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CHAPTER 1 

INTRODUCTION 

1.1 Introduction to RNS 

In the last decade, Residue Number System (RNS) has received increased attention 

due to its ability to support high speed concurrent arithmetic applications such as  Fast 

Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of 

RNS arithmetic in addition and multiplication.  In spite of its effectiveness, RNS has 

remained more an academic challenge and very little impact in practical applications due 

to the complexity involved in the conversion process, magnitude comparison, overflow 

detection, sign detection, parity detection, scaling and division.  

The advancements in Very Large Scale Integration (VLSI) technology and the 

demand for parallelism computation have enabled researchers to consider RNS as an 

alternative approach to high speed concurrent arithmetic [10], [11].  

RNS is an unweighted representation system of numbers.  The difference between 

RNS and fixed radix systems is that no fixed base is used in the representation of RNS 

numbers. RNS is based on modular arithmetic operations and it is a carry-free system that 

performs addition, subtraction and multiplication as parallel operations.  
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1.2 Residue Number System Representation 

For any given set of relatively prime modulo set (m1, m2, m3, ... , mn), the residue 

representation of an binary number X is (x1 , x2, x3,…, xn) ; Where X can be defined by N 

equations.   

X = mi qi + xi          (1.1) 

Where xi is the least positive remainder of division X by mi and
i

m
i

x0 <≤ ; qi is the 

smallest positive integer of 








im 

X
.  

1.3 Residue Dynamic Range 

The residue representation of number is unique for any integer [ ]1-M0, X ∈ , where M 

is called dynamic range. 

∏
=

=
n

1i

im  M          (1.2)   

For signed numbers, one has to distinguish two cases 

Case 1: 

The product M is an even number. This occurs if one modulo is an even number and the 

range is defined as  







−∈ 1

2

M
,

2

M
-X         (1.3) 

and all number 

 
2

M
X ≥          (1.4) 

are negative numbers 
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Case 2:  

The product M is an odd number. This occurs if all modulo are odd numbers and the 

range is defined as  







∈

2

1-M
,

2

1-M
-X                     (1.5) 

and all numbers according to  

1
2

1-M
X +≥                    (1.6) 

are negative numbers. 

The RNS representation of negative number –X is 

n21n21
m,,m,mmnnm22m1110 )xm,,xm,xm()X(

K

K −−−→− RNS

(1.7) 

To illustrate the residue representation, consider the three modulo set (2, 3, 5) 

example. The list of the positive numbers from 0 to M-1 and their RNS representation is 

shown in table 1.1. The list of positive and negative numbers from (-15, 14) and their 

RNS representation is shown in table 1.2. 
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TABLE 1.1 

RESIDUE DIGITS FOR UNSIGNED NUMBERS FOR M < 30 

 

Integer 

Residue digits 

  

Integer 

Residue 

digits 

Modulo Modulo 

2 3 5 2 3 5 

x1 x2 x3 x1 x2 x3 

0 0 0 0 15 1 0 0 

1 1 1 1 16 0 1 1 

2 0 2 2 17 1 2 2 

3 1 0 3 18 0 0 3 

4 0 1 4 19 1 1 4 

5 1 2 0 20 0 2 0 

6 0 0 1 21 1 0 1 

7 1 1 2 22 0 1 2 

8 0 2 3 23 1 2 3 

9 1 0 4 24 0 0 4 

10 0 1 0 25 1 1 0 

11 1 2 1 26 0 2 1 

12 0 0 2 27 1 0 2 

13 1 1 3 28 0 1 3 

14 0 2 4 29 1 2 4 
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TABLE 1.2 

RESIDUE DIGITS FOR SIGNED NUMBERS (-15, 14) 

Integer 

Residue digits 

  

Integer 

Residue 

digits 

Modulo Modulo 

2 3 5 2 3 5 

x1 x2 x3 x1 x2 x3 

0 0 0 0 -1 1 2 4 

1 1 1 1 -2 0 1 3 

2 0 2 2 -3 1 0 2 

3 1 0 3 -4 0 2 1 

4 0 1 4 -5 1 1 0 

5 1 2 0 -6 0 0 4 

6 0 0 1 -7 1 2 3 

7 1 1 2 -8 0 1 2 

8 0 2 3 -9 1 0 1 

9 1 0 4 -10 0 2 0 

10 0 1 0 -11 1 1 4 

11 1 2 1 -12 0 0 3 

12 0 0 2 -13 1 2 2 

13 1 1 3 -14 0 1 1 

14 0 2 4 -15 1 0 0 

 

1.4 Quantum-Dot Cellular automata (QCA) 

During past decade, Quantum-Dot Cellular Automata (QCA) has demonstrated the 

ability to implement both combinational and sequential logic devices [76]-[82]. Unlike 

conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in 

QCA Boolean networks is majority gate which implements the Boolean function  

M(A,B,C) = AB+AC+BC              (1.8) 
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TABLE 1.3 

MAJORITY FUNCTION M(A,B,C) 

A B C M(A,B,C) 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

  

      With combining these QCA gates with NOT gates any combinational or sequential 

logical device can be constructed from QCA cells [76]-[82]. The process of QCA 

Boolean logic is more sophisticated than Boolean logic. The traditional Boolean logic 

reduction methods such as Kranaugh maps produce simplified Boolean expressions, 

However, converting these forms to QCA Boolean is not simple process due to 

complexity of multilevel majority gates. In chapter two, we will present literature review 

and background material for RNS and QCA. 

 

1.5 Problem Statement  

Residue number system  is a robust parallel system and it received attention due to its 

ability to support high speed concurrent arithmetic applications such as addition, 

subtraction and multiplication in modular levels. This system suffers from some 

weakness such as conversion process, scaling, division, overflow detection and 
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magnitude comparison. In this dissertation, we have proposed new techniques to solve 

the conversion and scaling issues. These techniques have been proved mathematically 

and verified through VLSI simulation. 

One of the new fields of nanotechnology is Quantum-dot cellular automata. Due to its 

ultra-power and small size, QCA has the potential to become the future of CMOS 

technology. Quantum-dot cellular automata uses different logic devices to design circuits 

other than Boolean logic devices. Converting Boolean circuits to QCA Boolean is not 

simple process due to complexity of QCA and existing Boolean reduction methods do not 

work with QCA logic. In this thesis, we have proposed a new QCA construction reduction 

method that utilizes the VLSI techniques that were used in RNS system. Fig 1.1 shows 

block diagram that explains the flow of our research. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1.  Block diagram that shows the research logical flow 

 

RNS 

Size Speed 

VLSI 

Digital 

Logic 

Nano 

Logic 

Quantum-Dot Cellular 

Automata (QCA) 

Carbon 

Nanotubes (CNT) 
Single Electron  

Transistor (SET) 
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1.6 Thesis Organization  

This thesis contains eights chapters. Chapter one is introduction, Chapter two starts 

with lecture reviews of residue number system and quantum-dot cellular automata 

system. Chapter three presents the new binary to residue number system conversion 

method. Chapter four presents the new scaling methods. VLSI RNS adder and subtractor 

implementation is presented in chapter five. Chapter six presents the new quantum 

boolean circuit construction reduction methodology. Chapter seven presents the QCA 

implementation of pipeline array and chapter eight discuss the summary of the thesis 

work and future research work. The dissertation also includes appendix that shows the 

updated FPGA, Cadence Encounter and Virtuoso procedures. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The Residue number system has attracted researchers due to its advantage in the 

modular arithmetic operations such as addition, subtraction and multiplication since RNS 

provides the ability to add, subtract or multiply without the need to wait for the carry 

propagation as required by the weighted number systems. Also, RNS has shown 

significant efficiency in implementing Discrete Fourier Transformation and digital filters. 

In addition, quantum-dot cellular automata has showed the ability to implement both 

combinational and sequential logic devices. It is one of the new emerging 

nanotechnology and it has the potential to become the  future of CMOS technology due 

to its ultra-power and small size. This chapter provides a review on the RNS and QCA 

topics that are relevant to the dissertation works. Section 2.2 introduces addition, 

subtraction and multiplication RNS operations. Section 2.3, 2.4, 2.5 and 2.6 give an 

overview on conversion from RNS to binary, sign detection, RNS scaling and RNS fast 

processing applications. Section 2.7 presents review for QCA topics. 

 

2.2 RNS Arithmetic Operations 

      Residue Number System is an unweighted system with carry-free and borrow-free 

arithmetic operations. Addition, subtraction and multiplication are carried out on each 

residue digit concurrently and independently. This simplifies supporting parallel high-

speed concurrent computation. 
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       Addition can be accomplished simply by adding the small integer values together. 

The following equation explains the RNS addition operation. 

m
mm10 ba)ba( +⇔+     (2.1) 

Where a and b are integers. For example, the addition of the decimal number (10 + 8)10 

using the modulo set (2, 3, 5) is illustrated below. 

 

 

5,3,2

5,3,210

5,3,210

)3,3,0(

)3,2,0()8(

)0,1,0()10(

+→+

→

RNS

RNS

  

                                   105,3,2 )18()3,3,0(
1

 →
−

RNS
 

 

The subtraction operation can be performed similar to the addition operation using the 

additive inverse of subtrahend (equation 1.7) 

For example, the subtraction of decimal number (18 - 10) using the modulo set (2, 3, 5) is 

illustrated below  

5,3,210 )0,2,0()10( →−
RNS

 

and  

5,3,2

5,3,210

5,3,210

)3,2,0(

)0,2,0()10(

)3,3,0()18(

+→−

→

RNS

RNS

 

 

 

Multiplication can be accomplished in a manner similar to addition and subtraction as 

follows. 

m
mm10 b*a)b*a( ⇔     (2.2) 

105,3,2 )8()3,2,0(
1

 →
−

RNS
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For Example, the multiplication of (3 * 9)10 using modulo set (2, 3, 5) is illustrated below. 

5,3,2

5,3,210

5,3,210

)2,0,1(

)4,0,1(*)9(*

)3,0,1()3(

→

→

RNS

RNS

  

          105,3,2 )27()2,0,1(
1

 →
−

RNS
 

 

 

2.3 Conversion from RNS to Binary  

       Several methods are available for converting residue to binary system, most of these 

methods are based on two techniques the first one is Chinese Remainder Theorem (CRT) 

and the second one is Mixed Radix Converters (MRC) [9]. 

 

2.3.1 Chinese Remainder Theorem Conversion  

      The Chinese Remainder Theorem is a basic conversion method. The problem 

associated with CRT approach is the requirements of M modulo adders. 

Definition 

For any given set of relatively prime modulo set (m1, m2, m3, ... , mn), the residue 

representation of an binary number X is (x1 , x2, x3,…, xn) . Number X can be represented 

as 

M
m

^

i

i
n

1i

^

i

i

m

x

m=X =∑
=  

Where 
i

m
i

x0 <≤ ,  ∏
=

=
n

1i

im  M  
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im
i

^
i

i

^

m

1

 and    ,
m

M
m == is the multiplicative inverse of  

im

1
i

^

m
−

 

i

i

i

m

2m
i

^

m
i

^
m  

m

1

 
−

==  

To illustrate how the method works, consider the following example  

Example: 

For modulo set (5, 7, 11), find the decimal number whose residue representation is  

(4, 5, 7) and M = 385 

 

Solution:  

35
11

385
m       ,55

7

385
m     ,77

5

385
m 3

^

2

^

1

^

======  

6

35

1

m     ,6

55

1

m     ,3

77

1

m

11

1
2

^

7

1
2

^

5

1
1

^

=========
−−−

 

96*7

m

x

      ,26*5

m

x

      ,23*4

m

x

11

m

^

3

3

7

m

^

2

2

5

m

^

1

1

221

=========  

 

 

 

1949*352*552*77

m

x

m=X
385

M
m

^

i

i
3

1i

^

i

i

=++==∑
=
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1011,7,5 )194()7,5,4(
1

 →
−

RNS
 

 

2.3.2 Mixed Radix Conversion  

Converting RNS back to binary numbering system is challenging process and one 

of the methods that can be used to do this conversion is done by using mixed radix 

number system [9]. The problem associated with MRC lies in the complexity of finding 

mixed radix digits. 

Definition 

An integer  number X may be expressed in mixed radix form as 

∏
−

=

++××+×+=
1n

1i

in213 121 ma....mma maa  X         (2.3) 

Where the mixed radix digits are determined sequentially by following manner starting 

with a1. 

All terms in equation (2.4) except the first are multiples of m1, consequently  

1m1 xX a
1

==  

To obtain a2  

� Subtract   X – a1 

� Divide   by m1    
1

1

m

)a-(X
 

� Then take  mod m2             

2m1

1

m

)a-(X
 

and by successively subtracting and dividing in residue notation, all mixed  radix digits 

can be obtained. In general form mixed radix digits can be defined as: 
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∏
−

=

++××+×+=
1n

1i

in213 121 ma....mma maa X  

The following example illustrates how this method works. 

