Wayne State University
Digital Commons@WayneState

Wayne State University Dissertations

1-1-2013

Emerging Design Methodology And Its
Implementation Through Rns And Qca

Omar Dajani
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Recommended Citation

Dajani, Omar, "Emerging Design Methodology And Its Implementation Through Rns And Qca" (2013). Wayne State University
Dissertations. Paper 646.

This Open Access Dissertation is brought to you for free and open access by Digital Commons@WayneState. It has been accepted for inclusion in

Wayne State University Dissertations by an authorized administrator of Digital Commons@WayneState.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/646?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages

EMERGING DESIGN METHODOLOGY AND ITS IMPLEMENTATION
THROUGH RNS AND QCA

by
OMAR DAJANI
DISSERTATION
Submitted to the Graduate School
of Wayne State University,
Detroit, Michigan
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
2013
MAJOR: ELECTRICAL ENGINEERING

Approved by:

Advisor Date

© COPYRIGHT BY
OMAR DAIJANI
2013

All Rights Reserved

DEDICATION

To my family

ACKNOWLEDGMENTS

I sincerely thank my research advisor Prof. Harpreet Singh for guiding me through this
research project and for giving me the encouragement and advice throughout the course of
this work. Dr. Singh’s dedication and flexibility is what made it possible for me to
succeed. I would like to thank Dr. Pepe Siy for his help during the initial phase of my PhD
research.

Also, I would like to thank my dissertation committee: Dr. Mohamad Berri, Dr. Feng
Lin and Dr. Le Yi Wang for their helpful comments and encouragement.

Many thanks to my colleagues for their assistance in FPGA, Multisim and Cadence
that have helped me in my research development.

Finally, I would like to thank my family for their support and encouragement.

TABLE OF CONTENTS

DIEAICATION. .ttt ettt et e e e i
ACKNOWIBAZIMENLS ettt e i
LSt Of TabIES. ...ttt e vii
LSt Of FIGUIES . o.enititet e e e e e viii
Chapter 1 INtrodUCTION. et e e 1
1.1 Introduction to RINS. ... e 1

1.2 Residue Number System Representation.............coooeiiiiiiiiiiiiiiiiininn i 2

1.3 Residue Dynamic Range...........co.oiuiiiiiii i 2

1.4 Quantum-Dot Cellular Automata (QCA)......c.oviiiriiiiii i e eee e 5

1.5 Problem Statement.o.etiniiti it 6

1.6 Thesis OrganizZation.ueuuinuereete et et et eteat et et et et eateateateaneeeaeenaas 8
Chapter 2 Literature ReVIEWouiiiiiiii i e 9
2.1 INEOAUCLION. .. e eee et e e e 9

2.2 RNS Arithmetic OPerations.o.ueueeiniitin it 9

2.3 Conversion from RNS to Binary..........c..cooiiiiiiii e, 11

2.3.1 Chinese Remainder Theorem Conversion.............ooeviiiviiiiiiiiennneannn 11

2.3.2 Mixed Radix CONVEISION.uvutietiteteteatt et et et eaeeeeeaees 13

2.4 Residue Number System Sign Detection.cvuviiiuiiiiiiiiiiiiiiiiiineen, 15

2.5 Scaling in Residue Number System...........ocovuiiiiiiiiiiiiiiiiiiiiiiiiiee 16

2.6 RNS Fast Processing AppliCations.couevuiiiiiiiiiiiiiiiiiiiiinieeaee 17

2.7 Quantum-Dot Cellular Automata (QCA)......c.oiiiiriiiii i, 17

2.8 QCA ClOCKING. ...ttt ettt et et e e ettt et et et et e e e e e e 20

2.9 CONCIUSION. ... ettt e 22

v

Chapter 3 Novel Parallel - Perfix Structure Binary to Residue Number System Conversion

Method...............

3.1 Introduction

3.2 Residue Number SyStem.couuiiiiiii i

3.3 New Novel Conversion Method from Binary to Residue Representation.....................

3.4 Tustrative EXample.......oouoiniiniii e

3.5 Implementation SEleCtion.eiuiiitiii e

3.6 Comparison

Selection to Pervious WOrK.oovvviiniiiiiiii e

3.7 CONCIUSION. . ettt e e

Chapter 4 Simplified RNS Scaling Algorithm.............cooo i,

4.1 Introduction

4.3 Scaling......

4.4 GENEral DIVISION. ..ottt e e e

4.5 New Base E

xtension AlgOrithm.

4.6 New Scaling Algorithim..........oiiiiiii e

4.7 Conclusion.

Chapter 5 VLSI Implementation of Residue Adder and Subtract..........cccceveerieoeencninneennns

5.1 Introduction

5.2 Residue Adder and SUDLIACOL.oovuri ittt

5.3 V LSTImMplementation.o.uueuutieittit et e e e ere e

5.4 Conclusion.

Chapter 6 Novel Quantum Boolean Circuits Construction by Using XOR-AND Reduction

Method.............

23

23

24

24

34

38

41

42

43

43

43

43

44

45

47

52

53

53

54

56

59

60

60

6.2 QCA Background Material...........coeiuiitiiiitiei i 61
6.3 Novel QCA EXtraCtion.oiiriiiiittt it et e e 66
O o) s 1e] L1 13 o) s P T 71

Chapter 7 Implementation of Generalized Pipeline Cellular Array Using Quantum-Dot

Cellular AULOMALA.ttt et e et et e et ettt e e e et eeeneaaes 72

7 0115 (T4 LT) U TP 72

7.2 QCA PIPEIING AITAY...cuuenninit i 77

7.3 QCA Pipeline Implementation...........c.oouiruiruiiiiiiiert e ee e ens 85

7 71 Te] 1353 o o VP 99
Chapter 8 Conclusion and Future Work................ooiii 100
T I T T L 5 o) 4 DA Pt 100

8.2 Summary of WOTK. ... 100

8.3 Recommended Future Work...........ooooiiiiiiiii e, 102
APPENAIX. ...t 106
P O ENIC S . ..ttt e 143
N 0] 2T P 153
Autobiographical Statement.oooiiiiiiiiiiiii 155

vi

LIST OF TABLES
Table (1.1): Residue Digits for Unsigned Numbers..............coooiiiiiiiiiiiii i,
Table (1.2): Residue Digits for Signed Numberscooooiiiiiiiiiiiiiiiiiiii i
Table (1.3): Majority Function M(A,B,C).....oiniiiiiiii e
Table (2.1): Equivalent QCA Expressions for Major Boolean Gatesc.ccooeviiienin.
Table (3.1): Shows Comparison Among the Three Designs Implementation
Table (3.2): Comparison Among Behrooa, Alia and the new design....................coociiine.
Table (5.1): Total RNS Adder and Subtractor Delay Time (PS).........cooooviiiiiiiiiiiiii
Table (5.2): RNS Adder and Subtractor Design Parametercoooiiiiiiiiiiiiiiiiinn.n,
Table (6.1): The Chart for Deriving XOR Equivalent Function “f1”..................c..oooie
Table (6.2): The Chart for Deriving XOR Equivalent Function “f2”cioi
Table (7.1): Boolean Functions and Their Equivalent QCA...............coiiiiiiiiiiiiiiiiiiii,
Table (7.2): QCA Pipeline Array Arithmetic Summary Operations............c..ccevieiiuineienn.e
Table (7.3): Subtrahend at Different Levels for Square Rooting................c.cccoiiiiiit.
Table (7.4): QCA Performance Comparison Between the Two Designs.................oooieine..
Table (7.5): COMS Performance Comparison Between the Two Designs................c.coooea.t.
Table (7.7): Design Delay Time (PS).....ouoiniiiiii e,

Table (7.8): Complexity Fuzzy Results for Pipeline Array Cells..........c..coocooiiiiiiiiiiin

vii

LIST OF FIGURES

Figure (1.1): Block Diagram that Shows the Research Logical Flow....................c.cooi.
Figure (2.1a): QCA Cells and Binary Encodingc..coooiiiiiiiiiiiiiiiicc e
Figure (2.1b): QCA MajJority Gatecoutiutiitiitiiti i et
Figure (2.1¢): QCA INVETEr GALC....eueutnnttintit ittt ee s

Figure (2.1d): QCA WIIe TYPES. . ceeetntintitiit ettt e e et e e

Figure (2.2a): QCA CloCK Phases.couuiiiiiiiiiii e

Figure (2.2b): Four QCA Interdot Barrier State.............ccoiiiiiiiiiiiiiiiiii it
Figure (3.1): Two Bits (bl & b0) Binary to RNS Conversionccooeiviiiiiiiiiieinnnn.
Figure (3.2): Prefix Logic Operation and Their Implementationcooiiiiiinienen.
Figure (3.3): Three Bits (b2, b1, b0) Binary to RNS Conversion...........ccccccevceerniernieensevenneeennne.
Figure (3.4): Four Bits Binary to RNS System..........c.ooiiiiiiiii e
Figure (3.5): Six Bits Binary to Residue Number System Conversion................ccoceueeuennnnn.
Figure (3.6): Prefix Structure of 8 Bits Binary to RNS e
Figure (3.7a): Eight Bits Binary to Residue Number System Conversion................c...coouen.
Figure (3.7b): Example for signal propagation.............c.ccoeviiiiiitiiiinn e
Figure (3.8): Prefix Structure of 10 Bits binary to RNS..........c
Figure (4.1): Shows the Fermat’s Implementation for Finding Coefficient “c”.......................
Figure (4.2): Shows Extended Euclid Algorithm Implementation.................c..coooiiiinne
Figure (4.3): Shows Implementation of Finding Coefficient “aij”...............cc.coiiiiiiiiiiiiie.
Figure (5.1): RNS Adder and SUbtractoroouvitiiiiiiii e
Figure (5.2): Waveform of RNS Adder and Subtractor.............cooeiviiiiiiiiiiiiiiiiiiiii e,
Figure (5.3): RNS Adder and Subtractor Layoutc.oooiiiiiiiiiiiiiiii i,
Figure (5.4): Encounter Part of RNS Adder and Subtractorcooiiiiiiiiiinieiiieeees

Figure (5.5): Virtuoso Part of RNS Adder and Subtractorcoviiiiiiiiiiiiniiiiiienieen

viii

18

18

19

19

20

21

25

26

27

28

32

34

36

37

39

48

48

48

55

56

57

57

59

Figure (6.1a): QCA Cells and Binary Encodingcooiiiiiiiiiiiiiiiiiic i,
Figure (6.1b): QCA MajJority Gatecoueiutintini ittt e
Figure (6.1¢): QCA INVEITEr GALE. .. uvuutentittiiitt e ettt et et et eea e et e e e e e e e e
Figure (6.1d): QCA WIre TYPES .. .euntiirintit ittt et
Figure (6.2a): QCA ClocK Phases.oovuiiiiiiii it
Figure (6.2b): Four QCA Interdot Barrier State............coviiiiiiiiiiii e
Figure (6.3): XOR-AND Function Extraction Methodology.............c..cooiiiiiiiiiiiiiiiinn
Figure (6.4): Majority Tree for Function “f17....o
Figure (6.5): Majority Gates Schematic for Function “f17...........ccoooiiiiiiii
Figure (7.1): QCA Cells and Binary Encodingcooiiiiiiiiiiiiiiii e
Figure (7.2): QCA WIIe TYPES ... nrntiiiee et et e
Figure (7.3): QCA Majority Gatecoueuiiteiniittiiii et e
Figure (7.4): QCA INVEItEr GaLe......couuiintiitt ettt et e e eeveete e
Figure (7.5): QCA ClOCK Phases.ouiiiiiiiiiiie e e
Figure (7.6): Block Diagram for Pipeline Array.........c..cooeiiiiiiiiiiiiiiiiii e
Figure (7.7a): Arithmetic Cell e
Figure (7.7b): Control Logic Cell..........oiiiiiii s e
Figure (7.8): QCA Arithmetic Cell and Control Cell Arithmetic Cell...............cc.coooeiiiiiiini,
Figure (7.9): QCA High Speed Arithmetic Cell..............coooiiiiiiiiii

Figure (7.10): QCADesigner Layout for Arithmetic Cell Unitc..coociiiiiiiiiiiiina.

Figure (7.11): QCADesigner Layout for Control Cell Unitc.oooiiiiiiiiiiiiiiinienen

Figure (7.12): Simulation for Control Cell Unit............oooiiiiiiiiiiiiii e
Figure (7.12): Simulation for Arithmetic Cell Unitcccoieiiiiiiiiiiiiiiii e
Figure (7.13): QCADesigner Layout for Arithmetic Cell Unit.............cooiiiiiiiiiiiinin.

Figure (7.14): Simulation for High Speed Arithmetic Cell Unit.................cooiiiiiiininniinnen

iX

62

62

63

63

64

64

65

67

68

72

73

73

74

74

78

79

79

84

85

86

87

87

88

89

90

Figure (7.15): Waveform of Pipeline Squaring Output Resultc..cocoiiiiie,

Figure (7.16): Waveform of Pipeline Square Rooting Output Result......................oot.

Figure (7.17): Multisim Implementation of Arithmetic Cell................c..cooiiiiiiiiii i,

Figure (7.18): Multisim Implementation of Control Cell ..o

Figure (7.19): Multisim Implementation of High Speed Arithmetic Cell..............................

Figure (7.20): Arithmetic cell FPGA packaging......

Figure (7.21): Control cell FPGA packaging..........

Figure (7.22): High speed arithmetic cell FPGA packaging...............c.ooooiiiiiiiiiiiinin...

Figure (7.23): Arithmetic cell FPGA schematic layout.............c.oooiiiiiiiiiiiiiii i,

Figure (7.24): High Speed arithmetic cell FPGA schematic layoutccooiiiiii.

Figure (7.25): Control cell FPGA schematic layout..

Figure (7.26): Encounter Part of QCA Pipeline Array..........cccoooeviiiiiiiiiiiiiiiiiinnennen,

Figure (7.27): Virtuoso Part of Padding................
Figure (7.28): Virtuoso Part of Pipeline Array........

Figure (7.29): Hardware Complexity Fuzzy Concept

91

92

92

93

93

94

94

94

94

95

95

97

98

99

99

CHAPTER 1
INTRODUCTION
1.1 Introduction to RNS

In the last decade, Residue Number System (RNS) has received increased attention
due to its ability to support high speed concurrent arithmetic applications such as Fast
Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of
RNS arithmetic in addition and multiplication. In spite of its effectiveness, RNS has
remained more an academic challenge and very little impact in practical applications due
to the complexity involved in the conversion process, magnitude comparison, overflow
detection, sign detection, parity detection, scaling and division.

The advancements in Very Large Scale Integration (VLSI) technology and the
demand for parallelism computation have enabled researchers to consider RNS as an
alternative approach to high speed concurrent arithmetic [10], [11].

RNS is an unweighted representation system of numbers. The difference between
RNS and fixed radix systems is that no fixed base is used in the representation of RNS
numbers. RNS is based on modular arithmetic operations and it is a carry-free system that

performs addition, subtraction and multiplication as parallel operations.

1.2 Residue Number System Representation

For any given set of relatively prime modulo set (m;, mp, m;, ... , my), the residue
representation of an binary number X is (X, X2, X3,..., Xp) ; Where X can be defined by N
equations.
X =m;qi + Xi (1.1)
Where x; is the least positive remainder of division X by m; and 0 < X, <m.:q; is the

m.

smallest positive integer of {—J .
1.3 Residue Dynamic Range

The residue representation of number is unique for any integer X € [0,M - 1], where M

is called dynamic range.
M=]]m, (1.2)
i=l1

For signed numbers, one has to distinguish two cases
Case 1:
The product M is an even number. This occurs if one modulo is an even number and the

range is defined as

M M
XG[-E,?—l} (13)

and all number

M
X>— 1.4
5 (1.4)

are negative numbers

Case 2:
The product M is an odd number. This occurs if all modulo are odd numbers and the

range is defined as

Xe _M-I’M—l (1.5)
2 2

and all numbers according to

x>M-1 (1.6)

are negative numbers.

The RNS representation of negative number —X is

(_X)IO ﬂ) (Iml_ Xl‘ml’

m,— XZ‘%""’ m, =)(rx‘[111)rr11 M, ...,m, (1.7)

To illustrate the residue representation, consider the three modulo set (2, 3, 5)
example. The list of the positive numbers from 0 to M-1 and their RNS representation is
shown in table 1.1. The list of positive and negative numbers from (-15, 14) and their

RNS representation is shown in table 1.2.

TABLE 1.1

RESIDUE DIGITS FOR UNSIGNED NUMBERS FOR M < 30

Residue

Residue digits digits

Modulo Modulo

2 3 5 2 3 5
Integer X1 X2 X3 Integer X1 X2 (X3
0 0O 0 1|0 15 1 0 |0
1 1 1 1 16 0o |1 |1
2 0o 2 2 17 1 2 2
3 1 0 I3 18 0O 0 3
4 0 1 4 19 1 1 ¢4
5 1 2 0 20 0o 2 0
6 0 |0 1 21 1 0 1
7 1 1 2 22 0o 1 2
8 o 2 3 23 1 2 3
9 1 0o 4 24 0O |0 4
10 0 1 0 25 1 |1 0
11 1 2 1 26 0o 2 |1
12 0o 0 2 27 1 0 2
13 1 1 3 28 o |1 3
14 0o 2 ¢4 29 1 2 4

TABLE 1.2

RESIDUE DIGITS FOR SIGNED NUMBERS (-15, 14)

Residue

Residue digits digits

Modulo Modulo

2 3 5 2 3 5
Integer X1 X2 X3 Integer X1 X2 (X3
0 0O 0 1|0 -1 1 2 (4
1 1 1 1 -2 o |1 3
2 0o 2 2 -3 1 10 2
3 1 0 I3 -4 0o 2 |1
4 0 1 4 -5 1 |1 [0
5 1 2 0 -6 0o |0 4
6 0 |0 1 -7 1 2 3
7 1 1 2 -8 o 1 2
8 o 2 3 -9 1 10 (1
9 1 0o 4 -10 0O 2 |0
10 0 1 0 -11 1 |1 (4
11 1 2 1 -12 0O |0 3
12 0o 0 2 -13 1 2 2
13 1 1 3 -14 0o |1 |1
14 o 2 ¢4 -15 1 0 |0

1.4 Quantum-Dot Cellular automata (QCA)

During past decade, Quantum-Dot Cellular Automata (QCA) has demonstrated the
ability to implement both combinational and sequential logic devices [76]-[82]. Unlike
conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in

QCA Boolean networks is majority gate which implements the Boolean function

M(A,B,C) = AB+AC+BC (1.8)

TABLE 1.3

MAJORITY FUNCTION M(A,B,C)

M(A,B,C)
0

R |~k |~k |~ |O |0 |0 | |>
R |k |O |0 |k |k |O |0 |m
L O |k O |k |O |, OO
R == |O |~ |O |

With combining these QCA gates with NOT gates any combinational or sequential
logical device can be constructed from QCA cells [76]-[82]. The process of QCA
Boolean logic is more sophisticated than Boolean logic. The traditional Boolean logic
reduction methods such as Kranaugh maps produce simplified Boolean expressions,
However, converting these forms to QCA Boolean is not simple process due to
complexity of multilevel majority gates. In chapter two, we will present literature review

and background material for RNS and QCA.

1.5 Problem Statement

Residue number system is a robust parallel system and it received attention due to its
ability to support high speed concurrent arithmetic applications such as addition,
subtraction and multiplication in modular levels. This system suffers from some

weakness such as conversion process, scaling, division, overflow detection and

magnitude comparison. In this dissertation, we have proposed new techniques to solve
the conversion and scaling issues. These techniques have been proved mathematically
and verified through VLSI simulation.

One of the new fields of nanotechnology is Quantum-dot cellular automata. Due to its
ultra-power and small size, QCA has the potential to become the future of CMOS
technology. Quantum-dot cellular automata uses different logic devices to design circuits
other than Boolean logic devices. Converting Boolean circuits to QCA Boolean is not
simple process due to complexity of QCA and existing Boolean reduction methods do not
work with QCA logic. In this thesis, we have proposed a new QCA construction reduction
method that utilizes the VLSI techniques that were used in RNS system. Fig 1.1 shows

block diagram that explains the flow of our research.

Digital
Logic
Speed A Size
y A
RNS VLSI

\ Nano /
Logic

A\ 4

Single Electron Carbon Quantum-Dot Cellular
Transistor (SET) Nanotubes (CNT) Automata (QCA)

Fig. 1.1. Block diagram that shows the research logical flow

1.6 Thesis Organization

This thesis contains eights chapters. Chapter one is introduction, Chapter two starts
with lecture reviews of residue number system and quantum-dot cellular automata
system. Chapter three presents the new binary to residue number system conversion
method. Chapter four presents the new scaling methods. VLSI RNS adder and subtractor
implementation is presented in chapter five. Chapter six presents the new quantum
boolean circuit construction reduction methodology. Chapter seven presents the QCA
implementation of pipeline array and chapter eight discuss the summary of the thesis
work and future research work. The dissertation also includes appendix that shows the

updated FPGA, Cadence Encounter and Virtuoso procedures.

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

The Residue number system has attracted researchers due to its advantage in the
modular arithmetic operations such as addition, subtraction and multiplication since RNS
provides the ability to add, subtract or multiply without the need to wait for the carry
propagation as required by the weighted number systems. Also, RNS has shown
significant efficiency in implementing Discrete Fourier Transformation and digital filters.
In addition, quantum-dot cellular automata has showed the ability to implement both
combinational and sequential logic devices. It is one of the new emerging
nanotechnology and it has the potential to become the future of CMOS technology due
to its ultra-power and small size. This chapter provides a review on the RNS and QCA
topics that are relevant to the dissertation works. Section 2.2 introduces addition,
subtraction and multiplication RNS operations. Section 2.3, 2.4, 2.5 and 2.6 give an
overview on conversion from RNS to binary, sign detection, RNS scaling and RNS fast

processing applications. Section 2.7 presents review for QCA topics.

2.2 RNS Arithmetic Operations

Residue Number System is an unweighted system with carry-free and borrow-free
arithmetic operations. Addition, subtraction and multiplication are carried out on each
residue digit concurrently and independently. This simplifies supporting parallel high-

speed concurrent computation.

10

Addition can be accomplished simply by adding the small integer values together.

The following equation explains the RNS addition operation.

(a+b), &

al,, + \b\m‘m .

