Edith Cowan University
Research Online

Theses : Honours Theses

1997

Design and implementation of high-radix arithmetic systems
based on the SDNR/RNS data representation

Paul Whyte
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/theses_hons

b Part of the Computer and Systems Architecture Commons

Recommended Citation
Whyte, P. (1997). Design and implementation of high-radix arithmetic systems based on the SDNR/RNS
data representation. https://ro.ecu.edu.au/theses_hons/312

This Thesis is posted at Research Online.
https://ro.ecu.edu.au/theses_hons/312

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/theses_hons
https://ro.ecu.edu.au/thesescoll
https://ro.ecu.edu.au/theses_hons?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ro.ecu.edu.au%2Ftheses_hons%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.ecu.edu.au/theses_hons/312

Edith Cowan University

Copyright Warning

You may print or download ONE copy of this document for the purpose
of your own research or study.

The University does not authorize you to copy, communicate or
otherwise make available electronically to any other person any
copyright material contained on this site.

You are reminded of the following:

e Copyright owners are entitled to take legal action against persons
who infringe their copyright.

e A reproduction of material that is protected by copyright may be a
copyright infringement. Where the reproduction of such material is
done without attribution of authorship, with false attribution of
authorship or the authorship is treated in a derogatory manner,
this may be a breach of the author’s moral rights contained in Part
IX of the Copyright Act 1968 (Cth).

e Courts have the power to impose a wide range of civil and criminal
sanctions for infringement of copyright, infringement of moral
rights and other offences under the Copyright Act 1968 (Cth).
Higher penalties may apply, and higher damages may be awarded,
for offences and infringements involving the conversion of material
into digital or electronic form.

USE OF THESIS

The Use of Thesis statement is not included in this version of the thesis.

EDITH COWAN UNIVERSITY
FACULTY OF SCIENCE, TECHNOLCGY AND ENGINEERING
SCHOOL OF MATHEMATICS, INFORMATION TECHNOLOGY AND ENGINEERING
DEPARTMENT OF COMPUTER AND COMMUNICATION ENGINEERING

ENS424] Engineering Project 2
Project report

Design and implementation of high-radix arithmnetic systems based on the SDNR/RNS data
representation

Student: Paul Whyte (0930227)
Project coordinator: Associate Professor Wojciech Kuczborski
Project examiners: Associate Professor Wojclech Kuczborsld
Dr Stefan Lachowicz
Date: Thursday, 16 January 1997

TR

EDITH COWAN UMIVERSITY
LIBRARY

Acknowledements

1 would ke to express my sincere gratitude to my supervisor for this project, Associate
Professor Wojciech Kuczborski, for his advice and guidance. I am also thankful to my family for their
support during both this project and my undergraduate university career,

Paul Whyte

PAUL, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

tad

Abstract

This project involved the design and implementation of high-radix arithimetic sﬁstems based on
the hybrid SDNR/RNS data representation. Some real-time applications require 2 real-time arithmetic
systemn. An SDNR/RNS arithmetic system provides parallel, real-time processing.

The advantages and disadvaniages of high-radix SDNR/RNS arithmetic, and the feasibility of
implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this
project. A common methodological model, which included the stages of analysis, design,
implementation, testing, and sirmulation, was followed.

" The combination of the SDNR and RNS transfosms potential complex logic networks into
simpler logic blocks. It was found that when constructing a SDNR/RNS adder, factors such as the
radix, digit set, and moduli nmst be taken into account.

There are many avenues still to explore. For example, implementing other arithmetic systems
in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS
systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues
relating to relative performance.

PAUL WHYTE ENGINEERING PROICCT REPORT . 16 JANUARY 1697

I certify that this thesis does not incorporate without acknowledgement any material previously
submitted for a degree or diploma in any mstitution of higher education; and that to the best of my
knowledge and belief in does not contain any material previously published or written by another person
axcept where due reference is made in the text.

Signature

Date R T A A

PAUL WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

Table of contents

1. INTRODUCTION

2.1 A

2.2 SCOPE

2.3 STRATEGY __

3.1.3 Integers

4, ANALYSIS

4.2 CASE STUDIES

5. DESIGN

5.3 ADIDIER DESIGN

3.6.2 Inpuis

3.6.3 Quiputs

5.0.4 Notes

5.7 STICK DIAGRAMS

3

2. PROJECT DEFINITION 9
9

9

g

3. BACKGROUND THEORY i0
3.1 COMPUTER AR¥THMETIC 10
3. 1.1 Modhlar aritinmetic 7 10
3.1.2 Real and rational rumbers 12
i2

3.4 Sigmed Digit Number Repr esentation i

3 1.5 Residue Number Sysiem o 24
3.1.6 Sigrred Digit Number Repr esentationResidhe Number System companson 27

3 1.7 Signed Digit Number Representation/Residue Number System 27
3.2 COMPUTER ARCHITECTURE 44
3.2.1 VLSI choracteristics] 44
3.2.2 Clock distribution schemes 43
3.2.3 VLST arvay algorithms 46
3.3 IMPLEMENTATION TECHNOLOGY 48
3.3.1 Complemeniary melal oxide semiconductor 48
58

4.1 SDNR/RNS CONFIGURATION ANATLYSLS 58
62

4.2.1 RNS moduli set consisting of two elements 62
4.2.2 RNS moduli sei consisting of three elements 68
4.2.3 Comparisons 7+
73

5.1 SDNR/RNS CONFIGURATION 78
5.2 RETERENCE TABLES 79
32

5.4 COMPONENT DESIGN 83
3.4.1 detect sign 83
5.4.2 detect_region 83
5.4.3 generate cayry___ 89
544 add_wmod pl 90
idsadd mod p2 i
5.4.6 correct mod pf 98
5.4.7 correct mod p? 100
S5.4.8 addde_mod pl_ 103
3.4.9 addc mod p2 103
5.5 VLSI CONSIDERATIONS 107
3.6 DELAY ELEMENT DESIGN 108
3.6.1 delay element B 108

..... '109

109

....... - —_ - _109

3.6.5 Logic equations . _ 09
3.6.6 Logic equation re)‘meme}zis) 109
110

5.8 SIGN DETRCTOR DESKGN - it
5.9 SIGN DETECTOR COMPONENT DESIGN 113

PAUL WHYTE ENGINEERING PROJECT REPORT

16 JANUARY 1997

3.9 1 delect sign B S 143
3.9.2 mux_select e o 16

5.10 CONVERTER DESIGNS 118
3.10.1 Conventional to SONRRNS number system conversion)) 118
3.10.2 Component design) . _ _ S - 112
3.10.3 SDNR/RNS to conventional sumber system conversion o 127
3.10.4 Component design. o 127

6. TESTING 134
6.1 Tre SDNR/RNS NUMBER SYSTEM CONVERTERS AND TLE DIGIT ADDER 134
6.1.1 Unit testing _ _ _)) . I 134
6.1.2 System testing)) i34

6.2 THE SDNR/RNS WUMBER SYSTREM CONVERTERS AND THE SIGN DETECTOR 1306
6.2.1 Unif testing o) - . 436
6.2.2 System testing - o {36

7. IMPLEMENTATION 137
8. SIMULATIONS 140
8.1 SINGLE DIGIT ADDITIONS 140
2.2 MULTIPLE DIGIT ATDITTONS 142

3. CONCLUSIONS i44
9.1 PROJECT CONTRIBUTION 144
9.2 RECOMMENDATEINS AND FUTURE RESEARCIT 144
0, AFPENDICES ' 146
[0.1 APPENDIX A SOFTWART SIMULATION SYSTEM 146
10.2 APPENDIX B: [RSIM SIMULATION SCRIPTS 172
10.2.1 Initialisation files) o B _)) _ 172
10.2.2 Simlation files o _) 7 I L |

11. REFERENCES i78

PAUL WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

~d

Terminologies

Table 1: Arithmetic symbols.

Symbol Meaning Alias
X Negative SDNR digit -X,
& Diminished cardinality.
0! Offset.
€ Element of.
{3 Set.
<> RINS number.
a Maximum digit in SDNR digst set.
b Base. T
CEILING (number, significance) | Returns number rounded up, away from zero, to the
nearest muitiple of significance.
number is the value to be rounded.
significance is the multiple to which number should be
rounded. Defanlt significance = 1.
FLOOR (number, significance) Rounds number down, toward zero, to the nearest
multiple of significance.
number is the numeric value to be rounded.
significance 1s the mulsiple to which number should be
rounded. Default signiticance = 1.
INT (nuinber) Rounds a number down to the nearest integer.
nuimber is the real number to be rounded down to an
integer.
logyn Finds the logarithm of the number n with respect to
the base b.
p Element in an RNS moduli set.
P{.) Probability
r Radix. b

SIGN (numbert}

1

Returns the sign of number,
Threshold vahie,

Tabie 2: Abbreviations.

Abbreviation Meaning

CAD Computer Aided Design.

CMOS Complementary Metal Oxide Semiconductor.
DFT Discrete Fourier Transform.

DRC Diminished Radix Complement code.
FFT Fast Fourier Transform,

FPGA Field Programmable Gate Array.
GaAs Gallium Arsenide.

/o Input/Cutput.

LSB Least Significant Bit.

LSD Least Significant Digit,

MSB Most Significant Bit.

MSD Most Significant Digit.

PE Processing Element.

RC Radix Complement code.

RNS Residue Number System.

SDNR Signed Digit Number Representation.
VLSI Very Large Scale Integration.

PAUL WHYTE

ENGINGERING PROJECT REPORT

16 JANUARY 1997

1. Introduction

This project was concerned with the design and implementation of high-radix arithmetic
systems based on the hybrid SDNR/RNS data representation. An arithmetic system is an entity which
can perform one or more of the core mathematical operations which are addition, subtraction,
multiplication, and division. Furthermore, an arithmetic system may also provide extra functionality with
operations such as sign and overflow detection, and magnitude comparisons. The SDNR/RNS data
representation allows high-radix arithmetic to be executed in a parallel, real-time fashion.

- To distinguish between research already performed in the field of arithmetic systems and

activities undertaken as a part of this project, this report has been divided up into two main sections,
which are described in Table 3.

Table 3: Project report outline,

Part Chapter Description

- 1 Introduction.
Project definition.
Background theory.
Analysis.
Design.
Testing.
Implementation.
Simulations.
9 Conclusion,

S

e =1 O Ijuaibo

The background theory chapter identifies the problems of current arithmetic systems used in
computer systems. The chapter goes on fo describe why, for a select group of applications,
nonconventiona! data representations are needed, in particular, the SDINR, RNS, and SDNR/RNS
number systems. Following this, general computer architectures and VIL.SI technologies are discussed.

The analysis chapter focuses on identifying the main characteristics of the SDNE/RNS number
systen. As a part of this chapter, a set of recommendations detailing how to choose an optimal
SDNR/RNS configuration are presented.

Chapter five focuses on design. For this project, several components of the SDNR/RNS
arithmetic system were designed, including an adder, sign detector, and conversion circuitry.

Chapter seven includes a discussion on the issues associated with the VLST implementation.
From the modules designed, the adder was the only anthmetic component to be implemented,
Suggestions given during this chapter detail how the adder could have been implemented more
effectively.

The testing chapter includes a description on how the adder was tested. The simulation chapter
states project results based on simulations perforined on the adder.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY [997

2. Project definition

2.1 Aim

The aim of this project was to design and simulate a high-radix arithmetic system based on
SDINR/RNS data representation. The main objectives refating to this aim were;

1. Investigating the advantages and disadvantages of high-radix SDNR/RNS arithinetic over
" othér convéntional and nen-conventional schemes.
2. Determining the feasibility of implementing the SDNR/RNS arithmetic system in CMOS
VLSI technology.

2.2 Scope

The scope of this project involved conducting an analysis of the SDNR/RNS number system,
and designing SDNR/RNS arithmetic systems and implementing them using software available in the
VLSI Research Laboratory. Initially, the scope involved implementing and simulating several arithmetic
circuits, including an adder, sign detector, comparator, and number system converters, However, only
one of the circuits, the digit adder, was eventually realised. The main reason for not completely fulfitling
the initial scope statement was due to time constraints.

2.3 Strate
This report includes the analysis, design, implementation, testing, and simmiation of an

SDNR/RNS arithmetic system. Figure | shows a diagrammatic guide which was not only followed
throughout the duration of the project, but canvases what is ahead in future chapters,

Problem Cohventional number systems suffer from carry

specification propagation during arithmetic aperations.
Require guaranteed arithmetic processing times
for some applications.

Analysis identification of important SBNR/RNS number system
paramelers.
° Recommendations on how to choose
SDNR/RNS parameters for cptimal
[% design and implementation.

Design Design of SODMR/RNS arithmatic systems.
. Digit adder circuit. '
. Conventional to SDNR/RNS "

and SDNR/RNS to L L T T
P S . conventional number system | . - - - - - - i oo
% i conversion circuits. \{k
Testing ' s Sign detector circuit. + 1Software testing of logic eguation derived in design stage.

jimplementation impiementation of SDNR/RNS arithmetic system.
. CMOS VLS| digit adder circuit.

Testing/ Hardwate simulation and testing of impfemented digit adder.
simulation

Figure 1: Qutline of project.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

10

3. Backeround theory

In this chapter, several topics will be explored. First, general computer arithmetic is discussed.
From here, the advantages and disadvantages of using conventional notation, that is, binary, in
performing digital arithmetic will be identified. Next, nonconventional number systems are introduced,
namely the SDNR and RNS. Both of these number systems have the ability to overcome the limitations
of conventional number arithmetic for certain applications, A description of a hybrid SDNR/RNS
follows, which includes an explanation as to why such a hybrid scheme is needed.

-+~ The final section of this chapter concerns itself with design and implementation issues. For this
project, a SDNR/RNS digit adder was designed and implemented using CMOS technology. Therefore,
as a part of this final section, CMOS technologies, as well as general computer architectures and
clocking schemes are discussed.

3.1 Computer arithmetic

A digital computer uses the binary number system to perform specified arithmetic. Pedler
{1993} defines a number as an abstract idea represented by a word and a symbol. Particular sets of
numbers, among others, are integers and real numbers. Pedler also describes a numeral as a symbot for
a number. Thus, a numeration system is an orderly system for representing numbers as nunierals.

Waser and Flynn (1982) point out that the main problem in computer arithmetic is the mapping
fromn the human infinite number system to the finite representational capability of the machine. Garner
{cited in Waser and Flynn, 1982) has shown that the most important characteristic of machine number
systeiiis is finitude. Nearly all other considerations are a direct consequence of the finitude. That is,
overflows, underflows, scaling, and compliment coding are conseguences of this finitude. Overflow, for
example, is simply an unsuccessful attempt fo map frem the infinite to the finite namber system.

3.1.1 Modular arithmetic

The common solution to this problem is the use of modular arithmetic (Waser and Flynn,
1982). This allows every integer from the infinite number set to be assigned to one unique
representafion in a finite system.

Waser and Flynn (1982) assert that in modular arithmetic, the property of congruence (having
the same remainder) is of particular importance. Steinard and Munro (1971) are quoted in Waser and
Flynn (1982) by defining modular arithmetic:

If m is a positive integer, then any two integers N and M are congruent; modulo m, if
and only if'there exists an integer K such that N - M = Km or

N mod m =M mod m,
where m (4 positive integer) is called the modulus.

In other words, the modulus is the quantity of numbers within which a computation takes
place. That is:

{Oa 1: 23 3.1 ey M- E}

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

11

3.1.1.1 Example
Ifm =256 and M = 258, N = 514, then:
514 mod 256 =2
and
258 mod 256 = 2

“This proves that M and N are congruent for that particular modufus configuration.
Furthermore:

534 - 258 =1C.256
K=1

Therefore, K= 1.

E

3.1.1.2 Properties

Waser and Flynn (1982, p. 3) state that congruence has the same properties with respect to the
operations of addition, subtraction, and multiplication, or any combination. In a mathematical sense
{Waser and Flynn, 1982);

ifN =N mod mand M =M’ then
{N + M) mod m= (N" + M") mod m

(N - M) mod m = (N’ - M’) mod m
(N*Mymod m={N"*M)modm

3.1.1.3 Example

KFm=4 N =11 N=3 M =5 M= 1, then:
B+ modd4=(11+5) modd=0

(G-Dmodd=(11-5 mod4=2
G*Dmodd4=(11*5mod4=73

FER

Waser and Flyrmn (1982) state that for modulus operations, the usual convention is to choose
the least, positive residue (including zero). The following case illusirates this point:

~-Tmod3=-1or+2
Abiding by the convention for modulus operations, the valid answer is +2.

Classically, division is defined as follows:

& T
a_0
b 0 b

PAUL WEYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

12

where (is the quotient and r is the remainder. However, modulus division does not extend as
simply as the other three operations, For insfance:

3 11
— # —mod4

Nevertheless, division is an important operation in modular artbmetic. Waser and Flynn
(1982} state that for any modulus division M/m, there is a unique quotient-remainder pair and the
remainder has one of the m possible values 0, 1, 2, ..., m - 1. This ieads to the notion of residue class,

A residue class, as defined by Waser and Flynn (1982), is.the set of all integers having the same
remainder upon division by the modulus m. For example, if m = 4, then the numbers 1, 5, 9, 13.., are of
the same residue class. Exactly m residue classes exist, and each integer befongs to one and only one
residue class. Thus, the modulus m partitions the set of all integers info m distinet and disjoint subsets
called residue classes.

3.1.1.4 Example

If m = 4, then there are four residue classes which partition the integers:

(..,-8.-4,04,812 .}
{..-7,-3.1,5,9,13, ..
{..,-6,-2,2,6,10, 14, .}
{.,-5,-1,3,7, 11,15, ...}

EP

3.1.2 Real and rational munbers

According to Waser and Flynn (1982), real numbers also need to be represented in a wnachine
with the Hmitation of finitude. This is achieved by approximating real and rational numbers, by
terminating sequences of digits. Therefore, all numbers (real, rational, and integers) can be operated on
as if they were integers. This can be done under the assumption ihat scaling and rounding are done
properly.

3.1.3 Integers

Integers can he represented by positional weight. Waser and Flynn (1982) state that in a
weighted positional system, the number N is the sequence of m + 1 digits d,, d..q, ..., d3, d;, dg, which
in base, or radix, b can be calculated to give N = d,b™ + d,b™" + ...dib + dy. The digit vakies for d;
may be any integer between O and b - 1.

3.1.3.1 Example

In the familiar decimal system, the base is b = 10, and the 4-digit number 1736 is;
N=173610= (L * 10+ (7* 101+ (3 * 10" +6
Similarly, for the binary system b =2, a 5-digit number 10010 is equivalent to:

N=(1#29+0*2)+(1*2) +0=18y

PaUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

The leading digit, d,,,, is the most significant digit, or the most significant bit for the decimal and
binary systems, respectively. Likewise, dy is designated as the least significant digit or bit.

WRR

Lacking from the above definition of an integer are negative numbers. Garner (1965), cited in
Waser and Flynn (1982, p. 6), describes the more commonly known concepts to represent signed
numbers:

1. Magnitude plus sign: Digits are represented according to the simple positional number
system. An additional high-order symbol represents the sign. This code is natural for
humans but unnatural for a modutar computer system.

2. Complement codes: Twa types are commonly used, namely, radix compliment code and
diminished radix complement code. Compliment coding is natural for computers, since no
special sign symbology or computation is required. In binary arithmetic, the RC code is
catled two’s complement, and the DRC is called the one’s compliment.

Complement codes will be described further because of their wider use in arithmetic systems.

3.1.3.2 Radix complement code

Waser and Flynn (1982) expiain radix complement codes, Suppose N is a positive integer of
the form:

N = dpb™ + dypab™ + L dib +dy

The maximum value N may assume is b™' - 1. Thus b™* > N =0,

To represent -N, the radix complement of N must be defined:

RC(N)=b"" . N

For ease of representation, let n=m + 1. Substituting n intc RC(N) gives:

RCN)=b"-N

Assume b is even and suppose M and N are n-digit numbers. The calculation M - N can be

accomplished using the addition operation. M and N may be either positive or negative numbers so long
as:

b1 P
— —1lMNz-—
2 2

Then

M- N=(M -N)mod b"

and

(M - N) mod b" = (M mod b" - N mod b") mod b"

If -N is replaced by b" - N, the equélity remains unchanged. That is, by taking:

(M - N} mod b" = (M mod b" - (b" - N) mod b") mod b"
=M mod b" - N mod b"

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

14 -

The complement of b" - N can be derived easily:

For N << b", let N be represented as X,,...X¢. The operation b" - N can thus be represented as
follows:

10 000 .0
L XXX

" satisty

wherem=n1n -1

The radix compliment of any digit X; is designated RC{X;}. For all lower order digits which

X(} = X§ = = X, = (}
the RC(X)) is
RC(Xy) =RC(X;)=... =RC(X) =0

For X;s; = (3, the first (Jower order) nonzero element in N
RC(X;) =b - X4

For all efements X thereafter, mz) =1+ 2:
RCX)=b-1-X]

As an example, in a three-position decimai number system, the radix complement of the

positive number 245 is 1000 - 245 = 755 This illustrates that by properly scaling the represented
positive and negative numbers about zero, no special treatment of the sign is required. Therefore, in
radix complement code, the most significant digit indicates the sign of the number. In the base 10
systen, the digits 5, 6, 7, 8 and 9 (in the most significant position) indicate negative numbers. That is,
the three digits represent numbers from +499 1o -500, In the binary system, the digit 1 is an indication
of negative numbers,

3.1.3.2.1 Examnle

arg!

If™M =+250, N =+245, then M - N is;

250 - 250
245 + 755
1005 mod 1000 = 5

RR K

Matula (cited in Kuczborski, 1993, p. 40) asserts the critical aspects of radix systems, which

L. Completeness of radix representation. That is, the ability to represent all possible values
within a specitic range.

Z. Uniqueness of radix representation. Each value should be represented by a unique string of
digits.

3. Sign detection,
4, Representation of zero,
5.

Carry propagation from less to more significant pesitions for addition.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

i5

Example 3.1.3.2.2 illustrates how conventional linear weighted number operations are
performed in RC.

3.1.3.2.2 Example

Perform the following operation in decimal and binary: 19 486 - 22 139.
Decimal calculation

The calculation can be performed using RC,
= 19 486 + (100 000 - 22 139)
= 1% 486 + 77 861

19 486
+ 77 86l
.97 347

97 347 = 97 347 - 100 000
= -2 G653

Binaty calculation

The calculation can be performed using RC.
= 0100 1100 0001 1110 + (1 0000 000G 0000 0000 - 0101 0110 0111 1011}
= 0010 0101 0000 1110 4+ 1010 1001 1000 0101

0100 1100 0001 1110
+ 1010 1001 1000 0101
1111 0101 1010 CO11

1111 0101 1010 0011 = 1111 0101 1010 G601l - 1 0000 0000 QOGO Q000
= -0000 1010 0101 1101
= -2 653

b]

As 13 evident from Example 3.1.3.2.2, carry propagaticn hinders the speed of thie calculation.
Addition is forced to be performed in a serial manner, uncovering further complicattons, That is, the
time the acldition takes to complete is dependent upon the wordlength of both operands. Waser and
Flynn (1982, p. 54) point out that in the conventional linear weighted number system, an operation on
long words is slower due to the carry propagation,

Kuczborski (1993} explains that if carry propagation is restricted to a single digit position, then
the following objectives are achievable:

Parallel processing of all digit positions.

Fast resulf rounding.

A higher degree of circuit reliability.

More regular very large scale integration designs with local communications.

e .

For some real-time systems, a real-time arithimetic system is required. For example, in real-time
morphological image processers, the computation times need to be kept constant. Morphological image
processors employ mathematical morphology to achieve image manipulation, The two basic operations
of mathematical morphology are addition, and magnitude comparison. This projeci focused on creating
VLSI circuits using a nonconventional number scheme that could add and compare numbers very
efficiently. Multiplication using the same number scheme was also investigated. However, the hybrid
nonconventional number system that is discussed later on may also be highly applicable in areas where
* the ability to process very-large numbers is required. Example applications include data encryption,
speech analysis and recognition, and image compression.

PAUL WHYTE ENGINEERING PROIECT REPORT 16 IaNuaRY 1997

16

Nonconventional digie representations were analysed to see if the above objectives are

attatnable. The nonconventional representations discussed in the following sections are SDNR and
RNS. The henefits from combining these two number representations is discussed after both are treated
separately.

3.1.4 Sisned Digit Number Representation

SDNRs are weighted number systems. They are also redundant. Tt is this redundancy which

_Bmits carry propagation to one position to the left during the operations of addition and subtraction.
This, in turn, allows for parallel arithmetic only when a certain condition, known as the threshold value,
is met. An important characteristic of SDINRs is that better etficiency is achieved, ity terms of processing
and storage requirements, when larger radices are used.

form:

Avizienis (1961) describes SDNRs by comparing them to the conventional number system;

Tn a conventional number representation with an integer radix ¥ > 1, each digit is
allowed to assume exactly r values, that is, 0, 1, ..., r - 1. In a redundant

El

representation with the same radix r, each digit is allowed to assume more than r
values,

Kuczbarski {1993) states that in SDNR, an integer is represented by the digit string:

Adn.p ... 218

The value of this digit string is determined by:

L
A= X ar
i=0 !

where A = SDNR number.
a = negative, zero, or positive digit.
1 = radix (positive integer).
Furthermore, the magnitude of the digit must be set within the range:
r+2<n<2r-1
where n= digit magnitude,
This range restriction creates several desirable algebraic properties (Kuczborski, 1993):
1. The lower bound of n limts carry propagation to a single position, resufting in fully paraliel
addition and subtraction.
2. The lower bound includes the weaker condition of completeness (n = r).
3. The upper bound of n ensures that the sign of an SDNR number equals the sign of its maost
significant non-zero digit.
4. The upper bound guarantees a unique representation of zero.
An implication of r + 2 <n < 2r - 1, as pointed out by Kuczborski (1993) is that:

r>2

SDNR altows two types of digit sets. The first types are asymmetric about zero and are of the

{-a,-a+1,...,-1,0,1, ... b-1 b}

PAUL WHYTE FNGINEERING PROJECT REPORY 16 JANUARY 1997

17

where a = posilive digit.

b = positive digit.

azh
The other type of digit sets are symmetric about zero and can be represented as follows:
{ca,-a+1,...,-1,0,1,...,a-1a}

where a= positive digit.

""The Tatter type of digit set is preferable because they allow easier handling of negative numbers
(Kuczborski, 1993). This project concentrated on symmetric digit sets.

Choosing the digit set can now be addressed. Note that the choice of digit set has an effect on

the degree of redundancy implied in the SDNR. Kuczborski (1993) says that for a minimal redundant
digit set:

r
a= FLOOR[;,]) +1

On the other hand, for a maximum redundant digit set (Kuczborski, 1993):

a=r-1

3.1.4.1 Fxample
For radix 10:

Minimuym redundancy:

r
a= FLOOR(EJ) +1

10
= FLOOR —2"",1 +1

=6
Maximum redundancy:

a=r1-1]
=10-1
=9

Therefore, the radix 10 minimally redundant digit set = {-6, -5, ., -1,0,1, ..., 5, 6}
In comparison, the radix 10 maximally redundant digit set = {-9, -8, ..., -1, 0, 1, ..., 8, 9}

Rk

Kuczborski (1993) reports that small radices utilise data storage inefficiently. For example, a
16-bit radix-4 SNDR system has a relatively small range when compared with the equivalent
conventional 16-bit two’s compliment representation. Example 3.1.4.2 illustrates this poiat.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

18

3.1.4.2 FExample
For 16-bit radix-4 SDNR system:

r=4
n=16

For minimum redundancy:

T
a= FLOOR(;,IJ +1

4
- FLOOR[E,]J +1

— 7
—=J
(a is the same for maximum redundancy)

D=2a+1
=23+ 1
=7

N = CETLING(log,D, 1}
= CEILING(logy(7), 1)

=3
e
A*INT(MJ
N
{16
()
3
=5

R= {‘(H*TH-I}"‘ a$r(‘*'2) + o+ H*l'l + a>¥1-0) _;_(a*[.(f'\‘l) + a$r(f‘\'2) + .+ a¥*r! + a'*"ro)}

SR 3 34T 3 et R 3R 3l 3Ty
={-1023 ... +1023}

For conventional 16-bit two’s compliment representation:
R={200 20Dy

whete n = word length (bits),
=16

CR= {_2(26-1) 40061 13
={-32 768 ... +32 767}

where D = number of digits in digit set.
N = number of bits required per digit.
A = number of allowable digits.
n = word length.
R = range.

Therefore, the range for the 16-bit radix-4 SDNR system = {-1023 ... +1023}
In comparison, the range for the conventional 16-bit two’s compliment representation = {-32 768 ...
+32 767} ' :

PaUT, WHYIE ENGINEERING PROJECT REPORT 16 JANUARY 1997

19

feEN

Theoretically, higher radices widen the dynamic range of the data, speed up operations such as
multiplications, and reduce the silicon area for interconnections {routing complexity).

An SDNR arithmetic system must be able to communicate with the external environment.

Therefore, assuming the conventional binary number system is used externally, generafised conversion
procedures are required to translate conventional binary numbers to SDNR, and vice versa,

3.1.4.3 Radix conversion

Before translation between the conventional number system and SDNR can take place, both
systermns must have the same radix base. in a sense, one number system must be manipulated to be made
“compatible” with the other. This is an important initial step. Usually the conventional number system
will have a different radix to that of the target SDNR system. As mentioned previously, if the magnitude
of the radix used in the SDNR is increased, the dynamic range of the data increases, operations [ike
multiplication are accelerated, and the number of processing elements is decreased. Therefore, in an
ideal situation, the arithmetic system should be.able to accept conventicnal binary numbers (radix 2)
from an external source, and use a large internal radix representation for SDNR.

For the arithmetic system, the external number system (the conventional system) requires it’s
base to be changed in order to match the internal SDNR radix. When the externally sourced number is
loaded imto the arithmetic system, it must then be converted to the internal radix representation.
Correspondingly, when the arithmetic system completes the specified operation on the nuymber(s), the
result must be reconverted back into the radix of the conventional number system.

Once the required radix conversion has taken place, the conventional number system (external

arithmetic system input) has to be converted to SDNR notation (for internal arithmetic system
processing). This topic is discussed in the nexi section.

3.1.4.4 Conventional number systems to SDNR conversion

Translation from conventional number systems into SDNR requires several algorithmic steps.
The algorithm presented in this section is an adaptation of a radix-r SDNR adder described in
Kuczborski (1993). To begin with, a threshold sum value, which will determine carry values, must be
defined within the range: '

l<r-a<t<a-1i
where = threshold sum value.
T = radix.

{-a... 0. +a}

The conversion procedure treats each conventional digit 1 separately during conversion. The
algorithm is as follows:

CONVERT _CONVENTIONAL _TO_SDNR 5TAGE_1

INPUTS: X, .
Ourputs; INTERMEDIATE CONVERSION;, G

BEGIN

IF X, > t THEN
N O

PAUL WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

20

END

IF X; <t THEN
Cipy = -1
ELSE
Cin=0
ENDIF)
INTERMEDIATE _CONVERSION; = X; - rCiu,

CONVERT _CONVENTIONAL TO_SDNR_STAGE_2

TINpuTs: INTERMEDIATE CONVERSION,, G

OuTpPUTs: CORRECTED CONVERSION;

BLGIN

END

where

CORRECTED_CONVERSION,; = INTERMEDIATE_CONVERSION; + C,

t = threshold sum value.

r = radix.

X; = conventional radix e-digit in X, X, ... X;X,.

C;. = carry out.

C; = carry in.

INTERMEDIATE CONVERSION; = SDNR/RMS radix-r intermediate conversion
for 3.

CORRECTED CONVERSION; = SDNR/RNS radix-r correcied conversion for X;.

Example 3.1.4.4.1 shows how a radix-r conventional number system can be converted into
radix-r SNDR notation.

3.1.4.4.1 Example

Convert 1996y, to SDNR notation with the following SDNR characteristics:

t=a-1
=6-1
=5

Valid digit set = {-6, -5, -4, -3, -2,-1,0, 1,2, 3, 4, 5,6}

1 9 9 6
1 f]“ STAGE 1
1 1 1 STAGE 2
2 0 0 ; o
Paur, WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

21

Therefore, 1996, = 200; SONRIO

ER i

Once the required processing has taken place, for example, adding two operands, the SDNR.
data has to be converted back to conventional binary form.

3.1.4.5 SDMNR to conventional nember systems conversion

- Avizienis (1961) suggests several methods for converting SDNR to a conventional
representation. The first approach is to consider the SDNR number as the sum of two numbers in
conventional representation of the same length, one of which is positive and the other negative.
Negative and positive digits are separated to form these two numbers, which then can be summed in a
conventional representation adder circuit, resulting in the desired conventional representation. The
second approach implies a serial conversion. That is, the conversion process traverses the SDNR
number, from LSD to the MSD, until all SDNR digits have been translated into their equivalent
conventional form.

Ercegovac and Lang (1987) provide an alternative to the methods described by Avizienis
(1961). They take an on-line approach, stating that SDNR to conventional conversion can be performed
efficiently without carry-propagate addition using an on-the-fly method. The algorithm Ercegovac and
Lang (1987) propose has the following characteristics:

1. Tt performs conversion on the fly, as the digits of the result are obtained in a serial fashion
from most to least significant.

2. Tt uses conditional logic. That is, it uses two conditional forms of the current result.

3. It has a delay which is roughly equal to two logic levels plus a register shift/load time.

The algorithm devised by Ercegovac and Lang (1987) for on-the-fly conversion is part of a
greater area of study known as on-line arithmetic,

3.1.4.6 SDNR arithmetic

The operations of addition, subtraction, shifting, multiplication, division, and sign and overflow
deteciion can be performed i SDNR notation. The follewing section explain the varnous SDNR
arithmetic operations. The focus is on addition, sign detection, and overflow detection.

3.1.4.7 SDNR operations

The elementary operation of addition in SDNR is shown in Example 3.1.4,7.1.

3.1.4.7.1 Example

Add 30 5 SSDNRIU and 23 328DNR}0 based on the fOHOWiE]g SDNR. attributes:

PAUL WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

22

=0
t=a-1
=6-1
=5
3 0 5 5
2 3 3 2
5 3 1 3 STAGE 1
1 STAGE 2
5" 3 A g

Therefore, 302 SSDNR_I_U +23 323])N'R10 =5323 SINRIO

EX 3

An explanation of SDNR multiplication and division can be found in Avizienis (1961).

Sign detection in SDNR is relatively simple. This is due to the fact that each negative and

positive digit in SDNR is identified by a umque symbol

Therefore, as pointed out by Kuczborski

{1993), the sign of a SDNR number can be determined from the sign of the most significant non-zero
digit in that particular number.

Overflow is discussed in Spanmiol (1981). He presents an overflow detection and correction
system for SDNRs. The concept of overflow in SDNR can be realised by considering the following
generalised case:

An An-.l An-l e AI A(J
Uy g Up2 e Uy g
T, Tyl Tha . T, Ty
icn) Cn-1 Cn-2 Cn-3 [Cq C.y
(Slli l) Su Sn-l Sn—2 s Sl SO

Spaniol {1981) states that if §, # 0, then an overflow condition exists. Position S, does not
need to be calculated. The overflow may be corrected if the two MSDs in 8,5,.1... Sy, which differ from
zero, have different signs. If the sum has the form:

Snsnui- .-

where

where

or

SU - Sno- . -Osn-k-lsn-k-2~ . S(]

k = number of digits required to represent 0...0 (k = 0).
Sll:v Sn-k-] #0
STIGN(S,) = SIGN(S,4.1)

then this overflow situation can be corrected to:

08,

Si’

.Sy
=r-1 i=n-l, ..., nk
r+8; i=n-k-1 when S, =1, 8§ <0
Si i=n-k2,...,0
=d-1; i=nl, ... nk
d+ S-1 ; i=n-d¢-1when S, =1, S >0
Si i=n-k-2, .0

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

Therefore, as pointed out by Spaniol (1981), an overflow situation is indicated by 8, # 0, and is
corréctable if the number can be represented with n digits. That is, if the next position different from
zero in S,.;...5¢ has a sign different from S,,,

However, automatic correction of all averflow situations is performed at the expense of either
cycle time or hardware complexity (Spaniol, 1981). If the value of k is bounded, then overflow
correction can be simplified. In other words, if' the length k of the zero block following S, does not
exceed the fixed value of k*, then cycle time or hardware complexity can be reduced. The simplest case
where k* = 0 will be considered. Spaniol (1981) extends the generalised case, stated previously, so that
it aflows for overflow correction for k* = 0:

An o .Albl . A|1—2 e AE AO
Uy Uy 1 U2 S 18 Uy
Tn Tn-l Tn-‘Z e Tl T(i
Cp-1 Cu2 Cpd .. Cy C
Sn Sn~} 813-2 e SI S(J
£y E;11-17

Su1 Sn-l’ Sn-E’ cee SI ’ S(J’

where g€,=0 whenS,=0o0rS,,=0
Sp otherwise

Enl = -TEy
=0 when §,=0o0r §,,=0
S, otherwise

An overflow remains uncotrected if' S,” # 0. Spaniol (1981) states that if the same probability
applies to all digits A; and u;, and if they are not interdependent, then:

P(S,'# 0) =
Go2 0=

Cases of overflow detection and correction are llustrated in Example 3.1.4.7.2.

