 7.14. For a large integer aj , the first step is to split it into several segments where each

segment has v bits (v is the word-length of qi). We define the base B = 2v. Thus, each segment in

ai,j can be represented as zk · Bk, k ∈ [0, t − 1]. The second step performs the modular reduction

for each term, which is the main focus of our hardware optimization.

Algorithm 15 Efficient residual coefficient computation

Input: aj ∈ [0, q − 1], qi, and B = 2v (v = ⌈log2(qi)⌉) Output: ai,j = aj mod qi, ai,j ∈ Rqi

1: aj = z0 + z1 ·B + z2 ·B2+, ...,+zt−1 ·Bt−1 (Step 1)
2: for k = 1 to t− 1 do
3: rk = zk × βk

i // βi = B mod qi (Step 2)
4: end for
5: ai,j = z0 + r1 + ...+ rt−1 mod qi (Step 3)

Since we consider a special qi, Step 2 in Algorithm 15 no longer requires v × v-bit integer

multiplication with βk
i to obtain each rk. Thus, our proposed method eliminates the expensive

modular multiplications.
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Besides, different from the prior work [25] where the Barrett reductions are required to

reduce each rk modulo qi in Step 2, our design reduces (t − 1) Barrett reduction units to only one

required in Step 3. The rationale behind this is as follows. The product rk in the prior work is a

large integer that approximately equals q2i , as β
k
i is any constant modulo qi. In contrast, since the

special qi is utilized in our proposed design, all the βk
i are small integers, guaranteeing that all the

products, rk, are sufficiently small.

Since qi only contains only a few signed power-of-two terms, no integer multiplication is

required in Step 2. For example, for a special prime qi = 2v − 2v1i − 2v2i + 1, βi in Step 2 can be

expressed as

βi = [2v]qi ≡ 2v1i + 2v2i − 1. (7.15)

Note that more signed-power-two terms can be added to accommodate the desired number of moduli

at the cost of an additional adder/subtractor per term.
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Figure 7.11: Flow chart for the residual coefficient computation unit when t = 3.

We use a flow chart for t = 3 as an example (illustrated in Fig. 7.11) to show the overall

computation based on this efficient algorithm. It can be seen that the modular multiplication in

zk × βk
i in [25] (Fig. 7.12(a)) can be replaced by the shift and add operations, which can reduce the

hardware cost. When k becomes larger, a deeper shift and add unit (SAU) is required, as shown

in Fig. 7.11 and Fig. 7.12(b). However, since a multiplier is typically quadratically more expensive

than an adder with respect to word-length, using such shift and add operation is still much more

efficient than using a multiplier to obtain its result rk. In our CRT-friendly qi, v1i is at most equal

to (⌈ v−1
t−1 ⌉−1)-bit to ensure rk is smaller than q2i , as shown in Fig. 7.12(b). Thus, since the operating

segments rk are still represented in short word-lengths, combining all the rk and z0 to obtain ai,j

only requires adders and a Barrett reduction unit.
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Figure 7.12: Top-level architecture of residual coefficient computation unit when t = 3.
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Figure 7.13: SAU unit of residual coefficient computation unit when t = 3 whose input word-length
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7.4.3 Increasing the Number of Primes When Needed

Table 7.3 shows the number of special NTT-compatible and CRT-friendly primes that can

be found by exhaustive search when 3, 4, and 5 signed power-of-two-terms are considered when

n = 1024, and each co-prime factor is 48-bit. It can be noticed that the number of generated co-

prime factors is not enough for constructing a modulus with four co-prime factors when n = 1024

or n = 4096 in Table 7.3. However, this bottleneck can be overcome by either using more signed

power-of-two terms to construct the co-prime factors or using an additional Barrett reduction. Using

the latter method, the co-primes factors for t = 3 can also be used in the t = 4 case. This approach

is used in the experimental evaluation in the chapter.

