364 research outputs found

    ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ ๊ธฐ๋ฐ˜ ๊ธฐ์ค€ ์ฃผํŒŒ์ˆ˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ํด๋ก ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์› ํšŒ๋กœ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7ฮผs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๊ณ ์†, ์ €์ „๋ ฅ, ๊ด‘๋Œ€์—ญ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ์˜ ์„ค๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ๋™์ž‘์„ ์œ„ํ•ด์„œ ์•Œ๋ ‰์‚ฐ๋” ์œ„์ƒ ๊ฒ€์ถœ๊ธฐ์— ๊ธฐ๋ฐ˜ํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํš๋“ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ์˜ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์–‘์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•˜์˜€๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒจํ„ด ํžˆ์Šคํ† ๊ทธ๋žจ ๋ถ„์„์„ ํ†ตํ•ด ์–ป์€ ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ž๊ธฐ๊ณต๋ถ„์‚ฐ์„ ์ด์šฉํ•œ ํ†ต๊ณ„์  ์ฃผํŒŒ์ˆ˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ง์ ‘ ๋น„๋ก€ ๊ฒฝ๋กœ์™€ ๋””์ง€ํ„ธ ์ ๋ถ„ ๊ฒฝ๋กœ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๊ธฐ์ค€ ํด๋Ÿญ์ด ์—†๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” ๋ชจ๋“  ์ธก์ • ๊ฐ€๋Šฅํ•œ ์กฐ๊ฑด์—์„œ ์ฃผํŒŒ์ˆ˜ ์ž ๊ธˆ์„ ๋‹ฌ์„ฑํ•˜๋Š” ๋ฐ ์„ฑ๊ณตํ•˜์˜€๊ณ , ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์ธก์ •๋œ ์ฃผํŒŒ์ˆ˜ ์ถ”์  ์‹œ๊ฐ„์€ 7ฮผs ์ด๋‚ด์ด๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 0.032 mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ํด๋Ÿญ ๋ฐ ๋ฐ์ดํ„ฐ ๋ณต์›ํšŒ๋กœ๋Š” 32 Gb/s์˜ ์†๋„์—์„œ ๋น„ํŠธ์—๋Ÿฌ์œจ 10-12 ์ดํ•˜๋กœ ๋™์ž‘ํ•˜์˜€๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 32Gb/s์˜ ์†๋„์—์„œ 1.0V ๊ณต๊ธ‰์ „์••์„ ์‚ฌ์šฉํ•˜์—ฌ 1.15 pJ/b์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR โ€“ WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR โ€“ WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 ์ดˆ ๋ก 122๋ฐ•

    ๋ฐ์ดํ„ฐ ์ „์†ก๋กœ ํ™•์žฅ์„ฑ๊ณผ ๋ฃจํ”„ ์„ ํ˜•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ ๋‹ค์ค‘์ฑ„๋„ ์ˆ˜์‹ ๊ธฐ๋“ค์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 2. ์ •๋•๊ท .Two types of serial data communication receivers that adopt a multichannel architecture for a high aggregate I/O bandwidth are presented. Two techniques for collaboration and sharing among channels are proposed to enhance the loop-linearity and channel-expandability of multichannel receivers, respectively. The first proposed receiver employs a collaborative timing scheme recovery which relies on the sharing of all outputs of phase detectors (PDs) among channels to extract common information about the timing and multilevel signaling architecture of PAM-4. The shared timing information is processed by a common global loop filter and is used to update the phase of the voltage-controlled oscillator with better rejection of per-channel noise. In addition to collaborative timing recovery, a simple linearization technique for binary PDs is proposed. The technique realizes a high-rate oversampling PD while the hardware cost is equivalent to that of a conventional 2x-oversampling clock and data recovery. The first receiver exploiting the collaborative timing recovery architecture is designed using 45-nm CMOS technology. A single data lane occupies a 0.195-mm2 area and consumes a relatively low 17.9 mW at 6 Gb/s at 1.0V. Therefore, the power efficiency is 2.98 mW/Gb/s. The simulated jitter is about 0.034 UI RMS given an input jitter value of 0.03 UI RMS, while the relatively constant loop bandwidth with the PD linearization technique is about 7.3-MHz regardless of the data-stream noise. Unlike the first receiver, the second proposed multichannel receiver was designed to reduce the hardware complexity of each lane. The receiver employs shared calibration logic among channels and yet achieves superior channel expandability with slim data lanes. A shared global calibration control, which is used in a forwarded clock receiver based on a multiphase delay-locked loop, accomplishes skew calibration, equalizer adaptation, and the phase lock of all channels during a calibration period, resulting in reduced hardware overhead and less area required by each data lane. The second forwarded clock receiver is designed in 90-nm CMOS technology. It achieves error-free eye openings of more than 0.5 UI across 9โˆ’ 28 inch Nelco 4000-6 microstrips at 4โˆ’ 7 Gb/s and more than 0.42 UI at data rates of up to 9 Gb/s. The data lane occupies only 0.152 mm2 and consumes 69.8 mW, while the rest of the receiver occupies 0.297 mm2 and consumes 56 mW at a data rate of 7 Gb/s and a supply voltage of 1.35 V.1. Introduction 1 1.1 Motivations 1.2 Thesis Organization 2. Previous Receivers for Serial-Data Communications 2.1 Classification of the Links 2.2 Clocking architecture of transceivers 2.3 Components of receiver 2.3.1 Channel loss 2.3.2 Equalizer 2.3.3 Clock and data recovery circuit 2.3.3.1. Basic architecture 2.3.3.2. Phase detector 2.3.3.2.1. Linear phase detector 2.3.3.2.2. Binary phase detector 2.3.3.3. Frequency detector 2.3.3.4. Charge pump 2.3.3.5. Voltage controlled oscillator and delay-line 2.3.4 Loop dynamics of PLL 2.3.5 Loop dynamics of DLL 3. The Proposed PLL-Based Receiver with Loop Linearization Technique 3.1 Introduction 3.2 Motivation 3.3 Overview of binary phase detection 3.4 The proposed BBPD linearization technique 3.4.1 Architecture of the proposed PLL-based receiver 3.4.2 Linearization technique of binary phase detection 3.4.3 Rotational pattern of sampling phase offset 3.5 PD gain analysis and optimization 3.6 Loop Dynamics of the 2nd-order CDR 3.7 Verification with the time-accurate behavioral simulation 3.8 Summary 4. The Proposed DLL-Based Receiver with Forwarded-Clock 4.1 Introduction 4.2 Motivation 4.3 Design consideration 4.4 Architecture of the proposed forwarded-clock receiver 4.5 Circuit description 4.5.1 Analog multi-phase DLL 4.5.2 Dual-input interpolating deley cells 4.5.3 Dedicated half-rate data samplers 4.5.4 Cherry-Hooper continuous-time linear equalizer 4.5.5 Equalizer adaptation and phase-lock scheme 4.6 Measurement results 5. Conclusion 6. BibliographyDocto