3.1.4.7.2 FExample

Add 5 E 3 5 spnmio and 145. lsprmig based on the following SDNR attributes:

r=10

.
a= FLOOR("Z—,]) +1

10
= FLOOR(? ,1) +1

=6

=a-1
=6-1

PAUL. WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

24

Bl

5 5 3
1 4 - 5 i
Z 2 1 2 STAGE |
1 0 STAGE 2
1 4 2 1 9
I r OVERFT.OW CORRECTION
6 2 1 5 '

“Therefore, 52 3 3 spnpio + 142 1 gprino = 621 2 SDNRI10

wRR

The RNS is the second of the nonconventional number systems to be investigated. It is
described in the following section.

3.1.5 Residue Number System

Unlike SDNR, the RNS is a nonweighied vumber system. Due to the absence of carry
propagation in RNS, it i possible to perform pure parallel arithmetic under any cendition.

The RNS is an extension of modular arithmetic discussed in section 3.1.1-Modular arithmetic,
Kuczborski (1993) states that the residue representation of an integer T is an n-tupfe

b, L L

related to another n-tuple of relatively prime integer moduli p;;

(plw pZ: trer pn)

Kuczborski (1993) asserts that RNS maintains a complete and unique representation within a
finite dynamic range defined by:

M:plp? (pu - J-)

3.1.5.1 Selection of moduli

The most important consideration when designing RNS systems is the choice of the moduli set

(1, P2,
following:

1.

2.

LR

pa). According to Abdallah and Skavantzos (1995), the moduli ps should satisfy the

They should be relatively prime. That is, there should be no common divisor between any
of the moduli in the set (py, pa, ..., Po)-

The moduli pis should be as small as possible so that operations modulo p; require minimum
computational time.

The moduli p;s shouald imply simple weighted to RNS and RNS to weighted conversions as
well as simple RNS arithmetic.

The product of the moduli should be large enough in order to implement the desired
dynamic range. _

The mneduli pis should create a balanced decomposition of the dynamic range. That is, the
differences between the mumber of bits to represent the different moduli should not be very
targe.

PAUL, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

Abdaliah and Skavantzos (1995) have classified moduli-set choices that have been considered
by RNS researchers, They are:

i.

Sets of the form (2" - £, 2", 2 + 1), where n is a positive integer. These moduli imply
simple conversions, simple RNS arithmetic, and balanced decomposition of the dynamic
range. However, if large dynamic ranges are required, then the sizes of such moduli
become large and the performance of the system degrades.

Sets where all the moduli are Mersenne or Fermat numbers, while only one modulus is of
the form 27, Such choices can result in unbalanced dynamic range decomposition,

Sets with many arbitrary small-size prime moduli and only one modulus of the form 2"
ROM table lookups should be used, as the choice of arbitrary modult may imply complex
conversions and RNS arithmetic. However, the cost of such ROM-based RNS systems
could be prohibitive,

Just like with SDNR anthmetic systems, RNS systems require conventional to RNS procedures
if the system is to perform operations on the input data. If an external system requires the processed
information, then RNS to conventional conversion circuits are also needed.

3.1.5.2 Conventional number systems to RNS conversion

An integer value I 1s converted inte its RNS equivalent by modulo operations (Kuczborski,

1993):

<I'mod p;, I mod po, ..., I mod py~

Example 3.1.5.2.1 illustrates this procedure.

3.1.5.2.1 Fxample

Convert 29,4 to a residue number with the moduli set (5, 3, 2).

M=pp,; ..

=(5)3)2)
=30

(pu -])

30 unique values can be represented by the moduli set (3, 3, 2).

2%, =29 mod 5, 29 mod 3, 29 mod 2>
=<4,2 1>

Therefore, 29,y =<4, 2, 1>pns

3.1.5.3 RNS to conventignal nuniber systexs conversion

Taytor (1984) states that conversion of a RNS number into its radix equivalent can be achieved
through the Chinese Remainder Theorem: '

I:

n ,
(AE s.(X. si'lmodp.)] modM
i=1 i\ i i

where M = pyp;...on

PaUL WHYTE ENGINGERING PROJGCT REPORT . 16 JANUARY 1997

26

M

P

(s{ lsi)mod p.=1

8. —
1

A more straightforward and faster method of conversion is to use lookup tables. Lookup
tables can be used to perform the RNS to conventional number system conversion, and vice versa.

3.1.5.4 RNS arithmmetic

As a result of it’s carry [ree nature, the RNS is suitable for addition, subtraction, and
multiplication. The weaknesses of RNS, as pointed out by Kuczborski (1993), include operations such
as sign detection, magnitude comparisons, overflow detection, and division. These weaknesses are
primarily due to the fact that the RNS is an nonweighted number system,

In the next section, the efficient RNS operations of addition, subtraction, and multiplication will
be discussed.

3.1.5.5 RNS operations

According to Kuczborski (1993), RNS benefits greaily from it’s inherent parallelism. This
means that, because of the carry-free nature of RNS, additions, subtractions, and multiplications can be
calculated on an independent, digit by digit basis (Kuczborski, 1993):

<A Tgy oo, L= &<y, Jo, L > = <(1 B 1) mod pe, (1 81,) mod ps, ..., (1, 8],) mod p,>
where @ = addition, subtraction, or multiplication.

Example 3,1.5.5.1 illustrates RNS addition, subtraction, and multiplication.

3.1.55.1 Example

Medutli set is (5, 3, 2).

9 <4, 0, 1»

+ 16 - <1, 1, 0>

25 <0, 1, 1>

19 <4, 1, 1>

- B > <3, 2, 0>

11 <1, 2, 1>

7 <2, 1, 1»

* 4 -3 <4, 1, 0>

28 <3, 1, 0>
E3 33

Before moving onto the hybrid SDNR/RNS scheme, a compauson of the two nonconventional
number systems is presented in the next section.

PAUL WHYTE ENGINEERING PROIECT REPORT . 16 JANUARY 1997

27

3.1,6 Signed Digit Numher Representation/Residue Number System comparison

Taylor (1984) states that in general, an integer X, which has a fixed-radix, weighted-number
representafion, with respect to a radix r, is given by;

n-1
X= 2 ar
i=0 1

i

whera a; eZ;

The number of integer values of X that possess an n-digit, fixed-radix representation are r over
the range [0, r™']. Notice that this definition of a fixed-radix, weighted-number system representation is
similar to the SDNR definition. Thus, SDNR notation can be regarded as a fixed-radix, weighted-
number representation. Taylor (1984) describes some of the favourable characteristics of a fixed-radix
system as being:

Algebraic comparison.

Dynamic range extension. That is, more digits can be added to increase the range,
Muitiplication and division by simple arithmetic shifts. This is not so simple when using
SDNR.

4. Simplified overflow and sign-detection.

VO

Taylor (1984) points out that the disadvantage of the fixed-radix, weighted-number system is
that carry information must be propagated from the LSD to the MSD. SDNR minimises this problem by
restricting carry propagation to one position by introducing redundancy into the number system.

While SDNR minimises carry propagation, the RNS eliminates it altogether. That is, the RNS
is a carry-free system and is potentiaily very fast for certain problems, even though the advantages of the
fixed-radix system do not carry over. The advantages of the RNS are addition, subtraction, and
multiplication operations. The disadvantages of the RNS are inherently complex algebraic comparisons,
overflow and sign detection, and division.

3.1.7 Signed Digit Nnmber Representation/Residue Number System

Kuczborski (1993) states that the idea of combining the SDNR with the RNS is based on the
natural parallelism of the latfer representation. By assigning word level operations to the SDNR and
digit level operations to the RNS, the disadvantages of both number system can be overcome,

By combining the SDNR and RNS number systems, two views of the representation become
apparent. At the word level, the SDNR/RNS word is represented in the SDNR domain. At the digit
level, the SDNR/RNS word is represented in the RNS domain. In effect, the RNS decomposes the
chosen SDNR digit set, so that a digital designer can create logic blocks which are smaller, faster, and
more manageable.

Kuczborski (1993) points out that the use of the RNS for coding the SDNR digits requires two
disjunctive sets for positive and negative values. An odd product of ali n moduli has a symmetric range
of (Kuczborski, 1993}):

*(plpz---pn .

2 2

-1} (plpz---p -1}

For an even product, the range becomes:

PAUL WHYIE ENGINEERING PROJECT REPORT 16 JANUARY 1997

28

- !)_n p—n_l
PyPo Ty | PrP2 Ty

The RNS representation of any SDNR digit is, according to Kuczborsid (1993}
= <X, Xy, L X
where ie {.a-a+l ., -1,0,1 .. a-l a}

The RNS representation can be determined as follows:

X, =1mod p;
Xy = imod Pz
X, =imodp,

SDNR/RNS arithmetic is quite straightforward. SDNR arithmetic algorithms discussed in
section 3.1.4.7-SDNR operations are used at the word level to perform addition, subtraction, overflow
and sign detection. At the digit level, addition, subtraction, and multiplication can take place by using
the following RNS arithmetic rule:

Zi=(X;BY;) mod p

i=1,2,....n

El »

B = addition, subtraction, or muliiplication.

where

The operations of SDNR/RNS addition (and subtraction), and multiplication are discussed in
the following sections.

3.1.7.1 SDNR/RNS addition

An SDNR/RNS integer is represented differently at different levels. At the word level, the
number can be treated as a SDNR integer. At the digit level, each digit can be viewed upon as a RNS
number. The SDNR/RNS addition algorithmn is used at the word level. Thus, the SDNR algorithm for
addition will be used to add two SDNR/RNS integers. As it will become clear iater, for high radices and
numerical ranges, RNS addition at the digit level speeds up computations.

Before SDNR/RNS addition can take place, however, an SDNR/RNS configuration must be
chosen. The main constraint is that the configuration must be able to represent the conventional integer
operands. For the case of the adder system in section 4.2-Case studies, the requirement is that it must
be able to add two 64-bit conventional jntegers. Therefore, the SDNR/RNS configuration chosen must
be able to represent a range from 0 to (2% - 1) = 0 to 1.84 * 10", for the case of unsigned integers,
refatively efficienily. An analysis in choosing an optimal SDNR/RNS configuration is given in section 4-
Analysis. Guidelines for choosing a radix, digit set, and RNS moduli set are given in that section,

The steps required to perform SDNR/RNS addition are as follows:

1. During conventional to SDNR/RNS conversion, if the sign of the conventional integer is

negative, then toggle sign of each SDNR/RNS digit.
2. Choose a threshold value i to satisfy:

l<r-ast<a-~1
where t = threshold sum value.
= radix.

Usually, t=a-1. |

3. Execute adder algorithms:

PAUL WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

26

SDMR_RNS_ADD_STAGE_1

InruTs: X, Y,
gurpuTs: INTERMEDIATE SUM;, C;y;

BEGIN

X, + Y; >t THEN

Ci =1
IFX,+ Y, <t THEN

Cisg = -1
EL5E

Cin=0
ENDIF

INTERMEDIATE SUM; = X; + Y; - rCqy;
END -
SDNR_RNS ADD STAGE 2

InpuTs: INTERMEDIATE SUM;, C; ‘
QutpuTs: CORRECTED SUM;

BEGIN
CORRECTED SUM; = SUM, + C;
END

where t = threshold sum vakse.

r = radix.

X; = conventional radix r-digit in X, X,., ... X;X,.
Y; = conventicnal radix r-digitin Y, Y, ... Y(Yy
Cis) = carry out,

C; = carry in.

INTERMEDIATE SUM; = SDNR/RNS radix-r intermediate sum for X; + Y5,
CORRECTED_SUM,; = SDNR/RNS radix-r comected sum for X; + Y,

The SDNR/RNS adder must be able to accept all possible values of INTERMEDIATE_SUM,;
(Xi + Y;). That is, the dynamic range of the chesen moduli set must be able to represent the extended
digit sef:

{-2a,-2a+1,..,-1,0,1, ..,2a-1,2a}

An example of SDNR/RNS addition is given in the following section.

3.1,7.1.1 Example

Add 4621 spwrio and 1 546 anpruo based on the following SDNR/RINS attributes;
r=10
r i0
a = FLOOR 5,1 +1= FLOOR| ?,1 +1=6
t=a-1=6-1=5

pl=3

PAUL WHY'TT. ENGTNEERING PROJECT REPORT . 16 JANUARY 1997

30

p2=>5
pip2 =15
The addition will be petformed in the SDNR domain, and then in the SDNR/RNS context.
SDNR arithmetic
4 5 2 1
5 6
5 11 6 7 INTERMEDIATE SUM
5 1 4 3 CORRECTED SUM
i 1 1 0 CARRIES
4 0 g 3
SDNR/RNS arithmetic
decimal decimal decimal decimal decimal decimal
mad pl mod p2 mod pl mod p2
0 0 O|carry =0
1 1 I
2 2 2
3 0 3 -121 Q Jjcarry = -1
4 i 4 -11 1 4
5 2 0 -10 2 0
& 0 lcarry = 1 -9 0 i
7 1 2 -8 I 2
8 2 3 -7 2 3
9 0 4 -6 0 4
10 1 0 -5 1 Olcarry =0
13 2 I -4 2 |
12 0 2 -3 0 2
-2 l 3
-1 2 4
—_—
<1, 4> <0, 4> <2,2> <2 4>
<], 1> <L 0> <], 4> <0, 4>
<2,0> <] 4> <0, 1> <2 3> [INTERMEDIATE SUM
<2,0> <2, 4> <2 1> <0,3> CORRECTEDSUM
<2, 4> <] 1> <2,4> <0, 0> CARRES
<[, 4> <0,0> <1,0> <0, 3>

S 4621 spyrio T 1546 guprio =405 3gonrin

ke

There are two techniques available to satisfy the dynamic range required by the extended digit

set. The first is to use disjoint digit sets, and the second makes use of nondisjoint digit sets.

3.1.7.1.2 Disjeint digit sets

A satisfactory RNS moduli set dynamic range results in a disjunctive sets for positive and
negative intermediate sums. The condition for disjoint sets is as follows:

PAUL, WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

31

da+1<pipa..py
Figure 2 depicts both disjoint sets and also;
1. Shows RNS codes for the INTERMEDIATE SUM; = X; + Y,.

2. Specifies carry values for various ranges of the INTERMEDIATE SUM,.
3. Identifies possible sign combinations of X; and Y;.

INTERMEDIATE INTERMEDIATE _SUM; RNS}
_SUM; (SDNR)
] <0mod pl,Cmod p2, ..., 0 mod pn >
carry=0 - 1 <1 mod pl, 1 med p2, ..., 1 mod pn >
+4, - i B
a-1 . < {a- 1) mod p1, (@-1) mod p2, ..., (a-1) mod pn >
carry = 1 a <amedpl, amod p2, .., a mod pn >
++ : :
Za S2Zamedpl,2amedp?, .. 2amed pn >
carry = -1 -Za < (p1p2..pn - 2a) mod p1, (p1p2...pn - 2a) mod p2, ..., {p1p2...ph - 2a) med pn >
-, +- -a < (p1p2..pn - a) med pi, (p1p2..on - avmod p2, ..., (pl1g2...pn - a) mod pn =
a1 < {pipZ..pn-a+ 1) mod pl1, {p1p2. . pr-a+ Ty med p2, ., (eip2.pn-a+ 1ymod pn >
caery =0 : :
-y - 2 < (p1p2..pn - 2) mod pl, (R1p2..pn -2y med p2, ..., {p?p2..pn - 2) mod pn >
-1 < [pip2..pr- 1) mod pt, {pip2...pn - 1) mod p2, ... {ptp2._pn - 1) mod pn >

Figure 2: Disjeint digit sets based on condition 4a + 1 < pypz...pye

The algorithm for a disjoint set SDNR/RNS digit adder is executed accordingly (adapted from
Kuczborski, 1993);

IN PARALLEL FOR 1 £ index <11 DO
BEGIN

uncorrected_SUM_Pindext = (Operandl_Ppiey) + 0perand?_Piindes) MOd Pyindex)
END
carry_ouf; = f (uncorrected sum_py, uncorrected sum p,, ..., uncorrected_sum_py)
IN PARALLEL FOR | < index < n BO

BEGIN

corrected_SUm_pyingey) = £ (Carry_ouf;, uncorrected SUM. Pindex;)
END
INPARALLEL FOR 1 <index <n DO
BEGIN

SUM_Plingey) = (COTTECtEd _SUM. Pinger T+ CAMTY_inj} MOd Plindexy
END

An explanation of paraliel algorithms is given in Kung (1988). The algorithm highlights Kung’s
(1988) first design criteria, which is maximum parallelism (discussed in section 3.2.3.1-Maximum
parallelism). As RNS coding is used at the digit level, the disjoint set algorithm exhibits high parallelism,
in comparison to the algorithm for a SDNR digit adder. Figure 17 shows the logic block realisation of
the disjoint set algorithm.

Kuczborski (1993) states that the proper choice of a digit set guarantees that carry values are
not propagated by more than a single position, The inherent parallel execution allows the addition
operation to be performed independent of the word fengths of the aperands.

3.1.7.1.3 Nondisjoint digit sets

_ SDNR/RNS addition using nondisjoint digit sets reduces the required dynamic range to

represent a number (Kuczborski, 1993). This has several positive characteristics, including the ability to
represent a larger digit set using RINS moduli sets which are fewer and smaller moduli. There are four
types, or cases, of nondisjoint. digit sets, The first case of nondisjoint digit sets is defined by the
following condition:

PAUL WHYTT: ENGTNEERTNG PROJECT REPORT 16 JANUARY 1997

32

Ja<pipr.pa<datl

Figure 3 shows a diagrammatical representation for the first case of nondisjoint digit sets. Note
that some RNS codes represent twa digits instead of one, An algorithm will be presented later which
can resolve this discrepancy. '

INTERMEDIATE
SUM, (SDNR}

carfy =0
o, 4

carry = 1
++

7

INTERMEDIATE
_SUM, (SDNR)

-2a

carry=0
e

-a+ 1

-1

INTERMEDIATE _SUM, (RNS)

< 0mod p1, 0mad p2, ..., 0mad pn >
<41 medpt,1 modp2, ..., 1 mod pn >

< {a - 1) mod p1, (a-1) mod 02, ..., {a-1} mod pn >

<amodpl, amodp2, ., amodpn>

< (p1p2..pn - 2a) mod pt, {pl1p2..pn - 2a) med p2, ...
{p1p2...pn - 2a) imad pn >

<2amod pl.2amed p2, ., 2a mod pn >

« {plp2..pn - a} mod pi1, (pip2..pn - a) mod p2, ..,
[(lp2..pn - a) mod pin >

< (ptp2.pn-a+ \ymed pi, (pIp2..pn-a+ 1) mod p2, ...,
{pip2..pn-a+ 1) mod pn >

< {plp2..pn - 2} mod g1, (plp2.ph - 2) mod p2, ..,
(plp2. pn - 2) mod pn >
< (pip2.pn - 1) med pi, (pip2.pn - 1) mod p2, ..,
{plp2..pn- 1) mod pn >

Figure 3: MNondisjoint digit sets based on condition 3a < pypa...p,<4a + 1.

Case two for nondisjoint sets is illusirated in Figure 4. For a SDNR/RNS configuration to

qualify for case two, the following condition must be satisfied:

3a=pips.pa
INTERMEDIATE INTERMEDIATE INTERMEDIATE_SUM; (RNS)
_SUM; (SDNR) _SUM, (SDNR}
o] < Qmed p1, O med p2, ..., 0 mod pn >
catry =0 4 < 1madpl, 1 mod p2, ..., 1 mod pn >
4, H :
a-1 < {a- 1 modpl, (@-1) mod p2, .., (a-1) mod pn >
carry = 1 a carry = -1 -2a < amod pt, amod p2, .., a mod pn > = < (p1p2...pn - 2a)
med p1,{pip2..pn-2aymad p2, .., (p1R2...pn - 2a} mod pn
o
++ -
ﬁa -y ;a < 2a mod p1, 2amod p2, ..., 2a mod pn > = < {p1p2..pn - a)
mod g1, (p1p2...en - &) mod p2, ..., (pip2...pn ~a} mod pn >
a+1 < (ptp2..pn-a+ 1) mod pi, (ptp2.pn-a+ 1) mod p2, ..,
{plpZ..pn-a+ 1) mod pn »
carry =0 B B
- e :
;2 < (plp2..pn = 2) mod pl, (plpZz..pn - 2) mod p2, ..,
(p1p2...pn - 2) mad pn >
-1 < (pip2..pn - 1) mod pt, {plp2..pr - 1) mod p2, .,
| %1p2..pn - 1) mod pn >
Figure 4: Nondisjeint digit sets hased on condition 3a = pyps...pa.

Case three for disjoint digit sets is shown In Figure 5. The condition for this case is as follows:

Zatl< PiPz.-.Pn <3a

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

INTERMEDIATE INTERMEDIATE INTERMEDIATE_SUM, (RNS)

SUM; (SDNR)Y _SUM, (SDMR)

o] < Omod pt, Omed p2, .., 0 mod pn >

carry =0 1 . <1 madp1, 1 mod p2, ..., 1 mod pn >
L : H

< (pip2..pn - 2a) mod pl, (ptp2.pn - 2a) med p2, ..,

{p1p2..pn - 2a) mod pn >

: carry =-1 -2a :

a-1 - : < {a -1} mod p¥, (a- 1) mod p2, ..., {& - 1) mod pn >
carry = 1 a : <amodpl,amodp2,...amodpn>
++ B . :

e -a < {pip2..pn - @) mod pl, (p1p2..pn - a) med p2. ..,
(ptp2..pn - a) med pn >

-a+ < {pipZ.pn-a+) mod pl, (pip2..pn-a+ N mod g2, ..,
{P1p2..pa-a+ 1y mod pn >

2Za carry =0 : <2amod pl, 2a mod p2, ..., 2a mod pn >

— *- i H

2 < (pip2..pn - 2) mad pl, (p1p2..pn - 2) amod p2, ..
{p1p2..pn - 2) mod ph >
-1 < (p?p2..pn - 1} mod pl, (p1p2..pn - 1) mod 82, ..
(p1g2..pn- 1) mod pn >

Figure 5: Nondisjoint digit sets based on condition 2a + 1 < pypz...p, < 3a.

The tourth case for disjoint sets is described graphically in Figure 6. The condition for this case
is as follows:

2atl= Pipz---Pn

INTERMEDIATE INTERMEDIATE INTERMEDIATE _SUM; (RNS)
SUM; (SDNR) _SUM; (SOMR)
¥ <0 mad pt, 0 med p2, ..., G mod pa >
carry =0 1 carry = -1 -2a <1 mod g1, 1 mod p2, ..., 1 mod pn > = < {plp2..pn - 2a} mod
pl, (p1p2..pn - 2ay mod p2, ., (p1p2...pn - 2a) med pn >
b, e — H
a-1 : < (a-1)mod pt, (a- 1) mog p2, ..., @- 13 mod pn >
carry =1 a : <amod pl, a med p2, ., amed pn >
++ : -y e -a < {plp2..pn - a) mod pt, (plp2..pn - a) med p2, ..., (P1p2..pn -
&) mod pn >
-a+i < {(plp2..pn - a + 1) mod o1, (p1p2.pn - a + 1) mod p2, .,
(pip2..pn-a+ 1) mod pn >
carry = 0
R = -2 < {p1p2...pn - 2) med pt, {pip2..pn - 2y mad p2, .., (p1p2..p1 -
2} mad pn »
2a -1 < 2amedp1,2amad p2, .., 2a med pn > =< (p1p2,.pn- 1) mod

pl. (p1p2..en - 1) mod p2, ..., {p3p2..pn - 1) mod pn >

Figure 6: Nondisjoint digit sets based on condition 2a + 1 = pyp;...Pn

The algorithm for a SDNR/RNS digit adder using disjoint sets can be stated as follows
(adapted from Kuczborski, 1993):

IN PARALLEL DO

BEGIN
INPARALLEL FOR 1 < index < n DO
BEGIN

uncorrected_sum_prigges) = (operandl priues) + operand?2 pringes) mod Prinde
END
operand]l sign =f(operand] p,, operandl p,, ..., operand!l p,)
operandZ sign = f (operand2 py, operand2 p,. ..., operand2 p,)
END
region = f (uncorrected _sum_py, uncorrected sum_ps, ..., uncorrected sum p,)
carry_out; = f'{(operandl sign, operand2 sign, region)
INPARALLEL FOR 1 < index < n DO

BEGIN

carrected_SUM_ppinge = £ (carry_out, uncorrected_Sunt pjjdes)
END
IN PARALLEL FOR | < index < n DO
BEGIN

SUM_Drindex) = (COrmrected_ sum_Pringesq + carry_in;) mod ppingex
END

The nondisjoint digit-adder algorithm is still parallel by nature, but there are more inherent
stages, in comparison to the disjoint case, which must be processed in a serial manner. Therefore,

Paul, WHYTE ENGINEERING FROTECT REPORT 16 JANUARY 1997

34

Kung’s (1988) first design criteria (refer to section 3.2.3.I-Maximum parallelism for more information),
tavours the disjoint digit adder. Figure 18 shows the logic block realisation of the nondisjoint set
SDNR/RNS digit adder algorithm,

Both the disjoint digit-adder and the nondisjoint digit-adder have the potential to achieve
maximum pipelinabllity (Kung’s second design criteria; refer fo section 3.2.3.2-Maximum pipelinability
for more information), Both algorithms imply predictable data dependencies, regularity, and focal
connections, all of which play a major part in increasing concwrrency and pipelining, Kung’s (1988)
fourth design criteria states that regular communication should be encouraged. Both adder algorithms
use local and static communication. These factors contribute towards regular communication. The third
and fifth design criteria described in Kung (1988) can be achieved by choosing the optimal values for the
radix, moduli, and the digit set.

During the analysis and design phases of the project, the set theory of arithmetic decomposition
was used to verify the structure and operation of the chosen SDNR/RNS digit adder configuration, Tn
the next section, the set theory of arithmetic decomposition is explained.

3.1.7.1.4 Set theory of arithmetic decomposition

Carter and Robertson {1990) state that the set theory of arithmetic decomposition is a method
for designing complex addition/subtraction circuits at any radix using strictly positional, sign-local
number systems. With the theory, the design of circuits to implement the addition is reduced to applying
a set of rewrite rules to an equation involving set addition and set scalar multiplication of digit sets that
represent the inputs and outputs of the adder.

3,1.7.1.4.1 Definitions

Carter and Robertson (1990) defines a strictly positional number representation as one which
the value of a number, whether positive or negative, is computed by a single formulz, Furthermore, in
sign-local representations, the sign digit does not affect the value of any other digit in the numher. As
the SDNR satisties both of these criteria, the set theory of arithmetic decomposition can be used to
design and verify a SDNR/RNS digit adder array,

According to Carter and Robertson (1990), a digit set is characterised by two parameters:

. Diminished cardinality (8). This parameter 1s equal to the number of elements in a digit set
Tinus one.
2. Offset (o), This parameter is the magnitude of the smallest element.

A digit set is denoted as <6">. Using the concepts of diminished cardinality and offset, a digit
set D 15 defined as follows (Carter and Robertson, 1990):

A digit set D is a sequence of 8 + 1 consecutive integers, {-o + 0, .., - + 8},
&2 1. Atradixrt, & <(2r-2).

& = o z 0 which implies that 0 € D,

8 =1 - 1 which implies thatr > 2.

Carter and Robertson (1990) also specify auxiliary definitions. The following auxiliary
definition can be applied to SDNR/RNS representation:

If &> (r - 1), then the digit set is redundant.

When using the set theory of arithmetic decompaosition it is possible to perform two operations
on sets of integers:

1. Set addition.
2. Set scalar multiplication.

PAuUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

35

Given sets of integers D), set addition is defined as follows:
DQ - D] - {(dg + dl) I d() = D() and d; < Dl}

Based on integer addition, set addition is both associative and commutative (Carter and
Robertson, 1990). Given, in addition to D, set addition ts defined as:

sD = {(s:d) | s is an integer and d € D}

Based on integer multiplication, set scalar multiplication is associative, commutative, and both
right and feft distributive over set addition (Carter and Robertson, 1990). Set scalar multiplication takes
precedence over set addition,

An arithmetic set expression, according to Carter and Robertson (1990), is a colfection of
weighted digit sets involving set addifion and set scalar multiplication. It is defined as:

N
oD

where s is a scalar.
D; is a digit set.

An arithimetic set expression that represents a digit set is called a composite digit set and has:

N
& = 2 5.0
¢ 1:0 171
and:
N
m = 2 8o
C 1__0 i1

Therefore, the set expression:

g<1i> + 42> 1 2« le + <2

B = (8)(1) +{4)}2) + (2} + (2} =20
e = (8)(1) +(2)(1) = 10

The resulting composite digit set is <20'">.
Carter and Robertson (1990} state that the notion of composite digit sets is of prime
importance since it indicates that digit sets of high diminished cardinality can be represented by weighted

sums of digit sets of lower diminished cardinality. For example, a four bit two’s complement number
represents the digit set:

<15%> =148 .. -1 0 1, ., 7}
for which the representation as an arithmetic set expression is:
g<1ts + 4<1% + 2<1% + <1%>

For binary addition and subtraction, afl high cardinal digit sets can be represented as weighted
sums of binary (6 = 1) and terary (& = 2) digit sets (Carter and Robertson, [990).

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

36

Carter and Robertson (1990) also point out that the information content of digit sets and
composite digit sets is defined to be the number of distinct signals (or bits} required in the physical
realisation. The weighting radix is a pumber raised to a igit position index by which each successive
digit set in a set expression is multiplied. For example, a binaty system has a weighting radix of 2.
Carter and Robertson (1990) staie that the selection of the weighting radix in an arithmetic unit
represents a compromise between operational speed and the complexity and cost of destgn.

3.1.7.1,4.2 Decomposition equations

Carter and Robertson (1990) introduce the decomposition operator (=), which indicates that
the right-hand arithmetic set expression is to be transformed into the lefi-hand expression. A
decomposition relation has a digit set or composite digit set on both right- and left-hand sides of the
decomposition operator. Fot example, a two digit radix r complement adder can be specified as follows:
P> 4 e<(r - D% = (<1 F < - D)+ (<> < - D) <™

The final <IG_ > digit set on the right-hand side represents the carty in.

The algorithim for an SDNR/RNS digit adder consists of two main stages. The algorithm can
be represented as a pair of decomposition equations as follows:

Stage 1: 1<2'> + <U"> < <2a™> + <2a™>
where (from right to left) <2a"> = operand Y.
<2a”> = operand X.
<21" = corrected intermediate sum.
<21_> = garry ouf.
r = weighted radix.
Stage 2: <2a™> < <2t> + <2'>
where (from right to left) <2'> = carry in.
<2t"> = corrected intermediate sum.

<2a™> = final sum.

and for the a value:
r
r—lzaz FL()OR(Z,IJ +1
for the threshold value t:
f<r-a<gt<a-1

The second SDNR/RINS arithmetic operation which was analysed during the project was
multiplication. A description of SDNR/RNS multiplication proceeds this section.

3.1.7.2 SDNR/RNS muliiplication

The SDNR/RNS data representation allows parallel addition, subtraction, and magnitude
- comparisons. However, the issue of nultiplication was examined more closely to see if it was a feasible
SDNR/RNS arithimetic operation.

One of the characteristics of an SDNR/RNS arithmetic systent is it’s ability to handle very large
numbers. For instance, a conveutional 64-bit integer has relatively large magnitude, and it would be

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1097

37

expected that the SDNR/RNS arithmetic processor be able to handle such a number efficiently during
operations such as addition, or subtraction. What if, however, a multiplication involving two
conventional 64-bit integers, which could potentially result in a 128-bit number, was required?
Multiplication in the arithmetic system could be performed in-a number of ways, including methods such
as multiplying by conventional notation, by the RNS, or even by SDNR/RNS.

3.1.7.2.1 Conventional muliiplication

When muitiplying, two operands are required, One operand is called the multiplier and the
other is cailed the muitiplicand (Waser and Flynn, 1982). Example 3.1.7.2.1.1 illustrates multiplication.

31.7.2.1.1 Ezxample
Multiplicand 1 1 0 6
Multiplier * i 0 1 * 3
1 1 0 (6 %29
Partial products 0 0 0 (0*2h
1 I 0 (6 * 2%
Fmal product 1 1] 1 0 30
FT Rk

For the conventional and SDNR/RNS methods, the following generalised procedure is
executed tor multiplicatton (Waser and Flynn, [982):

1. First, calculate partial producis, then
2. calculate sums of partial products to obtain result.

For both the conventional and SDNR/RNS methods, the second stage of multiplication can be
completed using SDNR/RNS adders. Partial product generation wsing the conventional method can be
achieved by using matrix generation and reduction techniques. That is, a modifted version of Booth’s
algorithm can be used to generate the partial products. Booth’s algorithm and its derived modification
are discussed in many books, including Waser and Flynn (1982), and Kung (1988). The madified
version of Booth’s algorithm, based on 2-bit encoding, can be characterised as follows:

{. The multipler must be encoded into groups of 3 bits.

2. For two’s complement multiplication, the complement of the multiplicand must be
catculated.

3. Number of partial products generated = n/2; where n = maximum length of muitiplier or
multiplicand (bits}.

4. Number of multiplication processing, elements required tor parallel processing = n/2; where
n = maximum [ength of multiplier or multiplicand (bits).

5. Number of adding stages required to swn partial products = log,n; where n = maximum
length of multiplier or multiplicand (bits).

The modified version of Booth’s algorithm is widely used for multiplication because of these
characteristics.

3.1.7.2.2 RNS multiplication

Multiplication can be performed more efficiently by using the RNS. A disadvantage of the
RINS scheme is that extremely large numbers can not be handled very easily, because of the dynamic
range restriction.

PAUL WITYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

38

The largest unsigned 8-bit operand equals 2° - 1 = 255, If two 8-bit operands are multiplied
together, the largest possible result is (2% - 1) = 255 * 255 = 65 025. Therefore, the RNS dynamic
range must be at least 65 025. Taking the case of muitiplying two 64-bit operands dictates the RNS
dynamic range to be at least (2°* - 1)* =3.40 * 10°®1 This is an extremely large dynamic range. Possible
modufi sets can be determined from either one of the following popular guidelines listed in Abdallah and
Skavantzos (1995} (refer to section 3.1.5.1-Selection of moduli for a list of the guidelines).

Guideline three seems to be the only suitable choice for such a large dynamic range. However,
to find relatively prime moduli for the dynamic range 3.40 * 10" hardly seems feasible. Even if a moduli
set could be found, the moduli themselves would be so large that the ROM lookup tables required
would be too big and too slow. In spite of this setback, RIS is still very efficient at nwiliiplication.
Therefore, is it possible to combine SDNR and RNS to perform multiplication with large operands? As
it will become apparent, SDNR/RINS multiplication is possible, but not without problems. A theoretical
analysis of SDNR/RNS multiptication will first be discussed, followed by the implementation aspects.

3.1.,7.2.3 SDNR/RNS mnltiplication

3.1.7.2.3.1 Theoretical analysis

The problem of multiplication in the SDNR/RNS number systen can be understood by first
analysing how addition and subtraction are executed, The afgorithm for addition and subtraction in the
SDNR/RNS scheme is similar to the SDNR. algorithm. For SDNR/RNS addition/subtraction, the
algorithm, based on a radix r, is as follows:

1. A symmetric digit set is selected. The digit set takes the form {~a, -a + 1, -a +2, ..., -1, 0,
I,...,a-2,a-1,a}.

2. An extended symumetric digit set is selected so that all intermediate sums can be
represented. The extended digit set takes the torm {-2a, -2a-1,-2a-2, ... 1, 0,1, ..., 2a-
2,2a-1,2a}. RINS moduli are chosen so that the extended digit set can be represented.

