
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2013

Emerging Design Methodology And Its
Implementation Through Rns And Qca
Omar Dajani
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Dajani, Omar, "Emerging Design Methodology And Its Implementation Through Rns And Qca" (2013). Wayne State University
Dissertations. Paper 646.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/646?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages

EMERGING DESIGN METHODOLOGY AND ITS IMPLEMENTATION

THROUGH RNS AND QCA

by

OMAR DAJANI

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2013

 MAJOR: ELECTRICAL ENGINEERING

 Approved by:

 Advisor Date

© COPYRIGHT BY

OMAR DAJANI

2013

All Rights Reserved

ii

DEDICATION

To my family

iii

ACKNOWLEDGMENTS

I sincerely thank my research advisor Prof. Harpreet Singh for guiding me through this

research project and for giving me the encouragement and advice throughout the course of

this work. Dr. Singh’s dedication and flexibility is what made it possible for me to

succeed. I would like to thank Dr. Pepe Siy for his help during the initial phase of my PhD

research.

Also, I would like to thank my dissertation committee: Dr. Mohamad Berri, Dr. Feng

Lin and Dr. Le Yi Wang for their helpful comments and encouragement.

Many thanks to my colleagues for their assistance in FPGA, Multisim and Cadence

that have helped me in my research development.

Finally, I would like to thank my family for their support and encouragement.

 iv

TABLE OF CONTENTS

Dedication…………………………………………………………………………………….……

ii

Acknowledgments…………………………………………………………………………….…...

iii

List of Tables………………………………………………………………………………….…...

vii

List of Figures …………………………………………………………………………………..…

viii

Chapter 1 Introduction……………………………………………………………………….….....

1.1 Introduction to RNS………………………………………………………………..…

1.2 Residue Number System Representation…………………………………………......

1.3 Residue Dynamic Range…………………..……………………………………….…

1.4 Quantum-Dot Cellular Automata (QCA)………………………………...……..….....

1.5 Problem Statement………………………………………………………………...….

1.6 Thesis Organization…………………………………………………………………...

Chapter 2 Literature Review ………………………………..……………….………………….…

2.1 Introduction…………………………………………………………………………...

2.2 RNS Arithmetic Operations…………………………………………………………..

2.3 Conversion from RNS to Binary………………………………………………….......

2.3.1 Chinese Remainder Theorem Conversion……………….…………………...

2.3.2 Mixed Radix Conversion………………………………….………………….

2.4 Residue Number System Sign Detection……………………………………………..

2.5 Scaling in Residue Number System…………………………………………………..

2.6 RNS Fast Processing Applications………………………………….………………..

2.7 Quantum-Dot Cellular Automata (QCA)……………………………………………..

2.8 QCA Clocking………………………………………………………………………...

2.9 Conclusion……………………………………………………………………………

1

1

2

2

5

6

8

9

9

9

11

11

13

15

16

17

17

20

22

 v

Chapter 3 Novel Parallel - Perfix Structure Binary to Residue Number System Conversion

Method……………………….…………….………..…………………………………………

3.1 Introduction………………………………………………………………………...….

3.2 Residue Number System……………………………………………………………....

3.3 New Novel Conversion Method from Binary to Residue Representation.....................

3.4 Illustrative Example…………………………………………………………...………

3.5 Implementation Selection…………………………………………………….……….

3.6 Comparison Selection to Pervious Work………………………………………...……

3.7 Conclusion……………………………………………………………………...….….

Chapter 4 Simplified RNS Scaling Algorithm……………………………………………….….

4.1 Introduction………………………………………………………………………..….

4.2 Division remainder zero……………………………………………………….…...…

4.3 Scaling…………………………………………………………………………….…..

4.4 General Division………………………………………………………………..…….

4.5 New Base Extension Algorithm………………………………………………………

4.6 New Scaling Algorithm………………………………………………………..……..

4.7 Conclusion………………………………………………………………………..…...

Chapter 5 VLSI Implementation of Residue Adder and Subtract……..

5.1 Introduction……………………………………………………………………..…….

5.2 Residue Adder and Subtractor…………………………………………………….….

5.3 V LSI Implementation…………………………………………………………..…….

5.4 Conclusion…….………………………………………………………………...…….

Chapter 6 Novel Quantum Boolean Circuits Construction by Using XOR-AND Reduction

Method……………….…….………………………………………………………………..

6.1 Introduction…………………………………………………………….……………..

23

23

24

24

34

38

41

42

43

43

43

43

44

45

47

52

53

53

54

56

59

60

60

 vi

6.2 QCA Background Material………………………………………………...………….

6.3 Novel QCA Extraction………………………………………………………..………

6.4 Conclusion……………………………………………………………………..……..

Chapter 7 Implementation of Generalized Pipeline Cellular Array Using Quantum-Dot

Cellular Automata……….……………………………………………………………..……

7.1 Introduction………………………………………………………………………..….

7.2 QCA Pipeline Array…………………………………………………………….….…

7.3 QCA Pipeline Implementation……………………………………………………..…

7.4 Conclusion…………………………….…………………………………………..….

Chapter 8 Conclusion and Future Work….……………………….……………………….….…

8.1 Introduction……………….…………………………………………………….…….

8.2 Summary of Work………..………………………………………………………..….

8.3 Recommended Future Work………………………………………………………….

Appendix……………………………………………………………………………………..…..

Preferences……………………………………………………………………………………….

Abstract………………..……………………..………………………………………………..…

Autobiographical Statement……………………………………………………………………..

61

66

71

72

72

77

85

99

100

100

100

102

106

143

153

155

 vii

LIST OF TABLES

 Table (1.1): Residue Digits for Unsigned Numbers…..………………………..………………...

 Table (1.2): Residue Digits for Signed Numbers ……….…………………………………….…..

 Table (1.3): Majority Function M(A,B,C)……….………….…………………………………….

 Table (2.1): Equivalent QCA Expressions for Major Boolean Gates ……..……………….…..…

 Table (3.1): Shows Comparison Among the Three Designs Implementation ……………...….....

 Table (3.2): Comparison Among Behrooa, Alia and the new design…….………………….…....

 Table (5.1): Total RNS Adder and Subtractor Delay Time (PS)………………………...………..

 Table (5.2): RNS Adder and Subtractor Design Parameter ………………….………….………..

 Table (6.1): The Chart for Deriving XOR Equivalent Function “f1”……………………………..

 Table (6.2): The Chart for Deriving XOR Equivalent Function “f2” ….…..…………...………...

 Table (7.1): Boolean Functions and Their Equivalent QCA…………………….………………..

 Table (7.2): QCA Pipeline Array Arithmetic Summary Operations…………….………………..

 Table (7.3): Subtrahend at Different Levels for Square Rooting………………..….……..………

 Table (7.4): QCA Performance Comparison Between the Two Designs…………………………

 Table (7.5): COMS Performance Comparison Between the Two Designs……………….………

 Table (7.7): Design Delay Time (PS)…………………………...……………..………………….

 Table (7.8): Complexity Fuzzy Results for Pipeline Array Cells……………..………………….

4

5

6

20

40

42

58

58

66

70

75

81

82

91

96

96

98

 viii

LIST OF FIGURES

 Figure (1.1): Block Diagram that Shows the Research Logical Flow…......…………………..….

 Figure (2.1a): QCA Cells and Binary Encoding ….……………………………............................

 Figure (2.1b): QCA Majority Gate …………………………………………...…………………..

 Figure (2.1c): QCA Inverter Gate…....………………………….………………….……………

 Figure (2.1d): QCA Wire Types…....………………………………….………….……………...

 Figure (2.2a): QCA Clock Phases……………………………………………….……………….

 Figure (2.2b): Four QCA Interdot Barrier State……………………………………......................

 Figure (3.1): Two Bits (b1 & b0) Binary to RNS Conversion …………………..………….…....

 Figure (3.2): Prefix Logic Operation and Their Implementation ………………………...............

 Figure (3.3): Three Bits (b2, b1, b0) Binary to RNS Conversion………..

 Figure (3.4): Four Bits Binary to RNS System…………………………..….……….....................

 Figure (3.5): Six Bits Binary to Residue Number System Conversion………………..……….....

 Figure (3.6): Prefix Structure of 8 Bits Binary to RNS ……………………………......................

 Figure (3.7a): Eight Bits Binary to Residue Number System Conversion…………..……………

 Figure (3.7b): Example for signal propagation……………………...……….…………................

 Figure (3.8): Prefix Structure of 10 Bits binary to RNS……..……………………..……………..

 Figure (4.1): Shows the Fermat’s Implementation for Finding Coefficient “c”………..…………

 Figure (4.2): Shows Extended Euclid Algorithm Implementation………………….…………….

 Figure (4.3): Shows Implementation of Finding Coefficient “aij”………………………………..

 Figure (5.1): RNS Adder and Subtractor ………………………………….…………..................

 Figure (5.2): Waveform of RNS Adder and Subtractor………………….………………………..

 Figure (5.3): RNS Adder and Subtractor Layout …….………………...…………………………

 Figure (5.4): Encounter Part of RNS Adder and Subtractor ……………………….......................

 Figure (5.5): Virtuoso Part of RNS Adder and Subtractor …..…………..…………….................

7

18

18

19

19

20

21

25

26

27

28

32

34

36

37

39

48

48

48

55

56

57

57

59

 ix

 Figure (6.1a): QCA Cells and Binary Encoding …………………….……………………………

 Figure (6.1b): QCA Majority Gate …………………..………………………….……………......

 Figure (6.1c): QCA Inverter Gate…....…….…..……………………….…….…….…………….

 Figure (6.1d): QCA Wire Types ……….....…………………………….…..…………………….

 Figure (6.2a): QCA Clock Phases………….…….………………….….………..………………

 Figure (6.2b): Four QCA Interdot Barrier State….……………………..…..…….……………...

 Figure (6.3): XOR-AND Function Extraction Methodology…………………………………….

 Figure (6.4): Majority Tree for Function “f1”……………………………………........................

 Figure (6.5): Majority Gates Schematic for Function “f1”…………..…………..…………….....

 Figure (7.1): QCA Cells and Binary Encoding ….…….…………….….………...………………

 Figure (7.2): QCA Wire Types ………….....……………………….…..……...…………………

 Figure (7.3): QCA Majority Gate ……………………..………………………………………….

 Figure (7.4): QCA Inverter Gate…………………………………………………..…..................

 Figure (7.5): QCA Clock Phases…………….……....…………………………..…..…………...

 Figure (7.6): Block Diagram for Pipeline Array……………………………….………………….

 Figure (7.7a): Arithmetic Cell ………………………..………….………………..………………

 Figure (7.7b): Control Logic Cell………………….…………………… ………………………..

 Figure (7.8): QCA Arithmetic Cell and Control Cell Arithmetic Cell…..…….…...……………..

 Figure (7.9): QCA High Speed Arithmetic Cell…………………………….…….………………

 Figure (7.10): QCADesigner Layout for Arithmetic Cell Unit ……………………..……………

 Figure (7.11): QCADesigner Layout for Control Cell Unit ……………….……...……................

 Figure (7.12): Simulation for Control Cell Unit…………………………….……..…..................

 Figure (7.12): Simulation for Arithmetic Cell Unit …………...…………..……..……………...

 Figure (7.13): QCADesigner Layout for Arithmetic Cell Unit………………...………................

 Figure (7.14): Simulation for High Speed Arithmetic Cell Unit…….…………...........................

62

62

63

63

64

64

65

67

68

72

73

73

74

74

78

79

79

84

85

86

87

87

88

89

90

 x

 Figure (7.15): Waveform of Pipeline Squaring Output Result ……………………….…………..

 Figure (7.16): Waveform of Pipeline Square Rooting Output Result………………….….………

 Figure (7.17): Multisim Implementation of Arithmetic Cell…………………………..………….

 Figure (7.18): Multisim Implementation of Control Cell …………………………………..…….

 Figure (7.19): Multisim Implementation of High Speed Arithmetic Cell…………………...……

 Figure (7.20): Arithmetic cell FPGA packaging………………………………………..…………

 Figure (7.21): Control cell FPGA packaging………………………………………..…………….

 Figure (7.22): High speed arithmetic cell FPGA packaging…….…………………….…………..

 Figure (7.23): Arithmetic cell FPGA schematic layout……………………………...…………....

 Figure (7.24): High Speed arithmetic cell FPGA schematic layout ………………….….……….

 Figure (7.25): Control cell FPGA schematic layout………………………………...…………….

 Figure (7.26): Encounter Part of QCA Pipeline Array……………………………...…………….

 Figure (7.27): Virtuoso Part of Padding…………………..…………………………..…….……..

 Figure (7.28): Virtuoso Part of Pipeline Array……………………………………..…………..…

 Figure (7.29): Hardware Complexity Fuzzy Concept…..………..……………………………..…

.

91

92

92

93

93

94

94

94

94

95

95

97

98

99

99

1

CHAPTER 1

INTRODUCTION

1.1 Introduction to RNS

In the last decade, Residue Number System (RNS) has received increased attention

due to its ability to support high speed concurrent arithmetic applications such as Fast

Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of

RNS arithmetic in addition and multiplication. In spite of its effectiveness, RNS has

remained more an academic challenge and very little impact in practical applications due

to the complexity involved in the conversion process, magnitude comparison, overflow

detection, sign detection, parity detection, scaling and division.

The advancements in Very Large Scale Integration (VLSI) technology and the

demand for parallelism computation have enabled researchers to consider RNS as an

alternative approach to high speed concurrent arithmetic [10], [11].

RNS is an unweighted representation system of numbers. The difference between

RNS and fixed radix systems is that no fixed base is used in the representation of RNS

numbers. RNS is based on modular arithmetic operations and it is a carry-free system that

performs addition, subtraction and multiplication as parallel operations.

2

1.2 Residue Number System Representation

For any given set of relatively prime modulo set (m1, m2, m3, ... , mn), the residue

representation of an binary number X is (x1 , x2, x3,…, xn) ; Where X can be defined by N

equations.

X = mi qi + xi (1.1)

Where xi is the least positive remainder of division X by mi and
i

m
i

x0 <≤ ; qi is the

smallest positive integer of

im

X
.

1.3 Residue Dynamic Range

The residue representation of number is unique for any integer []1-M0, X ∈ , where M

is called dynamic range.

∏
=

=
n

1i

im M (1.2)

For signed numbers, one has to distinguish two cases

Case 1:

The product M is an even number. This occurs if one modulo is an even number and the

range is defined as

−∈ 1

2

M
,

2

M
-X (1.3)

and all number

2

M
X ≥ (1.4)

are negative numbers

3

Case 2:

The product M is an odd number. This occurs if all modulo are odd numbers and the

range is defined as

∈

2

1-M
,

2

1-M
-X (1.5)

and all numbers according to

1
2

1-M
X +≥ (1.6)

are negative numbers.

The RNS representation of negative number –X is

n21n21
m,,m,mmnnm22m1110)xm,,xm,xm()X(

K

K −−−→− RNS

(1.7)

To illustrate the residue representation, consider the three modulo set (2, 3, 5)

example. The list of the positive numbers from 0 to M-1 and their RNS representation is

shown in table 1.1. The list of positive and negative numbers from (-15, 14) and their

RNS representation is shown in table 1.2.

4

TABLE 1.1

RESIDUE DIGITS FOR UNSIGNED NUMBERS FOR M < 30

Integer

Residue digits

Integer

Residue

digits

Modulo Modulo

2 3 5 2 3 5

x1 x2 x3 x1 x2 x3

0 0 0 0 15 1 0 0

1 1 1 1 16 0 1 1

2 0 2 2 17 1 2 2

3 1 0 3 18 0 0 3

4 0 1 4 19 1 1 4

5 1 2 0 20 0 2 0

6 0 0 1 21 1 0 1

7 1 1 2 22 0 1 2

8 0 2 3 23 1 2 3

9 1 0 4 24 0 0 4

10 0 1 0 25 1 1 0

11 1 2 1 26 0 2 1

12 0 0 2 27 1 0 2

13 1 1 3 28 0 1 3

14 0 2 4 29 1 2 4

5

TABLE 1.2

RESIDUE DIGITS FOR SIGNED NUMBERS (-15, 14)

Integer

Residue digits

Integer

Residue

digits

Modulo Modulo

2 3 5 2 3 5

x1 x2 x3 x1 x2 x3

0 0 0 0 -1 1 2 4

1 1 1 1 -2 0 1 3

2 0 2 2 -3 1 0 2

3 1 0 3 -4 0 2 1

4 0 1 4 -5 1 1 0

5 1 2 0 -6 0 0 4

6 0 0 1 -7 1 2 3

7 1 1 2 -8 0 1 2

8 0 2 3 -9 1 0 1

9 1 0 4 -10 0 2 0

10 0 1 0 -11 1 1 4

11 1 2 1 -12 0 0 3

12 0 0 2 -13 1 2 2

13 1 1 3 -14 0 1 1

14 0 2 4 -15 1 0 0

1.4 Quantum-Dot Cellular automata (QCA)

During past decade, Quantum-Dot Cellular Automata (QCA) has demonstrated the

ability to implement both combinational and sequential logic devices [76]-[82]. Unlike

conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in

QCA Boolean networks is majority gate which implements the Boolean function

M(A,B,C) = AB+AC+BC (1.8)

6

TABLE 1.3

MAJORITY FUNCTION M(A,B,C)

A B C M(A,B,C)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

 With combining these QCA gates with NOT gates any combinational or sequential

logical device can be constructed from QCA cells [76]-[82]. The process of QCA

Boolean logic is more sophisticated than Boolean logic. The traditional Boolean logic

reduction methods such as Kranaugh maps produce simplified Boolean expressions,

However, converting these forms to QCA Boolean is not simple process due to

complexity of multilevel majority gates. In chapter two, we will present literature review

and background material for RNS and QCA.

