
EURASIP Journal on
Information Security

Huber et al. EURASIP Journal on Information Security (2016) 2016:17
DOI 10.1186/s13635-016-0041-4

RESEARCH Open Access

A flexible framework for mobile device
forensics based on cold boot attacks
Manuel Huber1* , Benjamin Taubmann2, Sascha Wessel1, Hans P. Reiser2 and Georg Sigl3

Abstract

Mobile devices, like tablets and smartphones, are common place in everyday life. Thus, the degree of security these
devices can provide against digital forensics is of particular interest. A common method to access arbitrary data in
main memory is the cold boot attack. The cold boot attack exploits the remanence effect that causes data in DRAM
modules not to lose the content immediately in case of a power cut-off. This makes it possible to restart a device and
extract the data in main memory.
In this paper, we present a novel framework for cold boot-based data acquisition with a minimal bare metal
application on a mobile device. In contrast to other cold boot approaches, our forensics tool overwrites only a
minimal amount of data in main memory. This tool requires no more than three kilobytes of constant data in the
kernel code section. We hence sustain all of the data relevant for the analysis of the previously running system. This
makes it possible to analyze the memory with data acquisition tools. For this purpose, we extend the memory
forensics tool Volatility in order to request parts of the main memory dynamically from our bare metal application. We
show the feasibility of our approach on the Samsung Galaxy S4 and Nexus 5 mobile devices along with an extensive
evaluation. First, we compare our framework to a traditional memory dump-based analysis. In the next step, we show
the potential of our framework by acquiring sensitive user data.

Keywords: Cold boot attack, Digital forensics, Data acquisition, Mobile device security, Android, Smartphones, Virtual
machine introspection

1 Introduction
Our today’s mobile devices store sensitive data about
their owners in both volatile and non-volatile memory.
These include contact details, user credentials, personal
and business emails, pictures, location history, or perhaps
even the user’s health states. That is why mobile devices
are of special interest for forensic investigations. Mod-
ern mobile device operating systems, like Android and
iOS, increase the confidentiality of data by encrypting the
file system. The utilized Full Disk Encryption (FDE) key
is therefore stored in main memory at runtime, leaving
it prone to extraction with a cold boot attack [1]. More-
over, an attacker can retrieve sensitive user data exposed
in RAM, including passwords, key material, pictures, and
further confidential information [2, 3].
Cold boot attacks exploit the remanence effect of

Dynamic Random Access Memory (DRAM), which

*Correspondence: manuel.huber@aisec.fraunhofer.de
1Fraunhofer Research Institute AISEC, Munich, Germany
Full list of author information is available at the end of the article

causes data to fade slowly inmemory [4, 5]. Thus, it is pos-
sible to reboot or to reset a device and to acquire the data
in main memory. A cold boot attack can be initiated by
either shortly removing the battery from the device or by
triggering a hardware reset functionality. A forensic tool
deployed on the target device conducts the data acquisi-
tion. The amount of unimpaired bytes in memory after
the restart reflects the quality of an attack. This primarily
depends on time, temperature, and on the utilized forensic
tool. The longer the timespan between the power cut-off
and restarting the device, the more bits degrade in RAM.
Cooling down the physical memory mitigates the amount
of data loss by the remanence effect. Additionally, not
allowing the forensics tool to overwrite important con-
tent during the acquisition process is essential. An often
neglected factor in the data acquisition process is the over-
writing of kernel memory when booting forensics tools
on the device, like in the Forensic Recovery Of Scrambled
Telephones (FROST) framework [1]. In particular, this

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208051169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13635-016-0041-4-x&domain=pdf
http://orcid.org/0000-0003-0829-6902
mailto: manuel.huber@aisec.fraunhofer.de
http://creativecommons.org/licenses/by/4.0/