3. A threshold value (1) is set. The threshold value determines carry propagation values. The
threshold value must satisfy | <r-a <1t <a- | for restricted carry propagation,

4. From the operands, intermediate sums are calculated.

5. Based on the threshold value t, intermediate sum and carry corrections are determined.

6. Based on the corrections, final sums are cafculated.

From the addition/subtraction algorithm, it is clear that the boundaries of the extended digit set
{-2a and 2a) are selected to ensure that an addition involving -a and -a (which results in -2a), or +a and
+a (which results in -2a) can be represented. For multiplication, a similar principle applies. That is, the
an extended digit set must exist, so that multiplications involving the largest numbers in the digit set can
be accommodated. Thus, given the digit set {-a, ..., 0, ..., a}, an extended digit set must be chosen to
satisfy {-a%, ..., 0, ..., a’}. Anideal algorithm for SDNR/RNS multiplication can be given as follows:

1. A symmetric digit set is selected. The digit set takes the form {-a, -a+ 1, -a+2, .., -1, 0,
I,...,a~2,a-1,a}

2. An extended symmetric digit set is selected so that all intermediate sums can be

represented. The extended digit set takes the form {-az, at-l,-at -2, LLoE a’ -

2,a%-1,a’}. RNS moduli are chosen so that the extended digit set can be represented.

A threshold value (1) is set. The threshold value determines carry propagation values. The

threshold value must satisfy 1 <1-a <t <a- 1 for restricted carry propagation.

4. From the operands, partial products are calculated.

5. Based on tbe threshold value t and partial products, intermediate sums and carry corrections
are determined.

6. Based on the corrections, final sums are calculated.

el

The problem with the multiphcation algorithm is that no procedure exists to convert partial
products, which can take any value in the digit set {-a% .., 0, .., az_}, back into the normal digit set
specified by {-a, ..., 0,-.... a}, without viofating the restricted carry principle for SDNR. In the

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

39

addition/subtraction algorithm, carries are restricted to -1, 0, or 1. This allows for parallel
addition/subtraction. For multiplication, carries are not restricted. This disallows parallel mulfiplication,

The following example highlights this point.

3.1.7.2.3.1,1 Example

For simplicity, this example is performed in SDNR.

Iy =10

a =02+
=10/2+ 1
=6

t =a-1
=86-1
=5

Addition

Digit set = {-6, -5, 4, ..., -1,0,1, ..., 4, 5, 6}
Extended digit set = {-12, -11, -10, ..., -1, 0, 1, ..., 10, 11, 12}

wn

6
+ 4 6

(9) (12) Intermediate sum

(I) (2) Corrected sum

(1) (N Carries
(1y (M (2) Final sum

From the example, SDNR/RNS addition is relatively straight forward.

Mutltiplication

Digit set = {-6, -5, -4, ..., -1,0, 1, ..., 4,5, 6)
Extended digit set = {-30, -35, -34, ..., 1,0, 1, ..., 34, 35, 36}

5 G
* 4 6
(30y (36) Partial product
{20) {24) (0) Partial product
? ? ? ? Final sum

This is as far as the multiplication algorithm will go without viotating the restricted carry rule of
SDNR. intermediate corrections cannot be performed as the resulting intermediate multiplication values
cannot be represented in the normal digit set without violating the restricted carry rule.

RN

Therefore, is multiplication in the SDNR/RNS nuwmber system possible? The answer to this
question is yes, but under very severe restrictions. A digit set must be devised which can support
SDNR/RNS multiplication, while maintaining the restricted carry set {-1, 0, 1}. The digit set must
satisfy the extended digit sets for addition [-2a, ..., 0, ..., 2a} and multiplicaticn {—az, L0, At I
equivalent extended digits sets for addition and multiplication can be derived, then restricted carry

" propagation can be guaranteed. This results in the folfowing equation being simplified to obtain the
houndary values for the normal digit set {-a, ..., 0, ..., a}:

PauL, WHYTE ENGINGERING PROJECT REPGRT 16 JANUARY 1997

40

.Thus, if 2 = 2, then paraliel addition/subtraction and muifiplicaiion is possible, To find the
radix that is compatible with this a value, the following redundancy equations are required:

For minimum redundancy;

a =1/2+1
r =2{a-1)
=2(2-1)

R 1s T Y% ey it 1. ~, P PRI I
= Z (UIIS TAQIX 18 lIlV'dh(l 11 S_IJIQIT\, das THE CONALEEOLE T -~ 24 (I0ST DE Salisied b

T Al g R
CoOf dadinai 1 ULlU[lLEElHLly_

- . T

a i -1

T =a+1i
=2+1
=3

Taking the case fof maximuin redundancy, for a = 2, the radix is 3. Therefore, loi paratlel
addition/subtraction and muitiplication, the radix is restricted to 3. However, awltiplication is simplified
when using the digit set {-2, -1, 0, 1, 2} because the operations then become a series of selected left
shifts and additions. For instance, when multiplying by 2, a left shrft is required, when multiptying by I,

no shift is required, and when muitiplying by 0, no muitiplication is required (the result is zero).

When dealing with digital circuits, radix 3 iy not favourable, because direct conversion from
binary to this radix requires a radix conversion algorithm, In comparison, a radix which has a base of 2
cart be direcily coiwveried to that radix by grouping the bits in the number. For example, a binary
number can be converted to a radix 4 (= 2°) mumber by grouping bits by twos. Therefore, a pseudo-
radix 4 SDINR digit set will be devised, which would allow easy binary conversion, and simpiified
paraflel multiplication,

For a normal SDNR radix 4 number, the digit set for mininmum and maximum redundancy is {-
3,-2,-1,0, 1,2, 3}. However, by using carrier sense logic, the digit set can be reduced to the threshold
digit set {-2, -1, 0, 1, 2}. The carvier sense logic algorithm is as follows:

IF (X, > t) OR (X, 2 1} AND (X, (> t) THEN

Xo=X,-r

ELSEIT (X, <t} OR (3, <t) AND {X,,.; <) THEN
Xp=Xphr

ELSE
X, =X,

ENDIF

The next example illustrates SDNR/RNS multiplication.

3.1.7.2.3.1.2 Exampie

For simpliciiy, this example is performed in SDNR,

!
L = Y

Digit set = {-2, -1, 0, 1, 2}
Extended digit set = {-4, -3, -2, -1, 0, 1, 2, 3, 4}

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY [997

41

Multiplication:

56]0 * 46]0 =2 57_610

3 2 0
0, @ ©

(1)

W Gy, @ ©
2 3 2
2y (1) @

a

O 1y () @

Partial products

(1) (I) 2y (O
¥ (H (I) (1_) (2)

@} (zy O (0 Parial product #1

(y D2y © (0) Partial product #2

(1) D (2) (0) (0) (0) Partial product #3

M Gy @ © © (© (0) Partialproduct #4

Additions

r =4

a =711
4-1
=3

i a-1
=3-1
2

Digit set = £-3,-2,-1,0, 1,2, 3}
Extended digit set = §{-6, -5, ...,-1,0, 1, ..., 5, 6}

Add partial products #1 and #2:

@ G, © ©

0 Mg © O
H B Gy O O sm

({ {) (I) (1) {0y (0) Corrected sunvecarry sense
(H (I) Carsies

)} (5) (1y (0) (0) Final sum

Add partiaf products #3 and #4:

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JaNUARY 1997

42

M W@y @ © o
M gy @ © O © O

W Gy ® 3, ® © © S

(1) (5) (E) (5) (M (® (0 Corrected s;um/carry sense
(1 Carries

M (]_) (E) (5) (0) {0) (0) - Final sum
Add sums of partial products #1 and #2, and #3 and #4:

© 5y O © ©
M 0 Gy 2y © @ O

(O d) (I) (:1) (1} (0) () Sum
{1 (I) (i_) M () (M (O Corrected sum/carry sense

(£) Carries

(H (-“1‘) (2) 0y (1) (0 . (0) Final sum
Convert to conventional radix 4 representation:

M O O O @O © (O
- O @ © O o O

@ @ O @O O (0

2201004 =2 57610

3.1.7.2.3.2 Practical analysis

In theory, SDNR/RNS muoltiplication is possible. The target technology for this system is
CMOS. A hypothetical implementation would take the form of a systolic array, with each processing
element containing at least one SDNR/RNS partial product generator (multiplier) and one SDNR/RNS
adder. The purpose of the adder component would be to sum the result fiom that processing elemeni’s
partial product generator with the current digit sum calculated from the previous processing element.
Kung (1982) and Kung (1988) discuss systolic arrays in detail.

For isaplementation, a choice in moduli is required to represent the extended digit set {-4, -3, -
2,-1,0, 1,2, 3, 4} at the digit level. The required dynamic range for this set is 9. The smallest moduli
set which would satisfy this dynamic range s {3, 4). This moduli set is charactetised by a dynamic range
of 12, Therefore, a disjoint SDNR/RNS digit set can be used. Table 4 lists the digit set and
corresponding RNS representation.

Paur, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

Table 4: SDNR/RNS digit set.

SDNR digit {RNS number

(SDNR digit) [(SDNR digit)
MOD p1 MOD p2 -

-4 2 0

-3 i 0 1

-2 1 2

-1 2 3

a 0 a

1 1 1

2 2 2

3 0 3

4 1 a

The SDNR/RNS configuration presented in Table 4 is not practically feasible. First, four bits
would be required to represent each digit in SDNR/RNS form, Given that two bits are required to
represent each prouping of bits in conventional notation, the redundancy factor for this particolar
SDNR/RNS configuration would be 100%. To put this into perspective, a 128-bit SDNI/RNS number
would be required to represent a conventional 64-bit integer, The redundancy factor in this case is
unacceptable, as it is an inefficient way to store a number and makes it impractical to implement such a
circuit. The fact that low radices are not well represented m SDNR/RNS data representation is noted in
Kuczborski {1993},

Second, there are severe restrictions on the digit set. The only digit set that accommodates
SDNR/RNS multiplication is {-2, -1, 0, T, 2}. One advantage of the digit set {-2, -1, 0, 1, 2} is that it
suits digital circuits because multiplication becomes a simple series of selected left shifis and additions.
Other advantages of SDNR/RNS multiplication are that it inherits characterstics such as modularity,
regularity, and computational fault isolation.

The disadvantages present in the scheme stem from the fact that the system lacks basic
flexibility. For example, with an SDNR/RNS adder, a designer can freely choose the radix, the moduli
set, and the redundancy factor. In contrast, the SDNR/RNS multiplier can only be realised if a certain
configuration is used. This configuration is detailed in Table 5.

Table 5: Counfiguration for a SDNR/RNS muitiplication scheme.

Radix pl pZ Dynamic range [a Mumber of digiis | Number of bits
required to required to
represent a reprasent a
sonventichal 84- {conventional B84-
bit integar bit integer
4 4 12 3 32 128

Despite the inflexibilities, the proposed SDNR/RNS multiplication method has similar
characteristics to the modified versior of Booth’s algorithm, and they are as follows:

1. The multiplier and multiplicand must be encoded into SDNR/RMS notation,

2. Two’s compiement multiplication is performed relatively easily because of the SDNR
component in the SDNR/BINS notation.

3. Number of partial products generated = 0/2; where n = maximum length of multiplier or
multiplicand (bits).

4. Number of multiplication processing elements required for parallel processing = (n/2)%
where n = maximum length of muktiplier or multiplicand (bits).

5. Number of adding stages required to sum partial products = logzn; where n = maximum
length of multiplier or multiplicand (bits). ’

The major difference between the modified version of Booth's algorithm and the SDNR/RNS
tethods is the number of multiplication processing elements required for pure parallel multiplication.
The SDNR/RNS method requires a lot more of these processing elements ((1/2)*) than the modified

PauL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

44

version of Booth’s algorithm (n/2). Furthermore, the modified version of Booth’s algorithm allows
larger bit encoding schemes, which in turn reduces the number of resultant partial products. This, in
turn, reduces the number of partial product processing elements required.

It has been shown that SNDR/RNS nuiltiplication is possible. However, the gains expected
from using such a scheme are outweighed by its inflexibilities. Oné of the main inflexibilities is that the
extended digit set must satisfy { T | a’}. The only digit set able to comply with this criteria is
f-a, ., -1, 0, &, .., ta} ={-2, -1, 0, [, 2}. If a technique is devised tc overcome this digit set
restriction, so that larger and more efficient radices and digit sets can be accommodated, then
SDNR/RNS multiplication may become practicaily feasible.

3.2 Computer architecture

This section describes the major characteristics of VLSI in order to justify its application to this
project.

3.2.1 VLSI characteristics

According to Hwang and Briggs (1984), the key attributes of VLSI computing structures are
simplicity and regularity, concurrency and communication, and computation intensiveness.

3.2.1.1 Simplicity and regularity

VL.SI chips comprise of hundreds of thousands of identical camponents, To cope with that
complexity, simple and regular designs are essential. Hwang and Briggs (1984) state that VLSI systems
based on simple, regular lavout are likely to be modular and adjustable to various performance levels.

Hwang and Briggs (1984) associate the simplicity and regularity of VLSI designs to the issue
of cost. The issue of cost effectiveness has always been a major concern in designing special purpose
VLS systems. Specifically, their cost nist be low enough to excuse their limuted applicability, Special
purpose design costs can be reduced by the use of appropriate simple and regular architectures (Hwang
and Briggs, 1984).

The digit adder that was implemented was simple and regular. Characteristics of the

SDNR/RNS number system made sure that the digit adder was modular, and was adjustable to vatious
performance levels,

3.2.1.2 Concurrency and commumnication

Hwang and Briggs (1984) highlight the fact that the degree of concurrency in a VLSI
computing structure is largely determined by the undertying algorithm. Massive parallelism can be
achieved if the algorithm is designed to introduce high degrees of pipelining and multiprocessing.

Coordination and communication become significant when a large number of PEs working
simultaneously (Hwang and Briggs, 1984). This is especially true for VLSI technology where routing
costs dominate power, time, and area required to implement a computation. Therefore, algorithms need
to be designed that support high degrees of concurrency, while employing only simple, regular
communication and control. Hwang and Briggs (1984) point out that the locality of mterprocessor
communications is a desired property to have in any processor arrays.

First, the digit adder algorithm lends itself to parallelism. Second, the SDNR/RNS number
_system restricts carry propagation to one position. Therefore, a SDNR/RNS digit adder is only required
10 communicate with its closest neighbours. Both of these characteristics promote concurrency and
simple communications.

PAUL WEHYTE ENGINEERING PROJECT REPORT _ 16 JANUARY 1997

45

3.2.1.3 Computation ingensiveness

Hwang and Briggs (1984) state that VLSI processing structures are suitable for implementing
compute-bound algorithms rather than I/O-bound computations. Tn a compute-bound algorithm, the
number of computing operations is larger than the total number of input or output elements, Qtherwise,
the problem is /0 bound (Hwang and Briggs, 1984). For example, Kung {1982) states that the ordinary
matrix-matrix multiplication algorithm represents a compute bound task, since every entry in a matrix is
multiptied by all entries in some row or colurmn of the other matrix. In comparison, adding two matrices
is 1/0 bound, since the total number of adds is not larger than the total number of entries in the two
matrices.

The I/O bound problems are not suitable for VLSi because VLSI packaging must be
constrained with limited I/Q pins. Therefore, a VLST device must batance internal computation with the
/O bandwidth. Having knowledge of the /0 hnposed performance limit helps prevent overkill in the
design of special purpose VLSI processors (Hwang and Briggs, 1984).

The SDNR/RNS digit adder algorithm exhihits T/O bound behaviour. However, the data could
be input and output in a serial manner, which wquld balance internal processing with /O bandwidth,

Hwang and Briggs (1984) assert that the choice of an appropriate architecture for any
electronic system, inciuding VLS8I, is very closely related to the implementation technology. In VLS,
the constraints of power dissipation, I/Q pin count, communication delays, difficulty in design and
layout, and so on are less critical in other technologies. Conversely, VLSI offers fast and inexpensive
computational elements,

Properly designed parallel structures that need to communicate only with thelr nearest
neighbour gain the most from VLSE, according to Hwang and Briggs (1984). Valuable time is fost
when modules that are far apart must communicate.

3.2,2 Clock distributiou schemes

According to Kung (1988), a systemn wide clock signal controls the activities in a large
synchronous system. The purpose of the clock signal is twofold. First, the clock acts as a sequence
reference, and second, it acts as a time reference (Kung, 1988):

1. Sequence reference. The clock transitions serve the purpose of defining successive instants
at which system state changes may occur.

2. Time reference. The period between clock transitions accounts for wiring and element
delays 1n paths from the output to input of clocked elements.

Kung (1988) asserts that clock distribution is a critical issue for systolic arrays. This is because
the clock signal dictates the activities of the entire system. In view of this fact, clock distribution
problems must be overcome in the design of the array processor (or an array of digit adders). The main
problems are from clock skew (Kung, 1988). That is, each digit adder, or PE, in an array may not
receive the clock signal at the same time, Reasons for the clock skew can be attributed to the different
path fengths from the clock generator to each PE, or other reasons, such as process variations for
different clock paths.

To overcome clock path problems, Kung (1988} suggests designing the array processor with an
H-tree clock distribution scheme. This scheme can be used to distribute the clock signaf to regular
arrays, such that every PE has the same distance from the clock generator. TI-tree layoufs are shown in
Figure 7, Figure 8, and Figure 9 for various types of arrays.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

46

Figure 9: H-tree layout for clocking a hexagonal array.

Kung (1988) states that even though clock path problems can be overcome, clock skew can not
be completely resolved. It has been shown that an arbitrarily large linear systolic array can be
synchronised by a giobal clock by the use of pipelined clocks (Kung, 1988). However, an attempt to
synchronise a 2-D array usually encounters a clock skew proportional to the size of the array, Clock
skew can only be overcome by employing asynchronous design principies in the design of digital
systems. Architectures known as wavefront arrays employ such principles. By using wavefront arrays,
the clocking problem can be alleviated, because only correct sequencing, and not timing, is required for
correct operation (Kurg, 1988),

3.2.3 VLSI array algoriiluns

A traditional measure of VLSI circuit efficiency involves determining the area-time complexity
of a circuit, Area-time complexity measures depend on two factors, computation time (T) and circuit
area (A). Kung (1988) states that the complexity measure AT? is very popular in lower-bound analysis
of VLSI algorithms. However, Kung (1988) points out that an AT* measure seems to offer little
practical implication in VLST system design. A practical measure f (A, T) depends strongly on
individual applications. For example, if speed is more important, then more weighting must be placed on
the time parameter T. On the other hand, if cost is more important, then more emphasis needs to be

" placed upon the area parameter A. Kung (1988} finds that little relationship has been established

PAUL WHYTE EHNGINEERING PROJECT REPORT 16 JANUARY 1997

47

between the special measure AT”, and a practical measure £ (A, T). It is on this observation that Kung
(1988) has defined new design criteria for array algorithms.

The new criterion for measuring the efficiency of a VLSI array realisations include

computation, communication, memory, and input/output (I/() aspects, These criterion will be used in
determining the optimal configuration for an SDNR/RNS digit adder design.

3.2.3.1 Maximem parallelism

Two algorithms with equivalent performance in a sequential computer may perform quite
differently in paralfel processing environments. Kung (1988} states that an algorithm will be favoured if
it expresses a higher parallelism, which is exploitable by the computing arrays.

3.2.3.2 Maximum pipelinability

Most signal processing algorithms demand very high throughput rates and are computationally
intensive, in comparison to thetr /O requirements. The use of pipelining is often very natural in regular
and locally interconnected networks. Kung (1988) states that, as a result, a major part of concurrency in
array processing will be derived from pipelining. To maxiniise the throughput rate, the best algorithm
must be used. Unpredictable data dependency may severely jeopardise the processing efficiency of a
highly regular and structured array atgorithm. Effective VLSI arrays are inherently highly pipelined and
hence require well structured algorithms with predictable data movements. Ferative methods with
dynamic branching, dependent on data produced during the process, are less well suited for pipelined
architectures.

©3.2,3.3 Balance among computations, communications, and memory

Kung (1988) states that a good array algorithm should offer a sound balance between different
bandwidrhs incurred in different communication hierarchies to avoid data draining or umnnecessary
bottlenecks. Balancing the computations and vartous communication bandwidths is critical to the
effectiveness of array computing. In today’s technology, it is not hard to improve the computation
bandwidth, However, as Kung (1988) points out, it is much harder to increase the 1/0 bandwidih. In
this case, the pipeline techniques are especially suitable for balancing computation and I/O because the
data tend to engage as many processors as possible before leaving the array. This will reduce I/O
bandwidth for outside communication. For certain computation bound problems, such as matrix
muitiplication, Fast Fourier Transforms and sorting, if the computation bandwidth is increased while the
/O bandwidth is kept constant, the size of local memory has to increase in order to balance the
computation with /O

3.2.3.4 Trade off beiween computation and communication

To make the interconnection network practical, efficient, and affordable, regular
communication should be encouraged. According to Kung (1988), major issues affecting the
communication regularity include local versus global, static versus dynamic, and data-independent
versus data-dependent interconnection modules. The criterion should maximise the trade-off between
interconnection cost and throughput. To conform with the communication constraints imposed by
VLSI, a lot of emphasis has recently been placed on local and recursive algorithms. Take Discrete
Fourier Transforms, with a computation cost of O(Nl), and Fast Fourier Transform computing, having
an associated cost of O(NlogzN). The FFT, in terms of computation, is favoured by almost one order of
" magnitude. On the other hand, the DFT is characterised by simple communication needs because is
belongs to a locally recursive class. The FFT computation requires a global interconnection. Kung
(1988) highlights that this leads to a contrasting trade-off. For example, an algorithm requiring only a
static network is preferable to one requiring a dynamic network, since a static interconnection network
is physically easier to construct.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

48

3.2.3.5 Numerical performance and guaniisation effecis

Kung (1988) states that numerical behaviour depends on many factors, such as the word length
of the computer and the algorithms used. Often, additional computations may be wisely utilised to
improve the overall numerical performance. However, the tradeoff between computation and numerical
behaviour is very problem dependent, and there is no general rule to apply. For example, an FFT
computation is computationaily cost effective, and at the same time numerically well behaved, An
exception to there being no general rule is that extra computation can always be used to increase the
word length, and thus assures improved performance.

33 -Implementation technology
There are two target technologies for the VLSI arithnietic circuits, The first is Conplementary

Metal Oxide Semiconductor, and the second is Galium Arsenide. CMOS was used to implement the
chosen SDNE/RNS digit adder.

3.3.1 Complementary metal exide semiconductor

As the name implies, complementary MOS technology employs MOS transistors of both n- and
p-type polarities. Information on CMOS can be found in many books, including Glasser and
Dobberpuhi (1988), Weste and Eshraghian (1994), and Puckpell and Eslwaghian (1994). Weste and
Eshraghian (1994) deseribe CMOS by listing its ntain attributes:

L. Power supply. The power supply can range from 1.5 t¢ 15V,

2. Power dissipation. Static power dissipation is almost zero. Power is dissipated during
logic transitions. .

Fully restored logic levels. That is, output seitles at the supply voltage Vpp, or ground,
VSS-

Precharging characteristics. Both n- and p-type devices are available for precharging a bus
to Vip and Vgs.

Transition times. Rise and fall times are of the same order.

Packing density. Logic circuits can be implemented in dense structures,

Layout. CMOS encourages regular and easily automated layout styles.

I

NS

Clocking rates in CMOS are relatively slow. CMOS can only support clocking rates in the
order of megahertz. Therefore, the clock skew problem outlined in section 3.2.2-Clock distribution
schemes is not as big a problem as it iz for GaAs, which has the ability tc operate at sigahertz
frequencies.

3.3.1.1 CMOS technology

The semiconductor silicen forms the basic starting material for a wide variety of integrated
circuits, A Metal Oxide Semiconductor (MOS) structure is created by superimposing several layers of
conducting, insulating, and transistor forming materials to create a sandwich-like structure. Weste and
Eshraghian (1994) state that these structures are created by a series of chemical processing steps
involving oxidation of the silicon, diffusion of impurities into the sificon to give it certain conduction
characteristics, and deposition and etching of aluminium on the silicon to provide interconnection in the
same way that a primted circuit board is constructed, This construction process is carried out on a single
crystal of silicon, which is avaitable in the form of thin, flat circular wafers around 15cin in diameter
" {Weste and Eshraghian, 1904), CMOS technology provides two types of transistors, an n-type
transistor (nMOS) and a p-type transistor (pMOS). These are fabricated in silicon by using either
negatively diffused (doped) silicon that is rich in electrons, or positively doped silicon thaf is rich in
holes. After the fabrication steps, a typical MOS structure includes distinct layers called diffusion

PaAUL WIYTE ENGINERERING PROJECT REPORT 16 JANUARY 1997

49

{silicon which has been doped), polysilicon (crystaliine silicon used for interconnection), and aluminium,
separated by insulating lavers {Weste and Eshraghian, 1994).

For the n-transistor, the structure consists of a section of p-type silicon (called the substrate)
separating two areas of n-type silicon. This structure is constructed by using a chemical process that
changes selected areas in the positive subsirate into negative regions rich in electrons. The area
separating the n regions is capped with a sandwich consisting of silicon dioxide (an insufator), and a
conducting electrode (usually polycrystalline silicon-poly) called the gate. Similarly, for the p-transistor
the structure consists of a section of n-type silicon separating two p-type areas. In common with the n-
transistor, the p-transistor also has a gate electrode. The (ransistors also have two additional
connections, designated the scurce and drain, these being formed by the n (p in the case of a p-device)
diffused regions. The gate is a control input. It affects the flow of electrical current between the source
and the drain. A connection o the substrate forms the fourth terminal of an MOS transistor.

The four main CMOS technologies are;

1. n-well process.

2. p-well process.

3. Twin-tub process.
4. Silicon on insulator.

For the implementation stage of this project, a p-well fabnication process was assumed, Weste
and Eshraghian (1994) siate that p-well processes are preferred in circumstances where the
characteristics of n- and p-transistors are required to be more balanced than that achievable in an n-well
process. The p-well process has better p-transistors than an n-well process because the transistor that
resides in the native substrate tends to have better characteristics. Due to that fact that p-transistors
have lower gain than their n counterparts, the n-well process increases this difference, while a p-well
process moderates the difference. The reason that lower gain is experienced by pMOS devices in
CMQS is because electron mobility in silicon is much greater than hole mobility. Table 6 (adapted from
Streetman, 1990) lists the mobilities for comparison,

Table 6;: Electron and hole mobilities in silicon.

iy (cm?/V-s) by (cn/Vos) |
1350 430

3.3.1.2 Lavout design rules

Weste and Eshraghian (1994) state that layout rules, also referred to as design rules, can be
considered as a prescription for preparing the masks used in fabrication of integrated circuits. The rules
provide a necessary communication fink between circuit designer and process engineer during the
manufacture phase, The main objective associated with layout rules is to obtain a circuit with optimum
yield (functional circuits versus non functional circuits) in as small an area as possible without
compreniising reliability of the circuit (Weste and Eshraghain, 1994).

The design rules primarility address two issues:

1. The geometrical reproduction of features that can be reproduced by the mask-making and
lithographical process.
2. The mteractions between different layers.

There are several approaches that can be taken in describing the design rules. These include
~ micron rules stated at some micron resolution, and lambda (A)-based rules. Micion design rules are
usually given as a list of minimum feature sizes and spacings for all the masks required in a given
process. For example, the minimum active width might be specified as |um. According to Weste and
Eshraghian (1994}, this is the normal style for industry. The lambda-based design rules are based on a
single parameter, A, which characterises the linear feaiure, that is, the resolution of the complete wafer

PAUL WIIY1E ENGINEERING PROJECT REPORT 16 JANUARY 1997

50

implementation - process, and permits first-order scaling. Pucknelt and Eshraghian (1994) state that
lambda-based rules fead to a simple set of Tules for the designer, and wide acceptance of the rules by a
large cross-section of the fabrication houses and silicon brokers. Furthermore, the scaling feature of the
lamba-based rules may help to give designs a longer lifetime. However, Weste and Eshraghian (1994)
report that while these rules have heen successfully used for 1.2 - 4pm processes, they will probably not
suffice for submicron processes.

The CAD system used during the implementation stages of the project incorporated a scalable
CMOS (SCMOS) design rufe checker. In other words, the implemented circuits were based on lambda-
based rules.

3.3.1.3 Latchup

Pucknell and Bshraghian (1994) state that a problem which is inherent in the p-well and n-well
processes is due 1o the relatively large nuniber of junctions which are formed in these structures and the
consequent presence of parasitic transistors and diodes. Latchup is a condition in which the parasitic
components give rise to the establishment of low-resistance conducting paths between the power rail
(Vo) and ground rail (Vgg) with disastrous results. Latchup may be induced by glitches on the supply
rails or by incident radiation. Weste and Eshraghian (1994) and Puckeell and Eshraghian (1994)
describe the condition of fatchup in more defail.

Latchup may be prevented in two basic ways:

1. Latclup resistant CMOS processes.
2. Layout techniques.

The first prevention method was outside the scope of this project. Weste and Eshraghian
(1994) detail processes which are latchup resistant.

In this project, layout techniques were used to minimise any possibility of laichup taking place.
Weste and Eshraghian (1994} point out that the key technique to reduce latchup is to make good use of
substrate and well contacts. In most current processes, the possibility of latchup occurting in mernal
circuitry has been reduced to the point where a designer need not worry about the effect as long as
hberal substrate contacts are used. A few rules were followed in this project which reduced the
possibility of internal latchup to a very small likelihood (the rules are listed from Weste and Eshraghian,
1994):

Every well must have a substrate contact of the appropriate type.

Every substrate contact should be connected to metal directly to a supply pad.

Place substraie contacts as close as possible to the source connection of transistors

connected to the supply rails (that is, Vs for n-transistors, Vpp for p-trangistors). A very

conservative tule would place one substrate contact for every supply (Vg or Vpp)

connection.

4. Otherwise a less conservative rule is place a substrate contact for every 5 - 10 transistors,
or every 25 - 100pm.

5. Lay out n- and p-transistors with a packing of n-transistors toward Vgg and packing of p-

transistors toward Vpn. Avoid complicated structures that intertwine n- and p-transistors in

checkerboard styles.

Ll by —

3.3.1.4 Power dissipation

There are three components that establish the amount of power dissipated in a CMOS circuit,
and they are: :

1. Static dissipation due to leakage current or other current drawn continuously firom the
power supply. :

PAUL WIIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

51

2. Dynamic dissipation due to:

e Switching transient current.

Charging and discharging of load capacitances.
3. Short circuit dissipation.

The static power dissipation is the product of the device leakage current and the supply
voltage. Weste and Eshraghian (1994) state that a useful estimation is to allow a leakage current of
0.1nA to 0.5nA per device at room temperature. Then total static power dissipation is obtained as

follows:
E
P =21,V
s~ 71'DD

where P, = static power dissipation,
n = number of transistors,
I, = leakage current,
Vnn = supply voltage.

For a more rounded estimate the following equation can be used (Pucknell and Eshraghian,
19943 .

-PS = I'ILVDD

Pucknell and Eshraghian (1994) state that the dynamic power dissipation is due to energy
supplied to charge and discharge the capacitances associated with each switching circuit. Assuming that
that output capacitance of a stage can be combined with the input capacitance(s) of the stage(s) it is
driving and then represented collectively ag Cp, then, for n identical circuits switched by a square wave

at trequency
Pd = CLVDDZf

where Pg = dynamic power dissipation.
Cy = load capacitances.
Vpp = supply voltage.
f = frequency of square wave (for exxample, the clock).

Manually determining the load capacitances for each transistor in a large circuit is not very
easy. Specifically, the load capacitance seen by a gate is dependent on;

1. The size of the transistors in the gate (self loading).
2. The size and number of transistors to which the gate is connected.
3. The routing capacitance between a gate and the ones it drives.

Weste and Eshraghian (1994) point out that during the transition from either O to 1, or 1 to 0,
both n- and p-transistors are on for a short period of time. This results in a short circuit pulse from Vip

to Vgg. The short circuit power dissipation is given by:
Psc- = Imeun“‘{l)D

where P, = short circuit power dissipation.
Fneun = average current used during logic state transition,

Vpp = supply voltage.

Finally, the total power dissipation can be cbtained from the sum of the three dissipation

COMpONENts:

Pr=P,+ Py 1P,

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

52

where P = total power dissipation.
P, = static power dissipation.
P, = dynamic power dissipation.
P,. = short circuit power dissipation.

The rule, according to Weste and Eshraghian (1994), is to add all capacitances operating at a
particular frequency, and then the power should be calculated. The power from other groups operating
at different frequencies may be summed afterwards. For a quicker estimation of power, the dynamic
power dissipation may be used to estimate total power consumption of a circuit, This is because the
dynamic power dissipation is usually the dominant term.

In this project, however, the implemented digit adder contained more than 1 000 transistors. Tt
was impractical to calculate the power dissipation in a detailed manner. Instead, a switch level simulator
was going to be used (the software was not available at the time) which had the ability to be modifed to
sum the total capacitance switched by each switch on each node over the course of a simulation run.
After the simmilation run, the total munber of ¢lock cycles that would have been simulatated could have
been used in conjunction with the capacitance as follows (Weste and Eshraghian, 1994):

2

C1Vpp
Py
Nty

where Py = dynamic power dissipation.
C; = total switched capacitance.
Vip = supply voltage.
n, = total number of cycles.
t, = period of switching frequency.

According to Weste and Eshraghian (1994), there are several ways to nunimise power
dissipation in a CMOS circnit. DPC power dissipation may be reduced to leakage by only using
complementary logic gates. The leakage in turn is proportional to the area of diffusion, so the use of
minimum-sized transistors is of advantage, Dynamic power dissipation may be limited by reducing
supply voltage, switched capacitance, and the frequency at which the logic is clocked.

in the impiementation stage of this project, dynamic logic was used. As a result, DC power

dissipation was not as minimal as would have been desired. Minimum transistor sizes were used where
possible, so leakage current was reduced. Some transistors were resized to improve cirenit delays.

3.3.1.5 Fan-in and fan-out

All fogic gates have two attributes in common, and they are fan-in and fan-out. Weste and
Eshraghian (1994) define the fan-in of a logic gate as the number of inputs the gate has in the logic path
beign exercised. For example, a Z-input NOR. gate has a fan-in of 2. Conversely, the fan-out of a logic
gate is the total number of gate inputs that are driven by a gate output. For example, if the output of the
2-input NOR gate was used by 4 other gates, then the fan-out of the NOR gate would be 4.

The fan-in of a gate affects the speed of the gate. Weste and Eshraghian (1994) recommend

that when gates with large numbers of inputs have to be implemented, the best speed-performance nay
be obtained by using gates where the number of series inputs ranges between about 2 and 5.

3.3.1.6 CMOS logic structures

There are severai CMOS logic structures to choose from when implementing a system. In
some situations, the area taken by a fully complementary static CMOS gate may be greater than that
required, the speed may be too slow, or the function may just not be feasible as a purely complementary

PAUL WITYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

structure. Tn these cases, it is desirable to implement smaller, faster gates at a cost of increased design
and operational complexity, and, possibly, decreased operational margin.

In this project, it was found that fully complementary static CMOS logic was not feasible. If
such logic was used, the implemented SDNR/RNS digit adder would have consisted of about twice as
many transistors as the implemented adder. As a result, the digit adder would have been nearly twice as
large. Therefore, the digit adder was constructed using dynamic logic. Before dynamic logic is
introduced, however, the traditional static complementary logic will be described.

3.3.1L.6.1 CMOS compliementary logic

The CMOS complementary gate has two function determining blocks, an n-block and a p-
block. There are normally 2n transistors in an n-input gate. Figure 10 shows the general layout for a
CMOS complementary gate,

VDD
p-logic block
A —
! z
g [
n-logic block
VSS

Figure 10: CMOS complementary logic. A and B are arbitrary inputs, and Z is the output.

In general, a CMOS complementary logic gate is formed by using a combination of series- and
paraliel-transistor (switch) struciures. A logic equation can quite easily be converted into a CMOS
complementary circuit. The logic equation must be manipulated so that it can be equated in terms of
NANDs and NORs., Once this is complete, then the circuit can be constructed by using the following
rules:

e n operands in the logic equation being NANDed must be represented by n transistors in
series in the n-block, and by n transistors in paralle] in the p-block.

e m operands In the logic equation being NORed must be represented by m transistors in
parailel in the n-block, and by m transistors in series in the p-block.

By using this complementary form of static logic, Jogic equations can be implemented with a

comparitively high degree of simplicity. However, the circuit area is relatively large because for every
one transistor in the n-logic block, there is one transistor in the p-block.

3.3.1.6.2 Dvnamic CMOS logic

A basic dynamic CMOS gate is shown in Figure 11. The gate consists of an n-transistor logic
structure whose output node is precharged to Vpp by a p-transistor and conditionally discharged by an
n-transistor connected to Vgg. Alternatively, an n-transistor precharged to Vgg and a p-transistor
discharge to Vpp and a p-logic block may be used. The input CLK is a single phase clock. The
precharge phase occurs when CLK = 0. The path to the ground is closed via the n-transistor during the

_evaluate phase, or when CLK = 1.