Example: 

Find the decimal number that is represented by (1, 1, 3) for modulo set (2, 5, 7). 

Solution: 

Modulo set    2 5 7 

RNS    1 1 3 � a1 = 1 

Subtract a1   1 1 0    

             0 4 3 �        
j

jj m
m1jjm1j x-mxx-x +=  

Multiply by 

im
2

1

  =    2 5 � a2 = 2 

Subtract a2    2 0   

     0 5 

Multiply by 3

5

1

  

7

==     1 � a3 = 1 

X= a1 + a2*m1 +a3*m1*m2  =  1 + 2*2 + 1*2*5 = 15 

107,5,3 )15()1,0,2(
1

 →
−

RNS
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2.4 Residue Number System Sign Detection 

      In residue number system sign detection is relatively a difficult operation compared to 

weighted systems.. The sign in RNS is a function of each digit and it is closely related to 

magnitude determination.  

       In section 1.3 case 1, showed that  all numbers in range [0, M/2 -1 ] are positive and 

all numbers in range [M/2, M-1] are negative; and in case 2, all numbers in range [0, (M -

1)/2] are positive and all numbers in range [(M+1)/2, M-1] are negative. Magnitude sign 

detection algorithm based on mixed radix process and case 1 is found in [9]. 

Definition  

Select the last modulo in the mixed radix conversion to be even )m( n . Then, it is easily 

seen that 1
2

m
a0 n

n −≤≤  implies that 
M

X  falls into the interval ]1
2

M
,0[ −  and therefore, 

can be considered positive. Conversely, 1ma
2

m
nn

n −≤≤  implies that 
M

X falls into the 

interval ]1M,
2

M
[ −  and therefore, can be considered negative [3]. 

Example:  

Find the sign of [1, 2, 3] for modulo set (2, 3, 5) 

 Solution: 

The dynamic range is M = 30 and number in range of (0, 14) are positive and numbers in 

range of (15, 39) are negative.  

First arrange the ordering of the modulo to place the even modulo 2 on the end  

Modulo set    5 3 2 

RNS    3 2 1 � a1 = 3 
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Subtract a1   3 3 0  

    0 2 1  

Multiply by 

im
5

1

  =    1 1 � a2 = 1 

Subtract a2    1 0      

     0 1  

Multiply by 

2
3

1

  =     1 � a3 = 1 

a3 = 1 implies that number (1, 2, 3) falls into interval (15, 29). It follows that (1, 2, 3) is 

negative 

X= a1 + a2*m1 +a3*m1*m2  =  3 + 1*5 + 1*5*3 = 23 

 

2.5 Scaling in Residue Number System 

       Scaling is comparatively a difficult RNS operation. Scaling is an essential operation 

in several signal processing algorithms. In binary system, the scaling constant is usually a 

power of 2.  Many scaling techniques reported in RNS literatures [12]. The RNS scaling 

by constant Q is defined as 









=

Q

X
Y          (2.4) 

Q

X-X
Y

Q
=          (2.5) 

and in RNS representation  
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i

i

m

Q

m Q

X-X
Y =         (2.6) 

If Q, the divisor is a modulo or product of the first powers of modulo, multiplicative 

inverse property can be used to simplify the division by Q 

i

i

m

Q

m

Q

X-X

Y ======         (2.7) 

2.6  RNS Fast Processing Applications 

 

       The advantages of residue number system are discussed in several publications and 

books [9]. Carry- free computation, simplified and fast addition and multiplication, which 

helps to obtain parallel architectures, are among the important advantages. Potential 

applications for RNS processors include fast DSP applications, adaptive array processing, 

Kalman filtering, Fast Fourier Transforms, and image processing for communications, 

surveillance, and intelligence systems. 

 

2.7 Quantum-Dot Cellular Automata (QCA) 

 

      In this section, we present background QCA material that will be helpful to 

understand the QCA topics. 

   QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots 

positioned at the corners of a square as shown in fig. 2.1a. Each QCA cell contains two 

mobile electrons that can move to any quantum dot through electron tunneling. Thus 

there are two equivalent electrons arrangement polarization P = +1 (Logic 1) and P = -1 

(logic 0). 
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Fig. 2.1a. QCA cells and binary encoding  

 

   QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig. 

2.1b. It produces an output of one if the majority of inputs one. The classical AND and 

OR gates can be realized with majority gate by fixing one of three inputs as 0 or 1 

respectively, as follows: 

M(A,B,0) = AB                (2.8a) 

M(A,B,1) = A+B              (2.8b) 

 

 
 

Fig. 2.1b. QCA majority gate 
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  QCA Inverter: QCA cells layout of an inverter is shown in fig. 2.1c. The polarization 

of the output QCA cell “out” is opposite of input QCA cell “in”. 

 

 
 

Fig.  2.1c. QCA inverter gate 

 

 

  QCA Wire: There are two types of QCA wires normal (also called 90
ο
) and diagonal 

(also called 45
ο
). Fig. 2.1d shows the two QCA wire types with logic one polarized. 

 

 
Fig. 2.1d. QCA wire types 
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2.8  QCA Clocking 

       QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock 4 as 

shown in fig. 2.2a. Every clock is 90
ο 
out of phase form its pervious clock and each clock 

has four states namely switch, hold, release, and relax [77]. In switch state, QCA cells 

start polarized. In hold state, the cells retain it polarization and during release and relax 

states, QCA cells are unpolarized as shown fig. 2.2b.  

 
Fig. 2.2a. QCA clock phases; each clock lagging its prior by 90

ο 
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Fig. 2.2b. Four QCA interdot barrier states 

 

Table 2.1 shows the equivalent QCA expressions for major Boolean gates. 

 

 

TABLE 2.1 

 

MAJORITY EXPRESSIONS AND DIAGRAMS FOR MAJOR BOOLEAN GATES 
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2.9  Conclusion 

Residue number system is a robust parallel system that supports high speed 

concurrent arithmetic applications such as addition, subtraction and multiplication in 

modular levels. However it suffers from some drawbacks. RNS has weakness such as 

conversion process, scaling, division, overflow detection and magnitude comparison. 

Quantum-dot cellular automata also is one of the new emerging nanotechnology and it is 

the future of CMOS technology due to its ultra-power and small size. Quantum-dot 

cellular automata uses different logic devices to design circuits other than Boolean logic 

devices. Converting Boolean circuits to QCA Boolean is not simple process due to 

complexity of QCA and existing Boolean reduction methods do not work with QCA 

logic. In thesis, we present a new binary to residue number system, new RNS scaling 

methodology, RNS adder and subtarctor implementation, a new QCA construction 

reduction method and QCA pipeline array implementation. 
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CHAPTER 3 

 

NOVEL PARALLEL - PERFIX STRUCTURE BINARY TO RESIDUE NUMBER SYSTEM 

CONVERSION METHOD 

3.1. Introduction 

  In the last decade, Residue Number System (RNS) has received increased attention due to its 

ability to support high speed concurrent arithmetic applications [1-3] such as Fast Fourier 

Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in 

addition and multiplication. The advancements in Very Large Scale Integration (VLSI) technology 

and demand for parallelism computation have enabled researchers to consider RNS as an alternative 

approach to high speed concurrent arithmetic. 

 Several methods are found in literature for binary to RNS conversion. Alia and Martinelli [4] have 

proposed a method for binary to residue conversion based on powers of 2. A modification to the 

above method was proposed by Cappocelli and Giancarlo [5]. Mohan [6] has proposed a similar 

method but with difference that his method is based on the cyclic property of power of 2 modulo 

set. Behrooa[7]  proposed a table lookup schemes for binary to Residue conversions.  

 In this chapter, we present a novel binary to residue number system conversion method. The 

organization of this chapter is as follows. Section two explains RNS system. In section three, we 

present new conversion from binary to RNS algorithm. Section four and five show illustrative 

example and implementation selection techniques. Section six is comparison between the new 

method and pervious work. Conclusion is in section seven.   
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3.1. Residue Number System  

       Any n-bit nonnegative integer number X, in the range 0 ≤ X ≤ 2
n
-1 is represented in binary 

number system as  ∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n
b2bb 2b2...b2X   

where { }1,0b j ∈ . 

Meanwhile in RNS, X is represented by k residue digits xi as X = {x1, x2, x3, …, xk}  where xi  = X 

mod mi   and mi belong to set of relatively prime modulo; { }k321i m , ... ,m ,m ,mm ∈  [9]. If the 

modulo are relatively prime numbers, there is a unique RNS representation for each integer in range 

i

s

1i m X 0 =∏≤≤  

3.2. New Novel Conversion Method from Binary to Residue Representation 

       As shown above an integer number X can be represented in binary system as 

∑
−

=

− =++++=
1n

0j

j

j

012

2

1n

1-n b2bb 2b2...b2X

 

And   RNS representation of number X  is 

2mforb2X
m

1-n

0j m
j

j

m
>= ∑ =

  for   m  >  2 

m

1-n

0j jm

j
b2∑ =

=                 (3.1) 

Let ]Y,Y,Y,Y)[A,A(M 321001AA 01
=   denotes a 2-bit multiplexer where the 2 control bits (A1, 

A0) select the inputs ( 3210 Y,Y,Y,Y  ) to be outputted 

Lemma 3.1:   For any pair of bits bj& bi   for j & i  ≥ 0, 

mji
m

i
m

i

j
m

j Xb2b2 =+
    

can be implemented using 2-bit multiplexer : 

]22,2,2,0)[b,b(M
mm

i

m

j

m

j

m

i

ijji +=                        (3.2) 

Where the control bits (A1, A0) equal (bj, bi) 
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Proof: 

Rewrite equation 
m

i
m

i

j
m

j b2b2 +   as 

)b.b.22()b..b2()b.b.2()b.b.0( ij
mm

i

m

j

ijm

j

ijm

i

ij ++++   

This is equivalent to 2-bit multiplexer Mji with control bits (A1, A0) equal (bj, bi). Fig. 3.1 shows the 

implementation for equation (3.2) with bj = b1 and bi= b0 

 

 

Fig. 3.1. Two bits (b1 & b0) binary to residue number system conversion 

This pre-processing operator Mji is represented in acyclic graph as node  "   " in fig. 3.2a, where all 

the inputs are constants and pre-calculated .   
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Fig. 3.2. Prefix logic operation and their implementation 

In three bit system, let ,Y)[A,A,A(M 0012AAA 012
=   ]Y,Y,Y,Y,Y,Y,Y 7654321  denotes a 3-bit 

multiplexer where the 3 control bits (A2, A1, A0) select the inputs ( 76543210 Y,Y,Y,Y,Y,Y,Y,Y )  to be 

outputted. 

Lemma 3.2:   For any three bits bk, bj & bi   for k, j & i  ≥ 0, 

mkji
m

i
m

i

j
m

j

k
m

k Xb2b2b2 =++ can be   

implemented using 3-bit multiplexer : 

,2,2,0)[b,b,b(M
m

j

m

i

ijkkji = ,22,2,22
mm

i

m

k

m

k

mm

i

m

j ++  
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]222,22
mm

i

m

j

m

k

mm

j

m

k +++                                                                                                   (3.3)  

Where control bits (A2, A1, A0) equal (bk,, bj, bi) 

Proof: 

Rewrite  
m

i
m

i

j
m

j

k
m

k b2b2b2 ++   as  

+++ )b..bb.2()b.bb.2()b.b.b.0( ijk
m

j

ijk
m

i

ijk +++ )b.b..b2()b..bb.22( ijk
m

k

ijk
mm

i

m

j  

++ )b.bb,22( ijk
mm

i

m

k ++ )b..bb22( ijk
mm

j

m

k    

)b..bb.222( ijk
m

i

m

j

m

k ++      

Above equation is equivalent to 3-bit multiplexer with bk, bj & bi as selection control inputs. Fig. 3.3 

shows the implementation for equation (3.3) with bk = b2  bj = b1 and bi= b0 

 

Fig. 3.3.  Three bits (b2, b1, b0) binary to residue number system conversion 

This pre-processing operator Mkji is represented in acyclic graph as node "  " in fig. 3.2b, where 

all the inputs are constants and pre-calculated. 
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Theorem 3.1:   For any two pairs of bits (bl & bk ) (bj & bi for j, i , l & k  ≥ 0 with the given 

expression  

mlkji
m

im

i

jm

j

km

k

lm

l Xb2b2b2b2 =+++  

can be implemented using 2-bit multiplexer  

,M,)[0b(b),b(b M jiijkllkji ++= ]MM,M jilklk +                                              (3.4) 

Where control bits (A1, A0) equal (bl,+bk ,  bj,+bi) 

Proof: 

m
i

m

i

j
m

j

k
m

k

l
m

l

mlkji b2b2b2b2X +++=  

mjilkmlkji MMX +=                  (3.5)  

Where 
m

k
m

k

l
m

l

lk b2b2M +=    and   
m

i
m

i

j
m

j

ji b2b2M +=   by Lemma 1  

Let   blk = (bl + bk)   and  bji = (bj+bi)     

Rewrite equation (3.5)  as ++ )b.b.M()b.b.0( jilkjijilk  )b.b.MM()b..bM( jiljilkjilklk k
++ .    

