96 research outputs found

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar

    Review of Contemporary Literature on Machine Learning based Malware Analysis and Detection Strategies

    Get PDF
    Abstract: malicious software also known as malware are the critical security threat experienced by the current ear of internet and computer system users. The malwares can morph to access or control the system level operations in multiple dimensions. The traditional malware detection strategies detects by signatures, which are not capable to notify the unknown malwares. The machine learning models learns from the behavioral patterns of the existing malwares and attempts to notify the malwares with similar behavioral patterns, hence these strategies often succeeds to notify even about unknown malwares. This manuscript explored the detailed review of machine learning based malware detection strategies found in contemporary literature

    Security Risk Assessments: Modeling and Risk Level Propagation

    Get PDF
    Security risk assessment is an important task in systems engineering. It is used to derive security requirements for a secure system design and to evaluate design alternatives as well as vulnerabilities. Security risk assessment is also a complex and interdisciplinary task, where experts from the application domain and the security domain have to collaborate and understand each other. Automated and tool-supported approaches are desired to help manage the complexity. However, the models used for system engineering usually focus on functional behavior and lack security-related aspects. Therefore, we present our modeling approach that alleviates communication between the involved experts and features steps of computer-aided modeling to achieve consistency and avoid omission errors. We demonstrate our approach with an example. We also describe how to model impact rating and attack feasibility estimation in a modular fashion, along with the propagation and aggregation of these estimations through the model. As a result, experts can make local decisions or changes in the model, which in turn provides the impact of these decisions or changes on the overall risk profile. Finally, we discuss the advantages of our model-based method

    Selecting Countermeasures for ICT systems Before They are Attacked

    Get PDF
    A countermeasure is any change to a system to reduce the probability it is successfully attacked. We propose a model based approach that selects countermeasures through multiple simulations of the behaviors of an ICT system and of intelligent attackers that implement sequences of attacks. The simulations return information on the attacker sequences and the goals they reach we use to compute the statistics that drive the selection. Since attackers change their sequences as countermeasures are deployed, we have defined an iterative strategy where each iteration selects some countermeasures, updates the system models and runs the simulations to discover any new attacker sequence. The discovery of new sequences starts a new iteration. The Haruspex suite automates the proposed approach. Some of its tools acquire information on the target system and on the attackers and build the corresponding models. Another tool simulates the attacks through the models of the system and of the attackers. The tool to select countermeasures invokes the other ones to discover how countermeasures influence the attackers. We apply the whole suite to three systems and discuss how the connection topology influences the countermeasures to adop

    Automated static analysis and classification of Android malware using permission and API calls models

    Get PDF
    Предложен метод автоматической классификации мобильных приложений на основе статического анализа и сопоставления моделей, полученных по его результатам, с моделями ранее известных вредоносных приложений. Модели основаны на привилегиях и API-вызовах, используемых в приложении. Все шаги анализа, а также построение моделей полностью автоматизированы. Таким образом, метод адаптирован для автоматизированного использования магазинами мобильных приложений или другими заинтересованными организациями
    corecore