PAUL WHYTE ENGINEERING PROIECT REPORT 16 JANUARY 1997

54

Voo
——C
-
A logic black
n- G DIOCH
B o9
CLK |
] Vss

Figure 11: Dynamic CMOS logic. A and B are arbitrary inputs, and 7 is the output.

Weste and Eshraghian (1994) state that there are a number of problems associated with
dynamic logic. First, the inputs can only change during the precharge phase and must be stable during
the evaluation portion of the cycle, If this condition is not met, charge redistribution effects can corrupt
the output node voltage. Second, simple single-phase dynamic CMOS gates can not be cascaded. The
second problem is very restrictive in creating CMOS circuits, To solve this problem, a special kind of
dynamic logic is used instead. 1t is called domino logic.

3.3.1.6.3 CMOS domino logic

CMOS domino logic incorporates a static CMOS inverter into each logic gate, as shown in
Figure 12. Figure 13 reveals the structyre of the static inverter (or butler) used in the logic gate. Weste
and Eshraghian {1994} explain the operation of CMOS domino logic in terms of precharing and
evaluation, During precharge, the output node of the dynamic gate is precharged high and the output
buffer is low. As suhsequent logic stages are fed from this buffer, tranststors in subsequent logic blocks
will be turned off during the precharge phase. When the gate 15 evaluated, the output will conditionatly
discharge, allowing the output buffer to conditionally go high. Thus, each gate in sequence can make at
most one transition (1 to 0). Hence, the buffer can only make a transition from 0 to }. Tn a cascaded set
of logic blocks, each state evaluates and causes the next stage to evaluate. In effect, it is like a line of
dominos falling down. Any number of logic stages may be cascaded, provided that the sequence can
evaluate within the evaluate clock phase. A single clock can be used to precharge and evalute all logic
gates within a block.

VDD

—C z

A
- n-iogic block
g]
CLK

|
I I:1 Vsg

Figure 12: CMOS domino logic. A and B are arbitrary inputs, and Z is the output.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

55

Figure 13: Static CMOS inverter. A is the input, and ~A is the negated antput,

Weste and Eshraghian {1994) point out some limitations to this structure. First, each gate must
be buffered. However, this may be an advantage. For example, the transistors in the buffer could be
resized so that the logic block could effectively drive more gates than if no buffer was used at all.
Second, only noninverting structures are possible. Finally, because the logic is still dynamic, charge
redistribution can be a problem,

The mam reason domino logic was chosen for the implemented SDNR/RNS digit adder was
because it reduced the overall number of transistors used, and it allowed gates to be cascaded.

3.3,1.7 Clocking sirategies

Clocking strategies were investigated as a part of this project because dynamic logic structures
were used during the implementation stage. There are many clocking schemes, ranging from single
phase to four phase clocking arrangements.

In the case of single phase clocking, conventional static logic may be used. Furthermore,
domino logic may be used to improve speed, and reduce area and dynamic power dissipation. However,
according to Weste and Eshraghian (1994), it is difficult to pipeline such logic stages while using a
single ciock and complement. Two phase clocking strategies male it easier to implement systems where
pipelining is desirable. However, for this project, a four phase clocking scheme was used, as this
somewhat simplified logic design.

3.3.1.7.1 Four phase clocking

The dynamic logic that has been described has a precharge phase and an evaluate phase, Weste
and Eshraghian (1994) state that the addition of a “hold” phase can simplify dynamic logic design. This
primarily results from the elimination of charge sharing in the evaluation cycle, Four phase clocking
schemes reduce circuit size and increase clocking safeness. Arguments for using such a clocking
strategy include the fact that no more clock lines are needed that for two phase clocking if certain four
phase structures are used. However, modern designs tend to minimise the number of clock phases used,
and employ selftimed circuits to generate special clocks (Weste and Eshraghian, 1994),

The particular four phase clocking scheme used in this project is described in Weste and
Estraghian (1994}, and is as follows, There are four types of zates characterised by the phase in which
evaluation occurs. When using such logic gates, they must be used in the appropriate sequence. The
allowable connections between types are iflustrated in Figure t4. Figure 15 depicts the four phase clock
to be used with the gates shown in Figure 14, Note also that a sample and hold component is used in
cach gate of Figure 14. This component is called a transmission gate, and its structure is shown in
Figure 16,

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

56

TYPE 1 GATE
VDD
[Y ~CLKq1
] I z
CLKa
A .
n-logic block

B

~CLKaa |
I VSS

TYPE 4 GATE A : TYPE 2 GATE
. Voo Voo
~CLKa ET ~CiKqz
l Z Z
CLK34 A CLK12
n-ogic block v n-logic block
B 4 5 g J
~CLKas ! ~CLK4 |
%E VSS ‘F —,E VSS
TYPE 3 GATE
VDD
I:T ~CLKzs
I Z
ClKn
n-logic biock
B g
~CLK;5

"*—“:1 Ves

Figure 14: Allowsbie connections between different gate types for a four phase clocking scheme.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

51

oo LT L

Figure 15: Four phase clock required for the logic gates shown in Figare 14,

Z " Z Z l—~AZ
A TA

Figure 16: CMOS transmission gate,

By using four phase clocking, four levels of logic may be evaluated per cycle. Alternatively, a
two phase logic scheme may be employed by using type 4 gates and type 2 gates, or type 1 gates and
type 3 gates.

A problem with four phase clocking is that the clock frequency must be long enough ta aiiows
for the slowest gate to evaluate (Weste and Eshraghian, 1994). Thus, fast gates tend to evaluate
quickly, and the remainder of the cycle is “dead time”. Other system design problems arise when trying
to distribute four or more clocks and synchronise them around a large chip.

PAUL WHYTT ENGINEERING PROJECT REPORT 16 JANUARY 1997

58

4. Analysis

This chapter is concerned with identifying and analysing the major characteristics of the
SDNR/RNS number system. By choosing a certain configuration based on some guidelines given at the
end of the chapter, an optimal design and implementation of an SDNR/RNS arithmetic system is
attainable. '

4.1 SDNRV/RNS configuration analysis

The principle arithmetic circuit in any system is the adder. For this reason, the following
SDNR/RNS configuration analysis will be based on choosing a configuration for such a circuit. The
other elements of a nonconventional arithmetic system, for exarnple, the conversion circuits, sign
detectors, and even muktiplication circuits, all depend on the adder, in one way, or another. The three
key parameters that are required to create a unique SDNR/RNS configuration are radix, moduli (choice
of moduli and how many), and the digit set.

The choice of radix r depends on the desired balance between the increase in siorage
requirements and the logical complexity of one digit-adder, Avizienis (1961) points out that the relative
increase in storage capacity requirements diminishes when r is large. However, when r is large, one
digit-adder must accept more values of a digit and the logical circuits become more complex.
Ramamoorthy, Potu, and Govind (1988) highlight the obvious advantage in using a radix which is a
power of 2. Yang, Lu, and Gilbert (1991) demonstrate that the power of 2 advantage in the
implementation costs may be technology independent. Such radices allow easy conversion from the
signed-digit to binary, and vice versa. Therefore, a radix is required which will balance storage
requirements and logical complexity, and which is a power of 2.

Avizienis (1961) states that minimal-redundancy representations require the least storage
capacity for the values of a digit and therefore are preferable to representations with higher redundancy.
In addition, he points out that less complicated digit-adder logic may be expected when the least
possible number of digit values is employed. On the other hand, maximum-redundant representations
allow the fastest and simplest conventional to SDNR/RNS conversion schemes, if the radix chosen is a
power of 2. Specifically, when converting between conventional and maximally redundant SDNR/RNS
number systems, the second stage in conversion (correcting the converted digit) is not required. For the
case of minimally redundant digit sets, the second stage is required. Therefore, if number system
conversion is absolutely critical for the given application, then a magimum-redundant digit set should be
used, Otherwise, a minimal-redundant digit set should be employed. Avizienis {(1961) recommends
using the latter kind of digit set, reasons for which are stated previousty.

Moduli must be chosen to represent the SDNR/RNS number at the digit level. At this point, a
decision must be made as to whether a disjoint or nondisjoint digit set is to be used. The major
difference between the two types of digit sets is that nondisjoint sets allow greater munerical range. The
disadvantage of having a nondisjoint set is that extra circuitry is required in the digit adder to uniquely
identify the operands.

Kuczborski (1993) designed a digit adder for both disjoint digit sets and nondisjoint digit sets.
These adders could accept SDNR/RINS digits composed two moduli. More generalised definitions of
these adders are shown in Figure 17 and Figure 18. The more generalised cases of digit adders can
accept SDNR/RNS digits composed of n moduli {pt, p2, ..., pn). As can be observed, the nondisjoint
digit set adder requires four more logic components than does the disjoint digit set version.

PAUL WHYTE ENGINEFRING PROJECT REPORT 16 JANUARY 1997

59

operand! p1

operandt_p2

k-]

operand1_pn ®
operand2_pt 1
operand2_p2 r
@
operandZ_pn ®
""" add_ add_ add_
mod_p1 mod_p2 e = & |mod_pn
f
generate
cary
£ ;
correct correct correct
mod_pt mod_p2 |e @ © |mod_pn
cary_out carry_in
addc_ adde_ addc_
mod_pt mod_p2 e o o [mod pn
sum_p l
sum_p2 :
@
L]
sum_pn ®

Figure 17: SDNR/RNS disjoint set digit-adder.

ENGINEERING PROJECT REPORT 16 JANUARY 1997

60

operandl_p1

operandi_p2 -

-]
L]
operandi_pn 5
operand2_p1
operand2_p2
43 & B
L]
operand2_pn a T
detect {detect add_ add _ add_
sign sign mod_p1 Tmod_p2 e = o jmod_pn
f.
detect
region
+
i f
generate
carry
£ { 1
correct correct_ correct_
mod_p1 mod_p2 a o o |mod_pn
carry _out camry_in
adde_ addc adde
mod_p1 med p2 |= = o |mod pn
sum_p1 T
sum_p2 v
a
L]
sun_pn a

Figure 18: SDNR/RNS nondisjoini set digit-adder.

From Figure 17 and Figure 18, it can be deduced that both adder designs are insensitive, in
terms of computational speed, to the number of moduli in the moduli set. That is, the n moduli add
operations can be performed in parallel. A limitation to this characteristic is that the length of the
generate_carry output transmission lines (carry_out and carry_in) have to be increased as n is increased.
As a result, toad capacitance on these lines are also increased. This, in turn, increases the propagation
delays in the carry_out and carry in transmission lines. Weste and Eshraghian (1994) suggest using
buffers on such lines to decrease propagation times.

If the number of moduli chosen to represent the digit set is large, then this may degrade the
speed of the generate_carsy and detect_region fogic gates in Figure 17 and Figure 18, respectively. This
is because as n is increased, so too is the fan-in of the generate_carry and deteci region logic circuits.
In turn, this increases the delay in those logic blocks which affects overail adder performance.
Kuczborski (1993), however, discusses how complex logic functions, with many inputs, can be
decomposed into simpler equations, each with fewer inputs. Logic decompaosition can be used at the
expense of extra levels of logic. Even though fogic decomposition is targeted at Field Programmable
Logic Arrays, their application in VLSI is justified as it can be used to increase the speed of the logic. In
other words, logic decomposition can be used to reduce the fan-in of the gates to a point where the
pumber of inputs to each fogic network is between 2 and 5. Kuczborski, Attikiouzel and Crehbin (1994)
present an efficient algorithm for the purpose of decomposing a logic function into simpler components.

+ Luba (1994) describes logic decomposition with some good examples. By using the techniques
discussed above, a digit adder can be implemented whose performance is relatively independent from n.

PAUL WBYTE FNGINEERING PROJECT REPORT 16 JANUARY 1997

o

61

The propagation delay of the modulo addition stages would depend upon the time for the
slowest modulo adder to compute a result. The sfowest modufus adder will be the one that has to
accept the largest range of values, based on statements by Avizienis (1961). For example, if the moduli
set (11, 13, 15, 16) was chosen for a particular SDNR/RNS configuration, then the modulo 16 adder,
which would exhibit the greatest logic complexity, would require the greatest time to compute resuits,
wherteas the modulo 11 adder would require the least time,

Nevertheless, the SDMR/RNS digit adder is very etficient for performing high radix paraliel
addition. Take, for example, radix 32. An SDNR digit adder would have to contain logic circuits to
add two operands of CEILING (log;32) = 5 bits each. In comparison, a SDINR/RNS adder with digits
coded by an RNS modul: set of (7, 8) would contain a modulo 7 and modulo & adder in paraliel. In this
case, the modulo 8§ adder would be slowest, and therefore would dictate the propagation delay for the
SDNR/RNS adder, in that an operand can be represented by any one of & values, compared to 7 values
for the module 7 adder. However, the SNDR digit adder must be able to accept 32 digit values for each
operand, which would indicate the magnitude of the propagation delay for this type of adder. The
SDNR/RNS digit adder must accept two operands of CEILING {log,8) + CEILING (log,7) = 6 bits
each. Therefore, at the cost of an extra bit in storage for each operand, the SDINR/RNS adder exhibits
greater efficiency at performing arithmetic at the digit level.

Abhallah and Skavantzos (1995) have developed a list of guidelines for choosing RNS moduli
sets. One of the recommendations is that the moduli p;s should be as small as possible, so that
operations modulo p; require minimun computation time. This assertion agrees with Avizienis’s (1961)
statement regarding the complexity of digit adder logic. Therefore, in choosing a moduli set to satisfy
the required digit dynamic range, a tradeoff analysis is required in choosing the smatlest possible moduli
while maintaining respectable redundancy at the digit level.

o sumumary, the following guidelines should be adhered to when deciding on the configuration
for the SDNR/RNS digit-adder:

Radix guidelines:

e Find a balance hetween storage requirements and the logic complexity of one digit-adder.
In general, minimising storage requirements increases logic complexity. By increasing logic
complexity, circuit propagation delay is also increased. However, by careful analysis,
storage requirements and logic complexity can both be minimised.,

¢ Choose a radix which is a power of 2.

Digit set guidelines:

» Minimum-redundant digit sets are preferable to digit sets with higher redundancy because
they require the least storage capacity for the values of a digii. The logic complexity for
minimum-redundant digit sets is small, in comparison to maximum-redundant
representations. However, maximum-redundant digit sets allow the fastest and simplest
conventional to SDNR/RNS conversion, if the radix is a power of 2. The type of
apphcation would indicate what kind of digit set is to be used.

A nondisjoint digit set increases the range of a SDNR/RNS number at the expense of more
logic circuitry. A critical paths analysis indicates that a disjoint digit set adder may minimise
the delay in one of the paths. This is an issue open for investigation.

Moduli guidelines (adapied from Abhatlah and Skavantzos, 1995):

o Moduli should be relatively prime. That is, there should be no common divisor betweer any
of the moduli in the set (py, pa, ..., py).

e The moduli p;s should be as small as possible so that operations modulo pi Tequire minimum
computationat time.

e The product of the moduli should be large enough in order to implement the desired
dynamic range. '

PAUL WHYIE ENGINEERING PROJECT REPGRT 16 JANUARY 1997

62

e The moduli p;s should create a balanced decomposition of the dynamic range. That is, the
- differences between the number of bits to represent the different moedufi should not be very
large.

4.2 Case studies

An analysis of several optimal SDNR/RNS configurations was required to decide what
parameters should be used in the design of the digit-adder. The case studies concentrate on examining
the following aspects of a SDNR/RNS digit adder:

The radix.

The moduli.

The digit set (minimum versus maximum redundancy).
The number of elements in a RNS moduli set.
Optimising memory and delay requirements.

Chod R

To begin with, the relative merits of maximum and minimum redundant SDNR/RNS digits with
RMNS moduli sets containing two elements will be discussed. This analysis will be repeated for
SDNR/RNS digits with RNS moduli sets consisting of three elements.

For sample data, radices of the power of 2 ranging from 8 to 4096 were analysed. For both
minimum and maxtmum redundant systems, a single configuration was chosen for each radix. The
choice was based upon the guidelines outlined in the previous section.

An additional constraint was that all SDNR/RNS configurations selected for analysis had to
satisty the range of a conventional 64-bit unsigned integer. That is, for a particular SDNR/RNS word,
the following condition had to be adhered to:

Range (SDNR/RNS word) = 2% - 1

where 2% -1=1.84%10"

4.2.1 RNS moduli set consisting of two elements

4.2.1.1 Minimum redundancy

Table 7 lists the SDNR/RNS configurations chosen for minimally redundant two moduli digit-
adders,

PAUL WIIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

Table 7: SDNR/RNS configurations {2 moduli; minimam redundancy).

et ¢ B A i er ol flber of [y of, (et
3 3 E— 5 37 581 I BAR+19{5, 2TETLD
16 4 5 20 9 17 ‘85 5|1.848+19(1. 77E+20
3z 5 7 a5 17 13 18 6|1.e4m+1902.02E+19
64 7 10 70 33 11 77 7]1.84E+10) 2 8785109
128 i1 12 132 65 10 80 8l1.848+19|6.04E+20
256 16 17 272 129 9 B1 5l1.84E+19{2. 39E+21
slgf sl 24 552 257 8 80 10]1.84E+19{ 2. 38E+21
1024 3z 33 1056 513 7 77 11]1.89E+15|5. 92B+20
2048 45 16 2070 1025 6 12 12]1.84E+19(3. 695419
4096 534 05 LERCT 2048 & 78 131 1.BAR+19|2.36E+21

—

Figure 19 shows a plot of radix versus the word length. The graph depicts the word storage
efficiency for each radix.

Radix word lengths (2 moduli; minimum redundancy)

| Word length |

Word length (bits)

« © o4 =t o O (] <t =] el
— o © o) — sl < [u7]
— [al wn Q o Q
o~ o <
Radix

Figure 19: Radix word lengths (Zmodnli; minimum redundancy).

In Figure 19, notice that the word length assumes a sinusoidal like function. As reported in
Kuczborski {1993), the lower radices {in this case, 8 and 16} exhibit excess redundancy, and this
translates into longer word lengths.

At radix 256, the word length hits a peak value. The moduli pair for this radix is (16, 17). To
represent the first element in the moduli set, CEILING (log;16) = 4 bits are required. However, to
represent the second element in the moduli set, CETLING {logz17) = 5 bits are required. The fifth bit is
required to represent the seventeenth value. This means that an extra bit is required at the digit level just
so that the second modulus can be properly handled by the adder. Hence, the effect of requiring the
extra bit at the digit level is amplified at the word level. In comparison, radices 32, 64, and 2048 seem
to exhibit optimal storage requirements for representing a conventional 64-bit integer.

Figure 20 graphically depicts the number of bits required at the digit level for each radix listed
in Table 7.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

64

!

-

Number of bits per SDNR/RNS digit (2 moduli; minimum
redundancy)

|
|
|
|
|

@ Nurrber of bits per SDNR/RNS |
digit

L.

Number of bits/digi{

[>0] o] o =t a [{o] 3] <5 w <o
= (] w o 3 -— o™l = (=7}
— ('] uy < o] (=)
v [} =
Radix

Figure 20 indicates the logic complexity for a digit-adder, according to radix. The trend
appears to be log-linear. Each successive jump in the number of bits per SDNR/RNS digit can be
described mathematically as follows:

N=logyry+1

where N = Number of bits per SDONR/RNS digit.
i = Radix.
=8 16,32, ... 4096

As the number of bits required to represent each digit is increased, the greater the logic
complexity of the corresponding digit adder. For example, the radix 8 digit-adder needs to be able to
handle 4 binary inputs per operand. TFor this case, logic complexity would be minimal because of the
small number of variable inputs (two 4-bit operands). In comparison, the radix 4096 digit-adder needs
to be able to accept 13 binary inputs per operand. For the racdix 4096 digit-adder, there are 26 variable
inputs (two 13-bit operands), which would result in logic which is quite complex, Increased logic
complexity is not tavourable (Avizienis, 1961),

The radices 32, 64, and 2048 are characterised by minimal word lengths. From these three
candidates, radix 32 exhibits the smallest bits required per digit. Thus, the radix 32 configuration is
characterised by efficient storage and relatively low logic complexity when representing a conventional
64-bit integer.

4.2.1.2 Maximum redundancy

Table 8 lists the SDNR/RNS configurations chosen for maximally redundant two moduli digit-
adders. These maximum redundant representations will be analysed and compared with the
cotresponding minimum recundant configurations from the previous section.

PAUL WHYTE ENGINGERING PROJECT REPORT 16 JANUARY 1997

65

Table 3: SDNR/RNS configurations (2 moduli; maximum redundancy).

Radiz P g Trynemic A Fumbar of JHuebar o |Wwber o |Fequiced |A-taal |

Fang: digits bits Litasdigit {rangs Fatges

AERA e

8 3 g i5 7 2z 110 S11.84K+19(7. 38E+19
16 5 1 35 15 16 36 6/ 1.84E+19}1.84E+19
32 7 9 63 31 12 91 7| 1.84E+19| 3. 69E+19
64 10 13 130 63 11 88 gl1.84E+1¢|7.38E+19
128 15 17 255 127 10 a0 al1.84E+18)1.18E+21
256 23 24 552 255 g a0 10|1.84E+19[1.34E+19
sLz| Ty 33 1056] - 511 8 ag 11{1.84E+19({4.72E+21
1024 45 16 2070 1023 7 a4 121 1.84E+19]1.18E+21
2048 €4 65 4160 2047 G 78 1311.84E+19|7.38E+19
4096 87 a5 5265 4095 6 84 14|1.84E+19(4.72E+21

A g!'aph showing the word lengths for each radix listed in Table 8 is shown in Figure 21. The

graph represents the word storage efficiency for each radix.

Radix word lengths (2 moduli; maximum redundancy)

120
- 100 1
2
4 80
= ——
g |E Word tength
g T
w 40 \
e
o
Z 20
0
Lo w ™ =t o [Us] o~ =5 o] [1a)
— [ao] [1a) o~ [Ty R (o] <r [07]
- o~ [¥3) (=] [=] Q
- 8] < }
Radix

Figare 21: Radix word lengths (2 moduli; maximum redandancy).

Figure 21 exhibits a similar nature to that of Figure 19. That is, a sinusoidal like pattern can be

seen from the trend. Like Figure 19, it is evident from Figure 21 that the lower radices are characterised
by inefficient storage at the word level. However, in Figure 19, radix 256 is relatively inefficiens in being

able

to store the range required by a conventional 64-bit unsigned infeger. According to Figure 21,

however, it can be seen that radix 256 can be used with a maximum redundant digit set, while

maintaining a refatively small overall word length. For maximum redundant digit sets, radices 256 and
2048 seem to be optimal, from a word level point of view.

grap

The number of bits required to represent the SDNR/RNS configurations listed in Table § are
hically illustrated in Figure 22.

PAUL WHYTE ENGTNEERING PROJECT REPORT 16 JANUARY 1997

66

Number of bits per SDNR/RNS digit (2 moduli; maximum
redundancy}

%
2
¥ S
= Number of bits per SONR/RNS
‘G digit
(1]
2
E
=]
3
o w ol < o &w [l ’ ﬂ"r o O]
- 3] w o~ 0D oy o -+]
L ™ [p Q (] (]
- & =
Radix

Figure 22 indicates the logic complexity for a digit-adder, in terms of radix. The trend, like in
Figure 20, seems to be log-linear, Each successive jump in the number of bits per SDNR/RNS digit can
be described mathematically as follows:

N = loga(r) + 2

where N =Number of bits per SDNR/RNS digit.
r = Radix.
=8, 16,32, .., 4096,

For maxinum redundant configurations, an additional bit is required at the digit level, in
comparison to the minimally redundant digit set equivalent. This is because the dynamic range of a
targer digit set must be satisfied. As in Figure 20, greater logic complexity can be expected when
constructing higher radix systems. Therefore, it is important that a SDNR/RINS configuration is selected
which minimises storage requirements at the word level and logic complexity.

Radices 256 and 2048 exhibit minimal word length at maximum redundancy. Of the two
radices, a digit-adder which is based on the radix 256 configuration would imply the simplest logic
complexity.

Figuve 23 graphically compares the word lengths of minimum and maximum digit sets for two
moduii configurations.

PAUL, WHIYTE ENGINEERING PROJRCT REPORT 16 JANUARY 1997

67

120
oo
4
2 80
=
o 60
=
2
w40
R
o
=..20

Radix word iengths (2 moduli}

[Le] [y
-]

a0 [{e] ™ s
™~ Tl — o4
— ol N =)
=

Radix

2045

4096

g Word lengths (meximum
P redundancy)

g Word fength (rinimum |
redundancy) {

|

|

As expected, the word lengths of the maximum redundant configurations are generally longer,
compared to the corresponding minimum redundant versions. Radix 256 is an exception. For this radix,
a smaller word length results when using a maxinmym redundant digit set. The reason for this is that for
radix 256, a maximum redundant digit set achieves the required range in a lesser number of digits than
the minimum redundant configuration. The required range, which is dictated by a conventional 64-bit
unsigned integer, is 1.84 # 10", For minimum redundancy, the radix 256 digit set is defined as follows:

{-129, 128, .., 1,0, 1, .., 128, 129}

To satisfy the following condition:

Range (SDNR/RNS word) = 2™ - 1

where

2% _ 1 =184 *10"

the following calculation is performed to determine the number of digits required:

Hambar of al Positional Torganantal
Aigits welght rangs range
a Ezponent
1 129 256 0 1.29E+02 1.29E+02
2 129 256 1 3.30E+04 3.32E+04
3 129 256 2 5.458+06 8.49E+06
4 128 256 3 Z2.16E+09 Z.17E+08
5 129 256 4 5.54E+11 5.56E+11
6 128 256 5 1.42E+14 1.42E+14
7 129 256 G 3.63E+16 3.65E+16
8 129 256 7 9.305+18 $.33E+18
9 129 256 8 2.38E+21 2.38E+21
where (Expanent)

Positional weight range = a * Radix
Incremental range = sum of positicnal weight ranges up to and including the current digit.

Therefore, the minimally redundant radix 256 configuration requires 9 digits. For maximum

redundancy, the digit set is as follows:

{~255, 254, .., -1,0, 1, ., 255}

PAUL WHYTE

ENGINEERING PROJECT REPORE

16 JANUARY 1997

68

and the number of digits required to satisfy the 64-bit range is calculated as follows:

Positinnal In-cramsnbal
hi woight vangs cange
a Radizx Exponent
1 25% 256 0 7. G5E05 2. 5EE+02
2 255 256 1} 6.53E+04 6.55E+04
3 255 256 2 1.6TE+07 1.68E+07
4 255 256 3 4,28E+09 4.29E409
5 255 256 4 1.10E+12 1.10E+12
6 255 256 5 2 .BOE+14 2.01E+14
71 255 256 % 7.18E+16 7.21E+16
8 255 256 7 1.84E+19 1.84E+19

where Positionai weight range = a * Radix{™®o™

Tncremental range = swin of positional weight ranges up to and including the current digit.

The maximally redundant radix 256 configuration requires only 8 digits. Note, however, that
there is only a one bit difference in word length between both radix 256 configurations. This can be
explained with reference to Figure 24, All maximum redundant digit sets, including the sets for radix
256, require one more storage bit at the digit level. This extra bit reduces the storage advantage that the
radix 256 maximum redundant digit set has at the word level.

_——————— —— ——

Number of bits per SDNR/RNS digit (2 moduli)

Nurrber of bits/digit (reinimum
redundancy)

B Nurnber of bits/digit (maximum
redundancy)

Number of bits/digit

4] 0 o~ = o [ia] o = oe] [La]

! A (a0 [ie] o Yol A o = [}
— o (gl o o o

— o -

As previously noted, Figure 24 shows that an extra bit is required to represent SDNR/RNS
systems employing 2 moduli and maximum redundancy. This is one of the main contributing factors as
to why maximum redundant digit sets require comparagively more storage at the word level.

4.2.2 RNS moduli set consisting of three elements

The major reason for investigating digit-adder consisting of three modulus adders was to
determine what radices would benefit from such a configuration, in terms of word lengths, and logic
complexity. When analysing SDNR/RNS configurations using three moduli, it was found that the
additional flexibility introduced could be used to optimise memory, or optimise adder speed. Minimum
redondant digit sets will be analysed first, followed by an examination of maximum redundant sets.

PAUL WIIYIE ENGINGERING PROJECT REPORT 16 JANUARY {997

69

4221 Minimum redundancy

4,2.2.1.1 Minimum_memory

Minimum redundant digit set configurations for radices ranging from 16 to 4096 are listed in
Table 9. These configurations have been selected based on the guidelines for choosing configurations
listed in a previcus section, and on their mininal use of memory at the digit level and word level.

Table 9: SDNR/RNS configurations (3 moduli; minimum redundancy; minimum memory).

Radiz o1 [o3 A Mkl BE |thamber of | |Hnmber Fotual

bits 11 -
16 2 3 5] 17 102 L84E+19]1.77E+20
3z 2 5 7 70 17 13 g1 .84E+19]|2.02E+1%
G4 4 5 7 140 33 11 688 ..B4E+19|3.87E+19
128 5 7 2] 280 65 10 90 .84E+19|6.04E+20
256 5 7 8 280 129 9 S L84dE+19{2.39E+21
51z 7 g i1 616 257 8 g0 L BAE+L9; 2. 38E+21
1024 8 11 13 1144 513 7 77 1.84B+19]5.92E+20
2048 11 13 15 2145 1025 5] 12 L84E+19; 3. 69E+18
40586 15 14 19 4560 2049 5] 1y 1.845+19|2.368+21

4.2.21.2 Minimum delay

Maximum redundant digit set configurations are listed in Table 10. These configurations have
been selected based on the guidelines for choosing configurations given in a previous section, and on the

magnitude of the largest modulus elemeni.

By minimising the magnitude of the largest modulus
efement, logic complexity is minimised for that modulus adder. This, in turn, improves the speed of the
digit-adder.

Table 10; SDNR/RNS configuratiens (3 moduli; minimum redundancy; minimam delay).

Fadiv 55 be 2 Trniamios 3 Hunker of |Hambar o [l Fequired JAstnal

diaita hite bi rangs range
16 p; 3 30 5 17 102 1 E2E+1¢| 1. T1E+20
32 2 5 70 17 13 91 1.84E+15|2.02E+19
64 4 5 1490 3z 11 88 1.84E+19]3.87E+19
128 5 7 280 65 10 30 1.B4E+19| 6. 04E+20
256 5 7 280 129 9 81 1.84E+19{2,398+21
512 7 5 630 257 3 88 1.84R+19] 2. 38E+21
1024 8 11 13 1144 513 7 77 11|1.84F+19]5.92E+20
2048 11 13 15 2145 1025 6 72 12|1.845+19]3.69E+19
1096 15 16 13 4560 2049 5 78 13[1.848+19|2. 36E+21

Note that some SDNR/RNS configurations listed in Table 9 and Table 10 are identical. This is
because those configurations exhibit optimal memory and delay characteristics. In fact, for mintmum
redundant digit sets, many of the configurations selected satisfy both optimal memory and delay
requirements. Figure 25 shows word lengths for the respective radices.

PauL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

70

Radix word lengths {3 moduli; minimum redundancy)

£ Word length (minimum memory) |
1 Word length {minimum defay) '

© o <+ @ © o <t w ©
— B © o~ Iy} —) <+ &
— [aN] w o o o
— o <

Radix

i'igure 25: Radix word lengths (3 moduli; minimum redundancy).

[t can be seen from Figure 25 that, in general, most of the word lengths are the same for both
types of configurations. Only the configurations for radix 512 have differing word lengths. From this
observation, it seems that when optimising logic delay, a tradeoff in storage requirements is necessary.

From Figure 25, observe that, fike the 2 moduli cases, the trend follows a sinusoidal path with
valleys and peaks corresponding to certain radices. The lower radices seem to require more storage for
the word length. On the other hand, radices 1024 and 2048 indicate relatively small word lengths.
From the radices compared in Figure 25, radices 1024 and 2048 seem most favourable from a storage
requiremerits standpoint.

Figure 26 shows the number of biis required at the digit level for each radix listed in Table ©
and Table 10.

Number of bits per SDNR/RNS digit (3 moduli; minimum
redundancy)

@ Number of bits/digit (rinirum
memory)
3 Nurmber of bits/digit (minirnum
delay)

Number of bits/digit

w o4 = 0 [{s] [= o] w
- o [e] o Ly = o < [w]
— o w3 [an} [} <
— 3] <

Radix

L _ __[

Figure 26: Number of bits per SDNR/RNS digit (3 moduii; minimum redundancy).

Only radix 512 shows any difference in the number of bits per SDNR/RNS digit required. This
difference corresponds to the variance in the word length, shown in Figure 25, Notice that in Figure 26,
that the trend is not log-linear over the range of radices present. The cause of this is that for radices 128
and 256, there is no increase in the number of bits per digit. This anomaly is important in that it allows
the design of more efficient SDNR/RNS digit-adders, This topic will he discussed Tater. For now

PAUL, WHYTE ENGINZERING PROJECT RIIPORT 16 JANUARY 1997

71

though, it is enough to say that a correction in the number of bits per SDNR/RNS digit occurs at radix

256.

4.2.2.2 Mazimum redundancy

4.2,2.2.1 Minimum memory

Maximum redundant digit set contigurations for selected radices are listed in Table 11. These
configurations have been chosen based on configuration selection guidelines stated previousty, and on
their minjmal use of memory at the digit level and word level.

Table 11: SDNR/RNS configurations (3 moduli; maximum redundancy; minimum memory).

Radi Bl R B2 Tynaml s 3 Humber of Hugrio=r of Humber of Requirsd Actual
- Tange cigivs itz birsfdigic Jrangs rahge
(elp2ed)

16 2 3 7 42 15 16 96 G| 1.84E+1911.84E+19
3z 3 7 g 168 31 13 i04 811.84E+1%]3.69K+15
64 3 7 8 280 63 11 29 Sl 1.84E+1587.38E+13
128 7 8 11 6le 127 10 100 10[1.34E+18%]1.18E+21
256 7 g 1i 616 253 8 80 10]1.84E+19(1.84E+13
512 8 i1 13 11449 511 g 28 1111.84+1G14.72E+21
1024 11 13 15 2145 1023 7 a4 1211.84E+19|1.18E+21
2048 15 is 1% 4560 2047 & 78 13|1.84F+19}7.38E+19
4096 16 21 25 8400 1095 [24 14(1.845+19|4.72E+21

4.2.2,2.2 Mimimum delay

given in a previous section, and on the minimisation of the magnitude of the fargest modulus element,

Listed in Table 12 are maximum redundant digit set configurations for moduli ranging from 16
to 4096. These configurations have been selected based on the guidelines for choosing contigurations

Table 12: SDNR/BNS configurations (3 moduli; maximum redundancy; minimum defay).
Fadix 55 o o3 Trrnanic & Toeb=r ot Hamp=r oL |Reogquicsd
digie bits/digit |range
16 3 Z] 5 15 16 112 7| 1.84E+19] 1. 64E+19
32 3 7 8 168 31 13 104 8]1.848+419|3.69F+19
64 5 7 8 280 63 11 99 9|1.84E+19(7.38E+19
128 7 9 10 830 127 10 110 11[1.848+19|1.18E+21
256 7 9 10 630 255 8 88 11)1.84E+19(1.848+419
51z g 11 13 1144 511 8 CE 11|1.845+19)4.72F+21
1024 11 13 15 2145 1023 7 54 12)1.B4R+19[1.18E+21
2048 15 16 19 4560 2047 6 78 13|1.84E+19{7.30E+19
4095 17 21 23 8211 1095 € 90 1511.84E+19 4.72E+2ﬂ

Some of the configurations listed in Table 11 and Table 12 are the same for the corresponding
radix. As in the case for minimum redundancy, the reason for this is that those configurations are
optimised in terms of both memory and speed. The word lengths for those configurations listed in the
tables for maximum redundancy are shown in Figure 27.

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

72

Radix word lengths {3 moduli; maximum redundancy)

| Word fength ¢minimum merrory)
& Word length (minimum delay) |

Word length {bits)

€© ™ = o w o -+ [2a] w
— ™ <2} o uy — o~ iy o
- (3] uy (=] o (=
b () A

Radix

Figure 27: Radix word lengths (3 moduli; maximum redundancy).

Radices 16, 128, 256, and 4096 have a unique configuration for optimising memory and delay.
The other radices have a configuration that optimises both memory and delay at the same time. Notice
that for the radices with two unique configurations, minimising delay requires the greater amount of
storage capacity. Also, the radices 16 to 128 seem to be less efficient in terms of word fength
representation compared to the radices 256 through to 4096. Figure 28 shows storage requirements at
the digit level for each radix.

!7 Number of bits per SDNR/RNS digit (3 modull; maximuim
‘ redundancy)

B Nurmber of bits/digit (ninir'nTmI
memory)

& Nurmher of bits/digit (minimum
Ldelay}

Number of bits/digit

© o < 2e] (] o =<t «Q ©
— o w (9] Ly — (] oy =]
- [[Te] o o [=]
bl [§] =

Radix

Figure 28: Number of bits per SDNR/RNS digit (3 modnli; maximum redundancy).

