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 In this article, an integrated evolutionary technique such as particle swarm 

optimization (PSO) algorithm and improved bacterial foraging algorithm 

(IBFA) have been developed to provide an optimum solution to the scheduling 

problem with complex thermal and hydro generating stations. PSO algorithm 

is framed based on the intelligent behavior of the fish school and a flock of 

birds and the optimal solution in the multidimensional search region is 

achieved by assigning a random velocity to each potential solution (called the 
particle). BFA is designed by following the prey-seeking (chemotactic) nature 

of E. coli bacteria. This technique is followed in an improved manner to get 

the convergence rate in dynamic for a hyperspace problem by implementing a 

chemotactic step in a linearly decreased way instead of the static one. The 
effectiveness of this integrated algorithm is evaluated by using it in a complex 

thermal and hydro generating system. In this testing system, multiple numbers 

of cascaded reservoirs in hydro plants have a time coupling effect and thermal 

power units have a valve point loading effect. The simulation results indicate 
its merits by comparing it with other meta-heuristic techniques related to the 

fuel cost required to generate the thermal power. 
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1. INTRODUCTION  

In this modern world, the demand for electricity is increased due to its widespread utility. To meet the 

load requirement, by considering the availability of fossil fuel and water, more number of thermal power plants 

and hydropower stations are employed in the power system network. Thus, scheduling these generating stations 

in an optimal manner is very important in terms of operating costs. Since the operating cost required for 

hydropower plants is considered to be the lowest value, this scheduling problem is mainly focused on reducing 

the fuel cost of thermal generating units considering the major constraints for both types of power plants. In 

this hydrothermal scheduling (HTS) problem, the system includes the key constraints such as the timing effect 

of the cascaded reservoirs of the hydro system, different water inflows into the reservoirs for the planning 

period, turbine flow rate and reservoir storage limitations, variation in load demand and limits on power 

generation capacity.  

In previous years, the HTS problem has been solved by classical methods considering the number of 

simple assumptions to obtain an efficient search operation. It is suggested in [1]  an algorithm based upon an 

augmented lagrangian relaxation approach developed in conjunction with the decomposition and coordination 

method to resolve the problem of short-term hydrothermal generation scheduling (STHTS) with environmental 
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and transmission network constraints. Using the Lagrangian relaxation technique, the STHTS problem is 

solved by dividing it into thermal and hydro sub-sections [2]. In this technique, Lagrangian multipliers are 

updated using the dynamically constrained cutting plane method. A two-level dynamic programming (DP) 

algorithm is given in [3] to solve the long-term planning problem of the thermal and hydroelectric generating 

system with multiple reservoir configurations. An effective non-linear programming technique is described to 

achieve optimum results for a complex thermal and hydro scheduling problem in a short period of time [4]. 

These conventional methods are well documented and are widely used in different formulations to solve 

scheduling problems and provide effective results for smooth cost equations. Furthermore, certain drawbacks, 

such as difficulties in handling constraints, dimensional difficulties, more computation time, and trapping into 

local optimum are observed. 

Over the past few decades, meta-heuristic search algorithms were developed to overcome these 

shortcomings and find the optimal solution. A coarse-grained parallel simulated annealing (SA) algorithm is 

demonstrated to attain an optimal solution for the STHTS problem [5]. An integrated simulated annealing and 

genetic algorithm approach has been proposed to solve the STHTS problem with multiple thermal plants [6]. 

A new evolutionary programming (EP) algorithm is developed with Gaussian mutation to resolve the short-

term thermal and hydro planning problems [7]. A Gaussian and Cauchy mutations-based EP technique is 

developed and tested in complex hydro and thermal power plants having restricted operating zones [8]. An 

interactive fuzzy satisfying approach based on the EP algorithm is utilized to solve multi-objective short-term 

complex hydrothermal planning problems [9]. Orero and Irving have applied a multi-step genetic algorithm 

(GA) to obtain the foremost solution for thermal and hydro planning problems with connected reservoirs [10]. 

GA based on the diploid genotype model is employed to achieve an optimal solution to the STHTS problem 

[11]. The STHTS problem is spliced into three sub-problems such as hydrothermal coordination, unit 

commitment, and economic load dispatch, and solved the problem by using GA [12]. An enhanced GA with 

specified genetic operators is presented to resolve the problem of thermal and hydro scheduling [13]. Ramirez 

and Onate used GA to achieve the best solution to the thermal and hydroelectric planning problem, which was 

divided into three subdivisions [14]. A novel cultural approach (CA) to find the most favorable solution to the 

thermal and hydro planning problem, in which the planned period was taken as one day and each interval time 

as one hour [15]. A hybrid differential evolution (DE) technique is developed in conjunction with an equality 

constraint handling process to attain the best solution for the STHTS problem with various significant 

constraints [16]. These stochastic search techniques have received significant attention because they are easier 

to implement, derivative-free, robust, and often involve a limited number of parameter tunings. However, a 

few shortcomings such as large computational time, slow convergence towards an optimal solution, and local 

optimization are noticed when applied in large dimensional and nonlinear problems. 