1.5 Problem Statement

Residue number system is a robust parallel system and it received attention due to its

ability to support high speed concurrent arithmetic applications such as addition,

subtraction and multiplication in modular levels. This system suffers from some

weakness such as conversion process, scaling, division, overflow detection and

7

magnitude comparison. In this dissertation, we have proposed new techniques to solve

the conversion and scaling issues. These techniques have been proved mathematically

and verified through VLSI simulation.

One of the new fields of nanotechnology is Quantum-dot cellular automata. Due to its

ultra-power and small size, QCA has the potential to become the future of CMOS

technology. Quantum-dot cellular automata uses different logic devices to design circuits

other than Boolean logic devices. Converting Boolean circuits to QCA Boolean is not

simple process due to complexity of QCA and existing Boolean reduction methods do not

work with QCA logic. In this thesis, we have proposed a new QCA construction reduction

method that utilizes the VLSI techniques that were used in RNS system. Fig 1.1 shows

block diagram that explains the flow of our research.

Fig. 1.1. Block diagram that shows the research logical flow

RNS

Size Speed

VLSI

Digital

Logic

Nano

Logic

Quantum-Dot Cellular

Automata (QCA)

Carbon

Nanotubes (CNT)
Single Electron

Transistor (SET)

8

1.6 Thesis Organization

This thesis contains eights chapters. Chapter one is introduction, Chapter two starts

with lecture reviews of residue number system and quantum-dot cellular automata

system. Chapter three presents the new binary to residue number system conversion

method. Chapter four presents the new scaling methods. VLSI RNS adder and subtractor

implementation is presented in chapter five. Chapter six presents the new quantum

boolean circuit construction reduction methodology. Chapter seven presents the QCA

implementation of pipeline array and chapter eight discuss the summary of the thesis

work and future research work. The dissertation also includes appendix that shows the

updated FPGA, Cadence Encounter and Virtuoso procedures.

9

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The Residue number system has attracted researchers due to its advantage in the

modular arithmetic operations such as addition, subtraction and multiplication since RNS

provides the ability to add, subtract or multiply without the need to wait for the carry

propagation as required by the weighted number systems. Also, RNS has shown

significant efficiency in implementing Discrete Fourier Transformation and digital filters.

In addition, quantum-dot cellular automata has showed the ability to implement both

combinational and sequential logic devices. It is one of the new emerging

nanotechnology and it has the potential to become the future of CMOS technology due

to its ultra-power and small size. This chapter provides a review on the RNS and QCA

topics that are relevant to the dissertation works. Section 2.2 introduces addition,

subtraction and multiplication RNS operations. Section 2.3, 2.4, 2.5 and 2.6 give an

overview on conversion from RNS to binary, sign detection, RNS scaling and RNS fast

processing applications. Section 2.7 presents review for QCA topics.

2.2 RNS Arithmetic Operations

 Residue Number System is an unweighted system with carry-free and borrow-free

arithmetic operations. Addition, subtraction and multiplication are carried out on each

residue digit concurrently and independently. This simplifies supporting parallel high-

speed concurrent computation.

10

 Addition can be accomplished simply by adding the small integer values together.

The following equation explains the RNS addition operation.

m
mm10 ba)ba(+⇔+ (2.1)

Where a and b are integers. For example, the addition of the decimal number (10 + 8)10

using the modulo set (2, 3, 5) is illustrated below.

5,3,2

5,3,210

5,3,210

)3,3,0(

)3,2,0()8(

)0,1,0()10(

+→+

→

RNS

RNS

 105,3,2)18()3,3,0(
1

 →
−

RNS

The subtraction operation can be performed similar to the addition operation using the

additive inverse of subtrahend (equation 1.7)

For example, the subtraction of decimal number (18 - 10) using the modulo set (2, 3, 5) is

illustrated below

5,3,210)0,2,0()10(→−
RNS

and

5,3,2

5,3,210

5,3,210

)3,2,0(

)0,2,0()10(

)3,3,0()18(

+→−

→

RNS

RNS

Multiplication can be accomplished in a manner similar to addition and subtraction as

follows.

m
mm10 b*a)b*a(⇔ (2.2)

105,3,2)8()3,2,0(
1

 →
−

RNS

11

For Example, the multiplication of (3 * 9)10 using modulo set (2, 3, 5) is illustrated below.

5,3,2

5,3,210

5,3,210

)2,0,1(

)4,0,1(*)9(*

)3,0,1()3(

→

→

RNS

RNS

 105,3,2)27()2,0,1(
1

 →
−

RNS

2.3 Conversion from RNS to Binary

 Several methods are available for converting residue to binary system, most of these

methods are based on two techniques the first one is Chinese Remainder Theorem (CRT)

and the second one is Mixed Radix Converters (MRC) [9].

2.3.1 Chinese Remainder Theorem Conversion

 The Chinese Remainder Theorem is a basic conversion method. The problem

associated with CRT approach is the requirements of M modulo adders.

Definition

For any given set of relatively prime modulo set (m1, m2, m3, ... , mn), the residue

representation of an binary number X is (x1 , x2, x3,…, xn) . Number X can be represented

as

M
m

^

i

i
n

1i

^

i

i

m

x

m=X =∑
=

Where
i

m
i

x0 <≤ , ∏
=

=
n

1i

im M

12

im
i

^
i

i

^

m

1

 and ,
m

M
m == is the multiplicative inverse of

im

1
i

^

m
−

i

i

i

m

2m
i

^

m
i

^
m

m

1

−

==

To illustrate how the method works, consider the following example

Example:

For modulo set (5, 7, 11), find the decimal number whose residue representation is

(4, 5, 7) and M = 385

Solution:

35
11

385
m ,55

7

385
m ,77

5

385
m 3

^

2

^

1

^

======

6

35

1

m ,6

55

1

m ,3

77

1

m

11

1
2

^

7

1
2

^

5

1
1

^

=========
−−−

96*7

m

x

 ,26*5

m

x

 ,23*4

m

x

11

m

^

3

3

7

m

^

2

2

5

m

^

1

1

221

=========

1949*352*552*77

m

x

m=X
385

M
m

^

i

i
3

1i

^

i

i

=++==∑
=

13

1011,7,5)194()7,5,4(
1

 →
−

RNS

2.3.2 Mixed Radix Conversion

Converting RNS back to binary numbering system is challenging process and one

of the methods that can be used to do this conversion is done by using mixed radix

number system [9]. The problem associated with MRC lies in the complexity of finding

mixed radix digits.

Definition

An integer number X may be expressed in mixed radix form as

∏
−

=

++××+×+=
1n

1i

in213 121 ma....mma maa X (2.3)

Where the mixed radix digits are determined sequentially by following manner starting

with a1.

All terms in equation (2.4) except the first are multiples of m1, consequently

1m1 xX a
1

==

To obtain a2

� Subtract X – a1

� Divide by m1
1

1

m

)a-(X

� Then take mod m2

2m1

1

m

)a-(X

and by successively subtracting and dividing in residue notation, all mixed radix digits

can be obtained. In general form mixed radix digits can be defined as:

14

∏
−

=

++××+×+=
1n

1i

in213 121 ma....mma maa X

The following example illustrates how this method works.

Example:

Find the decimal number that is represented by (1, 1, 3) for modulo set (2, 5, 7).

Solution:

Modulo set 2 5 7

RNS 1 1 3 � a1 = 1

Subtract a1 1 1 0

 0 4 3 �
j

jj m
m1jjm1j x-mxx-x +=

Multiply by

im
2

1

 = 2 5 � a2 = 2

Subtract a2 2 0

 0 5

Multiply by 3

5

1

7

== 1 � a3 = 1

X= a1 + a2*m1 +a3*m1*m2 = 1 + 2*2 + 1*2*5 = 15

107,5,3)15()1,0,2(
1

 →
−

RNS

15

2.4 Residue Number System Sign Detection

 In residue number system sign detection is relatively a difficult operation compared to

weighted systems.. The sign in RNS is a function of each digit and it is closely related to

magnitude determination.

 In section 1.3 case 1, showed that all numbers in range [0, M/2 -1] are positive and

all numbers in range [M/2, M-1] are negative; and in case 2, all numbers in range [0, (M -

1)/2] are positive and all numbers in range [(M+1)/2, M-1] are negative. Magnitude sign

detection algorithm based on mixed radix process and case 1 is found in [9].

Definition

Select the last modulo in the mixed radix conversion to be even)m(n . Then, it is easily

seen that 1
2

m
a0 n

n −≤≤ implies that
M

X falls into the interval]1
2

M
,0[− and therefore,

can be considered positive. Conversely, 1ma
2

m
nn

n −≤≤ implies that
M

X falls into the

interval]1M,
2

M
[− and therefore, can be considered negative [3].

Example:

Find the sign of [1, 2, 3] for modulo set (2, 3, 5)

 Solution:

The dynamic range is M = 30 and number in range of (0, 14) are positive and numbers in

range of (15, 39) are negative.

First arrange the ordering of the modulo to place the even modulo 2 on the end

Modulo set 5 3 2

RNS 3 2 1 � a1 = 3

16

Subtract a1 3 3 0

 0 2 1

Multiply by

im
5

1

 = 1 1 � a2 = 1

Subtract a2 1 0

 0 1

Multiply by

2
3

1

 = 1 � a3 = 1

a3 = 1 implies that number (1, 2, 3) falls into interval (15, 29). It follows that (1, 2, 3) is

negative

X= a1 + a2*m1 +a3*m1*m2 = 3 + 1*5 + 1*5*3 = 23

2.5 Scaling in Residue Number System

 Scaling is comparatively a difficult RNS operation. Scaling is an essential operation

in several signal processing algorithms. In binary system, the scaling constant is usually a

power of 2. Many scaling techniques reported in RNS literatures [12]. The RNS scaling

by constant Q is defined as

=

Q

X
Y (2.4)

Q

X-X
Y

Q
= (2.5)

and in RNS representation

17

i

i

m

Q

m Q

X-X
Y = (2.6)

If Q, the divisor is a modulo or product of the first powers of modulo, multiplicative

inverse property can be used to simplify the division by Q

i

i

m

Q

m

Q

X-X

Y ====== (2.7)

2.6 RNS Fast Processing Applications

 The advantages of residue number system are discussed in several publications and

books [9]. Carry- free computation, simplified and fast addition and multiplication, which

helps to obtain parallel architectures, are among the important advantages. Potential

applications for RNS processors include fast DSP applications, adaptive array processing,

Kalman filtering, Fast Fourier Transforms, and image processing for communications,

surveillance, and intelligence systems.

2.7 Quantum-Dot Cellular Automata (QCA)

 In this section, we present background QCA material that will be helpful to

understand the QCA topics.

 QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots

positioned at the corners of a square as shown in fig. 2.1a. Each QCA cell contains two

mobile electrons that can move to any quantum dot through electron tunneling. Thus

there are two equivalent electrons arrangement polarization P = +1 (Logic 1) and P = -1

(logic 0).

18

Fig. 2.1a. QCA cells and binary encoding

 QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig.

2.1b. It produces an output of one if the majority of inputs one. The classical AND and

OR gates can be realized with majority gate by fixing one of three inputs as 0 or 1

respectively, as follows:

M(A,B,0) = AB (2.8a)

M(A,B,1) = A+B (2.8b)

Fig. 2.1b. QCA majority gate

19

 QCA Inverter: QCA cells layout of an inverter is shown in fig. 2.1c. The polarization

of the output QCA cell “out” is opposite of input QCA cell “in”.

Fig. 2.1c. QCA inverter gate

 QCA Wire: There are two types of QCA wires normal (also called 90
ο
) and diagonal

(also called 45
ο
). Fig. 2.1d shows the two QCA wire types with logic one polarized.

Fig. 2.1d. QCA wire types

20

2.8 QCA Clocking

 QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock 4 as

shown in fig. 2.2a. Every clock is 90
ο
out of phase form its pervious clock and each clock

has four states namely switch, hold, release, and relax [77]. In switch state, QCA cells

start polarized. In hold state, the cells retain it polarization and during release and relax

states, QCA cells are unpolarized as shown fig. 2.2b.

Fig. 2.2a. QCA clock phases; each clock lagging its prior by 90

ο

21

Fig. 2.2b. Four QCA interdot barrier states

Table 2.1 shows the equivalent QCA expressions for major Boolean gates.

TABLE 2.1

MAJORITY EXPRESSIONS AND DIAGRAMS FOR MAJOR BOOLEAN GATES

22

2.9 Conclusion

Residue number system is a robust parallel system that supports high speed

concurrent arithmetic applications such as addition, subtraction and multiplication in

modular levels. However it suffers from some drawbacks. RNS has weakness such as

conversion process, scaling, division, overflow detection and magnitude comparison.

Quantum-dot cellular automata also is one of the new emerging nanotechnology and it is

the future of CMOS technology due to its ultra-power and small size. Quantum-dot

cellular automata uses different logic devices to design circuits other than Boolean logic

devices. Converting Boolean circuits to QCA Boolean is not simple process due to

complexity of QCA and existing Boolean reduction methods do not work with QCA

logic. In thesis, we present a new binary to residue number system, new RNS scaling

methodology, RNS adder and subtarctor implementation, a new QCA construction

reduction method and QCA pipeline array implementation.

23

CHAPTER 3

NOVEL PARALLEL - PERFIX STRUCTURE BINARY TO RESIDUE NUMBER SYSTEM

CONVERSION METHOD

3.1. Introduction

 In the last decade, Residue Number System (RNS) has received increased attention due to its

ability to support high speed concurrent arithmetic applications [1-3] such as Fast Fourier

Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in

addition and multiplication. The advancements in Very Large Scale Integration (VLSI) technology

and demand for parallelism computation have enabled researchers to consider RNS as an alternative

approach to high speed concurrent arithmetic.

 Several methods are found in literature for binary to RNS conversion. Alia and Martinelli [4] have

proposed a method for binary to residue conversion based on powers of 2. A modification to the

above method was proposed by Cappocelli and Giancarlo [5]. Mohan [6] has proposed a similar

method but with difference that his method is based on the cyclic property of power of 2 modulo

set. Behrooa[7] proposed a table lookup schemes for binary to Residue conversions.

 In this chapter, we present a novel binary to residue number system conversion method. The

organization of this chapter is as follows. Section two explains RNS system. In section three, we

present new conversion from binary to RNS algorithm. Section four and five show illustrative

example and implementation selection techniques. Section six is comparison between the new

method and pervious work. Conclusion is in section seven.

24

3.1. Residue Number System

 Any n-bit nonnegative integer number X, in the range 0 ≤ X ≤ 2
n
-1 is represented in binary

number system as ∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n
b2bb 2b2...b2X

where { }1,0b j ∈ .