As in Figure 26, the graph shown in Figure 28 does not show a log-linear trend for either set of
data. For the contigurations which focus on minimising memory requirements, a correction takes place
at radix 256. For the configurations which optimise delay, the number of bits per digit stays constant
over radices 128, 256, and 512, Therefore, a digit size correction occurs at radix 512. These
corrections give a clue as to when a three moduli digit-adder would give a more efficient
implementation, when compared to a two moduli digit-adder.

Figure 29, Figure 30, Figure 31, and Figure 32 have been included for completeness. These
graphs show that, for three moduli SDNR/RNS configurations, minimum redundant digit sets use
memory more efficiently than maximum redundant sets.

PAUL, WHYTE ENGINEERING PROJECT REPORT . 16 JANUARY 1997

Radix weord lengths {3 moduli; minimum memory)

J. £ Word length (mmn"um
l redundancy)

& Word length (ma)urmm
redundancy)

Word length (bits}

[{s] o =t o © o = o« W
-— [ap] (] (3] u — (W] =TI (=
— 3] wn [=] =] [=]
— (] -t

Radix

Figure 29: Radix word lengths (3 moduli; minimum memory).

,r Number of bits per SDNR/RNS digit (2 moduli; minimum 7
memory)

=
b=y —
o & Nurmber of bits/digit (rrinimlm—‘
5 redundancy) 1
s i@ Nurmber of bits/digit (raximum
2 redundancy)
2 - ’
=
=
O od <t o0 w ™ s o w
= [ar] w (&'} (Ve — o™ = [=2]
— o™ w [} (=) o
-— ™ ~
Radix ’

-]
Figure 30: Number of bits per SDNR/RNS digit (3 moduli; minimum memory).

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

74

Radix word iengths {3 moduii; minimum delay) #
120
= 100
'-"g 80 ET Number of bits/digit (rinimum |
= 60 redundancy)
5 B Nurmber of bits/digit (mexirmum
| £ W [redundaney)
2. 20
0 ;i }
[(a] <t 0 (2] o b aw [{a]
- o3 © [n ~— o~ < I
hasl o™ u [=] [=) o
™ (8] ~
Radix

Figure 31+ Radix word lengths (3 moduli; minimum delay).

Number of bits per SDNR/RNS digit {3 moduli; minimum delay} !
5 I
% ENurrher of bits/digit (minimum
5 redundancy)
5 Nurmber of bits/digit (maximium
s redundancy)
2 .
o
b3

w (] <t [ra] [{n] (o] <t [£a] (=]
- 2] [{e] o Yy - o < D
- o [Yp) o (=) o
~— o =

Radix

L | B

Figure 32: Number of bits per SDNR/RNS digit (3 moduli; minimum delay).

4.2.3 _Comparisons

This section compares the relative merits of two moduli digit-adders and three-moduli digit-
adders, Following this analysis is an additional guideline regarding what kind of digit-adder should be
used for greatest efficiency. Figure 33 compares word lengths for various SDINR/RNS configurations.

PAUL WHYTE ENGINEER ING PROJECT REPORT _ 16 JANUARY [997

Radix word lengths (minimum redundancy}

120

100

memory, irinimumdelay)

@ Word length (3 moduli; minimum
memory)

! 1

O Word fength (3 modusi; minimum
delay)

Word fength (bits)
(=2}
o

0
o w (] <t O « [g] = [+ =] w
— o [ie] ol wn — o =+ [a3]
- (o] wn =] o o
— o <
Radix

Figure 33: Radix word lengths (minimum redundancy).

Recall that for three moduli configurations, a correction in the number of bits per digit took
place at radix 256. From Figure 33, it is clear that this correction coincides with the fact ihat storage
critical three moduli systems match two modufi configurations, in terms of memory requirements, for
radices greater than or equal to 256, and less than or equal to 4096. The following example iilustrates
that for the higher radices, a three moduli set digit-adder is more efficient in operation. The two moduli
configuration for radix 256 includes the moduli set (16, 17). In comparison, the corresponding three
moduli system includes the modufi set (5, 7, 8). The largest modulis value for the two moduli
configuration is 17. This means that the modulus adder, in this case, must accept 17 values. On the
other hand, the most complicated modulus adder in the three modult system must accept only 8 values,
This is a significant difference in the number of values both modufus adders must compute. The
modulus 17 adder would be inherently more complex and slower than the modulus 8 adder. Therefore,
af the expense of an additional medulus adder, the three moduli digit-adder wouid be able to add or
subtract faster than if only a two modufi configuration was used. Similar cases arise for radices 512,
1024, 2048, and 4096

Notice that in Figure 33, the radix 2048 minimum redundant configuration results in the
smaltlest word fength of 72 bits. However, to achieve such a small word length, 12 bits per digit are
required (Figure 34). In comparison, the two modul, radix 32, minimum redundant configuration
requires 78 bits, and only 6 bits per digit. Therefore, by using the radix 32 configuration, the complexity
at the digit level can be halved by increasing the word length by 6 bits, or 8.33%. Similarly, the two
moduli, radix 64, minimum redundant configuration requires 77 bits at the word level at 7 bits per digit.
This radix 64 configuration, in comparison te the cited radix 32 configuration, reduces the storage
requirenients at the word level by 1 bit (a decrease of 1.28%), bui requires 1 more bit at the digit level
(an increase of 16.67%). The favourable characteristics of the radix 32 configuration seems to make it a
good choice for an attempt at constructing a VLSI digit-adder. The minimum redundancy will ensure a
relatively simple adder implementation.

Shown in Figure 34 is a graph cowparing the number of bits per SDNR/RNS digit for each
radix.

Paur, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

76

Number of bits/digit

o0 Jfa] o <t o] [1s} o~ = w [s}
b o [1s] ['t} — & =+]
— ™ [ir) o o o
— S -+
Radix

Number of bits per SDNR/RNS digit {minimum redundancy)

E1 Nurmber of bits/digit (2 moduii;
minimUm memory, minimum
delay)

& Nunber of bils/digit (3 moduli;

MiNimUm imemory}

|
[Nurmbar of bits/digit (3 modui; '
minimumdelay) J

Figure 34: Nnmber of bits per SDNR/RNS dight (minimum redundancy).

Figure 34 shows that the correction at radices 256 and 512 for the three moduli configurations
keeps memory requirements at a par with the correspending two moduli representations at the higher

radices.

For completeness, graphical comparisons for maximum redundant two and three moduli
configurations are shown in Figure 35 and Figure 36. Note that similar conclusions can be drawn about
maximum redundant representations as for minimum redundant representations, in terms of whether to

use a digit-adder based on two or three moduii sets.

120
o EEE R T s _ R
iy Word length (2 moduli; minimum
a 80 memory, rminimumdetay)
g B0 | @ Word length (3 moduli; minimum
5 mErmW}
kil 40 . [Word length (3 moduli; minimum
s ;
2 20 defay) i
o [{s] (] <t =] w (8] I Qo w
- m ©w & W - & % O
- o uz (] (] o
= od =r
Radix
Figure 35: Radix word lengths {maximum redundancy).
PAUL WHYTE ENGINEERING PRQJECT REPORT 16 JANUARY 1997

77

Number of bits per SDNR/RNS digit (maximum redundancy)

MiNITUIM memery, minirmum

Nurmber of bits fdigit (2 modﬂ

=
g delay)
2 & Nurrber of bits/digit (3 moduf; |
= MNEMUM Memory ’
E 1
E 01 Nunrber of bits/digit (3 moduli [
E minimum delay) |‘
. L §
o [{a) o =+ o w o ~t o «©
Road [a] wr [} u — o <t 5]
— o [Fp) a [am) Q
A (8] <t
Radix

Figure 36: Number of bits per SDNR/RNS digit (maximom redundancy).

To represent a conventional 64-bit unsigned integer, a two woduli cenfiguration should be
chosen for a digit-adder if' the radix is less than 256, Otherwise, if'a radix greater than or equal to 256 is
selected, then a three moduli configuration would be preferable.

For the digit adder implemented, the minimum redundant radix 32 eontiguration listed in Table
7 was used. This configuration exhibits efficient memory characteristics, as well as maintaining
relatively low logic complexity, when used to represent a conventional 64-bit unsigned integer. The
choice of configuration can be described in terms of the guidelines discussed in section 4. 1-SDNR/RNS

configuration analysis:

For the radix guidelines:

e The chosen configuration has a word leagth of 78 bits at 6 bits per digit. This resulted in a
relatively simple digit-adder.

e Radix 32 is a power of 2.

For the digit set guidelines:

e A minimum redundant digit set was chosen toc keep storage requirements and logic
complexity sinall.

s A nondisjoint digit set was selected so that the greatest dynamic range at the digit tevel
could be achieved.

For the meduli guidelines:

e The moduli 5 and 7 are relatively prime.

e The moduli 5 and 7 are as small as possible so that operations required minimum
computational time.

e The product of the moduli was large enough in order to implement the desired dynainic
range.

@ The moduli 5 and 7 result in a balanced decomposition of the dynamic range. Three bits are
required to represent each moduli. There is no difference between the number of bits to
represent the different moduli.

By using the set theory of arithimetic decomposition, the addition process using the chosen

configuration can be verified as follows:

Stage 1: 32<2'>+ <32'% & <34'"> 4+ <39!

Stage 2: <34'7> <= <32 + <2’

PAUL WHYIE

ENGINEERING PROJECT REPOQRT 16 JaANUARY 1997

78

3. Design

This chapter includes the logic design for the SDNR/RINS digit adder, the conversion circuits,
and the sign detector circuit. Each of these arithmetic components involved defining truth tables,
karnaugh maps, and then deriving togic equations. A software simulation was written, so that each
arithmetic component could De tested at the unit and system fevels.

For this project, the logic minimisation method used was based on traditional karnaugh map
reduction. Karnaugh maps were used because the number of inputs into a logic gate never exceeded 6,
Tt was found that 6 variable karnaugh maps were about the upper bound limit in determining the minimal
sums of products expression for a particular output,

If a cireuit, for example, a digit adder, which contained logic gates with more than 6 inputs was
required, then ather logic mintmisation methods would have been used. Hayes (1993) states that the
visual identification and selection of prime terms via karnaugh maps becomes more difficult as the
number of inputs in a function increase. Hayes (1993) goes on to detail alternative logic minimisation
schemes. He discusses the tabular, or Quine-McCluskey method of logic minimisation, which is suitable
for solving targe input probleins with the aid of a computer. Kuczborski (1993) makes use of the Quine-
McCluskey minimisation method, Hayes (1993) also covers approximate, or heuristic ménimnisation
methods, and the problem of designing minimum-cost multilevel circuits. Furthermore, with such large
numbers of inputs into each logic gate, logic decomposition would be recommended to reduce the
number of inputs into each gate to between 2 and 5.

5.1 SDNIV/ERNS confizuration

Table 13 defines the configyration (from the last chapter) which was used for the design of a
SDNR/RNS arithmetic syster.

Table 13; SDNR/RNS configuration,

Radix vl 122 frynamic cangs a ez Hhmber
SIWER/RNS SCME/RNS hditz
digits ke teo represent

Fap 1 Sd-bit intogsas
kit integer

3z 3 g EG i 13 T

The system was based on radix 32. The main reason for such a choice of radix was that a
conventional binary number can be easily converted to the SDINR/RINS notation by grouping bits. In
this case, a 5 (= log,;32) bit segmnent in a conventiona! binary number can be directly converted 1o a
SDNR/RNS digit. For this particular configuration, 78 bits are required to represent a 64-bit
conventional number.

A minimally redundant digst set (-17, 16, ..., -1, 0, +1, ..., 16, +17) was selected based on the
choice of moduli pair. A minimally redundant digit set was used because the particular combination of
the chosen moduli pair and digit set allowed for optimal nondisjoint sets. Nondigjoint sets, in
comparison to disjoint sets using the same set of moduli, increase the dynamic range of SDNR/RNS
digits. Table 14 lists the nondisjoint digit set used for the arithmetic system.

PAUL WHYTE ENGINEERING PROTECT REPORT 16 JANUARY 1997

79

Table 14: Nondisjoint digit set.

Digif |SDNR/RNE Digit [SDNR/RHNS
digit digit
mod pl mod p2 mod pl mod pZ
Reglion 1
0 a 0
1 1 i carry = -34 1 1 CArry =
2 2 2 0 -33 2 2 -1
3 3 3 -3z 3 3
4 4 q -31 E| 4
5 Q 5 -30 0 5
G 1 6 -29 1 [
7 2 0 —-28 2 0
g 3 1 -27 3 1
9 4 2 -26 4 2
i0 0 3 ~25 0 3
il 1 4 -24 1 4
12 2 5 -23 2 5
13 3 6 -22 3 6
14 4 0 -21 4 0
15 0 1 -20 Q 1
16 1 z -19 1 2
17 2 3 carry = | ~_l"8*__—__~2——___—_—_3_—_"_‘—___—‘E{e_-gi_o_ﬁhzw
18 3 4q 1 ~-17 3 4
HMESTMfI""—m/lAﬁ—’_MQS—_T _________ ~16 4 5 carry = Region 3
20 0 3 -15 0 6 0
21 1 0 ~14 1 0
22 2 i -13 2 1
23 3 2 -12 3 2
24 q 3 ~11 4 3
25 0 4 ~10 Q q
26 1 5 -8 1 5
27 2 6 -8 2 3
28 3 D -7 3 0
29 4 1 -6 1 1
30 0 2 -5 0 2
31 1 3 -4 1 3
3z 2 4 -3 2 4
33 3 5 ~2 3 5
349 4 [-1 4 &

5.2 Reference tables

Table 15 lists equivalent decimal and binary values used throughout the design chapter,

Paur, WHYTE

ENCGINEERING PROJECT REPORT

16 JANUARY 1997

Table i5: Decimal/binary veference table.

Decimal

reference

Digit

pl

Digit moD

34
-33
-32
-31
-30

=29
-28
277
26
-25
—24
-23
-22
-21
-20
~19
-18
-17
-i6

1

T -1 I s W O

e =
B g N O

15
16
17
i3
15
20

I S R T R e B =R T #S RV B o o B SR FU R W I o B - VLR

o L) B e O =)

O ok w N RO s W N e O

O W N D s W N O s b

Gy o - D m R W = D L ds W [

[B O O R = = LT 2 B VU T o I~ e T e SO, BN - O% I ST o o & R o R = = ¥ I ~ S VR CU T S]

Binary

reference

Digid Dig1lt oD T

pl P

11011110 ool
11011111 010 010 .
11100000 011 01T - '
11100001 106 100
11100010 000 101 .
11100011 001 110
11100100 010 000
11100101 011 001
11100110 100 010
11100111 000 011
11101000 001 100
11101001 010 101
11101010 011 110
11101011 1020 000
11101100 000 001
11101101 001 010
11101110 0L0 ali
11101111 011 100
11110000 1¢0 101
113110061 000 110
11310010 003 000
11110011 010 001
11110100 011 010
11110101 100 011
11110110 000 100
11110111 001 101
11111000 010 110
11111001 011 000
11111010 100 001
111131011 Q0o 010
11111100 001 011
11111101 010 100
11111110 011 101
11111111 100 110
00000000 aq0a 0G0
00000001 00l 001
00000010 ala 010
00000011 aLl 011
00000100 100 100
00000101 000 101
00000110 001 110
ooonon11l 010 Q00
Q001000 011d 00l
pooo1001 100 010
oQ00i010 0nq 011
00001011 001 100
00001100 016 101
Gooo1101 011 110
coooL11o 100 000
00001111 000 001
00010000 001 010
00010001 010 011
00010010 011 100
00010011 100 101
cop1l0100 000 110

PAUL WHYTE

ENGINERRING PROJECT REPORY

16 JANUARY 1997

81

Table 13 {continued): Decimal/binary reference table.

Decimal Binary

reference reference

Digit Digit mobp Digit woD Digit Digit wmop Digit moD

pl p2 pl 223

21 1 0 oogloiol 001 000
22 2 1 000102igr 010 001
23 3 2 00610111 011 010
29 4 3 Q0011000 100 011
25 0 [000110601 000 100
26 1 5 00011010 001 101
27 2 3 00011011 010 ilo
28 3 0 00611100 011 000
29 4 1 50011101 100 001
30 0 2 00011110 000 010
31 1 3 00011111 001 011
32 2 q 20100600 010 100
33 3 5 00100001 011 101
34° 4 [00100610 160 110

Truth table variables are designated alphabetical characters as shown in Table 16 to Table 18,

Table 16: 4 variable truth table.

1

Input variables
dcba

Output

Table 17: 5 variable truth table.

Cutput

Input variables
edocacha

Table 18: 6 variable truth tabie.

nput variables
edacba

| I Output
f :

The truth table variables are projected into a corresponding Karmaugh map as shown in Table
19 to Table 21. Negated variables are prefixed with a *~" symbol. Furthermore, karnaugh map entries
marked with an *x” indicate a “don’t care” condition.

Table 19: 4 variable Karnaugh map.

~b ~al~bal baibk ~ai

~d o~
~d ¢
d c
d ~c

Table 20: 5 variable Karnavgh map.

~e

~h ~al~bat bal|lb ~a

~d ~C
~d
d o

d ~c

Paul, WHYTE, ENGINEERING PROJECT REPORT 16 JANUARY 1997

32

~b ~a|~b ai ba b ~a

~d ~e
~d o
dc
d ~c

Table 21: 6 variabie Karnaugh map.

~f ~e

~b ~al ~b a b a b o~a

~d ~c
~d o
d c
d ~c

5.3 Adder design

The digit adder design needed to be able to handle nondisjoint sets. Kuczborski (1993) deals
with this issue, and it is his adder design that was adopted. Tigure 37 shows the schematic of
Kuczborski’s SDNR/RNS digit adder.

A favourable characteristic of Kuczborski’s adder is modularity. To add two SDNR/RNS
rumbers, both representing 64-bit conventional numbers, 13 digii adders are required to be connected
and placed side by side.

PAUL WHYTE ENGINEERING FROJECT REPORT 16 JANUARY 1997

cperandi_pt

operandi_p2

operandZ_p1

operandz_p2

| ' |

detect_ detect_ add_ add_
sign sign mod_p1 mod_p2
|
deteci
region
[
I |
generate_
carry
| |
cofrect_ correct_
mod_pl mod_p2
carry_out) carry_in
addec__ adde__
mod_p1l mad_p2
sum_p/1 L

sum_p2

Figure 37: SDNRE/RNS digit adder.

54 Component design

5.4.1 detect sign

5.4.1.1 Purpose

The detect sign component determines the sign of the respective SDINR/RNS digit.

5.4.1.2 Inputs

operand pl: Modulus 5 number (3 bits).
operand p2: Modutus 7 number (3 bits).

5.4.1.3 Qutputs

sign_operand: Sign of the SDNR/RNS digit detined by <pl, p2> (1 bit).

5,4.1.4 Notes

The following algorithm is used to determine the output of the detect sign component:

IF (SDNR/RNS digit.<p1, p2> is positive) THEN
sign_operand = 0

PAUL WIHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

84

ELSE

sign_operand =1

ENDIF

For operand_p!, the binary combinations 101, 110, and {11 do not exist. Modulus 5 dees not
allow these combinations, For eperand p2, the binary combination 111 does not exist. Modulus 7 does
not allow this combination.

54.1.5 Truth tabie

operand pl | cperand_pZ | sign_
operand
011 100 i
100 101 1
000 110 1
001 oo 1
010 001 1
0ll 010 1
100 011 1
000 100 1
001 101 1
010 110 1
011 000 1
100 0ol 1
coo 010 1
001 011 i
clo 100 1
011 101 1
100 110 1
[E0]0] aoo 0
001 00l Q
a10 010 6]
011 011 Q
100 100 0
oaon i01 0
001 110 0
010 Do 0
01l 001 0
100 oL Q
ooo 011 a
00l 100 o]
010 101 g
011 11ic 4]
100 000 0
000 oot 0
001 010 a
010 a1 0

PAUL WHYTE

ENGINERRING PROJECT REFORT

16 JaANUARY 1997

85

5.4.1.6 Karngugh maps

0o
Go 01 11 10
00] 0 0 1
01 1_) 0 Ry
11 (__Q3 I’ 1 (x‘1 0
10 L jITo T J] o
01
4] 01 1 10
00 a [1 j G
o1 (1] 4 P [1
T T ;_j {1 x_} ——
10 [_1] g 0 [1
11

an 01 11 i0
00 x | x J X ®
01 rixx X (x x}
i1 L :»:J b L % X

]

10 (X \x X (x
10

Q0 01 |11 i0
o 0 1 1
01 6] i X
11 P b X % L
)

5.4.1.7 Logic equations

sign =
adf
+h&c&f
ta&c&~d&~T
+a&c&d&~f
t+~ak~b&c&e
tak~c&d&e
t+t~a&b&~d&~e&~f
ta&b&d&-ec&~f
ta&-b&~c&~d&e
ta&-b&~c&d&~e&-~T

5,4.2 detect region

54.2.1 Purpose

The detect_region component determines the locality of the intermediate sum within the
disjoint sets. The disjoint sets are broken up into 3 distinet localities, or regions. Refer to Table 14 for a
diagrammatic representation of the regions.

PAUL, WHY'TE ENGINEERING PROJECT REPORT _ 16 JANUARY 1997

86

54,22 Inputs

uncorrected sum_pl: Modulus 5 intermedtate sum (3 bits).
uncorrected sum pZ2: Modulus 7 intermediate sum (3 bits).

5.4.2.3 Qutpufs

region: Intermediate sum region (2 bits).

5.4,2.4 Notes

The following algorithm is used to determine the output of the detect region compaonent (the
numbers 1, 2, and 3 are depicted in Table 14):

CASEOF region

i
region = 00
2
region = 01
3:
region = 10
ENDCASE

For uncorrected_sum_pl, the binary combinations 101, 110, and 111 do ot exist. Modulus 5
does not allow these combinations. For uncorrected sum p2, the binary combination 111 does not
exist. Moduius 7 does not allow this combination,

PAUL WHY1E ENGINEERING PROJECT REPORT 16 JANUARY 1997

87

54.2.5 Truth table

uncorrected|uncotrrected| region {bl
sum pl sum p2 b)
000 000 Q0
0oo 001 00
oog al1o 10
a0 011 00
000 100 10
ono 101 G0
000 110 10
001 000 10
00l 001 00
001 010 Qo0
001 011 10
001 100 00
ool 101 10
001 110 00
010 jela]e] 00
010 001 10
010 010 0o
010 011 0L
010 100 10
010 101 06
0io 110 10
011 Qoo 10
011 001 0g
011 010 10
ol 011 Ga
011 100 01
011 101 10
011 110 a0
100 0ao 00
100 001 10
100 010 Q0
100 011 10
100 100 90
100 101 10
100 110 10

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

28

5.4.2.6 Karnaugh maps

ao

, _
b
Al o o =l - BIES B =N R P
o =) =
— \ — =
- — L -
=R B =2 S | e e g e O AR
—f — ~
— b ad - - i e AR
porimie L
[[y = o] [[l FHER R B e T[] e
— 4 - —
= | =3 bt =N > =g\ v, \
ﬁ.lf . o~ — Lo |
=31t - =N SRR WK % [l f=U SR]
o o ot =}]
< =]] . (=]]
- =l -]
) e,) 2
ol - o Il =N =l =] — = = W =) = [i e]
= =] S o [g= o~ = o |- = s S o b &

CQ

1g

10

i0

iq

i

i1

[1]

11

11

01

01

a

Gl

a1

]

bojoo

00
o1

i1
10

01

b0i00

Go
01
11
10

11

b0{00

Q0
o1

11

10

10

boj0oo

14
01

11
10

16 JANUARY 1997

ENGINEERING PROJECT REPORT

PAUL WHYTE

39

5.4.2.7 Logic egimtim:s '

region bi =
a&kf
t+a&e&d
+h&c&f
+al&b&d&~e
tra&c&~d&~f
+t~a&~b&~c&d
t~a&~c&d&e
+a&b&~d& ~e&~f
+ta&b&~c&~d&e

region b0 =

a&b&~-d&e
t+~a&-b&c&d&e

5.4,3 senerate carry

54.3.1 Purpose

The generate_carry component determines if'a carry is required. The output of this compoenent
is based upon the signs of both SDNR/RINS digits, and the region of the intermediate sum.

5.4.3.2 luputs
sigh_operandl: Sign of the first SDNR/RNS digit operand (1 bit),

sign_operand2: Sign of the second SDNR/RNS digit operand (1 bit).
region: Intermediate sum region (2 bits).

5.4.3.3 Qutpuis

carry_out. Carry value for correction of intermediate sum (2 bits).

5.4.3.4 Notes

The following algorithm is used to determine the output of the generate carry compoenent (the
numbers -1, 0, and 1 are depicted in Table 14):

CASECF carry out
-1
carry_out = 00
0:
carry_out = 01

carry_out = 10
ENDCASE

For region, the binary combination 11 does not exist.

PAUL WIYTE EWNGINEERING PROJECT REPORT 16 JANUARY 1997

90

5.4.3.5 Trath table

slgn_operan|sign_operan region carry out
dl dz (el B0;
0 ¢ 00 01
0 4] o1 10
0 0 10 10
a 1 00 01
0 1 01 0o
0 1 ic 01
I U 00 0L
1 0 01 00
1 0 10 01
1 1 00 Do
1 1 01 0o
i 1 10 01

5.4.3.6_Karnaugh maps

bl 00 01 11 i0

g0 0 (1 l’ X] T]
[0 T T 0
11 i) X 0
10 0 o x 0
b0 00 01 i1 10 j
00 1 o x 0
01 1 0 X T}

% A
i1 0 i x I
3 (
10 1 0 s T

5.4.3.7 Logic equations

carry_out bl =
ad~c&~d
+bh & ~c&~d

carry_out b0 =
b&ec
+~a & ~b & d
+a&-~cé&d

54.4 add mod pl

5.4.4.1 Purpose

The add mod pi component adds the pl (modulus 5) moduli of the SDNR/RNS input
operands. add mod pl outputs the p1 modulus of the intérmediate sum.

PaUL WHYTE ENGINEERTNG PROJECT REPORT 16 JANUARY 1997

S1

5.4.4.2 Inputs

operand! pl: Modulus 5 segment of the first SDNR/RNS digit operand (3 bits).
operand2 _pl: Modulus 5 segment of the second SDNR/RNS digit operand (3 bits).

5.4.4.3 Outpuis

uncorrected _sum_pl: Modulus 5 segment of the intermediate sum (3 bits).

5.4.4.4 MNotes

For operandl pl and operand2 pl, the binary combinations 101, 110, and 111 do not exist.
Modulus 5 does not allow these combinations.

5.4.4.5 Truth table

operandi pl

operandZ pl

uncorrected
_sum pl (bZ

bl b0}

000
G000
000
000
200
0oL
001
0qg1
001
001
010
aio
010
010
010
011
011
011
011
011
100
100
100
100
100

[Rely]
5oL
010
011
10a
000
001
G610
011
Loo
0G0
001
010
011
100
000
001
a1o
a1l
106G
Q00
001
010
011
100

Q08
aol
010
011
100
001
010
0%l
100
000
Q10
011
100
000
001
011
160
0040
001
010
100
000
00%
0lo
011

PaUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

92

5.4.4.6 Karnaugh maps

00

b23100 01 11 10
00 0 & 0
01 L 1 X x J
11 0 % (x“]
T 0 L L) G
0l

h2|00 s3] it 10
i] G ol
01 0 % X X
14 0 x X
10 & 1 a a
11

b2|0o 0l 11
00 X X b4 X
01 X X X
11 — (%] % ®
10 = x) X il
10

bZHI0 01 11 10
GO L 0 0 0
ol 8] X X
i1 e X X X
iq X x XJ e
00

b1[00 01 11 10
aq 0 0 1 1
01 Q e X X
11 0 X X 4
10 4] i 0 1
o1

b1joo 01 11 10
00 [1 1] 0 0]
0i 6] X X X
i1 1 b4 X X
10 1 0 0 0
11

»1|08 a1 11 10
a0 I [x x
01 x x ® X]
11 4 xw x X X }
10 j
10

bl|o0o 01 11 10
0 0 a 1 4]
01 (1 i X X\J
11 Lx x x xj
10 X x- ® X

L% Vi

Paul, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

93

00
BN A S BE0

00
01
11
10

ol S ©
af wff x| =
o W) W]
]X i aR)

P
1

01

20j00 a1 1% 10
00 Q
01 1
il 0
W Ty

R
bl A
A —

O WA P

I R L A =
D MM e

11

bGj00 0l 311 10

00 X
o1 X
11 X
)
10 ‘,

b I |

FF

{
[

10

pG|00 01 i 10

=]

00 0
01 i
3
%

"

11
10

PR D
ool
HNE =] =P

5.4.4.7 Logic equations

uncorrected_sum_pl b2 =
~a&~b&c&T
+t~a&b&~d&e
ta&-~-b&d&e
ta&kb&d& e
te&~d& ~e &~

uncorrected sum pl bl =
c&f
+ta&b&f
ta&~b&d&-e
+b & ~d& ~e & ~f
+~adkbé&~e&~f
+b&-c&~d&e
t~a&~b&d&e

uncorrected sum _pl b0 =
c&ft
tec&~d&e
t+~a&bé&f
+~a&~c&d&-e
+a& ~d&~e&~f
ta&~b&~d&e |
+ta&kb&d&e
teaf-b&~c&d&e

PAUL WiYIE ENGINEERING PROJECT REPORT 16 JANUARY 1997

o4

5.4.5 add mod p2

5.4.5.1 Purpose
The add_mod_p2 component adds the p2 (modulus 7) moduli of the SDNR/RNS input

operands, add mod p2 outputs the p2 modulus of the intermediate sum.

54.5.2_ Inputs

operandl _p2: Medulus 7 segment of the first SDNR/RNS digit operand (3 bits).
operand2 p2: Modulus 7 segment of the second SDNR/RNS digit operand (3 bits).

54.5.3 Outputs

uncorrected sum_p2; Modulus 7 segment of the intermediate sum (3 bits).

5.4.54 MNotes

For operand! p2 and operand2 p2, the birary combination [11 does not exist. Modulus 7
 does not aifow this combination.

PaUL WHYTR ENGINEERING PROJECT REMORT 16 JANUARY [997

95

5.4.5.5 Truth table

operandl p2

cperandZ p2

uncerrected
_sum _p2 (b2
bl bO)

000
000
coo
000
000
Q00
000"
o0l
0ol
001
0oL
001
oGl
061
010
010
010
010
010
010
010
011
011
011
011
011
0l1
011
100
100
100
100
100
100
160
101
101
101
101
101
101
101
110
110
110
110
110
110
110

00ngo
001
010
011
100
101
110
000
001
010
011
100
101
110
000
001
010
011
100
101
110
000
001
010
011
100
101
110
000
001
0l0
011
100
101
110
000
0oL
010
011
100
101
110
000
00l
010
011
100
101
110

000
00l
010
011
160
101
110
0ol
010
011
100
101
110
000
010
o0l1
i00
101
110
000
ool
011
160
101
110
o0o
001
010
100
101
110
000
001
010
011
101
110
000
001
010
011
100
110
000
001
010
011
100
101

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

96

5.4.5,6 Karnaugh maps
00

10

1
0
0

19

W,

]

10

L

16

1

]

11

i

11

11

16

16

10

[EN8

L

b

01

11

11

11

B

11

2

1

00

al

01

0l

&

01

0o

€51
i1
10

01

Go
01

11

19

11

bZP.G_\ 0L

0o

01

11

i0

10

bZ|j00

)

11
i0

1

i

b1{00

Q0

Q0
01
11
10

b1|jao

01

Ity

01

11

18

11

B1loo

00
01
11

10

100

10

Q0

11
10

01

ENGINELRING PROJECT REPORT 16 JANUARY 1997

PAUL WHYTE

97

0o

bolog o1 [iL 10
00 0 1 1 o
oL — 1 2 a
i1 1] X o |
10 | 1] ¢ i [1
01

bE[o0 01 11 10
00 0 [1] ; 0
01 D T = 1)
1 o 1} x 8
10 1] 0 0 [1
11)

p0[00 01 11 10
o0] o 0 1
01 1] ¢ l X 1
LN = G 1 R
19 L)]
10

no[oo 01 i1 10
no 0 N [1] 0 JRN NI &
01 1) x (L1
11 0 [_ il 3 0
10 [1] 0 1 0

5.4.5.7 Lagic egualions

uncorrected sum p2 b2 =
“b&c& e &~f
+te& ~d & ~e & ~f
ta&b&d&~f
+bh&~c&e&-T
+t-b&~c&~e&T
ta&ckekf
th&c&e&f
+~a&-~b&c&~d&~f
ta&k-b&~c&d&e
+~abk-b&~c&~-d&F
tea&c&~d&~e&f
tra&b&e&d&f

uncorrected sum _p2 bl =
b & -~d & ~e & ~f
r~a&~b&~c&e
t~a&~b&~d&e
+ta&b&d&e
+tb&c&d&e
+a&c&~e&f
t~b&c&d& S
ta&-b&d&t
ta&~b&e&f -
+ta&kh&e&f

PAUL WIHIYTE ENGINEERING PROJGCT REPORT 16 JANUARY 1997

98

t~a&b&-~c&—-e&~f
+ta&~b&d&~e&~f
+~b&~c&-d&ek~f
a&b&~d&~e&f

corrected. sum_p2 bG =

a& ~c&d&~f
+a&~d&~e&-f
‘b&c&~d&e
‘“ta&b&e&f
Fra&o&~d&f
+a&b&d&t
Fa&c&d&f
Fra&~b&d&~e &~
+ta&-c&-d&e&~f
gk ~b&chkd&e
Foa&b&kc&d& S
a & ~b&~c&~d&~e&f

_ _:t:.' Carry value (2 hiis).
ected sum pl: Modulus 5 segment of the SDNR/RNS intermediate sum (3 bits).

_.r_e_(_:t_ed;sum _pl: Modulus 5 segment of the SDNR/RNS corrected sum (3 bits).

. Foruncorrected_sum_p1, the binary combinations 101, 110, and 111 do not exist. Modulus 5
ot allow these combinations. Likewise, for carry_out, the binary combination 11 does not exist.

ENGINEERING PROJECT REPORT 16 JANUARY 1997

93

t+t~a&b&~c&—e&~f
+ta&-b&d&~e& ~f
t~b&~c&-~-d&e& ~f
t~a&b&~d&~ec&f

uncorrecied _sum_p2 b0 =
~a&~cdd&~f
ta&~d&~e&~T
+th&ck~d&e
t~a&b&e&f
t-~a&c&~d&T
+ta&kb&d&
ta&ckd&
a8 ~b&d& e &~f
ta&k-~c&~d&e&~f
ta&k~b&c&kd&e
+ta&~b&~c&d&T
ta&k-b&c&~d&~e&f

5.4.6 correct mod pl

5.4.6.1 Purpose

The correct_mod pl component computes the pl segment {modulus 5} corrected sum from
the corresponding intermediate sum. The carry_out value is used to determine what type of correction
is necessary.

5,4.6.2 Inputs

carry_out: Carry vahue (2 bits).
uncorrected sum pl: Modulus 5 segment of the SDNR/RNS intermediate sum (3 bits).

5.4.6.3 Ontputs

corrected sum pl: Modulus 5 segment of the SDNR/RNS corrected sum (3 bits).

5.4.6.4 Neotes

For uncorrected sum_pl, the binary combinations 101, 110, and 111 do not exist. Modulus 5
does not allow these combinations. Likewise, for carry_out, the binary combination 11 does not exist,

PauL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

99

5.4.6.5 Truth table

carry out juncorrected jcorrected_s
_sum pl um_pl {bZ
bl b0y
0o 000 RN
01 ooo 000
10 0oo 011
oo GOl 411
01 001 0oL’
10 001 100
on 010 100
a1 Q10 n1o
10 D10 noo
oo 011 noo
01 01l 011
10 011 00t
o0 100 ool
01 100 100
10 100 oL0
5.4.6.6 _Karnaugh maps
0
b2 |00 01 11 10
00 0 a [¥] ‘ 1]
01 J x X W x J
11 (1 X b4 x \J
10 a & 0 0
1
b2j00 Q_L..,\ 11 1G
e} o 1 0 0
01 o} b:4 X p4
il { X x X X)
10 I3 Y, 3 X
0
b1109 01 11 10
0o L 1 1J 0 0
01 0 F
i1 0 X
190 0 0 % l)
1
b1i00 01 11 10
0o {1 o] 0 0
01 1 x X b4
11 ® X 3 H)
10 * x x 4

FPAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

100

0

bLOjoo 01 11 10
0o - g l('_"l_\ g 0 .
Gl | 1 l b4 X He
11 0 % x] x
10 0 L1 1) Q
1

L0J0g o1 11 10
oG m 0 o
al O X X e
11 X ("32 R x
i0 X L X L_ x| X

5.4.6.7 Logic equations

corrected_sum pl b2 =
céad
+a&~b&e
+a&b&~d& e

corrected_sum_pi bl =
b&d
+t-a&~b&e
+eb&~c&~d& e
corrected_sum_pl b0 =
add
+a&~b&~e
+a&b&e
+te&~d&~e
t~a&~b&-c&~d&e

5.4.7 correct mod n2

5.4.7.1 Purpose
The cotrect mod_p2 component computes the p2 segment {(modulus 7) corrected sum from
the correspending intermediate sum. The carry_out is used to determine what type of correction is
necessary.
3.4.7.2 Inputs
carty out: Carry value (2 bits).
uncorrected_sum_p2: Modulus 7 segment of the SDNR/RNS intermediate sum (3 bits).
5.4.7,3 _Ouipuis

corrected_sum_p2: Modulus.7 segment of the SDNR/RNS corrected sum (3 bits).