In recent years, swarm optimization techniques have been used extensively due to the nature of its 

data sharing and transfer process. Amid swarm optimization techniques, PSO and BFA are the most favorable 

to attain the optimal solution to a complex power system problem. The PSO algorithm is introduced for 

optimizing a broad spectrum of functions [17]. The performances of EP-based algorithms and PSO techniques 

are demonstrated in solving the STHTS problem [18]. The scheduling problem of the thermal and hydroelectric 

systems having numerous constraints is resolved by employing different PSO approaches [19]. The PSO 

technique is presented to attain the most favorable solution to a complex hydrothermal generating system 

scheduled for one day [20]. PSO in an improved quantum behaved manner is implemented to resolve short-

term combined economic emission thermal and hydro scheduling problems [21]. And the STHTS problem is 

resolved by employing a specific repair process, a small population-based PSO algorithm, and other operations 

such as mutation, DE–acceleration, and migration [22]. An Improved self-adaptive PSO algorithm is provided 

in [23] to solve the STHTS problem. In this technique, two functions such as effective adjustment of the two 

responsive parameters of PSO and randomness adjustment in various constraints are carried out to obtain the 

optimal solution to the hydro thermal planning problem. The BFA is introduced to solve various optimization 

problems [24]. An improved BFA is developed to resolve the classic thermal and hydro planning problem [25]. 

A modified PSO with the impact of BFA on the problem of constrained dynamic economic dispatch is applied 

in [26].  

The PSO technique is very much efficient in implementing and constraining parameters and has 

consistent convergence characteristics for optimal resolution. It bears the capability to find almost global 

solutions to hydrothermal planning problems. In this technique, a small number of free adjustable parameters 

are taken to achieve the desired goal. Also, this technique is utilized to attain optimal parameter values in 

various fields of the power system. Furthermore, a literature study of PSO reveals that this technique is 

sometimes implicated in local optimization. BFA is utilized effectively to resolve the problem of non-linear 

hydrothermal planning. But, when utilized for a wide range of HTS problems, it exhibits poor convergence 

behavior and more timing requirements. Hence in this algorithm, a decreasing effective function is used to 

enhance the convergence properties.  
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In this scheduling problem, an integrated approach to both the PSO and IBF algorithm is applied to 

the test system [20], thus exploiting the benefits of both algorithms when attempting to compensate for the 

shortcomings of individual techniques. This integrated algorithm monitors a consistently varying solution of 

the composite cost functions with reliability and precision. This combined technique delivers output within a 

short calculated time. The integrated PSO-IBFA has efficient investigative and exploitative capabilities in the 

search process and several cases avoid premature and incorrect convergence. The advantage of this approach 

is manifested by examining the results with other optimization techniques. The subsequent sections are 

described in the following fashion. Section 2 elaborates on the mathematical model of the experimental system, 

including constraints such as equality and inequality. The proposed integrated PSO–IBFA approach is 

expressed in section 3. Section 4 reports the simulation outcome of this integrated method. Section 5 outlines 

the conclusions. 

 

2. PROBLEM FORMULATION 

2.1. Objective function 

Hydroelectric generating units have zero incremental costs, so the main purpose of this complex 

hydroelectric thermal power planning problem is focused on reducing the operating cost required for a thermal 

plant by observing equality and inequality limitations. 

The fuel cost and valve point loading characteristics of thermal generator is formulated as follows: 

 

           min(𝑓) = ∑ .𝑀
𝑚=1 ∑ [𝑎𝑠𝑖 + 𝑏𝑠𝑖𝑃𝑠𝑖𝑚 + 𝑐𝑠𝑖𝑃𝑠𝑖𝑚

2 + |𝑑𝑠𝑖 × 𝑠𝑖𝑛 {𝑒𝑠𝑖 × (𝑃𝑠𝑖
𝑚𝑖𝑛 − 𝑃𝑠𝑖𝑚)}|]𝑁𝑠

𝑖=1          (1) 

 

 

2.2. Equality limitations: 

(a) During the planning period, at every time interval, actual power produced by the entire plant should 

meet the load power demand. 