Meanwhile in RNS, X is represented by k residue digits xi as X = {x1, x2, x3, …, xk} where xi = X

mod mi and mi belong to set of relatively prime modulo; { }k321i m , ... ,m ,m ,mm ∈ [9]. If the

modulo are relatively prime numbers, there is a unique RNS representation for each integer in range

i

s

1i m X 0 =∏≤≤

3.2. New Novel Conversion Method from Binary to Residue Representation

 As shown above an integer number X can be represented in binary system as

∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n b2bb 2b2...b2X

And RNS representation of number X is

2mforb2X
m

1-n

0j m
j

j

m
>= ∑ =

 for m > 2

m

1-n

0j jm

j
b2∑ =

= (3.1)

Let]Y,Y,Y,Y)[A,A(M 321001AA 01
= denotes a 2-bit multiplexer where the 2 control bits (A1,

A0) select the inputs (3210 Y,Y,Y,Y) to be outputted

Lemma 3.1: For any pair of bits bj& bi for j & i ≥ 0,

mji
m

i
m

i

j
m

j Xb2b2 =+

can be implemented using 2-bit multiplexer :

]22,2,2,0)[b,b(M
mm

i

m

j

m

j

m

i

ijji += (3.2)

Where the control bits (A1, A0) equal (bj, bi)

25

Proof:

Rewrite equation
m

i
m

i

j
m

j b2b2 + as

)b.b.22()b..b2()b.b.2()b.b.0(ij
mm

i

m

j

ijm

j

ijm

i

ij ++++

This is equivalent to 2-bit multiplexer Mji with control bits (A1, A0) equal (bj, bi). Fig. 3.1 shows the

implementation for equation (3.2) with bj = b1 and bi= b0

Fig. 3.1. Two bits (b1 & b0) binary to residue number system conversion

This pre-processing operator Mji is represented in acyclic graph as node " " in fig. 3.2a, where all

the inputs are constants and pre-calculated .

26

Fig. 3.2. Prefix logic operation and their implementation

In three bit system, let ,Y)[A,A,A(M 0012AAA 012
=]Y,Y,Y,Y,Y,Y,Y 7654321 denotes a 3-bit

multiplexer where the 3 control bits (A2, A1, A0) select the inputs (76543210 Y,Y,Y,Y,Y,Y,Y,Y) to be

outputted.

Lemma 3.2: For any three bits bk, bj & bi for k, j & i ≥ 0,

mkji
m

i
m

i

j
m

j

k
m

k Xb2b2b2 =++ can be

implemented using 3-bit multiplexer :

,2,2,0)[b,b,b(M
m

j

m

i

ijkkji = ,22,2,22
mm

i

m

k

m

k

mm

i

m

j ++

27

]222,22
mm

i

m

j

m

k

mm

j

m

k +++ (3.3)

Where control bits (A2, A1, A0) equal (bk,, bj, bi)

Proof:

Rewrite
m

i
m

i

j
m

j

k
m

k b2b2b2 ++ as

+++)b..bb.2()b.bb.2()b.b.b.0(ijk
m

j

ijk
m

i

ijk +++)b.b..b2()b..bb.22(ijk
m

k

ijk
mm

i

m

j

++)b.bb,22(ijk
mm

i

m

k ++)b..bb22(ijk
mm

j

m

k

)b..bb.222(ijk
m

i

m

j

m

k ++

Above equation is equivalent to 3-bit multiplexer with bk, bj & bi as selection control inputs. Fig. 3.3

shows the implementation for equation (3.3) with bk = b2 bj = b1 and bi= b0

Fig. 3.3. Three bits (b2, b1, b0) binary to residue number system conversion

This pre-processing operator Mkji is represented in acyclic graph as node " " in fig. 3.2b, where

all the inputs are constants and pre-calculated.

28

Theorem 3.1: For any two pairs of bits (bl & bk) (bj & bi for j, i , l & k ≥ 0 with the given

expression

mlkji
m

im

i

jm

j

km

k

lm

l Xb2b2b2b2 =+++

can be implemented using 2-bit multiplexer

,M,)[0b(b),b(b M jiijkllkji ++=]MM,M jilklk + (3.4)

Where control bits (A1, A0) equal (bl,+bk , bj,+bi)

Proof:

m
i

m

i

j
m

j

k
m

k

l
m

l

mlkji b2b2b2b2X +++=

mjilkmlkji MMX += (3.5)

Where
m

k
m

k

l
m

l

lk b2b2M += and
m

i
m

i

j
m

j

ji b2b2M += by Lemma 1

Let blk = (bl + bk) and bji = (bj+bi)

Rewrite equation (3.5) as ++)b.b.M()b.b.0(jilkjijilk)b.b.MM()b..bM(jiljilkjilklk k
++ .

And this is equivalent to 2-bit multiplexer Mlkji with control bits (A1, A0) equal (bl+ bk , bj+ bi). Fig.

3.4 shows implementation for two pair bits (b3, b2) & (b1, b0)

Fig. 3.4. Four bits binary to RNS
m

01m

1

2m

2

3m

3

m3..0 bb2b2b2X +++=

29

Lemma 3.3:

Combining two pairs of bits (bl & bk) (bj & bi) requires one 2-bit multiplexer and one 2 input mod

adder. The delay time
22 modadder mux Total ττ τ +=

Proof:

Equation (3.4) and fig. 3.4 show that]MM,M,M,)[0b(b),b(b jilklkjiijkl +++

is equivalent to one 2-bit multiplexer and one 2-input mod adder; and delay time is equal to

22 modadder mux τ τ + .

Fig. 3.2c represents acyclic graph " " for node Mlkji where Mlk & Mji are inputs.

Lemma 3.4:

The parallel prefix operator has the following properties

1) Commutative

lkM jiM = jiM lkM

2) Associative

lkM hgM ()M ji = lk(M)M hg jiM

Proof:

lkM jiM = lkjiM

 ,M,)[0b(b),b(b jiijkl ++=]MM,M jilklk +

m

i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2 +++= (3.6)

 jiM lkM = jilkM

 ,M,)[0b(b),b(b klklij ++=]MM,M lkjiji +

m

k
m

k

l
m

l

i
m

i

j
m

j b2b2b2b2 +++= (3.7)

30

Both expressions (3.6) and (3.7) are the same by commutative property of "+" hence operator is

commutative

lkM hgM ()M ji = lkM hgjiM

 lkhgjiM =

 +++= h
m

h

k
m

k

k
m

l b2b2b2
m

i
m

i

j
m

j

g
m

g b2b2b2 ++ (3.8)

lk(M)M hg jiM = lkhgM jiM

 lkhgjiM =

 +++= h
m

h

k
m

k

k
m

l b2b2b2
m

i
m

i

j
m

j

g
m

g b2b2b2 ++ (3.9)

Both expressions (3.8) and (3.9) are the same by associative property of "+" hence operator is

associative

Theorem 3.2: For any three pairs of bits (bl & bk) ,

(bj & bi) and (bh & bg) for l, k, j, i, h & g ≥ 0 with given expression

 ++++ i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2
mlkjihg

m
g

m

g

h
m

h
Xb2b2 =+

can be implemented using 3-bit multiplexer

,M)[0,b(b),b(b),b(b M hgghijkllkjihg +++= ,MM,M,MM,M hglklkhgjiji ++

]MMM,MM hgjilkjilk +++ (3.10)

Where control bits (A2, A1, A0) equal (bl+bk , bj+bi , bh+bg,)

Proof:

+++= j
m

j

k
m

k

l
m

l

mlkjihg b2b2b2X
m

g
m

g

h
m

h

i
m

i
b2b2b2 ++

mhgjilkmlkjihg MMMX ++= (3.11)

Where
m

k
m

k

l
m

l

lk b2b2M += ,

31

m

i
m

i

j
m

j

ji b2b2M += and

m
g

m

g

h
m

h

hg b2b2M += by Lemma 1

Let blk = (bl + bk) , bji = (bj + bi) and bhg = (bh + bg)

Rewrite equation (3.11) as

++)b.bb.M()b.b.b.0(hgjilkhghgjilk
+++)b..bb).MM(()b..bb.M(hgjilkhgjihgjilkji

+++)b.b).bMM(()b.b..bM(hgjilkhglkhgjilklk

++)b..b).bMM((hgjilkjilk

)b..bb).MMM((hgjilkhgjilk ++

This is equivalent to 3-bit multiplexer Mlkjihg with control bits (A2, A1, A0) equal (bl+ bk , bj+ bi , bh+

bg)

Fig. 3.5 shows implementation for three pairs of bits (b5, b4), (b3, b2) & (b1, b0)

32

Fig. 3.5. Six bits binary to residue number system conversion

m
01

m

1

2
m

2

3
m

3

4
m

4

5
m

5

m5..0 bb2b2b2b2b2X +++++=

Lemma 3.5:

Combining three pairs of bits (bl & bk), (bj & bi) & (bh & bg) requires one 3- bit multiplexer and

three 2-input mod adder and one 3-input mod adder. The delay time equals

332 3 modadder muxmodadder muxTotal τττ2τ τ +=+=

33

Proof:

Equation (3.10) and fig. 3.5 show that ,M,)[0b(b),b(b),b(b hgghijkl +++

,MM,M,MM,M hglklkhgjiji ++]MMM,MM hgjilkjilk +++ is equivalent to one 3- bit

multiplexer and three 2-input mod adder and one 3-input mod adder; and delay time is equal to

2 3 modadder mux τ2 τ +

Fig. 3.2d represents acyclic graph for " " for node Mlkhgji where Mlk, Mhg & Mji are inputs

Lemma 3.6:

The parallel prefix operator has the following properties

1) Commutative

lkjihgM tsrqpoM = tsrqpoM lkjihgM

2) Associative

lkjihgM tsrqpoM ()M zyxwru = lkjihgM ()M tsrqpo zyxwruM

Proof:

The proof is similar to Lemma 3.4

34

3.3. Illustrative Example

 In this section, we will use to illustrate how theorem 3.1, theorem 3.2, lemma 3.1 and lemma

3.2 can be combined to design a binary to residue convertor. Fig. 3.6 shows how
m

X for n = 8 is

computed.

In the first layer, using pre-processing operator each consecutive pair of bits are group together

(b7, b6) (b5 , b4) (b3 , b2) (b1, b0) creating nodes M76, M54, M32, M10 . In the second layer, using

parallel prefix operator each consecutive M node are combined (M76, M54) (M32, M10) forming

nodes M7..4 & M3..0. In the last layer, using parallel prefix operator the last 2 M nodes are

combined (M7..4 , M3..0) forming node M7..0 =
m7..0X . Fig. 3.7a shows the actual hardware

implementation.

Fig. 3.6. Prefix structure of 8 bits binary to RNS

Total delay time for this example is calculated by counting the delay introduce by the operator in

each layer

by using lemma 3.3 as follows

35

Layer 1: delay time is
2mux τ

pre-processing operator doesn't requires an adder

Layer 2 : delay time is
2 2 modadder mux τ τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

Total delay is the sum of all layers delay time
2 2 modadder muxTotal τ2τ3 τ +=

To show that hardware works, the signal propagation for binary number

6244)01101110(X
710727

=== is illustrated in fig. 3.7b. Similarly, the reader can try any bit

pattern in fig. 3.7b to check the validity of the design. For example

3255)11111111(X
710727

=== where each multiplexer select line is 3 and the selected output

are shown in parenthesis.

36

Fig. 3.7a. Eight bits binary to residue number system conversion

m
01m2

m

2

3
m

3

4
m

4

5
m

5

6
m

6

7
m

7

m7..0 bb2b2b2b2b2b2b2X +++++++=

37

Fig. 3.7b. Example for signal propagation of
72)01101110(and

72)11111111(

38

3.4. Implementation Selection

 There are several possible binary to RNS implementations using a combination of 2-bit and 3-

bit multiplexers. Fig. 3.8 shows three different imp lementations (design 1, design 2 and design 3)

for 10 bits binary to residue conversion system.

To simplify comparison, the following reasonable assumptions are made

2 33 2 modadder modadder muxmux τ2τ;ττ ==

Design 1 uses nine 2-bit multiplexers and four 2-input mod adders with

Layer 1: delay time is
2mux τ

Layer 2: delay time is
2 2 modadder mux τ τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

Layer 4: delay time is
2 2 modadder mux τ τ +

Total delay is sum of all layers delay time
2 2 modadder muxTotal τ34τ τ +=

39

Fig. 3.8. Prefix structure of 10 bits binary to RNS

m
01m2m

2

3m

3

4m

4

5m

5

6m

6

7m

7

8m

8

9m

9

m9..0 bb2b2b2b2b2b2b2b2b2X +++++++++=

Design 2 uses four 3-bit multiplexers, one 2-bit multiplexers, four 2-input mod adders and one

3-input adder with

Layer 1: delay time is
3muxτ

Layer 2: delay time is
2 3 modadder mux τ2 τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

40

2 32 modadder muxmuxTotal τ3τ2 ττ ++=

2 2 modadder mux τ3τ3 +=

Design 3 uses three 3-bit multiplexers, three 2-bit multiplexer and three 2-input mod adders with

Layer 1: delay time is
3muxτ

Layer 2 : delay time is
2 2 modadder mux τ τ +

Layer 3: delay time is
2 2 modadder mux τ τ +

2 32 modadder muxmuxTotal τ2τ2τ τ ++=

2 2 modadder mux τ2τ3 +=

Table 3.1 shows that design 3 uses less hardware and is faster than other designs.

TABLE 3.1

SHOWS COMPARISON AMONG THE THREE DESIGNS IMPLEMENTATION

 Design Hardware count

Time Delay Mux2 Mux3

Mod

add2

Mod

add3

1 2 2 modadder mux τ34τ + 9 0 4 0

2 2 2 modadder mux τ3τ3 + 1 4 4 1

3 2 2 modadder mux τ2τ3 + 3 3 3 0

41

3.5. Comparison Selection to Pervious Work

 This Novel method has hardware advantages greater than any competitive converters. In

1984, Alia and Martinelli [3] published a binary to RNS conversion design based on power 2 mod

mi . The design uses processing elements (PE) and each PE is associated with two registers. Each of

these registers is serially loaded with
m

1i

m

i 2 and2 + respectively. The two outputs are added in a

modular adder. Thus, at the first level, n/2 PEs are required. The number of stages in this method is

[log2 n]. After successive transformation and addition, the residue result is available. Cappocelli and

Giancarlo [4] suggested the use of t PEs where t = n/ log2 n, each PE computing the residue

corresponding to k- bit binary word where k = log2 n, the residue 2
kt
 mod mi is serially fed to thk̂ PE

(=k̂ 0, 1, 2, …, t-1). Based on these initial residues, the residues corresponding to the next (k-1)

powers are computed by first doubling and then weighting according to the input bits in each PE.

The partial residues of k-bit words computed over parallel t PEs are then added to yield the final

residue. Mohan [5] has proposed a similar method but with a difference that X is divided into t

sections based on the cyclic property of 2
j
 mod mi. Using the fact that, 2

j,
 2

j+lo
 and 2

j+2lo
 have the

same residues due to the periodicity of period lo , lo bits are first added. The width of the result is

confined to lo bits by adding the carry bit resulting from previous addition to LSB of the result. The

residue results are then determined by using methods given in [3].

 Complexity calculation is very important for any design development. Reduction in

complexity of design can be done using adjustment in flow of design, which is made before

implementation. Table 3.2 shows hardware comparison among our design, Behrooa [7] and Alia [4].

There are various criteria that can be used to measure the hardware complexity number of gates,

number of I/O, delay time, fan in / fan out, area / size, power dissipation, and rank of design matrix.

McCabe metric and Halstead’s software science are two common codes for software complexity

42

measures. McCabe metric determines code complexity based on number of control paths created by

the code as follows

v = e - n +2p

Where e is the number of edges in a program flow graph, n the number of nodes, and p the number

of connected components. Halstead introduced software science in oder to measure properties of

the programs. Halstead’s program volume is defined to be

v = (N1+N2) log2(µ1 +µ2)

Where µ1 is number of distinct operators, µ2 is number of distinct operands, N1 is total number of

operators and N2 is total number of operands.

TABLE 3.2

COMPARISON AMONG BEHROOA[7], ALIA[4] AND THE NEW DESIGN

3.6. Conclusion

 In this chapter, we presented a new novel binary to residue conversion method that eliminates

the need for processing elements (PE) as the above competitive converter designs. This new novel

design doesn't use table lookup as in Behrooa Parhami [6]. The new method that we present here

is based on multiplexers concept which makes it practical and suitable for VLSI implementation.

43

CHAPTER 4

SIMPLIFIED RNS SCALING ALGORITHM

4.1 Introduction

Recent advances in computer architecture and VLSI technology have brought about a

resurgence of interest in RNS based digital systems. RNS system has a very big advantage in the

modular arithmetic operations like addition, subtraction and multiplication since this system

provides the ability to add, subtract or multiply without the need to wait for the carry propagation

as required by the weighted number systems. The non modular operation such as sign detection,

division and conversion presents a challenge to researchers. A lot of research has been done to

address these issues [9]. In this chapter we present new algorithms for residue number system

scaling that utilizes a simplified base extension process [9].

