We present ConXsense, the first framework for context-aware access control on
mobile devices based on context classification. Previous context-aware access
control systems often require users to laboriously specify detailed policies or
they rely on pre-defined policies not adequately reflecting the true
preferences of users. We present the design and implementation of a
context-aware framework that uses a probabilistic approach to overcome these
deficiencies. The framework utilizes context sensing and machine learning to
automatically classify contexts according to their security and privacy-related
properties. We apply the framework to two important smartphone-related use
cases: protection against device misuse using a dynamic device lock and
protection against sensory malware. We ground our analysis on a sociological
survey examining the perceptions and concerns of users related to contextual
smartphone security and analyze the effectiveness of our approach with
real-world context data. We also demonstrate the integration of our framework
with the FlaskDroid architecture for fine-grained access control enforcement on
the Android platform.Comment: Recipient of the Best Paper Awar