 

               ∑ Psim
Ns
i=1 + ∑ Phjm

Nh
j=1 − PDm = 0,     m ∈ M                                                            (2) 

 

(b) Power generated by the hydroelectric plant is expressed as a function of reservoir volume and water 

release rate and is stated as follows: 

 

          Phjm = C1jVhjm
2 + C2jQhjm

2 + C3jVhjmQhjm + C4jVhjm + C5jQhjm + C6j, j ∈ Nh , m ∈ M   (3)              

            

(c) The hydraulic continuity equation for water reservoir is as follows. 

 

      Vhjm = Vhj(m−1) + Ihjm − Qhjm − Shjm + ∑ [Qhl(m−tlj)
+ Shl(m−tlj)

] ,   j ∈ Nh,   m ∈ M  
Ruj

l=1
  (4) 

                                                                                                                                             

(d) The spillage rate is considered to be zero in equation (4). Hence, hydraulic continuance limitations are 

stated as follows: 

 

        Vhj0 − VhjM = ∑ Qhjm
M
m=1 − ∑ ∑ Qhl(m−tlj)

Ruj

l=1
−M

m=1 ∑ Ihjm
M
m=1 , j ∈ Nh,   m ∈ M        (5) 

                                      

(e) The water release rate of hydroelectric unit ‘j’ at dependent interval “d” is estimated by considering the 

constraints such as water release values and preliminary and ultimate reservoir storage conditions. 

 

    Qhjd = Vhj0 − VhjM + ∑ Ihjm
M
m=1 + ∑ ∑ Qhl(m−tlj)

Ruj

l=1
−M

m=1 ∑ Qhjm
M
m=1
m≠d

, j ∈ Nh,       (6) 

                                                                         

(f) Thermal power generation for a dependent thermal power plant dg is evaluated by observing the power 

balance limitations. 

 

       Psdgm =  PDm −  ∑ Psim
Ns
i=1
i≠d

− ∑ Phjm
Nh
j=1  ,     m ∈ M            (7) 
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2.3. In equality constraints: 

 

(i) Thermal generation limits: 

 

     Psi
min ≤ Psim ≤ Psi

max, i ∈ Ns,  m ∈ M                                                                                          (8) 

 

(ii) Hydro generation limits: 

 

       Phj
min ≤ Phjm ≤ Phj

max, j ∈ Nh,  m ∈ M                                                                                       (9) 

 

(iii) Reservoir storage limits:  

 

      Vhj
min ≤ Vhjm ≤ Vhj

max, j ∈ Nh,  m ∈ M                                                                                      (10) 

 

(iv) Water discharge rate limits: 

 

       Qhj
min ≤ Qhjm ≤ Qhj

max, j ∈ Nh,  m ∈ M                                                                                    (11) 

 

 

3. INTEGRATED PSO-IBF ALGORITHM 

The control parameter values have been assigned to the PSO-IBF algorithm. In the PSO algorithm, 

reservoir volume is taken as particle position to circumvent convergence in a similar region and to evade local 

minima. In this PSO technique, the fitness value is evaluated using the fuel cost equation of the thermal power 

stations.  The effectiveness of BFA is enhanced by modifying the constant chemotaxis step to a linearly 

decreasing way using a dynamic function. In this integrated approach, the final population of the PSO is 

provided to the IBFA as the initial population. 

 

3.1. PSO Algorithm 

PSO technique was put forward by James Kennedy and Russell Eberhart (1995), which is utilized to 

resolve continual, non-linear, and multi-modal optimization problems based upon swarm intelligence such as 

fish school, birds flock, and human societal conduct. In this technique, the problem is solved by a search process 

performed by individuals in a population called particles. These particles are indicated as the best possible 

solution to the optimization problem. Initially, the particles assigned in the population are randomly generated. 

At every iteration process, the velocity (Vj
k) and position (xj

k) of each particle are updated, taking into account 

the previous best (pbest) and global best (gbest) values. The equations are formulated as follows: 

 

   Vj
k+1 = WVj

k + c1rand1( )(pbest − xj
k) + c2rand2( )(gbest − xj

k)             (12) 

  

      xj
k+1 = xj

k + K ∗ Vj
k+1                                                                   (13)     

                                                                             

Where  Vj
k is the jth particle velocity located on kth iteration and ‘W’ indicates the parameter for inertia 

weight. 

 

    W = Wmax −
Wmax−Wmin

itermax
∗ iter                               (14) 

 

Where   Wmin= 0.4, Wmax = 0.9, itermax indicates the maximal number of iterations and iter denotes 

the current number of iterations. 