Where a and b are integers. For example, the addition of the decimal number (10 + 8)

using the modulo set (2, 3, 5) is illustrated below.

(10)10 ﬂ) (0,1,0) 2,35

+(8),, —X +(0,2,3),55
(0,3’3)2,3,5

033),,;, — 5 (18),

The subtraction operation can be performed similar to the addition operation using the
additive inverse of subtrahend (equation 1.7)
For example, the subtraction of decimal number (18 - 10) using the modulo set (2, 3, 5) is

illustrated below

-10),, —F> (0,2,0),,5
and
1y, —- (0,3.3), 55

-(10),, —% +(0,2,0),55
(0’2’3)2,3,5

(0,2,3), 55 s @0

Multiplication can be accomplished in a manner similar to addition and subtraction as

follows.

(a*b), <

al,, * \b\m‘m 22)

11

For Example, the multiplication of (3 * 9);o using modulo set (2, 3, 5) is illustrated below.

3 — (L0,3),55
Do — 5 #(1,0,4) 23,5
(1’0’2) 2,3,5

(1,02),,;, — 5 27,

2.3 Conversion from RNS to Binary
Several methods are available for converting residue to binary system, most of these
methods are based on two techniques the first one is Chinese Remainder Theorem (CRT)

and the second one is Mixed Radix Converters (MRC) [9].

2.3.1 Chinese Remainder Theorem Conversion

The Chinese Remainder Theorem is a basic conversion method. The problem
associated with CRT approach is the requirements of M modulo adders.
Definition
For any given set of relatively prime modulo set (m;, mp, ms, ... , my,), the residue
representation of an binary number X is (X; , X2, X3,..., Xn) . Number X can be represented

as

< = .
Where 0 < X, <m., M I_Im1

i=l1

12

1 A
" M) e . -1
mi =—, and|=| isthe multiplicative inverse of |mi
m. A _
1 ml
m;i
m;
1
A
m; -2
= = mi
A
m;
mi

To illustrate how the method works, consider the following example
Example:
For modulo set (5, 7, 11), find the decimal number whose residue representation is

(4,5,7)and M = 385

Solution:
m1:ﬁ=77, mzzﬁZSS, m3=ﬁ=35
5 7 11
A 1 A 1 A 1
ml_l =|= :3, m2—1 =|= :6, m2—1 =|= :6
775 557 3511
X, X, X3
? :|4*3|5: ’ ? :|5*6|7:2’ f :|7>k6|11:9
m,| m,| m,|
X,
3 A
X=3¥m,|= =77 *2+55*2+35%9| =194
i=1 A
m.

13

(457),, — 5 (194),,

2.3.2 Mixed Radix Conversion

Converting RNS back to binary numbering system is challenging process and one
of the methods that can be used to do this conversion is done by using mixed radix
number system [9]. The problem associated with MRC lies in the complexity of finding
mixed radix digits.
Definition

An integer number X may be expressed in mixed radix form as

n—1
X=a,+a,xm, +a3><m1><m2+....+anl—lmi (2.3)

i=1
Where the mixed radix digits are determined sequentially by following manner starting
with aj.

All terms in equation (2.4) except the first are multiples of m;, consequently

a, =|X|nrll =X,

To obtain a,

» Subtract X —ap
> Divide bym, X-a,)
m,
X -
» Then take mod my ‘(—a‘)
m,

and by successively subtracting and dividing in residue notation, all mixed radix digits

can be obtained. In general form mixed radix digits can be defined as:

14

n-1
X=a,+a,Xm, +a;xXm,xXm, +....+anl_lmi

i=l1
The following example illustrates how this method works.

Example:

Find the decimal number that is represented by (1, 1, 3) for modulo set (2, 5, 7).

Solution:
Modulo set 2 5 7
RNS 1 1 3 & a=1
Subtract a; 1 1 0
0 4 3 & ‘xj—xl‘ _:xj+‘mj—xl‘ ‘
1
Multiply by |+ 2 5 & =2
2 o
Subtract a, 2 0
0 5
1
Multiply by |5 =3 1 & az=1
5

X=al + a*m; +az*m;*mp = 1 +2%2 + 1*2*5=15

20,5, —25 5 (15),

15

2.4 Residue Number System Sign Detection

In residue number system sign detection is relatively a difficult operation compared to
weighted systems.. The sign in RNS is a function of each digit and it is closely related to
magnitude determination.

In section 1.3 case 1, showed that all numbers in range [0, M/2 -1] are positive and
all numbers in range [M/2, M-1] are negative; and in case 2, all numbers in range [0, (M -
1)/2] are positive and all numbers in range [(M+1)/2, M-1] are negative. Magnitude sign
detection algorithm based on mixed radix process and case 1 is found in [9].

Definition

Select the last modulo in the mixed radix conversion to be even(m,). Then, it is easily

n;“ —1 implies that |X|M falls into the interval [O,% —1] and therefore,

seenthat 0<a <

can be considered positive. Conversely, 2“ <a, <m, —1 implies that |X|M falls into the

n

interval [% ,M —1] and therefore, can be considered negative [3].

Example:

Find the sign of [1, 2, 3] for modulo set (2, 3, 5)

Solution:

The dynamic range is M = 30 and number in range of (0, 14) are positive and numbers in
range of (15, 39) are negative.

First arrange the ordering of the modulo to place the even modulo 2 on the end

Modulo set 5 3 2

Il
W

RNS 3 2 1 & aj

16

Subtract a; 3 3 0
0 2 1
1
Multiply by [T 1 1 & a=1
5 .
Subtract a, 1 0
0 1
1
Multiply by | 1 & az=1
3

2
az = | implies that number (1, 2, 3) falls into interval (15, 29). It follows that (1, 2, 3) is
negative

X=a; + a*m; +a3*m*my = 3+ 1*5 + 1*¥5*%3 =23

2.5 Scaling in Residue Number System

Scaling is comparatively a difficult RNS operation. Scaling is an essential operation
in several signal processing algorithms. In binary system, the scaling constant is usually a
power of 2. Many scaling techniques reported in RNS literatures [12]. The RNS scaling

by constant Q is defined as

X
Y=|2 2.4
{Q} 9
X-[X]
Y=— 9 2.5
9 (2.5)

and in RNS representation

17

X_|X|Q
Q

(2.6)

| |mi

If Q, the divisor is a modulo or product of the first powers of modulo, multiplicative

inverse property can be used to simplify the division by Q

Y| =|=——= (2.7)

2.6 RNS Fast Processing Applications

The advantages of residue number system are discussed in several publications and
books [9]. Carry- free computation, simplified and fast addition and multiplication, which
helps to obtain parallel architectures, are among the important advantages. Potential
applications for RNS processors include fast DSP applications, adaptive array processing,
Kalman filtering, Fast Fourier Transforms, and image processing for communications,

surveillance, and intelligence systems.

2.7 Quantum-Dot Cellular Automata (QCA)

In this section, we present background QCA material that will be helpful to
understand the QCA topics.

QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots
positioned at the corners of a square as shown in fig. 2.1a. Each QCA cell contains two
mobile electrons that can move to any quantum dot through electron tunneling. Thus
there are two equivalent electrons arrangement polarization P = +1 (Logic 1) and P = -1

(logic 0).

18

Quantum Dots

/

~

P=-1 P=+
) Electrons +
(Logic 0) (Logic 1)

Fig. 2.1a. QCA cells and binary encoding

QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig.
2.1b. It produces an output of one if the majority of inputs one. The classical AND and
OR gates can be realized with majority gate by fixing one of three inputs as O or 1

respectively, as follows:

M(A,B,0) = AB (2.8a)
M(A,B,1) = A+B (2.8b)
Device
Input A 0 cell
N[00 Output
cell
Input B O 8y v |
1 1 — M
® 0 o
0 @
A
nput¢ @O M(AB.C)

1

Fig. 2.1b. QCA majority gate

19

QCA Inverter: QCA cells layout of an inverter is shown in fig. 2.1c. The polarization

of the output QCA cell “out” is opposite of input QCA cell “in”.

1 Output | e
—)- //

Inv

00

o0

OO 00
Input ¢

—> O JjIoN)

0 0

Fig. 2.1c. QCA inverter gate

QCA Wire: There are two types of QCA wires normal (also called 90°) and diagonal

(also called 45°). Fig. 2.1d shows the two QCA wire types with logic one polarized.

O 0/|10 6((O 0||O 6O 0/|IO @
@ Ol|® Offe O]|® Ofle Ol|® O

Normal QCA wire

1 1

Diagonal QCA wire

Fig. 2.1d. QCA wire types

20

2.8 QCA Clocking

QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock 4 as
shown in fig. 2.2a. Every clock is 90° out of phase form its pervious clock and each clock
has four states namely switch, hold, release, and relax [77]. In switch state, QCA cells
start polarized. In hold state, the cells retain it polarization and during release and relax

states, QCA cells are unpolarized as shown fig. 2.2b.

voltage 4
clock 1
| >
clock 2
=
clock 3
=
clock 4
' »
fime

Fig. 2.2a. QCA clock phases; each clock lagging its prior by 90°

voltage A

switch

21

release

N

Fig. 2.2b. Four QCA interdot barrier states

| N
*’,

Table 2.1 shows the equivalent QCA expressions for major Boolean gates.

TABLE 2.1

MAJORITY EXPRESSIONS AND DIAGRAMS FOR MAJOR BOOLEAN GATES

Boolean Gate

Boolean Function

Majority Expersssion

Majority Diagram

Ao | e
AND Gate F=ag M(A.B.0) 0 =— M /:*—* F
B “ -
A] .
OR Gate F=A+5 M(A.B.1) 1o—F M >—— F
B -
E —] - F
NAND Gate | F=3F ML E, 1 1e— M >
=A+5 B -
F=A+¢F 1(A.5.0) - Y— T E
NOR Gate ' LS00 Do— M >
= AF —_— | -
B S
A — .
oo M
E — e
Exclusive -OR F= MiM(A F.0),M(4 B,0).1) 1] -
(XOR) Gate F=amE (4.5.0;.1) " — M >
=AF+ AF .
os— m >~
B ° -~
A T T
Do—mod M
o - -
Exclusive - B EE—)
NOR F = A@E M(M(A, B,0)M(A E.0).1) 1. M “~-_~_. o
(XNOJR Gate — AR + AE -

22

2.9 Conclusion

Residue number system is a robust parallel system that supports high speed
concurrent arithmetic applications such as addition, subtraction and multiplication in
modular levels. However it suffers from some drawbacks. RNS has weakness such as
conversion process, scaling, division, overflow detection and magnitude comparison.
Quantum-dot cellular automata also is one of the new emerging nanotechnology and it is
the future of CMOS technology due to its ultra-power and small size. Quantum-dot
cellular automata uses different logic devices to design circuits other than Boolean logic
devices. Converting Boolean circuits to QCA Boolean is not simple process due to
complexity of QCA and existing Boolean reduction methods do not work with QCA
logic. In thesis, we present a new binary to residue number system, new RNS scaling
methodology, RNS adder and subtarctor implementation, a new QCA construction

reduction method and QCA pipeline array implementation.

23

CHAPTER 3
NOVEL PARALLEL - PERFIX STRUCTURE BINARY TO RESIDUE NUMBER SYSTEM
CONVERSION METHOD

3.1. Introduction

In the last decade, Residue Number System (RNS) has received increased attention due to its
ability to support high speed concurrent arithmetic applications [1-3] such as Fast Fourier
Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in
addition and multiplication. The advancements in Very Large Scale Integration (VLSI) technology
and demand for parallelism computation have enabled researchers to consider RNS as an alternative
approach to high speed concurrent arithmetic.
Several methods are found in literature for binary to RNS conversion. Alia and Martinelli [4] have
proposed a method for binary to residue conversion based on powers of 2. A modification to the
above method was proposed by Cappocelli and Giancarlo [5]. Mohan [6] has proposed a similar
method but with difference that his method is based on the cyclic property of power of 2 modulo
set. Behrooa[7] proposed a table lookup schemes for binary to Residue conversions.
In this chapter, we present a novel binary to residue number system conversion method. The
organization of this chapter is as follows. Section two explains RNS system. In section three, we
present new conversion from binary to RNS algorithm. Section four and five show illustrative
example and implementation selection techniques. Section six is comparison between the new

method and pervious work. Conclusion is in section seven.

24

3.1. Residue Number System

Any n-bit nonnegative integer number X, in the range 0 < X < 2"-1 is represented in binary

n-1
number systemas X =2"'"b_ +..+2’b, +2b, +b, = > 2'b,
j=0

where b; € {o,1}.

Meanwhile in RNS, X is represented by k residue digits x;as X = {x;, X, X3, ..., Xx} where x; = X

mod m; and m; belong to set of relatively prime modulo; m. € {m,,m,, m,,...,m, } [9]. If the
modulo are relatively prime numbers, there is a unique RNS representation for each integer in range
0<X<IIi, m,

3.2. New Novel Conversion Method from Binary to Residue Representation

As shown above an integer number X can be represented in binary system as
n—1
X=2""b,, +..+2°b, +2b,+b, = > 2'b,
=0
And RNS representation of number X is
n-1
X, =2
_ n-1
- ‘Z =0

Let My, =(ALAD[Y,, Y, Y,, Y;] denotes a 2-bit multiplexer where the 2 control bits (Al,

form>2 for m > 2

2'b,

m

29| b,

(3.1

AO) select the inputs (Y, Y,, Y,, Y,) to be outputted

Lemma 3.1: For any pair of bits bj& b; forj &1 >0,

\2j\mbj +\2i\mbi

m - ‘Xﬁ‘m
can be implemented using 2-bit multiplexer :

M, =(b,,b)D, 2

i
2,
m

21'\

\21'\ +
m

] (3.2)

2
m m|y

Where the control bits (A;, Ag) equal (b;, b;)

25

Proof:
Rewrite equation ‘Zj‘mbj + ‘Zi‘mbi as
(0b,b)+(2 mfbj.bi)+q2j\m.bj.Bi)+q\2j\m+ 2| | bib)

This is equivalent to 2-bit multiplexer M;; with control bits (A;, Ay) equal (b;, b;). Fig. 3.1 shows the

implementation for equation (3.2) with b; = b; and bi= by

bl bo
Al AOD b1 bo |XLl
0 1
—1%° 0 0 0
1 V1 |K|m
|2| —— vz our 0 L L
2
|1 +|2|m|—'hr3 1] | |m
m
|1 +[2]]
1 1 m m
MUX
10

Fig. 3.1. Two bits (bl & b0) binary to residue number system conversion
This pre-processing operator Mj; is represented in acyclic graph as node " © "in fig. 3.2a, where all

the inputs are constants and pre-calculated .

26

b by
2a \ = .ol 0.2 |2 |2|+|2||]
My
by by by
2b = 'fb-_.;=bi=bi)[0. |25 |2.i |2j| +|2|«|«
Mysa . i i
T L PLRLL RLeRLL . LR R
M, M,
2¢ \ / = (b, +b:_:)_-[:b_i +b,)[0, :"’Iji.- My . M,y +:"’Iji]
I
M, ‘uiji M,
o _ (b, +b,).(b, +b).(b, +b [O . M,,. M,
}«Iji +M, M M+ M, M, +}«Iji Y +Z"«Iji +M,,]
:""It-:ji':-_)))

Fig. 3.2. Prefix logic operation and their implementation

In three bit system, let M, ,,

Y,.Y,,Y,,Y,, Y, Y, Y,] denotes a 3-bit

multiplexer where the 3 control bits (A;, Aj, Ag) select the inputs (Y,,Y,.Y,,Y;,Y,.Y,,Y.,Y,) tobe

outputted.

Lemma 3.2: For any three bits by, bj & b; fork,j&1 >0,

‘2k‘mbk +‘2j‘mbj +‘2i‘mb

Z‘iji‘
m

can be
m

implemented using 3-bit multiplexer :

Mkji = (bk’bj’bi)[o ’ ‘zi‘m’ ‘2j‘

2, +R
m m m

k
a
m m

1,2
m m

27

2,

2|, 42,42,

] (3.3)

Where control bits (A, A, Ag) equal (by, b;, b;)

Proof:

as

m

1

Rewrite [2*] b, +[2]] b;+[2/| b,

(0.5,.5;b)+ (27 b,bb)+(2| bbb+ (

2, +[2],

bbb+ (‘2k‘m.bk,5,ﬂi)+

(2, + 1,

2, +21,

,b,b,b)+ (

mbk.bj.Bi)Jr
25+ +[27 bybyby)

Above equation is equivalent to 3-bit multiplexer with by, b; & b; as selection control inputs. Fig. 3.3

shows the implementation for equation (3.3) with by =b, b; =b; and bi=b,

bz b1 bo
A2 A1 AO
0 — lvo
1 Y1
2], 2
|1 +l2]] ———v3 |%|
m
— lva our
121,
, — lvs
2] +]z2] | ¥6
m m m
2 7
il +|z2|+ 1
| |m | lm |m
HOX
210

Fig. 3.3. Three bits (b, by, by) binary to residue number system conversion
This pre-processing operator My; is represented in acyclic graph as node " 1" in fig. 3.2b, where

all the inputs are constants and pre-calculated.

28

Theorem 3.1: For any two pairs of bits (b; & by) (bj & bifor j, 1,1 & k > 0 with the given

expression

Hzl\mb1 +[24 by +[21] b +[2]] b,

. = ‘Xlkji‘m
can be implemented using 2-bit multiplexer

M, =(b, +b,),(b; +b)[0, M, My, .M, +M;] (3.4)

ji?

Where control bits (A;, Ag) equal (by,+by , bj,+by)

Proof:

X | =H21‘mb1 +24 b+ b+ b

Xy =My +M,| (3.5)
Where M, :Hzl\mb1 +[24 b and My =[2) b, +[2] b| byLemmal

Let blk = (bl + bk) and bji = (bj+bi)

Rewrite equation (3.5) as (O.Blk .Bji)+ M .Blk b))+ (Mk-hk-bji)‘i'(Mk +Mi-b]k -bji).

And this is equivalent to 2-bit multiplexer My with control bits (A;, Ag) equal (bi+ by, bj+ by). Fig.

3.4 shows implementation for two pair bits (bs, by) & (b, bp)

Bl oo
AL A3
[— ST
1 ¥l . ; .
12 v j— IB3+b21 (B1l+bD)
1 3| — ¥
EREE
= AT AD
=]
. =1 1=,
m: o w2 2 ooT
| w3
=== wezan
* J
AL AD - our N
L] o [e B2 ‘ e
2t —wo
12 g 1
3 Tz ovr|— !
1271 w2
2 =
[I N
WX

Fig. 3.4. Four bits binary to RNS [X, .| =[27 b,+[2?| b, +[2'| b, +b,

m

29

Lemma 3.3:
Combining two pairs of bits (b & by) (b; & b;) requires one 2-bit multiplexer and one 2 input mod

adder. The delay time Ty, =T

mux , + TmodadderZ
Proof:

Equation (3.4) and fig. 3.4 show that (b, +b,),(b; +b))[0, M;,M, .M, +M;]

ji?
is equivalent to one 2-bit multiplexer and one 2-input mod adder; and delay time is equal to
T T7T

2

mux modadder, -

Fig. 3.2c represents acyclic graph " @ " for node My;; where My & M;; are inputs.
Lemma 3.4:

The parallel prefix operator @ has the following properties

1) Commutative

M,e M, =M, @ M,

2) Associative

M,e(M,®eM;))=M,® M,)® M,

Proof:
M,® M, = M,
= (b, +b,),(b, +b)[0, M, M, .M, +M,]
= |21, bu+2¥], b+ 2] b 2 b (3.6)
M; e M, = Mjilk
=(b,+b,),(b, +b)[0, M, M, M, +M,]
=[] by + 2] b+ b2 b (3.7)

30

Both expressions (3.6) and (3.7) are the same by commutative property of "+" hence ® operator is

commutative

M,® (M, ® M;) = Me M

hgji

“M,,,
= |21, by + 24 b+ | bu+ [25], bl 2 by 2] b (3.8)
M, ® M) ® M, = M, ® M,
“M,,,
=[] byt byt b+ [25] b+ by +2] b (3.9)

Both expressions (3.8) and (3.9) are the same by associative property of "+" hence ® operator is
associative
Theorem 3.2: For any three pairs of bits (by & by) ,

(bj & b;) and (b, & b,) forl k, j,1, h & g >0 with given expression

2'| b, +[25 b, +2)| b+ b+ [2'] by +2% bl =X,
m m m J m m m m

can be implemented using 3-bit multiplexer

Mine = (b +b,),(b; +b,),(b, +b,)[0,M,,,, M, M; +M,, . M. M, + M, ,
M, +M; .M, +M; + M,] (3.10)

ne
Where control bits (A, A, Ay) equal (bi+by , bj+b; , byt+b,)

Proof:

X g =Hzl\mb1 +[25] by +[2°] b+ |2 b, +]2"] b, +[2¢] b,

m

‘Xlkjihg‘m :‘Mlk +M; +th‘ (3.11)

m

b
m

Where M, =Hzl\mb1 +[2"] b,

31

Mji = and

27| b;+[2] b,

m

M,, =

2| b, +]2¢| b,

by Lemma 1

Let blk = (bl + bk) . bji = (b] + bl) and bhg = (bh + bg)

Rewrite equation (3.11) as

(05,5, B,)+ (M, B,5,.b,)+ My by by)+ +M,)by by b,)+

(M,.by bbby)+ (M +M,,).b, b, b,)+

(M +M ;)b b,b,)+

(M, +Mji +th)blk'bji .bhg)

This is equivalent to 3-bit multiplexer Myin, With control bits (A, A;, Ag) equal (b+ by, bj+ b; , byt

b,)

Fig. 3.5 shows implementation for three pairs of bits (bs, bs), (bs, b2) & (b1, by)

32

. bo
Rl RO
R
1 ¥l
2], ¥2 @7 &
1 a2 | ——¥3
(R E3
WU |b5+bd] [B3+B2) |bl+bO]
14
b3 b2 |
A3 A1 RO
L o 10
AR 71
o W0 ADDSL
. vo ® R | 12
[2 g —— w2 4 oUT ke |z,
IJJI —Jdv our L] E | . T4 ouT
e TE
- = TE
Mzl =121 .
7
WD ADDE
= s a AOCEL
11 +
ouT —
BS b4 o E .
L ALl
T » A
o -] 4+ ouT
a —
12] Tl L
st —n orl——8
[7la T3 jll-:: [T
g
A g c i oo
i c
=4

Fig. 3.5. Six bits binary to residue number system conversion

X,0| = \ﬂmbs +\24\mb4 +\23\mb3 +\22\me +\2l\mbl +b,

m

Lemma 3.5:
Combining three pairs of bits (b; & by), (b; & b;) & (b, & b,) requires one 3- bit multiplexer and

three 2-input mod adder and one 3-input mod adder. The delay time equals

TTotal = Tmux3 + 2”l:modadder2 = Tmux3 + Tmodadder3

33

Proof:

Equation (3.10) and fig. 3.5 show that (b, +b,),(b; +b,),(b, +b,)[0, M,,,

M, M, +M

ne

be s My My + M, My +M M +M;; + M,] is equivalent to one 3- bit

multiplexer and three 2-input mod adder and one 3-input mod adder; and delay time is equal to

Tmux3 + 2Tmodadder 5

Fig. 3.2d represents acyclic graph for "m " for node My,i where My, My, & M;; are inputs
Lemma 3.6:
The parallel prefix operator m has the following properties

1) Commutative

Mlkjihg- M = M - Mlkjihg

tsrqpo tsrqpo
2) Associative

Mlkjihg- (Mlsrqpo - szxwru) = (Mlkjihg - Mlsrqpo) - szxwru

Proof:

The proof is similar to Lemma 3.4

34

3.3. Illustrative Example

In this section, we will use to illustrate how theorem 3.1, theorem 3.2, lemma 3.1 and lemma
3.2 can be combined to design a binary to residue convertor. Fig. 3.6 shows how |X|m forn=81s
computed.
In the first layer, using pre-processing operator O each consecutive pair of bits are group together
(b7, bg) (bs, bs) (bs, by) (by, by) creating nodes Mz, Mss4, M3,, My . In the second layer, using
parallel prefix operator ® each consecutive M node are combined (M76, Mss) (M3, Myp) forming

nodes My 4 & M; In the last layer, using parallel prefix operator @ the last 2 M nodes are

combined M7.4, Ms,) forming node My o = |X7“0|m. Fig. 3.7a shows the actual hardware

implementation.

