16 research outputs found

    A 128-bit Chip Identification Generating Scheme Exploiting Load Transistors' Variation in SRAM Bitcells

    Get PDF
    textabstractObjective: Women with a history of bipolar disorder or postpartum psychosis are at extremely high risk of relapse postpartum. Although lithium prophylaxis has demonstrated efficacy in reducing postpartum relapse, the timing of prophylaxis remains controversial given the balance of risks and benefits for the mother and fetus. The authors compared lithium use during pregnancy to its initiation postpartum in women at high risk for postpartum psychosis. Method: Between 2003 and 2010, 70 pregnant women at high risk for postpartum psychosis were referred to the authors' psychiatric outpatient clinic. Women who were initially medication free were advised to start lithium prophylaxis immediately postpartum. Women already taking maintenance lithium during pregnancy were advised to continue treatment. Results: All women with a history of psychosis limited to the postpartum perio

    Bitline PUF: Building Native Challenge-Response PUF Capability into Any SRAM

    Get PDF
    Physical Unclonable Functions (PUFs) are specialized circuits with applications including key generation and challenge-response authentication. PUF properties such as low cost and resistance to invasive attacks make PUFs well-suited to embedded devices. Yet, given how infrequently the specialized capabilities of a PUF may be needed, the silicon area dedicated to it is largely idle. This inefficient resource usage is at odds with the cost minimization objective of embedded devices. Motivated by this inefficiency, we propose the Bitline PUF -- a novel PUF that uses modified wordline drivers together with SRAM circuitry to enable challenge-response authentication. The number of challenges that can be applied to the Bitline PUF grows exponentially with the number of SRAM rows, and these challenges can be applied at any time without power cycling. This paper presents in detail the workings of the Bitline PUF, and shows that it achieves high throughput, low latency, and uniqueness across instances. Circuit simulations indicate that the Bitline PUF responses have a nominal bit-error-rate (BER) of 0.023 at 1.2 V supply and 27C, and that BER does not exceed 0.076 when supply voltage is varied from 1.1 V to 1.3 V, or when temperature is varied from 0C to 80C. Because the Bitline PUF leverages existing SRAM circuitry, its area overhead is only a single flip-flop and two logic gates per row of SRAM. The combination of high performance and low cost makes the Bitline PUF a promising candidate for commercial adoption and future research

    Reliability in the face of variability in nanometer embedded memories

    Get PDF
    In this thesis, we have investigated the impact of parametric variations on the behaviour of one performance-critical processor structure - embedded memories. As variations manifest as a spread in power and performance, as a first step, we propose a novel modeling methodology that helps evaluate the impact of circuit-level optimizations on architecture-level design choices. Choices made at the design-stage ensure conflicting requirements from higher-levels are decoupled. We then complement such design-time optimizations with a runtime mechanism that takes advantage of adaptive body-biasing to lower power whilst improving performance in the presence of variability. Our proposal uses a novel fully-digital variation tracking hardware using embedded DRAM (eDRAM) cells to monitor run-time changes in cache latency and leakage. A special fine-grain body-bias generator uses the measurements to generate an optimal body-bias that is needed to meet the required yield targets. A novel variation-tolerant and soft-error hardened eDRAM cell is also proposed as an alternate candidate for replacing existing SRAM-based designs in latency critical memory structures. In the ultra low-power domain where reliable operation is limited by the minimum voltage of operation (Vddmin), we analyse the impact of failures on cache functional margin and functional yield. Towards this end, we have developed a fully automated tool (INFORMER) capable of estimating memory-wide metrics such as power, performance and yield accurately and rapidly. Using the developed tool, we then evaluate the #effectiveness of a new class of hybrid techniques in improving cache yield through failure prevention and correction. Having a holistic perspective of memory-wide metrics helps us arrive at design-choices optimized simultaneously for multiple metrics needed for maintaining lifetime requirements

    Contributions on using embedded memory circuits as physically unclonable functions considering reliability issues