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

101

5.4.7.4 Notes

For uncorrected_sum_p2, the binary combination 111 does not exist. Modulus 7 does not
allow this combination. For carry_out, the binary combination 11 does not exist.

5.4.7.5 Truth table

carry out |uncorrected |corrected s
sum p? um p2 (b2
bl b0}
00 000 100
01 000 000
10 000 011
00 0ol 101
ol 001 001
10 001 100
0o 010 110
01 0310 010
10 010 101
oo 011 000
01 011 01l
10 011 110
00 100 001
01 100 100
10 100 000
co 101 0to
o1 101 10k
10 101 001
00 110 o1l
01 110 110
10 110 010

5.4.7.6 Karpaugh niaps

0

b2{00 0L 11 10

ra Y "
a0 (1J 1J il L 1
0 0 0

01 r \
11 2 1 1]
10 0 0] 0
1

bz|00 oL 11 10
00 [§ (i T 1]
01 0 o T
11 L X X x X J
10 4 X X x

PAUL WIIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

0

bl|00 Gi 11 o
ifs) P Y
01 O £ 1
11] 0 (X 1
10 o 6 H_1 L1)
1

bliao 01 11 10
2} [‘_lj 8 1 0
Gi a g ® 1
11 b4 b4 L X% 2
10 b4 hiA wy x
Y Y

stajisie] 01 11 10
G0 0 _1)) a 8]
01 1 0 o0 & i
11 0 J F 1 [VX L [} .
10 o I3 i o
" L—

JalsIRAIY 01 11 10
20 1] J — [1
01 4] i | 0
11 X = b4 ®
10 X zZ b4 y A

5.4.7.7 F.ogic equations

corrected sum_p2 b2 =
c&d
ta&b&e
+-~a&k-~c&~d&~e
+~b& ~c & ~d & ~e
ta&k~c&~d&e
tbh&~c&~d&e

corrected sum p2 bl =
~a &b & ~e
+b&d&~e
+ta&b&e
+b&céke
takc&~-d& e
t-a&k~b&-c&~dé&e

corrected_sum_p2 b0 =
add
+ta&kcke
ta&~b&~c&~e
+~a&ck~d&~e
tb&c&~d & ~e
tradk~c&~d&e,

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

5.4.8 adde mod nl

5.4.8.1 Purpose

The adde mod pl component adds the carry value, evaluated from the neighbouring
SDNR/RNS digit adder, fo the pl segment (modulus 5) corrected sum.

5.4.8.2 Inputs

carry_in: Carry value from the neighbouring SDNR/RNS digit adder (2 bits).
cortected surn pl: Modulus 5 segment of the SDNR/RNS corrected sum (3 bits).

5.4.8.3 Outputs

sum_pl: Maodulus 5 segment of the SDONR/RNS digit finat sum (3 bits).

5484 Notes

For corrected sum pl, the binary combmations 101, 110, and 111 do not exist. Modulus §
does not allow these combinations. For carry in, the binary combination 11 does not exist,

5.4.8.5 Tyuth table

carry in |corrected s | sum pl (b2
um pl bl L0}
06 000 100
01 000 000
10 000 001
00 001 000
01 001 0ol
10 001 010
0o ola QoL
01 010 010
10 010 011
8¢} 011 010
01 011 011
10 011 100
00 100 011
o1 100 100
10 100 000

PAUL WITYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

5,4.8.6_Karnauch maps

a

b2 Pﬂ_\ 01 11 10
00 t_l) 0 0 o}
ol o X b
11 f i x X]
10) 8} 8] T
1

B2|00 01 i1 14
00 G o 1 Q
o1 - 8] X L
11 [x X ®
10 % X k_.i/ =
4]

bi|oo 01 11 140
00 ¢ 0 0 i 0 \
01 2 % X %)
11 0 ® 4 X
i0 0 0 1 1
1 -
] Bifo0 0 i1 1
a0 @ 1 i 1
01 0 X)
i1 X X (X ® Y
10 X x l X | Y
0

B[00 g1 11 10
0o 0 K 0 1
01 (il X X P
11 4] (S x\ ES
10 o i1 i 0
1

b|G0 [EX8 11 10
00 1] G [1
Jr [X e
11 X X x
10 b4 L 4 i/ _x_/

5.4.8.7 Logic equations

sum pl b2 =
céd
ta&b&e
t-~a&~b&c&~d&~e

sum_pl bi=

PauL Witys ENGINEERING PROIECT REPORT 16 JANUARY 1997

b&d
+~adebé&e
+tak~b&e
+a&b&-~e
te&~d&—

sum_pl_b0 =
add
+~a &b & ~d
t+~a&b&e
tco&~d&~e
t+t~ak~c&~d&e

5.4.9 addc mod p2

5.4,9.1 Purpose
The addec mod p2 component adds .the carry value, evaluated from tbe neighbouring
SDNR/RNS digit adder, to the p2 segment (modulus 7) corrected sum,
5.4.9.2 Inputs
carry in: Carry value from the neighbouring SDNR/RNS digit adder (2 bits).
corrected sum p2: Modistus 7 segment of the SDNR/RNS corrected sum (3 bits),
5.4.9.3 Outputs

sum p2; Modulus 7 segment of the SDINR/RNS digit final sum (3 bits).

5.4.9.4 Motes

For corrected_sum p2, the binary combinaiion 111 does not exist. Modulus 7 does not allow
this combination. For carry_in, the binary combination [1 does not exist.

PAUL WHY'IE ENGINEERING PROJECT REPORT 16 JANUARY 1997

106

5.4.9.5 Truth table

carry in corrected s sum_p2 (b2
um p2 bl b0}
on Qoo 110
0l Qo0 0noo
i0 0oo nol
418] 00l 0oo
01 00l 0ol
10 o001 010
00 010 0ol
01 010 010
i0 010 01l
0o 011 nin
01 011 011
10 D11 100
Qo - 100 011
01 100 100
10 100 101
oo 101 100
01 101 101
10 101 110
Go 110 inl
01 110 110
10 1140 ooo

54.9.¢ Karnpugh maps

0
b2i00 a1 11 10
¢o N 0 0 0
o1 Q {1 [=x 1
{ I [A
11 N 1
10 0 0 0 0
1
b2|00 01 11 10
00 0 i} 1) 0
0l 1 1 X 0
11 W . X]
10 b4 X b4 x
0
k1|00 0L 11 10
0o [1 } 0 3 0
521 1/ [i] X g
11 0 0 X 1
10 [1 1
0 S 2
i
b1i00 11 {]_D_\
0o 0 1 o 1]
01 0 1 % 0
13 x x (x x)
14 hd x JR = x)

PAaUL, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

147

O
) b0O|00 01 ii 10
nao &l 0 0 1
01 1] 8] b 1
T o=’ 1 X r
10 [} 1 1 0
N\ z

1

[T - o1 11 H_D___.
] 1 g o U1
0L 1 o] X 3]
1i X f 3 x \I X
10 X = x) ple

5.4,9.7 Logic equaiions

sum _p2 b2 =

adcc
+eo&d
ta&hb&e
+-b&cde
+b&c& e
+~ad~b&~c&~d&~e

sulm p2 bl =

bé&d
+ta&k~b&ke
+a&bdd e

+-~a & ~b& ~d & e
+~a&b&&~cé~d&e

sum _p2 b=

add
+-a&-b&e
+~a&~c&~d&e
+-aé&b&~d&~e
+~a&c&~d&~e

5.5 VLSI considerations

The digit adder logic gates were based on dynamic logic. The digit adder iiselt was based on a
four phase clock. By locking at Figure 37, it is easy to see that the digit adder could be broken up into
five stages. By implementing a five stage digit adder, two cycles of the clock were required to evaluate
a result. That is, the first four stages of the adder were executed in the first clock cycle, and the fifth
stage could be executed in the second machine cycie. Furthermore, because the digit adder was broken
up into stages, delay efements were required o maintain synchrony. Figure 38 shows the digit adder,
with appropriately placed deiay elements, spiit up into the five stages.

PAUL WIIYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

108

operandi_p1

operand1_p2

opetand2_p1

operand2_p2

detect detect add_ add_
sign sign : _ mod_p1 mod_p2 Stage 1
L
L
delay_ delay_ detect_ delay_ defay Stage 2
element element region element _ element
________________ I k- T I N
b l
generale_ delay_ detay
carry element | |etement Stage 3
........................ DY | [
IS 1 |]
delay correct_ correct_
element mod_p1i mod_p2 Stage 4
carry_out I carey_in
adde_ adde_ Stage 5
mod_pt mod_p2
1 = 1

Figure 38: VLSEI SDNR/RNS digit adder.

The basic delay element chosen for the SDNR/RNS digit adder, shown in Figure 38, was a D
(delay) Jaich. A D latch was chosen because of its simplicity in operation. Figure 39 shows the logic
diagram for a D latch.

data_input

control_input

W_L_J + data_output

1]

Figure 39: D latch,

5.0 Delay element design

5.6.1 delay_element

5.6.1.1 Purpose

The delay_element component holds the value of input data for the duration of the respective
- stage. A D-latch will be used for the delay_element. The D latch to be used is based on one described
in Hayes (1993).

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

109

5.6.2 Inputs

data_input (D). The next data value to be stored in the D latch,

control_input (C): This is the enable input signal. In eftect, this opens and closes the D latch feedback
loop to allow new data to be entered or retained.

5.0.3 Cuiputs

data output (Q {t] = D {t - t;}): Delayed output of the input signal dafa_input. t; denotes the

propagation delay within the I latch,

5.0.4 Notes

The three main parameters associated with a D latch are the setup time, hold time, and enable
time. These parameters should not bear any influence in the implemented digit adder, because the delay
of each stage, and hence the clock phase periods, are much greater than any of those three values.

5.6.5 Logic equatisns
y =

D&C+

y & ~C

(The output Q is expressed as @ =y').

5.0.6 Logic equation refinements

Hayes (1993) points out that a static hazard exists for the D latch in Figure 39, Suppose that
(D, C)=(1, 1), so that the latch is enabled and storing 1. The input combination applied to the OR gate
is (1, 0), making Q = 1. Now let the enable signal C change to 0. This causes the OR gate’s input to
become (0, 1). If, due to differences in signal propagation delays, the upper signal to the OR gate
changes ffom 1 to 0 before its lower input changes from 0 to 1, the OR gate briefly sees the mput
combination (0, 0), and may therefore produce a glitch in the form of a O-pulse on Q. In fact, this
spurious O-pulse can become trapped in the latch’s feedback loop, causing an incorrect transition to the
reset state Q = 0. A spurious O-pulse can also appear on) when C changes from 0 to { with D= 1, but
in this case Q returns to the correct state.

The static 1 hazard in this particular D latch is eliminated by adding an extra AND gate to the
latch to generate the third, redundant term Dy of y'. A D latch with this refinement is shown in Figure
40.

PAUL WRHYTE ENGINEERING PROJIECT REPORT 16 JANUARY 1997

110

data_input

i déta_output

control_input

[
plr=i

Tigure 40: Hazard free D laich,

Now when the above glitch-inducing input condition occurs {C changes from 1 to 0), the fact
that D and y are both 1 ensures that the output Dy of the new AND is 1. This { signal holds the cutput
of the OR gate at a steady 1 while its other two input lines change in response to the changes in C
(Hayes, 1993). Thus, a hazard free design, that dehberately includes a nonminimal AND-OR circuit, has
been attained. The new logic equation is as follows:

+

y =
D&C
+D &y
+y&~C

The D latch logic equation has to be changed into a form which makes CMOS implementation
easy. That is, for efficient implementation of the D latch, the corresponding fogic equation must be in
terms of NANDs and NORs. The transformation can be performed vsing Boolean algebra:

~yt+ = .
“D&C
+D &Y
+y & ~C)

~yt =
~(D & C)
& ~(D &)
& ~y & ~C)
yt=
~[~(D & C)
& D & v)
& ~(y & ~C)]

Thetefore, the D latch can be constructed using one not gate and four NAND gates.

5,7 Stick dingrams

Before the SDNR/RNS digit adder could be implemented in CMOS, stick diagrams of each
type of logic gate were created. In short, stick diagrams depict the layout of a logic gate. Pucknell and
Eshraghian (1994} explain stick diagrams in detail. For the adder, generalised stick diagrams were
created for the domino logic gates (Figure 41), and the delay elements (Figure 42).

PaUL WHYTE ENGINFERING PROJECT REPGRT 16 JANUARY 1997

111

CLKTRANSMISS!DN GATE

1C KTRANSMISS{ON GATE

l.ogic

CLK @ ~a b ~b ¢ ~c d ~d € ~& f ~f

Figure 41: General stick diagram for domine logic gates.

Tt of

B

v y D D G©

Figure 42: General stick diagram for delay_elements (I laiches).

At the start of this project, the sigh detector and the conventional to SDNR/RNS and
SDNR/RNS to conventicnal number system convesters, as well as the adder, were expected to be
implemented. However, due to time constraints, only the SDNR/RNS digit adder was implemented
using CMOS technology. Nevertheless, the designs of the sign detector and the converter systems have
been included in this project report to ilusirate the principles of operation of those particular logic
circusts.

5.8 Sign detector design

The sign of a SDNR/RNS number can be determined by evaluating the sign of the most
significant non-zero digit. From this statement, detecting the sign of a SDNR/RNS number sounds easy.
However, it isn’t quite that simple, Several logic components are required. In comparison, to detect the
sign of a conventional binary number, only the most significant bit in the word need be stored.

To determine the sign of a SDNR/RNS number, the sign of each digit must first be determined.
Then, a multiplexer, fed with the sign of each digit, must be used to select the sign of the most
significant non-zero digit. The output of the multiplexer gives the sign of the number,

PAUIL, WHYTE ENGINEERING PROJECT REPORT 16 JaNUARY 1997

112

The functionality of the SDNR/RNS sign detector can be increased by designing it so that i
can also detect zero, This would allow the sign detector circuit, with the inclusion of an array of digit
adders, to be used as a magnitude comparator. A schematic of the sign detector is shown in Figure 43,
and an illustration of a SDNR/RNS magnitude comparator, adapted from Kuczborski (1993), is shown

i Figure 44
SDNR/RNS integer
radix = 32
p1=5
pz=7
a=17
13 digits; 6 bits/digit
13 input multiplexer.
Each input = 2 bits.
Muttipexer '
select cireuit:
mux_sgelect
Integer sign
Legend

Symbol | Description

e | 2-Dit DUS
4-bit bus
6-bit bus

Figure 43: SDMNR/RNS sign detector.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

operandi Each operand
i represents i
operand2 SDNR/RNS word
Subfractor
Sign detectar
[max
. XOR
max{min — e
e

Figure 44: SDNR/RNS magnitude comparator.

Details of the SDNR/RNS sign detector components are presented in the following sections.

5.9 Bign detector component desion

5.9.1 detect sign

5.9.1.1_Purpose

The detect sign component determines the sign of the input SDNR/RNS digit. As well as

detecting sign, this component can detect zero.

5.92.1.2 Inputs

digit: The SDNR/RNS digit defined by <pl, p2> (6 bits).

59.1.3 Qutputs

sign digit: Sign of the SDNR/RNS digit (2 bits).

5.9.1.4 Notes

sign_digit bi identifies the unique representation of zero. The following algorithm is used to

determine sign_digit bl:

IF (the SDNR/RNS digit <pl, p2> is zero) THEN
sign_digit b1 =0

ELSE
sign_digit bl =1

ENDIF

PAUL WHYTE ENGINEERING PROJECT REPORT

16 JANUARY 1997

114

sign_digit b0 identifies the sign of the number. The following algorithm is used to determine
sign_digit bO: :

1F {SDNR/RNS digit <p1, pZ> is positive) THEN
sign digit b0 =0

ELSE
sign_digit b0 =1

ENDIF

The output bit sign_digit b0 is equivalent to the output of the detect_sign module in the digit
adder design.

59.1,5 Truth {able

pl P2 sign
digit {bi
»O}
gll 100 11
100 101 11
Qa0 110 11
a0l 000 11
010 001 il
ol 010 11
100 01 11
Q¢o 100 11
001 101 i1l
010 110 11
a1l 000 11
100 001 11
600 10 11
Q01 011 11
Qin jo0 11
011 101 11
100 110 11
ele]e] aoo oo
Q0L a0l 10
010 alo 19
011 011 10
100 100 10
Q00 101 10
Q01 110 10
0l1la Q00 10
011 o0l 10
100 010 10
000 0l 10
0ol 100 10
010 101 10
all 11¢ 10
100 000 10
Q00 a0l 16
a0l 010 10
010 oLl 10

PaAuL, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

115

5.9.1.0 Karnaugh maps

00
bl|0oo . ol 11 10
00 [0] 1 1 1
01 —1 i X 1
i1 1 1 1
10 1 1 1 1
D1
b1|00 01 11 10
Ga 1 i 1 i
01 i 1 X 1
11 1 1 X 1
10 1 1 1 1
il
LL{on 0L 11 10
00 x X X o
01 X hd b4 -4
i1 x X X ®
10 i ® X x__J
10
pifoo 01 11 10 :l
¢le} 1 1 1 1
01 1 i X 1
11 b4 X x x
16 X X % b4
0o
bdjoo 01 11
00 8] 0 o il
S I [
01 1] 0 ® 1]
11 0 [1 X 0
[¢] 1 9]
)
01l
©hO|00 01 11 10
oo ¢} m 6]
o1 [’ 1] [1
TL - 2 x))
10 L lJ 0 0 L 1
11
h{|0a 01 11 10
00 p:3 X 3 x X
01 X X { e xlr
?Ll L x I X b x)
I D) NG Y
10
b0 |00 01 11 10
00 8] 1 T [0
01 0 1 X 1
11 x X - X X
o 3 X X

PAUL WITYTE EMGINEERING PRCGIECT REPORT 16 JANUARY 1697

116

59.1.7 Logic equations

sign_digit bl =
~a&~b&~c&~d&~e&~T
=a+tb+ct+td+e+f

sign digit b0 =
~a& & ~d&~F
+g&-~b&~c&d&-e&~f
ta&kc&d& -~
+ta&kb&d& e &~
+ra&b&~d&~e &~
tra&-b&cke
tea&~c&d&e
+ta&-b&-c&~d&e
+ta&f
+h&c&f

5.9.2 mux select

59.2.1 Purpose

The mux_select component contains the selection logic for the multiplexer,

5.9.2.2 Inputs

not zero_digit: This is an array of 13 bits which determine the zero signature patiern of the
SDNR/RNS number. Each one bit element (di2, d11, ..., d0I, d00) in this array is equivalent to the
sign digit b1l output of the respective detect sign gate. The most significant bit in this array {(d12)

represents the zerc status of the most significant SONR/RNS digit. Likewise, the Jeast significant bit in |
this array (d00} represents the zero status of the least significant SDNR/RNS digit.

5.9.2.3 Dutputs

mux_select code: A code representing the sign digit bit pair to be selected to represent the zero and
sign status of the SDNR/RNS nmumber (4 bits).

5.9.2.4 DNotes

The following algorithm is used to determine the output of' the mux_select component:

CASEOF mux_select code

doq:

mux_select_code = 0000
dol: '

mux_select code = 0001
do2:

mux_select_code = 0010
d03: '

mux_select code = 0011

PAUL WHY'TE ENGINEERING PROJECT RUPORT 16 JANUARY 1997

17

d04:

dos:

do6:

d07:

d03;

d09:

d10:

dil:

diz:

ENDCASE

5.9.2.5 Truth table

mux_select code = 0100

mux_select code = 0101

mux_ select_code = 0110

mux_select_code = 0111

mux_select code = {000

mux_select_code = 1001

mux_select code=1010

mux_select_code = 1011

mux_select_code = 1100

d12

all

dio

dog

dos

do’7

die

dos

dod

403

doz

dol

dco

mux sele
ct_code
{3 b2
bl b)

SO 0 O 0 0O 0 0 O O O o O

=

oo OO0 0 0 0 O O OO0

O D O O S O C O O O O oM

D0 O o S 0O 0 0 0 O MoK oM

(=R B o I« B o I B o B s B ol O -

oI e T N w B o I o B o o e T T

O O O O O O O koMo oK oHMoM N

(=R R o B e R ol O TR

fa Yo B ol e . T R - A R -

[R T o B I O T T - -

[e e T T T - B - - A R

(= T T R R -

HA

[- - T

1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000
0000

5.9.2.6 Logic equations

mux_select code b3 =

di2

+~d12 & di1
+~d12 & ~d11 & d10

+~d12 & ~d11 & ~d10 & d09
+~d12 & ~d11 & ~d10 & ~d09 & d08

= d12 +~d12 & (d11 + ~d11 & (d10 + ~d10 & (d09 + ~d09 & d08Y))

mux_select code b2 =

d12
+~d12 & ~d11 & ~d10 & ~d09 & ~d08 & d07

+~d12 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & d06
+~di2 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & d05 _
+~di12 & ~d1t & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & ~d05 & d04

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

118

= d12 + ~d12 & (~d11 & (~d10 & (~d09 & (~d08 & (d07 -+ ~d08 & (~d07 & (d06 + ~d06 &
(d05+ ~d05 & Ao}

mux_select_code bl =
~d12 & d11
+~d12 & ~d11 & d10
+~d12 & ~d11 & ~d10 & ~d09 & ~d08 & d07
+~di2 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & d06
+~d12 & ~dl1 & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & ~d05 & ~d04 & d03
+~d12 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & ~d05 & ~d04 & ~d03 & d02

— d12 & (d11+ ~d11 & (d10 + ~d10 & (~d09 & (~d08 & (d0T + ~d07 & (06 + ~d06 &
(~d05 & (~d04 & (d03 + ~d03 & dO2)))))))

mux_select code b0 =
~d12 & d11
+~d12 & ~dl1 & ~d10 & d09
+~d12 & ~d11 & ~d10 & ~d09 & ~d08 & d07
+~312 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & d05
+~d12 & ~d11 & ~d10 & ~d0% & ~d08 & ~d07 & ~d06 & ~d05 & ~d04 & 403
+~d1i2 & ~d11 & ~d10 & ~d09 & ~d08 & ~d07 & ~d06 & ~d05 & ~d04 & ~d03 & ~d02 &
dol

wd]2 & (d1E+~d11 & (~d10 & (d09 + ~d09 & (~d08 & (dO7 + ~d07 & (~d06 & (d05 +
~d0S & (~d04 & (d03 + ~d03 & ~d02 & OV

510 Converter designs

There are. two number system conversion circuits required when dealing witb a
nonconventional number system. In this case, the nonconventional number system is the SDNR/RNS
data representation. The circuits required for conversion are as follows:

1. Conventional! to SDNR/RNS number system conversion.
2. SDNR/RNS to conventional member system conversion.

The following sections detail the logic design of parallel conversion systems. Note, however,
that the conversion circuit design was simplified by only allowing the conversion of unsigned
conventional integers into their nonconventional equivalent. The converters in this project report
demonstrate the principles of conversion, even though not allowing signed integer (for example, two’s
complement) conversion limits the apphication of such logic.

5,10.1 Conventional to SDNR/RNS number system conversion

The conventional to SDNR number system conversion algorithm presented in section 3.1.4.4-
Conventional number systems to SDNR conversion, bears a striking resemblance to the SDNR/RNS
digit adder algorithm in section 3.1.7.1-SDNR/RNS addition. The logic realisation of the conversion
algorithm is also similar, and is shown in Figure 45. The logic circuit, like the adder, converts number
on a digit by digit basis. An array of 13 converters would be required for the chosen radix 32
SDNR/RNS configuration. Scme of the logic components from the SDNR/RNS digit adder can be used
in the converter logic. These components are as tollows:

correct_mod pl.
correct_mod_p2.
addc_mod_pl. .,
adde_mod p2.

B g

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

119

segment)
cary canvert_ convert_
mod_p1 mod_p2
correcy correct
mod_pt mod_p2
carry_out carry_in

adde_ addc_
mod_p1 mod_p2

digit_p1 [

digit_p2

Figure 45: Conventional to SDINR/RNS number systein converter.

Details of the design for the carry, cenvert mod pl, and convert mod p2 components are
presented in the following sections. '

5.10.2 Component desizn
5.10.2.1 cavry

510.2.1.1 FPurpose

The carry component determines the carry_out value. The output of this component is based
upon the selected threshold value.

5,10.2.1.2 Inpuis

segment: A 5-bif segment of the unsigned conventional binary number. The SDNR/RNS confignration
is based on radix 32. Therefore, the conversion process can be completed by grouping the conventional
nurmber in clusters of (log2(32) =) 5 bits.

3.10.2.1,3 (utputs

carry_out: The carry value to pass onto the neighbouring digit converter (2 bits).

510.2.1.4 Notes

The following algorithm is used to determine the cutput of the carry component:

IF segitent <= t THEN
carry_out =01
ELSE
carry_out.= 00
ENDIF

PAUL WHYTE ENGINEGRING PROJECT REPORT 16 JANUARY 1997

120

where t = threshold value (refer to section 3.1.4.4-Conventional number systems to SDNR
conversion, for Information on the threshold value).

5.10,2.1.5 Truth table

segment carry out

{bl L0O)
00000 01
00001 01
00010 01
00011 o0l
00100 01
00101 031
00110 o1
00111 01
01000 © 01
01001 01
01010 0l
01011 ol
01100 o1
01101 01
01110 01
01111 ol
10000 01
10001 00
i0clo 0o
10011 00
o100 00
10101 00
10110 oo
10111 [120]
11000 oo
11001 00
11010 oo
11011 a0
11100 00
11101 00
11110 00
11111 00

5.10.2.1.6 Karnaugh maps

0

bi |00 01 11 10
a0 0 0 a 0
01 0 o] 0 0
11 0 4] 0 0
10 & 0]
1

b1joo 01 11 10
[e14] 0 0 0 [i]
01 0 0 0 0
11 0 0 0 0
i0 G 0 [0

PAUL WHYTE ENGINFERING PROJECT REPORT 16 JANUARY 1997

121

8}

BO[66 o1 JiL i)
G0 1 T 1 1
R fl i T
11 i 1 T f
10 Ll 3 1 1/
1

BOjpL ol it 10
00 i o 0 €
o1 g 6 D i
11) D 9 3
10 o 5 g)

5.10.2.1.7 Logic equations

carry out bt =
0

cary out b0 =
~8

+~alk~b&-c&~-d&e

5.10.2.2 convert mod pl

510.2.2.1 Purpose

The convert_mod_pl component converts a conventional binary 5-bit segment into the

equivalent p1 (modufus 5) medulus.

5,10.2.2.2 Inputs

segment: A segment of the unsigned conventional binary number (5 bits}.

5.10.2.2.3 Guiputs

unicorrected convert pl: The uncorrected modulus 5 element of the equivalent SDNR/RNS digit (3

bits).

5,10.2.2.4 Notes

The following equation is used to determine the output of the convert_mod_p1 component:

uncorrected convert pl = segmeni MOD 5

PAUL WHYTE

ENGINEERING PROJECT REPORT 16 JANUARY 1997

122

5.10,2.2.5 Truth table

uncorrecte

segment
d_convert_
pl (b2 bl
b0)
00000 0600
00001 0ol
00010 010
00011 011
00100 100
00101 006
00110 001
00111 016
01000 011
01001 100
01010 oo0o
01011 001
01100 010
01101 011
01110 100
01111 0600
10000 oclL
1000} 010
10010 011
10011 1c0
10100 ono
10101 001
10110 010
10111 011
11000 100
11001 Qoo
11010 001
11011 010
11100 011
11101 100
11110 000
113111 001

5.10.2.2.6 Karnaugh mans

0
b2]00 61 i1 ig
ag G K 0
EE) I A ==
11 g 0 0 u)
Eo e 0 0
1
LZ[00 a1 H— |10
go 0]l o
01 0 0 i i}
i1 — [1] 0 0
10 iy a 0 0
PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANTIARY 1997

0
G160 o1 I
00 i 0 T 1
o1 0 8 T §
11 1 1 D D
10 T y 0 G

o1 11 10

bi[oG oL
00 0 L 1} 0 1
a1 (_0ﬁ] 1 1
11 1] 0 PN 0
10 3] i [1)] L

b0

00 Pl LT ‘i 10
fils) ¢ 1 1) 0
01 0 0 0 t 1 ,
i1 0 (ﬂ g 0
10 | 1T T 1 {L_I

L0100 01 11 [LO r

00 ljr_..g.___,__a.\
1
_—

o

Ol o_ |l

11 1

10 0

oy Of [+

510.2,2.7 Logic egnations

uncorrected convert pl b2 =
~a& b&~c&d&e
ta&~b&c&-d&~e
+~a&b&c&d&-e
ta&~-b&~c&d&~e
ta&-~b&c&d&e
+ta&b&-c&~d&e

uncorrected convert pl bl =
~a&~b&c&d
+~a&~b&d&~e
+~a&b&~d&e
+~b&c&déb~e
+ta&kbé~d&-e
+h&~c&~d& e
+tbh&c&~d&e
ta&-b&-c&~d&e
+ta&kb&~c&d&e

uncorrected convert pi_b0 =
~a & c&~d&e
+~a&b&cke
ta&~c&~d&-e
+ta&b&~c&-¢"
+a&b&c&e

PAUL WHYTE ENGINEERING PROJECT REPORT

16 JANUARY 1997

124

+ta&kck~d&e
+t~a&~b&-c&d&~e
ta&b&cec&~d& e
ta&~b&kc&d&~e
+~ad&~b&kc&d&e

5,10.2.3 convert mod p2

510.2.3.1 Purpose

The convert mod_p2 component converts a convenfional binary 5-bit segment into the
equivalent p2 (modufus 7) modubus.

5.10.2.3.2 Inputs

segment: A segment of the unsigned conventional binary number (5 bits).

510.2.3.3 Outpuis

uncorrected convert p2: The uncorrected modulus 7 element of the equivalent SDNR/RNS digit (3
bits).

5,10.2.3.4 Notes

The following equation is used to determine the output of the convert mod p2 component:

uncorrected convert p2 = segment MOD 7

PaUL WHYTE ENGINEERING PROJECT REPORT] 16 JANUARY 1997

125

510.2.3.5 Truth table

segment uncorrecte
d convert
P2 (b2 bl
Q)
000086 000
00001 001
00610 010
o001 011
Do10G 100
00101 101
00110 110
00111 aonn
01006 001
01001 010
01010 011
01011 100
01100 101
01101 110
01110 000
01111 001
10000 010
10001 011
10010 100
10011 101
10100 110
10201 ooo
10110 anil
10111 010
11000 011
11001 100
11010 101
11011 110
11100 000
11101 0oLl
11110 010
11111 011

5.10.2.3.6 Karngugh mans

0
bZ[06 0l 11 10
43 0 — L
3 0 | —B-
01 1) 1 o (1 |
11 1 1] 0
10 0 0 l 1 J 0
1
B2]00 61 1 10 '?
G
f§ fi 8 [\ _1 i/
01 { 1J o 0 !
] 0 0 4}
11 0 [- 1) ij
ic 0]
T

PAUL WHIYTE ENGINEERING PROIECT REPORT 16 JANUARY 1997

126

0
~bifoo [or 4 E—
00 a o T T
01 0 0 o I3
1T 0 1 G
16 0 1 0 1
1

Bilod [ol i1 19
0o 1 T] 0 0
a1 1 [AT i
11 o o [l_1J 1)
10 1 o T o |
O .

b0 [00 01 (1L 1o
a0 o f1] o
01 R 0 0
11 / Q 0 [I 0__i
10 iy o =\ 1}
1
(_ Gifoo oL 11 10
G0 0 i 1) S
01 S Dj{ i
i1 E N L
10 1 0 i [1

5.10.2.3.7 Logic equations

uncorrected convert p2 b2 =
~b&c&~e
+tbh&~c& e
+~ad-~b&cec&~d
t+ta&kc&~d&~e
ta&b&~cé&d
ta&-c&d&e

uncorrected _convert p2 bl =
~a&b&~c&~e
+~a&b & ~d & ~e
+ta&~-b&d&~e
+tb&~c&~d&~e
+t~a&~b&-~cke
+~a&~b&~-d&e
t~b&~c&~d&e
+a&b&cde
+ta&b&d&e
+thé&c&dée

* uncorrecied_convert_pZ b0 =
~a&~cé&d
+a&~c&~d .
tea&~b&d&~e
ta&~-b&~d&~e

PATUL WHYTT; ENGINEERINC PROJECT REPORT

16 JANUARY 1997

127

+ta&b&ek&d
ta&kc&d&e
+ta&b&c&k~d&e

5.10.3 SDNR/RNS to conventienal number sysiem conversion

A 64-bit borrow lookahead subtracter is used to convert an SDNR/RNS number back to
conventional notation. It is a borrow lookahead subtracter because the conventional to SDNR/RNS
conversion performs unsigned conversion. Rajashekhara and Nale {1990) report that on-line conversion
from signed digit to radix compiemeni representation is possible by using converter hardware which
consists of borrow lookbaclc and decrementer units, Hayes (1993) describes the similarity between a
borrow adder and a carry adder.

Figure 46 shows the logic components required to converi back to unsighed conventional
notation. The detect sign logic gafe is the same as that used in the SDNR/RNS digit adder. Each
SDNR/RNS digit is converted to a conventional segment on a digit by digit basis. An array of 13 of
these digit converters would be required to change a SDNR/RNS number, based on the chosen
configuration, back into conventional notation. However, the algorithm required for conversion to the
conventional domain is not as modular as . that for conversion into the SDNR/RNS. The
borrow_lookahead subtracter component is required by all digit converters, and thus modularity suffers.

digit_pt#
digit_p2
detecf_ convert _
sign segment
borrow_out borrow_in
— 1T isegment —

borrow_lookahead
subtracter

conventional_number

Figure 46: SDNR/RNS to conventional number system converier.

Design of the convert segment and borrow lookahead subtracter components are detailed in
the following sections. The borrow_lookahead subtracter is based on a set of logic equations derived
by Hayes (1993).

5.10.4 Component design

5.10.4.1 convert segmeni

5.10.4.1.1 Purpose

The convert segment component converts the SDNR/RNS digit into an uncorrected
conventional binary 5-bit segment.

5.10.4,1.2 Inputs

digit_pl: Modulus 5 element of the SDNR/RNS digit to be converted (3 bits).

PAUL WHYTE ENGINEERING PROIGCT REPORT 16 JaNUARY 1997

128

digit_p2: Modulus 7 element of the SDNR/RNS digit to be converted (3 bits),

5.10.4.1.3 QOutputs

segment: Uncorrected conventional segment value (5 bits).