Fig. 3.6. Prefix structure of 8 bits binary to RNS
Total delay time for this example is calculated by counting the delay introduce by the operator in
each layer

by using lemma 3.3 as follows

35
Layer 1: delay time is T,

pre-processing operator & doesn't requires an adder

Layer 2 : delay timeis T, +7T

modadder ,

Layer 3: delay timeis T, +7

mux, modadder ,

Total delay is the sum of all layers delay time Try, = 3T, +27

modadder ,

To show that hardware works, the signal propagation for binary number
|X|7 = |(1 110 01 10)2|7 = |24410|7 =6 is illustrated in fig. 3.7b. Similarly, the reader can try any bit
pattern in fig. 3.7b to check the wvalidity of the design. For example
|X|7 = |(1 111 1111)2|7 = |255 10| . =3 where each multiplexer select line is 3 and the selected output

are shown in parenthesis.

36

bl BO
AL RO
u_:l:'.'
1 |
la|, £ (E3+b2) [H1+ED)
2 ouT
142 3
1 +H2| = | |
A1 R
Mux
ig a v
1
b3 b2 -
. {3
MOD AIDDEM
A
AL R \
oor —1 mx
3 C— E o |b7+b5+b5 + 14) {b3+b2+b1+b0]
([Fp— ; |
3 —j ¥z ouT
B -
e LE]
3 Rl AQ
[W T a
— 1
iz - x|
Yz oOT
b5 b4 vz
MO ADDEM
In
L R + o "5
L 0 B
o T
5 51
121, |B7+bS] [BI.1d)
¢ — vz om|l——o
[la T3
5
B IPYHI
o am AL RO
S 5
= .
0
7 bS . 17
Y2 T
T3
WD ADDSL
;Y]
Al RO
ooy —| .
[J— B | 7. .4
1f| ——n
7% — ¥z o
[2la 4
2 H
1A widi
Mz
E5

Fig. 3.7a. Eight bits binary to residue number system conversion

X0l = [27] by #[2°] be+[2*] bs+[2*] b, +[2°| by+[27 b, +[2] b +b,

m

37

1
VR
S
1 Iwn 2
1 1
R 7] ouT
5 ¥3 13}
R1 RO
Mux
1o vo
_$ el P
. 1
Y2 @T
¥3 1L}
MOD AL
n‘ &
AT L oaoT —
3.0
LR || B 11
4 ——1 71 4
1 —— 72 OUT
: RN 1 {51
LT
iz
1 o
Rl Et .I
R)
2
Tl a 1 1
i T2 o
5 T3 (81 |
_W Rl RO
- 8 10
T
1 1 i
T2 ouT
T3 12]
L ADIEL
R
Al M
" o BMux
01— ¥ B] 7. .4
1 — T 3
[p— ouUT
, — T (3]
Hine
78

1 1
Rl AD
¥
¥l
¥z T
¥3
Hux
7.0

Fig. 3.7b. Example for signal propagation of

(1110 0110),| and |(1111 1111),]

38
3.4. Implementation Selection
There are several possible binary to RNS implementations using a combination of 2-bit and 3-
bit multiplexers. Fig. 3.8 shows three different imp lementations (design 1, design 2 and design 3)
for 10 bits binary to residue conversion system.
To simplify comparison, the following reasonable assumptions are made
=21

T =T

mux, mux 3 ?

T

modadder; modadder ,

Design 1 uses nine 2-bit multiplexers and four 2-input mod adders with

Layer 1: delay timeis T

mux,

Layer 2: delay time is T, +7T

modadder ,

Layer 3: delay timeis T, +

mux, Tmodadder 5

Layer 4: delay time is T, +7T

modadder ,

Total delay is sum of all layers delay time Ty, =47, +37T

mux, modadder ,

Laye=r 1

Lay=r 2

Lay=r 3

Laye=r 4

Laye=r 1

Lay=r 2

Lay=r 3

Lay=r 1

Lay=r 2

Lay=r 3

[e=pign 3 Hy 4

Fig. 3.8. Prefix structure of 10 bits binary to RNS

Xyl =27 by +[2% by +[27] b, +[2°] be+[2°] by+[2'| b, +[2°| by+[2?| b, +[2 b +b,

Design 2 uses four 3-bit multiplexers, one 2-bit multiplexers, four 2-input mod adders and one
3-input adder with

Layer 1: delay time is 7,

Layer 2: delay time is T, +2t

modadder ,

Layer 3: delay timeis T, +7T

modadder ,

40

TTotal = TmuXZ + 2"l:mux3 + 3Tmodadder 5

= 3‘l:mu)(Z + 3Tmodadder 5

Design 3 uses three 3-bit multiplexers, three 2-bit multiplexer and three 2-mput mod adders with

Layer 1: delay time is 7,

Layer 2 : delay timeis T, +7T

modadder ,

Layer 3: delay timeis 7T, +7

mux, modadder ,

Trotal = 2T, T T, T 27

mux, mux modadder ,

= 3‘l:mu)(Z + 2Tmodadder 5

Table 3.1 shows that design 3 uses less hardware and is faster than other designs.
TABLE 3.1

SHOWS COMPARISON AMONG THE THREE DESIGNS IMPLEMENTATION

Design Hardware count
Mod | Mod
| Time Delay Mux, | Muxs; | add, | adds;

1 4Imux2 + 3‘cmodadderz 9 O 4 O

2 3‘cmuxz + 3Tmodadderz 1 4 4 1

3 3‘cmuxz + 2‘cmodadderz 3 3 3 O

41

3.5. Comparison Selection to Pervious Work

This Novel method has hardware advantages greater than any competitive converters. In
1984, Alia and Martinelli [3] published a binary to RNS conversion design based on power 2 mod
m; . The design uses processing elements (PE) and each PE is associated with two registers. Each of

these registers is serially loaded with ‘21‘ and 2"

respectively. The two outputs are added in a

modular adder. Thus, at the first level, n/2 PEs are required. The number of stages in this method is
[logxn]. After successive transformation and addition, the residue result is available. Cappocelli and

Giancarlo [4] suggested the use of t PEs where t = n/ log, n, each PE computing the residue
corresponding to k- bit binary word where k = log, n, the residue 2" mod myis serially fed to kth PE

(12 =0, 1, 2, ..., t-1). Based on these initial residues, the residues corresponding to the next (k-1)
powers are computed by first doubling and then weighting according to the input bits in each PE.
The partial residues of k-bit words computed over parallel t PEs are then added to yield the final
residue. Mohan [5] has proposed a similar method but with a difference that X is divided into t
sections based on the cyclic property of 2' mod m;. Using the fact that, 2" 2*'° and 2"**° have the
same residues due to the periodicity of period lo , lo bits are first added. The width of the result is
confined to /o bits by adding the carry bit resulting from previous addition to LSB of the result. The
residue results are then determined by using methods given in [3].

Complexity calculation is very important for any design development. Reduction in
complexity of design can be done using adjustment in flow of design, which is made before
implementation. Table 3.2 shows hardware comparison among our design, Behrooa [7] and Alia [4].
There are various criteria that can be used to measure the hardware complexity number of gates,
number of I/O, delay time, fan in / fan out, area / size, power dissipation, and rank of design matrix.

McCabe metric and Halstead’s software science are two common codes for software complexity

4

measures. McCabe metric determines code complexity based on number of control paths created by
the code as follows

v=e-n+2p

Where e is the number of edges in a program flow graph, n the number of nodes, and p the number
of connected components. Halstead introduced software science in oder to measure properties of
the programs. Halstead’s program volume is defined to be

v =(N;+N>) loga(py +112)

Where p; is number of distinct operators, L, is number of distinct operands, N is total number of
operators and N, is total number of operands.

TABLE 3.2

COMPARISON AMONG BEHROOA[7], ALIA[4] AND THE NEW DESIGN

Parameter Our Methods Behrooal7] Alia and Martinelli [4]
Need for Table Lookup No Yes No
Table size (2bxb]
Hardware components Multiplexer ROM Processing elements (PE|
Modulo adder Modulo adder Each PE has two modulo
adders, two registers
Delay Time Wyt (0= Dlnoter | Maow T (0= 1) U 1/ 2ty

3.6. Conclusion
In this chapter, we presented a new novel binary to residue conversion method that eliminates
the need for processing elements (PE) as the above competitive converter designs. This new novel
design doesn't use table lookup as in Behrooa Parhami [6]. The new method that we present here

is based on multiplexers concept which makes it practical and suitable for VLSI implementation.

43

CHAPTER 4

SIMPLIFIED RNS SCALING ALGORITHM

4.1 Introduction

Recent advances in computer architecture and VLSI technology have brought about a
resurgence of interest in RNS based digital systems. RNS system has a very big advantage in the
modular arithmetic operations like addition, subtraction and multiplication since this system
provides the ability to add, subtract or multiply without the need to wait for the carry propagation
as required by the weighted number systems. The non modular operation such as sign detection,
division and conversion presents a challenge to researchers. A lot of research has been done to
address these issues [9]. In this chapter we present new algorithms for residue number system
scaling that utilizes a simplified base extension process [9].
4.2 Division remainder zero

Division remainder zero method is a special simple case of division where the divisor is
relatively prime to the modulo set and the dividend is a multiple of the divisor. This operation is

accomplished by multiplying the dividend by the multiplicative inverse of the divisor.

b

-1
= b‘a
a

for all m, in the moduli set (m,,m,, .. m,)

m;

m;
m;

If and only if a divides by b without remainder and a and m, are relatively prime for all i

where ‘a’l

m

is the multiplica ble inverse of a over m;,

4.2 Scaling

Scaling is a restricted division operation where the divisor is one of the modulo or a product
of modulo [9]. Several algorithms have been presented for scaling. The common idea of these
algorithms is breaking the scaling process into two processes. A division remainder zero

operation and a base extension operation [9]. If we assume that a number X is the dividend and

44

the number Y is the divisor over the modulo set (m;,m;,...,m,). The result of dividing X by Y can
be expressed as follows

X
X = {?}Y +| x|,

X =QY+R 4.1)
Where ¢ = {X} is the integer quotient is value of X over Y and R =|X |Yis the least positive
Y

integer remainder. The objective of scaling is to find the quotient Q for restricted Y values.

Q:[X}: X -|x|, = [X| _|X - X1, for all i, where (m; , Y)=1

Y Y Yl, Y

> g =~ =\(x_\x\ xjr| | where Q= (g1, g2 ...) (4.2)
Y m; ! . "

Equation (4.2) is a division remainder zero operation and can be used to get the residue digits ¢;
for all i where (m; , Y)=1. For the remaining digits where (m; , Y)#1, base extension algorithm is

needed to find all residues of the quotient Q.

4.3 General Division

General division operation is the operation where the divisor does not fit the restrictions
mentioned in the division remainder zero or scaling operations [9]. General division can be
divided into two categories, multiplicative and subtractive. Most of the multiplicative algorithms
first compute the reciprocal of the divisor and then multiply the reciprocal by the dividend. The
subtractive algorithms employ subtraction of multiples of the divisor until the difference is less
than the divisor [9]. The algorithm presented in [9] seems attractive because of its simplicity. It
converts the general division operation into iterative scaling operation and it uses a lookup table
to identify the candidates for the scaling operations. The disadvantages of this algorithm along
with many similar division algorithms are the scaling operation which is slow due to the

complicated calculations which are either based on Galois Field or based on basic MRC.

45

4.4 New Base Extension Algorithm
RNS base extension problem, is the problem of finding the residue digits of one set over
another set that is an extension of the original set.

Let (my, my, ..., My , Myy1, Myyo, ..., Myyi) be relatively prime modulo, the base extension problem

X

b
Mgy

is finding the residues | x X| ;and 0SX <M :ﬁm, .

i=1

X
Myt

given the residue b

m, m ’ my e

The algorithm described in [9] is based on MRC conversion, where the algorithm assigns a

variable to the residue representation of X and then performs the MRC conversion on the

My

new modulo set which ends up with a linear equation of the MRC coefficient as a function of

. This is a lengthy operation. Also, alternative method was presented [9] which are based on

My

x|

CRT. The advantage of CRT is that it is faster than MRC; however it requires large modulo
adders because of the need to perform mod M operations.

Lemma 4.1: The general solution of linear Diophantine equation

au+pfv=y (4.3)
Where a, B, and y are given integers and integer solutions u, v are desired

R Bk R a k
are u=u +——— and v=vVv

gcd(a, B) - gcd(a, B)
Where k is any integer and u* and v* are any particular solution. Also, this solution will exist if
and only if y is a multiple of gcd(a, B). Equation (4.3) is equivalent to the following RNS
equation:
mq; +X; =m;q; +X; 1#] 4.4)
ged(o, B) = ged(mi,mj) = 1

Comparing equations (4.3) and (4.4), equation (4.3) can be written as matrix notation

46

ma; -ma; =a; —a,

' (4.5)
Where a;; = q;, 3 =q; are the unknowns
and a;; =x; and a;; = Xx; are given integers
The general solution for equation (4.5) is
ay;=cX(a;—a;)+m;xk (4.6)

Where k and c is integers and can be obtained by using Extended Euclidean Algorithm or

Fermat’s Theorems. Each coefficient a; represents one element of Matrix A which is needed to

solve (4.6).

_x1 Xy X3 X,]

Ay Ay a,,

A= as; as,

L A _

X; i=1,1<j<n
Where a; =| ¢ x(ag_) —agyn)+mxk 2<ij<n, j>i (4.7)
0 — No need to find them Other

The smallest positive integer solution of each of the aj; can be obtained by iterations of equation
(4.7) and the solution of Diophantine diagonal coefficients “a;” is equivalent to mixed radix

digits in MRC conversion

n-1
X =a, +a, Xm, +a133><ml><m2+....+a1nnl_lmi (4.8)
i=1

47

Example:
Given the residue representation X = (0, 1, 1) with modulo set (m;, my m3) = (2, 3, 5), extend the

base to my=7, i.e. find X,

Solution:

Convert X to its decimal value using an RNS to decimal conversion algorithm
X=(0,1,1)=16

IXl,=I16l; =2

The new representation of X over the new modulo set (2, 3, 5, 7) is (0, 1, 1, 2)
Example:

Given the residue representation x = (0, 1, 1) for the base with modulo (m; my m3) = (2, 3, 5).
Extend the base to mus=7, ms=11, i.e. find |1Xl; and find 1X1;,

Solution:

Convert X to its decimal value using an RNS to decimal conversion algorithm
X=(0,1,1)=16

IXl,=I16l; =2

Xl =I16l; =5

The new representation of x over the new modulo set (2, 3, 5,7, 11)is (0, 1, 1, 2, 5)
4.5 New Scaling Algorithm

The following algorithms can used to find coefficient “c” in equation (4.7)

Fermat’s implementation for finding coefficient “c” as follows:

48

Y% Y%
% finding coefficient c using Fermat method
Y% Y%
v = mod(mod(power(mj,mk-2),mk),mk);
vl = mk-v;
if v<=vl
c=Vv
else
¢ = -1*(mk-v)
end

Fig. 4.1. Fermat’s implementation for finding coefficient “c”

Extended Euclid Algorithm Implementation

% %

% Finding coefficient “c” using Extended Euclid Algorithm
% %
ul =1; u2=mj; vl =0; v2 =mk;

while v2

q = int(u2/v2);
tl =ul - vl*q; t2=u2 - v2*q;
ul =vl; u2 =v2;
vl =tl; v2 =12;
end
c=ul

Fig. 4.2. Extended Euclid algorithm implementation

% %
% Finding the smallest positive integer “aij”” solutions for
% Diophantine equations
% %
a(j’k)= C*(a(j'l’k)'a(j_l’j'l));
n=1;
ifa(j,k) <0 % case 1 ex -6+ 11n
while (a(j,k) + n*mk) < 0
n=n+1;

end

a(j,k) = a(j,k) + n*mk;
elseif a(j,k) > mk % case 2 ex 30+ 1ln

while (a(j,k) - n*mk) >=0

n=n+1;
end
a(j,k) = a(j,k) - (n-1)*mk;
else
a(j,k) = a(g,k); % case 3 a(j,k) < mk
end

Fig. 4.3. Implementation of finding coefficient (ajj)

49

Example:
Find RNS representation of number 300 using modulo set (5, 7, 11) and also find mixed radix
digits using Diophantine method

Solution:
(300),, —*— (0,6,3)5,,,

From equation (4.5)

311=X1=O
312=X2=6
313=X3=3

axp = Ccxn * [ap-an] + m * k

and from Extended Euclidean Algorithm or Fermat’s Theorems ¢z =3
ap=3x[6-0]+7k=18+7k

at k =-2, ay =4 is the smallest positive integer solution

a3 = C3 X [a;z-an] + m3 x K

Cc3=-2

a3=-2x[3-0]+11k=-6+11k

atk=1, a;3=-6+11=35 is the smallest positive integer solution
a33 = C33 X [ax-an] + m3 x Kk

c33=-3

a3 =-3x[5-4]+11k=-3+11k

atk =1, az3 =8 1is the smallest positive integer solution

50

>

Il

&~ o
® w»n W

From equation (4.8)

X =aj;+apxm +az X m X mp

X=0+4x5+8x5x7=300

Diophantine equation can also help to solve RNS scaling by power of two. The new method is
based on division remainder zero theorem [9] and be used to any set of prime modulo set (my,
mp, ms, ..., mMy).

Theorem 4.1 (Division Remainder Zero)

X

=Xs"'| =(xs"| , X s’)
S M 1 m, n m,

-1

M
Only if s divide by X without a remainder and gecd(s, m;) =1
Theorem 4.2:

For any set of prime modulo set (m;, mp, ms, ... , my).

Case A: X is an even number ‘“‘scaling without a reminder”

RS
2

=(¥1» Y20+ ¥ R)
M

-2
Where Yi = [Xi 2" ‘m

i

for all odd modulo and

m;

R is the scaling result for m = 2 and it is found by following manner
» SetR=0
» Find mixed radix digits (a1, az, ..., am, D) for (yi1, y2, ..., Yn, 0) by using Diophantine

RNS to binary conversion method

51

> If D:Otheng (:)(yl,yz,...,yn,O) and

M

> If D=1 then% (Y, Yy0ee0ny,ol)

M

Case B: X is odd number “rounding to nearest integer”

Replace X with (X+1)

X+1

e a3 R)

M

Where Yi =|(X; +1)‘2mi_2‘m

i

for all odd modulo and

m;

R is the scaling result for m =2 and it always equals to one.

Example:

For modulo set (2, 3, 5) determine the residue representation for 8/2, 6/2 and 5/2
Solution:

Let m; =3, mp=5, mz=2

a) (8),, — (2,3,0); 5,

yi=| 227 =1

3

y,=|3[277) | =4

5
SetR=0 formz=2
(v,-y,-R)=(1,4,0)
Mixed radix digits “az3” =0 — R=0

[gj B (1,4,0),5, —5 54
10

52
b) (6)10 L (07170)3,5,2

y1=Mﬂ?4L =0

yzzyqfﬂL =3

SetR=0 formz =2
(¥,-¥,,R)=(0,3,0)
Mixed radix digits “az3s” =1 — R=1

[gj B s (03,),5, —¥ 53
10

C) (5)10 L (2’0’3)3,5,2

yi=| @+D[27],

=2+ *2,=0
3

y2=W(O+1”2}ﬂ5

_=lO+n*3 =3

And R =1 for mz =2 as shown in case B
(y,.y,.R)=(0,3,1)

[;j — RN 03,5, RS L3 “Rounding to nearest integer
10

4.6 Conclusion
Diophantine RNS parallel algorithm provides an alternative method of finding mixed radix
digits with a high degree of parallelism. The algorithm has advantages over MRC method and

CRT methods since it avoids the use of modulo computations and use of multiplicative inverse.

53

CHAPTER 5

VLSI IMPLEMENTATION OF RESIDUE ADDER AND SUBTRACTOR

5.1 Introduction

In the last decade RNS arithmetic has become an attractive design option [1-3] for real time
application fields such as signal processing, image processing and computer graphics. The merits
of using RNS arithmetic lies in its capability of performing addition, subtraction and
multiplication without the generation of carry propagation. Also, RNS arithmetic has the
capability of being designed and fabricated using VLSI techniques. These characteristics of RNS

makes it most suitable for digital signal processor hardware.