4.2 Division remainder zero

Division remainder zero method is a special simple case of division where the divisor is

relatively prime to the modulo set and the dividend is a multiple of the divisor. This operation is

accomplished by multiplying the dividend by the multiplicative inverse of the divisor.

i
m

i

ni

m
m

m

maa

imaba

), .. m,m (mmab
a

b

i

i
i

i

over of inverse blemultiplica theis where

 allfor prime relatively are and andremainder without by divides ifonly and If

 set moduli in the allfor

1

21

1

−

−
=

4.2 Scaling

Scaling is a restricted division operation where the divisor is one of the modulo or a product

of modulo [9]. Several algorithms have been presented for scaling. The common idea of these

algorithms is breaking the scaling process into two processes. A division remainder zero

operation and a base extension operation [9]. If we assume that a number X is the dividend and

44

the number Y is the divisor over the modulo set (m1,m2,…,mn). The result of dividing X by Y can

be expressed as follows

Y
XY

Y

X
X +

=

QY +RX = (4.1)

Where

=

Y

X
Q is the integer quotient is value of X over Y and

Y
XR = is the least positive

integer remainder. The objective of scaling is to find the quotient Q for restricted Y values.

Y

XX

Y

X
Q

Y
−

=

= �

i
i m

Y

m
Y

XX

Y

X −
= for all i, where (mi , Y)=1

� ()
i

i

i
m

mY

m

i
YXX

Y

X
q

1−×−== where Q = (q1, q2, …, qn) (4.2)

Equation (4.2) is a division remainder zero operation and can be used to get the residue digits qi

for all i where (mi , Y)=1. For the remaining digits where (mi , Y)≠1, base extension algorithm is

needed to find all residues of the quotient Q.

4.3 General Division

General division operation is the operation where the divisor does not fit the restrictions

mentioned in the division remainder zero or scaling operations [9]. General division can be

divided into two categories, multiplicative and subtractive. Most of the multiplicative algorithms

first compute the reciprocal of the divisor and then multiply the reciprocal by the dividend. The

subtractive algorithms employ subtraction of multiples of the divisor until the difference is less

than the divisor [9]. The algorithm presented in [9] seems attractive because of its simplicity. It

converts the general division operation into iterative scaling operation and it uses a lookup table

to identify the candidates for the scaling operations. The disadvantages of this algorithm along

with many similar division algorithms are the scaling operation which is slow due to the

complicated calculations which are either based on Galois Field or based on basic MRC.

45

4.4 New Base Extension Algorithm

RNS base extension problem, is the problem of finding the residue digits of one set over

another set that is an extension of the original set.

Let (m1, m2, …, mn , mn+1, mn+2, …, mn+k) be relatively prime modulo, the base extension problem

is finding the residues
knnn mmm

XXX
+++

,...,,
21

given the residue ∏
=

=<≤
n

i

immm
mMXXXX

n
1

0 and ;,...,,
21

.

The algorithm described in [9] is based on MRC conversion, where the algorithm assigns a

variable to the residue representation of
1+nm

X and then performs the MRC conversion on the

new modulo set which ends up with a linear equation of the MRC coefficient as a function of

1+nm
X . This is a lengthy operation. Also, alternative method was presented [9] which are based on

CRT. The advantage of CRT is that it is faster than MRC; however it requires large modulo

adders because of the need to perform mod M operations.

Lemma 4.1: The general solution of linear Diophantine equation

γβα =+ vu (4.3)

Where α, β, and γ are given integers and integer solutions u, v are desired

are
),gcd(

k
u u *

βα

β
+= and

),gcd(

k
 vv *

βα

α
−=

Where k is any integer and u* and v* are any particular solution. Also, this solution will exist if

and only if γ is a multiple of gcd(α, β). Equation (4.3) is equivalent to the following RNS

equation:

jjjiii xqmxqm +=+ i≠j (4.4)

gcd(α, β) = gcd(mi,mj) = 1

Comparing equations (4.3) and (4.4), equation (4.3) can be written as matrix notation

46

1i1jjijiji aaam-am −=
 (4.5)

Where aij = qi , aji = qj are the unknowns

and a1j = xj and a1i = xi are given integers

The general solution for equation (4.5) is

km)aa (c a j1i1jij ×+−×= (4.6)

Where k and c is integers and can be obtained by using Extended Euclidean Algorithm or

Fermat’s Theorems. Each coefficient aij represents one element of Matrix A which is needed to

solve (4.6).

=

nn

n

n

n

a

aa

aaa

xxxx

A

......

...

...

...

333

22322

321

Where () ()()()

→

≥≤≤×+−×

≤≤=

= −−−

OtherthemfindtoneedNo0

ijn,ji,2kmaac

nj11,ix

j1i1ij1iij

j

ija (4.7)

The smallest positive integer solution of each of the aij can be obtained by iterations of equation

(4.7) and the solution of Diophantine diagonal coefficients “aii” is equivalent to mixed radix

digits in MRC conversion

∏
−

=

++××+×+=
1n

1i

inn2133 12211 ma....mma maa X (4.8)

47

Example:

Given the residue representation X = (0, 1, 1) with modulo set (m1, m2, m3) = (2, 3, 5), extend the

base to m4=7, i.e. find |X|7

Solution:

Convert X to its decimal value using an RNS to decimal conversion algorithm

X = (0, 1, 1) = 16

|X|7=|16|7 = 2

The new representation of X over the new modulo set (2, 3, 5, 7) is (0, 1, 1, 2)

Example:

Given the residue representation x = (0, 1, 1) for the base with modulo (m1, m2, m3) = (2, 3, 5).

Extend the base to m4=7, m5=11, i.e. find |X|7 and find |X|11

Solution:

Convert X to its decimal value using an RNS to decimal conversion algorithm

X = (0, 1, 1) = 16

|X|7=|16|7 = 2

|X|11=|16|11 = 5

The new representation of x over the new modulo set (2, 3, 5, 7, 11) is (0, 1, 1, 2, 5)

4.5 New Scaling Algorithm

The following algorithms can used to find coefficient “c” in equation (4.7)

Fermat’s implementation for finding coefficient “c” as follows:

48

Fig. 4.1. Fermat’s implementation for finding coefficient “c”

Extended Euclid Algorithm Implementation

Fig. 4.2. Extended Euclid algorithm implementation

Fig. 4.3. Implementation of finding coefficient (aij)

 %--%
 % finding coefficient c using Fermat method

 %---%

 v = mod(mod(power(mj,mk-2),mk),mk);

 v1 = mk-v;

 if v <= v1

 c= v

 else

 c = -1*(mk-v)

 end

 %--%
 % Finding coefficient “c” using Extended Euclid Algorithm

 %---%

 u1 = 1; u2 = mj; v1 = 0; v2 = mk;

 while v2

 q = int(u2/v2);

 t1 = u1 - v1*q; t2 = u2 - v2*q;

 u1 = v1; u2 = v2;

 v1 = t1; v2 = t2;

 end

 c = u1

 %--%

 % Finding the smallest positive integer “aij” solutions for

 % Diophantine equations

 %--%

 a(j,k)= c*(a(j-1,k)-a(j-1,j-1));

 n =1;

 if a(j,k) < 0 % case 1 ex -6 + 11n

 while (a(j,k) + n*mk) < 0

 n = n + 1;

 end

 a(j,k) = a(j,k) + n*mk;
 elseif a(j,k) > mk % case 2 ex 30 + 11n

 while (a(j,k) - n*mk) >= 0

 n = n + 1;

 end

 a(j,k) = a(j,k) - (n-1)*mk;

 else

 a(j,k) = a(j,k); % case 3 a(j,k) < mk

 end

49

Example:

Find RNS representation of number 300 using modulo set (5, 7, 11) and also find mixed radix

digits using Diophantine method

Solution:

11,7,510)3,6,0()300(→RNS

From equation (4.5)

a11 = x1 = 0

a12 = x2 = 6

a13 = x3 = 3

a22 = c22 * [a12-a11] + m2 * k

and from Extended Euclidean Algorithm or Fermat’s Theorems c22 = 3

a22 = 3 x [6 – 0] + 7k = 18 +7k

at k = -2, a22 = 4 is the smallest positive integer solution

a23 = c23 x [a13-a11] + m3 x k

c23 = -2

a23 = -2 x [3 – 0] + 11k = -6 +11k

at k = 1, a23 = -6 +11 = 5 is the smallest positive integer solution

a33 = c33 x [a23-a22] + m3 x k

c33 = -3

a33 = -3 x [5 – 4] + 11k = -3 +11k

at k = 1, a33 = 8 is the smallest positive integer solution

50

=

8

54

360

A

From equation (4.8)

X = a11 + a22 x m1 + a33 x m1 x m2

X = 0 + 4 x 5 + 8 x 5 x 7 = 300

Diophantine equation can also help to solve RNS scaling by power of two. The new method is

based on division remainder zero theorem [9] and be used to any set of prime modulo set (m1,

m2, m3, ... , mn).

Theorem 4.1 (Division Remainder Zero)

()
n21 m

1-

nm

1-

2m

1-

1M

1-

M

sx,,sx,sx Xs
s

X
K==

Only if s divide by X without a remainder and gcd(s, mi) =1

Theorem 4.2:

For any set of prime modulo set (m1, m2, m3, ... , mn).

Case A: X is an even number “scaling without a reminder”

()R,y,,y,y
2

X
n21

M

K=

Where
i

i

i

m
m

2m

ii 2xy −= for all odd modulo and

R is the scaling result for m = 2 and it is found by following manner

� Set R = 0

� Find mixed radix digits (a11, a22, …, ann, D) for (y1, y2, …, yn, 0) by using Diophantine

RNS to binary conversion method

51

� If D = 0 then ()0,y,,y,y
2

X
n21

M

K⇔ and

� If D = 1 then ()1,y,,y,y
2

X
n21

M

K⇔

Case B: X is odd number “rounding to nearest integer”

Replace X with (X+1)

()R,y,,y,y
2

1X
n21

M

K⇔
+

Where
i

i

i

m
m

2m

ii 21)(xy −+= for all odd modulo and

R is the scaling result for m = 2 and it always equals to one.

Example:

For modulo set (2, 3, 5) determine the residue representation for 8/2, 6/2 and 5/2

Solution:

Let m1 =3, m2=5, m3=2

a) 2,5,310)0,3,2()8(→
RNS

122y
33

23

1 == −

423y
55

25

2 == −

Set R = 0 for m3 = 2

())0,4,1(R,y,y 21 =

Mixed radix digits “a33” = 0 → R = 0

4)0,4,1(
2

8 1

2,5,3

10

 → →

 −RNSRNS

52

b) 2,5,310)0,1,0()6(→RNS

020y
33

23

1 == −

321y
55

25

2 == −

Set R = 0 for m3 = 2

())0,3,0(R,y,y 21 =

Mixed radix digits “a33” = 1 → R = 1

3)1,3,0(
2

6 1

2,5,3

10

 → →

 −RNSRNS

c) 2,5,310)3,0,2()5(→RNS

02*)12(2)12(y
333

23

1 =+=+= −

33*)10(2)10(y
555

25

2 =+=+= −

And R = 1 for m3 = 2 as shown in case B

())1,3,0(R,y,y 21 =

3)1,3,0(
2

5 1

2,5,3

10

 → →

 −RNSRNS “Rounding to nearest integer

4.6 Conclusion

Diophantine RNS parallel algorithm provides an alternative method of finding mixed radix

digits with a high degree of parallelism. The algorithm has advantages over MRC method and

CRT methods since it avoids the use of modulo computations and use of multiplicative inverse.

53

CHAPTER 5

VLSI IMPLEMENTATION OF RESIDUE ADDER AND SUBTRACTOR

5.1 Introduction

In the last decade RNS arithmetic has become an attractive design option [1-3] for real time

application fields such as signal processing, image processing and computer graphics. The merits

of using RNS arithmetic lies in its capability of performing addition, subtraction and

multiplication without the generation of carry propagation. Also, RNS arithmetic has the

capability of being designed and fabricated using VLSI techniques. These characteristics of RNS

makes it most suitable for digital signal processor hardware.

In RNS the large numbers are represented by an n-tuple of smaller numbers that are

independent of each other, where n is the number of modulo in the modulo set. Hence, the

number operation can be done on these smaller numbers rather than the original number.

Furthermore, because the numbers in the n-tuple are independent of each other, the operation can

be done in parallel. The RNS is defined by a set of modulo (m1, m2, … , mn) that are pairwise

relatively prime positive integers. It can be shown that there is a unique representation for each

number in the range of 0 ≤ X < M Where ∏ =
=

n

1i imM and is called dynamic range [9]. Each

integer X can be represented by an n-tuple of residues X = (x1, x2, … , xn),

where xi = X mod mi or it can be written as
imi Xx = . The RNS represents any number within

the range of [0, M) for unsigned numbers or

−− 1

2

M
,

2

M for signed numbers. In RNS, the

binary operations { +, - , * } are defined as follow If Z = A B then (z1, z2, … , zn) = (a1, a2, … ,

54

an) (b1, b2, … , bn) where zi = (ai bi) mod mi. Each residue digit can be computed

independently of the others allowing fast data processing in n parallel independent channels.

VLSI implementations for adder and subtractor have been realized by many researchers.

Bayoumi [65] used three approaches (look up table approach, binary adder approach and hybrid

implementation approach). Banerji [67] and Piestrack [68] have their contributions as well for

implementation of binary adders using VLSI techniques. In this chapter, we have implemented

an RNS adder and subtractor. We have used Cadence (Virtuoso and Encounter) for the layout

and XILINX for the simulation results of the design.

5.2 Residue Adder and Subtractor

If we have two integers A and B of modulo m, then their addition and subtraction is

expressed as sum and subtraction of A B mod m. The operation addition and subtraction can

be described as below in equation 1 and 2 respectively.

≥+−+

<++
=+

mBAmBA

mBABA
BA

m
if

if
 (5.1)

<−+−

≥−−
=−

0BAmBA

0BABA
BA

m
if

if
 (5.2)

Fig. 5.1 shows the implementation of RNS adder /subtractor based on above equations.

55

Fig. 5.1. RNS adder and subtractor

The operation addition or subtraction is decided by the select line C0. When C0 is 0, the RNS

operation is addition. When C0 is 1, the RNS operation is subtraction. For n-bit RNS adder the

select line C0 is 0 and it will simply perform as an adder. Inputs to adder are A, B and m. Fig. 5.1

shows all the components that are used in RNS adder and subtractor. There are two full adders,

four 2x1 multiplexers and one OR gate are used. As already mentioned for Adder C0 is zero,

therefore inputs A, B and C0 are fed to the first full adder, which in turn will yield carryout Can

and sum Sa. In next step m, 0C = 1 and sum of previous full adder Sa goes to the next full adder

in the hierarchy which in turn will give us sum Sb, Cbn. Then Can and Cbn are added and sent to

the third 2x1 multiplexer along with signal Can. The output of the third 2x1 multiplexer is used

as a control signal to the final 2x1 multiplexer which generates the final output Sum based on

equation (5.1). For subtractor the scenario is same and equation (5.2) is implemented, but the

control signal C0 in this case is 1.

56

5.3 VLSI Implementation

In this section, we implemented the RNS adder and subtractor using VLSI techniques such as

XILINX and Cadence tools (virtuoso, Encounter). For simulation we have used XILINX and for

layout we used encounter and virtuoso.

a) XILINX is a platform where we can generate the schematic using the verilog code of the

design. At the same time, we can test if the desired schematic or design is correct by looking at

the behavioral simulation. Once we have created a verilog code for the adder and subtractor, we

used the Xilinx tools to synthesize the schematic. Eventually for the verification of design, we

built a testbench and run the simulation to see the correct desired output. Fig. 5.2 shows the

result of RNS adder and subtractor.

Fig. 5.2. Waveform of RNS adder and subtractor

57

Fig. 5.3. RNS adder and subtractor layout

b) Encounter is a technique where we can generate a layout of our design. Ambit Buildgates is

used to generate the netlist then the netlist is uploaded to the encounter. Further, by assigning

floor plans, appropriate layers and nano routing we can get the design in .gds and .def format.

We can also check for the design if it is flawless or not in terms of connectivity, density etc. Fig.

5.4 shows the encounter part of our design.

Fig. 5.4. Encounter part of RNS adder and subtractor

58

TABLE 5.1
TOTAL RNS ADDER AND SUBTRACTOR DELAY TIME (PS)

TABLE 5.2

RNS ADDER AND SUBTRACTOR DESIGN PARAMETER

c) Virtuoso is a tool through which we can send our layout for the chip fabrication. We can

pursue Virtuoso in two ways, one is to build the design from basic building blocks, such as from

transistor level (pmos, nmos etc.) and the second way is to import the design from encounter

with the help of certain technology libraries. In our work, we have used the later method where

we have imported the design from encounter and the same was padframed in order to send it to

MOSIS for chip fabrication. The complete Layout along with the connections is shown in fig. 5.4

below.