Table 7.3: The number of special NTT-compatible and CRT-friendly primes under different settings
when v = 48

Parameter Setting 3 terms 4 terms 5 terms
t = 2, n = 1024, 1 BR 3 98 1501
t = 3, n = 1024, 1 BR 2 10 34
t = 4, n = 1024, 1 BR 0 0 0
t = 4, n = 1024, 2 BR 2 10 34
t = 2, n = 4096, 1 BR 3 87 1235
t = 3, n = 4096, 1 BR 2 8 20
t = 4, n = 4096, 1 BR 0 0 0
t = 4, n = 4096, 2 BR 2 8 20
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Fig. 7.14 shows an example for the residual polynomials computation unit with more flexible

co-prime factors selection when t = 4, log2(qi) = 48, and n = 1024. Utilizing an additional Barrett

reduction unit (inside the green box) can reduce the word-length of the intermediate results, so the

co-prime factors for (t− 1) in Table 7.3 can be employed. Note that the overhead of this alternative

solution is only one Barrett reduction unit and one modular adder, compared to the architecture in

Fig. 7.12(b) when it is in the same parameter setting. Nevertheless, this alternative solution still

requires fewer hardware resources than the conventional design in Fig. 7.12(a) since the number of

Barrett reduction units is lower and no integer multiplier is required.
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Figure 7.14: Residual coefficient computation unit with additional Barrett reduction unit when
t = 4.

7.4.4 Evaluation in Residual Domain

After using CRT representation, the function f(ai(x), bi(x)) over Rn,qi can be computed

independently. As a result, the overall t operations can be executed in parallel. In our case, the

function computes the residual products pi(x) for i ∈ [1, t], by utilizing NTT-based polynomial

multiplication over Rn,qi . The architecture to compute pi(x) = ai(x) · bi(x) mod (xn + 1, qi) is

based on our novel NTT-based polynomial multiplier in Fig. 7.4. Thus, our proposed architecture

achieves high throughput and low latency by increasing the parallelism from the CRT representation.

7.4.5 Inverse Mapping of Residual Coefficients of Polynomials

The results obtained by the evaluation in the residual domain need to be converted back to

over the ring Rn,q, which is the same as f(a(x), b(x)) over Rn,q (i.e., result computed without using

CRT representation).
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This post-processing stage is based on the inverse CRT algorithm, which is

p(x) =

t∑
i=1

pi(x) · ei mod q

=

t∑
i=1

n−1∑
j=0

pi,j · ei · xj mod q, (7.16)

where each ei = q∗i · q̃i is a constant, q∗i = ( q
qi
) ∈ Z, and q̃i = [( q

qi
)−1]qi ∈ Zqi .

However, direct multiplication by the constant ei involves a long integer multiplication and

expensive modular reduction over q (tv), which will result in an inefficient implementation and a

long critical path. Meanwhile, the properties of the special co-primes can lower the cost of modular

operations over qi in the post-processing stage. Therefore, we leverage the technique in [113] to

further express Equation 7.16 as:

p(x) =

t∑
i=1

[
pi(x) · q̃i

]
qi
· q∗i mod q

=

t∑
i=1

n−1∑
j=0

[
pi,j · q̃i

]
qi
· q∗i · xj mod q.

(7.17)

Note that the computation in 0 ≤
[
pi,j · q̃i

]
qi
< qi can be performed efficiently since the modular

reduction over qi has a lower cost than the modular reduction q. As q∗i is a (t−1)v-bit pre-computed

constant, no division is required in the post-processing stage. Besides, the range of the coefficients

from
[
pi(x) · q̃i

]
qi
· q∗i is in [0, q − 1] so that no modular multiplication is required to compute the

product.
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Figure 7.15: Inverse mapping architecture when t = 3. This circuit illustrates the post-processing
step for the inverse CRT.

The optimized architecture of the inverse mapping of residual coefficients of polynomials is
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shown in Fig. 7.15(b) (we use t = 3 as an example). In this architecture, each long word-length

(3v×v-bit) multiplier for multiplying ei is split into v×v-bit multiplier with constant q̃i and v×2v-

bit multiplier with constant q∗i . Instead of implementing an expensive modular reduction over a

large modulus q block in Fig. 7.15(a), only two modular adders and three modular reductions over

qi are required to obtain the final result p(x). Specifically, the modular reduction over qi can reuse

the same Barrett reduction block from the pre-processing stage, which is also efficient based on the

special co-prime.