5.10.4,1.4 Truth table

digit pl |digit_pZ (segment W
(b4 D3 bz
bl b0)

a1 100 Gi11L
100 101 10060
200 110 10001
001 000 10010
010 " o001 10011 ’
011 010 10160
100 011 10101
000 100 10110
001 101 10111
010 110 11000
011 000 11001
100 001 11010
000 010 11011
001 011 11100
010 100 ~ 11101
0t 101 11110
100 110 11111
000 a00 40000
001 001 Q0001
010 010 00010
011 011 20011
100 100 00106
000 101 00101
001 110 00110
010 000 00111
011 001 01000
100 710 01001
000 011 01010
001 100 01011
010 101 01100
011 110 01101
100 000 01110
000 001 01111
001 010 10400
010 011 10601

PAUL WHYTE ENGINEERING PROJECT REPORT _ 16 JANUARY [997

129

510.4.1.5 Karpaugh mans

0o
[ra]ed 0L 11 Lo
Gl L1

] 0 0 |
a1 1 J 0 X L 1
3 0 [i [= L
‘ -
10 1 T T 1
01
Ha] G0 07 11 16]
00 0 1 1] [
1 lj 0 3 [1
Een T 1 b4 J —e—
10 1 j i 0 [1
11
bE[G0 01 N
00 F ®] ®
a1 X X
i I x
- — 7.
i0 x] | = % x|
10

p4100 01 11 10

a0 a1 FANY o7
01 0 LW x 1Tl
%)

11 X | x H
10 X J N Y L X
o

b3j00 01 11 10
8]y 0 1 {1 i }
01 0 o &
11 1 J_ G b4 Q
10 5] 0 1 o
01
T) of 1T i0
00 2] 4 o
01] 1 1

— =]

i1 T j) x 1}
io l_} 0 O
11

b3100 o1 11 10
0o [1 X] x If x 3
61 f = X = T
11 x J_ X_T % iy
X x xJ % X
10

b3100 01 11 19
o

R D 0 1
61 5| o x 1|
il (x} x I3 x |
10 — x B =

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

130

00

GQ 0 i ¢! g
o1 (1 17 X) a]
il Y
i1 ~——1 L =] 1]
10 Q 0 1 g
01
b2 o1 i1 10
00 i 0
01 1), b4 8]
11 1 1 [x || %
b,
10 4} 8] o T
11
bz|00 01 11 10
a0 x X X
01 r x x\ AN
)
11 N x) X X
i0 X x X X
\, A AN i
10
bzlao. 01 1i— 10
Qo I 0 1 o
01 1 3 ® 1
11 X X I X
W,
10 =, b4 b ®
oo
Ll{aa 01 11 10
£ rd Yy 3
00 o 1 L i 1
a1 L 1 o Q : 0 N
17 T4 T = }
i0 1 0]
01
bil00o 01 11 10
0o (1] 1] 7 [1
TI Ul 7 X [V
i E—
1i L 1 1 J x 0
10 8] Q 1 0
11
bli0o 03 11 10
7 N =
00 x J x| B3
01 X X x 1
11 f X X) 1 xw X
5 —- 1
10

L1100 01 11 i0

06 (1 1]
hﬁ 4 i]
L
LX XJ\ s
X p:s

Paur, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

£0

11

o] N BN

M[:j?

01

=19

10

00

a1

JPO

11

10

11

=TT

b0

01

00

0l

11

10

A [

10

bQ

oo
01

11

10

JihE

iR

X

510.4.1.6_Logic equations

segment b4 =
~adc&~d&-~f
+~a & ~c& d
+ta&kcdd
+tad&kb&d&-e

+t~a&b&-~ch~ed~f

ta&k~c&k-~d&e
+a&f
+h&eck&

segment b3 =
~a&~b&c&d

t+ta&~c&~d&~e&~T

+a&b&~e&-f

+b&~chk~d& ~e &~

tc&e
+-b&d&e
ta&b&f
+-b&-c&~d&T

segment b2 =
~b & ¢ & ~d & ~f

+a&~b&~d&-—e &~

ta&c&

takb&d&~e
tbh&c&d
ta&~b&~d&e

PAUL WHYTE

ENGINEERING PROJECT RBPORT

16 JANUARY 1997

+~b&c&ke
+~a&b&d&e
+a &b &f
ta&b&f
+b&c&f

seginent bl =
~a & ~b & ¢ & ~e & ~f
+~a&~b&d& ~e
+-b&ck&d
tc&d&-~e
ra&~c&~d&~e&~f
+b&~c& ~d & ~e & ~f
+~b&~c&~d&e
t~af~c&-~-d&e
+ta&b&d&e
+b&ckf
teb&~c&~d&~edf

segment b0 =
~b&ckd&-~e
+ta&~b&~e&~f
+~a&b&~d& e
+~a&~-b&e
+t-b&~c&~-d&e
+a&kbé&e
+th&c&dk&e
+bh&F

5,10.4.2 borrow lookahead subiracier

510.4.2,1 Purpose

The borrow_lookahead subtracter component subtracts all uncorrected segments and all
borrows 50 that the corrected unsigned conventional integer 15 obtained.

5.10.4.2.2 Tupuis

operand: All evaluated segments (64 bits).
operand2: Alfl evajuated botrows (64 bits).

5.10.4.2.3 QCutputs

conventional number: The unsigned conventional binary integer (64 bits).

5,10.4.2.4 Logic equations

Borrow adder equations:

di =%; @ bi @ bi-l
b; = ~xy t ~Xibpy + Yibid

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 19097

133

Borrow lockahead subtracter equations:

bi =g + pibi.y
8i = XY
Pi=-xtYyi

where d; = ith difference bit.
¥%; = ith operand! bit.,
y; = ith operand2 bit.
b; = ith borrow bit.
g; = ith bit generate function.
p; = ith bit propagate fonction.

PAUL WHY1E ENGINEERING PROTECT REPORT 16 JANUARY 1997

6. Testing

The testing stage involved verifying the logic of the SDNR/RNS number system converters,
digit adder, and sign detector. Functions written in C were used to represent each logic gate in the
respective system. For example, the detect_sign gate in the digit adder was coded as the detect sign
function in the C software simulation program. Section 10.I-Appendix A: Sefiware simulation system
lists the source code for the SDNR/RNS software simulation system, All functions were unit and
system tested to determine mistakes made during the design phase of the project. There are two main
programs in this sottware simulation system. The first one fests the SDNR/RNS number system
converters and the digit adder, while the second one simulates the logic for the sign detector.

6.1 The SONR/RNS number system converters and the digit adder

6.1.1 Unit testing

Unit testing involved creating an algorithm which tested every single logic state of the number
system conversion and the digit adder functions. This was done by writing all input truth tables to file,
and then reading them into the appropriate function. The outputs from the functions were analysed
against the expected truth table outputs,. and errors were investigated and fixed, The unit testing
algorithm could be described as foliows:

I Open the fimetion’s tryth table file.

2, 1.0OP while not end of file

a) From file, read in next truth table entry.

b) Execute function, with truth table entry as input, and a resuft as output.
c) Display function result.

ENDLOGP

4, Close the file.

["P)

This process was tepeated until all software simulation functions gave the correct truth table
outputs.

6.1.2 System testing

The number system conversion and digit adder functions were tested at the system level by
implementing the algorithms discussed in sections 3.1.4.4-Conventional number systems to SDNR
conversion, 3.1.4.5-SDNR to conventional number systems conversion, and 3.1.7.1-SDNR/RNS
addition, The system level test program can be described by the following high level algorithm:

[. Prompt user for two conventional radix 32 operands (each digit can take on the value 0 to
31)

2. Convert conventional radix 32 operands to radix 32 SDNR/RNS representation.

3. Add the two operands using an array of 13 digit adders (remember 13 digit adders to satisfy
the range for adding two 64-bit integers).

4, Convert the radix 32 SDNR/RNS sum to conventional radix 32 representation,

5. Display the conventional radix 32 sum.

There were two kinds of system fevel tests, and they were single digit additions, and multiple
~ digit additions.

PAUL WHYTL ENGINEFRING PROJECT REPORT 16 JANUARY 1997

135

6.1.2.1 Single digit additions

The single digit addition test plan was devised to verify the addition of various radix 32
conventional numbers. The test plan is shown in Table 22. Note that the test plan lists the SDNR/RNS
digits in terms of SDNR representation. This allowed for easy visual verification of additions. Some
entries in Table 22 tested the carry output logic of the digit adder.

Table 22: Single digit addition test plan.

i operandl operand2 carry in sum Comment
22 15 0 (1) (5) | Tested local carry propagation.)
Carry from least to the next significant digit
adder = 1.
4 11 0 (15) '
12 17 0 29)
10 6 0 (16)
7 10 0 a7
26 22 0 (1) (16) | Tested local carry propagation.
, Carry from least to the next significant digit
adder = 1.
22 25 0 (1) (15) | Tested tocal carry propagation.
Carry from least to the next significant digit
adder = I
15 15 0 {30)
17 17 0 (1) (2) | Tested local carry propagation.
Carry from least to the next significant digit
adder =1,

6.1.2.2 Multiple digit additions

The multiple digit addition test plan was devised to verity the addition of various radix 32
conventional numbers, which had word lengths greater than cne digit. The test plan is shown in Table
23. This test plan focused on making sure that each digit adder could add the operand digits as well as
handle carry in values and produce carry out values correctly,

Table 23: Multiple digit addition test plan.

——

operandi operand2 sum Comment
MSD ... LSD) {MSD ... LSD))
(3) (20) {(2) (27) {6) (15) | Tested local carry propagation.
Carry from least to the next significant
digit adder = 1.
(H{an (9) (16) {(14) (1} | Tested local carry propagation.
Carry from least to the next signiticant
digit adder =1,
() (13) (30) (10) (13 (7) (23} | Tested local carry propagation,
Carry from least to the next significant
digit adder = 1.
Carry from the second least to third
: least significant digit adder = 1.
G)Y(18) (A (G0) | ()N GDGL) | (7)(28)(4) (30) | Tested addition of two 13 digit
GO AH MO | (17 (6)(29) 24) (16) (20) (30) | operands.
@) (M9 2] DO (3)] 25 (15) (7)(20)
(3) (11) (2) (14)

PaUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

136

6.2 The SDNR/RNS pumber svstem converters and the sisn detector

6,2.1 Unit testing

Unit testing in this case involved creating an algerithm which tested every single logic state of
the sign defector functions. The algorithm used for unit testing was the same one listed 1 section 6.1.1-
Unit testing,

6.2.2 System festing

System level testingﬂ involved implementing the sign detector algorithm implied by Figure 43.
The algorithm can be described as follows:

Prompt user for a conventional radix 32 operand (each digit can take on the value 0 to 31).
Convert conventional radix 32 operand to radix 32 SDNR/RNS representation.

Detect sign of all 13 digits. Each digit is evaluated as either negative, positive, or zero.
Select the MSD.

Digplay the sign of the MSD.

SRl A

The sign detector test plan is listed in Table 24. The aim of the plan was to test every output of
the multiplexer selection logic. That is, every one of the 13 digit positions in the SDNR/RNS word
were set as the MSD, to see whether the sign of the operand could be determined.

Table 24: Sign detector test plan.

operand sign
(0) 00
(28) 10
(15) (1) 10
{28) (20) (27) 10
(4) (22) (30} (26) 10

$)(®) () (13)(16) | 10

(23) (25) (30) (3) (19) (22) 10

(22) (19) (14) (12) (17) (23) (30) 10

(20) (24) (29) (1) (17) (20} (10} (9) 10

(10) (19) (26) (3) (8) (18) (16) (26) (10) | 10

(1) 31) (20) 24) (15) 15) @) (H (13) @1y | 10

(12) (31) (28) (23) (6) (15) (22) 19 29 () 2 | 10

(2) 27) (27 (13) (18) (24) (15) (4) (14) (0) @22} (12) | 10
(13) (16) (5) (24) (18) (8) (10) (22) 14) 1N 1) 3) 9) |10

PAUL WHYTRE ENGINEERING PROJECT REPORT 16 JANUARY 1997

138

detect_sign component, require up fo six transistors in series. In general, it was found that the more
transistors in series, the greater the delay. Table 25 shows the sizing of the transisiors used for the
different number of the devices in series.

Table 25: Transistor sizings and prnpagatioh delays.

Number of transistors in | Width/length transistor Delay (ns)]

series ratio
1 32 -
2 3/2 7.4
3 3/2 13.0
4 6/2 10.0
5 6/2 13.9
6 6/2 182

The clocking frequency chosen for the digit adder was 10MHz, operating in a four phase cycle.
The digit adder implemented used types 1, 2, 3, and 4 logic gates (Figure 14). The chosen clock
frequency allowed for a 25ns delay for each of the five stages in the adder. Two clock cycles were
required to obtain a sum from the input operands. However, as the first set of operands are being
processed in the fifth stage of the adder, a second set of operands could be passed through the first four
stages, all in the one clock cycle. This allows for a degree of pipelinability.

Improvements could be made upon this scheme. The main problem is the issue of clock cycle
utilisation. The required second cycle is, in effect, wasted, because it is only needed for the evaluation
of the fifth stage in the digit adder. Only 25% of the second cycle is required to compute the last stage.
Solutions to this problem would be to reduce the number of stages in the digit adder to four, er employ
a different clocking scheme. By maintaining the four phase clocking stratesy and reducing the number
stages in the digit adder to four, the sum of the operands could be caleulated in one cycle. For this kind
of solution, the disjoint form of the digit adder could be investigated, as it has a structure (Figure 17)
which is easily dissected into four stages.

The second solstion, which involves changing the clocking strategy used, could result in
improving performance by 100%. By using a two phase logic scheme, the clock frequency could be
increased to 20MHz. For the case of the nondisjoint digit adder, three clock cycles would be required to
evaluate a summation. The final cycle would be required to execute the fifth stage. This would result in
a cycle utilisation of 50% for the third cycle. This is a better figure than the second cycle utilisation for
the case of the four phase clocking scheme. A disjoint digit adder may prove to be a better solution in
this situation, as only two clock cycles would be required to evaluate the sum of the operands.
However, an analysis of a new SDNR/RNS configuration would be needed, as the disjoint digit adder
can not handle nondisjoint digit sets.

To test the carry communication logic of the digit adder, two digit adders were connected
together. This setup is shown in Figure 48. A simulation plan for the pair is presented in section 8-
Simulations,

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

140

8. Simulations

The simulation stage involved simulating the implemented radix 32 SDNR/RNS digit adder. A
switch level simulator called Irsim (version 8.6) was used for this stage. There were two sets of
simulations carried out. The first tested a stand alone digit adder, while the second made sure that carry
information was transferred between digit adders successfully. Setup and simulation scripts were
written for Irsim, so that both sets of simulations could be carried out in an efficient manner. The setup
scripts set up all variables associated with the digit adders, and the simulation scripts ran through the
respective test plans. The digit adder setup scripts are fisted in section 10.2.1-Initialisation files, and the
simulation scripts are presented in 10.2.2-Simufation files,

8.1 Single digit additions

The test plan for single digit additions, using the adder depicted in Figure 47, is listed in Table
26. All data in the table are in terms of SDNR representation. The test plan was devised in such a way
that all carry in and carry out possibilities are covered. In addition, the threshold condition (1) is
verified.

Table 26: Single digit addition fest pian.

operand | operand2 CALtY In sum caity out
6 i 1 1
4 8 1 3 0
9 1o | 14 1
19 17 0 > 1
4 11 0 15 0
iz 17 0 5 i
3

8 15 ! 10 I
5 0] G 0
7 14 1 10 1
10 0 te 0
7 10 G 15 1
6 10 ! 16 0
i0 7 o ' I
17 17 0 2 I
17 17 0 2 1

Figure 49 shows the lrsim output for the test plan presented in Table 26. The first operand is
represented by operand! pl and operandi p2, and the second operand is identified by operand2 pl and
operand2 p2. The output variables are named sum pl and sum_p2.

PAUL WHY1IH ENGINEERING PROJECT REPORT 16 JANUARY 1967

142

8.2 Muitinle digit additions

The muliiple digit addition test plan was created to monitor the bebaviour of two digit adders

.7

connected together {Figure 48). The test plan is shown in Table 27.

Table 27: Multiple digit addition test plan.

operand] operand2 sum Comment
(MSD ... 1L8SD) (MSDy ... LSD}

1 {43 (15) | Tested local carry propagation,
@ az) @) Carry from least to the next significant
digit adder =-1.
(4) (B) {(9) (106) {13) (1) | Tested local carry propagation.

. Carry from least to the next significant

‘ digit adder = 0.
(N (13) 5 oy | Tested local carry propagation.
(2)310) @) Carry from least to the next significant
digit adder = 1.

The Irsim output for the test plan presented in Table 27 is shown in Figure S0. The first
operand is described by word0 d0 pl and word0 d0 p2 for the LSD, and wordl0 di pl and
word0 d! p2 for the MSD. Likewise, the second operand is represented by wordl dC pl and
word! d0 p2 for the LSD, and word]_dl p! and wordl dl_p2 for the MSD, The final sum is
assigned the variables d0_sum_pl and d0_sum_p2 for the LSD, and dI_sum _pl and di_sum p2 for the
MSD.

PauL WIIYTE EMGINEERING PROJECT REPORT 16 JANUARY 1997

144

9. Conclusions

As stated in the introduction, the aim of this project was to design and simulate a high-radix

arithmetic systemn based on SDNR/RNS data representation. The main ohjectives relating to this aim
were:

1. Tnvesiigating the advantages and disadvantages of high-radix SDNR/RNS arithmetic over
other conventicnal and non-conveiiional schemes.

2. Determining the feasibility of implementing the SDNR/RNS arithunetic system in CMOS
VLSI technology.

The main advantages of the SDNR/RNS data representation over other number systems are
restricted carry propagation which allows for parallel addition and subtraction, and decomposition of
complex logic networks (that is, digit sets with large a values) into modular blocks which are smaller,
faster, and more manageable. However, the SDNR/RNS number system can only be applied to certain
applications where additions, sign detection; and magnitude comparisons are important. For example, it

was shown that the SDNR/RNS number system can not perform multiplication very efficiently. Thus, -
applications where multiplications are executed frequently are not very well suited to SDNR/RNS.

arithmetic.

In terms of VLSI feasibility, the SDNR/RNS number system shows promise. The implemented
digit adder exhibited simplicity and regularity, and local communication. However, to achieve higher™
computation intensiveness, the SDNR/RNS addition process requires 4 balancing of internal processing -

and 1/0 bandwidth.

The SDNR/RNS addition algorithm could be classified as a VLSI array algorithm. By aature,
the addition algorithm was parallel and pipelinable. Both of these properties are indications of a good
VLSI array algorithm. To further improve upon adder performance and complexity, guidelines relating
to the radix, digit set, and moduli, were presented in section 4, 1-SDNR/RNS configuration analysis.

9.1 Project contribution

The original contributions of this project are as follows:

1. An analysis of SDNR/RNS parameters relating to radix, digit sef, and moduli.
Recommendations from various sources, regarding the SDNR/RNS paramefers, were
presented in a cohesive form.

2. Ananalysis of SDNR/RNS addition. A template was presented {or verifying the design of a
SDNR/RNS digit adder using the set theory of arithimetic decomposition.

3. An analysis of SDNR/RNS multiplication. It was found that SDNR/RNS multiplication
was not practical.

4. An analysis of the suitability of a SDNR/RNS digit adder to VLSI technology. Tt was

found that the characteristics of the digit adder met each of Kung’s (1988} criteria.

Design of a SODNR/RNS digit adder, sign detection, and conversion circuits.

Implementation of the SDNR/RNS digit adder using VLSI technology.

7. Simulation of the SDNR/RNS digit adder. Cnce the simulations on the digit adder were
complete, areas of deficiency were identified. Recommendations concerned with improving
the performance of the digit adder were presented,

AN

9.2 Recommendations and future research

Several issues relating to this project require further investigation. First, the performance of
the implemented SDNR/RNS nondisjoint digit adder could be improved by changing the clocking
strategy. It would be interesting to implement the equivalent disjoint digit adder (with the same radix
and moduli set) in CMOS, and compare performance between it and the nondisjoint digit adder. An

PAUL WIHYTE ENGINEERING PROJECT REPORT 16 JaNUARY 1997

145

extension of this theme would be to implement an equivalent SDNR digit adder (with the same radix and
digit set), and then compare the performance against it’s SDNR/RNS counterpart.

Second, the SDNR/RNS sign detector, magnitude comparator, and number system conversion
circuits could be implemented in CMOS. This would aliow for an analysis of the performance of these
circuits. ‘ :

Finally, the digit adder, and the other SDNR/RNS circuits, could be implemented in GaAs
technology. This would allow for high performance raiios. In addition, the area of asynchronous logic
could be explored in an attempt to eliminate the need for a clock. Asynchronous logic, or self-timed
systems, do not suffer fron: the adverse affects of clock related problems, such as clock skew.

PAUL WIIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

146

10. Appendices

10.1 Appendix A: Software simulation system

/7\'**********‘k****k*****************'k*:F:**'k'k*'k***'k****'k*********************‘kk*

Filename
Program name
Author

Student number
Date

Compiler

Description

The set of files that are included in this software simulation system

sys r3Z.h.)

SDNR/RNS adder (radix 32; moduli set 5, 7).
Paul Whyte

0930227

15/05/96

Microszoft Visual C++,

emulate a SDNR/RNS arithmetic system. Specifically, this system

emulates:

|

A SDNR/PNS adder.
A SDNR/RNS sign detector.

- A conventicnal unsigned binary to SDNR/RNS representation

converter,

converter.

The system is optimised for manipulating unsigned 64-bit integers.

A SDNR/RNS representation to conventional unsigned binary

configuration for the system is as follows:

radix

pl

pZ
dynamic_range
a

nuber digits
number bits

digit_set case =

= 32
=5
=7

I
=
1

The files required by this software simulaticn system are as follows:

Header files:
add_r3Z.h
con ¢ter.h
con gen.h
con rtec.h
ds_r32.h
init_var.h
3ys r3Z.h
user_ioc.h

Code files:
add_r3z.c

con_ctor.c
con_gen.c
con rkoc.c

ds r3z.c
init var.c

sysa_r3zZ.c
sysd r32.c

user jo.c

Notes:

Header file for add r32.c.

Header file for con_ctor.c.

Header file for con gen.c.

Header file for con_rtoc.c.

Header file fer ds r32.c.

Header file for init var.c.

{This file}. This file contains all constants and
data structure definitions required by the
software simulation system.

Header file for user lo.c.

This file contains the functions required by the
SDNR/EN3 adder.

This file contains the functions needed to convert
from conventional unsigned binary te SDNR/RNS
(redundant) representaticn.

This file contains the functions needed to convert
from unsigned radix 32 te unsigned binary, and wvice
versa.

This file contains the functions needed to convert
from SDNR/RNS (redundant) representation teo
conventional unsigned binary.

This file contains the functions reguired by the
SDNR/RNS sign detector.

This file contains functions which initialise scme
of the data structures.

This file is the SDNR/RNEZ adder program file.

This file is the SDNR/BRNS sign detector program
file.

This file contains the functions needed for user
imput and output, from and to the screen.

The

PAUL WHYTE

ENGINEGTRING PROJECT REPORT 16 JANUARY 1997

147

- The characters 'dec' are used throughout this system in reference
to a radix 32 digit. :

*‘}:‘ki’**k*****1\'***'******i‘*i‘*********:‘r***ﬂr**:\"k:i:'k'i‘:'.'*:\':\".\'**'k1"1{**'k**********:\'****ki/

#include <stdio.h>

/***"r*****‘k******1‘:*‘k*****i‘*********‘}:******‘k**************************ﬁ******

Type definitions.

#ifndef SYS_R32 DECLARATIONS j
#define SYS R32 DECLARATIONS i

#define FALSE a |
#define TRUR 1 ' |
#define XDIGIT LENGTH ie

#define DIGIT LENGTH XDIGIT LENGTH - 2

#define END_OF NUMEER 99

typedef struct
{

unsigned b2 1;
unsigned bl 1
unsigrned b 1;

! rns_digit type;

typedef struct

{
rns_digit_type pl;
rns digit type pZ:

] sdnr_rns_digit_type;

typedef struct
{
unsigned bl
unsigned k0

1;
1;

} two_bit word type:

typedefl struct
{

unsigned b2 1:
unsigned b2 1
unsigned bi 1;
unsigned ba 1

} four bit word type;

typedef struct
{

unsigned b4 1;
unsigned b3 1:
unsigned b2 1;
unsigned bl 1;
unsigned b0 1;

} five_bit word type;

typedef struct

{
unsigned bl2
unsigned bill
unsigned blo
unsigned b9
unsigned b8
unsigned b7
unsigned b6
unsigned b5
unsigned b4
unsigned b3
unsigned b2
unsigned bl
unzigned ho

e ma

PR

o R e e b e

1;

} thirteen_ bit word type;

typedef unsigned operand conv type EXDIGIT_%ENGTH];
typedef unsigned thirteen bit word array_type [XDIGIT LENGTH];

#endif

PaulL, WHYTE ENGINEERING PROJECT REPORT 16 JaNUARY 1997

148

/**hi:*****-k*J:ir********'k**k**********:0(*4:****t**'***************i-***********

Filename: add r3Z2.h.

Refer to sys r32.h for documentation.

************************t*‘k***'k'k**'k)\'i'—‘«"k‘-\’*k******'k************************'ﬂ:***/

#include <stdioc.h>
finclude "sys r32.h"

void add mod pl (rns_digit type operandl_mod pl, rns_digit type operand2 mod_pl,
rns_digit type *intermediate_sum);

void add mod p? (rns_digit type operandl mod p2, rns_digit_type operand2 mod p2,
rns_digit type *intermediate sum);

void addc_wmod_pl (two_bit word type prev carry, rns_digit_type
corrected intermediate sum, rns digit type *final sum);

void adde_med_p2 (two_bit_word type prev carry, rns_digit. type
corrected_intermediate sum, rns_digit type *final_sum);

void correct mod pl {(two_bit word type carry, rns digit type intermediate sum,
rng_digit type *corrected intermediate sum);

void correct mod p2 (twec bit word type carry, rns digit type intermediate_sum,
rns_digit type *corrected_intermediate_ sum);

void detect sign (sdnr rns digit type operand, unsigned *operand sign};
veid detect region {zdnr_rns_digit_type intermediate sum, two_bit word type *region);

void generate carry {(unsigned operandl sign, unsigned operand?2 sign, two bit word type
region, two bit word type *carry);

vold add sdnr rns digit {sdnr_rns digit type operandl sdnr_ rns,
sdnr_rns digit_type operandZ sdnr_rns,
sdﬁf_rns_digit_type *sum_sdny rns,
two _bit wopd Lype *carry out};

PAUL WITYTE ENGINEERING PROJECT REPORT 16 JANTIARY 1997

149

/‘k'k********-k****-):*********i{****:‘:*":**1\"A'**‘J;'k***i‘*'k'):*******:***":*'}:***********1—**

Filename: add r3Z.c.

Refer to sys r32.h for documentation.

finciude “"add_r32.h"

vold add mod pl {(rns_digit type operandl mod pl, rns_digit Lype operandZ_mod pl,
rns_digit type *intermediate_ sum)

{
unﬁigned &y
b,
Cy
df
e-’
t;

= coperandl mod pl.b0;
= operandl mod pl.bl;
= operandl mod pl.b2;
= operand? mod pl.b0;
= operand? mod pl.bl;
= operand2_mod_pl.b2;
intermediate sum->b2 =
¢ & ~d & ~a & ~f
| 2 &b & d & ~e
|l aé&~bsedee
| ~a & b & ~d & ¢
{ ~a & ~b & ~c & £;
intermediate sum->hi =
a & ~b & d & ~e
f b & ~d & ~e & ~f
i ~a & b & ~e & ~F
I ~b & ~c & ~d & e
| ~a & ~b & d & e
¢ & f
i
i

O 0D oo

a & b & L7 .
ntermediabe sumn->h0
~a & ~C & d & ~a

i ag~de& ~e & ~F

| ~a & ~b & ~c & d & e
i c& ~d g e

l a & ~b & ~d &« =&

|

|

|

Ii

a &b &dee
c & f
~8 & b & T;

}

void add meod p2 (rns_digit _type operandl mod p2,

ms_digit_type *intermediate sum)

({
unsigned a,
o,
Cl
di‘
e!
f;
= operandl mod p2.bos
= operandl mod p2.hl;
operandl mod p2.b2;
= operand2_mod p2.b0;
= operand? mod p2?.bi;
= operand? mod p2.b2;
intermediate sum-»>h2 =
~b & ¢ & ~& & ~T
c & ~d & ~e & ~f
a &bedes~f
~a & ~b & ¢ & ~d & ~f
a & ~h &~ &d¢e
b & ~c&e & ~f

OOe e O
[l

;
{
|
i
f
|
| c
| b &c
|
|
|
i

~a & ~b & ~c & ~d & f
a & ke & f
& e & L
~a & b &c&d&f
~b & ~¢c & ~e & f
~a & ~¢ & ~d &.~e & f£;
ntermediate sum—>bhl =

rns_digit_type operand2 med_p2,

PauL WHYTE

ENGINYERING PROJECT REPORT

16 JANUARY 1997

150

~a & b & ~d & ~e & f;
ntermediate sum->b0 =
~a & ~¢ & d & ~f

: a &b & ~c & ~& & ~F
| ~a & ~b & ~d & e

j ~a & ~b & ~Cc & e

b ~b & ~c & ~d & & & ~F
| a &b & 4 & e

b &cegdae

| ~a & ~b § e & £

| ~b & c & d & T

| a & ~k & d & £

| a&abiesgf

l a & c & ~e &

|

1

~b & ¢ & d & e

|
|
|
{
|
} ~a & ¢ & ~d & T
|
|
|
|
|

a & b & ~¢ & ~d & ~e & f
a &c&dasf
a &b &def
~a & b g€ e & £
}
void addc med pl (two bit word type prev carry, rns digit type

corrected_intermediate sum, rns digit type *final sum)

¢
1

unsigned a,

Cy

d = prev_carry.bl;
& = prev carry.bl;
a = corrected intermediate sum.bQ;
, b = corrected_intermediate_sum.bl:
c = corrected intermediate sum.b2;
final sum->h? = -
~a & ~b & ~c & ~d & ~a
Il c & d
| a & b & e;
final sum—>bl =
c & ~d & ~e
& b & ~e

i
t
!
|
final sum->b0 =
c & ~d & ~e
| a & d
{ ~a & b & ~d
{ ~a & ~c § ~d & e
f ~a &b & e;
}

void adde_mod p2 (two_bil word type prev carry, rns digit type
corrected intermediate sum, rns digit type *final sum)

{
unsigned a,
bﬂ
c,
dl
ey

d = prev_carry.bd;

e = prev_carry.bl;

a = corrected intermediate sum.bO0;
b = corrvected intermediate sum.bl;
¢ = corrected intermediate sum.bZ;
final sum->h2 =

~a & ~b & ~c & ~d & ~e

c & d

PAUL WHY'TE ENGINEERING PROJECT REPORT 16 JANUARY 1997

151

il a &b s e;
final sum->bl =

~a & ~b & ~d & ~=
i a &b & ~e
I b & d
{ a &~k & e
I ~a & b & ~¢c & ~d & e;
final sum->b0 =
~a & © & ~d & ~e
a & d
~a & b & ~d & ~e

~a & ~c & ~d & e
~a & ~b & e;

!
!
!
i

1

void correct mod pl {two bit word type carry,
rns_digit type *corrected intermediate sum)

{
unsigned a,
b}
c}
d.’

=

= carry.hil;

= carry.bl;

= intermediate sum.bG;

= intermediate_sum.bl;

= intermediate sum.b2;

corrected 1nLermed1ate sum-—>h2
c & d

| ~a & b & ~d & ~e

| a & ~b & a;

corrected intermediate sum->bl
~h & -0 & ~d & ~e

| b ea

| ~a & ~b & e;

corrected intermediate sum->h0

OTe Do
i

}

vold correct mod p?2

il

(two_bit word type carry,

rns digit type *corrected intermediate sum)

{

unzgigned a,

= Carrvy.pd;

= carry.bl;

= intermediate_sum.b0;

= intermediate sum.bi;

= intermediate sum.b2;
corrected intermediate sum->b2
~b & ~o & ~d & ~e

~a & ~¢ & ~d & ~e

0Tm oMo
|

|

| ¢ & 4d

jag~c &~dge

| b & ~c& ~d & e

[a &b & e;

corrected intermediate sum—>bl
a&c & ~dé& ~e
b & d & ~e
~a & b & ~e

!

i

| ~a & ~b & ~¢ & ~d & e
|l a &b & e

| b &c & e;

corrected intermediate sum->b0
~a & ¢ & ~d & ~e

I a &~k & ~¢ & ~&

| a & d

l'bec & ~de ~e

| ~a & ~¢c & ~d & e

ba & ¢ & e;

rns_digit type intermediate sum,

rns_digit type intermediate sum,

PATIL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

void detect_sign (sdnr_rns_digit_type operand, unsigned *operand sign)

{
unsigned a,
bf
cf
d,
ei
£;

d = operand.pl.kbO0;
e = operand.pl.bl;
f = operand.pl.bZ:
a = operand.p2.b0;
b = operand.p2.bl;
¢ = operand.p2.bZ;
*operand sign =
~a & ¢ & ~d & ~f
a & ~b & ~c & ¢ & ~& & ~T

a & o &dsg ~f
a &b &dsg~e & ~f
~a & b & ~d & ~a & ~T

& €
~a & ~Cc & d & e
a & ~b & ~c & ~d & e
a & f
b & c & L;

}

void detect region (sdnr rns digit type intermediate_sum, two_bit_word _type *regionj

{
unsigned a,
b,
CJ
a,
e,
f;

d = intermediate sum.pl.bd;
= intermediate_sum.pl.bl;
= intermediate sum.pl.b2;
= intermediate_ sum.pZ.b0;
= intermediate sum.p2.bi;
= intermediate sum.p2.p2;
region->hil =

~a & ~b & ~c & d

~a & ¢ & ~d & ~F

(S o

a & ¢ & d

a &b sgdsg~e

~a & b & ~d & ~& & ~T
a & ~b & ~c & ~3 & e

a & T
b & cse £;
egion—>b0 =
~a & ~bh & ¢c &§d & e
i a & b & ~d & e;

|
|
|
i
|
| ~a & ~c & d § e
|
|
r

J

void generate carry (unsigned operandl sign, unsigned operand2_sign, two_bit word_type
region, two bit word type *carry)

{
unsigned a,
b,
C!
a;

= operandi_ sign;
= operandl sign;
region.hd;
= region.pl:

(e o Nl
[l

carry->bl ~c & ~d & a

o I

| ~¢ & ~d b;

carry—>h0 ~d & ~a & ~b
[~¢c & d & ~&

I o & by

PAUL WHYTE ENGINEERING PRO}CT REPORT 16 JANUARY 1997

void add sdnr_rns digit (sdnr_rns digit type operandl sdnr rns,
sdnr yns diglt type operand? sdnr rns,
two_bit word type carry in,
sdnr rns digit type *sum sdnr rns,
two_Hit word type *calry out)

unsigned operandl sign,
operand? sign;

sdnr rns digit type uncorrected sdny rns,
corrected sdnr_rns;

two_bit word type regions

detect =zign (operandl sdnr_rns, &operandl sign}s
detect sign {operand?_ sdnr rns, &operand2 sign);

add _med pl (operandl sdnr rns.pl, operandZ sdnr_rns.pl, &{uncorrected sdnr rns.plj):
add med p2 (cperandl sdnr rns.p2, operandZ sdnr_rns.p2, &{uncorrected sdnr rns.p2));

detectﬂreglon {uncorrected_sdnr_rns, ®ion) ;
generate carry (operandl sign, operand? sign, region, carry_out);

correct mod pl {*carry_out, uncorracted sdnr rns.pl, &(corrected sdnr rns.pl));
correct mod p2 (Ycarry out, uncorrectedﬁsdnr_rns.pZ, &{corrected sdnr rns.p2));

adde mod pl {carry in, cerrected sdnr_rns.pl, &(sum*sdnr_rns—>plf);
adde_mod pZ (carry_in, corrected_sdnr rns.p2, &{sum_sdnr rns->pZ));

PAUL WHYTE ENGINEERING PROJECT REPORT

16 JANUARY 1997

154

/***-kJ;*—)c—k—k*******—k*********'kt***:*****************'ki’*****i‘***'k*i’*-&--k*****ﬁ**'(-k

Filename: con ctor.h.

Refer to sys r32.h for documentation.

*******‘k*********:{'**‘A‘*************1—****-&ﬁr-k-k*******i’**‘k*‘k***"t*****.***"(**'k****/

#include <stdio.h>
finclude "sys r32.h"
#include “"add r3zZ.h"

void convert to sdnr_rns {(five bit word type operand conv_bin,
two bit word type carry in,
sdnr rns_digit_type *operand sdnr runs,
two bit word type *carry out};

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

/***************************k***#****#*ﬁ**k%****ﬁ**************************#

Filename: con_ctor.c.

Refer to sys_r32.h for documentation.