59

Fig. 5.5. Virtuoso part of RNS adder and subtractor

5.4 Conclusion

We have discussed the VLSI approach for the realization of RNS adder and subtractor.

XILINX is used to get the behavioral simulation of the design with the help of which we were

able to verify that our design is performing as desired. Cadence encounter is used to build the

layout of the design. Design layout along with the technology libraries and layers is exported to

Virtuoso. Furthermore, padframing was performed in order to send the design to MOSIS for

fabrication.

60

CHAPTER 6

NOVEL QUANTUM BOOLEAN CIRCUITS CONSTRUCTION BY USING

XOR-AND REDUCTION METHOD

6.1 Introduction

 One of the new fields of nanotechnology is quantum-dot cellular automata that provides an

alternative design to CMOS architectures. Recent research studies [76-82] show that the

advantages of using QCA technology are smaller circuit size, faster switching speed, and less

power consumption.

 During the past decade, quantum-dot cellular automata has demonstrated the ability to

implement both combinational and sequential logic devices. Unlike conventional Boolean AND-

OR-NOT based circuits. The fundamental logical device in QCA Boolean networks is majority

gate which implements the Boolean function:

M(A,B,C) = AB+AC+BC (6.1)

With combining these QCA gates with NOT gates any combinational or sequential logical

device can be constructed from QCA cells. The process of QCA Boolean logic is more

sophisticated than Boolean logic. The traditional Boolean logic reductions methods such as

Kranaugh maps produce simplified Boolean expressions. However, converting these forms to

QCA Boolean is not simple process due to complexity of multilevel majority gates. R. Zhang

[19] proposed thirteen standard functions to present all three variables Boolean functions that can

be used to produce simplified majority logic. Chin-Yung [13] used Tabulation method to

simplify Boolean logic functions and to produce a simplified QCA logic. In this chapter, we

present a novel methodology for multilevel majority logic synthesis, our methodology takes as

61

its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an

equivalent majority gate circuits.

6.2 QCA Background Material

 QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots

positioned at the corners of a square as shown in fig. 6.1a. Each QCA cell contains two mobile

electrons that can move to any quantum dot through electron tunneling. Thus, there are two

equivalent logic polarization P = +1 (Logic 1) and P = -1 (logic 0).

 QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig. 6.1b. It

produces an output of one if the majority of inputs one. The classical AND and OR gates can be

realized with majority gate by fixing one of three inputs as 0 or 1 respectively, as follows:

M(A,B,0) = AB (6.2a)

M(A,B,1) = A+B

(6.2b)

 QCA Inverter: QCA cells layout of an inverter is shown in fig. 6.1c. The polarization of the

output QCA cell “out” is opposite of input QCA cell “in”.

 QCA Wire: There are two types of QCA wires normal (also called 90
ο
) and diagonal (also

called 45
ο
). Fig. 6.1d shows the two QCA wire types with logic one polarized.

62

Fig. 6.1a. QCA cells and binary encoding

Fig. 6.1b. QCA majority gate

63

Fig. 6.1c. QCA inverter gate

Fig. 6.1d. QCA wire types

 QCA Clocking: QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock

4 as shown in fig. 6.2a. Every clock is 90
ο

out of phase form its pervious clock and each clock

has four states namely switch, hold, release, and relax [40]. In switch state, QCA cells start

polarized. In hold state, cells retain thier polarization. Additionally, during release and relax

states, QCA cells are unpolarized as shown in fig. 6.2b.

64

Fig 6.2a. QCA clock phases; each clock lagging its prior by 90
ο

Fig. 6.2b. Four QCA interdot barrier states

65

6.3 Novel QCA Extraction

XOR algebra can be used very effectively to yield gate-minimum results not possible by

conventional mapping methods. Our novel QCA extraction procedure takes as its input a

Boolean network, generates simplified XOR-AND equivalent network and output an equivalent

majority gate network as shown in fig 6.3.

Fig 6.3. XOR-AND function extraction methodology

66

We will use the following two Boolean examples to illustrate the QCA extraction

methodology.

Example: Generate the equivalent QCA circuit for ∑=)14,13,12,8,7,5,3,2(),,,(1 dcbaf

Solution:

Step1: Draw up the minimization chart and list all miniterms on the first column [10]. Refer to

table 6.1 for detail of construction.

TABLE 6.1

THE CHART FOR DERIVING XOR EQUIVALENT FUNCTION “F1”

Step2: List all possible variables possibilities in the first row. Start with one, all possible pairs of

variables, then all triples of variables and so on up to columns for all the variables possibility.

Step3: Filling 1’s in all possible variables columns that have unprimed variables in miniterms as

shown in table 6.1.

Step4: To get the function in final XOR-AND, cross out all columns that have even number of

1s in them. The XOR-AND function for this example is

67

 acdbdbcadcaf ⊕⊕⊕⊕⊕=1

Step5: Utilizing ()xx ⊕= 1 XOR property, the above function can be simplified to

 dcabdcbaf ⊕⊕⊕=1

Step6: Construct a majority gate tree as shown in fig. 6.4 and then replace each node with an

equivalent majority XOR and AND gates as shown in fig. 6.5.

Fig. 6.4. Majority tree for function f1

Lemma 6.1: If x and y are two binary inputs, then)0,,(yxMxy =

Proof:

By equation (6.1)

xyxyyxM =++= 00)0,,(

Lemma 6.2: If x and y are two binary inputs, then)1),0,,(),0,,((yxMyxMMyx =⊕

Proof:

=)1),0,,(),0,,((yxMyxMM =++++)1),00(),00((yxyxM

=++ yxyxyxyx))((

68

yxyxyx ⊕=+

Lemma 6.3: If x and y are two binary inputs, then)1,,()0.,(yxMyxM =

Proof:

xyyxM =)0,,(

yxxyyxM +==)0.,(

By equation (6.2b)

)1,,(yxMyx =+

Fig. 6.5. Majority gates schematic for function f1

69

Step7: Majority tree can also be used to construct QCA expressions for any node. QCA

expressions for n1 and n2 are as follows

By Lemma 6.1

)0,1,(aMa =

)0,,(cbMcb =

)0,,(dbMbd =

)0,),0,,((dcaMMacd =

By Lemma 6.2 and Lemma 6.3

cban ⊕=1

)1),0,,(),0,,((1 cbaMcbaMMn =

)1),0,)0,,(),0,1,((

),0),0,,(,)0,1,(((1

cbMaMM

cbMaMMMn =

)1),0),1,,(),0,1,((

),0),0,,(),1,0,(((1

cbMaMM

cbMaMMMn =

And

acdbdn ⊕=2

)1),0,,(),0,,((2 acdbdMacdbdMMn =

)1),0,)0,),0,,((),0,,((

),0),0,),0,,((,)0,,(((2

dcaMMdbMM

dcaMMdbMMMn =

70

)1),1)1,,)0,,((),0,,((

),0),0,),0,,((),1,,(((2

dcaMMdbMM

dcaMMdbMMMn =

)1),1)1,),1,,((),0,,((

),0),0,),0,,((),1,,(((2

dcaMMdbMM

dcaMMdbMMMn =

Example: Generate the equivalent QCA logic expression for ∑=)7,4,3,2,0(),,(2 cbaf .

Table 6.2 shows the minimization chart for function f2. For unprimed miniterms in minimization

chart, 1s are filled for every column [10].

TABLE 6.2

MINIMIZATION CHART FOR FUNCTION F2

The XOR-AND function for this example is

abcbcabcf ⊕⊕⊕⊕= 12

And utilizing ()xx ⊕= 1 XOR property, the above function can be simplified to

bcaabcf ⊕⊕=2

Fig. 6.6 shows the majority gate tree for function f2 which helps to construct majority gates

layout by replacing each node with equivalent majority XOR and AND gates.

71

Fig. 6.6. Majority gate tree for function f2

QCA logic expression for function f2 is

)1),0,,(),0,,((2 abcMabcMMf =

)1),0,)0,,(,(

),0),0,,(,((2

baMcM

baMcMMf =

)1),0),1,,(,(

),0),0,,(,((2

baMcM

baMcMMf =

6.4 Conclusion

We presented a systematic QCA logic construction method. Our novel method takes Boolean

function as its input, generates simplified XOR-AND equivalent circuit and outputs an

equivalent QCA logic circuits. In our novel method, we were able to simplify the Boolean

functions and reduce number of majority gates with the help of XOR-AND reduction techniques

then mapping QCA logic to Boolean functions.

72

CHAPTER 7

IMPLEMENTATION OF GENERALIZED PIPELINE CELLULAR ARRAY

USING QUANTUM-DOT CELLULAR AUTOMATA

7.1 Introduction

During the last decade, Quantum-Dot Cellular Automata (QCA) has attracted a lot of attention due to

its extremely small size and its ultralow power consumption as compared to COMS technology. It has

been demonstrated that QCA has the ability to implement both combinational and sequential logic devices

[76]–[83].

The fundamental unit of a QCA circuit is quantum cell which typically contains four quantum dots,

placed near the corners of the cell where free electrons can reside. Quantum cells have two distinct stable

polarizations, as shown in fig. 7.1. These states allow the cell to represent binary data.

Fig. 7.1. Quantum cells with polarity -1 & polarity +1

QCA Binary wires are the simplest QCA structures and consist of a series of quantum cells in close

proximity to each other. The cells interact through Coulombic interactions with each other as shown in fig.

7.2. Binary wires can also be constructed by orienting the dots in each cell at a 45 degree angle from the

standard cell. This allows binary wires to cross in the same plane or layer without interacting with each

other.

73

There are two logic gates that make up the fundamental set of logic in QCA: majority gate and inverter.

By carefully arranging the location of QCA cells, one can create a majority logic gate, which is capable of

functioning as either an AND or an OR gate.

Fig. 7.2. QCA binary wire arrangements

QCA majority gate takes three inputs and outputs a value that occurs most frequently as

BCACABCBAM ++=),,((7.1)

The majority gate can also be used to create AND and OR gates. If one input is held at 1, the majority gate

functions as a standard 2-input OR gate. If one input is held at 0, the majority gate functions as a 2-input

AND gate. Fig. 7.3 shows standard QCA majority gate construction.

Fig. 7.3. QCA majority voter gate

74

QCA inverter gate has a single input and output. It simply returns the opposite of the value that was put in

as shown in fig. 7.4.

Fig. 7.4. QCA inverter gate

QCA has a four-phase clocking mechanism. The sequence of the states in this scheme is the switch

state, hold, release and relax states [76]. In the switch state, QCA cells start getting polarized. In hold state,

the cells retain thier polarization. During release and relax states, QCA cells are unpolarized as shown in

fig. 7.5.

Fig. 7.5. Four QCA four phase clocking mechanism

75

TABLE 7.1

BOOLEAN FUNCTIONS AND THEIR EQUIVALENT QCA EXP.

Boolean Function Majority Diagram / Expersssion

� � ��

���,�, 0	

� � �
 �

���,�, 1	

� �̅
�

���̅, �, 1	

� �̅�

���̅, �, 0	

� ��
�̅�

��� �,�, 0 , � �̅,�,0 , 1	

� ��
 �̅�

��� �,�, 0 ,� �̅, �, 0 , 1	

� � ��

� � �
�

� � � ⊕�

� � �⨀�

76

Lemma 7.1: If x and y are two binary inputs, then)0,,(yxMxy =

Proof:

By equation (7.1)

xyxyyxM =++= 00)0,,(

Lemma 7.2: If x and y are two binary inputs, then)1),0,,(),0,,((yxMyxMMyx =⊕

Proof:

=)1),0,,(),0,,((yxMyxMM =++++)1),00(),00((yxyxM

=++ yxyxyxyx))((

yxyxyx ⊕=+

Lemma 7.3: If x and y are two binary inputs, then)1,,()0.,(yxMyxM =

Proof:

xyyxM =)0,,(

yxxyyxM +==)0.,(

By equation (2b)

)1,,(yxMyx =+

The use of generalized cellular pipeline arrays for various arithmetic operations has shown

considerable promise in optical computer architecture because of the obvious advantages of improvement

in speed and reduction in the cost and size. Cellular pipeline array consist of regular interconnections of

selected logic sub-circuits called cells or processing elements (PE). The basic approach is to keep the

number of I/O terminals to cellular array module to a minimum and supply control parameters as inputs to

the arithmetic cells.

77

Different pipeline array designs have appeared in literature [88]-[92]. Singh [91] presented a

generalized cellular array which can perform all of the basic arithmetic operations such as multiplication,

division, squaring, and square rooting; and exploits the concept of pipelining. The basics of pipeline array

is that the arithmetic operations are grouped together in single array with some additional control logic that

can be used to realize the required arithmetic operation. Grouping these arrays (processing element units)

can provide a single array network that can perform fast processing arithmetic operation. In this chapter

we implemented pipeline array using QCA method design and comparing the design with [92].

7.2 QCA Pipeline Array

The generalized QCA pipeline array can perform all the basic arithmetic operations such as

multiplication, division, squaring, and square rooting. The electronic implementation of a generalized

pipeline array is adopted from an existing architecture [91]. Fig. 7.6 shows a block diagram for cellular

pipeline array. The array consists of processing elements (PEs) with each PE communicating with its

neighbours in the array either directly or through latches. The arithmetic cells marked as A are controlled

1-bit adders. The cells marked as C are control cells that specify the type of arithmetic operations to be

performed by the arithmetic cells. The cells marked as M are used for multiplication. The Cells marked S

are used for squaring and square rooting.

Fig. 7.7a shows a block diagram of an arithmetic cell, where lines A, B, and C are operand inputs, and

lines X and F are control signals. The control unit specifies the type of operations to be performed in each

PE. Fig. 7.7b shows a block diagram for control unit where P is an input, Fi is output, and X and C0 are

inputs and pass-through a PE to adjacent cells.

78

Fig. 7.6. Block diagram for pipeline array [91]

79

Fig. 7.7a. Arithmetic cell

Fig. 7.7b. Control logic cell

The arithmetic cell is capable of performing the following Boolean operations:

[] ii FAFCXBAS +⊕⊕⊕= 1)(

110))((ACCAXBC ++⊕=

)(iFBCD +=

))((iFBCBE ++=

And the Boolean expression for control cell is:

XPXCF ii += 0

Using lemma 7.1, 7.2 and 7.3, the above Boolean equations can be written in following QCA format

)1),0,,(),0,,((3 ii FAMFnMMS =

)1),0,,(),0,),1,,((1210 CAMnCAMMC =

)0),1,,(,(iFBMCMD =

80

)0),1,,(),1,,((iFBMCBMME =

)1),0,,(),0,,((0 XPMXCMMF i=

Where

)1),0,,(),0,,((21213 nnMnnMMn =

)1),0,,(),0,,((112 CAMCAMMn =

)1),0,,(),0,,((1 XBMXBMMn =

Table 7.2 explains the required control signals for each arithmetic operation. When X=0, the arithmetic

cell acts as an adder, and as a subtracter when X = 1. Sum and carry output are S and C0 respectively. The

operands are applied at inputs A and B. The most significant bits of the inputs are A1 and B1. The most

significant bit of the sum is S1. The array is capable of finding the square root of a ten-bit binary number

A1-10 with control inputs P1-5 are made zero and X is made 1. The B and C inputs to the first level are given

as 00, 01, 10, 10, 10, 10, and 10, as shown in fig. 7.6. To find the square root of a number, it is applied

across A, and then 01 is subtracted from the two most significant bits of A. If the remainder is positive,

then the value of F1 is 1; otherwise, it is 0. If F1 is 0, the original value is kept for the next subtraction.

Table 7.3 shows the value of the subtrahend for each succeeding stage.

81

TABLE 7.2

 QCA PIPELINE ARRAY ARITHMETIC SUMMARY OPERATIONS

Function Description of pipeline array

operations [7]

+ X=0, Fi=1

1CBAS ⊕⊕=

− X=1, Fi=1

1CBAS ⊕⊕=

x X=0, A=0, B=C

Right shift add method is used

Multiplicand in B

Multiplier in P

÷ X=1, B=C; P=0

Right shift and subtract

method is used

Dividend in A

Divisor in B

()2
 X=0, A=0

B= 2’s comp of “10”, C=”10”

Operand in P

 X=1, P=0

B= 2’s comp of “10”, C=”10”

Operand in A

82

TABLE 7.3

 SUBTRAHEND AT DIFFERENT LEVELS FOR SQUARE ROOTING

The array is also capable of taking the square of a 5-bit number. To find the square of a number, it is

applied across Pi with X= 0, the arithmetic cells act as an adder, and the control cell transform Pi to Fi.