In RNS the large numbers are represented by an n-tuple of smaller numbers that are
independent of each other, where n is the number of modulo in the modulo set. Hence, the
number operation can be done on these smaller numbers rather than the original number.
Furthermore, because the numbers in the n-tuple are independent of each other, the operation can
be done in parallel. The RNS is defined by a set of modulo (m;, m,, .. A m,) that are pairwise

relatively prime positive integers. It can be shown that there is a unique representation for each
number in the range of 0 < X < M Where M = Hin=1 m, and is called dynamic range [9]. Each

integer X can be represented by an n-tuple of residues X = (X1, X2, .. . Xn),

where x; = X mod my or it can be written as x; =[X| . The RNS represents any number within

the range of [0, M) for unsigned numbers or [_ M M 1} for signed numbers. In RNS, the
272

binary operations { +, -, * } are defined as follow If Z=A OB then (z;, 7>, .. z,) = (a1, as, . .

54

a,) & (by, by, . . by where z = (a3 b)) mod m;. Each residue digit can be computed
independently of the others allowing fast data processing in n parallel independent channels.
VLSI implementations for adder and subtractor have been realized by many researchers.
Bayoumi [65] used three approaches (look up table approach, binary adder approach and hybrid
implementation approach). Banerji [67] and Piestrack [68] have their contributions as well for
implementation of binary adders using VLSI techniques. In this chapter, we have implemented
an RNS adder and subtractor. We have used Cadence (Virtuoso and Encounter) for the layout

and XILINX for the simulation results of the design.
5.2 Residue Adder and Subtractor

If we have two integers A and B of modulo m, then their addition and subtraction is

expressed as sum and subtraction of A = B mod m. The operation addition and subtraction can

be described as below in equation 1 and 2 respectively.

|A+B| 3 A+B if A+B<m 5.1)
m |A+B-m if A+B>m '

A-B| - A-B if A-B20 52)
m JA-B+m if A—-B<0 '

Fig. 5.1 shows the implementation of RNS adder /subtractor based on above equations.

55

Fig. 5.1. RNS adder and subtractor

The operation addition or subtraction is decided by the select line Cp. When Cy is 0, the RNS
operation is addition. When Cy is 1, the RNS operation is subtraction. For n-bit RNS adder the
select line Cy is 0 and it will simply perform as an adder. Inputs to adder are A, B and m. Fig. 5.1
shows all the components that are used in RNS adder and subtractor. There are two full adders,
four 2x1 multiplexers and one OR gate are used. As already mentioned for Adder Cy is zero,

therefore inputs A, B and Cy are fed to the first full adder, which in turn will yield carryout Ca,

and sum Sa. In next step m, C, = 1 and sum of previous full adder Sa goes to the next full adder

in the hierarchy which in turn will give us sum Sb, Cb,. Then Ca, and Cb, are added and sent to
the third 2x1 multiplexer along with signal Ca,. The output of the third 2x1 multiplexer is used
as a control signal to the final 2x1 multiplexer which generates the final output Sum based on
equation (5.1). For subtractor the scenario is same and equation (5.2) is implemented, but the

control signal Cy in this case is 1.

56

5.3 VLSI Implementation

In this section, we implemented the RNS adder and subtractor using VLSI techniques such as
XILINX and Cadence tools (virtuoso, Encounter). For simulation we have used XILINX and for

layout we used encounter and virtuoso.

a) XILINX is a platform where we can generate the schematic using the verilog code of the
design. At the same time, we can test if the desired schematic or design is correct by looking at
the behavioral simulation. Once we have created a verilog code for the adder and subtractor, we
used the Xilinx tools to synthesize the schematic. Eventually for the verification of design, we
built a testbench and run the simulation to see the correct desired output. Fig. 5.2 shows the

result of RNS adder and subtractor.

End Time:
1000 ns 5U|n5 150 ns 250 ns 350 ns 4

Al sUmMz
Al sUmMz2
A SUmMA
3 suUmMO
ann -~z
an -~z
adn 21
adn Ao
anes
anez
an e1
aneon
ad mz
ad mz
a1
ad mo
afco

= =0 = =0 = 0000 -=00=02n0

Fig. 5.2. Waveform of RNS adder and subtractor

57

Fig. 5.3. RNS adder and subtractor layout

b) Encounter is a technique where we can generate a layout of our design. Ambit Buildgates is
used to generate the netlist then the netlist is uploaded to the encounter. Further, by assigning
floor plans, appropriate layers and nano routing we can get the design in .gds and .def format.
We can also check for the design if it is flawless or not in terms of connectivity, density etc. Fig.

5.4 shows the encounter part of our design.

Fig. 5.4. Encounter part of RNS adder and subtractor

58

TABLE 5.1
TOTAL RNS ADDER AND SUBTRACTOR DELAY TIME (PS)

Delay time from input pin to cutput pin (ps)
AD = SUMO 486 B0 -» SUMD 525
Al -» SUM1 415 Bl -» 5UM1 455
A2 -» SUMZ 353 B2 -» 5UMZ2 3952
A3 -» SUM3I 254 B3 -» SUM3 2952
md = SUMO 4.23 O_in -» SUMO 432
ml = S5UM1 3.52 O_in - 5SUM1 255
m2 -» 3SUM2 2.85 O_in -» SUMZ2 183
m3 = SUM3 1.85 D_in -» 5UM3 154

TABLE 5.2
RNS ADDER AND SUBTRACTOR DESIGN PARAMETER

Parameter Walue
Mumber of Gates 425
Mumber of IO 17
Number of Nets 7545
Areaum’ 28008
Max Delay Time(PS) 486

¢) Virtuoso is a tool through which we can send our layout for the chip fabrication. We can
pursue Virtuoso in two ways, one is to build the design from basic building blocks, such as from
transistor level (pmos, nmos etc.) and the second way is to import the design from encounter
with the help of certain technology libraries. In our work, we have used the later method where
we have imported the design from encounter and the same was padframed in order to send it to
MOSIS for chip fabrication. The complete Layout along with the connections is shown in fig. 5.4

below.

59

Fig. 5.5. Virtuoso part of RNS adder and subtractor

5.4 Conclusion

We have discussed the VLSI approach for the realization of RNS adder and subtractor.
XILINX is used to get the behavioral simulation of the design with the help of which we were
able to verify that our design is performing as desired. Cadence encounter is used to build the
layout of the design. Design layout along with the technology libraries and layers is exported to
Virtuoso. Furthermore, padframing was performed in order to send the design to MOSIS for

fabrication.

60

CHAPTER 6
NOVEL QUANTUM BOOLEAN CIRCUITS CONSTRUCTION BY USING
XOR-AND REDUCTION METHOD

6.1 Introduction

One of the new fields of nanotechnology is quantum-dot cellular automata that provides an
alternative design to CMOS architectures. Recent research studies [76-82] show that the
advantages of using QCA technology are smaller circuit size, faster switching speed, and less

power consumption.

During the past decade, quantum-dot cellular automata has demonstrated the ability to
implement both combinational and sequential logic devices. Unlike conventional Boolean AND-
OR-NOT based circuits. The fundamental logical device in QCA Boolean networks is majority

gate which implements the Boolean function:

M(A,B,C) = AB+AC+BC 6.1)

With combining these QCA gates with NOT gates any combinational or sequential logical
device can be constructed from QCA cells. The process of QCA Boolean logic is more
sophisticated than Boolean logic. The traditional Boolean logic reductions methods such as
Kranaugh maps produce simplified Boolean expressions. However, converting these forms to
QCA Boolean is not simple process due to complexity of multilevel majority gates. R. Zhang
[19] proposed thirteen standard functions to present all three variables Boolean functions that can
be used to produce simplified majority logic. Chin-Yung [13] used Tabulation method to
simplify Boolean logic functions and to produce a simplified QCA logic. In this chapter, we

present a novel methodology for multilevel majority logic synthesis, our methodology takes as

61

its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an

equivalent majority gate circuits.

6.2 QCA Background Material

QCA Cell: A quantum cell can be viewed as a set of four charge containers or dots
positioned at the corners of a square as shown in fig. 6.1a. Each QCA cell contains two mobile
electrons that can move to any quantum dot through electron tunneling. Thus, there are two

equivalent logic polarization P = +1 (Logic 1) and P =-1 (logic 0).

QCA Majority Gate: The basic QCA logic element is a majority gate as shown in fig. 6.1b. It
produces an output of one if the majority of inputs one. The classical AND and OR gates can be

realized with majority gate by fixing one of three inputs as O or 1 respectively, as follows:

M(A,B,0) = AB (6.2a)

M(A,B,1) = A+B (6.2b)

QCA Inverter: QCA cells layout of an inverter is shown in fig. 6.1c. The polarization of the

output QCA cell “out” is opposite of input QCA cell “in”.

QCA Wire: There are two types of QCA wires normal (also called 90°) and diagonal (also

called 45°). Fig. 6.1d shows the two QCA wire types with logic one polarized.

Quantum Dots

/

N

Electrons P=+1

P=-1
(Logic 0) (Logic 1)

Fig. 6.1a. QCA cells and binary encoding

Device
nputA 0 cel
N[00 / Output

cell
Input B 08y y

\oooooo1 B M

1
0 0[0 060

00

A7
Input C 00

M(A,B,C)

1

Fig. 6.1b. QCA majority gate

62

63

O
- O

0 — {
Input m { Output -
> I 00 >/
ﬂ
Inv
00

Fig. 6.1c. QCA inverter gate

-
=]
\/

=

O @[O0 0[(O 0/(C 6/|/OC (IO ©
® Of|0 Of(® O|[6 Ol|l® Of|le 0
Normal QCA wire

ojjo0((O0(O0 | 0] O
1 0_0}/0 00 0}/0 0|0 0f0 0| 1
ojloj(oef[eie] e

Diagonal QCA wire

Fig. 6.1d. QCA wire types

QCA Clocking: QCA cells use four phase scheme namely clock 1, clock 2, clock 3 and clock
4 as shown in fig. 6.2a. Every clock is 90° out of phase form its pervious clock and each clock
has four states namely switch, hold, release, and relax [40]. In switch state, QCA cells start
polarized. In hold state, cells retain thier polarization. Additionally, during release and relax

states, QCA cells are unpolarized as shown in fig. 6.2b.

64

voltage 4
clock 1

-
clock 2

>
clock 3

»
clock 4

»

time

Fig 6.2a. QCA clock phases; each clock lagging its prior by 90°

voltage A switch : hold

i r r
i e
ALd -
e |

Lo

release

.

N

Fig. 6.2b. Four QCA interdot barrier states

65

6.3 Novel QCA Extraction

XOR algebra can be used very effectively to yield gate-minimum results not possible by
conventional mapping methods. Our novel QCA extraction procedure takes as its input a
Boolean network, generates simplified XOR-AND equivalent network and output an equivalent

majority gate network as shown in fig 6.3.

Enter number of variables
Enter miniterms “MN”

|

Create minimization miniterms
array AN, MY
Virhere “m” is all possible
variables possibilities

l

List all miniterms on the first
colunin
List all possible variables
possibilities in the first row

Fill 17s in all
possible variables [+——MN
possibilities

AllLM) has one in
miniterm

Yes
+
Fill 1's only in the possible
wvariables possibilities that has [S]=]

one in miniterm variables

To get XOR- AND function
Select all varnables that have
odd number of ones in its
colommn

Fig 6.3. XOR-AND function extraction methodology

66

We will use the following two Boolean examples to illustrate the QCA extraction

methodology.

Example: Generate the equivalent QCA circuit for f,(a,b,c,d)= 2(2,3,5,7,8,1 2,13,14)

Solution:
Stepl: Draw up the minimization chart and list all miniterms on the first column [10]. Refer to
table 6.1 for detail of construction.

TABLE 6.1

THE CHART FOR DERIVING XOR EQUIVALENT FUNCTION “F,”

f, llabcd |ab ac ad bc bd ¢d |abc abd acd bed |abced
0010 1 1 1 1 1 1 1 1
0011 1 1 1 1
0101 1 1 1 1
0111 1 1
1000 1 1 1 1 1 1 1 1
1100 1 1
1101 1
1110 1 1

x VxVv x |x x Vv Vv Vv x | X X Vv X X

Step2: List all possible variables possibilities in the first row. Start with one, all possible pairs of
variables, then all triples of variables and so on up to columns for all the variables possibility.
Step3: Filling 1’s in all possible variables columns that have unprimed variables in miniterms as
shown in table 6.1.

Step4: To get the function in final XOR-AND, cross out all columns that have even number of

Is in them. The XOR-AND function for this example is

67

fi=a®@c®ad ®bc®bd ® acd
Step5: Utilizing (¥ =1® x) XOR property, the above function can be simplified to
fi=a®bc®bd ®acd

Step6: Construct a majority gate tree as shown in fig. 6.4 and then replace each node with an

equivalent majority XOR and AND gates as shown in fig. 6.5.

a be bd acd
: e) N
-‘E\EKA- -«EE' |14
ny \\. 2/// Nz
)
&
fhr

Fig. 6.4. Majority tree for function f;

Lemma 6.1: If x and y are two binary inputs, then xy =M (x, y,0)

Proof:

By equation (6.1)

M(x,y,0)=xy+0+0=xy

Lemma 6.2: If x and y are two binary inputs, then x® y =M (M (x, y,0), M (x, y,0),1)
Proof:

MM (x,y,0),M(x,y,0),]) =M ({(xy+0+0),(xy+0+0),1) =

(xy)(xy) + xy +xy =

68

Xy+xy=x®y

M(x,y,1)

Lemma 6.3: If x and y are two binary inputs, then M (x, y.0)

Proof:

M (x,y,0)

By equation (6.2b)

X+y=M(x,y,l)

Fig. 6.5. Majority gates schematic for function f1

69

Step7: Majority tree can also be used to construct QCA expressions for any node. QCA
expressions for n; and n, are as follows

By Lemma 6.1

a=M/ (a,l,0)

bc=M (l_J, c,0)

bd =M (b,d 0)

acd =M (M (a,c,0),d,0)

By Lemma 6.2 and Lemma 6.3

n, —a®bc

n, = M (M (a,bc,0),M (a,bc,0),1)

n, =M (M (M (a,1,0),M (b,c,0),0),
M (M (a,1,0),M (b,c,0),0).,])

n, =M MM @,0,1),M (b,c0),0),
M (M (a,1,0),M (b,c,1),0).))

And
n, =bd ® acd
n, = M (M (bd,acd 0),M (bd ,acd 0),1)

n,=MMM,d,0),M M/ (a,c)0),d,0),0),
MM (b,d,0),M (M (a,c,0),d,0),0),1)

70
n, = MMM (b,d,),M (M a,c,0),d,0),0),
M (M (b,d,0),M (M (a,c,0),d,D1).,)

n, = MMM (b,d,),M (M a,c,0),d,0),0),
M (M (b,d,0),M (M (a,c,1),d 1),

Example: Generate the equivalent QCA logic expression for f,(a,b,c) = 2(0,2,3,4,7) .

Table 6.2 shows the minimization chart for function f;. For unprimed miniterms in minimization

chart, 1s are filled for every column [10].
TABLE 6.2

MINIMIZATION CHART FOR FUNCTION F,

f, 1la b c |ab ac bc |abc
000 111 11|11 1|1
010 1 1 1|1
011 1|1
100 1 11 1
111 1

Vol x [x A

The XOR-AND function for this example is

f,=1®c®ab®bc® abc

And utilizing (x =1® x) XOR property, the above function can be simplified to

f, =c®ab® abc
Fig. 6.6 shows the majority gate tree for function f, which helps to construct majority gates

layout by replacing each node with equivalent majority XOR and AND gates.

71

c ab abec
A / .
U
$.
n _
&
W
f,

Fig. 6.6. Majority gate tree for function {2

QCA logic expression for function f; is
f> =M (M (c,ab,0),M (c,ab,0),)

fo,=M(M((c,M(a,b,0),0),
M(c,M(a,b,0),0),1)

f, =M (M (c,M(a,b,0),0),
M (¢, M (a,b,)),0),)

6.4 Conclusion

We presented a systematic QCA logic construction method. Our novel method takes Boolean
function as its input, generates simplified XOR-AND equivalent circuit and outputs an
equivalent QCA logic circuits. In our novel method, we were able to simplify the Boolean
functions and reduce number of majority gates with the help of XOR-AND reduction techniques

then mapping QCA logic to Boolean functions.

72
CHAPTER 7
IMPLEMENTATION OF GENERALIZED PIPELINE CELLULAR ARRAY
USING QUANTUM-DOT CELLULAR AUTOMATA

7.1 Introduction

During the last decade, Quantum-Dot Cellular Automata (QCA) has attracted a lot of attention due to
its extremely small size and its ultralow power consumption as compared to COMS technology. It has
been demonstrated that QCA has the ability to implement both combinational and sequential logic devices
[76]-[83].

The fundamental unit of a QCA circuit is quantum cell which typically contains four quantum dots,
placed near the corners of the cell where free electrons can reside. Quantum cells have two distinct stable

polarizations, as shown in fig. 7.1. These states allow the cell to represent binary data.

Quantum Dots

~

P=-1 P=+1
. Electrons +
(Logic 0) (Logic 1)

Fig. 7.1. Quantum cells with polarity -1 & polarity +1

QCA Binary wires are the simplest QCA structures and consist of a series of quantum cells in close
proximity to each other. The cells interact through Coulombic interactions with each other as shown in fig.
7.2. Binary wires can also be constructed by orienting the dots in each cell at a 45 degree angle from the
standard cell. This allows binary wires to cross in the same plane or layer without interacting with each

other.

73
There are two logic gates that make up the fundamental set of logic in QCA: majority gate and inverter.
By carefully arranging the location of QCA cells, one can create a majority logic gate, which is capable of

functioning as either an AND or an OR gate.

O.|O._O.|0.0.0.

Ooll®e Ol|le O||l®e O]|®e Oof|l®e O

Normal QCA wire
[] [] [] [] []

1 [0 Ofl0 0O]lo Ollo O

[) [) [) [) [)

Diagonal QCA wire

—o 1o
O|[c O] 1
[@ |

O

\ 4

Fig. 7.2. QCA binary wire arrangements
QCA majority gate takes three inputs and outputs a value that occurs most frequently as
M(A,B,C)=AB+AC+BC 7.1
The majority gate can also be used to create AND and OR gates. If one input is held at 1, the majority gate
functions as a standard 2-input OR gate. If one input is held at O, the majority gate functions as a 2-input

AND gate. Fig. 7.3 shows standard QCA majority gate construction.

Device
Input A 0 cell
~ [® O Output
/ cell
Input B O @ ¥
\:|o i| Ol] |o €|1
® Ol|® O||j@ O
ce
Input C ® O

Fig. 7.3. QCA majority voter gate

74
QCA inverter gate has a single input and output. It simply returns the opposite of the value that was put in

as shown in fig. 7.4.

0 0|00
(OB]{loN)

Inputo.o 00 oooo1omput
— 0O elloe e O|le 0|

00|00
Ol Jj[oN]

Fig. 7.4. QCA inverter gate
QCA has a four-phase clocking mechanism. The sequence of the states in this scheme is the switch
state, hold, release and relax states [76]. In the switch state, QCA cells start getting polarized. In hold state,
the cells retain thier polarization. During release and relax states, QCA cells are unpolarized as shown in

fig. 7.5.

voltage A switch release

o\
&

relax

fime

Fig. 7.5. Four QCA four phase clocking mechanism

75

TABLE 7.1

BOOLEAN FUNCTIONS AND THEIR EQUIVALENT QCA EXP.

Boolean Function Majority Diagram / Expersssion
Ao |
0— M 5
F=4B B ¢
M(4,B,0)
Ao
F=A+B 1 6—}—\} 3
]
B
M(4,B,1)
Ao
F=18 1 M F
s e
M(4,B,1)
F=A+B Eg—_
-+ 0] M F
=AB B&—— /
M(4,B,0)

F=A®B

c M:>»—4F
—aB+dp | A -

M(M(4,B,0), M(4,B,0),1)

i
\g

Z

il
i

F=AQOB |
=AB+AB

M(M(4,B,0),M(4,5,0),1)

76

Lemma 7.1: If x and y are two binary inputs, then xy =M (x, y,0)

Proof:

By equation (7.1)

M(x,y,0)=xy+0+0=xy

Lemma 7.2: If x and y are two binary inputs, then x® y =M (M (X, y,0), M (x, y,0),1)
Proof:

MM (X, y,0),M(x,y,0),l) =M({(xy+0+0),(xy+0+0),1) =

(xy)(xy) + Xy +xy =

Xy+xy=x®y

Lemma 7.3: If x and y are two binary inputs, then M(Ty()) =M(x,y,0)
Proof:

M (x,y,0) = xy

M(x.y.0)=xy=%+3

By equation (2b)

X+y=M(,y,0)

The use of generalized cellular pipeline arrays for various arithmetic operations has shown
considerable promise in optical computer architecture because of the obvious advantages of improvement
in speed and reduction in the cost and size. Cellular pipeline array consist of regular interconnections of
selected logic sub-circuits called cells or processing elements (PE). The basic approach is to keep the
number of I/O terminals to cellular array module to a minimum and supply control parameters as inputs to

the arithmetic cells.

77
Different pipeline array designs have appeared in literature [88]-[92]. Singh [91] presented a
generalized cellular array which can perform all of the basic arithmetic operations such as multiplication,
division, squaring, and square rooting; and exploits the concept of pipelining. The basics of pipeline array
is that the arithmetic operations are grouped together in single array with some additional control logic that
can be used to realize the required arithmetic operation. Grouping these arrays (processing element units)
can provide a single array network that can perform fast processing arithmetic operation. In this chapter

we implemented pipeline array using QCA method design and comparing the design with [92].

7.2 QCA Pipeline Array

The generalized QCA pipeline array can perform all the basic arithmetic operations such as
multiplication, division, squaring, and square rooting. The electronic implementation of a generalized
pipeline array is adopted from an existing architecture [91]. Fig. 7.6 shows a block diagram for cellular
pipeline array. The array consists of processing elements (PEs) with each PE communicating with its
neighbours in the array either directly or through latches. The arithmetic cells marked as A are controlled
1-bit adders. The cells marked as C are control cells that specify the type of arithmetic operations to be
performed by the arithmetic cells. The cells marked as M are used for multiplication. The Cells marked S
are used for squaring and square rooting.