And this is equivalent to  2-bit multiplexer Mlkji with control bits (A1, A0) equal  (bl+ bk , bj+ bi). Fig. 

3.4 shows implementation for two pair bits (b3, b2) & (b1, b0) 

 

Fig. 3.4. Four bits binary to RNS 
m

01m

1

2m

2

3m

3

m3..0 bb2b2b2X +++=  
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Lemma 3.3: 

Combining two pairs of bits (bl & bk ) (bj & bi ) requires one 2-bit multiplexer and one 2 input mod 

adder.   The delay time 
22 modadder mux Total ττ τ +=  

Proof: 

Equation (3.4) and fig. 3.4 show that ]MM,M,M,)[0b(b),b(b jilklkjiijkl +++  

is equivalent to one 2-bit multiplexer and  one 2-input mod adder;  and delay time is equal to 

 
22 modadder mux τ τ + .   

Fig. 3.2c represents acyclic graph "  " for node Mlkji   where Mlk & Mji  are inputs. 

Lemma 3.4:  

The parallel prefix operator   has the following properties 

1) Commutative  

lkM   jiM     =  jiM    lkM      

2) Associative 

lkM  hgM  (  )M ji  = lk(M  )M hg   jiM  

Proof: 

lkM   jiM     =     lkjiM  

      ,M,)[0b(b),b(b jiijkl ++= ]MM,M jilklk +  

      
m

i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2 +++=                                                                       (3.6) 

    jiM     lkM   =     jilkM  

        ,M,)[0b(b),b(b klklij ++= ]MM,M lkjiji +  

      
m

k
m

k

l
m

l

i
m

i

j
m

j b2b2b2b2 +++=                                                                     (3.7) 
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Both expressions (3.6) and (3.7) are the same by commutative property of  "+"  hence  operator is 

commutative  

lkM   hgM  (   )M ji   =   lkM   hgjiM   

             lkhgjiM =          

             +++= h
m

h

k
m

k

k
m

l b2b2b2   
m

i
m

i

j
m

j

g
m

g b2b2b2 ++                              (3.8) 

lk(M    )M hg       jiM  =  lkhgM   jiM  

              lkhgjiM =  

               +++= h
m

h

k
m

k

k
m

l b2b2b2    
m

i
m

i

j
m

j

g
m

g b2b2b2 ++                          (3.9) 

Both expressions (3.8) and (3.9) are the same by associative property of  "+"  hence   operator is 

associative 

Theorem 3.2:   For any three pairs of bits ( bl & bk) ,  

(bj & bi ) and (bh & bg )  for l, k, j, i, h & g ≥ 0  with given expression  

  ++++ i
m

i

j
m

j

k
m

k

l
m

l b2b2b2b2   
mlkjihg

m
g

m

g

h
m

h
Xb2b2 =+   

can be implemented using 3-bit multiplexer  

,M)[0,b(b),b(b),b(b M hgghijkllkjihg +++= ,MM,M,MM,M hglklkhgjiji ++

 ]MMM,MM hgjilkjilk +++                                                                           (3.10) 

Where control bits (A2, A1, A0) equal (bl+bk , bj+bi , bh+bg,) 

Proof: 

+++= j
m

j

k
m

k

l
m

l

mlkjihg b2b2b2X   
m

g
m

g

h
m

h

i
m

i
b2b2b2 ++  

mhgjilkmlkjihg MMMX ++=                                                                                  (3.11) 

Where 
m

k
m

k

l
m

l

lk b2b2M +=   ,     
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m

i
m

i

j
m

j

ji b2b2M +=      and  

m
g

m

g

h
m

h

hg b2b2M +=  by Lemma 1  

Let   blk = (bl + bk) , bji = (bj + bi)   and   bhg = (bh + bg)    

Rewrite equation (3.11)   as 

++ )b.bb.M()b.b.b.0( hgjilkhghgjilk
+++ )b..bb).MM(()b..bb.M( hgjilkhgjihgjilkji   

+++ )b.b).bMM(()b.b..bM( hgjilkhglkhgjilklk  

++ )b..b).bMM(( hgjilkjilk  

)b..bb).MMM(( hgjilkhgjilk ++  

This is equivalent to 3-bit multiplexer Mlkjihg with control bits (A2, A1, A0) equal   (bl+ bk , bj+ bi , bh+ 

bg ) 

Fig. 3.5 shows implementation for three pairs of bits (b5, b4), (b3, b2) & (b1, b0) 
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Fig. 3.5.  Six bits binary to residue number system conversion 

m
01

m

1

2
m

2

3
m

3

4
m

4

5
m

5

m5..0 bb2b2b2b2b2X +++++=  

Lemma 3.5: 

Combining three pairs of bits (bl & bk ), (bj & bi ) & (bh & bg )  requires one 3- bit multiplexer and 

three 2-input mod adder  and one 3-input mod adder.  The delay time equals 

332 3 modadder muxmodadder muxTotal τττ2τ τ +=+=   
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Proof: 

Equation (3.10) and fig. 3.5 show that ,M,)[0b(b),b(b),b(b hgghijkl +++  

,MM,M,MM,M hglklkhgjiji ++ ]MMM,MM hgjilkjilk +++  is equivalent to one 3- bit 

multiplexer and three 2-input mod adder  and one 3-input mod adder;  and  delay time is equal to 

2 3 modadder mux τ2 τ +  

Fig. 3.2d represents acyclic graph for "  " for node Mlkhgji    where Mlk,  Mhg  & Mji  are inputs   

Lemma 3.6: 

The parallel prefix operator   has the following properties   

1) Commutative  

lkjihgM   tsrqpoM     =   tsrqpoM      lkjihgM   

2) Associative 

lkjihgM   tsrqpoM (   )M zyxwru   =  lkjihgM (    )M tsrqpo       zyxwruM  

Proof: 

The proof is similar to Lemma 3.4 
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3.3. Illustrative Example 

          In this section, we will use to illustrate how theorem 3.1, theorem 3.2, lemma 3.1 and lemma 

3.2 can be combined to design a binary to residue convertor. Fig. 3.6 shows how 
m

X  for n = 8 is 

computed.  

In the first layer,  using pre-processing operator   each consecutive pair of bits are group together 

(b7, b6 )  (b5 , b4 ) (b3 , b2 )  (b1, b0 ) creating nodes M76, M54, M32, M10 . In the second layer, using 

parallel prefix operator   each consecutive M node are combined (M76, M54) (M32, M10) forming 

nodes M7..4 & M3..0.  In the last layer, using parallel prefix operator  the last 2 M nodes are 

combined (M7..4 ,  M3..0)  forming node M7..0 =   
m7..0X .  Fig. 3.7a shows the actual hardware 

implementation.  

 

Fig. 3.6.  Prefix structure of 8 bits binary to RNS 

Total delay time for this example is calculated by counting the delay introduce by the operator in 

each layer  

by using lemma 3.3  as follows  
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Layer 1:  delay time is  
2mux τ  

pre-processing operator  doesn't requires an adder 

Layer 2 :  delay time is  
2 2 modadder mux τ τ +   

Layer 3:  delay time is   
2 2 modadder mux τ τ +  

Total delay is the sum of all layers delay time  
2 2 modadder muxTotal τ2τ3 τ +=  

To show that hardware works, the signal propagation for binary number 

6244)01101110(X
710727

===   is illustrated in fig. 3.7b. Similarly, the reader can try any bit 

pattern in fig. 3.7b to check the validity of the design. For example 

3255)11111111(X
710727

===  where each multiplexer select line is 3 and the selected output 

are shown in parenthesis. 
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Fig. 3.7a.  Eight bits binary to residue number system conversion 

m
01m2

m

2

3
m

3

4
m

4

5
m

5

6
m

6

7
m

7

m7..0 bb2b2b2b2b2b2b2X +++++++=  
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Fig. 3.7b.  Example for signal propagation of   
72)01101110(  and 

72)11111111(  
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3.4. Implementation Selection 

       There are several possible binary to RNS implementations using a combination of 2-bit and 3-

bit multiplexers. Fig. 3.8 shows three different imp lementations (design 1, design 2 and  design 3) 

for 10 bits binary to residue conversion system.  

To simplify comparison, the following reasonable assumptions are made  

2 33 2 modadder modadder muxmux τ2τ;ττ ==  

Design 1 uses nine 2-bit multiplexers and four 2-input mod adders with  

Layer 1:  delay time is  
2mux τ    

Layer 2:  delay time is  
2 2 modadder mux τ τ +   

Layer 3:  delay time is   
2 2 modadder mux τ τ +   

Layer 4:  delay time is  
2 2 modadder mux τ τ +  

Total delay is sum of all layers delay time  
2 2 modadder muxTotal τ34τ τ +=   
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Fig. 3.8.  Prefix structure of 10 bits binary to RNS   

m
01m2m

2

3m

3

4m

4

5m

5

6m

6

7m

7

8m

8

9m

9

m9..0 bb2b2b2b2b2b2b2b2b2X +++++++++=  

Design 2 uses four 3-bit multiplexers, one 2-bit multiplexers, four 2-input mod adders and one  

3-input adder with  

Layer 1:  delay time is  
3muxτ  

Layer 2:  delay time is  
2 3 modadder mux τ2 τ +  

Layer 3:  delay time is   
2 2 modadder mux τ τ +  
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2 32 modadder muxmuxTotal τ3τ2 ττ ++=   

            
2 2 modadder mux τ3τ3 +=  

Design 3 uses three 3-bit multiplexers, three 2-bit multiplexer and three 2-input mod adders with  

Layer 1:  delay time is  
3muxτ  

Layer 2 :  delay time is  
2 2 modadder mux τ τ +  

Layer 3:  delay time is   
2 2 modadder mux τ τ +  

2 32 modadder muxmuxTotal τ2τ2τ τ ++=   

          
2 2 modadder mux τ2τ3 +=  

Table 3.1 shows that design 3 uses less hardware and is faster than other designs. 

TABLE 3.1 

SHOWS COMPARISON AMONG THE THREE DESIGNS IMPLEMENTATION  

 Design  Hardware  count 

# Time Delay  Mux2 Mux3 

Mod 

add2 

Mod 

add3 

1 2 2 modadder mux τ34τ +   9 0 4 0 

2 2 2 modadder mux τ3τ3 +   1 4 4 1 

3 2 2 modadder mux τ2τ3 +   3 3 3 0 
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3.5. Comparison Selection to Pervious Work   

        This Novel method has hardware advantages greater than any competitive converters.  In 

1984, Alia and Martinelli [3] published a binary to RNS conversion design based on power 2 mod 

mi . The design uses processing elements (PE) and each PE is associated with two registers. Each of 

these registers is serially loaded with 
m

1i

m

i 2  and2 +  respectively. The two outputs are added in a 

modular adder. Thus, at the first level, n/2 PEs are required. The number of stages in this method is 

[log2 n]. After successive transformation and addition, the residue result is available.  Cappocelli and 

Giancarlo [4] suggested the use of t PEs where t = n/ log2 n, each PE computing the residue 

corresponding to k- bit binary word where k = log2 n, the residue  2
kt
 mod mi is serially fed to thk̂ PE 

( =k̂ 0, 1, 2, …, t-1). Based on these initial residues, the residues corresponding to the next (k-1) 

powers are computed by first doubling and then weighting according to the input bits in each PE. 

The partial residues of k-bit words computed over parallel t PEs are then added to yield the final 

residue. Mohan [5] has proposed a similar method but with a difference that X is divided into t 

sections based on the cyclic property of 2
j
 mod mi. Using the fact that, 2

j,
 2

j+lo
 and 2

j+2lo
 have the 

same residues due to the periodicity of period lo , lo bits are first added. The width of the result is 

confined to lo bits by adding the carry bit resulting from previous addition to LSB of the result. The 

residue results are then determined by using methods given in [3]. 

 Complexity calculation is very important for any design development. Reduction in 

complexity of design can be done using adjustment in flow of design, which is made before 

implementation. Table 3.2 shows hardware comparison among our design, Behrooa [7] and Alia [4]. 

There are various criteria that can be  used to measure the hardware complexity number of gates, 

number of I/O, delay time, fan in / fan out, area / size, power dissipation, and  rank of design matrix. 

