1,219 research outputs found

    Design and Simulation of Multi Objective Power Flow Optimization in IEEE-30 Bus System using Modified Particle Swarm Optimization

    Get PDF
    Execution and Reliability of OPF algorithms is an important issue of research for gainful power structure control and orchestrating. Perfect Power Flow is driven for restricting the objective work. This objective limit can be single regarded target work or different objective limits. In the present research, we have executed perfect power stream in order to constrain the fuel cost while satisfying the constraints, for instance, the voltages, power yields of the generator kept inside embraced purpose of repression. Some other objective can be used reliant on utility's preferred position and needs. Many streamlined framework models have been combined in the past by various researchers for OPF issue, for instance, Linear Programming, Non Linear Programming, Quadratic Programming, Newton Based Techniques, Parametric Methods, and Interior Point Methods, etc. A wide variety of bleeding edge optimization methodologies like Evolutionary Programming, Genetic Algorithm, PSO Algorithm, etc are proposed recorded as a hard copy for handling OPF issue. In this proposition, we have executed improved particle swarm optimization algorithm to restrain cost limit while keeping goals inside acceptable most extreme. The adjustments in particle swarm optimization is finished by introducing the idea of quantum computing and optimization of quickening coefficients. The proposed algorithm is associated with IEEE-30 bus structure. Resuts indicated unrivaled execution of proposed algorithm as contrasted and contemporary techniques

    A binary particle swarm optimization approach for power system security enhancement

    Get PDF
    Improvement of power system security manages the errand of making healing move against conceivable system overloads in the framework following the events of contingencies. Generation re-dispatching is answer for the evacuation of line overloads. The issue is the minimization of different goals viz. minimization of fuel cost, minimization of line loadings and minimization of overall severity index. Binary particle swarm optimization (BPSO) method was utilized to take care of optimal power flow issue with different targets under system contingencies. The inspiration to introduce BPSO gets from the way that, in rivalry with other meta-heuristics, BPSO has demonstrated to be a champ by and large, putting a technique as a genuine alternative when one needs to take care of a complex optimization problem. The positioning is assessed utilizing fuzzy logic. Simulation Results on IEEE-14 and IEEE-30 bus systems are presented with different objectives

    A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles

    Get PDF
    Conventional unit commitment is a mixed integer optimization problem and has long been a key issue for power system operators. The complexity of this problem has increased in recent years given the emergence of new participants such as large penetration of plug-in electric vehicles. In this paper, a new model is established for simultaneously considering the day-ahead hourly based power system scheduling and a significant number of plug-in electric vehicles charging and discharging behaviours. For solving the problem, a novel hybrid mixed coding meta-heuristic algorithm is proposed, where V-shape symmetric transfer functions based binary particle swarm optimization are employed. The impact of transfer functions utilised in binary optimization on solving unit commitment and plug-in electric vehicle integration are investigated in a 10 unit power system with 50,000 plug-in electric vehicles. In addition, two unidirectional modes including grid to vehicle and vehicle to grid, as well as a bi-directional mode combining plug-in electric vehicle charging and discharging are comparatively examined. The numerical results show that the novel symmetric transfer function based optimization algorithm demonstrates competitive performance in reducing the fossil fuel cost and increasing the scheduling flexibility of plug-in electric vehicles in three intelligent scheduling modes

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Short term complex hydro thermal scheduling using integrated PSO-IBF algorithm

    Get PDF
    In this article, an integrated evolutionary technique such as particle swarm optimization (PSO) algorithm and improved bacterial foraging algorithm (IBFA) have been developed to provide an optimum solution to the scheduling problem with complex thermal and hydro generating stations. PSO algorithm is framed based on the intelligent behavior of the fish school and a flock of birds and the optimal solution in the multidimensional search region is achieved by assigning a random velocity to each potential solution (called the particle). BFA is designed by following the prey-seeking (chemotactic) nature of E. coli bacteria. This technique is followed in an improved manner to get the convergence rate in dynamic for a hyperspace problem by implementing a chemotactic step in a linearly decreased way instead of the static one. The effectiveness of this integrated algorithm is evaluated by using it in a complex thermal and hydro generating system. In this testing system, multiple numbers of cascaded reservoirs in hydro plants have a time coupling effect and thermal power units have a valve point loading effect. The simulation results indicate its merits by comparing it with other meta-heuristic techniques related to the fuel cost required to generate the thermal power.

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    Review of Researches on Techno-Economic Analysis and Environmental Impact of Hybrid Energy Systems

    Get PDF
    Hybrid energy systems, which are combinations of two or more renewable and non-renewable energy sources, have been identified as a viable mechanism to address the limitations of a single renewable energy source, utilized for electricity generation. In view of this, several research works have been carried out to determine the optimal mix of different renewable and non-renewable energy resources used for electricity generation. This paper presents a comprehensive review of the optimization approaches proposed and adopted by various authors in the literature for optimal sizing of hybrid energy systems. It is observed that the objective functions - considered by a large percentage of researchers to optimize the sizing of hybrid energy systems - are cost minimization of the generated electricity, system reliability enhancement and environmental pollution reduction. Other factors covered in the literature are equally discussed in this article. Similarly, simulation and optimization software used for the same purpose are covered in the paper. In essence, the main aim of this paper is to provide a scope into the works that have been carried out in the field of hybrid energy systems, used for electricity generation with the view to informing researchers and members of the public alike, on trends in methods applied in optimal sizing of hybrid energy systems. It is believed that the information provided in this paper is very crucial in advancing research in the field
    • …
    corecore