154 research outputs found

    Millimeter-wave Communication and Radar Sensing — Opportunities, Challenges, and Solutions

    Get PDF
    With the development of communication and radar sensing technology, people are able to seek for a more convenient life and better experiences. The fifth generation (5G) mobile network provides high speed communication and internet services with a data rate up to several gigabit per second (Gbps). In addition, 5G offers great opportunities of emerging applications, for example, manufacture automation with the help of precise wireless sensing. For future communication and sensing systems, increasing capacity and accuracy is desired, which can be realized at millimeter-wave spectrum from 30 GHz to 300 GHz with several tens of GHz available bandwidth. Wavelength reduces at higher frequency, this implies more compact transceivers and antennas, and high sensing accuracy and imaging resolution. Challenges arise with these application opportunities when it comes to realizing prototype or demonstrators in practice. This thesis proposes some of the solutions addressing such challenges in a laboratory environment.High data rate millimeter-wave transmission experiments have been demonstrated with the help of advanced instrumentations. These demonstrations show the potential of transceiver chipsets. On the other hand, the real-time communication demonstrations are limited to either low modulation order signals or low symbol rate transmissions. The reason for that is the lack of commercially available high-speed analog-to-digital converters (ADCs); therefore, conventional digital synchronization methods are difficult to implement in real-time systems at very high data rates. In this thesis, two synchronous baseband receivers are proposed with carrier recovery subsystems which only require low-speed ADCs [A][B].Besides synchronization, high-frequency signal generation is also a challenge in millimeter-wave communications. The frequency divider is a critical component of a millimeter-wave frequency synthesizer. Having both wide locking range and high working frequencies is a challenge. In this thesis, a tunable delay gated ring oscillator topology is proposed for dual-mode operation and bandwidth extension [C]. Millimeter-wave radar offers advantages for high accuracy sensing. Traditional millimeter-wave radar with frequency-modulated continuous-wave (FMCW), or continuous-wave (CW), all have their disadvantages. Typically, the FMCW radar cannot share the spectrum with other FMCW radars.\ua0 With limited bandwidth, the number of FMCW radars that could coexist in the same area is limited. CW radars have a limited ambiguous distance of a wavelength. In this thesis, a phase-modulated radar with micrometer accuracy is presented [D]. It is applicable in a multi-radar scenario without occupying more bandwidth, and its ambiguous distance is also much larger than the CW radar. Orthogonal frequency-division multiplexing (OFDM) radar has similar properties. However, its traditional fast calculation method, fast Fourier transform (FFT), limits its measurement accuracy. In this thesis, an accuracy enhancement technique is introduced to increase the measurement accuracy up to the micrometer level [E]

    A Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systems

    Get PDF
    This dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer CMOS technology. The synthesizer is used for a multi-band multi-polarization radar system operating in the K- and Ka-band. The synthesizer is a fully integrated concurrent tri-band, tri-output phase-locked loop (PLL) with divide-by-3 injection locked frequency divider (ILFD). A new locking mechanism for the ILFD based on the gain control of the feedback amplifier is utilized to enable tunable and enhanced locking range which facilitates the attainment of stable locking states. The PLL has three concurrent multiband outputs: 3.47-4.313 GHz, 6.94-8.626 GHz and 19.44-21.42-GHz. High second-order harmonic suppression of 62.2 dBc is achieved without using a filter through optimization of the balance between the differential outputs. The proposed technique enables the use of an integer-N architecture for multi-band and microwave systems, while maintaining the benefit of the integer-N architecture; an optimal performance in area and power consumption. The 1/2 dual-ILFD with wide locking range and low-power consumption is analyzed and designed together with a divide-by-2 current mode logic (CML) divider. The 1/2 dual-ILFD enhances the locking range with low-power consumption through optimized load quality factor (QL) and output current amplitude (iOSC) simultaneously. The 1/2 dual-ILFD achieves a locking range of 692 MHz between 7.512 and 8.204 GHz. The new 1/2 dual-ILFD is especially attractive for microwave phase-locked loops and frequency synthesizers requiring low power and wide locking range. The 3.5-GHz divide-by-3 (1/3) ILFD consists of an internal 10.5-GHz Voltage Controlled Oscillator (VCO) functioning as an injection source, 1/3 ILFD core, and output inverter buffer. A phase tuner implemented on an asymmetric inductor is proposed to increase the locking range. The other divide-by-3 ILFD utilizes self-injection technique. The self-injection technique substantially enhances the locking range and phase noise, and reduces the minimum power of the injection signal needed for the 1/3 ILFD. The locking range is increased by 47.8 % and the phase noise is reduced by 14.77 dBc/Hz at 1-MHz offset

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    A STUDY ON LOW-PHASE-NOISE 77-GHZ CMOS TRANSMITTER FOR FMCW RADAR