Overall, the proposed novel architecture can significantly reduce the area and power con-

sumption.

7.5 Experimental Results

To evaluate the performance of our proposed design, we first introduce the experimental

result of our proposed NTT-based polynomial multiplier, which is based on Section 7.3 without the

CRT representation as the baseline design for the comparison. Then, the performance of PaReNTT

architecture in Section 7.4 (based on the CRT and NTT-based polynomial multiplier) is presented.

The proposed designs are implemented using SystemVerilog and then mapped to Xilinx Virtex

Ultrascale FPGA board (XCVU440-1FLGA2892C, 20nm FinFET node).

We consider three different word-lengths for q (96-bit, 144-bit, and 192-bit) with the same

degree of polynomial n = 1024 and n = 4096 to investigate the designs under different levels of

CRT-based parallelism. Specifically, all the decomposed co-prime factors are in 48-bit special NTT-

compatible and CRT-friendly format, while the designs without the CRT representation directly

utilize the 96-bit, 144-bit, and 192-bit NTT-compatible primes. Note that our design can be easily

extended to a longer word-length modulus by either having more co-primes or increasing the word

length of each co-prime. Furthermore, each degree-1024 NTT-based polynomial multiplier has 30

PEs and 27 DSD units since m = log2(1024) = 10. A degree-4096 NTT-based polynomial multiplier

applies 36 PEs and 33 DSD units since m = log2(4096) = 12. Note that a higher degree of the

polynomial can be applied, which only requires more PEs and DSDs.
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7.5.1 Evaluation Metrics and Performance of Parallel NTT-based poly-

nomial multiplier for base Modulus

We first describe the evaluation metrics used in this work. We then evaluate the performance

of our NTT-based polynomial multiplier that does not require any shuffling operations.

To analyze the timing performances of the implementations, we define two timing perfor-

mance metrics, block processing period (BPP) and latency. BPP is defined as the time required to

process n coefficient inputs or the time required to generate n coefficient outputs. For a degree-n

NTT-based two-parallel polynomial multiplier, the expression for BPP is

TBPP = n/2, (7.18)

where the throughput is two samples per clock cycle. In addition, the latency for one modular

polynomial multiplication is

TLat = (n− 2) + Tpipe, (7.19)

where Tpipe represents the additional pipelining stages added to the data-path in order to reduce the

critical path. Furthermore, the total clock cycles consumed by L modular polynomial multiplications

are

Ttotal = (TBPP + TLat − 1) · L. (7.20)

For n = 1024, the BPP is 512 clock cycles, and the latency is 1,126 clock cycles (including

extra clock cycles required for pipelining). The latency is significantly reduced compared to the

NTT-based polynomial multipliers that use a shuffling circuit in the prior works. The comparison of

our optimized and conventional methods (without considering the pipelining) is shown in Fig. 7.16.

Specifically, the conventional method with the shuffling circuit needs additional 256 (n/4 in general)

clock cycles for the re-ordering, leading to an increase in latency by around 20.0% for two-parallel

design and n = 1024.

7.5.2 Evaluation on PaReNTT polynomial multiplier

This section considers the implementation of the two-parallel residue arithmetic-based NTT

architecture for n = 1024 and n = 4096. The performances of the two-parallel architecture without
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Figure 7.16: Comparison of latency of Two-parallel NTT-based polynomial multiplication with and
without shuffling operations when n = 1024.

and with residue arithmetic (i.e., PaReNTT architecture design) are compared.

For the CRT case, the co-prime factors are 48 bits long (i.e., v = log2(qi) = 48), where

each co-prime factor has four signed power-of-two terms. Also, the number of co-prime factors, t,

increases from 1 to 4.

Tables 7.4 and 7.5, respectively, describe the area and speed (latency) comparisons for a

2-parallel architecture with and without CRT when n = 1024. Four word-lengths are considered:

48, 96, 144, and 192 bits. Similarly, the experimental result and comparison when n = 4096 are

presented for the same word-lengths in Tables 7.6 and 7.7.