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 2 of 13

includes the system state, for example, the list of running
processes and their mapping in physical memory.
In this paper, we propose a novel framework that

requires overwriting only a minimal amount of bytes in
RAM and does not initialize device memory. We sustain
all the data relevant for the analysis of the previously run-
ning system by overwriting nomore than 3 KB of constant
data in the kernel code section. Therefore, we obtain a
genuine memory dump, which is easier to analyze. This
is because the kernel structures required to interpret the
memory dump are unaltered. The RAM still contains the
previous system state, such as the kernel structures and
page tables of the MemoryManagement Unit (MMU). An
example are FDE keys we recognize based on their sur-
rounding kernel structures. Preserving these structures,
we can efficiently analyze the contents of the RAM with
memory forensics tools. Furthermore, we can inspect the
contents of device memory to investigate the security pro-
vided by hardware features like the ARM TrustZone [6].
Our framework does not require root privileges on the
running device. Instead of utilizing a full-fledged Linux
kernel, like in the FROST framework, we boot the mobile
device with a minimalistic BareMetal Application (BMA).
The BMA provides a communication interface to a host
system via the Universal Asynchronous Receiver Trans-
mitter (UART) interface. The communication interface
makes it possible to request memory dynamically. Data
acquisition tools utilizing this interface can be leveraged
for the forensic analysis on the host system [7, 8].

Our contributions are the following:

• The concept of a flexible framework for mobile
device forensics based on cold boot attacks.

• The development of a minimal, easily portable BMA.
The BMA provides a communication interface using
the serial port for dynamically requesting memory
from the device.

• The extension of the memory forensics tool Volatility
with an implementation of the communication
interface for data acquisition.

• A practical demonstration of the feasibility of our
approach. We therefore implement a prototype for
the Samsung Galaxy S4 mobile device and port the
framework to the Nexus 5 device.

• An extensive evaluation of the proposed framework.
We compare the cold boot-based analysis with
traditional memory dump analysis. We also show the
potential of our framework by acquiring sensitive
data in a concrete-use case.

The remainder of this paper is organized as follows. In
Section 2, we present related work in the fields of forensics
and cold boot attacks. In Section 3, we provide back-
ground information about the interpretation problem of

raw data obtained frommemory dumps. We elaborate the
concepts and architecture of our framework in Section 4.
In Section 5, we describe the implementation of our
framework. We give an explanation on the device-specific
realization for the Samsung Galaxy S4 device and describe
the framework’s portability in Section 6. We then evalu-
ate our forensic architecture in Section 7 and conclude in
Section 8, summarizing our work.

2 Related work
In this section, we present related work that addresses the
problem of data acquisition frommainmemory, especially
in the context of mobile devices. We also provide a brief
overview regarding forensics on Android devices and on
countermeasures to cold boot attacks.
A preliminary approach to cold boot attacks for acquir-

ing memory of a previously running system was to force
a reboot where memory is fully preserved [9]. The pre-
served memory is then leveraged to circumvent OS
authentication mechanisms in order to even recover the
state of the previously running system. The first cold boot
attack was published by Halderman et al. in [10], where
they show that it is possible to extract data from main
memory on the x86 architecture after a short interruption
of the power supply. This also works when a DRAMmod-
ule ismoved to another host computer. They show that the
rate of the degradation of volatile memory can be drasti-
cally reduced by cooling down the RAMmodule. For data
acquisition, the tool bios memimage boots directly from
a USB flash drive or via Preboot eXecution Environment
(PXE) [11]. The tool transmits the content of the RAM via
network to another investigation host or stores it on a USB
flash drive. Additionally, it provides features to find and
fix corrupted RSA and AES keys in a memory dump.
Based on the approach for desktop computers, the cold

boot attack found its adoption on the ARM architecture.
With FROST [1], Müller et al. show that cold boot attacks
are feasible on Android phones. On those devices, it is not
possible to boot external sources. In addition, the RAM
module is non-removable because it is integrated into the
System on a Chip (SoC). Their approach is to force a
restart of a running device by interrupting the connection
to the battery. Afterwards, they boot the already installed
FROST framework from the recovery partition by press-
ing the corresponding buttons on the device to trigger the
recovery mode. The FROST framework loads an entire
Linux kernel and features a kernel module that searches
for AES keys in main memory. The FROST boot image
is installed on the recovery partition. This circumvents
the restrictions in booting external sources. Therefore, the
bootloader must get unlocked, which usually triggers a
routine that formats the user data partition.
A drawback of the FROST framework is that it

overwrites the heap of the previously running kernel,

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 3 of 13

because the framework boots a full-fledged Linux kernel.
This includes information like structures of the MMU,
the list of running processes and the memory mappings
of processes to physical locations. Additionally, the kernel
likely reinitializes Input/Output (IO) devices, which resets
the corresponding device memory.
Cold boot attacks do not permit live forensics, as the