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 남상욱.This thesis presents design methodology and experimental verification of a low-phase-noise 77-GHz CMOS FMCW (Frequency Modulated Continuous Wave) radar transmitter. It is quite difficult to design a low-phase-noise signal generator at millimeter-wave frequencies in CMOS because gain of CMOS transistors is extremely low at those frequencies. When using a frequency multiplier, it is relatively advantageous to design a low-phase-noise signal source because a VCO can be designed at lower frequency band where gain of active devices is high. When using multiple stage frequency multipliers to achieve low-phase-noise performance, the operating frequency range can be reduced and DC power consumption can be increased. Therefore, in this thesis, two methods for realizing 77-GHz CMOS low-phase-noise signal source have been proposed. One method is to combine a ×6 frequency multiplier and a 12.8-GHz FMCW signal generator. In this case, a VCO, an injection-locked VCO buffer, a ×3 frequency multiplier (tripler), and a ×2 frequency multiplier (doubler) constituting the 77-GHz signal generator are designed as a four-stage coupled injection-locked oscillator (ILO) chain which is oscillated and injected into the output signal of the preceding stage. The VCO used in the 12.8-GHz PLL (phase locked loop) was designed using linearized transconductance (LiT: Linearized Transconductance) technology to have low phase noise characteristics and was designed to be simpler than the existing LiT VCO using a 3:2 transformer. Since the PLL is designed as the integer-N type, an external frequency modulated triangular reference signal must be injected into the phase frequency detector (PFD) of the PLL to generate the FMCW signal. The fabricated transmitter chip supports FMCW output signals in the 76.81-77.95 GHz band when supplied with the external reference triangular signal from 50.00 to 50.75 MHz. The RF output power is about 8.9 dBm and consumes 116.7 mW of DC power. The measured phase noise is -91.16 dBc/Hz at the 1-MHz offset of the 76.81-GHz carrier frequency, which is the lowest phase noise characteristic of the previously announced 77-GHz CMOS transmitter and transceiver. A transmitter module for 77-GHz radar performance measurement was fabricated by combining the transmitter chip with the on-chip feeder that can solve the millimeter-wave packaging problem. The other is a method of combining a ×28 frequency multiplier and a 2.75-GHz FMCW signal generator. As in the previous method, the VCO, a ×7 multiplier, and two ×2 multipliers constituting the 77-GHz signal generator are each designed as a 4-stage ILO chain. The VCO used in the 2.75-GHz PLL is designed as a class-C type that improves the startup problem to have low-phase-noise characteristics. As in the previous case, an integer-N type PLL is used. The fabricated transmitter chip supports FMCW output signals in the 76.26-78.23 GHz band when supplied with the external reference triangular signal from 42.55 to 43.65 MHz. The RF output power is about -18 dBm and consumes 195.4 mW of DC power. The measured phase noise is -93.64 dBc/Hz at the 1-MHz offset of the 78.13-GHz carrier frequency, which is even lower phase noise characteristic than the ×6 frequency multiplier based transmitter chip.Chapter 1. Introduction 1 1.1 Types and Applications of Automotive Radars 2 1.1 Research Strategy 7 Chapter 2. Frequency and Architecture selection 12 2.1 LiT VCO 14 2.2 Class-C VCO 19 2.3 Injection-Locked Oscillator Chain 24 2.4 Summary 29 Chapter 3. 77-GHz FMCW Radar Transmitter with 12.8-GHz PLL and 6 Frequency Multiplier 30 3.1 Proposed LiT VCO 33 3.2 6 Multiplier and Power Amplifier 40 3.3 Measurement Results 46 3.3.1 LiT VCO Measurement Results 46 3.3.2 77-GHz Transmitter (v1) Measurement Results 49 3.4 Summary 60 Chapter 4. 77-GHz FMCW Radar Transmitter with 2.75-GHz PLL and 28 Frequency Multiplier 62 4.1 Proposed class-C VCO 65 4.2 28 Multiplier and Power Amplifier 73 4.3 Measurement Results 80 4.3.1 Class-C VCO Measurement Results 80 4.3.2 77-GHz Transmitter (v2) Measurement Results 83 4.4 Summary 90 Chapter 5. Conclusion 92 Bibliography 94 Abstract 97Docto