Fig. 7.7a shows a block diagram of an arithmetic cell, where lines A, B, and C are operand inputs, and
lines X and F are control signals. The control unit specifies the type of operations to be performed in each
PE. Fig. 7.7b shows a block diagram for control unit where P is an input, F; is output, and X and C, are

inputs and pass-through a PE to adjacent cells.

78

W
" Y . 5 D) "
[] 1 1]]

AL L n iy &y ™ iy i & iy] 00K

NN
. /.h.
e] ,.,__. A A
1B NN | -
3
.,m_. : Y,
Wl ._../ . .f/.n i .hquﬂ -
: IAVEAVA\NY
§ A A A ,,.u ;x....
1 NN N L 3
m / AN <
m A & .___l __._r// 5 m..rff..f
B et -

m AN /J/ T

— e —
m \ ..—1 ..r/ e
) - A A A5 5 ..

i A B S S S AN
o REMAINDER OF OVIGN ——
REMANDER OF SQUARE ROOT
— - RESULT OF SQUARING
- RESULT OF MULTIPLICATION

WX
00sq

0 1 sq root
1 0mul
1 1div

Fig. 7.6. Block diagram for pipeline array [91]

79

B..C|A

x onh x

F, — ——CFi
- —

Co L
SlD

Fig. 7.7a. Arithmetic cell

X — X
P L.F
Co— — Gy

Fig. 7.7b. Control logic cell

The arithmetic cell is capable of performing the following Boolean operations:
S=[A®@B®X)®C,]|F, +AF,
C,=(B®X)A+C)+AC,
D=C(B+F)
E=(B+C)B+F)
And the Boolean expression for control cell is:
F =C,X+PX
Using lemma 7.1, 7.2 and 7.3, the above Boolean equations can be written in following QCA format
S =M (M (n,,F,,0),M (A, F,0),1)
C,=M(M((A,C,.,n,,0),M(AC,,0),))

D=M(C,M (B, F,1),0)

80

E=MM(B,C,1),M(B,F,,1),0)

F=MM(C,,X,0),M(P,X,0),0)
Where

n, =M (M (n,n,,0),M (n,,n,,0),1)

n,=M (M (A,C,,0),M(A,C,,0).])

n, =M (M(B,X,0),M (B,X,0),])
Table 7.2 explains the required control signals for each arithmetic operation. When X=0, the arithmetic
cell acts as an adder, and as a subtracter when X = 1. Sum and carry output are S and Cy respectively. The
operands are applied at inputs A and B. The most significant bits of the inputs are A; and B;. The most
significant bit of the sum is S;. The array is capable of finding the square root of a ten-bit binary number
A|.1p with control inputs P;_s are made zero and X is made 1. The B and C inputs to the first level are given
as 00, 01, 10, 10, 10, 10, and 10, as shown in fig. 7.6. To find the square root of a number, it is applied
across A, and then 01 is subtracted from the two most significant bits of A. If the remainder is positive,
then the value of F; is 1; otherwise, it is 0. If F; is O, the original value is kept for the next subtraction.

Table 7.3 shows the value of the subtrahend for each succeeding stage.

81
TABLE 7.2

QCA PIPELINE ARRAY ARITHMETIC SUMMARY OPERATIONS

Function | Description of pipeline array

operations [7]

+ X=0, F=1

S=A®B®C,

- X=1, F=1

S=A®B@C,

X X=0, A=0, B=C
Right shift add method is used
Multiplicand in B

Multiplier in P

+ X=1, B=C; P=0

Right shift and subtract
method is used
Dividend in A

Divisor in B

() X=0, A=0
B=2’s comp of “10”, C="10"

Operand in P

\/_ X=1, P=0
B=2’s comp of “10”, C="10"

Operand in A

82

TABLE 7.3

SUBTRAHEND AT DIFFERENT LEVELS FOR SQUARE ROOTING

0 1

o F, 0 1
o 0 F, F, 0 1

O 0o 0 F, F, Fy 0 1

0 0 0 0 F, F, Fy F, 0 1

The array is also capable of taking the square of a 5-bit number. To find the square of a number, it is
applied across P; with X= 0, the arithmetic cells act as an adder, and the control cell transform P; to F;,
Resulting in square of the number. The array can also be used to multiply a three-bit number B;.3 by a five-
bit number P;_s with control bit X and A inputs are made zero. The array can divide a seven bit number A;.
7 by four-bit number B4, giving a four-bit quotient and a four-bit remainder. For this case, the control
input X is made 1, and P inputs are made zero. Similar to the multiplication operation, the C inputs are
kept the same as the B inputs. The array requires n (n + 2) arithmetic cells and n control cells. The delay of
an arithmetic operation depends on the delay in processing the last level which uses 2n+1 arithmetic units
and it is given by [91].

Tioay =NT, + T, +7,
Where7,,7., and 7, are the delays in arithmetic cell, control cell, and latch circuit, respectively. Fig. 7.8

shows QCA design arithmetic and control cell unit layout.

83

¢

Adder

co

Fi e

a) Arithmetic Cell

b} Controll Cell

Fig. 7.8. (a) QCA arithmetic cell and (b) control cell

operations. QCA equations for Agrawal’s arithmetic cell can be giving by:

Agrawal [92] proposed high-speed multifunction array for multiplication, division,

S. =M (M((a,,71,,0),M (a;,n5,0),1)

¢y =M (ng,ns,1)

€., =M(ng,n,,1)

Gi+1

Bl

= M(n9,€’-,0)

= M(n9,€’-,1)

g =M (ny,d;0)

square-root

84
h_, =M (n,,,b,,1)
Where
n=MM (b,x,0),M (b, x,0),1)
n, = M(rj,nl,l)
n, =M (M (c,,n,,0),M (c;,n,,0),1)
n, =M a;,c;.l)
ns =M (n,,n,,0)
ng =M (a,,c,,0)
n, =M (ny,n,,0)
ng =M (M (c,,n,,0),M (c,,n,,0),1)
ny =M (M (a;,ng,0),M (a,,ng,0),1)
Ny = M(rj,b,.,l)
n, =M(rj,d,.,0)

Fig. 7.9 shows QCA design high speed arithmetic cell unit layout.

85

Arithmetic Cell

Fig. 7.9 QCA high speed arithmetic cell

7.3 QCA Pipeline Implementation

For creating QCA pipeline array and verifying the design functionality, QCADesigner [86] is used.
The tool provides two simulation engines: bistable engine and cotherence vector engine. QCA cells are
assumed to have a height of 18nm and width of 18nm while the quantum dots have a diameter of Snm.
This follows the same assumptions as given in [87] and coherence vector engine has been used for
simulations. Fig. 7.10 and fig. 7.11 show the QCADesigner layout for the arithmetic cell and control cell
respectively. The layout is labeled to indicate majority gates inputs as well as the outputs. Fig. 7.12 and

fig. 7.13 show the QCADesigner simulations results.

86

E 4] E
oojoo
o
B B B - § B
b b H B B :
E mm.;..a.“ m m m E o
. {R]
0 i
L . B EE = b
"
B FE A R M
e o o
- 100
60 g
B i
[1} oo
@8
E m -1.00
EEEEEIEE'E' Ll N
: D
M a0
oo Ol
2 ofo o} oo oL
‘R Y :
B8 EEEREREREEE
BE H & 14
L U R E
Vi
T}
! e
L w N s
00 30
6 & 8

Fig. 7.10. QCADesigner layout for arithmetic cell unit

87

00

C‘::J [=1N(=} (= s =B (=l s sh) (=il N (=]
ol oo Qoia Qo ool oljo ol ool o
= =
oo PEBREEEEEEIETES
o ol ool | fofol ool | [Re] | lolo] | (oo
lolic]

@@
B®

o®
B®

olo olo ol0
0o olo oD
ol0
oD
olD
oD
a®
a®
a®
8@
8@ @
DRI
a®
a®
olo
olo
-

X
H
00
H
oo
olo[[oe
B
H
oo

(+(s}] ([](+]

00

00

00
(e (e]) ((el(a] [+ (s} 00
(# (]| ((el(w] |[+}(} 00

]
[]
CRO)

olo
0lo
olo
olo
8@

(o {(s1 s
x) (3| (=)
&
o))

=
= = =
S BRBEESEEESE Sl cle S
s
Fig. 7.11. QCADesigner layout for control cell unit.
Simulation Results
x
o
i
____________ T s T
F I I I I
m 7T I~ 1 T I~ 1 .
I S SR R B

Fig. 7.12. Simulation for control cell unit

88

e 1
S R S B
| Fi ::::EEEE:::::EE
RS B

_————— e —— — —

Fig. 7.12. Simulation for arithmetic cell unit

Fig. 7.13 and fig. 7.14 show the QCADesigner layout for the Agrawal’s arithmetic cell and simulation

results respectively.

89

1]
AN IIIII
=Illll

B EB HOEHN | | | [[SiHN
EEE EE

EE B

150 I =
L
EEEEEEEEE
PEEEEEEE

|
5 3 S)) A O Y S O P Y O

<100

a
5

E
[——

[]
|
|
E
&
|
B
[]
|
E
E
B
|
|
[|
|
E
E
B E
] [}
I Illllllll
h lg

K]
BEEEEEEE §E
[] EE B EH
[] -] HEFEEEEE ME
] o EEEEEC B EE B
] I il]
[| i B ‘u NEEER:
[] [] B] o
[| il . | BEREEE
B EEER | |
e H woen M [|
' H ER B e EEEE
BE HEE EE : BE B 40
E B [| : BB EEE R
B -] B E HEE BE
B E " BEEEE::: [| [1N]
l‘ M R] i
A o e R P A R B EC REEEE
HE || ||
H EEE - llrlllllll
[W] .
Ill HER
[[]
i :
lllllll-lllllllll
']
HE l
B EEEREEEEREREEE EEEE
[]] . H
[]] E B | -
F 2 ‘B ? “
lllllbll llllllllblll" SN | || | |
B B
2 H N«
lllllLll‘llllllll.Llllllllllll
lllllLll‘lllllllll
.
1)
| |
B I | B
]]
I -lllllllllllll
il | 81
i G B
[i [L]
B BEESEEE EE
B -~ NEEEE: . | []}
] 2]]
i O 1 s B - EEEER
o &l
i E EEEEEE
B ElEREE E B
l 1m ‘ .
® R @ N B R B
] HIEE O]] 1
= 8] = = =l=.ll [l=lllll oL
= n -l=l = FE i i = Il=l |
R P L O D = o Ill=l-"-:!!!:! ="°" =
]t o b 4
B EEE
[5
[]]
= = "
EEEEEEE @
||
[|

8

Fig. 7.13. QCADesigner layout for high speed arithmetic cell unit

ai

ci

=]

di

Ci_1p

el_1p

Si_1p

Pi_1p

———— e ————— -

CLOCK 1 —— A ——A——F——x——F———v——F - v——7

CLOCK 2 ————&%——— "~ N J T &

GO

N ¥] Iy
B R e ———L T L e i i . T ———
—— —_— o —

[T T T T I T T T T T I T T T T T T T I T T T T T I [T T I T T T T T T T T T T I T T I [T T T T T T T T T T T IT T T TN T T T T I T T T T T T IT]
i} 1000 2000 3D 4DD0O 5000 &L TDDOD 8000 B0 1300 11000 12000

Fig. 7.14. Simulation for high speed arithmetic cell unit

91

Table 7.4 shows performance comparison between the two QCA designs showing the arithmetic and

control cells have a simpler structure than Agrawal’s arithmetic cell.

TABLE 7.4

QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS

Parameter Value
Arithmetic & Agrawals
Control Cells Arithmetic Cell
Mumber of Cells 398 1004
MNumber of Majority Gates 15 28
Mumber of NOT Gates 5 10
Covered Area um? 058 1.46

A different modeling approach has been used to simulate 10-bit QCA pipeline array. We created a

behavior Verilog model for majority gate and used it as building block for creating majority AND, OR,

NOT and XOR QCA gates. Then we used Cadence NCLaunch simulation tool to test our design. Fig.

7.15 and fig. 7.16 show the result of squaring and square rooting outputs respectively.

Ty Fslirn == Fris
B Cursor - Dasslne = dirs

rMame - Bazwmling =

3 -
» 3 B
= o 1
=14 -
a0 D
=1

— |

ENEBEEEEEEEEEEER

a

Fig. 7.15. Waveform of pipeline squaring output result

92

L 4 Dms el = = Dy

FF Cursdcer - Bl irss = = B7rs

Fdilfris - Bl -
= i
-]
E]

| a
3 L]
s L]
] L]
e o

= L=

e eEEDHEED

|EBBEEEEECDEEEBEREEE

Fig. 7.16. Waveform of pipeline square rooting output result

Fig. 7.17, fig 7.18 and fig. 7.19 show Multisim implementation for arithmetic cell, control cell and high

speed arithmetic cell.

i
O—au
I
$00004
T \ = U
= : L L i
FULL_ADDER l —i 2 *m

Uik L Ve

[, Fll_ADCER e

T r "4

TN ‘ mil

e " il
{LL_A00ER
FULL ADDER Tw_ L Uil " -
- Y D B
- 2 B i
FULL_ADDER -

T — c ULL ADDER

P—: '

B T

Fig. 7.17. Multisim implementation of arithmetic cell

93

| GND | XLC1
sv b D ———=>AB

B]

vee

a
B CRRRY
. X1
cIn
’_l FoE—ADR Ei EZ.5V

= u2
vece
v E cammy — 1
— CIM
FULL_ADDER
u4a L3
{>~o 1
B
7404N .
FULL_ADDER

L

Fig. 7.18. Multisim implementation of control cell

UZA L]
- =
vaan [o \EE ur
FULL_ADDER w e
uz [
FULL_ADDER [
UTHE [A £_ si
- FULL_ADDER O 2y
Fdoan FULL_ADDER |
—
FULL_ACDER
Y o o
v —
Tr—>=ae s T I
PSPPI
t FULL_ADDER
71 l L | |
———I— FULL_ADDER ‘
L
uz3 _'_E.DV
- —-
= =
FULLJ FULL_ADDER
VEE - 70 o
=
T VEE U ‘ 8V
ruLL,nDnER _' - T m—
sunum ;. |
| : FULL_ADDER
uzr i
M
e e : 3
. we |1 o [Fa
Fitt_pooer | Y ::, -

| FULL_ADOER

Fig.7.19 Multisim implementation of high speed arithmetic cell

94
Fig. 7.20, fig 7.21, fig. 7.22, fig. 7.23, fig 7.24 and fig. 7.25 show FPGA implementation for arithmetic

cell, control cell and high speed arithmetic cell.

& 9 10 11 12 13 14 15 16

Fig 7.22. High speed arithmetic cell FPGA packaging
A C1_XOR_3

RTL_XOR

F_INV_1
-

RTL_IMNW

Fig 7.23. Arithmetic cell FPGA schematic layout

95

ETL Cebamat

=1

& 73
-
=

I-m' ;
-
o
L 11

=
1
P

Al _;r-..:'n_A

RTL_AND

=
-

Fig 7.24. High Speed arithmetic cell FPGA schematic layout

RTL Schiatic

.0.C0 X_AND_f

RTL_AND
al P X AND_2

XINV_1 |

|>.r,:_

“" RTL_AND

Fig 7.25. Control cell FPGA schematic layout

96
TABLE 7.6

QCA PERFORMANCE COMPARISON BETWEEN THE TWO DESIGNS

Parameter Value
Arithmetic High Speed
Control Cell Cell Arithmetic Cell

Number of Gates 4 15 20

Mumber of I/0 4 10 14

Mumber of Nets 7 21 27

2

Covered Area um 648 2592 5400

Max. Delay Time [PS) 0.197 0.785 0.911

Chip Floor Plan Aspect Ratio 0.27 0.54 0.8

INWVXL, OAI21X1 & NAND2X1

operation voltage 5 5 5

TABLE 7.7

DELAY TIME (PS)

Delay time from input pin to output pin {ps])

A = 5 0.145 b, = s 0.698 b, = PL, O.827 SQF By == Fa 10.08
=1 - g 0.528 £ -= D.911 S -2 P 0.204 malt Py, - S5 3,113
b 4 - 5 O. 785 C - g 0.454 (=t -m P, 0.581 mult P, =-> S 2.047F
c, -> = 0. 762 > s O.TOE e, -> P., ©0.328 mult Py, -> S, 1.521
E - 5 0O.208 a -> e,. 0297 B, -> g, 0.163 mult P, -> 5, 0.167F
A - Cg 0.356 b > €L, 0O.505 - B 0.143 mult By, -> S, 2.622
B -> Oy 0.308 ® -> &, O.526 d, o= g 0.129 mult By -> S 1.879
W -3 O 0.327 c - Cn. 0O.306 b, -> hg; 0.139 mult Bs -> Sg 1.85
c, - g 0.325 rp > ., 0.326 g - hyy, o.15 mult B, -> S, 1.703
B -> D 0.169 ~ &, > e 0.3 d, -> h., 0O.136 div &y, - Fy 0.407F
c - D 0.138 S - .31 sq Py -> S5 1.918 div My -> Fa 2.594
F - D 0.146 ® > a. 0.37 =g Py -> S 1.968 div Ay -> Fy 4.751
B - E 0.187 C > el 0.311 sq Fs -> S5g Z.084 div &y == Fg B.506
e = B 0.17 a > G, O0.796 sq P, -> %, 1.674 div Ay > Fy 8.577
F, => E 0.181 b, > G, O0.82a sq B, -=> %, 0.339 div B, -> F, 0.27
X == F 0. 138 » = G,y 9.331 sqr Ay ->= Fy Q. 271 i By -> Py 2.505
P -= F 0.197 e > G,; 0.578 sqr Ay -> Fy 2.326 div By -3 Fy 5.537
Cq == F 0.129 e > Gy 0.319 sgQr Ay == Fyg a.97 div By =® Fa 8.433
& -> = 0.13 a -= P, 0.799 sqr Ay -> Fy 8.81

Table 7.6 and 7.7 show performance comparison between the two designs. The results show that
number of gates that were used in control cell are four gates, four I/O pins and total nets are seven. For
arithmetic cell, the total gates are fifteen, ten input I/O pins and total nets are twenty one. Meanwhile, in
high speed arithmetic cell, total gates are twenty, I/O pins are fourteen and total nets are twenty seven. The

allocated covered area and chip floor plan aspect ratio for the high speed arithmetic cell were the highest

97
due to the total gates for it is more than arithmetic cell. Also, the tables show that the maximum delay time
for arithmetic cell is smaller than in high speed arithmetic cell. The results show that arithmetic cell has
less complex in hardware and processes smaller delay time than high speed arithmetic cell as high speed

arithmetic requires two half adder in serial and needs more processing time.

We used Cadence Encounter to generate a COMS equivalent layout of our QCA pipeline array design.
Ambit Buildgates is used to generate the netlist. Encounter used to assign floor plans, appropriate layers
nano routing, and obtain the design in .gds and .def. In Encounter, we also checked for any design flawless

in terms of connectivity, density etc. Fig. 7.26 shows the encounter part of our design.

Fig. 7.26. Encounter part of QCA pipeline array

98

Fig.7.27. Virtuoso part of padding pipeline array

For chip fabrication, we used Virtuoso where we have imported the design from encounter and the same
padframed is used to send it to MOSIS for chip fabrication. The complete Layout along with the
connections is shown in fig. 7.28 below. In digital circuits complexity is not appears to be defined because
of a lot of parameters that can be used to measure digital complexity such as number of gates, number of
I/O, delay, area/size. In this present work, we suggest a fuzzy complexity system. This concept needs to be
validated and more works to be done. Fig 7.29 shows the hardware complexity fuzzy concept.
TABLE 7.7

COMPLEXITY FUZZY RESULTS FOR PIPLEINE ARRAY CELLS

Parameter Value
Arithmetic High Speed
Control Cell Cell Arithmetic Cell
Complexity 0.41 0.63 0.86
Number of Gates 4 is 20
Number of I/O 4 10 14

Number of Nets 7 21 27

99

[=< < s S

[o o [Eaammi| cmamaani

nets comphex

Fig.7.29. Hardware complexity fuzzy concept

7.4 Conclusion

We demonstrate that arithmetic cells can be successfully implemented using QCA cells. These arrays
can perform multiplication, division, squaring and square rooting. All different modes of operation are
controlled by a single control line. QCADesigner tool set is used to simulate both designs. We also used
different VLSI approach to simulate 10-bit QCA pipeline array, we created behavior Verilog models for
the design. Cadence NCLaunch simulation tool is used to simulate the pipeline array and verify that our
design is performing as desired. Cadence encounter is used to generate a COMS equivalent layout of our
QCA pipeline array design. Our Design layout is exported to virtuoso. Furthermore, padframing is

performed in order to send the design to MOSIS for fabrication.

100

CHAPTER 8
CONCLUSION AND FUTURE WORK

8.1 Introduction

Residue Number System (RNS) has received increased attention due to its ability to
support high speed concurrent arithmetic applications such as Fast Fourier Transform
(FFT), image processing and digital filters. In spite of its effectiveness, conversion and
sign detection, base extension, scaling and division are complex operations with current
methods. In this dissertation, we have addressed conversion, scaling and implementation

of RNS adder and subtractor.

Quantum-Dot Cellular Automata (QCA) is attracting a lot of attention due to its
extremely small feature size and ultralow power consumption compared to CMOS
technology. This new type of nanotechnology uses different logic devices to design
circuits. The traditional Boolean logic reduction methods such as Kranaugh maps
produce a simplified Boolean expression. However, converting these forms to QCA
Boolean is not simple process due to the complexity of multilevel majority gates. In this
dissertation, we presented a novel methodology for generating QCA Boolean circuits

from multi-output Boolean circuits and implementation of QCA pipeline array.

8.2 Summary of Work

A detailed research has been conducted on the residue number system and quantum-
dot cellular automata. Specific solutions have been developed to provide solutions for
stressing issues. The following gives an executive summary of the contributions and

results of this research.

101

A simplified algorithm method for conversion from binary to residue number
system was introduced. The algorithm requires less hardware size compared to
those required by existing algorithms. It utilizes parallel-prefix techniques with
multiplexers and modulo adders as the main building blocks without the use of
lookup tables which makes it practical and suitable for VLSI implementation.
While other existing methods such as Behrooa [7] uses a table lookup schemes for
binary to residue conversion and Alia [4] uses processing elements (PE) with

complex hardware.

A new scaling algorithm based on mixed radix conversion was presented. The
algorithm utilizes a simplified base extension process that works on a smaller
modulo. It provides an alternative method of finding the mixed radix digits with
high degree of parallelism. The algorithm has advantages over CRT methods
since it avoids the use of modulo computations and the use multiplicative inverse

operation.