McCabe metric and Halstead’s software science are two common codes for software complexity 
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measures. McCabe metric determines code complexity based on number of control paths created by 

the code as follows 

v = e - n +2p 

Where e is the number of edges in a program flow graph, n the number of nodes, and p the number 

of connected components. Halstead introduced software science in oder to measure properties of 

the programs. Halstead’s program volume is defined to be  

v = (N1+N2) log2(µ1 +µ2) 

Where µ1 is number of distinct operators, µ2 is number of distinct operands, N1 is total number of 

operators and N2 is total number of operands. 

TABLE 3.2 

COMPARISON AMONG BEHROOA[7], ALIA[4] AND THE NEW DESIGN 

 

3.6. Conclusion 

     In this chapter, we presented a new novel binary to residue conversion method that eliminates 

the need for processing elements (PE) as the above competitive converter designs. This new novel 

design  doesn't use table lookup as in Behrooa Parhami [6]. The new method that we present here 

is based on multiplexers concept which makes it practical and suitable for VLSI implementation.  
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CHAPTER 4 

 

SIMPLIFIED RNS SCALING ALGORITHM 
 

4.1 Introduction 

 
Recent advances in computer architecture and VLSI technology have brought about a 

resurgence of interest in RNS based digital systems. RNS system has a very big advantage in the 

modular arithmetic operations like addition, subtraction and multiplication since this system 

provides the ability to add, subtract or multiply without the need to wait for the carry propagation 

as required by the weighted number systems. The non modular operation such as sign detection, 

division and conversion presents a challenge to researchers.  A lot of research has been done to 

address these issues [9]. In this chapter we present new algorithms for residue number system 

scaling that utilizes a simplified base extension process [9].  

4.2 Division remainder zero 

Division remainder zero method is a special simple case of division where the divisor is 

relatively prime to the modulo set and the dividend is a multiple of the divisor. This operation is 

accomplished by multiplying the dividend by the multiplicative inverse of the divisor. 

 

i
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4.2 Scaling 

Scaling is a restricted division operation where the divisor is one of the modulo or a product 

of modulo [9]. Several algorithms have been presented for scaling. The common idea of these 

algorithms is breaking the scaling process into two processes. A division remainder zero 

operation and a base extension operation [9]. If we assume that a number X is the dividend and 
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the number Y is the divisor over the modulo set (m1,m2,…,mn). The result of dividing X by Y can 

be expressed as follows 

Y
XY

Y

X
X +





=  

QY +RX =                                          (4.1) 

Where 






=

Y

X
Q is the integer quotient is value of X over Y and 

Y
XR = is the least positive 

integer remainder. The objective of scaling is to find the quotient Q for restricted Y values. 

 

Y

XX

Y

X
Q

Y
−

=





=    � 

i
i m

Y

m
Y

XX

Y

X −
= for all i, where (mi , Y)=1  

� ( )
i

i

i
m

mY

m

i
YXX

Y

X
q

1−×−== where Q = (q1, q2, …, qn)              (4.2) 

Equation (4.2) is a division remainder zero operation and can be used to get the residue digits qi 

for all i where (mi , Y)=1. For the remaining digits where (mi , Y)≠1, base extension algorithm is 

needed to find all residues of the quotient Q. 

 

4.3 General Division 

General division operation is the operation where the divisor does not fit the restrictions 

mentioned in the division remainder zero or scaling operations [9]. General division can be 

divided into two categories, multiplicative and subtractive. Most of the multiplicative algorithms 

first compute the reciprocal of the divisor and then multiply the reciprocal by the dividend. The 

subtractive algorithms employ subtraction of multiples of the divisor until the difference is less 

than the divisor [9]. The algorithm presented in [9] seems attractive because of its simplicity. It 

converts the general division operation into iterative scaling operation and it uses a lookup table 

to identify the candidates for the scaling operations. The disadvantages of this algorithm along 

with many similar division algorithms are the scaling operation which is slow due to the 

complicated calculations which are either based on Galois Field or based on basic MRC. 
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4.4 New Base Extension Algorithm 

RNS base extension problem, is the problem of finding the residue digits of one set over 

another set that is an extension of the original set.  

Let (m1, m2, …, mn , mn+1, mn+2, …, mn+k) be relatively prime modulo, the base extension problem  

 

is finding the residues 
knnn mmm

XXX
+++

,...,,
21

given the residue ∏
=

=<≤
n

i

immm
mMXXXX

n
1

0  and  ;,...,,
21

. 

 

The algorithm described in [9] is based on MRC conversion, where the algorithm assigns a 

variable to the residue representation of  
1+nm

X  and then performs the MRC conversion on the 

new modulo set which ends up with a linear equation of the MRC coefficient as a function of

1+nm
X . This is a lengthy operation. Also, alternative method was presented [9] which are based on 

CRT. The advantage of CRT is that it is faster than MRC; however it requires large modulo 

adders because of the need to perform mod M operations.  

Lemma 4.1:  The general solution of linear Diophantine equation  

γβα =+ vu                                   (4.3)   

Where α, β, and γ are given integers and integer solutions u, v are desired 

are  
),gcd(

k
u u  *

βα

β
+=    and     

),gcd(

k
 vv  *

βα

α
−=  

Where k is any integer and u* and v* are any particular solution. Also, this solution will exist if 

and only if γ is a multiple of gcd(α, β). Equation (4.3) is equivalent to the following RNS 

equation: 

jjjiii xqmxqm +=+      i≠j                                  (4.4) 

gcd(α, β) = gcd(mi,mj) = 1 

Comparing equations (4.3) and (4.4), equation (4.3) can be written as matrix notation 
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1i1jjijiji aaam-am −=
                                 (4.5) 

Where aij = qi , aji = qj    are the unknowns 

and a1j  = xj  and a1i  = xi  are given integers  

The general solution for equation (4.5) is  

km)aa (c  a j1i1jij ×+−×=                                 (4.6) 

Where k and c is integers and can be obtained by using Extended Euclidean Algorithm or 

Fermat’s Theorems. Each coefficient aij represents one element of Matrix A which is needed to 

solve (4.6).  
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nj11,ix
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j

ija                               (4.7) 

The smallest positive integer solution of each of the aij can be obtained by iterations of equation 

(4.7) and the solution of Diophantine diagonal coefficients “aii” is equivalent to mixed radix 

digits in MRC conversion 

∏
−

=

++××+×+=
1n

1i

inn2133 12211 ma....mma maa X                        (4.8)  

 

 

 

 



47 

 

 
 

Example:  

Given the residue representation X = (0, 1, 1) with modulo set (m1, m2, m3) = (2, 3, 5), extend the 

base to m4=7, i.e. find |X|7 

 

Solution: 

Convert X to its decimal value using an RNS to decimal conversion algorithm 

X = (0, 1, 1) = 16 

|X|7=|16|7 = 2 

The new representation of X over the new modulo set (2, 3, 5, 7) is (0, 1, 1, 2) 

Example:  

Given the residue representation x = (0, 1, 1) for the base with modulo (m1, m2, m3) = (2, 3, 5). 

Extend the base to m4=7, m5=11, i.e. find |X|7 and find |X|11 

Solution: 

Convert X to its decimal value using an RNS to decimal conversion algorithm 

X = (0, 1, 1) = 16 

|X|7=|16|7 = 2 

|X|11=|16|11 = 5 

The new representation of x over the new modulo set (2, 3, 5, 7, 11) is (0, 1, 1, 2, 5) 

4.5 New Scaling Algorithm 

The following algorithms can used to find coefficient “c” in equation (4.7) 

Fermat’s implementation for finding coefficient “c”  as follows: 
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Fig.  4.1. Fermat’s implementation for finding coefficient “c” 

Extended Euclid Algorithm Implementation 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.2. Extended Euclid algorithm implementation 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3.  Implementation of finding coefficient (aij) 

        %----------------------------------------------------% 
        % finding coefficient c using Fermat method  

        %-----------------------------------------------------% 

        v = mod(mod(power(mj,mk-2),mk),mk); 

        v1 = mk-v; 

        if v <= v1  

            c= v 

        else 

            c = -1*(mk-v) 

        end 

       %----------------------------------------------------------------% 
        % Finding coefficient “c” using Extended Euclid Algorithm 

        %---------------------------------------------------------------% 

        u1 = 1;  u2 = mj;  v1 = 0;  v2 = mk; 

        while v2 

            q = int(u2/v2); 

            t1 = u1 - v1*q;  t2 = u2 - v2*q; 

            u1 = v1;         u2 = v2; 

            v1 = t1;         v2 = t2; 

        end 

        c = u1 

       %----------------------------------------------------------------% 

       % Finding the smallest positive integer “aij” solutions for 

       % Diophantine equations  

        %----------------------------------------------------------------% 

        a(j,k)= c*(a(j-1,k)-a(j-1,j-1)); 

        n =1;                               

        if a(j,k) < 0                     % case 1   ex -6 + 11n   

         while (a(j,k) + n*mk) < 0 

                n = n + 1; 

            end 

            a(j,k) = a(j,k) + n*mk; 
        elseif a(j,k) >  mk          % case  2  ex  30 +  11n      

            while (a(j,k) - n*mk) >= 0 

                n = n + 1; 

            end 

            a(j,k) = a(j,k) - (n-1)*mk;  

        else 

            a(j,k) = a(j,k);             % case 3    a(j,k) < mk   

        end         
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Example: 

Find RNS representation of number 300 using modulo set (5, 7, 11) and also find mixed radix 

digits using Diophantine method 

Solution: 

11,7,510 )3,6,0()300(  →RNS
 

From equation (4.5) 

a11 = x1 = 0 

a12 = x2 = 6 

a13 = x3 = 3 

a22 = c22 * [a12-a11] + m2 * k 

and from Extended Euclidean Algorithm or Fermat’s Theorems  c22 = 3  

a22 = 3 x [6 – 0] + 7k = 18 +7k 

at k = -2, a22 = 4  is the smallest positive integer solution 

a23 = c23 x [a13-a11] + m3 x k 

c23 = -2 

a23 = -2 x [3 – 0] + 11k = -6 +11k 

at k = 1,  a23 = -6 +11 = 5   is the smallest positive integer solution 

a33 = c33 x [a23-a22] + m3 x k 

c33 = -3 

a33 = -3 x [5 – 4] + 11k = -3 +11k 

at k = 1,  a33 = 8   is the smallest positive integer solution 
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360

A  

From equation (4.8) 

X = a11 + a22 x m1 + a33 x m1 x m2  

X = 0 + 4 x 5 + 8 x 5 x 7 = 300 

Diophantine equation can also help to solve RNS scaling by power of two. The new method is 

based on division remainder zero theorem [9] and be used to any set of prime modulo set (m1, 

m2, m3, ... , mn). 

Theorem 4.1 (Division Remainder Zero) 

( )
n21 m

1-

nm

1-

2m

1-

1M

1-

M

sx,,sx,sx Xs
s

X
K==  

Only if s divide by X without a remainder and gcd(s, mi) =1 

Theorem 4.2: 

For any set of prime modulo set (m1, m2, m3, ... , mn).  

Case A: X is an even number “scaling without a reminder” 

( )R,y,,y,y 
2

X
n21

M

K=  

Where 
i

i

i

m
m

2m

ii 2xy −=  for all odd modulo and  

R is the scaling result for m = 2 and it is found by following manner 

� Set R = 0  

� Find mixed radix digits (a11, a22, …, ann, D) for (y1, y2, …, yn, 0) by using Diophantine 

RNS to binary conversion method  
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�  If  D = 0 then ( )0,y,,y,y 
2

X
n21

M

K⇔   and    

� If  D = 1  then ( )1,y,,y,y 
2

X
n21

M

K⇔  

Case B: X is odd number “rounding to nearest integer” 

Replace X with (X+1)  

( )R,y,,y,y 
2

1X
n21

M

K⇔
+

 

Where 
i

i

i

m
m

2m

ii 21)(xy −+=  for all odd modulo and  

R is the scaling result for m = 2 and it  always equals to one. 