system halts for a short moment and then reboots the
device. It is nonetheless possible to access the device
memory directly on a running device. The two most obvi-
ous ways are to either read directly from /dev/mem or
to use tools like the Linux Memory Extractor (LiME) ker-
nel module [12]. One problem is that both approaches
require root permissions [13]. It is only possible to bypass
that problem by exploiting security flaws in processes that
have root access. The other problem is when using kernel
modules, the running kernel has to be capable of loading
custom kernel modules.
Another option to access main memory is the use of

devices that offer Direct Memory Access (DMA). For
the x86 architecture, this was shown for the PCIe [14],
Firewire [15], and Thunderbolt [16] interface. Those inter-
faces are in general not available on mobile devices. How-
ever, mobile devices often have a Joint Test Action Group
(JTAG) interface for debugging purposes. This provides
full access to main memory at runtime. In [17], the author
uses the JTAG interface to exploit the baseband of a smart-
phone. The RIFF Box [18] is a device that makes it easy
to retrieve a memory dump or even to read or write the
memory on the internal flash drive via the JTAG interface.
Digital forensics goes back to approaches on early com-

puters decades ago [7] and nowadays finds its adoption
on Android devices. In [19], the authors use the process
trace system call to stop and resume processes and to cre-
ate memory dumps of their address spaces. This is useful
when data remains inmemory only for a very short period.
This happens, for example, when it is loaded and erased in
only one routine.
In [2, 20], Apostolopoulos et al. search for authentica-

tion credentials in the process memory of applications.
They use the Dalvik Debugging Monitor Server (DDMS)
tool [20] and the LiME kernel module [12]. The authors
execute both analyses on runningmobile phones with root
privileges.
Hilger et al. show a forensic application that uses the

memory of cold booted devices in [21]. They create tools
based on the FROST framework to analyze the heap of the
Dalvik Virtual Machine. With this approach, they are able
to obtain critical data, for example, the phone call history,
the last user input, and passwords [22].
Research on mitigating cold boot attacks mainly focuses

on protecting the FDE key against the attack [23–26]. In
[24], the authors relocate the disk encryption key from
RAM to the CPU registers of the ARM microprocessor.

This goes back to [23], where they develop the approach
for keeping the disk encryption key in registers for the x86
architecture. The work in [26] describes a software-based
approach to protect the key while being in a private mode
that allows using basic device functionality. In [27], the
approach is to encrypt user data in RAM when the device
switches to the screen-locked state. The utilized key is
stored on the ARM SoC rather than in DRAM. There is
however only little research on the application of the cold
boot attack for sophisticated forensic analysis or for the
inspection and improvement of security features. Anti-
forensics techniques, e.g., [28] for the x86 architecture,
aim to defeat memory acquisition modules by manipulat-
ing the physical address space layout. The research of how
to apply cold boot attacks for forensics is still an ongoing
research topic [5, 29].

3 Data interpretation
In order to interpret the raw data in main memory, we
require meta information. The problem of data interpre-
tation is the semantic gap in the fields of Virtual Machine
Introspection (VMI) [30]. The required meta information
depends on the OS, the kernel version, and its config-
uration. This information is necessary to determine the
location of kernel structures and which components those
structures include.
The kernel data structures are important for a full analy-

sis in order to reconstruct the list of running processes and
their memory mappings. In FROST, the full Linux kernel
is booted and overwrites the data of the former running
kernel. This causes a high amount of crucial information
loss and results in non-reconstructible data.
In our architecture, we utilize the tool Volatility for data

interpretation [31]. Volatility is an easily extendable open
source framework for memory forensics. The framework
consists of a collection of tools for acquiring memory, for
bridging the semantic gap and for the extraction of rele-
vant information. Volatility provides a decent amount of
plug-ins that obtain detailed information on the target
system. For example, the plug-in linux_pslist retrieves a
list of running processes. The framework supports differ-
ent operating systems (Microsoft Windows, Mac OS X,
Linux, and Android) and architectures (x86 and ARM).
Volatility requires supplementary data about the target

system. Volatility profiles reflect this supplementary data.
Profiles contain the metadata about the structures and
debug symbols of the kernel running on the target system.
This information can be automatically extracted from the
kernel source code.