 

c1 and c2 denote the acceleration constants, 

 c1 = 2,        c2 =2 

         K =
2

[2−ϕ−√ϕ2−4ϕ]
                                                      (15) 
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     Where 𝜙 = 𝑐1 + 𝑐2  𝑎𝑛𝑑 𝜙 ≥ 4 

‘K’ depicts the constriction factor. 𝑟𝑎𝑛𝑑1( ) and 𝑟𝑎𝑛𝑑2( ) represent the random value assigned 

uniformly between 0 and 1. 

 

3.2. Implementation of PSO algorithm: 

1. The particles of the population are randomly initialized by satisfying all thermal and hydro power 

plant limitations. 

2. The initial fitness value is considered as pbest and gbest values. 

3. The velocity of the particle is initialized arbitrarily between [𝑉𝑚𝑎𝑥 , 𝑉𝑚𝑖𝑛]. 

4. New ‘V’ of the particle is updated using equation (12).                                  

5. Velocity is checked with threshold limit. If “V” exceeds the limit, then the velocity limit is fixed. 

6. New particle position value is updated using equation     (13). 

7. A dependent time interval is chosen for an unknown particle position value. 

8. Thermal generation, hydro generation, and water discharge rate for nondependent time intervals are 

calculated. 

9. The Water release rate and volume of the reservoir are calculated at a dependent time interval. 

10. Hydro and thermal power generation are calculated at dependent time interval by using step 9. 

11. Thermal and hydro constraints are checked and fitness value is calculated. 

12. The fitness (pbest and gbest) values are updated. 

13. The procedure from step 4 to step 12 is repeated until the last iteration. 

14. The latest gbest value generated by the particle indicates the resolution of the problem. 

 

3.3.  IBF Algorithm     

BFA is a heuristic optimization approach motivated by the food searching nature of Escherichia coli 

(E. coli) bacteria. The life-style of E.coli bacteria such as the foraging strategy, decision-making mechanism, 

and moving nature was illustrated by Kevin M. Passino (2002).  BFA is formatted to deal the problems having 

complicated and non-differentiable target functions. Three major functions such as chemotaxis, regeneration, 

and removal/dispersal actions are performed to locate the solution area [24]. The chemotaxis action of the 

bacteria is activated by two functional methods such as swimming and tumbling. By switching between these 

two modes of operation the bacteria contribute throughout its lifespan. In this algorithm, a tumble is denoted 

by a constant length in a random path, and φ (j) indicates the moving direction of the bacteria after a tumble.  

The bacteria move in an inconsistent path, which is referred to by the constant run-length unit C(i, j). In the 

bacterial group, the position of ith bacteria at the jth chemotactic step, kth regeneration step, and lth removal/ 

dispersal occurrence is noted by  θi(j, k, l) ∈ ℜp. In this bacterium position, the cost function, also referred to 

as nutriment function, is expressed as   J(i, j, k, l). The location of the ith bacterium after a tumbling action is 

referred to as 

 

     𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘. 𝑙) + 𝐶(𝑖, 𝑗)𝛷(𝑗)                                                                             (16) 

 

At this location, the cost function J(i, j + 1, k, l) is evaluated, and if this value is lower J(i, j, k, l), one 

more step C(i, j) is executed in a similar direction. This swimming process is continued until the low cost is 

gained and a maximum number of steps "Ns" are attained. Bacteria group release cell-to-cell signaling  

Jcc(θ, P)     effect to form swarm patterns that affect the cost function of every bacterium in the group. This 

swarming function is represented in the following equation: 

 

   Jcc(θ, P(j, k, l)) = ∑ Jcc
i (θ, θi(j, k. l))S

i=1  

                         

                           = ∑ [−dattractexp(−wattract ∑ (θm − θm
i )2p

m=1 )] +S
i=1

 ∑ [−hrepellantexp(−wrepellant ∑ (θm −  θm
i )2p

m=1 )]S
i=1                                       (17)                                                                                                   

                  
 Where dattract, wattract,  hrepellant and wrepellant  denote the parameters that indicate the behavior of attractant 

signals and repellent signals emitted by the cell. The position (θ) of component ‘m’ in the bacterium ‘i’ is 
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indicated as   θm
i . Here, P(j, k, l) denotes the location of the respective member in the bacteria group ‘S’ and is 

expressed as: 

 

   P(j, k, l) = {θi(j, k. l)|i = 1, 2, … , S}                                                                                   (18)  

                                                                                

Where ‘S’ denotes the total members in the bacteria group. 

Then, cell-to-cell signaling function [ Jcc(θ, P)] and the cost function are added. 

 

           J(i, j, k, l) + Jcc(θ, P)                                                                                                          (19) 

 

After the maximum chemotactic steps have reached (NC), a reproduction process is executed. The 

bacterial population is halved by the destruction of less healthy bacteria. Each healthiest bacterium in the 

remaining half is divided into two so as to maintain the same population.  