Resulting in square of the number. The array can also be used to multiply a three-bit number B1-3 by a five-

bit number P1-5 with control bit X and A inputs are made zero. The array can divide a seven bit number A1-

7 by four-bit number B1-4, giving a four-bit quotient and a four-bit remainder. For this case, the control

input X is made 1, and P inputs are made zero. Similar to the multiplication operation, the C inputs are

kept the same as the B inputs. The array requires n (n + 2) arithmetic cells and n control cells. The delay of

an arithmetic operation depends on the delay in processing the last level which uses 2n+1 arithmetic units

and it is given by [91].

lcadelay n ττττ ++=

Where aτ , cτ , and lτ are the delays in arithmetic cell, control cell, and latch circuit, respectively. Fig. 7.8

shows QCA design arithmetic and control cell unit layout.

83

Fig. 7.8. (a) QCA arithmetic cell and (b) control cell

Agrawal [92] proposed high-speed multifunction array for multiplication, division, square-root

operations. QCA equations for Agrawal’s arithmetic cell can be giving by:

)1),0,,(),0,,((33 naMnaMMS iii =

)1,,(561 nnMci =+

)1,,(761 nnMei =+

)0,,(91 ii enMG =+

)1,,(91 ii enMP =+

)0,,(101 ii dnMg =−

84

)1,,(111 ii bnMh =−

Where

)1),0,,(),0,,((1 xbMxbMMn ii=

)1,,(12 nrMn j=

)1),0,,(),0,,((223 ncMncMMn ii=

)1,,(4 ii caMn =

)0,,(245 nnMn =

)0,,(6 ii caMn =

)0,,(167 nnMn =

)1),0,,(),0,,((118 ncMncMMn ii=

)1),0,,(),0,,((889 naMnaMMn ii=

)1,,(10 ij brMn =

)0,,(11 ij drMn =

Fig. 7.9 shows QCA design high speed arithmetic cell unit layout.

85

Fig. 7.9 QCA high speed arithmetic cell

7.3 QCA Pipeline Implementation

For creating QCA pipeline array and verifying the design functionality, QCADesigner [86] is used.

The tool provides two simulation engines: bistable engine and cotherence vector engine. QCA cells are

assumed to have a height of 18nm and width of 18nm while the quantum dots have a diameter of 5nm.

This follows the same assumptions as given in [87] and coherence vector engine has been used for

simulations. Fig. 7.10 and fig. 7.11 show the QCADesigner layout for the arithmetic cell and control cell

respectively. The layout is labeled to indicate majority gates inputs as well as the outputs. Fig. 7.12 and

fig. 7.13 show the QCADesigner simulations results.

86

Fig. 7.10. QCADesigner layout for arithmetic cell unit

87

Fig. 7.11. QCADesigner layout for control cell unit.

Fig. 7.12. Simulation for control cell unit

88

Fig. 7.12. Simulation for arithmetic cell unit

Fig. 7.13 and fig. 7.14 show the QCADesigner layout for the Agrawal’s arithmetic cell and simulation

results respectively.

89

Fig. 7.13. QCADesigner layout for high speed arithmetic cell unit

90

Fig. 7.14. Simulation for high speed arithmetic cell unit

91

Table 7.4 shows performance comparison between the two QCA designs showing the arithmetic and

control cells have a simpler structure than Agrawal’s arithmetic cell.

TABLE 7.4

QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS

A different modeling approach has been used to simulate 10-bit QCA pipeline array. We created a

behavior Verilog model for majority gate and used it as building block for creating majority AND, OR,

NOT and XOR QCA gates. Then we used Cadence NCLaunch simulation tool to test our design. Fig.

7.15 and fig. 7.16 show the result of squaring and square rooting outputs respectively.

Fig. 7.15. Waveform of pipeline squaring output result

92

Fig. 7.16. Waveform of pipeline square rooting output result

Fig. 7.17, fig 7.18 and fig. 7.19 show Multisim implementation for arithmetic cell, control cell and high

speed arithmetic cell.

Fig. 7.17. Multisim implementation of arithmetic cell

93

Fig. 7.18. Multisim implementation of control cell

Fig.7.19 Multisim implementation of high speed arithmetic cell

94

Fig. 7.20, fig 7.21, fig. 7.22, fig. 7.23, fig 7.24 and fig. 7.25 show FPGA implementation for arithmetic

cell, control cell and high speed arithmetic cell.

Fig 7.20. Arithmetic cell FPGA packaging

Fig 7.21. Control cell FPGA packaging

Fig 7.22. High speed arithmetic cell FPGA packaging

Fig 7.23. Arithmetic cell FPGA schematic layout

95

Fig 7.24. High Speed arithmetic cell FPGA schematic layout

Fig 7.25. Control cell FPGA schematic layout

96

TABLE 7.6

 QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS

TABLE 7.7

DELAY TIME (PS)

Table 7.6 and 7.7 show performance comparison between the two designs. The results show that

number of gates that were used in control cell are four gates, four I/O pins and total nets are seven. For

arithmetic cell, the total gates are fifteen, ten input I/O pins and total nets are twenty one. Meanwhile, in

high speed arithmetic cell, total gates are twenty, I/O pins are fourteen and total nets are twenty seven. The

allocated covered area and chip floor plan aspect ratio for the high speed arithmetic cell were the highest

97

due to the total gates for it is more than arithmetic cell. Also, the tables show that the maximum delay time

for arithmetic cell is smaller than in high speed arithmetic cell. The results show that arithmetic cell has

less complex in hardware and processes smaller delay time than high speed arithmetic cell as high speed

arithmetic requires two half adder in serial and needs more processing time.

We used Cadence Encounter to generate a COMS equivalent layout of our QCA pipeline array design.

Ambit Buildgates is used to generate the netlist. Encounter used to assign floor plans, appropriate layers

nano routing, and obtain the design in .gds and .def. In Encounter, we also checked for any design flawless

in terms of connectivity, density etc. Fig. 7.26 shows the encounter part of our design.

Fig. 7.26. Encounter part of QCA pipeline array

98

Fig.7.27. Virtuoso part of padding pipeline array

For chip fabrication, we used Virtuoso where we have imported the design from encounter and the same

padframed is used to send it to MOSIS for chip fabrication. The complete Layout along with the

connections is shown in fig. 7.28 below. In digital circuits complexity is not appears to be defined because

of a lot of parameters that can be used to measure digital complexity such as number of gates, number of

I/O, delay, area/size. In this present work, we suggest a fuzzy complexity system. This concept needs to be

validated and more works to be done. Fig 7.29 shows the hardware complexity fuzzy concept.

TABLE 7.7

COMPLEXITY FUZZY RESULTS FOR PIPLEINE ARRAY CELLS

99

Fig.7.28. Virtuoso part of pipeline array

Fig.7.29. Hardware complexity fuzzy concept

7.4 Conclusion

We demonstrate that arithmetic cells can be successfully implemented using QCA cells. These arrays

can perform multiplication, division, squaring and square rooting. All different modes of operation are

controlled by a single control line. QCADesigner tool set is used to simulate both designs. We also used

different VLSI approach to simulate 10-bit QCA pipeline array, we created behavior Verilog models for

the design. Cadence NCLaunch simulation tool is used to simulate the pipeline array and verify that our

design is performing as desired. Cadence encounter is used to generate a COMS equivalent layout of our

QCA pipeline array design. Our Design layout is exported to virtuoso. Furthermore, padframing is

performed in order to send the design to MOSIS for fabrication.

100

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Introduction

Residue Number System (RNS) has received increased attention due to its ability to

support high speed concurrent arithmetic applications such as Fast Fourier Transform

(FFT), image processing and digital filters. In spite of its effectiveness, conversion and

sign detection, base extension, scaling and division are complex operations with current

methods. In this dissertation, we have addressed conversion, scaling and implementation

of RNS adder and subtractor.

Quantum-Dot Cellular Automata (QCA) is attracting a lot of attention due to its

extremely small feature size and ultralow power consumption compared to CMOS

technology. This new type of nanotechnology uses different logic devices to design

circuits. The traditional Boolean logic reduction methods such as Kranaugh maps

produce a simplified Boolean expression. However, converting these forms to QCA

Boolean is not simple process due to the complexity of multilevel majority gates. In this

dissertation, we presented a novel methodology for generating QCA Boolean circuits

from multi-output Boolean circuits and implementation of QCA pipeline array.

8.2 Summary of Work

A detailed research has been conducted on the residue number system and quantum-

dot cellular automata. Specific solutions have been developed to provide solutions for

stressing issues. The following gives an executive summary of the contributions and

results of this research.

101

 A simplified algorithm method for conversion from binary to residue number

system was introduced. The algorithm requires less hardware size compared to

those required by existing algorithms. It utilizes parallel-prefix techniques with

multiplexers and modulo adders as the main building blocks without the use of

lookup tables which makes it practical and suitable for VLSI implementation.

While other existing methods such as Behrooa [7] uses a table lookup schemes for

binary to residue conversion and Alia [4] uses processing elements (PE) with

complex hardware.

 A new scaling algorithm based on mixed radix conversion was presented. The

algorithm utilizes a simplified base extension process that works on a smaller

modulo. It provides an alternative method of finding the mixed radix digits with

high degree of parallelism. The algorithm has advantages over CRT methods

since it avoids the use of modulo computations and the use multiplicative inverse

operation.

 An efficient VLSI approach for the implementation of RNS adder and subtractor

was introduced. XILINX is used to get the behavioral simulation of the design

with the help of which we were able to verify that our design is performing as

desired. Cadence encounter is used to build the layout of the design. Design

layout along with the technology libraries are exported to virtuoso. Furthermore,

padframing was performed in order to send the design to for fabrication.

102

 A novel methodology for generating QCA Boolean circuits from multi-output

Boolean circuits was developed. Our methodology takes as its input a Boolean

circuit, generates simplified XOR-AND equivalent circuit and output an

equivalent majority gate circuits.

 An efficient approach for implementation of a generalized pipeline cellular array

using quantum-dot cellular automata cells was presented. The QCA pipeline array

can perform all basic operations such as multiplication, division, squaring and

square rooting. The different modes of operation are controlled by a single control

line. We created behavior Verilog models for the design. Cadence NCLaunch

simulation tool is used to simulate the pipeline array and verify that our design is

performing as desired. Cadence encounter is used to generate a COMS equivalent

layout of our QCA pipeline array design. Our Design layout is exported to

virtuoso. Furthermore, padframing is performed in order to send the design to

MOSIS for fabrication.

8.3 Recommended Future Work

The results of this research are promising and the following are recommended

research topics that can be done as a continuation of this work.

 Further research can be done on investigating new techniques for generating

Carbon Nanotubes (CNT) Boolean circuits. Carbon Nanotubes have many

different structures, differing in length, thickness, and number of layers.

Although, they are formed from essentially the same material sheet, their

electrical characteristics differ depending on these variations. With these

103

properties, they are acting either as metals or as semiconductors. Nanotube-based

transistors, also known as Carbon Nanotube Field-Effect Transistors (CNTFETs),

are capable of digital switching using a single electron. However, one major

obstacle for this new emerging technology has been the lack of new methods for

mapping existing multi-output boolean logic circuits to carbon nanotubes logic

circuits also creating new methods for generating carbon nanotubes logic circuits

is other area of research.

 Modifying QCADesigner program to include QCA reduction algorithms that were

presented in this dissertation. QCADesigner is program that had been developed

by University of British Columbia to create a simulation tool and design for

quantum-dot cellular automata. QCADesigner is open code source and can be

downloaded from University of British Columbia. This tool is still under

development and provided free of cost to the research community.

 Also, further research can be done on creating new methods for generating

boolean circuits for Single Electron Transistor (SET) circuits. SET operates by

injecting or ejecting a single electron into or from a dot of silicon, so producing a

change in electronic potential. That change must overcome thermal agitation,

making optimized smallness of the dot essential for SET operation. With this

property, the single electron transistor is type of switching device that uses

controlled electron tunneling to amplify current. Usually, SET is made from two

tunnel junctions that share a common electrode. A tunnel junction consists of two

pieces of metal separated by a very thin insulator. The only way for electrons in

one of the metal electrodes is to travel through the insulator. One major obstacle

104

for this new emerging technology has been the lack of new techniques for

creating SET circuits.

 Implementing five pins majority QCA gate. The basic elements in QCA are

majority and inverter gates. As result, using a majority gate with more inputs in

QCA circuit will cause reduction in cell count, latency and complexity.

Furthermore, implementing seven input majority gate also could simplify and

optimize QCA designs. Creating new VLSI techniques that can support five and

seven majority gates and implementation different exciting circuits such as full

adder with these QCA gates can be other research area.

 Investigating new fabrication techniques of QCA logic devices is other research

areas that can be conducted. Fabrication of QCA is still ongoing challenging

research area. These challenges include development of new manufacturing

methodology for QCA circuit fabrication. Also implementation of detect free fault

tolerant circuit. These new techniques require development new CAD methods

and tools to help simulation.

 Implementing residue arithmetic logic unit that can perform all modulo

operations. RNS is an unweighted representation system of numbers. RNS is

based on modular arithmetic operations and it is a carry-free system. Creating

modular logic unit that be used in applications such as Fast Fourier Transform

(FFT), image processing and digital filters can simplify the RNS design and

application implementation.

 Investigating new residue number system techniques to simplify RNS magnitude

comparison overflow detection, sign detection, parity detection and division. In

105

spite of its effectiveness, RNS has remained more an academic challenge due to

the complexity involved in the magnitude comparison, overflow detection, sign

detection, parity detection and division. These RNS areas are other research area

to investigate.

 Validating and improving the fuzzy complexity concept is other research area that

can be investigated.

106

APPENDIX

Setting up your Working Environment:

1. Login to your Unix machine.

– Use your WSU access ID and password.

2. Double click on the “??????'s Home” folder on your desktop.

– (“??????” should be your AccessID).

If you already did steps 3 to 10 go to step 11

3. Click “View” and check “Show Hidden Files”.

4. Scroll down to find the .cshrc file.

– The file is currently Read Only.

– Right click on the file and choose “Properties”.

– Go to the “Permissions” tag and check “Owner ->Write”.

– Click “Close”.

– Now the file can be edited.

5. Right click on the file and choose “Open with Text Editor”.

– This will open the .cshrc file in the text editor.

6. Add these two lines to the file:

 source /opt/cds/class/cds_setup

 source /opt/cds/class/setup_files/vhdl/.vhdl_setup

– Save and close the editor.

7. Open a new terminal (by right click on the desktop and choose “Open Terminal”) and

type the commands:

 – cd $HOME

 – source .cshrc

8. Create new directory, name it cadence, under you

home directory.

– mkdir cadence

9. Create vhdl directory under cadence directory.

– mkdir vhdl

10. Execute the following commands:

– cd vhdl

107

– cp $NCVHDL/cds.lib $CDSVHDL

– cp $NCVHDL/hdl.var $CDSVHDL

11. Open cadence/vhdl/cds.lib file and add the following line

DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06

The cadence/VHDL/cds.lib file will look like

include $CDS_INST_DIR/tools/inca/files/cds.lib

#DEFINE ieee /opt/cds/ldv/tools/inca/files/IEEE

#DEFINE std /opt/cds/ldv/tools/inca/files/STD

DEFINE vhdl ~/cadence/vhdl

DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06

12. Encounter setup: Type these commands in you terminal

 – cd $CDSVHDL

– mkdir fe

– cd fe

– cp $DSMSE/ece753.conf ece753.conf

108

PART 1: ENCOUNTER

The original procedure version was contributed from Dr. Singh VLSI Lab and this is update to current

procedure:

1) Open Unix terminal and type encounter

2) Click on File (Top Left) -> Import Design The following screen should open.

