4,062 research outputs found

    Index to NASA Tech Briefs, January - June 1966

    Get PDF
    Index to NASA technological innovations for January-June 196

    Validation of a new spectrometer for noninvasive measurement of cardiac output

    Get PDF
    Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing tests has been used to calculate the flow rate of blood through the lungs (normally equal to cardiac output) as well as the volume of lung tissue. A new, portable, noninvasive instrument for cardiac output determination using the acetylene uptake method is described. The analyzer relies on nondispersive IR absorption spectroscopy as its principle of operation and is configured for extractive (side-stream) sampling. The instrument affords exceptionally fast (30 ms, 10%–90%, 90%–10%, at 500 mL min–1 flow rates), interference-free, simultaneous measurement of acetylene, sulfur hexafluoride (an insoluble reference gas used in the cardiac output calculation), and carbon dioxide (to determine alveolar ventilation), with good (typically ±2% full-scale) signal-to-noise ratios. Comparison tests with a mass spectrometer using serially diluted calibration gas samples gave excellent (R2>0.99) correlation for all three gases, validating the IR system's linearity and accuracy. A similar level of agreement between the devices also was observed during human subject C2H2 uptake tests (at rest and under incremental levels of exercise), with the instruments sampling a common extracted gas stream. Cardiac output measurements by both instruments were statistically equivalent from rest to 90% of maximal oxygen consumption; the physiological validity of the measurements was confirmed by the expected linear relationship between cardiac output and oxygen consumption, with both the slope and intercept in the published range. These results indicate that the portable, low-cost, rugged prototype analyzer discussed here is suitable for measuring cardiac output noninvasively in a point-of-care setting

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Application of Smart Solid State Sensor Technology in Aerospace Applications

    Get PDF
    Aerospace applications require a range of chemical sensing technologies to monitor conditions in both space vehicles and aircraft operations. One example is the monitoring of oxygen. For example, monitoring of ambient oxygen (O2) levels is critical to ensuring the health, safety, and performance of humans living and working in space. Oxygen sensors can also be incorporated in detection systems to determine if hazardous leaks are occurring in space propulsion systems and storage facilities. In aeronautic applications, O2 detection has been investigated for fuel tank monitoring. However, as noted elsewhere, O2 is not the only species of interest in aerospace applications with a wide range of species of interest being relevant to understand an environmental or vehicle condition. These include combustion products such as CO, HF, HCN, and HCl, which are related to both the presence of a fire and monitoring of post-fire clean-up operations. This paper discusses the development of an electrochemical cell platform based on a polymer electrolyte, NAFION, and a three-electrode configuration. The approach has been to mature this basic platform for a range of applications and to test this system, combined with "Lick and Stick" electronics, for its viability to monitor an environment related to astronaut crew health and safety applications with an understanding that a broad range of applications can be addressed with a core technology

    Absorbance based light emitting diode optical sensors and sensing devices

    Get PDF
    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Indium tin oxide overlayered waveguides for sensor applications

    No full text
    The use of indium tin oxide (ITO) thin films as electrodes for integrated optical electrochemical sensor devices is discussed. The effect of various thicknesses of ITO overlayers exhibiting low resistivity and high transparency on potassium ion-exchanged waveguides fabricated in glass substrates is investigated over the wavelength range 500-900 nm. ITO overlayers are formed by reactive thermal evaporation in oxygen, followed by annealing in air to a maximum temperature of 320°C. With air as superstrate, losses in the waveguides were found to increase dramatically above 30nm ITO thickness for TE polarization, and above 50nm thickness for TM. Losses were increased over the whole wavelength range for a superstrate index close to that of water. A one-dimensional multilayer waveguide model is used in the interpretation of the experimental results

    NASA Contributions to Development of Special-Purpose Thermocouples. A Survey

    Get PDF
    The thermocouple has been used for measuring temperatures for more than a century, but new materials, probe designs, and techniques are continually being developed. Numerous contributions have been made by the National Aeronautics and Space Administration and its contractors in the aerospace program. These contributions have been collected by Midwest Research Institute and reported in this publication to enable American industrial engineers to study them and adapt them to their own problem areas. Potential applications are suggested to stimulate ideas on how these contributions can be used

    Design and implementation of sensor systems for control of a closed-loop life support system

    Get PDF
    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process
    corecore