 

            Sr = S/2                          (20)   

                                                                              

After  Nre number of reproduction process,  Ned numbers of elimination or dispersal occurrences are 

carried out. In this activity every bacterium can be transferred to reveal other sections of the search space. The 

possibility for every bacterium to undergo the removal or dispersal process is decided by a pre-assigned 

fraction  ped. In BFA, the chemotaxis process has a constant run-length unit which might ensure favorable 

search results for minor optimization problems. Contrarily, it exhibits poor performance when implemented 

for complicated wide-ranging problems with high dimensions. The run-length parameter is mainly contributed 

to control the local and global search capability of this algorithm. Therefore, BFA is improved by proposing a 

decreasing dynamic function for the chemotaxis process, thus a balanced exploration and exploitation search 

process is achieved. It is stated as follows: 

 

   C(i, j) = C(NC) + (C(1) − C(NC)) (
NC−j

NC
)                                                                                  (21) 

 

Where ‘j’ denotes the chemotactic step, NC indicates chemotactic steps in maximum value, and C(NC) 

and C(1) are predetermined parameters. 

 

 

3.4. Implementation of IBF algorithm 

1. The following parameters such as the population of bacteria(S), search space dimension(p), 

chemotactic steps count(Nc), swim length(𝑁𝑆), regeneration process count(Nre), removal-dispersal 

occurrences count (Ned), removal/dispersal probability of the bacterium(𝑝𝑒𝑑), initial run-length 

unitC(i, j)|j=1, run-length unit until the last chemotactic step  C(NC)|j=NC
, and arbitrary location of 

every bacterium at the beginning (θi) are initialized. 

2. Removal or spreading loop is executed, l = l + 1 

3. Reproduction loop is carried out, k = k + 1 

4. Chemotaxis loop is performed, j = j + 1 

 
For i = 1,2,3, … , S, the chemotaxis process is activated for every bacterium in the following manner: 

Cost function  J(i, j, k, l)  is estimated using (17) and (19). 

 

Let Jlast = J(i, j, k, l) thus affordable cost can be detected. 

 

Tumble: An arbitrary vector ∆(i) ∈ ℜp is generated, and ∆m(i), where m = 1, 2, 3 …, p denotes an 

arbitrary number between 0 and 1. 

 

Φ(𝑖)  is calculated as:    Φ(i) =
∆(i)

√∆T(i)∆(i)
                                                                     (22) 

 

Move: The location of the bacterium is found by using (16).  

Cost function J(i, j + 1, k, l) is computed and by applying swarming equation (17).   Jcc(θ, P(j +

1, k, l)) is computed. Then new cost function J(i, j + 1, k, l) is found out by using equation (19). 

Swim: let m = 0  (counter swim length) 
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While m < NS(no climbing down for long time) 

Let  m = m + 1 

If  J(i, j + 1, k, l) < Jlast, let Jlast = J(i, j + 1, k, l).  

Then further step is taken in the same direction. And new cost function  J(i, j + 1, k, l) is evaluated. 

Else, let m =Ns. This is the end of the while statement. 

Go to the subsequent bacteria (i = i + 1 if i ≠ S) 

Dynamic decreasing function (run length unit) is updated by using equation (21). 

 

5. If j < NC go to the step 4   (j = j + 1). At this point, chemotaxis process continues till the lifetime of 

the bacteria. 

6. Regeneration process is started: 

 

By considering ‘k’ and ‘l’, the healthiness of every bacterium ‘i’ is assessed in the following way: 

 

  Jhealth
i = ∑ J(i, j, k, l)

Nc+1
j=1                                                                                                (23) 

 

The health of the ith bacterium refers to the number of nutrients it receives in its lifetime. Bacteria are 

arranged in ascending order according to their accumulated cost   [ Jhealth 
i ]. Higher the cost (high Jhealth) 

indicates the least healthy bacterium. Half of the bacterial population (S) with the highest  Jhealth values 

computed from equation (20) die, and in the other half ( Sr ), each bacterium divides into two and takes the 

same place as their parental bacteria. 

 

7. If k < Nre, go to step 3, (k= k+1). 

8. Removal or dispersal loop is executed. 

 

With probability Ped, the elimination and dispersal process takes place for every bacterium to maintain 

a consistent value of population size.  