Example: 

For modulo set (2, 3, 5) determine the residue representation for 8/2, 6/2 and 5/2  

Solution: 

Let m1 =3, m2=5, m3=2  

a) 2,5,310 )0,3,2()8(  →
RNS

 

122y
33

23

1 == −
 

423y
55

25

2 == −
 

Set R = 0  for m3 = 2 

( ) )0,4,1(R,y,y 21 =    

Mixed radix digits “a33”  = 0   →  R = 0 

4)0,4,1(
2

8 1

2,5,3

10

 → →






 −RNSRNS  
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b) 2,5,310 )0,1,0()6(  →RNS  

020y
33

23

1 == −
 

321y
55

25

2 == −
 

Set R = 0  for m3 = 2 

( ) )0,3,0(R,y,y 21 =    

Mixed radix digits “a33”  = 1   →  R = 1  

3)1,3,0(
2

6 1

2,5,3

10

 → →






 −RNSRNS  

c) 2,5,310 )3,0,2()5(  →RNS  

02*)12(2)12(y
333

23

1 =+=+= −
 

33*)10(2)10(y
555

25

2 =+=+= −
 

And R = 1  for m3 = 2 as shown in case B 

( ) )1,3,0(R,y,y 21 =    

3)1,3,0(
2

5 1

2,5,3

10

 → →






 −RNSRNS     “Rounding to nearest integer 

4.6 Conclusion 

Diophantine RNS parallel algorithm provides an alternative method of finding mixed radix 

digits with  a high degree of parallelism. The algorithm has advantages over MRC method and 

CRT methods since it avoids the use of modulo computations and use of multiplicative inverse. 
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CHAPTER 5 

 

VLSI IMPLEMENTATION OF RESIDUE ADDER AND SUBTRACTOR 

 

5.1 Introduction 

In the last decade RNS arithmetic has become an attractive design option [1-3] for real time 

application fields such as signal processing, image processing and computer graphics. The merits 

of using RNS arithmetic lies in its capability of performing addition, subtraction and 

multiplication without the generation of carry propagation. Also, RNS arithmetic has the 

capability of being designed and fabricated using VLSI techniques. These characteristics of RNS 

makes it most suitable for digital signal processor hardware.  

In RNS the large numbers are represented by an n-tuple of smaller numbers that are 

independent of each other, where n is the number of modulo in the modulo set. Hence, the 

number operation can be done on these smaller numbers rather than the original number. 

Furthermore, because the numbers in the n-tuple are independent of each other, the operation can 

be done in parallel. The RNS is defined by a set of modulo (m1, m2, … , mn) that are pairwise 

relatively prime positive integers. It can be shown that there is a unique representation for each 

number in the range of 0 ≤ X < M Where ∏ =
=

n

1i imM  and is called dynamic range [9]. Each 

integer X can be represented by an n-tuple of residues X = (x1, x2, …  , xn), 

where xi = X mod mi or it can be written as 
imi Xx = . The RNS represents any number within 

the range of [0, M) for unsigned numbers or 






−− 1

2

M
,

2

M   for signed numbers. In RNS, the 

binary operations { +, - , * } are defined as follow If  Z = A  B  then (z1, z2, …  , zn) = (a1, a2, …  , 
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an)  (b1, b2, …  , bn)  where zi = (ai  bi) mod mi. Each residue digit can be computed 

independently of the others allowing fast data processing in n parallel independent channels. 

VLSI implementations for adder and subtractor have been realized by many researchers. 

Bayoumi [65] used three approaches (look up table approach, binary adder approach and hybrid 

implementation approach). Banerji [67] and Piestrack [68] have their contributions as well for 

implementation of binary adders using VLSI techniques. In this chapter, we have implemented 

an RNS adder and subtractor. We have used Cadence (Virtuoso and Encounter) for the layout 

and XILINX for the simulation results of the design. 

5.2 Residue Adder and Subtractor 

If we have two integers A and B of modulo m, then their addition and subtraction is 

expressed as sum and subtraction of A  B mod m. The operation addition and subtraction can 

be described as below in equation 1 and 2 respectively. 





≥+−+

<++
=+

mBAmBA

mBABA
BA

m
if

if
                   (5.1) 





<−+−

≥−−
=−

0BAmBA

0BABA
BA

m
if

if
                    (5.2) 

Fig. 5.1 shows the implementation of RNS adder /subtractor based on above equations. 
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Fig. 5.1. RNS adder and subtractor 

The operation addition or subtraction is decided by the select line C0. When C0 is 0, the RNS 

operation is addition. When C0 is 1, the RNS operation is subtraction. For n-bit RNS adder the 

select line C0 is 0 and it will simply perform as an adder. Inputs to adder are A, B and m. Fig. 5.1 

shows all the components that are used in RNS adder and subtractor. There are two full adders, 

four 2x1 multiplexers and one OR gate are used. As already mentioned for Adder C0 is zero, 

therefore inputs A, B and C0 are fed to the first full adder, which in turn will yield carryout Can 

and sum Sa. In next step m, 0C  = 1 and sum of previous full adder Sa goes to the next full adder 

in the hierarchy which in turn will give us sum Sb, Cbn. Then Can and Cbn are added and  sent to 

the third 2x1 multiplexer along with signal Can. The output of the third 2x1 multiplexer is used 

as a control signal to the final 2x1 multiplexer which generates the final output Sum based on 

equation (5.1). For subtractor the scenario is same and equation (5.2) is implemented, but the 

control signal C0 in this case is 1.  
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5.3 VLSI Implementation 

In this section, we implemented the RNS adder and subtractor using VLSI techniques such as 

XILINX and Cadence tools (virtuoso, Encounter). For simulation we have used XILINX and for 

layout we used encounter and virtuoso. 

a) XILINX is a platform where we can generate the schematic using the verilog code of the 

design. At the same time, we can test if the desired schematic or design is correct by looking at 

the behavioral simulation. Once we have created a verilog code for the adder and subtractor, we 

used the Xilinx tools to synthesize the schematic. Eventually for the verification of design, we 

built a testbench and run the simulation to see the correct desired output. Fig. 5.2 shows the 

result of RNS adder and subtractor.  

 

Fig. 5.2. Waveform of RNS adder and subtractor 
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Fig. 5.3. RNS adder and subtractor layout 

b) Encounter is a technique where we can generate a layout of our design. Ambit Buildgates is 

used to generate the netlist then the netlist is uploaded to the encounter. Further, by assigning 

floor plans, appropriate layers and nano routing we can get the design in .gds and .def format. 

We can also check for the design if it is flawless or not in terms of connectivity, density etc. Fig. 

5.4 shows the encounter part of our design. 

 

Fig. 5.4. Encounter part of RNS adder and subtractor 
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TABLE 5.1 
TOTAL RNS ADDER AND SUBTRACTOR DELAY TIME (PS) 

 
 
TABLE 5.2  

RNS ADDER AND SUBTRACTOR DESIGN PARAMETER 
 

 

 
c) Virtuoso is a tool through which we can send our layout for the chip fabrication. We can 

pursue Virtuoso in two ways, one is to build the design from basic building blocks, such as from 

transistor level (pmos, nmos etc.) and the second way is to import the design from encounter 

with the help of certain technology libraries. In our work, we have used the later method where 

we have imported the design from encounter and the same was padframed in order to send it to 

MOSIS for chip fabrication. The complete Layout along with the connections is shown in fig. 5.4 

below. 
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Fig. 5.5. Virtuoso part of RNS adder and subtractor 

5.4 Conclusion 

We have discussed the VLSI approach for the realization of RNS adder and subtractor. 

XILINX is used to get the behavioral simulation of the design with the help of which we were 

able to verify that our design is performing as desired. Cadence encounter is used to build the 

layout of the design. Design layout along with the technology libraries and layers is exported to 

Virtuoso. Furthermore, padframing was performed in order to send the design to MOSIS for 

fabrication.  
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CHAPTER 6 

NOVEL QUANTUM BOOLEAN CIRCUITS CONSTRUCTION BY USING  

XOR-AND REDUCTION METHOD 

6.1 Introduction 

 One of the new fields of nanotechnology is quantum-dot cellular automata that provides an 

alternative design to CMOS architectures. Recent research studies [76-82] show that the 

advantages of using QCA technology are smaller circuit size, faster switching speed, and less 

power consumption. 

  During the past decade, quantum-dot cellular automata has demonstrated the ability to 

implement both combinational and sequential logic devices. Unlike conventional Boolean AND-

OR-NOT based circuits. The fundamental logical device in QCA Boolean networks is majority 

gate which implements the Boolean function:  

M(A,B,C) = AB+AC+BC        (6.1) 

With combining these QCA gates with NOT gates any combinational or sequential logical 

device can be constructed from  QCA cells. The process of QCA Boolean logic is more 

sophisticated than Boolean logic. The traditional Boolean logic  reductions methods such as 

Kranaugh maps produce simplified Boolean expressions. However, converting these forms to 

QCA Boolean is not simple process due to complexity of multilevel majority gates. R. Zhang 

[19] proposed thirteen standard functions to present all three variables Boolean functions that can 

be used to produce simplified majority logic. Chin-Yung [13] used Tabulation method to 

simplify Boolean logic functions and to produce a simplified QCA logic. In this chapter, we 

present a novel methodology for multilevel majority logic synthesis, our methodology takes as 
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its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an 

equivalent majority gate circuits. 

6.2 QCA Background Material  

      QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots 

positioned at the corners of a square as shown in fig. 6.1a. Each QCA cell contains two mobile 

electrons that can move to any quantum dot through electron tunneling. Thus, there are two 

equivalent logic  polarization P = +1 (Logic 1) and P = -1 (logic 0). 

   QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig. 6.1b. It 

produces an output of one if the majority of inputs one. The classical AND and OR gates can be 

realized with majority gate by fixing one of three inputs as 0 or 1 respectively, as follows: 

M(A,B,0) = AB                 (6.2a) 

M(A,B,1) = A+B              
 
(6.2b) 

  QCA Inverter: QCA cells layout of an inverter is shown in fig. 6.1c. The polarization of the 

output QCA cell “out” is opposite of input QCA cell “in”. 

  QCA Wire: There are two types of QCA wires normal (also called 90
ο
) and diagonal (also 

called 45
ο
). Fig. 6.1d shows the two QCA wire types with logic one polarized. 
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Fig. 6.1a. QCA cells and binary encoding  

 

 

Fig. 6.1b. QCA majority gate 

 

 



63 

 

 

 

 

Fig. 6.1c. QCA inverter gate 

 

 

Fig. 6.1d. QCA wire types 

   QCA Clocking: QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock 

4 as shown in fig. 6.2a. Every clock is 90
ο 

out of phase form its pervious clock and each clock 

has four states namely switch, hold, release, and relax [40]. In switch state, QCA cells start 

polarized. In hold state, cells retain thier polarization. Additionally, during release and relax 

states, QCA cells are unpolarized as shown in fig. 6.2b.  
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Fig 6.2a. QCA clock phases; each clock lagging its prior by 90
ο 

 

 

Fig. 6.2b. Four QCA interdot barrier states 
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6.3 Novel QCA Extraction  

XOR algebra can be used very effectively to yield gate-minimum results not possible by 

conventional mapping methods. Our novel QCA extraction procedure takes as its input a 

Boolean network, generates simplified XOR-AND equivalent network and output an equivalent 

majority gate network as shown in fig 6.3. 

 

Fig 6.3. XOR-AND function extraction methodology 
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We will use the following two Boolean examples to illustrate the QCA extraction 

methodology. 

Example: Generate the equivalent QCA circuit for ∑= )14,13,12,8,7,5,3,2(),,,(1 dcbaf  

Solution: 

Step1:  Draw up the minimization chart and list all miniterms on the first column [10]. Refer to 

table 6.1 for detail of construction. 

TABLE 6.1 

THE CHART FOR DERIVING XOR EQUIVALENT FUNCTION “F1” 

Step2: List all possible variables possibilities in the first row. Start with one, all possible pairs of 

variables, then all triples of variables and so on up to columns for all the variables possibility. 

Step3: Filling 1’s in all possible variables columns that have unprimed variables in miniterms as 

shown in table 6.1. 

Step4: To get the function in final XOR-AND,  cross out all columns that have even number of 

1s in them. The XOR-AND function for this example is  
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     acdbdbcadcaf ⊕⊕⊕⊕⊕=1  

Step5: Utilizing ( )xx ⊕= 1  XOR property, the above function can be simplified to  

   dcabdcbaf ⊕⊕⊕=1  

Step6: Construct a majority gate tree as shown in fig. 6.4 and then replace each node with an 

equivalent majority XOR and AND gates as shown in fig. 6.5.  

 

 

Fig. 6.4. Majority tree for function f1 

 

Lemma 6.1: If x and y are two binary inputs, then  )0,,( yxMxy =  

Proof: 

By equation (6.1)        

xyxyyxM =++= 00)0,,(  

Lemma 6.2: If x and y are two binary inputs, then  )1),0,,(),0,,(( yxMyxMMyx =⊕  

Proof: 

=)1),0,,(),0,,(( yxMyxMM =++++ )1),00(),00(( yxyxM  

=++ yxyxyxyx ))((  
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yxyxyx ⊕=+  

Lemma 6.3: If x and y are two binary inputs, then  )1,,()0.,( yxMyxM =  

Proof: 

xyyxM =)0,,(  

yxxyyxM +==)0.,(  

By equation (6.2b) 

)1,,( yxMyx =+  

 

Fig. 6.5. Majority gates schematic for function f1 
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Step7: Majority tree can also be used to construct QCA expressions for any node. QCA 

expressions for n1 and n2 are as follows 

By Lemma 6.1  

)0,1,(aMa =  

)0,,( cbMcb =  

)0,,( dbMbd =  

)0,),0,,(( dcaMMacd =  

By Lemma 6.2 and  Lemma 6.3  

cban ⊕=1  

)1),0,,(),0,,((1 cbaMcbaMMn =  

)1),0,)0,,(),0,1,((

),0),0,,(,)0,1,(((1

cbMaMM

cbMaMMMn =
 

)1),0),1,,(),0,1,((

),0),0,,(),1,0,(((1

cbMaMM

cbMaMMMn =
 

And  

acdbdn ⊕=2  

)1),0,,(),0,,((2 acdbdMacdbdMMn =  

)1),0,)0,),0,,((),0,,((

),0),0,),0,,((,)0,,(((2

dcaMMdbMM

dcaMMdbMMMn =
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)1),1)1,,)0,,((),0,,((

),0),0,),0,,((),1,,(((2

dcaMMdbMM

dcaMMdbMMMn =
 

)1),1)1,),1,,((),0,,((

),0),0,),0,,((),1,,(((2

dcaMMdbMM

dcaMMdbMMMn =
 

Example: Generate the equivalent QCA logic expression for ∑= )7,4,3,2,0(),,(2 cbaf . 