An efficient VLSI approach for the implementation of RNS adder and subtractor
was introduced. XILINX is used to get the behavioral simulation of the design
with the help of which we were able to verify that our design is performing as
desired. Cadence encounter is used to build the layout of the design. Design
layout along with the technology libraries are exported to virtuoso. Furthermore,

padframing was performed in order to send the design to for fabrication.

102

e A novel methodology for generating QCA Boolean circuits from multi-output
Boolean circuits was developed. Our methodology takes as its input a Boolean
circuit, generates simplified XOR-AND equivalent circuit and output an

equivalent majority gate circuits.

e An efficient approach for implementation of a generalized pipeline cellular array
using quantum-dot cellular automata cells was presented. The QCA pipeline array
can perform all basic operations such as multiplication, division, squaring and
square rooting. The different modes of operation are controlled by a single control
line. We created behavior Verilog models for the design. Cadence NCLaunch
simulation tool is used to simulate the pipeline array and verify that our design is
performing as desired. Cadence encounter is used to generate a COMS equivalent
layout of our QCA pipeline array design. Our Design layout is exported to
virtuoso. Furthermore, padframing is performed in order to send the design to

MOSIS for fabrication.

8.3 Recommended Future Work

The results of this research are promising and the following are recommended

research topics that can be done as a continuation of this work.

e Further research can be done on investigating new techniques for generating
Carbon Nanotubes (CNT) Boolean circuits. Carbon Nanotubes have many
different structures, differing in length, thickness, and number of layers.
Although, they are formed from essentially the same material sheet, their

electrical characteristics differ depending on these variations. With these

103

properties, they are acting either as metals or as semiconductors. Nanotube-based
transistors, also known as Carbon Nanotube Field-Effect Transistors (CNTFETS),
are capable of digital switching using a single electron. However, one major
obstacle for this new emerging technology has been the lack of new methods for
mapping existing multi-output boolean logic circuits to carbon nanotubes logic
circuits also creating new methods for generating carbon nanotubes logic circuits
is other area of research.

Modifying QCADesigner program to include QCA reduction algorithms that were
presented in this dissertation. QCADesigner is program that had been developed
by University of British Columbia to create a simulation tool and design for
quantum-dot cellular automata. QCADesigner is open code source and can be
downloaded from University of British Columbia. This tool is still under
development and provided free of cost to the research community.

Also, further research can be done on creating new methods for generating
boolean circuits for Single Electron Transistor (SET) circuits. SET operates by
injecting or ejecting a single electron into or from a dot of silicon, so producing a
change in electronic potential. That change must overcome thermal agitation,
making optimized smallness of the dot essential for SET operation. With this
property, the single electron transistor is type of switching device that uses
controlled electron tunneling to amplify current. Usually, SET is made from two
tunnel junctions that share a common electrode. A tunnel junction consists of two
pieces of metal separated by a very thin insulator. The only way for electrons in

one of the metal electrodes is to travel through the insulator. One major obstacle

104

for this new emerging technology has been the lack of new techniques for
creating SET circuits.

Implementing five pins majority QCA gate. The basic elements in QCA are
majority and inverter gates. As result, using a majority gate with more inputs in
QCA circuit will cause reduction in cell count, latency and complexity.
Furthermore, implementing seven input majority gate also could simplify and
optimize QCA designs. Creating new VLSI techniques that can support five and
seven majority gates and implementation different exciting circuits such as full
adder with these QCA gates can be other research area.

Investigating new fabrication techniques of QCA logic devices is other research
areas that can be conducted. Fabrication of QCA is still ongoing challenging
research area. These challenges include development of new manufacturing
methodology for QCA circuit fabrication. Also implementation of detect free fault
tolerant circuit. These new techniques require development new CAD methods
and tools to help simulation.

Implementing residue arithmetic logic unit that can perform all modulo
operations. RNS is an unweighted representation system of numbers. RNS is
based on modular arithmetic operations and it is a carry-free system. Creating
modular logic unit that be used in applications such as Fast Fourier Transform
(FFT), image processing and digital filters can simplify the RNS design and
application implementation.

Investigating new residue number system techniques to simplify RNS magnitude

comparison overflow detection, sign detection, parity detection and division. In

105

spite of its effectiveness, RNS has remained more an academic challenge due to
the complexity involved in the magnitude comparison, overflow detection, sign
detection, parity detection and division. These RNS areas are other research area
to investigate.

Validating and improving the fuzzy complexity concept is other research area that

can be investigated.

106

APPENDIX

Setting up vour Working Environment:

1. Login to your Unix machine.
— Use your WSU access ID and password.

If you already did steps 3 to 10 go to step 11

3. Click “View” and check “Show Hidden Files™.

4. Scroll down to find the .cshrc file.

— The file is currently Read Only.

— Right click on the file and choose “Properties”.

— Go to the “Permissions” tag and check “Owner ->Write”.
— Click “Close”.

— Now the file can be edited.

5. Right click on the file and choose “Open with Text Editor”.
— This will open the .cshrc file in the text editor.

6. Add these two lines to the file:

source /opt/cds/class/cds_setup
source /opt/cds/class/setup_files/vhdl/.vhdl_setup
— Save and close the editor.

7. Open a new terminal (by right click on the desktop and choose “Open Terminal’) and
type the commands:

—cd SHOME
— source .cshrc

8. Create new directory, name it cadence, under you

home directory.
— mkdir cadence

9. Create vhdl directory under cadence directory.
— mkdir vhdl

10. Execute the following commands:
—cd vhdl

107

—cp SNCVHDL/cds.lib $CDSVHDL
—cp SNCVHDL/hdl.var $CDSVHDL

11. Open cadence/vhdl/cds.lib file and add the following line
DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06

The cadence/VHDL/cds.lib file will look like

include $CDS_INST_DIR/tools/inca/files/cds.lib

#DEFINE ieee /opt/cds/ldv/tools/inca/files/IEEE

#DEFINE std /opt/cds/Idv/tools/inca/files/STD

DEFINE vhdl ~/cadence/vhdl

DEFINE NCSU_TechLib_ami06 /opt/cds/class/local/lib/oa/NCSU_TechLib_ami06

12. Encounter setup: Type these commands in you terminal
—cd $SCDSVHDL
— mkdir fe
— cdfe
— c¢p $DSMSE/ece753.conf ece753.conf

108

PART 1: ENCOUNTER

The original procedure version was contributed from Dr. Singh VLSI Lab and this is update to current
procedure:

1) Open Unix terminal and type encounter
2) Click on File (Top Left) -> Import Design The following screen should open.

Design Import = | |

Basic Advanced

Hetlist:

& ‘Yerilog
Files: o]

Top Cell: '\ Auto Assign & By User:
- OA
Library: =3

Cell: =
Wiew: =]

Technology/Physical Libraries:
LEF Files:

A Reference Libraries:
Oa Abstract View MNames:
OA Layout View Names:

Timing Libraries:

Max Timing Libraries: wes I
Min Timing Libraries: ame I

Common Timing Libraries:

Timing Constraint File:
10 Assignment File: ‘=

oK Save... Load... Cancel Help |

3) Click on Load...
Navigate to cadence/vhdl/fe and select ece753.conf file

= Lw.. “Import Configuration x

Look in B9 Avsumome/du/du24/du2408/cadence/vhd/NAND B ovweo@E®

g Compu appOption. dat
duz408 nandgate enc.dat

File pame ece7S53 conf m

Flles of type: Input config files (“.conf) ' Cancel

4)

109

Design Import =
Easic Adyanced

Hetlist:

= “erilog

Files: ./=orgatessroaxory

Top Cell: . Auto Assign = By User: =orgate

Library: |

Cell:| / | =]
Wieus| / By

Technology fPhysical Libraries:

LEF Files: lassAocaldibsAitdiit_stdcells_w 2.1 Aibsamiosslli 105 stdcells. stacks.lef ... I
08 Reference Libraries: /

o8 shstract Wiew Rames: /

D8 Lavout Wiew Mames:
Timing Libraries:
kA== Timing Libraries: /

rAIn Timing Libraries:

Common Timing Libraries: st'cdssclassslo libsiitdiit_stdcells_ w2 1 Aibsfami0ssdAibAitos_stdcells it

Timing Constraint File: / I
=

D asssignment File: /
OK Aave... Load. . Zancel | » Help

yd

5) Click on «.. (top right of the screen above)

6) Double Click the designated .verilog file which was created using BGX commands

Metlist File: vhdllexample3d.v << Hetlist Selection:
e B RLEE 9 :ushome/dusduzasduz40a/cadencesvhdl —
Axorgatessroi<ory = alu
8 appOption.dat
BN fe
= NaND
\ P waves.shm
KOR
After double clicking [Example3l.v
z [helvar
the .verilog file
should move to the
left. Select and
delete the previous
file so only the new
verilog file appears.
: Filters: Netlist Files (*.v*) -
Delete .
Close

7) Press OK after selecting the desired .verilog file

110

Design Impo

“Basic Advanced

Hetlist:
& Verilog
Files: vhdl/fexample31.v
Top Cell: & By User:
- 0A

Technology/Physical Libraries:
LEF Files: lass/local/libdiitfit_stdcells_v2.1/lib/amiDS/lib/Aiit0S_stdcells. stacks. lef _I
OA Reference Libraries:
OA Abstract View Names:
OA Layout View Names:
Timing Libraries:
Max Timing Libraries: _I

Min Timing Libraries: |
Common Timing Libraries: sWcds/classfocaldlib/iitiit_stdcells_v2.1/lib/ami0S/ib/it05_stdcells tif ... |

Timing Constraint File: |
1O Assignment File: ! |

[OK] Save.., Load... Cancel Help

File Edit View Parition Floorplan Power Place Optimize Clock Route Timing Verify Options Tools ,cadence

» |Design Is: In Memory

All Colors

Floorplan View
Module

Fence

Guide

Obstruct
Region

Area Density
Instance

Std. Cell

Cover Cell
Block

10 Cell

Area 10 Cell
Net

Special Net
Terminal

Ruler

Text

Rel. FPlan
Vield Cell .
vield Map 8
Density Map @_

H

KkkkkRkkkkkkKkkR kK& [<
KRkREKEKRKKRKKR K o

O

Ik

World View & x

Click to select single object ShifteClick to de/select multiple objects [@][seinum:0 [(43583, 77.641)

111

9) Click on Floorplan -> Specify Floorplan -> Ok (Just Press Ok, no need to change anything)

10) Click on Power -> Power Planning -> Add Ring

Add Rings

Basic Advanced Via Generation

Net(s): gnd vdd

Ring Type
& Core ring(s) contouring

& Around core boundary — Along YO boundary
— Exclude selected objects

— Block ring(s) around

— User defined coorgh

tes

Ring Configurgfion

Change Top: and Bottom: to
metal3H

Change all Width: to 4

Press Ok after making the
changes

Top Bottom Left
Layer metal3 H » metal3 H » alZ V » metalz vV »
Width 4 4 4 4 <t-
Spacing: 0.8 0.8 0.8 0S8 Update
Offset & Center in channel ~ Specify
Option Set
— Use option set I
[OK] Variables Apply Defaults Cancel Help

A figure similar to
this should appear
without the blue
line

112

12) Click Route -> Special Route -> Ok (The blue line should appear now)
13) Click Place -> Place Jtag -> OK

14) Click Place -> Place Standard Cells -> OK

15) Click Route -> Nanoroute -> Route -> Ok

16) After doing step 15, a figure similar to the one below should

17) Click Place -> Physical Cell -> Add Filler

Add Flller

Add Filler screen should pop

Cell Name(s) Selec; \
Prefix FILLER m Click Select

Power Domain Select
— No DRC

[Mark Fixed]

_ Fill Area

_bpply , _Mode Cancel , _ Help.

113

18) Select and Add ‘FILL’ (Right Side) and Click Close

Selectable Cells List Cells List
FILL FILL

o

 Delete

19) FILL should appear in the Cell Name(s) as shown below. Then Click OK

- Add Flller =
Cell Name(s) FILL Select
Prefix FILLER
Power Domain Select
— No DRC
» | Mark Fixed|
. Fih Area

Help

[OK VTN Mode Cancel

20)

114

21) Click Verify-> Verify Connectivity -> Ok (There is no need to change anything, just press OK)

22) Click File -> Save ->GDS\OASIS

(There are two Saves, one on top and other on the bottom. CLICK THE ONE ON THE BOTTOM!!!)

23) Enter desired verilog name and GIVE THE EXTENSION .gds2
24) Check the Structure Name (Do Not Edit the Already filled in Name)

GDS/OASIS Export

Output Format & GDSIl/Stream - OASIS
Output File example31.gds2| < (-
Map File streamOut.map e

Library Name DesignLib

» Structure Name smpl_circuit

After carefully doing steps 23
to 24, press OK

— Afttach Instance Name to Attribute Number

— Attach Net Name to Attribute Number

— Merge Files | — Uniquify Cell Names

. Stripes 1
— Write Die Area as Boundary
— Write abstract information for LEF Macros
Units 1000 »
Mode ALL »
N—

Apply Cancel Help

25) Click File -> Save -> DEF

save DEE

Jave Options

» Save Floorplan
» Save Standard Cell
& Save Unplaced Cell

L4

Save Netlist
__ Save 3cah
» Save Route

¢S
Output DEF Yersion: &

File Mame: smpl_circuit.def e |

Bpply cancel Help ‘

26) In the encounter terminal type the following commands
a. On your query to determine the area occupied, use command

115
==>queryPlaceDensity
For determining number of instances do,
==>selectlnst *

==>l]length [dbGet selected]

For Calculating delay use
==> report_timing —from input_pin_name —to output_pin_name —unconstrained

. To view the schematic from GUI click on ==>tools -> schematic viewer

To get the Aspect Ratio use command:
==>dbHead AspectRatio

To get the coordinate of selected box use :
selectInst instance_name
dbGet selected.box

. To Get the x and y dimensions of a particular cell,use the command after importing the design:
set a [dbGetInstByName instance_name]

set b [dbInstCell $a]

dbCellDim $b

To Get the voltage for the specified cell
Set a [dbGetCellByName cell_name]
dbCellVoltage $a

116

PART 2: VIRTUOSO

1) Open Virtuoso
2) Close all the screens except LIBRARY MANAGER and the LOG window

€ Log: /wsu/home/du/du24/du2408/CDS.log =13

cadence

B L e SRE==-rn=i-:n T T
'Unzble to open library nand at path Swsu/home /dus/duZd /du2408/cell /nand: Invalid Lib Path'

WARNING The directory: '/wsu/home/du/duZd/du2d08/cell/nand' does not exist
but was defined in libFile ' Swsu/home/du/duld /du2d08/cell/cds. lib' for Lib 'nand'.

. =

Llmause L M Ry
i |
& Library Manager: WorkArea: /wswhome/du/du24/du2408/cell -/o)x

Ede Eot View Design Manager Melp cadence
- Show Categores — Show Files
Ubrary ot View

CADENCELIBRARY
U_Analog_Parts

\J:Ye(hkn.n_um 08
ani0b
ani0b_padtrame

basic

cosDefTechLd

Messages

Sice

Wamning GsLibDefListCalback onLoadwWamings: Modef fle "Ib defs’ 1083 waming

Unabie ¥ open ary nand 8 path Aviuhome/du/du2&/du2408/celvnand Invald Lid Path'

Waming The drectory. ‘Avsuhone/0u'0u24/0u2408/celvnand” does ot

ot was defined in MoF fe ‘Asuhone/du/du4/u2408/CelVeds ' 1r LD ‘nand’
-~

S |

.
A

.

3) Click File->New->Create Library (The Library Window, not the Log window)

- Create Library x

Ubrary

Name Cadencelidracyl
Patn

Technobgy Uibrary

I this Ibrary will not contain physical design (Le., layoul) data you do not neec a tech library
Othenwise, you must either altach 10 an exdsting tech idrary or compde one
Choose option

& No tech library needed
« ARach 1o existing tech Worary
« Complie tech hbrary

Misc.

/0 Pad Type & Périmeter o Area aray

Cancel , _Apply , _Heip

4) Click OK.

5) Click File -> Import -> Stream (The LOG window, not the Library manager)

Stream File™

Destination Library”
Attach Technology Library
Top Ced

Load ASCII Tech File

117

Virtuoso(R) XStream In

- 0%

< J J

Options Load File \ Transiate » Cancel
. Load Template Save Template . Refresh Libs " Help Reset Options
4
6) Click on Options then click on Geometry
' Streamin-Options
General Cells Fonts Geornetry Layers Likraries Froperties Ohijects
Log File: strmir.og e
Wiew Mame: layout
Translate Entire Hier M Translation Degpth
Fun Directory =
Surnrnary File e
User Skil File =
Autormatically Detect WVias . “Wia Map Fle -
Fef. Technology Librarias
Text Mamespace: coba n,
M Owerwrite Existing Cells
— Merge Furposes To Drawing
__ Disable file locking
Label Case Sensitivity
& Preserve s Upper o Loneer
7) Select Snap To Grid
| Streamin-Options =
General Cells Fonts ||~ Geometry | Lavers Libsaries Fropeties Objects

__ lgnore Box Fecords

Feport bad Polygons and Faihs

118

8) Click Layers -> Load File

- Streamin-Options x|
General Cells Fonts Geometry Layers Libraries Properties Objects

— Use Automatc Mapping

New Mapping Delete Mapping Load File Save As.,
Map File Name

e . e

9) Find the streamOut.map file in your cadence folder. (You might have to look around more)
Look in: |2 Avsuhomesuichi2dh2408icadences B e@er g=m
=
S appOption.dat
Svha
L) Example 3-1.v After finding the file, Select and click Open and then OK to
[ac_shet.cmd _
[ac_shetiog return back to the Virtuoso(R) XStream In screen.
[encounter cend
D encounter Jog
[exampie31 gas2
E] senpl_circuit conn rpt
D senpl_circuit def
Vv
File name: streamOut map
Fie fype: Al Files (") ' Cancel

N

10)
=]

Clickon ...

119

Yirtuoso(R) XStream In

Stream File”
Destination Library™

Attach Technology Library

Top Cell

Load ASCII Tech File

\S Options) \& Load File g Transiate ¥ Cancel y
. Load Template | SaveTemplate , \ Refreshlibs | Help __Reset Options
V
11) Find, Select and Open the .gds2 file that was saved in PART 1, STEP 23.
Look in: |2 Avsuhomeiduid24 2408 kcacence/ . LB e5 E.:
@
() appOption dat
Civha
) Exampie 3-1v
) ac_shet et
() xc_shetiog
[encounter cmd
encounter
[) smpi_crcuit conn.rpt
(1) smpt_circuit def
D streamOut map
File name: example31 gds2
File type: Al Fles (° _Cancel
type: A Fles () [~ | L
12) Select the Destination Library (The new library created in step 3)
13) Select the NCSU_TechLib_ami06 for your Technology Library Attachment
= Virtuoso(R) XStream In -0 X
Stream Fie™ Avsuhomelduidu24/du2408iczdencefexample31 .gds2 =
Destination Library* CadenceLibrary I~
Attach Teshnology Library | NCSU_TechLib_ami06 [~]
Top Cell -
Load ASCII Tech File -
o Options ¢ Load File) Transiate o) Cancel >
. loadTemplate | Save emplate | Refreshlibs Help , '\ BReset Odtions

120

14) Click Translate. (A warning Log file will open, Just press No)
15) Click File->Import->DEF

= Virtuoso(R) DEF In x

DEFin File Name ne/du/du24 /2408 /cadence/smpl_cicrcuat, def
Target Library Name Cadencelibracy '
Ref Technology Libraries N
Create a module hierarchy from hierarchical names = Share Library
New Library -

Select Target Library Name (Sam/
Target Cell Name exanple3lcellnane

one you created before) : - Browse

No—

Target View Name layout

Fill Target Cell Name as shoW Component View List
Master Library List

‘cellname’ in the end)

Overwrite Design « Create CustomVias only
Fill Target View Name as shown (jus/ Log File Name
add ’|ayout') « Use Template File & Use GUI Fields
Finally Click on ... (Top Right Corner) Comment Char

Pin Purpote

Do not create any routing data -
Layer Map File Name

Cancel , _Defauts , _Apply _Help

16) Find the .def file in the cadence folder
3 Select DEF Flle X

Selection /wsu/home/du/du24/du2408/cadence/smpl_circuit. def

Path: /wsu/home/du/du24/du2408/cadence/
/ pd

Exanpl: 3-1.v
hell. cmd - .
:z:zh:n ;’;g This is annoying to use, but you need to browse back to
appOption. dat/ your cadence folder and find the .def file. Click ../ to
encounter. cmd .
encounter. log navigate back
example3l. gds2
smpl_circuit conn. rpt You might have to look around.

streamQut. map . .
vhdl/ Press OK once you find the .def file

17) Click File->New->Cell View

File
hra LeLiorary
Example31cellname
chematicSymbo n
Application

~ n
ation for this type of file

18)

19) Click Create and draw rectangle

121

122

20) Click Create->Add Pins

Pi1 Nemes AEC
Direction rput ‘ B.s Expansior ® of U 01
Type azii ' P acenenl 2 3inye o mulliple
1
Lzbel Offset U Label Localior _ qone o eft & righ
4. Rotae Ih 5 deways S Jpsida Dowr, Show Senstivity >>

m Cznce . Defauks | Help

Add the Pin Names.
Insert Space in between.
Make sure the Direction is correct (input/output)

Then go to the Black screen and just click away the pins. As you place each pin, it should
automatically go to the next entered pin.

The red ending is pointing out.

Do the same for your outputs.