 

9.  If   l < Ned ,   then go to step 2 (𝑙 = 𝑙 + 1), if not, stop. 

 

4. SIMULATION RESULTS 

To verify the possibility and efficacy of this integrated PSO-IBF algorithm, it has been implemented 

into a standard testing system adopted in previous works [20] and resolved using MATLAB software. The test 

system comprises three thermal power stations having a valve point loading effect and four multi-chain 

cascaded hydro plants with a time coupling effect. The scheduling period for hydrothermal plants has been 

assigned as 24-time slots with a one-hour interval for each time slot. Spillage rate and transmission line loss 

are presumed to be zero. The configuration of hydro reservoirs and its water time delay data matrix is displayed 

in figure 1. The power demand data, power production parameters of hydro plant, hydro reservoir inflows, 

hydro plant data with power generation limits, and cost curve parameters with generation limits of thermal 

plants are shown in tables 1 – 5 respectively. 

 

Table 1. Load demand data 
Time 

slot 

Demand 

(MW) 

Time 

slot 

Demand 

(MW) 

Time 

slot 

Demand 

(MW) 

1 750 9 1090 17 1050 

2 780 10 1080 18 1120 

3 700 11 1100 19 1070 

4 650 12 1150 20 1050 

5 670 13 1110 21 910 

6 800 14 1030 22 860 

7 950 15 1010 23 850 

8 1010 16 1060 24 800 
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Table 2. Hydroelectric power production coefficients 
Plant C1 C2 C3 C4 C5 C6 

1 -0.0042 -0.42 0.030 0.090 10.0 -50 

2 -0.0040 -0.030 0.015 1.14 9.5 -70 

3 -0.0016 -0.30 0.014 0.55 5.5 -40 

4 -0.0030 -0.31 0.027 1.44 14.0 -90 

 

Table 3.   Hydro plant reservoir inflows (× 104 m3) 
Time 

slot 

Reservoir    inflows Time 

slot 

Reservoir   inflows Time 

slot 

Reservoir  inflows 

1 2 3 4 1 2 3 4 1 2 3 4 

1 10 8 8.1 2.8 9 10 8 1 0 17 9 7 2 0 

2 9 8 8.2 2.4 10 11 9 1 0 18 8 6 2 0 

3 8 9 4 1.6 11 12 9 1 0 19 7 7 1 0 

4 7 9 2 0 12 10 8 2 0 20 6 8 1 0 

5 6 8 3 0 13 11 8 4 0 21 7 9 2 0 

6 7 7 4 0 14 12 9 3 0 22 8 9 2 0 

7 8 6 3 0 15 11 9 3 0 23 9 8 1 0 

8 9 7 2 0 16 10 8 2 0 24 10 8 0 0 

 

 

Table  4. Hydro plant data (× 104 𝑚3) and generation limit (MW) 
                     

Plant 
Vmin Vmax Vini Vend Qmin Qmax Ph

min Ph
max 

1 80 150 100 120 5 15 0 500 

2 60 120 80 70 6 15 0 500 

3 100 240 170 170 10 30 0 500 

4 70 160 120 140 6 20 0 500 

    

 

Table 5.   Cost curve factors and thermal power production limits 
Unit as 

($ / h) 

bs 

($ / (MW h) 

cs 

($ / (MW)2h) 

ds 

($ / h) 

      es 

(1MW -1) 
Ps

min 

(MW) 

Ps
max 

(MW) 

1 100 2.45 0.0012 160 0.038 20 175 

2 120 2.32 0.0010 180 0.037 40 300 

3 150 2.10 0.0015 200 0.035 50 500 

 

 

 
 

Where 𝐼ℎ𝑗 : Water inflow to jth reservoir 

                        𝑄ℎ𝑗
 :  Water discharge of jth plant 
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Plant 1 2 3 4 

𝑅𝑢 0 0 2 1 

𝑡𝑑 2 3 4 0 

 

RU  : No of  overhead units 

𝑡𝑑   ∶ Delay time  to immediate 

         lower down unit 

Figure 1. Hydraulic system data 

Table 6 displays the PSO parameters value. The optimal thermal and hydro and power generation 

schedule and water release rate of the PSO algorithm are displayed in tables 7 – 8. 

