266 research outputs found

    Energy Efficient Wireless Circuits for IoT in CMOS Technology

    Get PDF
    The demand for efficient and reliable wireless communication equipment is increasing at a rapid pace. The demand and need vary between different technologies including 5G and IoT. The Radio Frequency Integrated Circuits (RFIC) designers face challenges to achieve higher performance with lower power resources. Although advances in Complementary Metal-Oxide-Semiconductor (CMOS) technology has help designers, challenges still exist. Thus, novel and new ideas are welcome in RFIC design. In this dissertation, many ideas are introduced to improve efficiency and linearity for wireless receivers dedicated to IoT applications. A low-power wireless RF receiver for wireless sensor networks (WSN) is introduced. The receiver has improved linearity with incorporated current-mode circuits and high-selectivity filtering. The receiver operates at a 900 MHz industrial, scientific and medical (ISM) band and is implemented in 130 nm CMOS technology. The receiver has a frequency multiplication mixer, which uses a 300 MHz clock from a local oscillator (LO). The local oscillator is implemented using vertical delay cells to reduce power consumption. The receiver conversion gain is 40 dB and the receiver noise figure (NF) is 14 dB. The receiver IIP3 is −6 dBm and the total power consumption is 1.16 mW. A wireless RF receiver system suitable for Internet-of-Things (IoT) applications is presented. The system can simultaneously harvest energy from out-of-band (OB) blockers with normal receiver operation; thus, the battery life for IoT applications can be extended. The system has only a single antenna for simultaneous RF energy harvesting and wireless reception. The receiver is a mixer-first quadrature receiver designed to tolerate large unavoidable blockers. The system is implemented in 180 nm CMOS technology and operates at 900 MHz industrial, scientific and medical (ISM) band. The receiver gain is 41.5 dB. Operating from a 1 V supply, the receiver core consumes 430 ”W. This power can be reduced to 220 ”W in the presence of a large blocker (≈ 0 dBm) by the power provided by the blocker RF energy harvesting where the power conversion efficiency (PCE) is 30%. Finally, a highly linear energy efficient wireless receiver is introduced. The receiver architecture is a mixer-first receiver with a Voltage Controlled Oscillator (VCO) based amplifier incorporated as baseband amplifier. The receiver benefits from the high linearity of this amplifier. Moreover, novel clock recycling techniques are applied to make use of the amplifier’s VCOs to clock the mixer circuit and to improve power consumption. The system is implemented in 130 nm CMOS technology and operates at 900 MHz ISM band. The receiver conversion gain is 42 dB and the power consumption is 2.9 mW. The out-of-band IIP3 is 6 dBm. All presented systems and circuits in this dissertation are validated and published in various IEEE journals and conferences

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 ”s worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 ”W if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 ”W with 10 Gb communication data per day

    Design of Frequency divider with voltage vontrolled oscillator for 60 GHz low power phase-locked loops in 65 nm RF CMOS

    Get PDF
    Increasing memory capacity in mobile devices, is driving the need of high-data rates equipment. The 7 GHz band around 60 GHz provides the opportunity for multi-gigabit/sec wireless communication. It is a real opportunity for developing next generation of High-Definition (HD) devices. In the last two decades there was a great proliferation of Voltage Controlled Oscillator (VCO) and Frequency Divider (FD) topologies in RF ICs on silicon, but reaching high performance VCOs and FDs operating at 60 GHz is in today's technology a great challenge. A key reason is the inaccuracy of CMOS active and passive device models at mm-W. Three critical issues still constitute research objectives at 60 GHz in CMOS: generation of the Local Oscillator (LO) signal (1), division of the LO signal for the Phase-Locked Loop (PLL) closed loop (2) and distribution of the LO signal (3). In this Thesis, all those three critical issues are addressed and experimentally faced-up: a divide-by-2 FD for a PLL of a direct-conversion transceiver operating at mm-W frequencies in 65 nm RF CMOS technology has been designed. Critical issues such as Process, Voltage and Temperature (PVT) variations, Electromagnetic (EM) simulations and power consumption are addressed to select and design a FD with high frequency dividing range. A 60 GHz VCO is co-designed and integrated in the same die, in order to provide the FD with mm-W input signal. VCOs and FDs play critical roles in the PLL. Both of them constitute the PLL core components and they would need co-design, having a big impact in the overall performance especially because they work at the highest frequency in the PLL. Injection Locking FD (ILFD) has been chosen as the optimum FD topology to be inserted in the control loop of mm-W PLL for direct-conversion transceiver, due to the high speed requirements and the power consumption constraint. The drawback of such topology is the limited bandwidth, resulting in narrow Locking Range (LR) for WirelessHDTM applications considering the impact of PVT variations. A simulation methodology is presented in order to analyze the ILFD locking state, proposing a first divide-by-2 ILFD design with continuous tuning. In order to design a wide LR, low power consumption ILFD, the impacts of various alternatives of low/high Q tank and injection scheme are deeply analysed, since the ILFD locking range depends on the Q of the tank and injection efficiency. The proposed 3-bit dual-mixing 60 GHz divide-by-2 LC-ILFD is designed with an accumulation of switching varactors binary scaled to compensate PVT variations. It is integrated in the same die with a 4-bit 60 GHz LC-VCO. The overall circuit is designed to allow measurements of the singles blocks stand-alone and working together. The co-layout is carried on with the EM modelling process of passives devices, parasitics and transmission lines extracted from the layout. The inductors models provided by the foundry are qualified up to 40 GHz, therefore the EM analysis is a must for post-layout simulation. The PVT variations have been simulated before manufacturing and, based on the results achieved, a PLL scheme PVT robust, considering frequency calibration, has been patented. The test chip has been measured in the CEA-Leti (Grenoble) during a stay of one week. The operation principle and the optimization trade-offs among power consumption, and locking ranges of the final selected ILFD topology have been demonstrated. Even if the experimental results are not completely in agreement with the simulations, due to modelling error and inaccuracy, the proposed technique has been validated with post-measurement simulations. As demonstrated, the locking range of a low-power, discrete tuned divide-by-2 ILFD can be enhanced by increasing the injection efficiency, without the drawbacks of higher power consumption and chip area. A 4-bits wide tuning range LC-VCO for mm-W applications has been co-designed using the selected 65 nm CMOS process.Postprint (published version