Table 6.2 shows the minimization chart for function f2. For unprimed miniterms in minimization 

chart, 1s are filled for every column [10].  

TABLE 6.2  

MINIMIZATION CHART FOR FUNCTION F2 

 

The XOR-AND function for this example is  

abcbcabcf ⊕⊕⊕⊕= 12  

And utilizing ( )xx ⊕= 1  XOR property, the above function can be simplified to  

bcaabcf ⊕⊕=2  

Fig. 6.6 shows the majority gate tree for function f2 which helps to construct majority gates 

layout by replacing each node with equivalent majority XOR and AND gates. 



71 

 

 

 

 

Fig. 6.6. Majority gate tree for function f2 

QCA logic expression for function f2 is  

)1),0,,(),0,,((2 abcMabcMMf =  

)1),0,)0,,(,(

),0),0,,(,((2

baMcM

baMcMMf =
 

)1),0),1,,(,(

),0),0,,(,((2

baMcM

baMcMMf =
 

6.4 Conclusion 

We presented a systematic QCA logic construction method. Our novel method takes Boolean 

function as its input, generates simplified XOR-AND equivalent circuit and outputs an 

equivalent QCA logic circuits. In our novel method, we were able to simplify the Boolean 

functions and reduce number of majority gates with the help of XOR-AND reduction techniques 

then mapping QCA logic to Boolean functions.   
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CHAPTER 7 

IMPLEMENTATION OF GENERALIZED PIPELINE CELLULAR ARRAY 

USING QUANTUM-DOT CELLULAR AUTOMATA 

7.1 Introduction 

During the last decade, Quantum-Dot Cellular Automata (QCA) has attracted a lot of attention due to 

its extremely small size and its ultralow power consumption as compared to COMS technology. It has 

been demonstrated that QCA has the ability to implement both combinational and sequential logic devices 

[76]–[83].  

The fundamental unit of a QCA circuit is quantum cell which typically contains four quantum dots, 

placed near the corners of the cell where free electrons can reside. Quantum cells have two distinct stable 

polarizations, as shown in fig. 7.1. These states allow the cell to represent binary data. 

 

 

 

 

 

Fig. 7.1. Quantum cells with polarity -1 & polarity +1  

QCA Binary wires are the simplest QCA structures and consist of a series of quantum cells in close 

proximity to each other. The cells interact through Coulombic interactions with each other as shown in fig. 

7.2. Binary wires can also be constructed by orienting the dots in each cell at a 45 degree angle from the 

standard cell. This allows binary wires to cross in the same plane or layer without interacting with each 

other. 
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There are two logic gates that make up the fundamental set of logic in QCA: majority gate and inverter. 

By carefully arranging the location of QCA cells, one can create a majority logic gate, which is capable of 

functioning as either an AND or an OR gate. 

 

Fig. 7.2. QCA binary wire arrangements 

QCA majority gate takes three inputs and outputs a value that occurs most frequently as  

BCACABCBAM ++=),,(              (7.1) 

The majority gate can also be used to create AND and OR gates. If one input is held at 1, the majority gate 

functions as a standard 2-input OR gate. If one input is held at 0, the majority gate functions as a 2-input 

AND gate. Fig. 7.3 shows standard QCA majority gate construction. 

 

 

Fig. 7.3. QCA majority voter gate 
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QCA inverter gate has a single input and output. It simply returns the opposite of the value that was put in 

as shown in fig. 7.4. 

 

 

Fig. 7.4. QCA inverter gate 

QCA has a four-phase clocking mechanism. The sequence of the states in this scheme is the switch 

state, hold, release and relax states [76]. In the switch state, QCA cells start getting polarized. In hold state, 

the cells retain thier polarization. During release and relax states, QCA cells are unpolarized as shown in 

fig. 7.5. 

 

Fig. 7.5.  Four QCA four phase clocking mechanism 
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TABLE 7.1 

BOOLEAN FUNCTIONS AND THEIR EQUIVALENT QCA EXP. 

Boolean Function Majority Diagram / Expersssion
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Lemma 7.1: If x and y are two binary inputs, then  )0,,( yxMxy =  

Proof: 

By equation (7.1)        

xyxyyxM =++= 00)0,,(  

Lemma 7.2: If x and y are two binary inputs, then  )1),0,,(),0,,(( yxMyxMMyx =⊕  

Proof: 

=)1),0,,(),0,,(( yxMyxMM =++++ )1),00(),00(( yxyxM  

=++ yxyxyxyx ))((  

yxyxyx ⊕=+  

Lemma 7.3: If x and y are two binary inputs, then  )1,,()0.,( yxMyxM =  

Proof: 

xyyxM =)0,,(  

yxxyyxM +==)0.,(  

By equation (2b) 

)1,,( yxMyx =+  

The use of generalized cellular pipeline arrays for various arithmetic operations has shown 

considerable promise in optical computer architecture because of the obvious advantages of improvement 

in speed and reduction in the cost and size. Cellular pipeline array consist of regular interconnections of 

selected logic sub-circuits called cells or processing elements (PE). The basic approach is to keep the 

number of I/O terminals to cellular array module to a minimum and supply control parameters as inputs to 

the arithmetic cells. 
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Different pipeline array designs have appeared in literature [88]-[92]. Singh [91] presented a 

generalized cellular array which can perform all of the basic arithmetic operations such as multiplication, 

division, squaring, and square rooting; and exploits the concept of pipelining. The basics of pipeline array 

is that the arithmetic operations are grouped together in single array with some additional control logic that 

can be used to realize the required arithmetic operation. Grouping these arrays (processing element units) 

can provide a single array network that can perform fast processing arithmetic operation. In this chapter 

we implemented pipeline array using QCA method design and comparing the design with [92].  

 

7.2 QCA Pipeline Array  

The generalized QCA pipeline array can perform all the basic arithmetic operations such as 

multiplication, division, squaring, and square rooting. The electronic implementation of a generalized 

pipeline array is adopted from an existing architecture [91]. Fig. 7.6 shows a block diagram for cellular 

pipeline array. The array consists of processing elements (PEs) with each PE communicating with its 

neighbours in the array either directly or through latches. The arithmetic cells marked as A are controlled 

1-bit adders. The cells marked as C are control cells that specify the type of arithmetic operations to be 

performed by the arithmetic cells. The cells marked as M are used for multiplication. The Cells marked S 

are used for squaring and square rooting. 

Fig. 7.7a shows a block diagram of an arithmetic cell, where lines A, B, and C are operand inputs, and 

lines X and F are control signals. The control unit specifies the type of operations to be performed in each 

PE. Fig. 7.7b shows a block diagram for control unit where P is an input, Fi is output, and X and C0 are 

inputs and pass-through a PE to adjacent cells. 
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Fig. 7.6.  Block diagram for pipeline array [91] 



79 

 

 

Fig. 7.7a. Arithmetic cell 

 

 

Fig. 7.7b. Control logic cell 

 

The arithmetic cell is capable of performing the following Boolean operations: 

[ ] ii FAFCXBAS +⊕⊕⊕= 1)(            

110 ))(( ACCAXBC ++⊕=                   

)( iFBCD +=                                              

))(( iFBCBE ++=
                             

And the Boolean expression for control cell is: 

XPXCF ii += 0                              

Using lemma 7.1, 7.2 and 7.3, the above Boolean equations can be written in following QCA format  

)1),0,,(),0,,(( 3 ii FAMFnMMS =  

)1),0,,(),0,),1,,(( 1210 CAMnCAMMC =  

)0),1,,(,( iFBMCMD =           
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)0),1,,(),1,,(( iFBMCBMME =  

)1),0,,(),0,,(( 0 XPMXCMMF i=  

Where 

 )1),0,,(),0,,(( 21213 nnMnnMMn =  

 )1),0,,(),0,,(( 112 CAMCAMMn =  

 )1),0,,(),0,,((1 XBMXBMMn =  

Table 7.2 explains the required control signals for each arithmetic operation. When X=0, the arithmetic 

cell acts as an adder, and as a subtracter when X = 1. Sum and carry output are S and C0 respectively. The 

operands are applied at inputs A and B. The most significant bits of the inputs are A1 and B1. The most 

significant bit of the sum is S1.  The array is capable of finding the square root of a ten-bit binary number 

A1-10 with control inputs P1-5 are made zero and X is made 1. The B and C inputs to the first level are given 

as 00, 01, 10, 10, 10, 10, and 10, as shown in fig. 7.6. To find the square root of a number, it is applied 

across A, and then 01 is subtracted from the two most significant bits of A. If the remainder is positive, 

then the value of F1 is 1; otherwise, it is 0. If F1 is 0, the original value is kept for the next subtraction. 

Table 7.3 shows the value of the subtrahend for each succeeding stage.  
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TABLE 7.2 

 QCA PIPELINE ARRAY ARITHMETIC SUMMARY OPERATIONS 

Function Description of pipeline array 

operations [7] 

+  X=0, Fi=1 

1CBAS ⊕⊕=  

−  X=1, Fi=1 

1CBAS ⊕⊕=  

x  X=0, A=0, B=C 

Right shift add method is used 

Multiplicand in B 

Multiplier in P 

÷  X=1, B=C; P=0 

Right shift and subtract  

method is used 

Dividend in A 

Divisor in B 

( )2
 X=0, A=0 

B= 2’s comp of  “10”, C=”10” 

Operand in P 

 X=1, P=0 

B= 2’s comp of  “10”, C=”10” 

Operand in A  
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TABLE 7.3 

 SUBTRAHEND AT DIFFERENT LEVELS FOR SQUARE ROOTING 

 

The array is also capable of taking the square of a 5-bit number. To find the square of a number, it is 

applied across Pi with X= 0, the arithmetic cells act as an adder, and the control cell transform Pi to Fi. 

Resulting in square of the number. The array can also be used to multiply a three-bit number B1-3 by a five-

bit number P1-5 with control bit X and A inputs are made zero. The array can divide a seven bit number A1-

7 by four-bit number B1-4, giving a four-bit quotient and a four-bit remainder. For this case, the control 

input X is made 1, and P inputs are made zero. Similar to the multiplication operation, the C inputs are 

kept the same as the B inputs. The array requires n (n + 2) arithmetic cells and n control cells. The delay of 

an arithmetic operation depends on the delay in processing the last level which uses 2n+1 arithmetic units 

and it is given by [91]. 

lcadelay n ττττ ++=  

Where aτ , cτ , and lτ  are the delays in arithmetic cell, control cell, and latch circuit, respectively. Fig. 7.8 

shows QCA design arithmetic and control cell unit layout. 
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Fig. 7.8. (a) QCA arithmetic cell and (b) control cell 

Agrawal [92] proposed high-speed multifunction array for multiplication, division, square-root 

operations. QCA equations for Agrawal’s arithmetic cell can be giving by:   

)1),0,,(),0,,(( 33 naMnaMMS iii =  

)1,,( 561 nnMci =+  

)1,,( 761 nnMei =+  

)0,,( 91 ii enMG =+  

)1,,( 91 ii enMP =+  

)0,,( 101 ii dnMg =−  
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)1,,( 111 ii bnMh =−  

Where 

)1),0,,(),0,,((1 xbMxbMMn ii=  

)1,,( 12 nrMn j=  

)1),0,,(),0,,(( 223 ncMncMMn ii=  

)1,,(4 ii caMn =  

)0,,( 245 nnMn =  

)0,,(6 ii caMn =  

)0,,( 167 nnMn =  

)1),0,,(),0,,(( 118 ncMncMMn ii=  

)1),0,,(),0,,(( 889 naMnaMMn ii=  

)1,,(10 ij brMn =  

)0,,(11 ij drMn =  

Fig. 7.9 shows QCA design high speed arithmetic cell unit layout. 
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Fig. 7.9 QCA high speed arithmetic cell 

 

7.3 QCA Pipeline Implementation  

For creating QCA pipeline array and verifying the design functionality, QCADesigner [86] is used. 