 

Table 6. Values of parameters used in PSO 

Parameters Values 

Variable size 24 

Size of the population 100 

Maximal  inertia weight 0.9 

Minimal inertia weight 0.4 

Particle  cognitive learning element   c1 2.0 

Particle  social learning  element   c2 2.0 

 

 

Table 7. Hydro thermal generation schedule using PSO 
Hour Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 Cost($) 

1 
48.80 43.83 27.61 32.80 43.83 201.32 351.81 

 

4
5
1
5
0
.3

6
 

2 81.65 51.69 38.15 63.65 51.70 109.05 384.10 

3 
232.63 56.07 33.29 222.63 56.07 43.90 65.41 

4 
39.59 45.45 41.78 19.59 45.46 292.95 55.18 

5 115.58 71.04 30.23 104.58 71.04 213.65 63.90 

6 
53.17 46.98 37.48 40.17 46.98 62.78 500.44 

7 
23.24 26.05 55.35 6.25 26.05 294.61 258.45 

8 43.86 49.95 76.58 27.86 49.95 42.43 499.37 

9 
179.34 46.68 28.28 169.35 46.68 251.47 368.19 

10 
59.12 57.45 42.74 46.12 57.45 41.59 497.54 

11 78.40 72.81 37.44 67.40 72.81 299.70 51.44 

12 
20.30 31.72 42.86 5.30 31.72 51.93 496.16 

13 
179.38 54.76 36.58 165.39 54.76 185.64 433.50 

14 181.03 54.93 87.25 163.03 54.93 62.54 426.30 

15 
179.10 42.08 28.01 169.10 42.08 145.48 404.16 

16 
58.25 51.62 29.96 47.25 51.62 298.56 312.72 

17 205.87 41.87 48.79 188.88 41.87 189.86 332.85 

18 
32.84 38.99 25.71 22.84 38.99 41.85 498.78 

19 
281.27 54.41 33.26 271.27 54.42 228.26 147.11 

20 109.96 52.85 57.50 91.96 52.85 58.66 496.22 

21 
280.98 72.56 35.90 264.98 72.56 107.02 75.99 

22 
40.32 62.13 38.52 24.32 62.13 230.14 402.45 

23 184.63 19.07 27.52 172.63 21.07 289.59 87.50 

24 
55.51 54.01 82.73 40.51 54.02 40.45 482.76 
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Table 8. Hourly plant discharge (𝑚3) using PSO   
  Hour          𝑄ℎ1 𝑄ℎ2 𝑄ℎ3 𝑄ℎ4 

1 
78372 121398 183208 60049 

2 137663 68109 164420 101251 

3 141256 72529 193619 97751 

4 
140927 130244 256256 100204 

5 66603 75307 139388 71426 

6 53777 89349 102869 103204 

7 
61078 87693 242446 109048 

8 106238 124048 229209 66142 

9 56216 107178 189262 60159 

10 
59116 124813 283099 63114 

11 56061 64412 190765 61928 

12 114853 79424 287809 102755 

13 
55767 115788 191307 130267 

14 119821 67836 284615 88306 

15 105186 117148 244402 67643 

16 
53487 101422 236050 61212 

17 79829 126929 101270 148227 

18 89920 73936 205990 77645 

19 
68962 111278 181321 111206 

20 127416 126409 221153 73843 

21 96647 134975 204411 70279 

22 
57334 90640 142711 120013 

23 114359 75235 219441 60070 

24 133996 83145 275166 131678 

 

            The cost ($) obtained by using the PSO algorithm is 45150.36. The effect of cost characteristics derived 

from the PSO technique is shown in figure 2 and it is identified that with fewer iterations, this algorithm 

converges to the optimum value. Thus the PSO approach is considered optimal in terms of feasibleness and 

processing time.  

 

 
Figure 2. PSO convergence characteristics 
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   Table 9 displays the values of parameters applied in the IBFA.   

 

Table 9. Values of parameters used in IBFA 

Parameters Values 

Search space dimension 24 

Bacterial population 20 

Chemotactic steps count 20 

Swimming  length 4 

Reproduction step count 4 

Elimination-dispersal count 24 

Number of bacterial reproductions ( splits) Sr = s/2 

Probability value assigned to each bacterial elimination/dispersal process 0.25 

 
 

Tables 10 - 11 display the power station production schedule and water release rate of the IBF 

algorithm. 

 

Table 10. Hydro thermal generation schedule using IBFA 
Hour Ph1 Ph2 Ph3 Ph4 Ps1 Ps2 Ps3 Cost($) 

1 53.66 81.37 176.77 146.83 43.97 94.29 153.11 

 