3) Click on Load…

Navigate to cadence/vhdl/fe and select ece753.conf file

4)

109

5) Click on … (top right of the screen above)

6) Double Click the designated .verilog file which was created using BGX commands

7) Press OK after selecting the desired .verilog file

110

111

9) Click on Floorplan -> Specify Floorplan -> Ok (Just Press Ok, no need to change anything)

10) Click on Power -> Power Planning -> Add Ring

11)

112

12) Click Route -> Special Route -> Ok (The blue line should appear now)

13) Click Place -> Place Jtag -> OK

14) Click Place -> Place Standard Cells -> OK

15) Click Route -> Nanoroute -> Route -> Ok

16) After doing step 15, a figure similar to the one below should

17) Click Place -> Physical Cell -> Add Filler

113

18) Select and Add ‘FILL’ (Right Side) and Click Close

19) FILL should appear in the Cell Name(s) as shown below. Then Click OK

114

21) Click Verify-> Verify Connectivity -> Ok (There is no need to change anything, just press OK)

22) Click File -> Save ->GDS\OASIS

(There are two Saves, one on top and other on the bottom. CLICK THE ONE ON THE BOTTOM!!!)

23) Enter desired verilog name and GIVE THE EXTENSION .gds2

24) Check the Structure Name (Do Not Edit the Already filled in Name)

25) Click File -> Save -> DEF

26) In the encounter terminal type the following commands

a. On your query to determine the area occupied, use command

115

==>queryPlaceDensity

b. For determining number of instances do,

==>selectInst *

==>llength [dbGet selected]

c. For Calculating delay use

==> report_timing –from input_pin_name –to output_pin_name –unconstrained

d. To view the schematic from GUI click on ==>tools -> schematic viewer

e. To get the Aspect Ratio use command:

==>dbHeadAspectRatio

f. To get the coordinate of selected box use :

 selectInst instance_name

 dbGet selected.box

g. To Get the x and y dimensions of a particular cell,use the command after importing the design:

 set a [dbGetInstByName instance_name]

 set b [dbInstCell $a]

 dbCellDim $b

h. To Get the voltage for the specified cell

 Set a [dbGetCellByName cell_name]

 dbCellVoltage $a

116

PART 2: VIRTUOSO

1) Open Virtuoso

2) Close all the screens except LIBRARY MANAGER and the LOG window

3) Click File->New->Create Library (The Library Window, not the Log window)

4) Click OK.

117

5) Click File -> Import -> Stream (The LOG window, not the Library manager)

6) Click on Options then click on Geometry

7) Select Snap To Grid

118

8) Click Layers -> Load File

9) Find the streamOut.map file in your cadence folder. (You might have to look around more)

After finding the file, Select and click Open and then OK to

return back to the Virtuoso(R) XStream In screen.

119

10) Click on …

11) Find, Select and Open the .gds2 file that was saved in PART 1, STEP 23.

12) Select the Destination Library (The new library created in step 3)
13) Select the NCSU_TechLib_ami06 for your Technology Library Attachment

120

14) Click Translate. (A warning Log file will open, Just press No)

15) Click File->Import->DEF

16) Find the .def file in the cadence folder

Select Target Library Name (Same

one you created before)

Fill Target Cell Name as shown (add

‘cellname’ in the end)

Fill Target View Name as shown (just

add ‘layout’)

Finally Click on … (Top Right Corner)

This is annoying to use, but you need to browse back to

your cadence folder and find the .def file. Click ../ to

navigate back

You might have to look around.

Press OK once you find the .def file

121

17) Click File->New->Cell View

18)

19) Click Create and draw rectangle

Example31cellname

122

20) Click Create->Add Pins

21) Manually insert your ‘mygnd’ and ‘myvdd’ as inputs in the symbol as shown below

.

Add the Pin Names.

Insert Space in between.

Make sure the Direction is correct (input/output)

Then go to the Black screen and just click away the pins. As you place each pin, it should

automatically go to the next entered pin.

The red ending is pointing out.

Do the same for your outputs.

123

Click this to save symbol and then close

22) Click File->New->Cell View

23)

Fill Cell (Just add ‘Pad’ in the end)

Fill View (Just add schematic)

Select Type (schematic)

Press OK

A blank black screen should open

again.

Press I on the keyboard. (Figure on

the left should pop up)

Click Browse and browse for the

symbol you created.

124

23) Find, Select and Place the symbol to the black screen. (after selecting the symbol, simply move

cursor to black screen, the symbol should appear automatically)

24) Press I on the keyboard again and Click Browse and look for ami06_padframe (on the left)

In this part, you will add padding to your circuit.

In the middle column ‘Cell’, select and place padinc to the black screen. Padinc is the

input padding corresponding to your input pins. Place a pad for each input.

Do the same for output by using padout.

Do the same for myvdd and mygnd by using padvdd and padgnd respectively.

Press W on the keyboard to wire like so in the picture below.

125

126

25) Click this to save schematic with padding and close.

26) Click File->New->Cell View

28) Click File->Launch XL (A screen with the placed pads should open on the left)

29) Click this (bottom left corner)

Fill the same name in the Cell as the

one before

Fill View as ‘layout’

Select Type as ‘layout’

Press OK

A black screen should appear again.

127

30) This screen should pop up. Deselect everything under Generate except Instances

31) Edit Width and Height to 3.6

Like this

Press OK

32) Type placepads in the LOG window and press enter

128

33) Rectangular blocks in red should appear on the screen at this point.

34) Press shift+f together to turn the red figure into

NOTE: each block ONLY MOVES IN ONE DIRECTION. So move it left/right first then move it

top/bottom or the other way around.

To rotate block, select block and then click VIEW->Rotate and then click anywhere on the screen to

initiate the rotate.

SAVE THIS FILE. YOU ARE DONE

129

FPGA Implementation Procedure Update:
Note: The following procedure was done on Xilinx Version 13. You may see variations between

different versions. However, the general procedure for FPGA implementation remains the same,

which is:

1) Create a project, add existing source.

2) Synthesize code by double clicking on View RTL Schematic.

3) Assign Package Pins, under ‘User Constraints’.

4) Generate programming file to generate .bit file

5) Configure Device ………Boundary Scan ….. FPGA Implementation … selecting .bit file

for your device…. Download program to the board.

6) Testing code on the board.

The below is a very quick and general overview of the entire process

Procedure for FPGA Implementation:

1) Create a new project

File -> New Project

2) The following screen will appear. Make sure you specify the correct family name, device

name , package name and Preferred language.

130

3) Click next. Xilinx will show you the project summary. Verify that and click Finish.

4) Add an existing Verilog file.

Right click Design window and select ‘Add Source’.

131

5) Xilinx will then prompt you to select Verilog file. Add it.

6) Double click on View ‘RTL Schematic’ under Synthesize – XST

132

7) Under ‘User Constraints’, double click ‘I/O Planning- Pre-Synthesis.

133

8) You will then see the following screen. Please note: give Xilinx sometime to open ‘Plan

Ahead Screen’.

9) Then assign pins as you like in ‘I/O Ports’ wizard.

134

10) Save the design.

11) Minimize Plan Ahead window and go back to Xilinx.

12) Double click on ‘Generate Programming File’ as shown below. In this step, Xilinx will

create a file with extension .bit

135

13) Next, expand ‘Configure Target Device’ and double click on iMPACT.

136

14) You will see the following screen. Select Boundary Scan.

137

15) Right click when prompted and select ‘Initialize Chain’.

16) You should then then see the following two devices.

138

The device that we are interested in is XC3S200. You will be prompted to select .bit file

that was generated earlier. Select that .bit file .

Note: Underneath the device name, you should now see the name of the bit file you

selected earlier.

Xilinx will then ask you to add a .bit file to the second device as well. We are not

interested in this, so click BYPASS for this one.

139

17) Then select FPGA Device when prompted as shown below.

Click Apply � OK

140

18) Then right click on the screen and select program

141

Now you are ready to download the program to the board.

19) After successful completion, you should see the message shown below:

142

20) Now, go ahead and test your code on the board using the pins you assigned earlier.

143

REFERENCES

[1] M.A. Bayoumi, G.A Jullien, W.C Miller, " A look-up table VLSI design methodology for RNS

structures used in DSP applications," IEEE Trans. Circuits and Syst., vol.34, no. 6, pp 604–616,

Jun. 1987.

[2] J. Bajard, and L. Imbert "A full RNS implementation of RSA" , IEEE Trans. on Comp., vol. 53,

no. 6, pp. 769-774 , June 2004.

[3] K. Konstantinides and V. Bhaskaran, “Monolithic architectures for image processing and

compression,” IEEE Computer Graphics and Applications, vol. 12, no. 6, pp. 75–86, Nov. 1992.

[4] G. Alia and E. Martinelli, "A VLSI algorithm for direct and reverse conversion from weighted

binary number to residue number system," IEEE Trans. Circuits and Syst., vol. 31, no. 12, pp.

1033–1039, Dec. 1984.

[5] R. M. Capocelli and R. Giancarlo, "Efficient VLSI networks for converting an integer from

binary system to residue number system and vice versa," IEEE Trans. Circuits and Syst., vol. 35,

no.11, pp. 1425–1431, Nov. 1988.

[6] A. Mohan, “Novel design for binary to RNS converters,” IEEE Int. Symp conf. Circuits and

Systems, vol. 2, no. 2, pp. 357–360, June 1994.

[7] P. Behrooa, "Optimal table-lookup schemes for binary-to-residue and residue-to-binary

conversions," IEEE Signals, Systems and Compluter Conf., vol. 1, pp 812-816, Nov. 1993.

[8] Mohamed. Akkal and Pepe Siy, "A new mixed radix conversion algorithm," Journal of

Systems Architecture, vol. 5, no. 9, pp. 577-586, Sept. 2007.

[9] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer

Technology, New York: McGraw Hill, 1967.

[10] D. N. Warren-Smith, Introduction to Digital Circuit Theory: A Monograph on Digital Circuit

Theory from the Beginning, Digital Logic Systems, 2nd ed., 2006, ISBN: 978-095818941-5

144

[11] J. Timler and C. S. Lent, “Power gain and dissipation in quantam-dot cellular automata,”

Journal Appl. Phys., vol. 91. no. 2, pp. 823-831, Jan. 2002.

[12] F. Barsi and M. Cristina Pinotti, “Fast base extension and precise scaling in RNS for look-up

table implementations”, IEEE Trans. on Signal Processing, vol. 43, no. 10, pp. 2427-2430, Oct.

1995.

[13] Chin-Yung, Shiou-An Wang and Sy-Yen, “Quantum boolean circuits construction using

tabulation method,” 4th IEEE Nanotechnol. Conf., vol. 1,pp. 596-598, Aug. 2004.

[14] Yuke Wang, "Residue-to-binary converters based on new chinese remainder theorems, " IEEE

Trans. Circuits and Syst II, vol. 47, no. 3, pp. 197-205, March 2000.

[15] Yuke Wang, Xiaoyu Song and Mostapha Aboulhamid, "A new algorithm for RNS magnitude

comparison based on new chinese remainder theorems," IEEE Candian Conf. on Elec. and Comp.,

vol. 1, pp. 571-576, May 1999.

[16] M. Anatha Shenoy and Ramdas Kumaresan, " A fast and accurate RNS scaling technique for

high speed signal processing," IEEE Trans. on Acoustics. Speech and Signal Processing

Processing, vol 37, no. 6, pp. 929-937, June 1989.

[17] D. Banerji, "On the use of residue arithmetic for computation," IEEE Trans. Comp., vol.C-23,

no. 12, Dec. 1974.

[18] G. Dimauro, S. Impedovo, and G. Pirlo, "A new technique for fast number comparison in

residue number system", IEEE Trans. on Comp., vol. 42, no. 5, pp. 608-612, May 1993.

[19] R. Zhang, K. Walus, W. Wang and G. A. Jullien, “A method of majority logic reduction for

quantum cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 4, pp. 443–450, Dec. 2004.

[20] C. Efstathiou, D. Nikolos and J. Kalamatianos. "Area-time efficient modulo 2n-1 adder

design," IEEE Trans. On Circuits and Systems-II, vol. 41, no. 7, pp. 463-467, July 1994.

145

[21] M. D. Ercegovac and T. Lang, "Simple radix-4 division with operands scaling," IEEE

Trans.on Comp., vol. 39, no. 9, pp.1204-1208, Sep. 1997.

[22] A. Hiasat, "New designs for a sign detector and a residue to binary converter," IEEE Proc. on

Circuits, Devices and Systems, vol. 140, no. 4, pp. 247-252, August 1993.

[23] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric methods,” IEEE Trans.

Elec. Comp., vol. EC-11, no. 1, pp. 89–90, Feb. 1962.

[24] K. M. Ibrahim and S. N. Saloum, "An efficient residue to binary converter design," IEEE

Trans. on Circuits and Sys., vol.35, no. 9. pp.1156-1158, Sept. 1988.

[25] G. A. Jullien, "Residue number scaling and other operations using ROM arrays," IEEE Trans.

on Comp., vol. 27, no. 4, pp. 325-337, April 1978.

[26] F. Miyata, “Realization of arbitrary logical functions using majority elements,” IEEE Trans.

Electronic. Comput., vol. EC-12, no. 3, pp. 183–191, Jun. 1963.

[27] M. Lu and J. S. Chinag, "A novel division algorithm for the residue number system," IEEE

Trans. on Comp., vol.41, No. 8, pp. 1026-1032, August 1992.

[28] Roy D. Merrill, "Improving digital computer performance using residue number theory", IEEE

Trans. Electronic Comp., vol. EC-13, no. 2, pp. 93-101, April 1964.

[29] S. B. Akers, “On the algebraic manipulation of majority logic,” IEEE Trans. Electronic.

Comp., vol. EC-10, no. 4, pp. 779–779, April 1961.

[30] L. TAI, and F. Chen, "Overflow detection in a redundent residue number system," IEEE

Proceedings, Part E, Computers and Digital Techniques, vol. 131, no. 3, pp. 97-98, May 1984.

[31] N. Takagi, H. Yasura, and S. Yajima, "High-speed VLSI multiplication algorithm with a

redundant binary addition tree, " IEEE Transaction on comp, vol. C-34, no. 9, pp. 789-796, Spet.

1985.

[32] S. Talahmeh, and P. Siy, "Arithmetic division in RNS using galois field GF(p)," Computer

Math. with Appl., vol. 39, no. 5, pp. 227-238, March 2000.

146

[33] C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc.

IEEE, vol. 85, no. 4, pp. 541–557, Apr. 1997.

[34] J. C. Majithia, "A pipeline array for square-root extraction," IEEE Electron. Lett., vol. 9, no.1,

pp. 4-5, Jan. 1973.

[35] A.B. Premkumar, "An RNS to binary converter in (2n-l),2n, (2n+1) moduli set", IEEE Trans.

Circuits and Syst, vo1.39, no. 11, pp 480- 482, July 1992.

[36] A.P. Shenoy and R. Kumaresan, "Residue to binary conversion for RNS arithmetic using only

modular look-up tables", IEEE Trans. Circuits and Syst., vol.35, no.9. pp 1158-1162, Sept 1988.

[37] P. Bernardson, "Fast memoryless, over 64 bits, residue-to binary converter," IEEE Trans.

Circuits and Syst., vol. 32, no.3, pp 298-300, Mar. 1985.

[38] M.Hitz and E. Kaltofen,” Integer division in residue number systems”, IEEE Trans. Comp.,

vol. 44, no. 8, pp.983-989, Aug. 1995

[39] H. Cho and E. Swartzlander, "Adder design and analyses for quantum-dot cellular automata,"

IEEE Trans on Nanotechnology, vol. 6, no. 3, pp. 374-383, May 2007.

[40] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular

automata,” Journal Appl. Phys., vol. 75, no. 3, pp. 1818–1825, Feb. 1994.

[41] T. Oya, T. Asai, T. Fukui and Y. Amemiya, “A majority-logic device using an irreversible

single-electron box,” IEEE Trans. Nanotechnol., vol. 2, no. 1, pp. 15–22, Mar. 2003.

[42] Y. Fu and M. Wdlander, “Modelling and design of quantum dot cellular automata,’’ Journal

Appl. Phys., vol. 83, no. 6, pp. 3186-3191, March 1997.

[43] A. Gin, S. Williams, H. Meng, and P. D. Tougaw, “Hierarchical design of quantum cellular

automata,” Journal. Appl. Phys., vol. 85, no. 7, pp.3713–3720, Apr. 1999.

[44] S. Perri and P. Corsonello, “New methodology for the design of efficient binary addition

circuits in QCA,” IEEE Trans. Nanotechnol., vol. 11, no. 6, pp. 1192–1200, Nov. 2012.

147

[45] S . Andraos and H. Ahmed, “A new efficient memoryless residue to binary converter,” IEEE

Trans. Circuits and Syst., vol.35, no. 11, pp. 1441-1444, Nov. 1988.

[46] J. C. Lusth and D. J. Jackson, “Graph theoretic approach to quantum cellular design and

analysis” Journal. Appl. Phys., vol. 79, no. 4, pp. 2097 - 2102, Feb. 1996.