Table 7.4: Area consumption and frequency for modular polynomial multipliers when n =
1024

⌈log2 q⌉ t CRT Freq.[MHz] LUTs DSPs FFs
48 1 No 207 59,426 (2.4%)a 288 (10.0%) 15,419 (0.3%)
96 1 No 151 194,016 (7.7%) 1,152 (40.0%) 39,587 (0.8%)
96 2 Yes 199 142,014 (5.6%) 612 (21.3%) 35,655 (0.7%)
144 1 No 54 431,623 (17.0%) 2,080 (72.2%) 62,240 (1.2%)
144 3 Yes 168 221,183 (8.7%) 972 (33.8%) 60,228 (1.2%)
192 1 No 13 1,402,022 (55.4%) 1,696 (58.9%) 145,955 (2.9%)
192 4 Yes 113 323,209 (12.8%) 1,344 (46.7%) 87,150 (1.7%)

a: # of used resources (% utilization) on FPGA board.

When the word-length increases without using residue arithmetic, the clock frequencies for

the FPGA implementation are reduced, as shown in Tables 7.5 and 7.7. For example, increasing the
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Table 7.5: Timing performance for modular polynomial multipliers when n = 1024

⌈log2 q⌉ t CRT
BPPb Latencyc ABP ABP

# Cycles Period [µs] # Cycles Period [µs] (LUT)d (DSP)e

48 1 No 512 2.5 1,126 5.4 0.1M 0.7K
96 1 No 512 3.4 1,126 7.5 0.7M 3.9K
96 2 Yes 512 2.6 1,142 5.7 0.4M 1.6K
144 1 No 512 9.5 1,126 20.9 4.1M 19.7K
144 3 Yes 512 3.0 1,152 6.9 0.7M 3.0K
192 1 No 512 40.7 1,126 89.5 57.0M 69.0K
192 4 Yes 512 4.5 1,152 10.2 1.5M 6.1K

b: Block processing period (BPP) is the period (µs) for processing n coefficient inputs or for gener-
ating n sample outputs after the first sample out. c: Latency is the period (µs) of the first sample
in and the first sample out. d: ABP (LUT) is calculated from the number of LUTs times BPP
(µs). e: ABP (DSP) is calculated from the number of DSPs times BPP (µs).

word-length from 48-bit to 96-bit results in a 27.1% and 35.6% longer critical path for n = 1024 and

n = 4096, respectively. Thus, for high-speed applications, the long word-length modulus architecture

without the use of residue arithmetic is inefficient.

Table 7.6: Area consumption and frequency for modular polynomial multipliers for n = 4096

Design ⌈log2 q⌉ t CRT Freq.[MHz] LUTs DSPs FFs

Ours

48 1 No 216 100,681 (4.0%) 342 (11.9%) 20,087 (0.4%)
96 1 No 139 290,003 (11.5%) 1,368 (47.5%) 48,540 (1.0%)
96 2 Yes 196 224,964 (8.9%) 720 (25.0%) 43,556 (0.9%)
144 1 No 47 597,815 (23.6%) 2,470 (85.8%) 69,992 (1.4%)
144 3 Yes 168 349,720 (13.8%) 1,134 (39.4%) 71,778 (1.4%)
192 1 No 10 1,965,433 (77.6%) 1,752 (60.8%) 174,852 (3.5%)
192 4 Yes 111 488,112 (19.3%) 1,632 (56.7%) 101,385 (2.0%)

We now compare the timing performance of the designs with and without residue arithmetic

based on the experimental results in Table 7.5 for n = 1024 and Table 7.7 for n = 4096. Note that

the implementations with and without the CRT representation have the same stage of pipelining for

a fair comparison of the timing performance. When n = 1024, the latency of PaReNTT architectures

with two, three, and four co-prime factors are reduced by 24.0%, 67.0%, and 88.6% compared to

without residue arithmetic implementation. Similarly for n = 4096, the latency in the PaReNTT

architectures are reduced by 28.5%, 71.0%, and 90.4% for q equal to 96-bit, 144-bit, and 192-bit,

respectively. The trends of the delay variation with respect to different word-lengths for PaReNTT

architecture design are illustrated in Fig. 7.17 for n = 1024. When the word-length of moduli

becomes larger, the logic delay of the CRT-representation architectures remains almost the same as

the 48-bit NTT-based polynomial multiplier, while the routing delays increase slightly. Thus, the
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Table 7.7: Timing performance for modular polynomial multipliers for n = 4096