21) Manually insert your ‘mygnd’ and ‘myvdd’ as inputs in the symbol as shown below

Click this to save symbol and then close

123

Virtuoso® Symbol Editor L Editin

File Edit View Create Check Options Window Hel}

I @ & 4 0 %X Q3 5 e |

22) Click File->New->Cell View
File
Library CadenceLibrary Ky
= oxepledipad Fill Cell (Just add ‘Pad’ in the end)
View schematic
Type schematic ' Fill View (Just add schematic)
Application
Open with Schematics L[Select Type (schematic)
— Ahvays use this application for this type of file
Library path file Press OK
/vsu/home/du/du24 /du2408/cell/cds. 1ib
Cancel | _Help
23)
@ Add Instance E3
Library ~ ami06_padframe Browse A bl‘ank black screen should open
Cell padvdd again.
View symbol Press | on the keyboard. (Figure on
Naros the left should pop up)
Click Browse and browse for the
Array Rows 1 Columns 1
symbol you created.
A Rotate Ah Sideways | = Upside Down

@ cCancel | Defaults | Help

124

23) Find, Select and Place the symbol to the black screen. (after selecting the symbol, simply move
cursor to black screen, the symbol should appear automatically)

— Show Categories

Library Browser - Add Instance

Library Cell View
CadenceLlibrary example3icell symbol
CADENCELIBRARY MZ_M1

M3_M?
NCSU_Analog_Parts

NCSU_Digital_Parts
NCSU_Sheets_8ths
NCSU_TechLib_ami06
ami06
ami06_padframe

basic

cdsDefTechLib

example31celiname
example3icellipad
smpl_circuit
smpl_circuit_VIA0
smpl_circuit_VIA1

24) Press I on the keyboard again and Click Browse and look for amiO6_padframe (on the left)

e Library Browser - Add Instance - 0%
— Show Categories
Ubrary Cell View
ami06_padfram? padinc] symbol
CADCNCCLIDRARY b_pads mal
Cadencelibrasry min_frame
NCSU_Analog_Parts pad_bidirhe
NCSU_Digital_>arns padaref
NCSU_Sheets_5ths padbox
NCSU_TechLit_ami0é padboxx
amioé padfc
ami06_padframe padgnd
basi [Gaginc
cdsDefTechLib padio
padnc
padout
padspace
padspace_1
padvdd
tmpCphMsg
Close Filters... Display... Help

In this part, you will add padding to your circuit.

In the middle column ‘Cell’, select and place padinc to the black screen. Padinc is the
input padding corresponding to your input pins. Place a pad for each input.

Do the same for output by using padout.
Do the same for myvdd and mygnd by using padvdd and padgnd respectively.

Press W on the keyboard to wire like so in the picture below.

125

126

25) Click this to save schematic with padding and close.
Launch| Eile Edit View Create Check Options Window Hel
Y, — "
=N B 0 @ X Q ¢ I
26) Click File->New->Cell View

File

Library Cadencelibrary

Cell example31pad
View layout

Type lay 0 ut '
Application

Layout L

Open with

—. Always use this application for this type of file

Library path file

/usu/home /du/du24 /du2408/cell/cds

11b

m Cancel

Help

Fill the same name in the Cell as the
one before

Fill View as ‘layout’
Select Type as ‘layout’
Press OK

A black screen should appear again.

28) Click File->Launch XL (A screen with the placed pads should open on the left)

29) Click this (bottom left corner)

ol =~ 9 o) &b
= NI . R A,
mouse L: showClickinfo()

8(11) | >

P
@ @ o

@

e

x [l &

M: delnstall&ppi{getCurren

127

30) This screen should pop up. Deselect everything under Generate except Instances
31) Edit Width and Height to 3.6

o Generate Layout X
Generale
¥ O Pins ¥ Ins:ances ¥ PR Boundary
— Traasistor Chaining __ Transistor Folding __ Snap Boundary
. Preserve Mappings & Extact Connectivity
1/0 Pins
Appy Layer , Width Height Num Create

Defeults: [ffimetall [dg|

M 09 09 |1
L‘ 9 4

Select: Number Selected: 0 Add aPin
Term Name Net Name Layer Width Height Num Create
1
Like this
= Generate Layout (x|
Generate
— WO Pins ¥ Instances — PR Boundary
— Transistor Chaining __ Transistor Folding _ Snap Boundary
. Preserve Mappings __ Extract Connectivity
170 Pins
Apply Layer . Width Height T Create
faults: M 36 (3.6 |1
Defaults: [fffimetall dg| = 2
Select Number Selected: 0 AddaPin
Term Name Net Name Layer Width Height Num Create
Press OK

32) Type placepads in the LOG window and press enter

Vietinen® A1 -1 ag Jwar/home/ad/sd1 &/ a1 29/(NC Inn 1

iR 1005 UN0NE P cadence
" TR - b S < e - 3 - 1 Lo s
e 2N Gk ereals pre fem T aehanatag witanes WITISTCMN
' LAS00L. Canncl varale - foan sdimaalin wzlanr 07135510 !
o XM Thees wers frrors cr wnmtras Fwieq 1smens yreeranice
Dey x-123 : 2x Comartivity = Chwk = Aps.cx. Soace (on aocw Oetedls

Iplazepady ——

Lﬁar.gm&m_-&.mmmg_um. |
* | plawpads

128

33) Rectangular blocks in red should appear on the screen at this point.
34) Press shift+f together to turn the red figure into

NOTE: each block ONLY MOVES IN ONE DIRECTION. So move it left/right first then move it
top/bottom or the other way around.

To rotate block, select block and then click VIEW->Rotate and then click anywhere on the screen to
initiate the rotate.

SAVE THIS FILE. YOU ARE DONE

129

FPGA Implementation Procedure Update:

Note: The following procedure was done on Xilinx Version 13. You may see variations between
different versions. However, the general procedure for FPGA implementation remains the same,
which is:

1)
2)
3)
4)
5)

6)

Create a project, add existing source.

Synthesize code by double clicking on View RTL Schematic.

Assign Package Pins, under ‘User Constraints’.

Generate programming file to generate .bit file

Configure Device Boundary Scan FPGA Implementation ... selecting .bit file
for your device.... Download program to the board.

Testing code on the board.

The below is a very quick and general overview of the entire process

Procedure for FPGA Implementation:

1)

Create a new project
File -> New Project

2) The following screen will appear. Make sure you specify the correct family name, device

name , package name and Preferred language.

130

Project Settings

Specify device and project properties,
| Select the device and design flow for the project

Property Mame Value a
Evaluation De'.r_elupmgnt Eu-a_rd Mone Specified Ed
Product Category General Purpose Rd
Farniky Spartan3 - |
Device KC3I5200
Package FT256 Ed
Speed -5 Rd
..
Top-Level Source Type HDL -
51.rnt_h5is Tool AST (WHDL Verilog) Ed
Simulator Modelsim-5E Verilog
Prefene::! Lanqua_qe Verilog Ed
Property Specification in Project File |Store all values R
Manual Compile Order
WHOL Source Analysis Standard VHDOL-93 Rd
. 7
= -

3) Click next. Xilinx will show you the project summary. Verify that and click Finish.
4) Add an existing Verilog file.
Right click Design window and select ‘Add Source’.

131

_a I5E Project Mavigator (0.61xd) - C\Users\ead728\project8\projectd.xise

- e—
File Edit View Project Source Process Tools Window Layout Help

DaHﬁ"‘d‘h:ﬂ ﬁX|H‘J{H| }}%i‘;‘."';"ﬁg.}w@|é.
trie s +08 x|
| view: @ {8F Implementation (©) M Simulation

Empty View

E] Mew Source...

Add Copy of Source...

The view currently contains no files, You can a
the project using the toolbar at left, commands
Praoject menu, and by using the Design, Files, 2
Libraries panels.

Use: Manual Compile Order

H|E @ || | =

= New Source: To create a new source fi @ Implement Top Module

+ Add Source: To add an existing file to File/Path Display "
* Add Copy of Source: To copy an existi
the project directory and add it to the Expand All

Collapse All

?2 Mo Processes Running

: : : MYy Find... Ctrl+F
Mo single design module is selected.

- ﬁ' Design Utilities

|28 22| ¥

Design Properties...

5) Xilinx will then prompt you to select Verilog file. Add it.
6) Double click on View ‘RTL Schematic’ under Synthesize — XST

132

 ISE Project Navigator (0.61xd) - CAUsers\ead728\project8\projectfais

i File Edit View Project Source Process Tools Window

D2EP| L dDEX(wa| »i2l8
Design ~+08 X .
View: @ i:l':._l:EImplemenEﬁnn) M Simulation -
(5| | Hierarchy

& - 18] projects |
SE 1 5. £ xc3s200-5f1256

i o [W]ef%s smpl_circuit (test 11.v)

H R ||

™M Running: Synthesis

Processes: smpl_circuit

z Design Surmmary/Reports
Design Utilities

User Constraints
- P™ Synthesize - XST

§ View Technology Schematic

@2 Check Syntax
- P) Generate Post-Synthesis Simulation Model
- ®3 Implement Design
P2 Generate Programming File
- @ Configure Target Device
- &% Analyze Design Using ChipScope

H|&F || v

7) Under ‘User Constraints’, double click ‘I/O Planning- Pre-Synthesis.

133

3 Mo Processes Running

Processes: smpl_circuit

HRv

= Design Summary/Reports
Design Utilities
E User Constraints
L=F Create Timing Constraints
IO Pin Planning (Plan&head] - Pre-Synthesis

H | 8%

@] /O Pin Planning (PlanAhead) - Post-Synthesis
e} Floorplan Area/10/Loegic (PlanAhead)

?3 Implement Design

f2 Generate Programming File

@ Configure Target Device

2% Analyze Design Using ChipScope

8) You will then see the following screen. Please note: give Xilinx sometime to open ‘Plan
Ahead Screen’.
9) Then assign pins as you like in ‘I/O Ports’ wizard.

E] projectd - [C\Users\ead728\project8\planAhead_run_l\project8.ppr] - PlanAhead 132 = o L == ﬂ
s
File Edit Tools Window Layout View Help 0, Search commands
= ;7 | Pr] anning - | S O 3:: I
Blwo XX Q K| @ [Bon el & 3N
RTL Design - smpl_circuit.ucf (target) *
RTL Netlist — O3 % |[fHPackage x Od % [Device x Og ®
= [
= 7l -
= | cicevit - = -
& Sources-, (52 RTL Netlist | & Timing Constra. . | S
Ifo Port.Pr.opI»e.rﬁes = 0O g x f\‘i
+« = E|5 (
~ i Properties | Clock Regions i
1/0 Ports -0 g =
| C\ MName Dir Neg Diff Pair Site Bank If0Std Vocco Vref Drive Strength Slew Type Pull Type
== Alports (5
= Scalar ports (5)
? [A Input K13 3 LVCMOS25 25 12 sLow
D%_ [B Input K14 3 LVCMOS25 25 12 sSLOwW
Z‘FJ [C Input 113 3 LVCMO525 25 12 sLow
I <l x Output 4LVCMOS25 2.5 12 5LOW
o)
Package Pins = O g *
Q| Name Prohibit Port IfOStd Dir Veco Bank Bank Type Type DiffPair Clock Voltage Min Trace Dly (ps) Max T|
| =& AlPins (258)
= ; Standard
= Standard
E‘; Standard
1] 2.5 Standard
2.5 Standard
Standard
Standard
Standard
[Bankless Pins (53)
(il 1] =]
. Q.Td Cbnsole | ':i‘- Méssag_és }J Package Pins .
ISE Integration Flow

134

10) Save the design.
rojectd - [ChlUsers\ead 728\project8\planih
[proj 8\project8\p

File | Edit Tools Window Layout View

Save Design | YE
Open File...
B SaveFile Ctrl+5
Save Project...
AL Archive Project... Timing Cor
Import r
Export 3
Open Log File ji
Open Journal File e
= Print...
ir Site
Exit r
-~ Scalar ports (5)
@ A Input K13
&+ B Input K14
s C Input 113
""" <o x Output P11
@ yfoupet] [gB

11) Minimize Plan Ahead window and go back to Xilinx.
12) Double click on ‘Generate Programming File’ as shown below. In this step, Xilinx will
create a file with extension .bit

135

o ISE Project Navigator (0.61xd) - C:\Users\ea4728\project8\project8.xise -
+= File Edit View Project Source Process Tools Window L

DAEIP - DEXvwa| »i228]
Design +08 X C
View: @ @Implemenmﬁon) M Simulation

Hierarchy

, projectd
= £ xc3s200-5ft256

I'_||EI #|'I-T||_T|'|§M|ﬁf_ Ml

% PRunning: Translate

Processes: smpl_circuit

Design Summary,/Reports

Design Utilities

User Constraints
Create Timing Constraints
I/0 Pin Planning (PlanAhead) - Pre-Synthesis
I/0 Pin Planning (PlanAhead) - Post-Synthesis
Floorplan Area/10/Legic (PlanAhead)

Synthesize - X5T

F-82 Implement Design

& . Generate Programming File
@158 Configure Target Device
28 Analyze Design Using ChipScope

H 88|38 E| v

13) Next, expand ‘Configure Target Device’ and double click on iMPACT.

136

?2 Mo Processes Running

Processes: smpl_circuit

Design Summary/Reports
Design Utilities
User Constraints
Create Timing Constraints
I/O Pin Planning (PlanAhead) - Pre-Synthesis
I/Q Pin Planning (PlanAhead) - Post-Synthesis
Fleorplan Area/10/Logic (PlanAhead)
Synthesize - X5T
Irnplement Design
Generate Programming File
Configure Target Device
Generate Target PROM/ACE File
-. Manage Configuration Project (iMPACT)
Analyze Design Using Chip5Scope

AR H v

14) You will see the following screen. Select Boundary Scan.

15 ISEiIMPACT (0.61xd) - [Boundary Scan] — ‘. —
— e i —

@ File Edit View Operations Output Debug Window Help

DB puxg/=olisrw

MPACT Flows 08 x|
‘251 Boundary Scan
- [2] SystemACE

- |2] Create PROM File (PROM File Format...
[2] WebTalk Data

MPACT Processes +0O &8 X

Available Operations are:

Rizht click to Add Device or Initialize JTAG chain

@ Boundary Scan

Console

137

15) Right click when prompted and select ‘Initialize Chain’.

'@ File Edit View Operations Output Debug Window Help

[ISEIMPACT (0.61xd) - [Boundary Scan] " _-;_
. . -

RECIEEE TR X:

iMPACT Flows 08 x|

----- ‘o5 Boundary Scan

2] SystemACE

=] Create PROM File (PROM File Format...
[[2] WebTalk Data

Add Xilinx Device... Ctrl+D
Add Non-Xilinx Device... Ctrl+K

Initialize Chain Ctrl+I

Cable Auto Connect
Cable Setup...

iMPACT Processes —+OF X

Available Operations are:

Output File Type [

ice or Initialize JTAC

16) You should then then see the following two devices.
@ ISE iIMPACT (O.61xd) - [Boundary Scan]

I@FHE Edit View Operations Output Debug Window Help

DAH| O XEmtmX: | =T AR

IMPACT Flows +08 x|

[+ sl Boundary Scan
| 2] SystemACE

> E Create PROM File (PROM File Format... | E :
- (=] WebTalk Data TOI ‘ :Emlnr:
=c3s200 xcfl2s
bypass bypass

TDO

138

The device that we are interested in is XC3S200. You will be prompted to select .bit file
that was generated earlier. Select that .bit file .

1% ISE iMPACT (0.61xd) - [Boundary Scan]

DPEH XEDEXiinwmX: 0 N

iMPACT Flows +08 %

[+ g Boundary Scan

- |=] SystemACE

|| Create PROM File (PROM File Format... E ;

- [=] WebTalk Data O 4 Exinac

xc3=200 xcflZs

ampl_circuit. bit bypass

Note: Underneath the device name, you should now see the name of the bit file you
selected earlier.

Xilinx will then ask you to add a .bit file to the second device as well. We are not
interested in this, so click BYPASS for this one.

DB XobXxunn%k: o/ 2oieR

iMPACT Flows 08 x|
[%% Boundary Scan
(=] SystemACE
|=] Create PROM File (PROM File Format...
(2] WebTalk Data el B
xc3s200 xcfli2s
smpl_circuit. bit bypass
ToDO
-
'@ Assign New Configuration File e
Lack in: | | Ci\Users\ea4728\projects El ¢ I+ W =]
f . _ngo
IMPACT Processes % Wiy o mpute : xrgnsgs
Available Operations are: R ead728 | isecenfig
= Erase | planAhead_run_1
=p Blank Check . xlnx_auto_0_xdb
= Readback K oxst

o Get Device ID
o Get Device Checksum
=) Get Device Signature/W)

Filz name: || |
Consale
) INFO: iMPACT : 501 Bypass
Files of type: |All Design Files (*.mcs *.isc *.bsd
| = : } EI Cancel Al

17) Then select FPGA Device when prompted as shown below.
Click Apply = OK

@ ISE IMPACT (Q.61xd) - [Boundary Scan] . |
- — i 0 —
@ File Edit View Operations Output Debug Window Help
DB ¥obxunux: L8
|MPACT Flows 08 x
| - ¥ Boundary Scan
SystemACE
Create PROM File (PROM File Format...
- [Z] WebTalk Data oI E‘:’“
xc3s200 xcflZs
smpl_circuit. bit bypass
TDO
.
@ Device Programming Properties - Device 1 Programming Properties ﬂ
Category
=] Boundary-5can
evice 1 (FPGA xc3 Property Mame Value
iMPACT Processes «+088| | - Device 2 (PROM xcf02s) Verify D
S ime Pulse PROG -'-
=) Blank Check b
= Readback
=) Get DeviceID
=P Get Device Checksum
=P Get Device Signature/Usercode
I
Cansole | [oc [o [seay || rep |
18) Then right click on the screen and select program
ISE iMPACT (0.61xd) - [Boundary Scan F = -i T N
@ - {)L ‘_r}-f__] ‘. L e . - P T -

|| IMPACT Processes

140

5 File Edit

View Operations

Qutput Debug

Window Help

DPEYpExutnxuuiamien
IMPACT Flows «+08&F x

[#- 55 Boundary Scan
i [2] SystemACE

[t |2] WebTalk Data

-|z] Create PROM File (PROM File Format...

oI FNILNDE
xc3s200 xcil2s
=mpl_circuit. bit bypass
TDO

«+08&F X

Available Operations are:

=$ Program

mp Get Device ID

=) Get Device Signature/Usercode
=p Read Device Status

=p One Step SVF

=P One Step XSVF

Program

Get Device ID

Get Device Signature/Usercode
One Step SVF

One Step XSVF

Assign Mew Configuration File...
Set Programming Properties...
Set Erase Properties...

Launch File Assignment Wizard
Set Target Device

141

Now you are ready to download the program to the board.

F
TOI F AL :
|
xc3s200 xcflis
smpl_circuit. bit bvpass
TDO
”
@ Configuration Operation Status u

Executing command. ..

19) After successful completion, you should see the message shown below:

142

{53 1SE iIMPACT (0.61xd) - [Boundary Scan] i

@ File Edit View Operations Output Debug Window Help

DB XoBXxumax: 2immipen

[iMPACT Flows <08 X

- 2% Boundary Scan
SystemACE

i Create PROM File (FROM File Format...
[|=] WebTalk Data DI ExnUNr

xc3s200 xcfl2s
smpl_circuit. bit bypass

iMPACT Processes <08 x

|| Available Operations are:

=» Program

=p Get DeviceID

mp Get Device Signature/Usercode
=) Read Device Status

'| = One Step SVF

=) One Step XSVF

Program Succeeded

| @ Boundary Scan |

20) Now, go ahead and test your code on the board using the pins you assigned earlier.

143

REFERENCES
[1] M.A. Bayoumi, G.A Jullien, W.C Miller, " A look-up table VLSI design methodology for RNS
structures used in DSP applications," IEEE Trans. Circuits and Syst., vol.34, no. 6, pp 604-616,
Jun. 1987.
[2] J. Bajard, and L. Imbert "A full RNS implementation of RSA" , IEEE Trans. on Comp., vol. 53,
no. 6, pp. 769-774 , June 2004.
[3] K. Konstantinides and V. Bhaskaran, “Monolithic architectures for image processing and
compression,” IEEE Computer Graphics and Applications, vol. 12, no. 6, pp. 75-86, Nov. 1992.
[4] G. Alia and E. Martinelli, "A VLSI algorithm for direct and reverse conversion from weighted
binary number to residue number system," IEEE Trans. Circuits and Syst., vol. 31, no. 12, pp.
1033-1039, Dec. 1984.
[5] R. M. Capocelli and R. Giancarlo, "Efficient VLSI networks for converting an integer from
binary system to residue number system and vice versa," IEEE Trans. Circuits and Syst., vol. 35,
no.11, pp. 1425-1431, Nov. 1988.
[6] A. Mohan, “Novel design for binary to RNS converters,” IEEE Int. Symp conf. Circuits and
Systems, vol. 2, no. 2, pp. 357-360, June 1994.
[7] P. Behrooa, "Optimal table-lookup schemes for binary-to-residue and residue-to-binary
conversions," IEEE Signals, Systems and Compluter Conf., vol. 1, pp 812-816, Nov. 1993.
[8] Mohamed. Akkal and Pepe Siy, "A new mixed radix conversion algorithm," Journal of
Systems Architecture, vol. 5, no. 9, pp. 577-586, Sept. 2007.
[9] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer
Technology, New York: McGraw Hill, 1967.
[10] D. N. Warren-Smith, Introduction to Digital Circuit Theory: A Monograph on Digital Circuit

Theory from the Beginning, Digital Logic Systems, 2nd ed., 2006, ISBN: 978-095818941-5

144

[11] J. Timler and C. S. Lent, “Power gain and dissipation in quantam-dot cellular automata,”
Journal Appl. Phys., vol. 91. no. 2, pp. 823-831, Jan. 2002.

[12] F. Barsi and M. Cristina Pinotti, “Fast base extension and precise scaling in RNS for look-up
table implementations”, IEEE Trans. on Signal Processing, vol. 43, no. 10, pp. 2427-2430, Oct.
1995.

[13] Chin-Yung, Shiou-An Wang and Sy-Yen, “Quantum boolean circuits construction using
tabulation method,” 4th IEEE Nanotechnol. Conf., vol. 1,pp. 596-598, Aug. 2004.

[14] Yuke Wang, "Residue-to-binary converters based on new chinese remainder theorems, " IEEE
Trans. Circuits and Syst 11, vol. 47, no. 3, pp. 197-205, March 2000.

[15] Yuke Wang, Xiaoyu Song and Mostapha Aboulhamid, "A new algorithm for RNS magnitude
comparison based on new chinese remainder theorems," IEEE Candian Conf. on Elec. and Comp.,
vol. 1, pp. 571-576, May 1999.

[16] M. Anatha Shenoy and Ramdas Kumaresan, " A fast and accurate RNS scaling technique for
high speed signal processing," IEEE Trans. on Acoustics. Speech and Signal Processing
Processing, vol 37, no. 6, pp. 929-937, June 1989.