4
3
0
9
5
.4

6
 

2 144.22 40.89 104.24 206.79 174.59 42.64 59.63 

3 140.38 29.00 140.52 119.10 173.28 55.87 53.85 

4 72.08 89.08 83.97 94.72 53.84 100.26 156.05 

5 136.99 70.33 52.29 75.18 173.26 46.03 82.92 

6 58.03 156.32 132.67 127.20 80.06 150.53 95.19 

7 195.40 70.97 74.92 142.03 123.97 137.22 205.49 

8 107.69 143.16 155.75 226.23 174.09 80.72 80.36 

9 120.48 178.05 183.65 136.63 110.35 145.05 215.78 

10 124.29 136.21 231.32 203.09 122.97 225.60 56.51 

11 114.85 89.55 208.09 173.97 174.94 214.07 84.53 

12 232.45 56.08 133.42 282.51 125.44 238.17 81.93 

13 165.93 296.95 117.83 120.91 85.76 110.72 211.90 

14 131.47 208.73 111.32 191.85 123.92 142.40 120.30 

15 65.37 119.32 170.95 153.85 152.84 191.46 156.20 

16 118.50 214.83 149.82 30.09 173.76 69.35 243.66 

17 257.30 127.26 170.53 165.80 79.55 148.53 101.02 

18 202.15 118.30 72.27 142.61 121.35 221.48 241.84 

19 38.46 272.93 152.24 247.78 79.30 252.42 56.87 

20 186.49 223.38 70.06 175.37 90.08 77.01 227.59 

21 128.40 140.24 112.83 88.05 114.31 160.32 165.84 

22 94.55 171.96 180.64 97.56 85.01 46.21 184.08 

23 127.05 108.97 139.18 138.71 143.85 113.06 79.18 

24 91.61 130.80 93.76 83.83 160.67 156.10 83.24 
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Table 11. Hourly plant discharge (𝑚3) using IBFA 
Hour Qh1 Qh2 Qh3 Qh4 

1 101475 135906 251909 168981 

2 77927 118728 293914 199325 

3 149115 61717 242266 72015 

4 149400 130456 270770 155470 

5 98595 132409 178166 198668 

6 100500 157111 117751 164086 

7 141568 113181 283043 159325 

8 82492 99237 226343 72394 

9 125297 84801 277376 80196 

10 149021 110925 299718 184181 

11 78637 99742 215134 153906 

12 99427 83627 114766 197832 

13 148036 90506 130956 190870 

14 127629 105661 179411 195094 

15 88595 123302 207018 182613 

16 142506 123793 123770 166118 

17 134680 127215 150186 185243 

18 102244 75666 196325 193166 

19 82544 114922 158163 123106 

20 115669 102585 240768 100678 

21 99616 117856 150474 117057 

22 96599 123958 176535 163354 

23 99292 63465 166932 195356 

24 118683 145491 183706 99919 

 

The final fuel cost value received from the IBF algorithm is 43095.46 $. Figure 3 portrays the cost 

characteristics obtained from the IBF algorithm. It has been revealed that this algorithm offers the lowest cost 

value at a faster convergence rate compared to other algorithms.  

 

Figure 3. IBFA convergence characteristics 
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Table 12 provides the comparative results of the proposed integrated approach with other stochastic 

algorithms. 

Table 12.   Comparative results of different optimization algorithms 
S.No           Authors      Technique Cost ($) 

1 K.K.Mandal. et.al EP [ 20] 47,306 

2 K.K.Mandal. et.al SA [ 20] 45,466 

3 K.K.Mandal. et.al PSO [ 20] 44,740 

4 Balachander. et.al Proposed PSO-IBFA 43, 095 

 
It is known from the comparative results that the propounded PSO-IBF algorithm bestows a globally 

optimal solution with minimal calculation time than the other optimization techniques. In this proposed 

technique, a dynamic decreasing function is applied to update the solution path, thus greatly improving the 

convergence properties. Hence it is proved that the PSO-IBF algorithm possesses the potential to obtain the 

best possible solution with nominal time for the complex STHTS problems. 

 
5. CONCLUSION 

This paper has successfully implemented a unified PSO-IBFA technique to resolve the complex 

STHTS problem. Several equality and inequality limitations such as power equivalence constraints, reservoir 

storage limits, and hydraulic continuity, valve point loading effect, hydro and thermal power generation limits, 

discharge rate limit, and time coupling effect are taken into account for the experimental system. The PSO 

algorithm has the robustness to restrict parameters and bears more computational efficiency. In the PSO 

algorithm, reservoir volume is selected as particle position to circumvent the local minima. In this algorithm, 

the process of updating the particle position and velocity provides a faster convergence speed to achieve the 

best solution globally, despite the discontinuities of the cost function. Also, all the particles improve themselves 

by utilizing the information linked to better particles, so as to enable the swarm diversity. In the IBFA, the 

chemotactic process is applied to improve the investigation approach. It assists in promptly jumping from local 

minima and reduces the randomness of the PSO technique in an extensive range system with various 

limitations. The simulation outcome realizes that the integrated PSO-IBF algorithm outperforms the existing 

meta-heuristic algorithm for providing a globally optimal solution and executing less computational time. As 

a future scope, this proposed technique can be utilized to resolve complex thermal, hydro, solar, and wind 

power planning problems. 
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