4 Framework architecture
The goal of our approach is to construct a minimalis-
tic module, which occupies only the smallest amount of
memory in RAM. In doing so, we preserve the structures

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 4 of 13

of the formerly running Android kernel when booting the
module. We hence develop a minimalistic application, the
BMA, that does not require a Linux kernel at runtime.
In order to obtain data from the mobile device, we use

its serial interface. The corresponding driver is very effi-
ciently implementable in terms of memory, compared to
other hardware devices that transfer data from the mobile
device, such as the USB interface. In general, our driver
consists of reading and writing from a dedicated register
of the UART interface.
In our framework, we only request relevant data from

the target device (see Section 5.2) and assume that the
contents in RAM do not degrade during the analysis (see
Section 7). The utilized forensics tool is equipped with
the decision logic about the relevant information in RAM.
Figure 1 depicts an overview of our architecture. The illus-
tration expresses that our proposed architecture consists
of two parts: the minimalistic BMA on the mobile device
and a forensic framework on a host system.
The left side of Fig. 1 clarifies that we map the BMA to

the code segment of the previously running kernel. The
BMA boots directly on the target system without requir-
ing any other dependencies. The BMA implements a serial
driver in order to receive and process commands from
the forensics host. A command includes a physical start
address and the amount of bytes the BMA must read and
return. We propose a forensic framework for data acquisi-
tion and analysis on the host system as the second part of
the architecture, as depicted on the right side of Fig. 1. The
forensic framework directly requests data from the serial
interface connected with the device via a serial cable. We
use a simple protocol for the channel between the host
and the BMA. The forensic framework uses data acquisi-
tion modules, for example, in order to retrieve the list of
running processes. We explain the details of this process
in Section 5.

For locating a process’ virtual address, two steps are
required during the analysis of a memory dump:

• Translation of virtual to physical addresses in main
memory. This is hardware-dependent and requires
the information stored in the page tables of theMMU.

• Translation of the physical address to an offset inside
the dump. This depends on the storage format and
requires the meta information for memory segment
mapping inside the dump.

As shown in Fig. 1, the virtual address translation layer
determines the virtual-to-physical address mapping. The
data request layer then translates the physical address to
an offset. This layermakes use of a UART driver to request
the data from the BMA on the mobile device.
On the one hand, this architecture allows to gather full,

genuine memory dumps from devices for later analysis.
On the other hand, we can start a live analysis of the
RAM. In both ways, we can reliably identify confidential
data, ranging from FDE keys to vast amounts of confiden-
tial user data. The flexibility of the architecture allows for
custom extensions, depending on the goal of an investiga-
tor. Volatility is our choice of forensics tool on the host,
but other tools that systematically analyzememory dumps
can be taken into account. Utilizing exhaustive search
tools or plug-ins to harness the BMA over the serial inter-
face results in poor performance. Since the kernel code
segment is way larger than the size of our BMA, we can
extend the BMA and its communication protocol. One
such possibility is to establish algorithms that search for
known patterns or structures, such as FDE keys [3, 32],
and other AES and RSA key structures [11]. The advan-
tage is that memory can be rapidly accessed from within
the BMA. Another extension of the BMA can be to intro-
duce a simple compression mechanism to the protocol.

Fig. 1 Schematic overview of the forensic architecture showing the BMA communicate with the forensic framework on the host

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 5 of 13

This increases the performance of the data requests, for
example, when an application requests large amounts of
data which mostly consist of zerobyte chunks.

5 Implementation
For the realization of the framework, we first describe
the implementation of our BMA. We then elaborate the
extension of the memory forensics tool Volatility which
we use for data acquisition and analysis.