[17] D. Banerji, "On the use of residue arithmetic for computation," IEEE Trans. Comp., vol.C-23,
no. 12, Dec. 1974.

[18] G. Dimauro, S. Impedovo, and G. Pirlo, "A new technique for fast number comparison in
residue number system", IEEE Trans. on Comp., vol. 42, no. 5, pp. 608-612, May 1993.

[19] R. Zhang, K. Walus, W. Wang and G. A. Jullien, “A method of majority logic reduction for
quantum cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 4, pp. 443—450, Dec. 2004.

[20] C. Efstathiou, D. Nikolos and J. Kalamatianos. "Area-time efficient modulo 2n-1 adder

design," IEEE Trans. On Circuits and Systems-II, vol. 41, no. 7, pp. 463-467, July 1994.

145

[21] M. D. Ercegovac and T. Lang, "Simple radix-4 division with operands scaling," IEEE
Trans.on Comp., vol. 39, no. 9, pp.1204-1208, Sep. 1997.

[22] A. Hiasat, "New designs for a sign detector and a residue to binary converter," IEEE Proc. on
Circuits, Devices and Systems, vol. 140, no. 4, pp. 247-252, August 1993.

[23] H. S. Miller and R. O. Winder, “Majority-logic synthesis by geometric methods,” IEEE Trans.
Elec. Comp., vol. EC-11, no. 1, pp. 89-90, Feb. 1962.

[24] K. M. Ibrahim and S. N. Saloum, "An efficient residue to binary converter design," IEEE
Trans. on Circuits and Sys., vol.35, no. 9. pp.1156-1158, Sept. 1988.

[25] G. A. Jullien, "Residue number scaling and other operations using ROM arrays," IEEE Trans.
on Comp., vol. 27, no. 4, pp. 325-337, April 1978.

[26] F. Miyata, “Realization of arbitrary logical functions using majority elements,” IEEE Trans.
Electronic. Comput., vol. EC-12, no. 3, pp. 183—-191, Jun. 1963.

[27] M. Lu and J. S. Chinag, "A novel division algorithm for the residue number system," /IEEE
Trans. on Comp., vol.41, No. 8, pp. 1026-1032, August 1992.

[28] Roy D. Merrill, "Improving digital computer performance using residue number theory", IEEE
Trans. Electronic Comp., vol. EC-13, no. 2, pp. 93-101, April 1964.

[29] S. B. Akers, “On the algebraic manipulation of majority logic,” IEEE Trans. Electronic.
Comp., vol. EC-10, no. 4, pp. 779-779, April 1961.

[30] L. TAIL and F. Chen, "Overflow detection in a redundent residue number system," [EEE
Proceedings, Part E, Computers and Digital Techniques, vol. 131, no. 3, pp. 97-98, May 1984.
[31] N. Takagi, H. Yasura, and S. Yajima, "High-speed VLSI multiplication algorithm with a
redundant binary addition tree, " IEEE Transaction on comp, vol. C-34, no. 9, pp. 789-796, Spet.
1985.

[32] S. Talahmeh, and P. Siy, "Arithmetic division in RNS using galois field GF(p)," Computer

Math. with Appl., vol. 39, no. 5, pp. 227-238, March 2000.

146

[33] C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc.
IEEE, vol. 85, no. 4, pp. 541-557, Apr. 1997.

[34] J. C. Majithia, "A pipeline array for square-root extraction," IEEE Electron. Lett., vol. 9, no.1,
pp- 4-5, Jan. 1973.

[35] A.B. Premkumar, "An RNS to binary converter in (2n-1),2n, (2n+1) moduli set", IEEE Trans.
Circuits and Syst, vo1.39, no. 11, pp 480- 482, July 1992.

[36] A.P. Shenoy and R. Kumaresan, "Residue to binary conversion for RNS arithmetic using only
modular look-up tables", IEEE Trans. Circuits and Syst., vol.35, n0.9. pp 1158-1162, Sept 1988.
[37] P. Bernardson, "Fast memoryless, over 64 bits, residue-to binary converter," IEEE Trans.
Circuits and Syst., vol. 32, no.3, pp 298-300, Mar. 1985.

[38] M.Hitz and E. Kaltofen,” Integer division in residue number systems”, IEEE Trans. Comp.,
vol. 44, no. 8, pp.983-989, Aug. 1995

[39] H. Cho and E. Swartzlander, "Adder design and analyses for quantum-dot cellular automata,"
IEEE Trans on Nanotechnology, vol. 6, no. 3, pp. 374-383, May 2007.

[40] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular
automata,” Journal Appl. Phys., vol. 75, no. 3, pp. 1818-1825, Feb. 1994.

[41] T. Oya, T. Asai, T. Fukui and Y. Amemiya, “A majority-logic device using an irreversible
single-electron box,” IEEE Trans. Nanotechnol., vol. 2, no. 1, pp. 15-22, Mar. 2003.

[42] Y. Fu and M. Wdlander, “Modelling and design of quantum dot cellular automata,”’ Journal
Appl. Phys., vol. 83, no. 6, pp. 3186-3191, March 1997.

[43] A. Gin, S. Williams, H. Meng, and P. D. Tougaw, “Hierarchical design of quantum cellular

automata,” Journal. Appl. Phys., vol. 85, no. 7, pp.3713-3720, Apr. 1999.

[44] S. Perri and P. Corsonello, “New methodology for the design of efficient binary addition

circuits in QCA,” IEEE Trans. Nanotechnol., vol. 11, no. 6, pp. 1192-1200, Nov. 2012.

147

[45] S . Andraos and H. Ahmed, “A new efficient memoryless residue to binary converter,” IEEE
Trans. Circuits and Syst., vol.35, no. 11, pp. 1441-1444, Nov. 1988.

[46] J. C. Lusth and D. J. Jackson, “Graph theoretic approach to quantum cellular design and
analysis” Journal. Appl. Phys., vol. 79, no. 4, pp. 2097 - 2102, Feb. 1996.

[47] Rui Zhang, P. Gupta, and N. K. Jha, "Threshold network synthesis and optimization and its
application to nanotechnologies," IEEE Trans. on Comp.-Aided Design of Intergrated Circuits and
Systems, vol. 24, no. 1, pp. 107-118, Jan. 2005.

[48] Rui Zhang, P. Gupta and N. K. Jha, "Majority and minority networks synthesis with and
applications to QCA-, SET- and SET- based nanotechnologies," IEEE Trans. on Comp.-Aided
Design of Intergrated Circuits and Systems, vol. 26, no. 7, pp. 1233 - 1245, July 2007.

[49] T. V. Vu, “Efficienit implementations of the chinese remainder theorem for sign detection and
residue decoding” IEEE Trans. Comp., vol. 34, no. 7, pp. 646-651, July 1985.

[50] M. B. Tahoori, J. Huang, M. Momenzadeh and F. Lombardi, “Testing of quantum cellular
automata,” IEEE Trans. Nanotechnol., vol. 3, no.4, pp. 432—442, Dec. 2004.

[51] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic
circuits,” IEEE Trans. Comp., vol. 30, no. 3, pp. 215-222, Mar. 1981.

[52] A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R. Ravichandran and K. Whitton,
“Fabricatable interconnect and molecular QCA circuits,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 26, no. 11, pp. 1978-1991, Nov. 2007.

[53] S. Roy and V. Beiu, “Majority multiplexing-economical redundant fault-tolerant designs for
nanoarchitectures,” IEEE Trans. Nanotechnol., vol. 4, no. 4, pp. 441-451, Jul. 2005.

[54] W. Ibrahim, V. Beiu, and M. Sulieman, “On the reliability of majority gates full adders,”

IEEE Trans. Nanotechnol., vol. 7, no. 1, pp. 56—67, Jan. 2008.

148

[55] S. Srivastava and S. Bhanja, “Hierarchial probabilistic macromodeling for QCA circuits,”
IEEE Trans. Comput., vol. 56, no. 2, pp. 174-190, Feb. 2007.

[56] S. Bhanja and S. Sarkar, “Probabilistic modeling of QCA circuits using bayesian networks,”
IEEE Trans. Nanotechnol., vol. 5, no. 6, pp. 657—670, Nov. 2006.

[57] K. Kim, K. Wu and R. Karri, “The robust QCA adder designs using composable QCA
building blocks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 1, pp. 176—
183, Jan. 2007.

[58] J. Janulis, P. Tougaw, S. Henderson, and E. Johnson, “Serial bit-stream analysis using
quantum-dot cellular automata,” IEEE Trans on Nanotechnology, vol. 3, no.1, pp. 158-164, March
2004.

[59] V. Vankamamidi, M. Orravi, and F. Lombardi, "A line-based parallel memory for QCA
implementation," /IEEE Trans. Nanotechnol., vol. 4, no. 6, pp. 690-698, Nov. 2005.

[60] Richard F. Tinder, “Multilevel logic minimization using K-map XOR patterns,” IEEE Trans.
On Eud., vol. 38, no. 5, pp. 370 - 375, Nov. 1995.

[61] P. D. Tougaw and C. S. Lent, “Dynamic behavior of quantum cellular automata,” Journal
Appl. Phys., vol. 80, no. 8, pp. 47224736, Oct. 1996.

[62] C. S. Lent and B. Isaksen, "Clocked molecular quantum-dot cellular automata," IEEE Trans.
Electron Devices, vol. 50, no. 9, pp. 1890-1896, Sep. 2003.

[63] E. S. Mandell and M. Khatun, “Quasi-adiabatic clocking of quantum-dot cellular automata,”
Journal Appl. Phys., vol. 94, no. 6, pp. 4116—4121, Sep. 2003

[64] Seminario JM, Derosa PA, Cordova LE and Bozard BH, “A molecular device operating at
terahertz frequencies: theoretical simulations,” IEEE Trans. on Nanotechnology , vol. 3, no. 1,
pp-215-218, March 2004.

[65] M. A.Bayoumi, G. A. Jullien and W. C. Miller, “A VLSI implementation of residue adders,”

IEEE Trans. Circuits and Syst., vol. 34, no.3, pp. 284-288, Mar. 1987.

149
[66] F. J. Taylor, “A single modulus complex ALU for signal processing,” IEEE Trans. Acoust.,
Speech Signal Processing, vol. 33, no.5, pp. 1302 — 1315, Oct. 1985.
[67] D. K.Banerji, “A novel implementation method for addition and subtraction in residue number
systems,” IEEE Trans. Comput., vol. C-23, no.1, pp. 106-109, Jan. 1974
[68] S. J. Piestrack, “Design of residue generators and multioperand adders modulo 3 built of

2

multioutput threshold circuits,” Proc. IEEE Computers and Digital Techniques, vol. 141, no. 2,
pp- 129 - 134 , March 1994.

[69] C. H. Huang, “A fully parallel mixed-radix conversion algorithm for residue number
applications”, IEEE Transactions on Computers, vol. 32, no. 4, pp. 398 — 402, April 1983.

[70] M. Akkal and P. Siy, “A new mixed radix conversion algorithm MRC-II" , Journal of System
Architecture, vol. 53, no. 9, pp. 577-586, May. 2007.

[71] M. Becherer, G. Csaba, W. Porod, R. Emling, P. Lugli, D. Schmitt-Landsiedel, "Magnetic
ordering of focused-ion-beam structured cobalt-platinum dots for field-coupled computing”, IEEE
Trans. on Nanotechnology, vol.7, no.3, pp. 316-320, May 2008.

[72] B. Qiaa and H. E. Ruda, “Evolution of a two-dimensional quantum cellular nerual network
driven by an extemal field,” Journal Appl. Phys., vol. 85, no. 5, pp. 2952-2961, March 1999.

[73] M. Akkal and P. Siy “Optimum RNS sign detection algorithm using MRC-II with special
moduli set,” Journal of System Architecture. vol 54, no. 10, pp. 911-918. Oct. 2008.

[75] G. C. Cardarilli, “RNS-to-binary conversion for efficient VLSI implementation,” [EEE
Circuits and Systems I, vol. 46, no. 6, pp. 2427 — 2430, Oct. 1995.

[76] V. Pudi and K. Sridharan, “Low complexity design of ripple carry and Brent—Kung adders in
QCA,” IEEE Trans. Nanotechnol., vol. 11, no. 1, pp. 105-119, Jan. 2012.

[77] M. Covemale, M. Macucci, G. lannaccone, C. Ungarelli and J. Martorell, “Modeling and

manufactarability assessment of bistable quantumdot cells,”” Journal Appl. Phys., vol. 85, no. 5,

pp. 2962-2971, Mar. 1999.

150

[78] K. Walus, R. A. Budiiman and G. A. Jullien, “Split current quantum-dot cellular automata
modeling and simulation,” /IEEE Trans. Nano., vol, 3, no. 2, pp. 249-255, June 2004.

[79] G. Toth and C. S. Lent “Role of correlation in the operation of quantum-dot cellular
automata,” Journal Appl. Phys., vol. 89, no. 12, pp. 7943-7953, June 2001.

[80] J. Timler and C. S. Lent, “Power gain and dissipation in quantam-dot cellular automata,”
Journal Appl. Phys., vol. 91. no. 2, pp. 823-831, Jan. 2002.

[81] I. Amlani, “Experimental demonstration of a leadless quantum-dot cellular automata cell,”
Appl. Phys. Lett., vol. 77, no. 5, pp. 738-740, July 2000.

[82] R. Brayton, G. Hachtel and A. Sangiovanni-Vincentelli, “Multilevel logic synthesis,” Proc.
IEEE, vol. 78, no. 2, pp. 264-300, Feb. 1990.

[83] K.Walus, “High level exploration of quantum dot automata (QCA),” Conf. Signal, Systm. and
Comp., vol. 1, pp. 30- 33, Nov. 2004.

[84] T. Sasao and P. Besslich, “On the complexity of Mod-2-sum PLA’s,” IEEE Trans. Comput.,
vol. 39, no. 2, pp. 262-265, Feb. 1990.

[85] H. Cho and E. E. Swartzlander, “Adder and multiplier designs in quantumdot cellular
automata,” IEEE Trans. Comput., vol. 58, no. 6, pp. 721-727, Jun. 2009.

[86] K.Walus, T. Dysart, G. Jullien and R. Budiman, “QCADesigner: A rapid design and
simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotechnol., vol. 3, no. 1, pp.
26-29, Mar. 2004.

[87] K. Walus, G. Schulhof and G. Jullien, “Implementation of a simulation engine for clocked
molecular QCA,” Proc. IEEE Can. Conf. Electr. Comput. Eng., vol. 1, pp. 2128-2131, May 2006.
[88] T. Yatagai, "Cellular logic arithmetic for optical computers", Applied Optics, vol. 25, no. 10,
pp. 1571-1577, May 1986.

[89] G. Strucke, "Parallel architecture for digital optical computer" Applied Optics, vol. 28, no. 2,

pp- 363-370, Jan 1989.

151

[90] Dharma P. Agrawal and T. R. N. Rao, “On multiple operand addition of signed binary
numbers,". [EEE Trans. Comp., vol. C-27, no. 11, pp. 1068-1070, Nov. 1978.

[91] A.K Kamal, H. Singh and D. P. Agrawal, "A generalized pipeline array," IEEE Trans. Comp.,
vol. 23, no. 5, pp. 533-536, May 1974.

[92] Dharma P. Agrawal, "High-speed Arithmetic arrays," IEEE Trans. Comp., vol. C-28, no. 3,
pp- 215-224, March 1979.

[93] R. Golshan and J. S. Bedi, "Reversible nonlinear interface optical computing," Opt. Eng., vol.
28, no. 6, pp. 683-686, June 1989.

[94] M. Dagenais and W.F Sharfin "Optical switching of semiconductor laser amplifiers,” Appl.
Phys. B., vol. B46, no. 1, pp. 35-41, May 1988.

[95] J. Tanda and Y Ichioka "Modular Components for an array logic system", Applied Optics,
vol. 26, no. 18, pp.3954 -3960, Oct. 1987

[96] J. C. Majithia and R. Kitai, "A cellular array for the nonrestoring extraction of square roots,"
IEEE Trans. Conput. (Corresp.), vol. C-20, pp. 1617-1618, Dec 1971.

[97] H. H. Majithaia and R. Kitai, “Cellular array for nonrestoring square root extraction,"
Electron. Lett., vol. 6, pp. 66-87, 1970.

[98] J. C. Hoffman, B. Lacaze and P. Csillag, "Iterative logical network for parallel multiplication,"
Electron. Lett., vol. 4, pp. 178-179, May 1968.

[99] K. J. Dean, "Binary division using a data-dependent iterative array," Electron. Lett., vol. 4, pp.
283-284, July 1968.

[100] R. C. Devries and M. H. Chao, "Fully iterative array for extracting square roots," Electron.
Lett., vol. 6, pp. 255-256, Apr. 1970.

[101] A. Gex, "Multiplier-divider cellular array," Electron. Lett., vol. 7, pp. 442-444, July 1971.
[102] J. C. Majithia, "Cellular array for extraction of squares and square roots of binary numbers,"

IEEE Trans. Comput. (Short Notes), vol. C-21, pp. 1023-1024, Sept. 1972.

152

[103] D. P. Agrawal and H. Singh, "Iterative array for square-root, division, and multiplication,"
8th Ann. Conv. Comput. Soc. of India, Mar. 26, 1973.

[104] J. C. Majithia, "A pipeline array for square-root extraction," Electron. Lett., vol. 9, pp. 4-5,
Jan. 1973.

[105] R. Ranjan, H. Singh, A. Awasthi, W. Smuda and G. R. Gerhart, "Finite state modeling of
Mobile robots for complexity determination,” Proc. SPIE, Unmanned Systems Technology VIII,
vol. 6230, May 2006.

[106] Wei Wang, M. Swamy, M Ahmed and Yuke Wang., “A high speed residue-to-binary
converter and a scheme for its VLSI implementation, ”. IEEE Trans. Comput., vol. 6, no. 1, pp.
330 — 333, July 1999.

[107] B. Taskin, “Improving line-based QCA memory cell design through dual phase clocking”
IEEE Trans. Very Large Scale Integration (VLSI), vol. 16, no. 12, pp. 1648 - 1656, Dec. 2008.
[108] Yuke Yang and Mustafa Abd-El-Bar, “A new algorithm for RNS Decoding,” IEEE
Transactions in Circuits and Systems-1: Fundamental Theory and Applications, vol 43, no 12, Dec.
1996.

[109] W. K. Jenkins and B. J. Leon, "The use of residue number systems in the design of finite

impulse response digital filters," IEEE Trans. Circuits Syst., vol. 24, no. 4, pp. 191-201, Apr. 1977.

153

ABSTRACT

EMERGING DESIGN METHODOLOGY AND ITS IMPLEMENTATION
THROUGH RNS AND QCA
by
OMAR DAJANI
August 2013

Advisor: Dr. Harpreet Singh
Major: Electrical Engineering

Degree: Doctor of Philosophy

Digital logic technology has been changing dramatically from integrated circuits, to a
Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits.
Research focused on increasing the speed and reducing the size of the circuit design.
Residue Number System (RNS) architecture has ability to support high speed concurrent
arithmetic applications. To reduce the size, Quantum-Dot Cellular Automata (QCA) has
become one of the new nanotechnology research field and has received a lot of attention
within the engineering community due to its small size and ultralow power.

In the last decade, residue number system has received increased attention due to its
ability to support high speed concurrent arithmetic applications such as Fast Fourier
Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS
arithmetic in addition and multiplication. In spite of its effectiveness, RNS has remained
more an academic challenge and has very little impact in practical applications due to the
complexity involved in the conversion process, magnitude comparison, overflow

detection, sign detection, parity detection, scaling and division. The advancements in

154

very large scale integration technology and demand for parallelism computation have
enabled researchers to consider RNS as an alternative approach to high speed concurrent
arithmetic. Novel parallel - prefix structure binary to residue number system conversion
method and RNS novel scaling method are presented in this thesis.

Quantum-dot cellular automata has become one of the new nanotechnology research
field and has received a lot of attention within engineering community due to its
extremely small feature size and ultralow power consumption compared to COMS
technology. Novel methodology for generating QCA Boolean circuits from multi-output
Boolean circuits is presented. Our methodology takes as its input a Boolean circuit,
generates simplified XOR-AND equivalent circuit and output an equivalent majority gate

circuits.

During the past decade, quantum-dot cellular automata showed the ability to
implement both combinational and sequential logic devices. Unlike conventional Boolean
AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks
is majority gate. With combining these QCA gates with NOT gates any combinational or
sequential logical device can be constructed from QCA cells. We present an
implementation of generalized pipeline cellular array using quantum-dot cellular
automata cells. The proposed QCA pipeline array can perform all basic operations such
as multiplication, division, squaring and square rooting. The different mode of operations

are controlled by a single control line.

155

AUTOBIOGRAPHICAL STATEMENT
Omar Dajani
He received his BS degree in Computer Engineering from Jordan University of
Science and Technology, Jordan, in 1995 and MS degree in Electrical and Computer
Engineering from University of Detroit Mercy, Detroit, MI in 1996. He is currently
working as electrical system engineer for Ford Motor Company and pursuing a Ph.D.
degree in Electrical Engineering at Wayne State University, Detroit, MI. His research

interests are in residue number system, nanotechnology, parallel processing and VLSI.

PUBLICATIONS:

[1] O. Dajani and P. Siy, “Novel parallel - prefix structure binary to residue number
system conversion method,” CSC, Journal of Int. Logic and Comp., vol. 3, no. 1, pp. 1-
13, Oct. 2012.

[2] O. Dajani and P. Siy, “Simplified RNS scaling algorithm and division algorithm,”
CSC, Journal of Int. Logic and Comp., submitted April 2011 and accepted Aug. 2012.

[3] O. Dajani, G. Bawa and H. Singh, “VLSI implementation of residue adder and
subtractor,” Int'l Conf. Frontiers on Comp. Sci. and Comp. Eng. (FECS'I2), vol. 1, pp.
604 -607, July 2012.

[4] O. Dajani and H. Singh, “Quantum boolean circuit construction methodology using
XOR-AND reduction technique,” IEEE SEM Fall Conf., Nov. 2012.

[5] O. Dajani, H. Singh and D. P. Agrawal, “Implementation of generalized pipeline
cellular array using quantum-dot cellular automata,” IEEE Trans. Nanotechnol, submitted

March 2013.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2013

	Emerging Design Methodology And Its Implementation Through Rns And Qca
	Omar Dajani
	Recommended Citation