The tool provides two simulation engines: bistable engine and cotherence vector engine. QCA cells are 

assumed to have a height of 18nm and width of 18nm while the quantum dots have a diameter of 5nm. 

This follows the same assumptions as given in [87] and coherence vector engine has been used for 

simulations. Fig. 7.10 and fig. 7.11 show the QCADesigner layout for the arithmetic cell and control cell 

respectively. The layout is labeled to indicate majority gates inputs as well as the outputs. Fig.  7.12 and 

fig. 7.13 show the QCADesigner simulations results. 
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Fig. 7.10. QCADesigner layout for arithmetic cell unit  
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Fig. 7.11. QCADesigner layout for control cell unit. 

 

 

Fig. 7.12. Simulation for control cell unit 
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Fig. 7.12. Simulation for arithmetic cell unit 

 

Fig. 7.13 and fig. 7.14 show the QCADesigner layout for the Agrawal’s arithmetic cell and simulation 

results respectively. 
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Fig. 7.13. QCADesigner layout for high speed arithmetic cell unit 
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Fig. 7.14. Simulation for high speed arithmetic cell unit 
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Table 7.4 shows performance comparison between the two QCA designs showing the arithmetic and 

control cells have a simpler structure than Agrawal’s arithmetic cell. 

 

TABLE 7.4 

QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS 

 

 

A different modeling approach has been used to simulate 10-bit QCA pipeline array. We created a 

behavior Verilog model for majority gate and used it as building block for creating majority AND, OR, 

NOT and XOR   QCA gates. Then we used Cadence NCLaunch simulation tool to test our design. Fig. 

7.15 and fig. 7.16 show the result of squaring and square rooting outputs respectively. 

 

Fig. 7.15.  Waveform of pipeline squaring output result 
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Fig. 7.16. Waveform of pipeline square rooting output result 

Fig. 7.17, fig 7.18 and fig. 7.19 show Multisim implementation for arithmetic cell, control cell and high 

speed arithmetic cell. 

 

Fig. 7.17. Multisim implementation of arithmetic cell 
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Fig. 7.18. Multisim implementation of control cell 

 

Fig.7.19 Multisim implementation of high speed arithmetic cell 
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Fig. 7.20, fig 7.21, fig. 7.22, fig. 7.23, fig 7.24 and fig. 7.25 show FPGA implementation for arithmetic 

cell, control cell and high speed arithmetic cell. 

 

Fig 7.20. Arithmetic cell FPGA packaging 

 

Fig 7.21. Control cell FPGA packaging 

 

Fig 7.22. High speed arithmetic cell FPGA packaging 

 

Fig 7.23. Arithmetic cell FPGA schematic layout 
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Fig 7.24. High Speed arithmetic cell FPGA schematic layout 

 

Fig 7.25. Control cell FPGA schematic layout 
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TABLE 7.6 

 

  QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS 

 

 

TABLE 7.7 

 

DELAY TIME (PS) 

 
 

Table 7.6 and 7.7 show performance comparison between the two designs. The results show that 

number of gates that were used in control cell are four gates, four I/O pins and total nets are seven. For 

arithmetic cell, the total gates are fifteen, ten input I/O pins and total nets are twenty one. Meanwhile, in 

high speed arithmetic cell, total gates are twenty, I/O pins are fourteen and total nets are twenty seven. The 

allocated covered area and chip floor plan aspect ratio for the high speed arithmetic cell were the highest 
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due to the total gates for it is more than arithmetic cell. Also, the tables show that the maximum delay time 

for arithmetic cell is smaller than in high speed arithmetic cell. The results show  that arithmetic cell has 

less complex in hardware and processes smaller  delay time than high speed arithmetic cell as high speed 

arithmetic requires two half adder in serial and needs more processing time. 

We used Cadence Encounter to generate a COMS equivalent layout of our QCA pipeline array design. 

Ambit Buildgates is used to generate the netlist. Encounter used to assign floor plans, appropriate layers 

nano routing, and obtain the design in .gds and .def. In Encounter, we also checked for any design flawless 

in terms of connectivity, density etc. Fig. 7.26 shows the encounter part of our design. 

 

Fig. 7.26. Encounter part of QCA pipeline array 
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Fig.7.27. Virtuoso part of padding pipeline array 

For chip fabrication, we used Virtuoso where we have imported the design from encounter and the same 

padframed is used to send it to MOSIS for chip fabrication. The complete Layout along with the 

connections is shown in fig. 7.28 below. In digital circuits complexity is not appears to be defined because 

of a lot of parameters that can be used to measure digital complexity such as number of gates, number of 

I/O, delay, area/size. In this present work, we suggest a fuzzy complexity system. This concept needs to be 

validated and more works to be done. Fig 7.29 shows the hardware complexity fuzzy concept.   

TABLE 7.7 

COMPLEXITY FUZZY RESULTS FOR PIPLEINE ARRAY CELLS 

 



99 

 

 

Fig.7.28. Virtuoso part of pipeline array 

 

Fig.7.29. Hardware complexity fuzzy concept  

7.4 Conclusion 

We demonstrate that arithmetic cells can be successfully implemented using QCA cells. These arrays 

can perform multiplication, division, squaring and square rooting. All different modes of operation are 

controlled by a single control line. QCADesigner tool set is used to simulate both designs. We also used 

different VLSI approach to simulate 10-bit QCA pipeline array, we created behavior Verilog models for 

the design. Cadence NCLaunch simulation tool is used to simulate the pipeline array and verify that our 

design is performing as desired. Cadence encounter is used to generate a COMS equivalent layout of our 

QCA pipeline array design. Our Design layout is exported to virtuoso. Furthermore, padframing is 

performed in order to send the design to MOSIS for fabrication.  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Introduction 

Residue Number System (RNS) has received increased attention due to its ability to 

support high speed concurrent arithmetic applications such as Fast Fourier Transform 

(FFT), image processing and digital filters. In spite of its effectiveness, conversion and 

sign detection, base extension, scaling and division are complex operations with current 

methods. In this dissertation, we have addressed conversion, scaling and implementation 

of RNS adder and subtractor.  

Quantum-Dot Cellular Automata (QCA) is attracting a lot of attention due to its 

extremely small feature size and ultralow power consumption compared to CMOS 

technology.   This new type of nanotechnology uses different logic devices to design 

circuits. The traditional Boolean logic reduction methods such as Kranaugh maps 

produce a simplified Boolean expression. However, converting these forms to QCA 

Boolean is not simple process due to the complexity of multilevel majority gates. In this 

dissertation, we presented a novel methodology for generating QCA Boolean circuits 

from multi-output Boolean circuits and implementation of QCA pipeline array. 

8.2 Summary of Work 

A detailed research has been conducted on the residue number system and quantum-

dot cellular automata. Specific solutions have been developed to provide solutions for 

stressing issues. The following gives an executive summary of the contributions and 

results of this research. 
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 A simplified algorithm method for conversion from binary to residue number 

system was introduced. The algorithm requires less hardware size compared to 

those required by existing algorithms. It utilizes parallel-prefix techniques with 

multiplexers and modulo adders as the main building blocks without the use of 

lookup tables which makes it practical and suitable for VLSI implementation. 

While other existing methods such as Behrooa [7] uses a table lookup schemes for 

binary to residue conversion and Alia [4] uses processing elements (PE) with 

complex hardware.  

 A new scaling algorithm based on mixed radix conversion was presented. The 

algorithm utilizes a simplified base extension process that works on a smaller 

modulo. It provides an alternative method of finding the mixed radix digits with 

high degree of parallelism. The algorithm has advantages over CRT methods 

since it avoids the use of modulo computations and the use multiplicative inverse 

operation. 

 An efficient VLSI approach for the implementation of RNS adder and subtractor 

was introduced. XILINX is used to get the behavioral simulation of the design 

with the help of which we were able to verify that our design is performing as 

desired. Cadence encounter is used to build the layout of the design. Design 

layout along with the technology libraries are exported to virtuoso. Furthermore, 

padframing was performed in order to send the design to for fabrication.  
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 A novel methodology for generating QCA Boolean circuits from multi-output 

Boolean circuits was developed. Our methodology takes as its input a Boolean 

circuit, generates simplified XOR-AND equivalent circuit and output an 

equivalent majority gate circuits. 

 An efficient approach for implementation of a generalized pipeline cellular array 

using quantum-dot cellular automata cells was presented. The QCA pipeline array 

can perform all basic operations such as multiplication, division, squaring and 

square rooting. The different modes of operation are controlled by a single control 

line. We created behavior Verilog models for the design. Cadence NCLaunch 

simulation tool is used to simulate the pipeline array and verify that our design is 

performing as desired. Cadence encounter is used to generate a COMS equivalent 

layout of our QCA pipeline array design. Our Design layout is exported to 

virtuoso. Furthermore, padframing is performed in order to send the design to 

MOSIS for fabrication. 

8.3 Recommended Future Work 

The results of this research are promising and the following are recommended 

research topics that can be done as a continuation of this work.  

 Further research can be done on investigating new techniques for generating 

Carbon Nanotubes (CNT) Boolean circuits. Carbon Nanotubes have many 

different structures, differing in length, thickness, and number of layers. 

Although, they are formed from essentially the same material sheet, their 

electrical characteristics differ depending on these variations. With these 
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properties, they are acting either as metals or as semiconductors. Nanotube-based 

transistors, also known as Carbon Nanotube Field-Effect Transistors (CNTFETs), 

are capable of digital switching using a single electron. However, one major 

obstacle for this new emerging technology has been the lack of new methods for 

mapping existing multi-output boolean logic circuits to carbon nanotubes logic 

circuits also creating new methods for generating carbon nanotubes logic circuits 

is other area of research.  

 Modifying QCADesigner program to include QCA reduction algorithms that were 

presented in this dissertation. QCADesigner is program that had been developed 

by University of British Columbia to create a simulation tool and design for 

quantum-dot cellular automata. QCADesigner is open code source and can be 

downloaded from University of British Columbia. This tool is still under 

development and provided free of cost to the research community. 

 Also, further research can be done on creating new methods for generating 

boolean circuits for Single Electron Transistor (SET) circuits. SET operates by 

injecting or ejecting a single electron into or from a dot of silicon, so producing a 

change in electronic potential. That change must overcome thermal agitation, 

making optimized smallness of the dot essential for SET operation. With this 

property, the single electron transistor is type of switching device that uses 

controlled electron tunneling to amplify current. Usually, SET is made from two 

tunnel junctions that share a common electrode. A tunnel junction consists of two 

pieces of metal separated by a very thin insulator. The only way for electrons in 

one of the metal electrodes is to travel through the insulator. One major obstacle 
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for this new emerging technology has been the lack of new techniques for 

creating SET circuits. 

 Implementing five pins majority QCA gate. The basic elements in QCA are 

majority and inverter gates. As result, using a majority gate with more inputs in 

QCA circuit will cause reduction in cell count, latency and complexity. 

Furthermore, implementing seven input majority gate also could simplify and 

optimize QCA designs. Creating new VLSI techniques that can support five and 

seven majority gates and implementation different exciting circuits such as full 

adder with these QCA gates can be other research area. 

 Investigating new fabrication techniques of QCA logic devices is other research 

areas that can be conducted. Fabrication of QCA is still ongoing challenging 

research area.  These challenges include development of new manufacturing 

methodology for QCA circuit fabrication. Also implementation of detect free fault 

tolerant circuit. These new techniques require development new CAD methods 

and tools to help simulation.   

 Implementing residue arithmetic logic unit that can perform all modulo 

operations. RNS is an unweighted representation system of numbers.  RNS is 

based on modular arithmetic operations and it is a carry-free system. Creating   

modular logic unit that be used in applications such as Fast Fourier Transform 

(FFT), image processing and digital filters can simplify the RNS design and 

application implementation. 

 Investigating new residue number system techniques to simplify RNS magnitude 

comparison overflow detection, sign detection, parity detection and division. In 
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spite of its effectiveness, RNS has remained more an academic challenge due to 

the complexity involved in the magnitude comparison, overflow detection, sign 

detection, parity detection and division. These RNS areas are other research area 

to investigate. 

 Validating and improving the fuzzy complexity concept is other research area that 

can be investigated.   
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APPENDIX 

Setting up your Working Environment: 

1. Login to your Unix machine. 

– Use your WSU access ID and password. 

 

2. Double click on the “??????'s Home” folder on your desktop. 

– (“??????” should be your AccessID). 

 

If you already did steps 3 to 10 go to step 11 

3. Click “View” and check “Show Hidden Files”. 

 

4. Scroll down to find the .cshrc file. 

– The file is currently Read Only. 

– Right click on the file and choose “Properties”. 

– Go to the “Permissions” tag and check “Owner ->Write”. 

– Click “Close”. 