⌈log2 q⌉ t CRT
BPP Latency ABP ABP

# Cycles Period [µs] # Cycles Period [µs] (LUT) (DSP)
48 1 No 2048 9.5 4,218 19.5 1.0M 3.2K
96 1 No 2048 14.7 4,218 30.2 4.3M 20.1K
96 2 Yes 2048 10.4 4,234 21.6 2.3M 7.5K
144 1 No 2048 43.3 4,218 87.2 25.9M 106.8K
144 3 Yes 2048 12.2 4,244 25.3 4.3M 13.8K
192 1 No 2048 197.8 4,218 398.8 388.8M 346.6K
192 4 Yes 2048 18.5 4,244 38.4 9.0M 30.2K

clock frequencies in CRT-based architectures are similar. However, the delay for the architectures

without CRT increases proportionally with respect to the word-length of q.
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Figure 7.17: Delay variation in different word-lengths q when n = 1024.

We also examine the area performance of PaReNTT architectures and the implementations

without residue arithmetic. The results are presented in Tables 7.4 and 7.6 for n = 1024 and

n = 4096, respectively. Table 7.4 shows the residue arithmetic-based architectures for n = 1024

require 26.8%, 48.8%, and 76.9% fewer LUTs when q is a 96-bit, 144-bit, and 192-bit moduli,

compared to the implementations without residue arithmetic. For n = 4096, residue arithmetic-

based architectures require 22.4%, 41.5%, and 75.2% less LUTs for 96-bit, 144-bit, and 192-bit

moduli, respectively. Furthermore, the residue arithmetic-based architectures require 46.9%, 53.3%,

and 20.8% fewer DSPs for 96-bit, 144-bit, and 192-bit moduli for n = 1024, compared to the

implementations without residue arithmetic. Similarly, residue arithmetic-based architectures reduce

47.4%, 54.1%, and 6.8% DSP utilization for 96-bit, 144-bit, and 192-bit moduli, respectively for
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n = 4096.

We now compare the area-BPP product (ABP) for the PaReNTT architectures and the

implementation without residue arithmetic to evaluate the timing and area performance together.

Comparing the ABP (LUT), the reductions achieved by the PaReNTT architectures with two,

three, and four co-prime factors are 42.9%, 82.9%, and 97.4%, responsively for n = 1024. When the

degree of polynomial increases to 4096, the reductions for ABP (LUT) are 46.5%, 83.4%, and 97.7%,

respectively. When further comparing the ABP (DSP) in a similar way for n = 1024, the PaReNTT

architectures achieve 59.0%, 84.8%, and 91.2% reductions, respectively. For the degree-4096 case,

ABP (DSP) savings in the PaReNTT architectures are 46.5%, 83.4%, and 97.6%, respectively.

7.6 Conclusion

This chapter has proposed PaReNTT, an efficient CRT and NTT-based long polynomial

multiplier. This design leverages the characteristics of the specially selected primes to optimize the

pre-processing and post-processing units for the CRT algorithm. In addition, a novel iNTT unit is

designed based on bit-reversed scheduling to eliminate an expensive shuffling circuit and significantly

reduce latency. Future work will be directed toward evaluating different homomorphic encryption

algorithms such as BFV, BGV, and CKKS using the proposed efficient long polynomial multiplier

based on hardware-software co-design.
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

This dissertation has considered the efficient and high-performance designs for modular

(integer) multipliers, modular polynomial multipliers, and custom design blocks for lattice-based

cryptography. Specifically, an ultra-high parallel number-theoretic transform (NTT)-based polyno-

mial multiplication architecture with multiple processing elements (PEs) is presented in Chapter 3

for the fully homomorphic encryption (FHE) acceleration of this dissertation. Then, a pipelined