[47] Rui Zhang, P. Gupta, and N. K. Jha, "Threshold network synthesis and optimization and its

application to nanotechnologies," IEEE Trans. on Comp.-Aided Design of Intergrated Circuits and

Systems, vol. 24, no. 1, pp. 107-118, Jan. 2005.

[48] Rui Zhang, P. Gupta and N. K. Jha, "Majority and minority networks synthesis with and

applications to QCA-, SET- and SET- based nanotechnologies," IEEE Trans. on Comp.-Aided

Design of Intergrated Circuits and Systems, vol. 26, no. 7, pp. 1233 - 1245, July 2007.

[49] T. V. Vu, “Efficienit implementations of the chinese remainder theorem for sign detection and

residue decoding” IEEE Trans. Comp., vol. 34, no. 7, pp. 646-651, July 1985.

[50] M. B. Tahoori, J. Huang, M. Momenzadeh and F. Lombardi, “Testing of quantum cellular

automata,” IEEE Trans. Nanotechnol., vol. 3, no.4, pp. 432–442, Dec. 2004.

[51] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic

circuits,” IEEE Trans. Comp., vol. 30, no. 3, pp. 215–222, Mar. 1981.

[52] A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R. Ravichandran and K. Whitton,

“Fabricatable interconnect and molecular QCA circuits,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 26, no. 11, pp. 1978–1991, Nov. 2007.

[53] S. Roy and V. Beiu, “Majority multiplexing-economical redundant fault-tolerant designs for

nanoarchitectures,” IEEE Trans. Nanotechnol., vol. 4, no. 4, pp. 441–451, Jul. 2005.

[54] W. Ibrahim, V. Beiu, and M. Sulieman, “On the reliability of majority gates full adders,”

IEEE Trans. Nanotechnol., vol. 7, no. 1, pp. 56–67, Jan. 2008.

148

[55] S. Srivastava and S. Bhanja, “Hierarchial probabilistic macromodeling for QCA circuits,”

IEEE Trans. Comput., vol. 56, no. 2, pp. 174–190, Feb. 2007.

[56] S. Bhanja and S. Sarkar, “Probabilistic modeling of QCA circuits using bayesian networks,”

IEEE Trans. Nanotechnol., vol. 5, no. 6, pp. 657–670, Nov. 2006.

[57] K. Kim, K. Wu and R. Karri, “The robust QCA adder designs using composable QCA

building blocks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1, pp. 176–

183, Jan. 2007.

[58] J. Janulis, P. Tougaw, S. Henderson, and E. Johnson, “Serial bit-stream analysis using

quantum-dot cellular automata,” IEEE Trans on Nanotechnology, vol. 3, no.1, pp. 158-164, March

2004.

[59] V. Vankamamidi, M. Orravi, and F. Lombardi, "A line-based parallel memory for QCA

implementation," IEEE Trans. Nanotechnol., vol. 4, no. 6, pp. 690-698, Nov. 2005.

[60] Richard F. Tinder, “Multilevel logic minimization using K-map XOR patterns,” IEEE Trans.

On Eud., vol. 38, no. 5, pp. 370 - 375, Nov. 1995.

[61] P. D. Tougaw and C. S. Lent, “Dynamic behavior of quantum cellular automata,” Journal

Appl. Phys., vol. 80, no. 8, pp. 4722–4736, Oct. 1996.

[62] C. S. Lent and B. Isaksen, "Clocked molecular quantum-dot cellular automata," IEEE Trans.

Electron Devices, vol. 50, no. 9, pp. 1890-1896, Sep. 2003.

[63] E. S. Mandell and M. Khatun, “Quasi-adiabatic clocking of quantum-dot cellular automata,”

Journal Appl. Phys., vol. 94, no. 6, pp. 4116–4121, Sep. 2003

[64] Seminario JM, Derosa PA, Cordova LE and Bozard BH, “A molecular device operating at

terahertz frequencies: theoretical simulations,” IEEE Trans. on Nanotechnology , vol. 3, no. 1,

pp.215–218, March 2004.

[65] M. A.Bayoumi, G. A. Jullien and W. C. Miller, “A VLSI implementation of residue adders,”

IEEE Trans. Circuits and Syst., vol. 34, no.3, pp. 284-288, Mar. 1987.

149

[66] F. J. Taylor, “A single modulus complex ALU for signal processing,” IEEE Trans. Acoust.,

Speech Signal Processing, vol. 33, no.5, pp. 1302 – 1315, Oct. 1985.

[67] D. K.Banerji, “A novel implementation method for addition and subtraction in residue number

systems,” IEEE Trans. Comput., vol. C-23, no.1, pp. 106-109, Jan. 1974

[68] S. J. Piestrack, “Design of residue generators and multioperand adders modulo 3 built of

multioutput threshold circuits,” Proc. IEEE Computers and Digital Techniques, vol. 141, no. 2,

pp. 129 - 134 , March 1994.

[69] C. H. Huang, “A fully parallel mixed-radix conversion algorithm for residue number

applications”, IEEE Transactions on Computers, vol. 32, no. 4, pp. 398 – 402, April 1983.

[70] M. Akkal and P. Siy, “A new mixed radix conversion algorithm MRC-II” , Journal of System

Architecture, vol. 53, no. 9, pp. 577-586, May. 2007.

[71] M. Becherer, G. Csaba, W. Porod, R. Emling, P. Lugli, D. Schmitt-Landsiedel, ”Magnetic

ordering of focused-ion-beam structured cobalt-platinum dots for field-coupled computing”, IEEE

Trans. on Nanotechnology, vol.7, no.3, pp. 316-320, May 2008.

[72] B. Qiaa and H. E. Ruda, “Evolution of a two-dimensional quantum cellular nerual network

driven by an extemal field,” Journal Appl. Phys., vol. 85, no. 5, pp. 2952-2961, March 1999.

[73] M. Akkal and P. Siy “Optimum RNS sign detection algorithm using MRC-II with special

moduli set,” Journal of System Architecture. vol 54, no. 10, pp. 911-918. Oct. 2008.

[75] G. C. Cardarilli, “RNS-to-binary conversion for efficient VLSI implementation,” IEEE

Circuits and Systems I, vol. 46, no. 6, pp. 2427 – 2430, Oct. 1995.

[76] V. Pudi and K. Sridharan, “Low complexity design of ripple carry and Brent–Kung adders in

QCA,” IEEE Trans. Nanotechnol., vol. 11, no. 1, pp. 105–119, Jan. 2012.

[77] M. Covemale, M. Macucci, G. Iannaccone, C. Ungarelli and J. Martorell, “Modeling and

manufactarability assessment of bistable quantumdot cells,’’ Journal Appl. Phys., vol. 85, no. 5,

pp. 2962-2971, Mar. 1999.

150

[78] K. Walus, R. A. Budiiman and G. A. Jullien, “Split current quantum-dot cellular automata

modeling and simulation,” IEEE Trans. Nano., vol, 3, no. 2, pp. 249-255, June 2004.

[79] G. Toth and C. S. Lent “Role of correlation in the operation of quantum-dot cellular

automata,” Journal Appl. Phys., vol. 89, no. 12, pp. 7943-7953, June 2001.

[80] J. Timler and C. S. Lent, “Power gain and dissipation in quantam-dot cellular automata,”

Journal Appl. Phys., vol. 91. no. 2, pp. 823-831, Jan. 2002.

[81] I. Amlani, “Experimental demonstration of a leadless quantum-dot cellular automata cell,”

Appl. Phys. Lett., vol. 77, no. 5, pp. 738–740, July 2000.

[82] R. Brayton, G. Hachtel and A. Sangiovanni-Vincentelli, “Multilevel logic synthesis,” Proc.

IEEE, vol. 78, no. 2, pp. 264–300, Feb. 1990.

[83] K.Walus, “High level exploration of quantum dot automata (QCA),” Conf. Signal, Systm. and

Comp., vol. 1, pp. 30- 33, Nov. 2004.

[84] T. Sasao and P. Besslich, “On the complexity of Mod-2-sum PLA’s,” IEEE Trans. Comput.,

vol. 39, no. 2, pp. 262–265, Feb. 1990.

[85] H. Cho and E. E. Swartzlander, “Adder and multiplier designs in quantumdot cellular

automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721–727, Jun. 2009.

[86] K.Walus, T. Dysart, G. Jullien and R. Budiman, “QCADesigner: A rapid design and

simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1, pp.

26–29, Mar. 2004.

[87] K. Walus, G. Schulhof and G. Jullien, “Implementation of a simulation engine for clocked

molecular QCA,” Proc. IEEE Can. Conf. Electr. Comput. Eng., vol. 1, pp. 2128–2131, May 2006.

[88] T. Yatagai, "Cellular logic arithmetic for optical computers", Applied Optics, vol. 25, no. 10,

pp. 1571-1577, May 1986.

[89] G. Strucke, "Parallel architecture for digital optical computer" Applied Optics, vol. 28, no. 2,

pp. 363-370, Jan 1989.

151

[90] Dharma P. Agrawal and T. R. N. Rao, “On multiple operand addition of signed binary

numbers,". IEEE Trans. Comp., vol. C-27, no. 11, pp. 1068-1070, Nov. 1978.

[91] A.K Kamal, H. Singh and D. P. Agrawal, "A generalized pipeline array," IEEE Trans. Comp.,

vol. 23, no. 5, pp. 533-536, May 1974.

[92] Dharma P. Agrawal, "High-speed Arithmetic arrays," IEEE Trans. Comp., vol. C-28, no. 3,

pp. 215-224, March 1979.

[93] R. Golshan and J. S. Bedi, "Reversible nonlinear interface optical computing," Opt. Eng., vol.

28, no. 6, pp. 683-686, June 1989.

[94] M. Dagenais and W.F Sharfin "Optical switching of semiconductor laser amplifiers,” Appl.

Phys. B., vol. B46, no. 1, pp. 35-41, May 1988.

[95] J. Tanda and Y Ichioka "Modular Components for an array logic system", Applied Optics,

vol. 26, no. 18, pp.3954 -3960, Oct. 1987

[96] J. C. Majithia and R. Kitai, "A cellular array for the nonrestoring extraction of square roots,"

IEEE Trans. Conput. (Corresp.), vol. C-20, pp. 1617-1618, Dec 1971.

[97] H. H. Majithaia and R. Kitai, “Cellular array for nonrestoring square root extraction,"

Electron. Lett., vol. 6, pp. 66-87, 1970.

[98] J. C. Hoffman, B. Lacaze and P. Csillag, "Iterative logical network for parallel multiplication,"

Electron. Lett., vol. 4, pp. 178-179, May 1968.

[99] K. J. Dean, "Binary division using a data-dependent iterative array," Electron. Lett., vol. 4, pp.

283-284, July 1968.

[100] R. C. Devries and M. H. Chao, "Fully iterative array for extracting square roots," Electron.

Lett., vol. 6, pp. 255-256, Apr. 1970.

[101] A. Gex, "Multiplier-divider cellular array," Electron. Lett., vol. 7, pp. 442-444, July 1971.

[102] J. C. Majithia, "Cellular array for extraction of squares and square roots of binary numbers,"

IEEE Trans. Comput. (Short Notes), vol. C-21, pp. 1023-1024, Sept. 1972.

152

[103] D. P. Agrawal and H. Singh, "Iterative array for square-root, division, and multiplication,"

8th Ann. Conv. Comput. Soc. of India, Mar. 26, 1973.

[104] J. C. Majithia, "A pipeline array for square-root extraction," Electron. Lett., vol. 9, pp. 4-5,

Jan. 1973.

[105] R. Ranjan, H. Singh, A. Awasthi, W. Smuda and G. R. Gerhart, "Finite state modeling of

Mobile robots for complexity determination,” Proc. SPIE, Unmanned Systems Technology VIII,

vol. 6230, May 2006.

[106] Wei Wang, M. Swamy, M Ahmed and Yuke Wang., “A high speed residue-to-binary

converter and a scheme for its VLSI implementation, ”. IEEE Trans. Comput., vol. 6, no. 1, pp.

330 – 333, July 1999.

[107] B. Taskin, “Improving line-based QCA memory cell design through dual phase clocking”

IEEE Trans. Very Large Scale Integration (VLSI), vol. 16, no. 12, pp. 1648 - 1656, Dec. 2008.

[108] Yuke Yang and Mustafa Abd-El-Bar, “A new algorithm for RNS Decoding,” IEEE

Transactions in Circuits and Systems-I: Fundamental Theory and Applications, vol 43, no 12, Dec.

1996.

[109] W. K. Jenkins and B. J. Leon, "The use of residue number systems in the design of finite

impulse response digital filters," IEEE Trans. Circuits Syst., vol. 24, no. 4, pp. 191-201, Apr. 1977.

153

ABSTRACT

EMERGING DESIGN METHODOLOGY AND ITS IMPLEMENTATION

THROUGH RNS AND QCA

by

OMAR DAJANI

August 2013

Advisor: Dr. Harpreet Singh

Major: Electrical Engineering

Degree: Doctor of Philosophy

Digital logic technology has been changing dramatically from integrated circuits, to a

Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits.

Research focused on increasing the speed and reducing the size of the circuit design.

Residue Number System (RNS) architecture has ability to support high speed concurrent

arithmetic applications. To reduce the size, Quantum-Dot Cellular Automata (QCA) has

become one of the new nanotechnology research field and has received a lot of attention

within the engineering community due to its small size and ultralow power.

In the last decade, residue number system has received increased attention due to its

ability to support high speed concurrent arithmetic applications such as Fast Fourier

Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS

arithmetic in addition and multiplication. In spite of its effectiveness, RNS has remained

more an academic challenge and has very little impact in practical applications due to the

complexity involved in the conversion process, magnitude comparison, overflow

detection, sign detection, parity detection, scaling and division. The advancements in

154

very large scale integration technology and demand for parallelism computation have

enabled researchers to consider RNS as an alternative approach to high speed concurrent

arithmetic. Novel parallel - prefix structure binary to residue number system conversion

method and RNS novel scaling method are presented in this thesis.

Quantum-dot cellular automata has become one of the new nanotechnology research

field and has received a lot of attention within engineering community due to its

extremely small feature size and ultralow power consumption compared to COMS

technology. Novel methodology for generating QCA Boolean circuits from multi-output

Boolean circuits is presented. Our methodology takes as its input a Boolean circuit,

generates simplified XOR-AND equivalent circuit and output an equivalent majority gate

circuits.

During the past decade, quantum-dot cellular automata showed the ability to

implement both combinational and sequential logic devices. Unlike conventional Boolean

AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks

is majority gate. With combining these QCA gates with NOT gates any combinational or

sequential logical device can be constructed from QCA cells. We present an

implementation of generalized pipeline cellular array using quantum-dot cellular

automata cells. The proposed QCA pipeline array can perform all basic operations such

as multiplication, division, squaring and square rooting. The different mode of operations

are controlled by a single control line.

155

AUTOBIOGRAPHICAL STATEMENT

Omar Dajani

He received his BS degree in Computer Engineering from Jordan University of

Science and Technology, Jordan, in 1995 and MS degree in Electrical and Computer

Engineering from University of Detroit Mercy, Detroit, MI in 1996. He is currently

working as electrical system engineer for Ford Motor Company and pursuing a Ph.D.

degree in Electrical Engineering at Wayne State University, Detroit, MI. His research

interests are in residue number system, nanotechnology, parallel processing and VLSI.

PUBLICATIONS:

[1] O. Dajani and P. Siy, “Novel parallel - prefix structure binary to residue number

system conversion method,” CSC, Journal of Int. Logic and Comp., vol. 3, no. 1, pp. 1-

13, Oct. 2012.

[2] O. Dajani and P. Siy, “Simplified RNS scaling algorithm and division algorithm,”

CSC, Journal of Int. Logic and Comp., submitted April 2011 and accepted Aug. 2012.

[3] O. Dajani, G. Bawa and H. Singh, “VLSI implementation of residue adder and

subtractor,” Int'l Conf. Frontiers on Comp. Sci. and Comp. Eng. (FECS'12), vol. 1, pp.

604 -607, July 2012.

[4] O. Dajani and H. Singh, “Quantum boolean circuit construction methodology using

XOR-AND reduction technique,” IEEE SEM Fall Conf., Nov. 2012.

[5] O. Dajani, H. Singh and D. P. Agrawal, “Implementation of generalized pipeline

cellular array using quantum-dot cellular automata,” IEEE Trans. Nanotechnol, submitted

March 2013.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2013

	Emerging Design Methodology And Its Implementation Through Rns And Qca
	Omar Dajani
	Recommended Citation