5.1 Bare metal application
There are two ways to execute a cold boot attack. The
first one is to move the memory module to another host
machine with an installed forensics tool. The second pos-
sibility is to halt the system and to abruptly restart the
device in order to directly boot a forensics tool on the
device itself, which is the BMA in our case. Only the
second approach is feasible on mobile devices, because
the memory is integrated into the SoC and cannot be
removed.
The main tasks of the BMA are to initialize the UART

connection and to process incoming data requests. We
utilized a large portion of the code for initializing the
UART connection directly from the Qualcomm Linux
kernel [33]. The BMA waits for incoming requests on
the UART port. In the next step, the BMA reads and
parses these requests. We implemented the parsing rou-
tine for incoming commands in a minimal way, saving
allocated memory. After parsing, the BMA requests the
corresponding data from RAM and writes it to the UART
interface.
In contrast to the Linux kernel, our BMA does not ini-

tialize any device and only configures the UART interface.
We thus preserve device memory, which might be altered
by the set-up routine of a device driver of the Linux kernel.
The BMA allows to request arbitrary memory chunks up
to a full image of the RAM. The UART interface provides
only a low data transfer rate, which makes the extraction
of a full dump of main memory inconvenient.
As an extension, we implemented an FDE key search

functionality based on the kernel structures wrapping this
key, close to [32]. This functionality also comes with a sim-
ple heuristic that identifies keys even when bit flips occur.
We trigger this functionality with a further command in
the protocol to make the BMA search and return the keys
found.

5.2 Volatility extension
We execute the forensic analysis of the contents of main
memory with the memory forensics tool Volatility. The
tool commonly requests data from memory dumps, e.g.,
acquired with the LiME module.
With the concept of Address Spaces (ASs), Volatility

provides the possibility to translate addresses. In our case,

this is the translation of virtual to physical addresses and
determining the correct position of an address in a mem-
ory dump. Depending on the use case, Volatility allows
to combine and stack ASs. We applied the ARM Address
Space for virtual to physical address translation in our
concept [22]. According to our architecture, we extended
Volatility with the implementation of a custom AS that
requests data over the serial port, instead of from a mem-
ory dump file. Furthermore, we require a Volatility profile
for the specific device under analysis [21].

5.2.1 The serial address space
We developed a new Volatility AS for data acquisition via
the serial port. We call this AS the serial address space,
which resembles the file address space. The latter requests
the contents from a local memory dump file. Instead, the
serial AS implements the protocol required to request
data from the BMA via the UART interface. The serial AS
opens the serial port upon its initialization. Consequently,
when a plug-in requests data from an address, the serial
AS directly passes the request to the BMA on the target
device. In order to do so, the serial AS writes the dump
command with the start and end address of the request to
the UART interface. The BMA receives and then parses
the dump command. The BMA reads the requested data
from memory and writes it back to the UART interface.
The serial AS then receives the requested data and returns
it to overlying ASs. As some address requests are fre-
quently made, such as for reading the page tables, we
equipped the serial AS with a cache that stores the data
of former requests. In case a request occurs again, we
immediately return the data from the cache instead of
consulting the BMA. This likely decreases the duration of
the analysis many times over.
Figure 1 depicts the different layers used by a stan-

dard Volatility plug-in, such as linux_pslist. The plug-in
retrieves the list of running processes by following the
linked list of task structures, called task_struct, in the
Linux kernel. Since our target system is on the ARM archi-
tecture, Volatility makes use of the ARM address space
for virtual to physical address translation. The serial AS
sends the request from the layer above to the BMA via the
UART interface. The BMA reads the requested memory
and returns it via the UART interface to Volatility.

5.2.2 The volatility profile
Volatility stores the meta information required to inter-
pret the data in main memory in a Volatility profile. The
profile bridges the semantic gap (see Section 3). For exam-
ple, it provides a map of the data structures in memory. A
profile strongly depends on the OS and the correspond-
ing kernel of the target device. In order to create a Linux
profile, the source code of the deployed kernel is required
(see Section 6).

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 6 of 13

6 Device-specific realization
We selected the Samsung Galaxy S4 GT-I9505 device for
our specific implementation case. This device is a com-
monly used mobile phone and provides a serial port.
We deployed the CyanogenMod Android 4.4.4 distri-
bution (version 11-20141008-SNAPSHOT-M11-jflte) on
our target device. For the Volatility profile, we uti-
lized the corresponding kernel sourcecode (kernel version
3.4.104-cyanogenmod-g42b4b50-dirty) [33]. We describe
the integration of the BMA onto the device’s recovery par-
tition by wrapping it into an Android boot image. Then,
we describe the boot procedure in order to launch the
BMA. To be able to connect the BMA with a host system,
we also describe our hardware setup. We show that our
solution is easy to port to other devices that offer a serial
interface by the example of the Nexus 5 device.