NTT architecture for both homomorphic encryption (HE) and post-quantum cryptography (PQC)

schemes are introduced in Chapter 4. We also present a novel optimized modular Karatsuba multi-

plication algorithm in Chapter 5 for the modular integer multiplications to achieve better timing and

area performance. Besides, for the lattice-based schemes that cannot leverage the NTT algorithm

for modular polynomial multiplication, we also provide a novel and high-speed schoolbook modular

polynomial multiplier design based on the fast filtering technique. Finally, another efficient NTT-

based polynomial multiplication architecture for HE schemes whose moduli are large is presented

in Chapter 7. This architecture mainly targets the optimization of the pre-processing as well as

post-processing steps of the Chinese remainder theorem (CRT) and a novel pipelined NTT-based

polynomial multiplier.

These proposed designs and architectures are implemented in either field-programmable

gate array (FPGA) or application-specific integrated circuit (ASIC) platforms for the performance

evaluation, showing our work performs better than the prior designs.
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Furthermore, several future directions and extended works based on our proposed designs

in this dissertation can be investigated.

8.2 High-Speed Architecture for the CRYSTALS-Kyber Post-

Quantum Cryptography Scheme

CRYSTALS-Kyber (Kyber) scheme has been identified for key-establishment (KEM) algo-

rithm standardization in the National Institute of Standards and Technology (NIST) post-quantum

cryptography (PQC) standardization process. Due to the special construction of the Kyber algo-

rithm, the NTT-based polynomial multiplier is slightly different from the conventional design for

the negative wrapper convolution accelerator presented in Chapters 3 and 4. In particular, the

degree-256 modular polynomial multiplications in the Kyber scheme need to be divided into two

degree-128 polynomials first and then perform the degree-128 modular polynomial multiplications.

Therefore, we can utilize the novel designs in Chapters 3 and 4 along with the efficient two-parallel

algorithms to customize the efficient modular polynomial multiplier for the Kyber scheme.

8.3 Efficient VLSI Architecture for Homomorphic Evalua-

tion for the Homomorphic Encryption Scheme

The goal of this work is to develop an efficient BFV-based homomorphic evaluation accel-

erator, including the homomorphic multiplier and homomorphic adder, to fulfill a wide range of HE

applications. The high-level overview is shown in Fig. 8.1. However, due to the complex construction

of the HE schemes, the computation is expensive and thus requires a long processing time. Since our

targeted BFV scheme is built upon the ring-learning with errors (RLWE) problem, the fundamental

arithmetic of the HE schemes is the polynomial multiplication/addition over the ring. Based on this

reason, most of the prior hardware accelerations only focus on the polynomial multiplication over

the ring using the NTT algorithm.

Built upon our prior works in this dissertation, future work will focus on the entire homo-

morphic evaluation step. The hardware implementation for the homomorphic adder is relatively

simple since it only involves modular addition, while the homomorphic multiplier is challenging.
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Figure 8.1: Top-level architecture for homomorphic evaluation processor.

Besides, large parameters are used in the HE scheme in order to have a high-security level and be

able to perform depth of the homomorphic arithmetic. The future work further investigates the im-

plementations of the detailed step inside the BFV-based homomorphic multiplier, mainly tensoring

and relinearization steps. Besides, we will follow the software implementation in [113] and focus on

a hardware-friendly optimization for the efficient residue number system-based BFV accelerator.
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[44] Y. Doröz, E. Öztürk, and B. Sunar, “Evaluating the hardware performance of a million-bit
multiplier,” in Digital System Design (DSD), 2013 Euromicro Conference on. IEEE, 2013,
pp. 955–962.

123

https://eprint.iacr.org/2014/873


[45] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Accelerating fully homomorphic
encryption over the integers with super-size hardware multiplier and modular reduction.”
IACR Cryptology ePrint Archive, vol. 2013, p. 616, 2013.

[46] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede, “Compact ring-
LWE cryptoprocessor,” in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2014, pp. 371–391.
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