    A Low-Power BFSK/OOK Transmitter for Wireless Sensors

    Get PDF
    In recent years, significant improvements in semiconductor technology have allowed consistent development of wireless chipsets in terms of functionality and form factor. This has opened up a broad range of applications for implantable wireless sensors and telemetry devices in multiple categories, such as military, industrial, and medical uses. The nature of these applications often requires the wireless sensors to be low-weight and energy-efficient to achieve long battery life. Among the various functions of these sensors, the communication block, used to transmit the gathered data, is typically the most power-hungry block. In typical wireless sensor networks, transmission range is below 10 meters and required radiated power is below 1 milliwatt. In such cases, power consumption of the frequency-synthesis circuits prior to the power amplifier of the transmitter becomes significant. Reducing this power consumption is currently the focus of various research endeavors. A popular method of achieving this goal is using a direct-modulation transmitter where the generated carrier is directly modulated with baseband data using simple modulation schemes. Among the different variations of direct-modulation transmitters, transmitters using unlocked digitally-controlled oscillators and transmitters with injection or resonator-locked oscillators are widely investigated because of their simple structure. These transmitters can achieve low-power and stable operation either with the help of recalibration or by sacrificing tuning capability. In contrast, phase-locked-loop-based (PLL) transmitters are less researched. The PLL uses a feedback loop to lock the carrier to a reference frequency with a programmable ratio and thus achieves good frequency stability and convenient tunability. This work focuses on PLL-based transmitters. The initial goal of this work is to reduce the power consumption of the oscillator and frequency divider, the two most power-consuming blocks in a PLL. Novel topologies for these two blocks are proposed which achieve ultra-low-power operation. Along with measured performance, mathematical analysis to derive rule-of-thumb design approaches are presented. Finally, the full transmitter is implemented using these blocks in a 130 nanometer CMOS process and is successfully tested for low-power operation

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Design of Frequency divider with voltage vontrolled oscillator for 60 GHz low power phase-locked loops in 65 nm RF CMOS

    Get PDF
    Increasing memory capacity in mobile devices, is driving the need of high-data rates equipment. The 7 GHz band around 60 GHz provides the opportunity for multi-gigabit/sec wireless communication. It is a real opportunity for developing next generation of High-Definition (HD) devices. In the last two decades there was a great proliferation of Voltage Controlled Oscillator (VCO) and Frequency Divider (FD) topologies in RF ICs on silicon, but reaching high performance VCOs and FDs operating at 60 GHz is in today's technology a great challenge. A key reason is the inaccuracy of CMOS active and passive device models at mm-W. Three critical issues still constitute research objectives at 60 GHz in CMOS: generation of the Local Oscillator (LO) signal (1), division of the LO signal for the Phase-Locked Loop (PLL) closed loop (2) and distribution of the LO signal (3). In this Thesis, all those three critical issues are addressed and experimentally faced-up: a divide-by-2 FD for a PLL of a direct-conversion transceiver operating at mm-W frequencies in 65 nm RF CMOS technology has been designed. Critical issues such as Process, Voltage and Temperature (PVT) variations, Electromagnetic (EM) simulations and power consumption are addressed to select and design a FD with high frequency dividing range. A 60 GHz VCO is co-designed and integrated in the same die, in order to provide the FD with mm-W input signal. VCOs and FDs play critical roles in the PLL. Both of them constitute the PLL core components and they would need co-design, having a big impact in the overall performance especially because they work at the highest frequency in the PLL. Injection Locking FD (ILFD) has been chosen as the optimum FD topology to be inserted in the control loop of mm-W PLL for direct-conversion transceiver, due to the high speed requirements and the power consumption constraint. The drawback of such topology is the limited bandwidth, resulting in narrow Locking Range (LR) for WirelessHDTM applications considering the impact of PVT variations. A simulation methodology is presented in order to analyze the ILFD locking state, proposing a first divide-by-2 ILFD design with continuous tuning. In order to design a wide LR, low power consumption ILFD, the impacts of various alternatives of low/high Q tank and injection scheme are deeply analysed, since the ILFD locking range depends on the Q of the tank and injection efficiency. The proposed 3-bit dual-mixing 60 GHz divide-by-2 LC-ILFD is designed with an accumulation of switching varactors binary scaled to compensate PVT variations. It is integrated in the same die with a 4-bit 60 GHz LC-VCO. The overall circuit is designed to allow measurements of the singles blocks stand-alone and working together. The co-layout is carried on with the EM modelling process of passives devices, parasitics and transmission lines extracted from the layout. The inductors models provided by the foundry are qualified up to 40 GHz, therefore the EM analysis is a must for post-layout simulation. The PVT variations have been simulated before manufacturing and, based on the results achieved, a PLL scheme PVT robust, considering frequency calibration, has been patented. The test chip has been measured in the CEA-Leti (Grenoble) during a stay of one week. The operation principle and the optimization trade-offs among power consumption, and locking ranges of the final selected ILFD topology have been demonstrated. Even if the experimental results are not completely in agreement with the simulations, due to modelling error and inaccuracy, the proposed technique has been validated with post-measurement simulations. As demonstrated, the locking range of a low-power, discrete tuned divide-by-2 ILFD can be enhanced by increasing the injection efficiency, without the drawbacks of higher power consumption and chip area. A 4-bits wide tuning range LC-VCO for mm-W applications has been co-designed using the selected 65 nm CMOS process.Postprint (published version

    Ultra high data rate CMOS front ends

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motivated the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performing measurements using on-wafer probing at 60 GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitive to the effective length and bending of the interfaces. This paper presents different 60 GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, a Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60 GHZ integrated components and systems in the main stream CMOS technology
    corecore