    SILICON TERAHERTZ ELECTRONICS: CIRCUITS AND SYSTEMS FOR FUTURE APPLICATIONS

    Full text link
    The terahertz frequency bands are gaining increasing attention these days for the potential applications in imaging, sensing, spectroscopy, and communication. These applications can be used in a wide range of fields, such as military, security, biomedical analysis, material science, astronomy, etc. Unfortunately, utilizing these frequency bands is very challenging due to the notorious ”terahertz gap”. Consequently, current terahertz systems are very bulky and expensive, sometimes even require cryogenic conditions. Silicon terahertz electronics now becomes very attractive, since it can achieve significantly lower cost and make portable consumer terahertz devices feasible. However, due to the limited device fmax and low breakdown voltage, signal generation and processing on silicon platform in this frequency range is challenging. This thesis aims to tackle these challenges and implement high-performance terahertz systems. First of all, the devices are investigated under the terahertz frequency range and optimum termination conditions for maximizing the efficacy of the devices is derived. Then, novel passive surrounding networks are designed to provide the devices with the optimal termination conditions to push the performances of the terahertz circuit blocks. Finally, the high-performance circuit blocks are used to build terahertz systems, and system-level innovations are also proposed to push the state of the art forward. In Chapter 2, using a device-centric bottom-up design method, a 210-GHz harmonic oscillator is designed. With the parasitic tuning mechanism, a wide frequency tuning range is achieved without using lossy varactors. A passive network based on the return-path gap coupler and self-feeding structure is also designed to provide optimal terminations for the active devices to maximize the harmonic power generation. Fabricated with a 0.13-um SiGe BiCMOS process, the oscillator is highly compact with a core size of only 290x95 um2. The output frequency can be tuned from 197.5 GHz to 219.7 GHz, which is around 10.6% compared to the center frequency. It also achieves a peak output power and dc-to-RF efficiency of 1.4 dBm and 2.4%, respectively. The measured output phase noise at 1 MHz offset is -87.5 dBc/Hz. The high power, wide tuning range, low phase noise, as well as compact size, make this oscillator very suitable for terahertz systems integration. In Chapter 3, the design of a 320-GHz fully-integrated terahertz imaging system is described. The system is composed of a phase-locked high-power transmitter and a coherent high-sensitivity subharmonic-mixing receiver, which are fabricated using a 0.13-um SiGe BiCMOS technology. To enhance the imaging sensitivity, a heterodyne coherent detection scheme is utilized. To obtain frequency coherency, fully-integrated phase-locked loops are implemented on both the transmitter and receiver chips. According to the measurement, consuming a total dc power of 605 mW, the transmitter chip achieves a peak radiated power of 2 mW and a peak EIRP of 21.1 dBm. The receiver chip achieves an equivalent incoherent responsivity of more than 7.26 MV/W and a sensitivity of 70.1 pW under an integration bandwidth of 1 kHz, with a total dc power consumption of 117 mW. The achieved sensitivity with this proposed coherent imaging transceiver is around ten times better compared with other state-of-the-art incoherent imagers. In Chapter 4, a spatial-orthogonal ASK transmitter architecture for high-speed terahertz wireless communication is presented. The self-sustaining oscillator-based transmitter architecture has an ultra-compact size and excellent power efficiency. With the proposed high-speed constant-load switch, significantly reduced modulation loss is achieved. Using polarization diversity and multi-level modulation, the throughput is largely enhanced. Array configuration is also adopted to enhance the link budget for higher signal quality and longer communication range. Fabricated in a 0.13-um SiGe BiCMOS technology, the 220-GHz transmitter prototype achieves an EIRP of 21 dBm and dc-to- THz-radiation efficiency of 0.7% in each spatial channel. A 24.4-Gb/s total data rate over a 10-cm communication range is demonstrated. With an external Teflon lens system, the demonstrated communication range is further extended to 52 cm. Compared with prior art, this prototype demonstrates much higher transmitter efficiency. In Chapter 5, an entirely-on-chip frequency-stabilization feedback mechanism is proposed, which avoids the use of both frequency dividers and off-chip references, achieving much lower system integration cost and power consumption. Using this mechanism, a 301.7-to-331.8-GHz source prototype is designed in a 0.13-um SiGe BiCMOS technology. According to the measurement, the source consumes a dc power of only 51.7 mW. The output phase noise is -71.1 and -75.2 dBc/Hz at 100 kHz and 1 MHz offset, respectively. A -13.9-dBm probed output power is also achieved. Overall, the prototype source demonstrates the largest output frequency range and lowest power consumption while achieving comparable phase noise and output power performances with respect to the state of the art. All the designs demonstrated in this thesis achieve good performances and push the state of the art forward, paving the way for implementation of more sophisticated terahertz circuits and systems for future applications