...
2a03f664-2a03f6a4 : pc-cntr
2a03f720-2a04071f : tz_{l}og.0
80200000-87dfffff : System RAM
80208000-80f8e523 : Kernel Code
8111a000-817a6da3 : Kernel Data
89000000-8d9fffff : System RAM
8ec00000-8fdfffff : System RAM
8ff00000-9fdfffff : System RAM
a6700000-fe1fffff : System RAM
fff00000-ffffefff : System RAM

Listing 1 Truncated output of /proc/iomem on a Samsung
Galaxy S4 device.

6.1 Wrapping and deploying the BMA
In order to deploy the BMA on the recovery partition of
the mobile device, we wrapped the BMA into an Android
boot image. This makes the device’s bootloader capable of
loading this image. Our generated boot image contains the
configuration for the mapping of the BMA in memory at
runtime.
Figure 2 illustrates the structure of the boot image.

An Android boot image comes along with a preliminary
header of one flash page size. The header always has an 8-
byte magic start value (ANDROID!). The header contains
the necessary fields of different sizes to advise the boot-
loader about the image’s structure. In the kernel address
field, we store the address the BMA gets mapped to
(0x8020800). The flash page size of the Samsung Galaxy
S4 device is set to 2048 bytes (0x800). The size of the ker-
nel, here the BMA, is one such page. The BMA is located
right after the boot image header where the compressed
kernel binary can normally be found. Our boot image nei-
ther contains a ramdisk, a second stage bootloader, nor
a Device Tree Blob (DTB). The remaining fields in the
header are optional and can remain empty. This depends
on the device’s bootloader (see Section 7.3).
Our configuration maps the BMA to the address

0x80208000, where the code segment of the formerly

Fig. 2 The BMA wrapped into an Android boot image

running Linux kernel is located (see Listing 1). Further-
more, the initial code of the BMA sets the BMA’s 1024-
byte stack adjacent to itself, i.e., also in the kernel code
section. In doing so, we overwrite no more than 3 KB of
memory completely located in the kernel code segment.
This segment solely contains constant data deduced from
kernel code.
In order to launch the BMA, we flash the generated

Android boot image to the recovery partition of the
device. We execute this step after the short power cut-off,
respectively, the hardware reset of the device.

6.2 Booting the BMA
In order to deploy and boot the BMA on the target
device, we need to be aware of the device’s boot proce-
dure. Figure 3 illustrates a schematic representation of the
boot process. The illustration describes the different boot
stages between pressing the power button and booting the
recovery image. The bootloader boots our pre-deployed
boot image from the recovery partition and places the
BMA inside the former kernel code segment. In order to
do so, the bootloader reads out the values inside the boot
image header and also checks the header’s magic value.
The common boot procedure requires the following

steps. When turning on a device, the system initializes
the hardware and executes the routines stored in the boot

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 7 of 13

Fig. 3 Boot procedure starting the BMA from the recovery partition on a cold booted device

ROM. These routines load the bootloader. Upon its exe-
cution, a routine in the bootloader checks the status of the
hardware buttons to identify which boot mode to trigger.
In general, most Android devices can boot in three

different modes: normal, recovery, and download.
Figure 3 describes the scenario where a startup into

recovery mode takes place. The purpose of the recovery
mode is to update, install, or repair an Android system. In
order to trigger the recovery mode, a special key combi-
nation must be pressed when switching on the device. On
the Samsung Galaxy S4, this is the Volume Up and Power
button.
The normal mode is the default boot mode. This mode

starts the Android OS when switching on a device the
common way. In order to do so, the bootloader starts
the kernel stored on the boot partition of the embedded
Multi-Media Controller (eMMC).
The download mode allows to directly write data to par-

titions via USB, e.g., to the recovery partition. In order to
trigger the download mode on the Galaxy S4, the Volume
Down and Power buttons must be pressed. We used the
toolHeimdall [34] to write the BMA via the USB interface
to the device’s recovery partition in this mode.