    Get PDF
    [eng] Moving towards Internet-of-Things (IoT) era, hardware security becomes a crucial research topic, because of the growing demand of electronic products that are remotely connected through networks. Novel hardware security primitives based on manufacturing process variability are proposed to enhance the security of the IoT systems. As a trusted root that provides physical randomness, a physically unclonable function is an essential base for hardware security. SRAM devices are becoming one of the most promising alternatives for the implementation of embedded physical unclonable functions as the start-up value of each bit-cell depends largely on the variability related with the manufacturing process. Not all bit-cells experience the same degree of variability, so it is possible that some cells randomly modify their logical starting value, while others will start-up always at the same value. However, physically unclonable function applications, such as identification and key generation, require more constant logical starting value to assure high reliability in PUF response. For this reason, some kind of post-processing is needed to correct the errors in the PUF response. Unfortunately, those cells that have more constant logic output are difficult to be detected in advance. This work characterizes by simulation the start-up value reproducibility proposing several metrics suitable for reliability estimation during design phases. The aim is to be able to predict by simulation the percentage of cells that will be suitable to be used as PUF generators. We evaluate the metrics results and analyze the start-up values reproducibility considering different external perturbation sources like several power supply ramp up times, previous internal values in the bit-cell, and different temperature scenarios. The characterization metrics can be exploited to estimate the number of suitable SRAM cells for use in PUF implementations that can be expected from a specific SRAM design.[cat] En l’era de la Internet de les coses (IoT), garantir la seguretat del hardware ha esdevingut un tema de recerca crucial, en especial a causa de la creixent demanda de productes electrònics que es connecten remotament a través de xarxes. Per millorar la seguretat dels sistemes IoT, s’han proposat noves solucions hardware basades en la variabilitat dels processos de fabricació. Les funcions físicament inclonables (PUF) constitueixen una font fiable d’aleatorietat física i són una base essencial per a la seguretat hardware. Les memòries SRAM s’estan convertint en una de les alternatives més prometedores per a la implementació de funcions físicament inclonables encastades. Això és així ja que el valor d’encesa de cada una de les cel·les que formen els bits de la memòria depèn en gran mesura de la variabilitat pròpia del procés de fabricació. No tots els bits tenen el mateix grau de variabilitat, així que algunes cel·les canvien el seu estat lògic d’encesa de forma aleatòria entre enceses, mentre que d’altres sempre assoleixen el mateix valor en totes les enceses. No obstant això, les funcions físicament inclonables, que s’utilitzen per generar claus d’identificació, requereixen un valor lògic d’encesa constant per tal d’assegurar una resposta fiable del PUF. Per aquest motiu, normalment es necessita algun tipus de postprocessament per corregir els possibles errors presents en la resposta del PUF. Malauradament, les cel·les que presenten una resposta més constant són difícils de detectar a priori. Aquest treball caracteritza per simulació la reproductibilitat del valor d’encesa de cel·les SRAM, i proposa diverses mètriques per estimar la fiabilitat de les cel·les durant les fases de disseny de la memòria. L'objectiu és ser capaç de predir per simulació el percentatge de cel·les que seran adequades per ser utilitzades com PUF. S’avaluen els resultats de diverses mètriques i s’analitza la reproductibilitat dels valors d’encesa de les cel·les considerant diverses fonts de pertorbacions externes, com diferents rampes de tensió per a l’encesa, els valors interns emmagatzemats prèviament en les cel·les, i diferents temperatures. Es proposa utilitzar aquestes mètriques per estimar el nombre de cel·les SRAM adients per ser implementades com a PUF en un disseny d‘SRAM específic.[spa] En la era de la Internet de las cosas (IoT), garantizar la seguridad del hardware se ha convertido en un tema de investigación crucial, en especial a causa de la creciente demanda de productos electrónicos que se conectan remotamente a través de redes. Para mejorar la seguridad de los sistemas IoT, se han propuesto nuevas soluciones hardware basadas en la variabilidad de los procesos de fabricación. Las funciones físicamente inclonables (PUF) constituyen una fuente fiable de aleatoriedad física y son una base esencial para la seguridad hardware. Las memorias SRAM se están convirtiendo en una de las alternativas más prometedoras para la implementación de funciones físicamente inclonables empotradas. Esto es así, puesto que el valor de encendido de cada una de las celdas que forman los bits de la memoria depende en gran medida de la variabilidad propia del proceso de fabricación. No todos los bits tienen el mismo grado de variabilidad. Así pues, algunas celdas cambian su estado lógico de encendido de forma aleatoria entre encendidos, mientras que otras siempre adquieren el mismo valor en todos los encendidos. Sin embargo, las funciones físicamente inclonables, que se utilizan para generar claves de identificación, requieren un valor lógico de encendido constante para asegurar una respuesta fiable del PUF. Por este motivo, normalmente se necesita algún tipo de posprocesado para corregir los posibles errores presentes en la respuesta del PUF. Desafortunadamente, las celdas que presentan una respuesta más constante son difíciles de detectar a priori. Este trabajo caracteriza por simulación la reproductibilidad del valor de encendido de celdas SRAM, y propone varias métricas para estimar la fiabilidad de las celdas durante las fases de diseño de la memoria. El objetivo es ser capaz de predecir por simulación el porcentaje de celdas que serán adecuadas para ser utilizadas como PUF. Se evalúan los resultados de varias métricas y se analiza la reproductibilidad de los valores de encendido de las celdas considerando varias fuentes de perturbaciones externas, como diferentes rampas de tensión para el encendido, los valores internos almacenados previamente en las celdas, y diferentes temperaturas. Se propone utilizar estas métricas para estimar el número de celdas SRAM adecuadas para ser implementadas como PUF en un diseño de SRAM específico

    Study and development of innovative strategies for energy-efficient cross-layer design of digital VLSI systems based on Approximate Computing