    Millimeter-Precision Laser Rangefinder Using a Low-Cost Photon Counter

    Get PDF
    In this book we successfully demonstrate a millimeter-precision laser rangefinder using a low-cost photon counter. An application-specific integrated circuit (ASIC) comprises timing circuitry and single-photon avalanche diodes (SPADs) as the photodetectors. For the timing circuitry, a novel binning architecture for sampling the received signal is proposed which mitigates non-idealities that are inherent to a system with SPADs and timing circuitry in one chip

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    45-nm SOI CMOS Bluetooth Electrochemical Sensor for Continuous Glucose Monitoring

    Get PDF
    Due to increasing rates of diabetes, non-invasive glucose monitoring systems will become critical to improving health outcomes for an increasing patient population. Bluetooth integration for such a system has been previously unattainable due to the prohibitive energy consumption. However, enabling Bluetooth allows for widespread adoption due to the ubiquity of Bluetooth-enabled mobile devices. The objective of this thesis is to demonstrate the feasibility of a Bluetooth-based energy-harvesting glucose sensor for contact-lens integration using 45~nm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The proposed glucose monitoring system includes a Bluetooth transmitter implemented as a two-point closed loop PLL modulator, a sensor potentiostat, and a 1st-order incremental delta-sigma analog-to-digital converter (IADC). This work details the complete system design including derivation of top-level specifications such as glucose sensing range, Bluetooth protocol timing, energy consumption, and circuit specifications such as carrier frequency range, output power, phase-noise performance, stability, resolution, signal-to-noise ratio, and power consumption. Three test chips were designed to prototype the system, and two of these were experimentally verified. Chip 1 includes a partial implementation of a phase-locked-loop (PLL) which includes a voltage-controlled-oscillator (VCO), frequency divider, and phase-frequency detector (PFD). Chip 2 includes the design of the sensor potentiostat and IADC. Finally, Chip 3 combines the circuitry of Chip 1 and Chip 2, along with a charge-pump, loop-filter and power amplifier to complete the system. Chip 1 DC power consumption was measured to be 204.8~Ό\muW, while oscillating at 2.441 GHz with an output power PoutP_{out} of -35.8 dBm, phase noise at 1 MHz offset L(1 MHz)L(1\text{ MHz}) of -108.5 dBc/Hz, and an oscillator figure of merit (FOM) of 183.44dB. Chip 2 achieves a total DC power consumption of 5.75~Ό\muW. The system has a dynamic range of 0.15~nA -- 100~nA at 10-bit resolution. The integral non-linearity (INL) and differential non-linearity (DNL) of the IADC were measured to be -6~LSB/±\pm0.3~LSB respectively with a conversion time of 65.56~ms. This work achieves the best duty-cycled DC power consumption compared to similar glucose monitoring systems, while providing sufficient performance and range using Bluetooth
    • 

    corecore