6.3 Hardware setup
We realized the connection between the test device and
the host system, a common PC, via the Samsung Anyway
Jig [35]. The jig serves as a universal maintenance tool for
various devices produced by Samsung. It is equipped with
a D-Sub DB-25 connector and can be connected to the
supported device via a proper adapter cable. To connect
the jig to the test device, we used a custom Micro-USB to
D-Sub DB-25 cable. We established the connection to the
host PC via the RS-232 interface. The Samsung Anyway

Jig Adapter connects the GND and ID-line of the Micro-
USB of the device port with a resistor. This configures the
micro-USB port such that it acts as a serial interface port.
We configured the dimension of the resistor with the DIP-
switches of the Samsung Anyway Jig. After connecting to
the UART port, the whole boot process of a device can
be monitored because the bootloader writes debug infor-
mation to the serial interface. Depending on the kernel
command line parameters, the kernel can also output its
debug information over the serial interface.

6.4 Portability
We verified the easy portability by realizing the frame-
work on the Nexus 5 device. We did not extend Volatility,
as the only requirement is a new profile based on the
Nexus 5 kernel code. For the BMA, only three changes to
our created boot image were necessary.
First, the BMA had to be remapped in memory. Accord-

ing to the different iomem layout of the Nexus 5 device,
the first system RAM segment starts at address zero and
the kernel code segment is located at 0x8000. Second,
the base offset value of the UART registers in the BMA
had to be adjusted. This is because the UART core is
mapped to a different location in memory compared to
the Samsung Galaxy S4 device.We could completely reuse
the serial driver of the BMA for the device.
Third, the bootloader on the Nexus 5 device expects a

DTB. Otherwise, the bootloader refuses to boot up. The
bootloader locates the DTB in the boot image based on
an offset at a specific address in the boot image’s ker-
nel image. We modified the BMA at that address with an
offset that points straight after the BMA. This allowed
us to append a minimal DTB to the BMA, which the
bootloader accepts. The bootloader relocates the DTB

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 8 of 13

to the tags address. We do not overwrite crucial data,
because at that location, former constant valued DTBs
can be found. The bootloader required no ramdisk or
second stage bootloader. To flash the boot image to
the device, we used the tool Fastboot [36]. The con-
nection to the UART interface is established via the
device’s headphone socket. Therefore, we crafted a 3.3V
USB to serial cable that we soldered onto a headphone
jack.

7 Evaluation
In this section, we evaluate our proposed framework.
We first measure the amount of data that degrades due
to the cold boot attack and show the feasibility of our
approach in Section 7.1. In Section 7.2, we demonstrate
the application of our framework on the Samsung Galaxy
S4 device using Volatility. We compare the Volatility
analysis on a traditional LiME memory dump with a
cold boot-based analysis using our BMA. In the next
step, we extract sensitive user data from a cold booted
device based on a concrete-use case in order to demon-
strate the potential of our framework. In Section 7.3,
we discuss the implementational aspects of the
framework.

7.1 Loss of information
We evaluate the loss of information with our architec-
ture considering three aspects: the decay of information
through the device restart, the duration of the analysis,
and the BMA’s size.

7.1.1 Decay based on the cold boot attack
We executed the two different types of the cold boot
attack to evaluate the amount of data exposed to degrada-
tion during the power cut-off:

1. Momentary removal of the battery and restart of the
device once the battery re-inserted.

2. Power button press for a few seconds while the phone
is still running, causing a hardware-based reset.

Note that we executed both attacks at a temperature of
approximately 20◦ C. The results improve when cooling
down the phone and its memory modules, as described in
[1, 10, 37].
Before rebooting the device, we wrote an array of 10,000

known bytes to main memory with a kernel module print-
ing the physical start address of the array. Afterwards,
we read the contents of the array’s physical address and
counted the unimpaired bytes. We executed the analysis
25 times. Table 1 depicts the corresponding results. In
case of the fast cold boot attack, we re-inserted the battery
as fast as possible. In case of the slow cold boot attack, we
re-inserted the battery after approximately 1 s.