    DESIGN AND CHARACTERIZATION OF LOW-POWER LOW-NOISE ALLDIGITAL SERIAL LINK FOR POINT-TO-POINT COMMUNICATION IN SOC

    Get PDF
    The fully-digital implementation of serial links has recently emerged as a viable alternative to their classical analogue counterpart. Indeed, reducing the analogue content in favour of expanding the digital content becomes more attractive due to the ability to achieve less power consumption, less sensitivity to the noise and better scalability across multiple technologies and platforms with inconsiderable modifications. In addition, describing the circuit in hardware description languages gives it a high flexibility to program all design parameters in a very short time compared with the analogue designs which need to be re-designed at transistor level for any parameter change. This can radically reduce cost and time-to-market by saving a significant amount of development time. However, beside these considerable advantages, the fully-digital architecture poses several design challenges

    Energy-efficient wireline transceivers

    Get PDF
    Power-efficient wireline transceivers are highly demanded by many applications in high performance computation and communication systems. Apart from transferring a wide range of data rates to satisfy the interconnect bandwidth requirement, the transceivers have very tight power budget and are expected to be fully integrated. This thesis explores enabling techniques to implement such transceivers in both circuit and system levels. Specifically, three prototypes will be presented: (1) a 5Gb/s reference-less clock and data recovery circuit (CDR) using phase-rotating phase-locked loop (PRPLL) to conduct phase control so as to break several fundamental trade-offs in conventional receivers; (2) a 4-10.5Gb/s continuous-rate CDR with novel frequency acquisition scheme based on bang-bang phase detector (BBPD) and a ring oscillator-based fractional-N PLL as the low noise wide range DCO in the CDR loop; (3) a source-synchronous energy-proportional link with dynamic voltage and frequency scaling (DVFS) and rapid on/off (ROO) techniques to cut the link power wastage at system level. The receiver/transceiver architectures are highly digital and address the requirements of new receiver architecture development, wide operating range, and low power/area consumption while being fully integrated. Experimental results obtained from the prototypes attest the effectiveness of the proposed techniques

    Timing Jitter Analysis and Mitigation in Hybrid OFDM-DFMA PONs

    Get PDF
    Hybrid orthogonal frequency division multiplexing-digital filter multiple access passive optical networks (OFDM-DFMA PONs) offer a cost-effective solution to the challenging requirements of next-generation optical access networks and 5G and beyond radio access networks. It is crucial to consider the impact of timing jitter in any ADC/DAC-based system, therefore this paper presents an in-depth investigation into the impacts of DAC/ADC timing jitter on the hybrid OFDM-DFMA PON's performance. We introduce improved accuracy white and coloured, DAC and ADC timing jitter models, applicable to any DSP-based transmission system. We prove that DAC and ADC timing jitter effects are virtually identical and investigate the effects of white/coloured timing jitter on upstream performance in hybrid OFDM-DFMA PONs and determine the associated jitter-induced optical power penalties. To mitigate against the timing jitter-induced performance degradations, a simple, but highly effective DSP-based technique is implemented which increases robustness against the timing jitter effects and significantly reduces timing jitter-induced optical power penalties. This consequently relaxes DAC/ADC sampling clock jitter requirements and so reduces implementation costs. White (coloured) timing jitter effects are shown to be independent of (dependent on) ONU operating frequency band and a trade-off between DAC and ADC jitter levels can be exploited to reduce ONU costs