    Get PDF
    The increasing demand on requirements for high performance and energy efficiency in modern digital systems has led to the research of new design approaches that are able to go beyond the established energy-performance tradeoff. Looking at scientific literature, the Approximate Computing paradigm has been particularly prolific. Many applications in the domain of signal processing, multimedia, computer vision, machine learning are known to be particularly resilient to errors occurring on their input data and during computation, producing outputs that, although degraded, are still largely acceptable from the point of view of quality. The Approximate Computing design paradigm leverages the characteristics of this group of applications to develop circuits, architectures, algorithms that, by relaxing design constraints, perform their computations in an approximate or inexact manner reducing energy consumption. This PhD research aims to explore the design of hardware/software architectures based on Approximate Computing techniques, filling the gap in literature regarding effective applicability and deriving a systematic methodology to characterize its benefits and tradeoffs. The main contributions of this work are: -the introduction of approximate memory management inside the Linux OS, allowing dynamic allocation and de-allocation of approximate memory at user level, as for normal exact memory; - the development of an emulation environment for platforms with approximate memory units, where faults are injected during the simulation based on models that reproduce the effects on memory cells of circuital and architectural techniques for approximate memories; -the implementation and analysis of the impact of approximate memory hardware on real applications: the H.264 video encoder, internally modified to allocate selected data buffers in approximate memory, and signal processing applications (digital filter) using approximate memory for input/output buffers and tap registers; -the development of a fully reconfigurable and combinatorial floating point unit, which can work with reduced precision formats

    Circuit design for embedded memory in low-power integrated circuits

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 141-152).This thesis explores the challenges for integrating embedded static random access memory (SRAM) and non-volatile memory-based on ferroelectric capacitor technology-into lowpower integrated circuits. First considered is the impact of process variation in deep-submicron technologies on SRAM, which must exhibit higher density and performance at increased levels of integration with every new semiconductor generation. Techniques to speed up the statistical analysis of physical memory designs by a factor of 100 to 10,000 relative to the conventional Monte Carlo Method are developed. The proposed methods build upon the Importance Sampling simulation algorithm and efficiently explore the sample space of transistor parameter fluctuation. Process variation in SRAM at low-voltage is further investigated experimentally with a 512kb 8T SRAM test chip in 45nm SOI CMOS technology. For active operation, an AC coupled sense amplifier and regenerative global bitline scheme are designed to operate at the limit of on current and off current separation on a single-ended SRAM bitline. The SRAM operates from 1.2 V down to 0.57 V with access times from 400ps to 3.4ns. For standby power, a data retention voltage sensor predicts the mismatch-limited minimum supply voltage without corrupting the contents of the memory. The leakage power of SRAM forces the chip designer to seek non-volatile memory in applications such as portable electronics that retain significant quantities of data over long durations. In this scenario, the energy cost of accessing data must be minimized. This thesis presents a ferroelectric random access memory (FRAM) prototype that addresses the challenges of sensing diminishingly small charge under conditions favorable to low access energy with a time-to-digital sensing scheme. The 1 Mb IT1C FRAM fabricated in 130 nm CMOS operates from 1.5 V to 1.0 V with corresponding access energy from 19.2 pJ to 9.8 pJ per bit. Finally, the computational state of sequential elements interspersed in CMOS logic, also restricts the ability to power gate. To enable simple and fast turn-on, ferroelectric capacitors are integrated into the design of a standard cell register, whose non-volatile operation is made compatible with the digital design flow. A test-case circuit containing ferroelectric registers exhibits non-volatile operation and consumes less than 1.3 pJ per bit of state information and less than 10 clock cycles to save or restore with no minimum standby power requirement in-between active periods.by Masood Qazi.Ph.D

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security

    Energy Efficient Computing with Time-Based Digital Circuits

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2019. Major: Electrical Engineering. Advisor: Chris Kim. 1 computer file (PDF); xv, 150 pages.Advancements in semiconductor technology have given the world economical, abundant, and reliable computing resources which have enabled countless breakthroughs in science, medicine, and agriculture which have improved the lives of many. Due to physics, the rate of these advancements is slowing, while the demand for the increasing computing horsepower ever grows. Novel computer architectures that leverage the foundation of conventional systems must become mainstream to continue providing the improved hardware required by engineers, scientists, and governments to innovate. This thesis provides a path forward by introducing multiple time-based computing architectures for a diverse range of applications. Simply put, time-based computing encodes the output of the computation in the time it takes to generate the result. Conventional systems encode this information in voltages across multiple signals; the performance of these systems is tightly coupled to improvements in semiconductor technology. Time-based computing elegantly uses the simplest of components from conventional systems to efficiently compute complex results. Two time-based neuromorphic computing platforms, based on a ring oscillator and a digital delay line, are described. An analog-to-digital converter is designed in the time domain using a beat frequency circuit which is used to record brain activity. A novel path planning architecture, with designs for 2D and 3D routes, is implemented in the time domain. Finally, a machine learning application using time domain inputs enables improved performance of heart rate prediction, biometric identification, and introduces a new method for using machine learning to predict temporal signal sequences. As these innovative architectures are presented, it will become clear the way forward will be increasingly enabled with time-based designs
    corecore