– Now the file can be edited. 

 

5. Right click on the file and choose “Open with Text Editor”. 

– This will open the .cshrc file in the text editor. 

 

6. Add these two lines to the file: 

 source /opt/cds/class/cds_setup 

 source /opt/cds/class/setup_files/vhdl/.vhdl_setup 

– Save and close the editor. 

 

7. Open a new terminal (by right click on the desktop and choose “Open Terminal”) and 

type the commands: 

   – cd $HOME 

   – source .cshrc 

 

 

8. Create new directory, name it cadence, under you 

home directory. 

– mkdir cadence 

 

9. Create vhdl directory under cadence directory. 

– mkdir vhdl 

 

10. Execute the following commands: 

– cd vhdl 
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– cp $NCVHDL/cds.lib $CDSVHDL 

– cp $NCVHDL/hdl.var $CDSVHDL 

 

11. Open cadence/vhdl/cds.lib file and add the following line 

 

DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06 

 

The cadence/VHDL/cds.lib file will look like  

  

include $CDS_INST_DIR/tools/inca/files/cds.lib 

#DEFINE ieee /opt/cds/ldv/tools/inca/files/IEEE 

#DEFINE std /opt/cds/ldv/tools/inca/files/STD 

DEFINE vhdl ~/cadence/vhdl 

DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06 

 

12. Encounter setup: Type these commands in you terminal 

      – cd $CDSVHDL 

– mkdir fe 

– cd fe 

– cp $DSMSE/ece753.conf ece753.conf 
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PART 1: ENCOUNTER 

The original procedure version was contributed from Dr. Singh VLSI Lab and this is update to current 

procedure: 

1) Open Unix terminal and type encounter 

2) Click on File (Top Left) -> Import Design   The following screen should open. 

 
3) Click on Load…  

Navigate to cadence/vhdl/fe  and select  ece753.conf  file 

 
4)  
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5) Click on … (top right of the screen above)  

6) Double Click the designated .verilog file which was created using BGX commands  

 
 

7) Press OK after selecting the desired .verilog file 
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9) Click on Floorplan -> Specify Floorplan -> Ok (Just Press Ok, no need to change anything) 

10)   Click on Power -> Power Planning -> Add Ring 

 

11)  

  

 



112 

 

12) Click Route -> Special Route -> Ok (The blue line should appear now) 

13)    Click Place -> Place Jtag -> OK 

14)    Click Place -> Place Standard Cells -> OK 

15)    Click Route -> Nanoroute -> Route -> Ok 

16)    After doing step 15, a figure similar to the one below should  

 

 

 

17) Click Place -> Physical Cell -> Add Filler 
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18) Select and Add ‘FILL’ (Right Side) and Click Close 

 

 

 

 

 

 

 

 

 

 

 

 

19) FILL should appear in the Cell Name(s) as shown below. Then Click OK 
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21) Click Verify-> Verify Connectivity -> Ok (There is no need to change anything, just press OK) 

 
22) Click File -> Save ->GDS\OASIS  

(There are two Saves, one on top and other on the bottom. CLICK THE ONE ON THE BOTTOM!!!) 

23) Enter desired verilog name and GIVE THE EXTENSION .gds2 

24) Check the Structure Name (Do Not Edit the Already filled in Name) 

 

25) Click File -> Save -> DEF 

 
26)   In the encounter terminal type the following commands  

a. On your query to determine the area occupied, use command 
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==>queryPlaceDensity 

 

b. For determining number of instances do, 

==>selectInst * 

==>llength [dbGet selected] 

 

c. For Calculating delay use 

==> report_timing –from input_pin_name –to output_pin_name –unconstrained 

 

d. To view the schematic  from GUI click on ==>tools -> schematic viewer 

 

e. To get the Aspect Ratio use command: 

==>dbHeadAspectRatio 

 

f. To get the coordinate of selected box use : 

  selectInst instance_name 

  dbGet selected.box 

 

g. To Get the x and y dimensions of a particular cell,use the command after importing the design: 

  set a [dbGetInstByName instance_name] 

  set b [dbInstCell $a] 

  dbCellDim $b 

 

h. To Get the voltage for the specified cell  

  Set a [dbGetCellByName cell_name] 

  dbCellVoltage $a 
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PART 2: VIRTUOSO 

1) Open Virtuoso 

2) Close all the screens except LIBRARY MANAGER and the LOG window 

 

 

 

 

 

 

 

 

 
 

3) Click File->New->Create Library (The Library Window, not the Log window) 

 

4) Click OK. 

 



117 

 

 

 

5) Click File -> Import -> Stream (The LOG window, not the Library manager) 

 
6) Click on Options then click on Geometry 

 
7) Select Snap To Grid 
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8) Click Layers -> Load File 

 
 

9) Find the streamOut.map file in your cadence folder. (You might have to look around more) 

 

 
 

 

 

 

 

 

 

 

 

 

After finding the file, Select and click Open and then OK to 

return back to the Virtuoso(R) XStream In screen. 
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10) Click on … 

 
11) Find, Select and Open the .gds2 file that was saved in PART 1, STEP 23. 

 

12) Select the Destination Library (The new library created in step 3) 
13) Select the NCSU_TechLib_ami06 for your Technology Library Attachment 
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14) Click Translate. (A warning Log file will open, Just press No) 

15) Click File->Import->DEF 

 
 

16) Find the .def file in the cadence folder 

 
 

 

 

 

 

 

Select Target Library Name (Same 

one you created before) 

Fill Target Cell Name as shown (add 

‘cellname’ in the end) 

Fill Target View Name as shown (just 

add ‘layout’) 

Finally Click on … (Top Right Corner) 

This is annoying to use, but you need to browse back to 

your cadence folder and find the .def file. Click ../ to 

navigate back 

You might have to look around. 

Press OK once you find the .def file 
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17) Click File->New->Cell View 

 
 

18)  

 
 

19) Click Create and draw rectangle 

 

Example31cellname 
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20) Click Create->Add Pins 

     

 

 

 

 

 

 

 

21) Manually insert your ‘mygnd’ and ‘myvdd’ as inputs in the symbol as shown below 

. 

 

Add the Pin Names. 

Insert Space in between. 

Make sure the Direction is correct (input/output) 

Then go to the Black screen and just click away the pins. As you place each pin, it should 

automatically go to the next entered pin. 

The red ending is pointing out. 

Do the same for your outputs. 
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Click this to save symbol and then close 

 

 
 

22) Click File->New->Cell View 

 
 

23) 

 
 

 

 

 

 

 

 

Fill Cell (Just add ‘Pad’ in the end) 

Fill View (Just add schematic) 

Select Type (schematic) 

Press OK 

A blank black screen should open 

again. 

Press I on the keyboard. (Figure on 

the left should pop up) 

Click Browse and browse for the 

symbol you created. 
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23) Find, Select and Place the symbol to the black screen. (after selecting the symbol, simply move 

cursor to black screen, the symbol should appear automatically) 

 
 

24) Press I on the keyboard again and Click Browse and look for ami06_padframe (on the left) 

 
 

 

 

 

 

 

 

 

 

 

 

 

In this part, you will add padding to your circuit. 

In the middle column ‘Cell’, select and place padinc to the black screen. Padinc is the 

input padding corresponding to your input pins. Place a pad for each input. 

Do the same for output by using padout. 

Do the same for myvdd and mygnd by using padvdd and padgnd respectively. 

Press W on the keyboard to wire like so in the picture below. 
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25) Click this to save schematic with padding and close. 

 

 
 

26) Click File->New->Cell View 

 
 

28) Click File->Launch XL (A screen with the placed pads should open on the left) 

29) Click this (bottom left corner) 

 
 

Fill the same name in the Cell as the 

one before 

Fill View as ‘layout’ 

Select Type as ‘layout’ 

Press OK 

A black screen should appear again. 
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30) This screen should pop up. Deselect everything under Generate except Instances 

31) Edit Width and Height to 3.6 

 
 

Like this 

 
 

Press OK 

32) Type placepads in the LOG window and press enter 
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33) Rectangular blocks in red should appear on the screen at this point. 

34) Press shift+f together to turn the red figure into 

 

 
 

NOTE: each block ONLY MOVES IN ONE DIRECTION. So move it left/right first then move it 

top/bottom or the other way around. 

 

To rotate block, select block and then click VIEW->Rotate and then click anywhere on the screen to 

initiate the rotate. 

 

SAVE THIS FILE. YOU ARE DONE 
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FPGA Implementation Procedure Update: 
Note: The following procedure was done on Xilinx Version 13. You may see variations between 

different versions. However, the general procedure for FPGA implementation remains the same, 

which is: 

 

1) Create a project, add existing source. 

2) Synthesize code by double clicking on View RTL Schematic. 

3) Assign Package Pins, under ‘User Constraints’. 

4) Generate programming file to generate .bit file 

5) Configure Device ………Boundary Scan ….. FPGA Implementation … selecting .bit file 

for your device…. Download program to the board. 

6) Testing code on the board.  

 

The below is a very quick and general overview of the entire process 

Procedure for FPGA Implementation: 

1) Create a new project 

File -> New Project 

2) The following screen will appear. Make sure you specify the correct family name, device 

name , package name and Preferred language. 
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3) Click next. Xilinx will show you the project summary. Verify that  and click Finish. 

4) Add an existing Verilog file. 

Right click Design window and select ‘Add Source’. 
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5) Xilinx will then prompt you to select Verilog file. Add it. 

6) Double click on View ‘RTL Schematic’ under Synthesize – XST 
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7) Under ‘User Constraints’, double click ‘I/O Planning- Pre-Synthesis. 
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8) You will then see the following screen. Please note: give Xilinx sometime to open ‘Plan 

Ahead Screen’. 

9) Then assign pins as you like in ‘I/O Ports’ wizard. 
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10) Save the design. 

 
 

11) Minimize Plan Ahead window and go back to Xilinx. 

12) Double click on ‘Generate Programming File’ as shown below. In this step, Xilinx will 

create a file with extension .bit 
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13) Next, expand ‘Configure Target Device’ and double click on iMPACT.  
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14) You will see the following screen. Select Boundary Scan.  
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15) Right click when prompted and select ‘Initialize Chain’. 

 
 

16) You should then then see the following two devices. 

 
 



138 

 

The device that we are interested in is XC3S200. You will be prompted to select .bit file 

that was generated earlier. Select that .bit file . 

 
 

Note: Underneath the device name, you should now see the name of the bit file you 

selected earlier. 

 

Xilinx will then ask you to add a .bit file to the second device as well. We are not 

interested in this, so click BYPASS for this one. 
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17) Then select FPGA Device when prompted as shown below. 

Click Apply � OK 
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18) Then right click on the screen and select program 
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Now you are ready to download the program to the board. 

 
19) After successful completion, you should see the message shown below: 
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20) Now, go ahead and test your code on the board using the pins you assigned earlier. 
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Digital logic technology has been changing dramatically from integrated circuits, to a 

Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits. 

Research focused on increasing the speed and reducing the size of the circuit design. 

Residue Number System (RNS) architecture has ability to support high speed concurrent 

arithmetic applications.  To reduce the size, Quantum-Dot Cellular Automata (QCA) has 

become one of the new nanotechnology research field and has received a lot of attention 

within the engineering community due to its small size and ultralow power.  

In the last decade, residue number system has received increased attention due to its 

ability to support high speed concurrent arithmetic applications such as Fast Fourier 

Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS 

arithmetic in addition and multiplication.  In spite of its effectiveness, RNS has remained 

more an academic challenge and has very little impact in practical applications due to the 

complexity involved in the conversion process, magnitude comparison, overflow 

detection, sign detection, parity detection, scaling and division. The advancements in 
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very large scale integration technology and demand for parallelism computation have 

enabled researchers to consider RNS as an alternative approach to high speed concurrent 

arithmetic. Novel parallel - prefix structure binary to residue number system conversion 

method and RNS novel scaling method are presented in this thesis. 

Quantum-dot cellular automata has become one of the new  nanotechnology  research  

field and has received a lot of  attention within engineering community due to its 

extremely small feature size and ultralow power consumption compared to COMS 

technology. Novel methodology for generating QCA Boolean circuits from multi-output 

Boolean circuits is presented.  Our methodology takes as its input a Boolean circuit, 

generates simplified XOR-AND equivalent circuit and output an equivalent majority gate 

circuits.  

During the past decade, quantum-dot cellular automata showed the ability to 

implement both combinational and sequential logic devices. Unlike conventional Boolean 

AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks 

is majority gate. With combining these QCA gates with NOT gates any combinational or 

sequential logical device can be constructed from QCA cells. We present an 

implementation of generalized pipeline cellular array using quantum-dot cellular 

automata cells. The proposed QCA pipeline array can perform all basic operations such 

as multiplication, division, squaring and square rooting. The different mode of operations 

are controlled by a single control line. 
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