'k'!(************************9.’k‘k*‘k‘k**‘k*k‘k:‘f*‘k*:\’*****‘k‘k*‘k*******ﬁ'{**********‘k*****/

#include "con ctor.h"

vold convert generate carry (five bit word type conventional segment,
two_bit word type *carry)

{
unsigned a,
b;

<y
a,
=

= conventional_ segment.bd;
= conventional segment.b3;
conventional segment.bZ;
= conventional segment.bl;
= conventional segment. bl;

TR oQAm
I

carry-»hl = ¢ & e

| d g e

| a & e

| b & e;

carry—>hd = ~e

| ~a & ~b & ~Cc & ~d & e;
i

vold convert wod pl (five bit word type conventional segment, rns digit type *convert)
{

unsigned a,
bl

c
=}
o7

= conventional segment.bd;
conventional segment.b3;
conventional segment.b2;

conventional segment.bl;
= conventional segment.b0;

i

oo
Il

convert->h2 =

~a & ~h & ¢ & ~d & ~e
la & ~b & ~c & d & ~&
| ~a &b &ceaedé&~e
| ~a & ~b & ~c & d & e
[ag~becadse
fa &b & ~¢c & ~d & e;
convert->bi =
~a & ~b & d & ~e
~a & ~b & ¢ & d

&
& ~c & ~d & ~e
& ~b & ~c & ~d & e
& cCc & ~d & &
&b & ~c &£d e
~a & b & ~d & e;
onvert->h0 =
~ad & ~b & ~c & d & ~e
| a & ~c & ~d & ~¢
|l a & ~b & c&d& e
| a &b &~ & ~2
| ~a &b ac s ~dag ~e
| ~a & ~c & ~d & e
|
i
|
|

{
i
i
i
!
!
I
!
@

~a & ~b & c & d & e
a & ¢ & ~d & e
a &b &cé&e
~d & b & ~c & e}
}

void convert meod p2 (fivg_bit_wordwtype conventional segment, rns digit type *convert)

{

unsigned a,

PAUL WHYTE ENGINEFRING PROIECT REPORT 16 IaMUARY 1997

156

= conventicnal segment.hd;
= conventional segment.b3;
conventional segment.b2;
= conventional segment.hbl:
conventiocnal segment.bl;

W o oo
Il

convert->h2 =
~h & c & ~e
~a & Cc & ~d & ~e
~a & ~b & ¢ & ~d
& h & ~c & d
& ~c & d & e
& ~C & &7
onvert~>hl =
a & ~I» & 4 & ~e
b & ~c & ~d & ~&
~a & b & ~d & ~e
~a & b & ~Cc & ~e&

a
a
b

|
I
|
|
!
C

|
i
f
| ~a & ~b & ~d & e
] ~a & ~b & ~c & e
i ~b & ~c & ~d & @
|l a &b & c&e
las&shbhedee
| b&ecsdae;
convert->h0 =

~a & ~b & d & ~&
bo~a & ~c & d
i a & ~b & ~d & ~e
{ a & ~c & ~d
{a&bs&ced
fa&o&dae
i ~a &b & ¢ & ~d & &;

void convert_to_sdnr rns {(five pit word type operand conv_bin,
two bit word type carry in,
sdnr_rns_digit type *operand sdnr rns,
two bit word type *carry out)

{
rns digit type uncorrected sdnr _rns pl,
uncorrected sdnr_rns_p2,
corrected sdnr_rns pl,
corrected sdnr rns_p2;

convert generate carry (operand_conv _kin, carry out};
convert _mod pl (coperand conv bin, suncorrected sdnr rns pl);
convert mod p2 {operand conv _bin, &uncorrected sdnr_rns_p2);

i

correct mod pl (*carry out, uncerrected sdnr rns pl, &corrected sdnr_rns pl};
correct mod p2 {*carry out, uncorrected sdnr_rns_p2, &corrected sdnr_rns p2);
addc mod pl (carry_in, corrected sdnr_rns_pl, &{operand sdnr_rns->pl)};
addc_mod p2 (carry_in, corrected_sdnr rns p2, &(operand_sdor rns->p2)};

Paul WHYTE CNGINEERING PROJECT REPORT

16 JANUARY 1997

157

/*’*****i"}:*****'}:*k*v\‘***4(**'k********************************i’*'k*******:("!r'k'k'k'):'k*

Filename: con gen.h.
Refer te sys r32.h for documentation.

‘k‘k*‘k***-k-k****-k-i:**-k*********%*****i***'k***********‘k**********_*7\’**************/

#include <stdio.h>
#inciude "sys r32.h"

void convert to_binary (unsigned digit, five bit_word_type *operand conv bin);

vold convert to decimal {five bit word type sum conv bin, unsigned *digit};

Paur, WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

158

/'}:*f***:\'****‘k*****'&'******'&****1\'*******9:**'****************‘}!**'k?r****-,\'-k*******-,\-

Filename: c¢on gen.c.

Refer to sys r32.h for documentation.

********‘k***#****‘k**v\‘*****'k'k******'k*ﬂr**********ﬂ(*ﬂ‘*****ﬁr********ﬁ**********k/

#include "con gen.h®
void convert to_binary {unsigned digit, five bit word type *operand conv_bin)

{
i1f {{digit & 1) == 1)
{
operand_conv_bin->b0d = 1;
H
else
(
operand conv_bin->b0 = 0;
}
if {{digit & 2} == 2}
{

}

operand conv_bin->*bl = 1;

else
{
oparand conv_bin->bl = 0;
1
if ((digit & 4) == 4}
{
operand conv _bin-»b2 = l;
}
elze
{
operand conv_bin->b2 = 0

}
if ({digit & 8) == 8)
{
operand conv_bin->b3 = 1;
}
else

¢

}
if {(digit & 16} == 16}
{

i
o

operand conv_bin->b3

operand conv_bin->bd = 1;
]
else
{
operand_conv bin->b4 = 0;
H
]

void convert to_decimal (five bit word_type sum_conv bin, unsigned *digit)

{
*digit = 0;
if (sum_conv_kin.bl == 1)
{

}
if (sum conv_bin.bl == 1}

{

*Qigit = *digit + 1;

*diglt = *digit + 27
if {sum_conv bin.h2 == 1)
{ *digit = *digit + 45
if (sumfconvmbin.bE == 1}
(*digit = *digit + 8;
if {sum_conv_bin.b4 == 1}
{ *digit = *digit + 16;
}

PAUL WIIVTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

JORE AR R A ek R ek AR R R RN TRk & AR R AR R RN A KR R AR R R PR d

Filename: con rtoc.h.
Refer to sys r32.h lor docamesnlalion,

'Jc'k'kk***k:‘(*‘k**\k**‘k*‘k‘k*******‘k***************************#'k***************/

#include <stdio.h>
#include “"sys r32.h"
#include "add r32.h"

void converli o conv bin {sdur cas_digil_lype sum sdnc_gns,
unsignred sum sign in,
unsigned borrow imn,
five bit word type *sum conv bin,
unsigned *sum_sign_out,
unsigned *porrow oul)/

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

—
[y
o]

P R L R R R R s R e e e e T e e R e T

Filename: con_rtoc.c,

Refer Lo sys ©32.h for documentation.
'k***********************ﬁ***"f**********3\'****3’(*******ﬂ’****************!‘(******/
#include "con rioc.n"

vold borrow subtract {(unsigned operandl, unsigned operandZ, unsigned borrow in,
unsigned *result, unsigned *borrow out)

i
*result = operandl * operand2
*horrow out =
~operandl & operand2
| ~cperandl & borrow in
| operand2 & borrow_in;

~

borrow _in;

}

void convert segment (sdnr_rns digit type sdnr_ins_digit, five hit word type
*eonventional segment)

{
unsigned a,
bl
cl
dl
e,
£;

= sdnr rns digilt.pl.bd;
sdnr rns digit.pl.bl;
sdnr rns digit.pl.b2;
= sdnr_rns digit.p2.bd;
= sduriruﬁidigit.pZ.bi;
= sdnr_rns digit.p2.b2;

It

QT rhm
]

conventional segment->bd =
~a & c & ~d & ~T

~a & ~Cc & d

a & c&d

a &b &de& ~e

~a & b & ~¢c & ~e & ~f

a & ~c & ~d & e
a & T
b & c & £;
conventional segmenl->p3 =
~3 & ~bh & C & d

a & ~c & ~d & ~e & ~f
a & b & ~ & ~I

b & ~c & ~d & ~& & ~I
<

~b & ~c & ~d & f;
conventional segment->b2 =
~b & ¢ & ~d & ~T

a & ~b & ~d & ~e & ~f
g & c & ~L

a & bsdas ~e

h & c &d

~a & ~b & ~d & &

b & c & £;
onventional segment-»hl =
~a & ~b & C & ~e & ~F

~a & ~b & d & ~e

~ & ¢ & d

c & d & ~e

a & ~¢c & ~d & ~e & ~T

b &

|

|

|

|

i

| & e
| ~a &£ b &dee
|

|

]

[

!

|

!

|

| ~z & ~d & ~e & ~f

| b & ~¢c & ~d & @

| ~a & ~c & ~d & e

] a &b &sd&e

| b &cagf

| ~bh & ~¢ & ~d & ~¢ & f;

cenventional segment->h0 =
~bo& ¢ & d & ~e

PAUL WHYTE ENGINEERING PROTECT REFORT 16 JANUARY 1997

i6l

fa & ~b & ~2 & ~T
| ~a &8 b & ~d & ~e
| ~a & ~b & e

| b ¢ ~¢ & ~d & &
i a&bse

| b &c &ds&e

{ b & £;

}

void convert to_conv_bin (sdnr rns_digit type sum_sdnr_rns,
unsigned sum sign_in,
unsigned borrow im,
five bit_word typeé *4ua conv_bin,
unsigned *sum_sign_out,
unsigned *borrow out)

five bit word Lype uncorrected conv bin;
unsigned borrow;
unsigned a,

e;

detect sign {(sum sdnr_yns, sum sign oukt);

convert segment (sum_sdnr rns, &uncorrected conv_bin);

bhorrow subtract {uncorrected conv bin.bd, sum sign in, borrow in, &a, &horrow);
horroW subtract (uncorrected conv bin.bl, 0, korrow, &b, shorrow);

3 , borrow, &c, &borrow);

borrow, &d, &horrow);

borrow, &e, borrow out);

a
borrow subtract {uncorrected conv_bin.b2, 0
borrow subtract (uncorrected conv bin.h3, 0
borrow subtract {uncorrected conv_bin.bd4, G

sum_conv bin->b0 = a;
sum_conv_pin->bl = by
sum_conv_bin->b2 = c;
sum_conv_bin->h3 = d;
sum_conv_pin->bd = &;

PAIIL WIIYTE ENGINEERING PROJECT RTIPORT 16 JANUARY 1997

Filename: ds_1r32.h.

Refer to sys r32.h for docuwentation,
%*************/

#include <stdio.h>
finclude "sys r32.h"

vold deteckt zero (sdnr_rns digit_type operand, unsigned *operand zero);

void mux _get position (thirteen bit word array type word content, four bit word type
select, unsigned *position);

Vold mux select (thirteen bit word array type word content, four bit word Uype
*select)

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

163

/**#**%*****f*##*ﬁ*****#ﬁ**k*##***%*****ﬁ******#************************k***
Filename: ds r32.c.

Refer to 3ys r32.h for documentation.
*********************,\-***-}:****%—k*************‘k*******k*************:\'****:{-**-&-/
$inciude "ds r32.n"

vold detect zero (sdnr_rns_digit type operand, unsigned *operand_zero}

{

unsigned a,

’

Fhh Q2 T

operand.pl.b0;
operand.pl.bl;
operand.pl.b2;
operand.p2.b0;
sperand. p2.bl;
= operand.p2.b2;

oo

i

[I el L ¢y)
1

W

o]
H D OO T

1)
Ixi
a
o
R
[}
[}
-
o}
il

t

}

vold mux gel position (thirteen bit word array Lype word content, four bit word bype
seleci, unsigned *position)

{
int index = 0;

if {select.bd == 1)

(index = index + 1;

if {select.bl == 1}

(index = lndex + 27

if Iselect.b2 == 1)

{ index = index + 4;

if {select.bld == 1)

{ index = index + 8;

lposition = word_content [index];

)

vold mux select (thirteen bit word array type word content, four bit word type
*select)

i
unsigned do,
dl,
dz2,
43,
a4,
d5,
d6,
di,
dg,
a9,
did,
ail,
d12;

d0 = word_content {017
dl word content [1]+¥.
d2 word content [2];
d3 = word conktent [3];

I

il

PAUTL, WHYTE ENGINEERING PROIECT REPORT 16 JANUARY 1097

164

a4 = word content [4];

d5 = word content [51;

dé = word content [6]/

d? = word content [7]7

d8 = word_content [8]7

d9 = word content [9];

dlo = word content {107;

dil = word _content [11];

dl? = word content [12}:

select~>b3 =

dl2 | ~dl2 & (a1l } ~dil & {d10 | ~d10 & (49 |

select->h2 =

Aiz | ~dl2 & (~dll & {~dil & {~d9 & (~d8 g (d7 | ~dB &
& ddyyyiivyys

selact-»bl =

~dl?2 & (dil | ~dll & {dig | ~di0 & {~d9 & (~d8 & (47 |
& (d3] ~d2 & a2)1) 1Ny

select->b0 =

~di2 & (dll | ~dil & {~dlC & (d9 | ~d9 & {~dB & {(d7 |
& {d3 | ~d3 & ~d2 & dl))))y)ivds

~d9 & dB)}};

{(~37 & (d& | ~dé & (d5 | ~d5
~d7 & (d& | ~d6 & (~dh & {~d4
~d7 & (~d6 & {(d5 | ~d5 & (~d4

PAUL WHYTE

ENGTNEERING PROJECT REPORT

16 JaNUuARY 1997

[
sy
L

Filename: init var.h.

Refeir to sys 132.h for documentation.
5\’***7\'****'k*i********'Jr'k*'iri‘*******1‘*1‘:****7\‘******‘k*************{***********9{**9{*/
P U IR
#include <sbdio. b
#include "sys r32.n"

void init_carry (two bit_word type *carry);)
void init operand conv_dec (operand conv_type operand conv_dec);

PAUL WHYTE ENGTNEERING PROJECT REPORT 16 JANUARY 1997

—
&

Filename: init var.c.

R 1)
it val . 1t

void init carry {(two bit word type *carry)

{
carry->bl

carry->h0

[
= o

i
void init operand conv dec (operand conv_type operand conv_dec)

7

{
int index;

for {index = §; index <= DIGIT LENGTH; index++)

PAUL WHYTE ENGINEERTNG PROJECT REPORT 16 JANUARY 1997

167

/******************#**k**************k*****************ﬁ********************

Filename: sysa r32.c.

Refer to sys_r32.h for documentation.

EEEERE RS R N R R Rt R R R bR R R e R R R o kR

#include <stdio.h>
finclude "sys r32.h"
#include "init wvar.h"
$include "user ic.h"
#include "add r32.h"
#include "con ctor.h'™
#include "con rtoc.h"
#include "con:gen.h“

void main ()

{

operand conv_type operandl conv_dec,
operand? conv_dec,
sum_conv_dec;

five bit wBrd*type operandl conv_hin,
cperandZ_conv_bin,
sum_conv_kin;

sdnr rns digit_type operandl sdnr rns,
operand2_sdnr_rns,
3um sdnr rns;

int index = 0,
exit loep = FALSE!

two bit word type operandl carry_in,
operandl_carry out,
operand?_carry_in,
operand? carry out,
sum carry in,
sum carry out;

unsigned sum sign_ in,
sum_borrow_in,
sum sign out,
sum_borrow out;

while (exit loop == FALSE)

{
init operand conv_dec {operandl conv_dec);
initgbperand:conv_dec (operandZ_conv_dec);
prompt operand {1, operandi conv_dec);
prompt_operand (2, operand?_conv_dec};
init carry (goperandl carry in};
init carry (&operand? carry in};:
init _carry (ssum_carry in);
sum sign in = 0;
sum_borrow in = 0;
for (index = 0; index <= DIGIT LENGTH; indext+)
{

convert to binary (operandl conv_dec [index], &operandl conv_bin};
convert to binary (operand2_ conv_dec [index], &LoperandZ conv bin);

convert to sdnr rns (operandl conv_bkin, operandl_carry_ in, &operandl_sdnr rns,

foperandl carry out);
operandl carry in = operandl carry_out;

convert to sdnr rns {operand? conv bin, operand2 carry_in, soperand2 sdnr_rns,

&operand? carry out});
cperand? carry in = operandZ carry out;

add sdnr rns_digit {operandl_sdnr_rns, operand2_sdnr_rns, sum_carry in,

&sum_sdnr rns, &sum carry oub);
sum carry in = sum_carry_out/

convert to conv _bin (sum_sdnr rns, sum sign in, sum_borrow in,
&sum_sign out, &sum borrow out);

sum sign in = sum_sign out;

sum_borrow in = sum borrow out;

convert to decimal {sum_convibih, &(summconv;dec [index])};
1
display conv_dec_ segment {sum conv_dec);
exit _loop = prompt repeat (};

&sum_conv_bin,

PAUL WHYTE ENGINEERING PROJECT REPORT

16 JANUARY 1097

168

/7‘.-*.4(*Jr-k**-k-k-k-k-ic*-k-;ﬁ-********-ﬁ*********ﬁ*******-kv‘:********'k**********************

Filename:

sysd r3Z2.c.

Refer to sys r32.h for documentation.

1\''}.‘1\'******'k:\"!r'k********5\"4{***********'&\'**'}c:\’*****9{*'}(****"(******.*******7\‘********/

#include
#include
#include
#include
#include
#include
#include
#include
#include

vold main

{

<stdio.h>

"sys r32.h"
"init_var.h"
"user io.h"
“add r32.h"
"de r32.h"

"con ctor.h”
"con_rtoc.h"
"con gen.h"

(}

operand conv_type operand conv_dec;

thirteen bit word array type sign signature,
zZero

signature;

five_bit word type operand_conv bin;
four_bit_word type select;
two bit word type operand carry in,

operand carry out;
sdnr rns digit type operand sdnr rns;

unsigned operand_sign,

operand zero,

sigmn,
EEro;

int index = 0,
exit loop =

while (exit lco

{

init_operand conv_dec (operand conv dec):

FALSE;

=== FALSE}

prompt operand (1, operand conv_dec);
init _carry {(goperand carrcy in);
for {indexz = Q; index <= DIGIT LENGTH; index++)

{

convert to binary {(operand conv_dec [index], &operand conv bin);

convert to sdnr rns (operand_conv bin, operand carry in, goperand sdar rns,
&operand_carry out);
operand_carry in = operand carry out;

detect sign {operand sdnr_rns,
detect zero (operand sdnr_rns,

sign signature findex] =
zero signature [index} =

}

mux_select (zero_signature,
mux_get position (sign signature, =select,
mux_get_position (zero signature, select
display sign (sign,

zero);

operand_sign;
operand_zero;

&select);

exit loop = prompt_repeat ();

&operand sign);
&operand zero);

&sign)
&7ero)

PAIL WHYTE

ENGINEERING PROJECT REPORT

16 JANTIARY 1997

169

/‘k*‘7‘-‘****1\'**5\’4(**'fc*'k*'!r3\'*******7‘(****1\'****7‘.‘****'5\'***'k'k4(****1‘*7\’4{******1\'*7\‘***7\'*****

Filename: user io.h.

Refer to sys r32.h for documentation.

'k'k*'k*-k*—*******{:*‘k‘f{‘.{"A’****.‘.’**'}r*‘k'ﬂ‘*‘k’\’*':\'*'k*****k‘k***'}r******‘.‘.’*******‘.‘.":‘r‘k**‘********/

#include <stdio.h>
#include “"sys_r32.h"

vold display_conv bin segment {int digit_index,
five bit word type cohv_bin_ segment);

void display conv_dec segment (operand counv_type conv_dec segment});

void display sdnr_rns_digit (int digit_index,
sdnr_rns digit type sdnr_rns_digit}:

void display sign (unsigned sign, unsigned zero);
void prompt operand (int operand index, operand_convitype‘operand_conv_dec);

int prompt répeat ();

PAUL WITYTE ENGINEERTNG PROJECT REFORT 16 JANUARY 1997

170

/*1***********************kk********k***********#*****#********#*****f******

Filename: user io.c.

Refer to sys r32.h for documentation.

e R R R B B V4
#include "user io.h"

void display_conv_bin segment (int digit_index,
five_bit word type conv _bin segment)

{
printf ("Conventional binary segment %d : Zdtdidididin®, digit indew,
conv bin segment.hbd,
conv_bin segment.b3l,
conv_bin segment.bZ,
conv_bin_ segment.bl,
conv _bin segment.b0);

}

vold display conv_dec segment {operand conv_type conv_dec_segment)

{

int index;

printf ("The sum of the operands i=s: ™);
for {index = DIGIT LENGTH - 2; index >+ 0; index--)
{
printf {"%2d ", conv_dec segment [index]);
)
printf ("\n"};
i

void display sdnr rns digit {int digit index,
sdnr_rns_digit type sdnr_rns digit)

i
1
printf {"SDNR/RNS digit Sd <pl, p2@x: <udidid, didide\n", digit index,

sdnr rns_digit.pl.bZ2,
adnr rns digit.pl.bl,
sdnr _rns digit.pl.ho,
sdnr rns_digit.p2.b2,
sdnr_rns_digit.pZ.bl,
sdnr_rns digit.p2.hi};

1

vold display sign (unsigned sign, unsigned zero)

{
printf ("The sign of the operand is: "}
if {sign == O)

{
1

else
{
printf ("Negative.\n");
}
printf {("The operand is Doy
if {zero ==)
{
printf {"Zero.\n"):
}
else
{
printf ("Mot =zero. \n");
}
}

printf ("Positive.\n");

vold prompt eperand (int operand_index, cperand conv_type operand_conv dac)

{
int index,
reverse index,
forward index;
operand_conv_type temp operand conv_dec;

printf ("Enter operand %d: ", operand index);
scanf ("%d", &{temp_ operand_conv _dec [0]1}};
for (index = 1; temp operand conv_dec [index - 1] != END OF NUMBER; index++)

{

PAUL WHYTE ENGINEERTNG PROJECT REPORT 16 JANUARY 1997

171

scanf ("#d", &{temp operand conv_dec [index]}):
}
getchar (j;
for (reverse index = index - 2, forward index = 0; reverse_ index >= 0;

reverse index--, forward index++)
{
operand conv_dec [forward index] =

}

temp operand conv _dec. [reverse index];
}
int prompt repeat ()

{
int user exit = FALSE;

char response "RNOt
while {(response != 'y') && (response != 'Y'} && (response != 'n'} && (response !=
!NI})
{
printf {"ho you want to exit? ");
response = getchar {};
getchar ();
1
if {(resporise == 'y') |l {(response == 'Y'))
{

user exit = TRUE;
i

refurn user exit;

PAUL WIIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

172

10.2 Appendix B: Lrsim simulation scripts

10.2.1 Initialisation files

| Filenams : iadder.cmd
{ Author ;' Paul Whyte
| Student numwber 0230227

| Date - 9/10/96

|

i Descripticn

|

}

|

for a SDMR/RNS digit adder.

clock clkl2 0
clock clk23 Q
clock clk34 1
Cclock cilk4l 1 1 0O

vector operandl pl operandl pl b2 operandl pl bl
vector operandl p2 operandl p2_ b2 operandl p2 bl
vector operand? pl operand2 pl b2 operand2? pl b1
veqtor operand? p2 operand2 p2 b2 operand2 p? bl

This is a command file for irsim. This file

initialises all parameters

operandl pl bo
operandl p2 boO
opeland2_pl_b0
operand2 pZ bo

vector uncorrected sum pl uncorrected Jum,pl B2 uncorrected sum pl bl

uncorrected sum pl ho

vector uncorrected sum pZ uncorrected sum p2_ b2 uncorfected sum p2 bl

uncorrected sum p2 bo

vector region region bl region b0

vector carry in carry in bl carry in b0
vector carry out carky . out_bl carry out ho

vector carry outl carrcy out2 bl Carry outz b

vector corrected sum . pl Teorrected 5um,pl b2 corrected sum . pl k1l corrected sum pl Lo
vector corrected sum p2 corrected sum p2 b2 COLIECted sum P2 bl corrected sum p2 | k0

vector sum pl sum pl b2 sum pl bl sum_gpl | “ho
vector sum_p?Z sum p2 b2 sum pZ | bl sum _pZ_ka
w clkl? ¢1%23 clk34 c¢lkal
operandl pl

operandl p2

operand? pl

operandEWQZ Co
uncorrected sum pl
uncoLrected aum_ p2
region

sign operandl
gign_operand?2

carry in

carry _out

carry out?2

corrected sum pl
corrected sum p2

sum pl

W sum p2

ana cikiz ¢lk23 clk34 clkdl
ana operandl pl

ana operandl pZ

ana operand? pl

ana operand? p2

ana uncorrected sum pl
ana uncorrected sum p2
ana region

ana sign operandl

ana sign operand?

ana carry in

ana carry oub

ana carry out?

ana corrected sum pl

ana corrected sum p2

ana sum pl

ana sum _p?2

stepsize 25

=y

LS fEEEELLE &

PAaUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

|
|
|
f
!
|
i
!
i

clock clklz2 0 1 1
clock ¢lk23 6 0 1
clock cik34 1 0 D
clock clk41 1 1 0

Filename
Author

Student numbex
Date

Description

This is a command file for iresim.
NS digit adders.

for two SDNR/R

vector word(40 pl
vector word(do p2
vector woradl _dl pl
vactor wordd_dl p2
vector wordl dG pl
vector wordl d0 p2
vector wordl dl_pl
vector wordl dl p2

iZadder.cmd
rPaul Whyte
0830227
9/13/96

[)

wordl d0 pl b2
word0d d0 p2 b2
wordd dl pl b2
wordg di_ p2_b2
wordl do pi b2
wordl d0 p2 b2
wordl di _pl b2
wordl dl p2 b2

This file

wordC d0 pl bl
word0d dd pZ bl
wordd _di pil bl
wordl dl - p2 bl
wordl dO Pl] b1
wordl dO - p2] “h1
wordl dl pl bl
wordl dl _p2 | b1

initialises all parameters

word(d 4d_pl hd
wordl _di_p2 bl
word0-di_pl | " bo
wordQ dl _p2 b0
wordl d0 _pl ho
wordl ad p2 b
wordl dl _pl bo
wordl di _p2] “Bo

vector di sum pl d0 sumwpl 2 d0 sum pl bi d0 sum pl ba
vector d0 sum p2 40 sum p2 bZ? 40 _sum p2 bl dO sum_p2 ho
vector dl sum . pl dl_sum pl b2 dl sum L pl] b1 dl sum_pl "o
vector dl sum p2 di sumgp? b2 dl sum_p2 | bl 41l _sum p2 b
vector carry in carry in bl carry in b0~

wordl_do pl
wordd dO P2
o wordO dl _pl

LTI

wordl do_pl
wordl 4y _p2
wordl dl pl
wordl dl _pz
do_sum pl
d0_sum p2
w dl sum L pl
dl_sum p2
carry_in

W test carry

g L8 2% %

% &

ana clkl? clik23 clk34 clk4l .

ana word0 do pl
ana MOLdO—dO_pZ
ana word)d di pl
ana word0 4l _p2
ana wordl d0 pl
ana wordl _d0_p2
ana wordl di pl
ana wordl dl p2
ana al_sum pl
ana d0_sum L p2
ana dl_ _sum pl
ana dl_sumMQZ
ana carry in
ana test carry
Stepsize 25

vector test carry test carry bl test _carry ho
clkl12 «ik23 cik34 «<1k43

PAtn, WHYTE

ENGINEERTNG PROJECT REPORT

16 JaNUARY 1997

174

10.2.2 Simulation files

Filename
Author
Student number
Date

Description

!
i
|
{
|
i
|
|
|
!
| Notes
;

|

|

| Set operand 1
| Set cperand 2
| Set carry in
| Expect sum.

|

Expect carry cut

set operandl_pl
sel operandi p2
set operand? pil
set operandZz p2
=

set carry in 00

| 3et cperand 1
| set operand 2
| Set carry in

| Expect sum
|

Expect carry ocut

set operandl pl
set operandl p2
set operandz pi
set operandZ p2
C

| Set operand 1
| Set operand 2
| Set carry in
| Expect sum

|

sim;opz.cmd

Paul whyte
09320227
9/10/96

100
D11
100
001

no

n

001
D11
011
001

Expect carry out =

set cperandl pl
set operandl p2
set operandZ pl
set operand2 p2
c

| Set operand 1
| Set operand 2
| Set carry in
| Expect sum

|

100
610
000
0Ll

(1]

Expect carry ocut =

set operandl pl
set operandi p2
set operand2 pl
set operand2 p2
c

set carry in 01

| 8et operand 1
| 3el operand 2
| Set carxry in
| Expect sum

|

Expect carry out

set operandl pl
set operandl p2
set operandZ pl
set operandZ p2

L

| Set operand 1

000
100
011
100

100
100
ool
100

This is a command file for irsim.
inputs inte a SDNR/RNS digit adder.

-11i

|
[on A RN T RN N

-

= .
A D e

12

This file simulates a stream of cperand

The command file iadder.omd must be run first before this file can be run
in the irsim environment.

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 January 1997

175

1
[,

[I
1
E o IS R N

| Ser operand 2

| Set carry in

| Expect sum

| Bxpect carry out

set operandl pl 0L0
sel operandl p? 101
set operandZ pl 010
set operand? pZ 01l
o

1

| Set operand 1
| Set operand 2 -1
| Set carry in
|
t

ol

Il
(

Fxpect sun
Expect carry out = -

set operandl pl 010
set operandl p2 110
set operandZ pl 000
set operand? p2 110
c

set carry in 10

| Set operand 1 = 5
| Set operand 2 = Q
{ Set carry in = 1
| Expecl sum = [
| Expect carry out = o]
set operandl pl 000

set operandl pZ 101

set operand? pl 000

set operand2_p2 000

=i

| Set operand 1 = K
{ Set operand 2 = 14
{ Bet carry in = 1
| Expect sum = -10
| Expect carry ont = i
set operandl pl 010G

set operandl p? 000

set operandZ pl 100

set operand2 p2 000

o _

| Set operand 1 = 10
| Set operand 2 = &
| Set carry in = g
| Expect sum = 16
| Expect carry out = ¢
set operandl pl 000

set operandl p2 011

set operand2 pil 001

set operandZ:pZ 110
c

set carry in 01

| Set operand 1 = 7
{ Set operand 2 = 10
| Set carry in = 0
| Expect sum = -15
| Expect carry out = 1
set operandl pl 016

set operandl pZ 000

set operand2 pl 000

set operand? p? 01l

o -

| Set operand 1 = - &
{ Set operand 2 = —10
| Set carry in = Q
| Bxapect sum = ~16
| Expect carry out = 0

set operandl pl 100
" set operandl p2Z 001
set operand? pl 000
set operand2 p2 100

PAUL WHYTE

ENGINFERING PROJECT REPORT

16 January 1997

i7o

c
| Set operand 1 = -10
| Set operand 2 = -7
| Set carry in = 0
| Expect sum = 15
| Expect carry out = - 1
set operandl pl 040

set operandi p2 100

set operandZ:pi Gi1

set operand?Z pZ 000

: _

| Set operand 1 = =17
| Set cperand 2 = ~17
| Set carry in = 0
| Expect sum = - 2
| Bxpect carry out = — 1
set operandl pl 011

set operandl p2 100

set operand2 pl 011

set operand? p2 100

: _

| Set operand 1 = 17
| Set operand 2 = 17
| Set carry in = 0
| Brpect sum = 2
| Expect carry out = 1

set operandl_pl 010
set operandl p2 011
set operand? pl 010
set operand? p2 011
o _

c

PAauL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

177

|
|
|
|
!
|
!
!
I
I
!
!
}
i

Filename
Author

Student number
Date

Description

This iz a command file for irsim.

sim2 op2. cmd
Paul whyte

0930227
3/10G/96

inputs into two SDNR/ENS digit adders.

Notes

This file simulates a stream of operand

The command file iZadder.cmd must be run first before this f£ile c¢an be run
in the irsim enviromment.

Set operand 1
Set operand 2

Expect sum

|
|
|
| Set carry in
|
{

Expeci carry out

Set
set
set
set
set
set
set
set
c

set

word(_dl pl
word0’ dl p2
word(d do pl
wordd 4d_p2
wordl di pi
wordl dil p2
wordlme:pl
wordl _do0_p2

carry in 0Ol

Set operand 1
Set operand 2

Expect sum

|
|
|
| Set carry in
|
!

[

H

011
011
011
010
010
01¢
000
g1o

Expect carry out =

sel
set
set
set
set
set
set
set
<

wordd di pil
word0 dil p2
word0d do pl
wordd do_p2
wordl dl pil
wordl dl p2
wordl do pl
wordl d0_p2

Set operand 1
Set operand 2

Fxpect sum

|
|
!
| Set carry in
I
!

160
100
000
Lio
100
010
0GL
010

[

Expect carry out =

set
set
sel
set
Set
set
set
set
c

C

wordl® di pl
word0 dil p2
word(do_pl
wordd 4o p2
wordl di pl
wordl dl p2
wordl d0 pl
wordl d0_p2

100
010
011
ii0
011
101
000
011

MSD
- 3
2

- 4

[=
—~
f B N R i o B

—

LSD
-15)

= D

PAUL WHYTE

ENGINEERING PROJECT REPORT

16 JANUARY 1997

178

11. References

Abdaltah, M. & Skavantzos, A. (1995). A systematic approach for selecting practical moduli sets for
residue number systems. Proceedings of the 27" Southeastern Symposium on System Theory
(pp. 445 - 449). Starkville, MS: Mississippi State University College of Engineering.

Avizienis, A. (1961). Signed-digit number representation for fast paralle! arithmetic. In E. E.
Swartzlander Jr (Ed.). Compufter arithinetic: Volume IT (pp. 54 - 65). Los Alamitos, CA:
IEEE Computer Society Press.

Carter, T. M. & Robertson, }. E. (1990). The set theory of arithmetic decomposition. [LER
Tramsactions on Compuiers, 39 (8), 993 - 1005,

Ercegovac, M. D. & Lang, T. (1987). On-the-fiy conversion of redundant into conventional
representations. JTEER Tremsactions on Compufers, 36 (7), 895 - 397.

Glasser, L. A, & Dobberpuhl, D. W. (1988). The design and analysis of VLSI circuils. Reading, MA.
Addison-Westey Publishing Company.

Hayes, J. P. (1993). Imiroduction to digital logic design. Reading, MA: Addison-Wesley Publishing
Company,

Hwang, K. & Briggs, F. A. (1984). Computer architecture and parallel processing. New York, NY:
McGraw-Hill Publishing Company.

Hwang, K. (Ed) & Degroot, D. (Ed). (1989). Parallel processing for supercompuiers & artificial
intelligence. New York, NY: McGraw-Hill Publishing Company.

Kuczborsld, W. (1993). Real-time morphological processors based on redundani number
representation. Unpublished doctoral dissertation, University of Western Australia, Perth,
Western Australia.

Kuczborski, W., Attikiouzel, Y. & Crebbin, G. (1994). Decomposition of logic networks with
emphasis on signed digit arithmetic systems. [IF Froceedings, Circuits Devices and Systems,
141 (4), 307 - 314.

Kung, H. T, (1982). Why systolic architectures? [ELE Computer, 13 {1}, 37 - 46,

Kung, 8. Y. (1988). VLST array processors. Englewood Cliffs, NJ, Prentice Halt.

Luba, T. (1994). Multi-level logic synthesis based on decomposition. Microprocessors and
Microsystems, 18 (8), 429 - 437.

Pedier, P. (1993). Mathematics for computing and engineering. Perth, WA Edith Cowan University,
Pucknell, D. A, & Eshraghian, K. (1994). Basic VLSI design (3 ed.). Sydney, NSW: Prentice Hall.

Rajashekhara, T. N. & Nale, A. 5. (1990). Conversion from signed-digit to radix complement
representation, frternational Journal of Flectronics, 60 (6), 717 - 721,

Ramamoorthy, P. A, Potu, B, & Govind, G. (1988). DSP system architecture using signed-digit
number representation. [JCASSP 88: 1988 Infernational Conference on Acoustics, Speech,
and Signal Processing (pp. 1702 - 1705). New York, NY: IEEE.

Spaniol, O (1981). Computer arithmetic: Fogic and design. Chichester: John Wiley & Sons.

Streetman, B. G. (1990). Solid state electronic devices (3" ed)). Englewood Cliffs, NJ: Prentice Hall.

PAUL WHYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

179

Taylor, F. 1. (1984). Residue arithmetic: A tutorial with examples. [ELE Computer, 50 - 62.

Waser, S, & Flyan, M. 1. (1982). Introduction to arithmeiic for digital systems de.s’z’gneks. Forth
Worth, TX: Saunders College Publishing,.

Weste, N, H. E. & Eshraghian, K. (1994). Principles of CMOS VISI design: A systems perspective
(2" ed.). Reading, MA: Addison-Wesley Publishing Company.

Yang, C., Lu, H. €. & Gilbert, D, E. {1991). An investigation into the implementation costs of residue
and high radix arithmetic, Proceedings of the Twenty-First International Symposium on
Multiple-Valued Logic (pp. 364 - 371). Los Alamitos, CA: TEEE Computer Society Press.

PAUL WHIYTE ENGINEERING PROJECT REPORT 16 JANUARY 1997

	Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation
	Recommended Citation

	Design and Implementation of High-Radix Arithmetic Systems Based on the SDNR/RNS Data Representation