    Nd:YAG development for spaceborne laser ranging system

    Get PDF
    The results of the development of a unique modelocked laser device to be utilized in future NASA space-based, ultraprecision laser ranger systems are summarized. The engineering breadboard constructed proved the feasibility of the pump-pulsed, actively modelocked, PTM Q-switched Nd:YAG laser concept for the generation of subnanosecond pulses suitable for ultra-precision ranging. The laser breadboard also included a double-pass Nd:YAG amplifier and provision for a Type II KD*P frequency doubler. The specific technical accomplishment was the generation of single 150 psec, 20-mJ pulses at 10 pps at a wavelength of 1.064 micrometers with 25 dB suppression of pre-and post-pulses

    Multi-gigabit CMOS analog-to-digital converter and mixed-signal demodulator for low-power millimeter-wave communication systems

    Get PDF
    The objective of the research is to develop high-speed ADCs and mixed-signal demodulator for multi-gigabit communication systems using millimeter-wave frequency bands in standard CMOS technology. With rapid advancements in semiconductor technologies, mobile communication devices have become more versatile, portable, and inexpensive over the last few decades. However, plagued by the short lifetime of batteries, low power consumption has become an extremely important specification in developing mobile communication devices. The ever-expanding demand of consumers to access and share information ubiquitously at faster speeds requires higher throughputs, increased signal-processing functionalities at lower power and lower costs. In todayโ€™s technology, high-speed signal processing and data converters are incorporated in almost all modern multi-gigabit communication systems. They are key enabling technologies for scalable digital design and implementation of baseband signal processors. Ultimately, the merits of a high performance mixed-signal receiver, such as data rate, sensitivity, signal dynamic range, bit-error rate, and power consumption, are directly related to the quality of the embedded ADCs. Therefore, this dissertation focuses on the analysis and design of high-speed ADCs and a novel broadband mixed-signal demodulator with a fully-integrated DSP composed of low-cost CMOS circuitry. The proposed system features a novel dual-mode solution to demodulate multi-gigabit BPSK and ASK signals. This approach reduces the resolution requirement of high-speed ADCs, while dramatically reducing its power consumption for multi-gigabit wireless communication systems.PhDGee-Kung Chang - Committee Chair; Chang-Ho Lee - Committee Member; Geoffrey Ye Li - Committee Member; Paul A. Kohl - Committee Member; Shyh-Chiang Shen - Committee Membe

    Wavelength tunable transmitters for future reconfigurable agile optical networks

    Get PDF
    Wavelength tuneable transmission is a requirement for future reconfigurable agile optical networks as it enables cost efficient bandwidth distribution and a greater degree of transparency. This thesis focuses on the development and characterisation of wavelength tuneable transmitters for the core, metro and access based WDM networks. The wavelength tuneable RZ transmitter is a fundamental component for the core network as the RZ coding scheme is favoured over the conventional NRZ format as the line rate increases. The combination of a widely tuneable SG DBR laser and an EAM is a propitious technique employed to generate wavelength tuneable pulses at high repetition rates (40 GHz). As the EAM is inherently wavelength dependant an accurate characterisation of the generated pulses is carried out using the linear spectrogram measurement technique. Performance issues associated with the transmitter are investigated by employing the generated pulses in a 1500 km 42.7 Gb/s circulating loop system. It is demonstrated that non-optimisation of the EAM drive conditions at each operating wavelength can lead to a 33 % degradation in system performance. To achieve consistent operation over a wide waveband the drive conditions of the EAM must be altered at each operating wavelength. The metro network spans relatively small distances in comparison to the core and therefore must utilise more cost efficient solutions to transmit data, while also maintaining high reconfigurable functionality. Due to the shorter transmission distances, directly modulated sources can be utilised, as less precise wavelength and chirp control can be tolerated. Therefore a gain-switched FP laser provides an ideal source for wavelength tuneable pulse generation at high data rates (10 Gb/s). A self-seeding scheme that generates single mode pulses with high SMSR (> 30 dB) and small pulse duration is demonstrated. A FBG with a very large group delay disperses the generated pulses and subsequently uses this CW like signal to re-inject the laser diode negating the need to tune the repetition rate for optimum gain-switching operation. The access network provides the last communication link between the customerโ€™s premises and the first switching node in the network. FTTH systems should take advantage of directly modulated sources; therefore the direct modulation of a SG DBR tuneable laser is investigated. Although a directly modulated TL is ideal for reconfigurable access based networks, the modulation itself leads to a drift in operating frequency which may result in cross channel interference in a WDM network. This effect is investigated and also a possible solution to compensate the frequency drift through simultaneous modulation of the lasers phase section is examined

    System characterization and reception techniques for two-dimensional optical storage

    Get PDF
    • โ€ฆ
    corecore