Table 1 Number of successfully retrieved bytes of a 10,000-byte
array with different cold boot attacks

Attack type Min Max Average

Fast cold boot 9983 9998 9991

Slow cold boot 26 9521 3379

Reset cold boot 9998 10,000 9999

The depicted results mainly show that a non-reset-
based cold boot attack does not always return reli-
able results as it depends on multiple factors like the
temperature and the abilities of an adversary. In case of
the fast cold boot attack, we retrieved 9991 of the 10,000
known bytes in average. Despite the only weak degrada-
tion, the application of Volatility plug-ins became difficult
(see Section 7.2). When conducting a slow cold boot
attack, the degradation proceeded quickly. In this case, the
successful application of Volatility plug-ins got infeasible.
However, the reset-based attack provided the better

results during our tests. This scenario is more reliable
as it does not depend on how fast the battery can be
re-inserted. In most cases, we retrieved all of the bytes
successfully and had occasional bit flips only in very few
test cases. This shows that even in case of the reset attack,
where we did not remove the battery at all, the memory
occasionally decays. In normal cases, where we retrieved
all of the bytes correctly, the application of Volatility
plug-ins was always successful.
In our test set-up, it was also possible to successfully

extract data with our architecture from the device when
it was restarted twice. A second restart is required on the
Samsung Galaxy S4 device to reboot into recovery after
flashing the BMA onto recovery partition. On the Nexus
5 device, the bootloader allows to immediately boot from
a partition after flashing.

7.1.2 Decay during the analysis
As we do not completely save the data in main memory
at once, we rely on the data to remain intact on the target
device during the whole analysis process. To demonstrate
that this requirement is given, we executed our attacks
multiple times 15 min after the device has booted the
BMA. As expected, we retrieved exactly the same unal-
tered data between the test requests. Furthermore, we
inspected memory dumps on Nexus 5 devices running
a virtualization architecture that comes along with FDE
using dm-crypt [38]. Gathering the dump of the 2 GB
RAM with the BMA required about 42 h. We compared
this dump to a LiME dump created shortly before, find-
ing that there was no decay during the analysis. As an
example, we were able to recover the FDE keys in the
LiME dump, as well as in the BMA’s dump. In addition, we
were able to quickly return the keys using the BMA’s FDE
key search functionality. For this reason, we may assume

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 9 of 13

that data does not decay any further as long as the BMA
executes and memory is supplied with power.

7.1.3 Information loss based on the size of the BMA
Another important source of data loss is the amount of
data in RAM that the BMA occupies. The boot image con-
taining our BMA has a size of 4 kB and the size of the
stack that the BMA sets up is 1024 bytes. The bootloader
loads the image header of size 2048 bytes to a fixed loca-
tion in memory. Based on the information in the header,
the bootloader maps the BMA of the same size to the ker-
nel code section. Thus, we overwrite no more than 3 kB
of memory in the kernel code section. This is less than the
previously running kernel’s size. The size of the Cyanogen-
Mod boot image for the Galaxy S4 device is about 5.9
MB. The kernel is compressed and extracted before it gets
started. The kernel code segment forms a set of constant
and known bytes. The segment does not change between
different runs of the system. This means that the overwrit-
ten bytes do not impair relevant data as the code segment
of the formerly running kernel is mapped to this address
range (see Section 5.1).

7.2 Volatility plug-ins
We compare the application of multiple Volatility plug-ins
with the BMA to a traditional LiME dump-based analysis
in the first part. With this comparison, we show that we
are able to similarly analyze the data retrieved from the
BMA compared to previously recorded memory dumps
on the running system. Thereby, we also focus on the
performance impact and caching effect during the BMA
analysis. In the second part, we demonstrate the potential
of our framework by retrieving sensitive user data through
an analysis with various plug-ins.

7.2.1 Comparisonwith LiME dump analysis
We created a memory dump on the running phone with
the LiME kernel module as a reference right before we
executed the cold boot attack. Then, we reset the device to
execute the Volatility plug-ins with our framework using
the BMA running on the phone. Afterwards, we restarted
the device and pulled the LiME dump to execute the same
set of plug-ins on the dump file. Table 2 lists the results
and runtimes of the plug-in applications on the LiME
dump and on our BMA in combination with the reset
attack.
The plug-in linux_pslist extracts a list of running pro-

cesses. The resulting entries of our measurements dif-
fered between the dump file (230 entries) and the cold
boot analysis (225 entries) by solely five more threads.
This comes from the LiME kernel module creating these
threads during the acquisition process. The analysis with
the BMA took 24.23 s, whereas the LiME dump analysis
took 3.54 s.

The plug-in linux_iomem extracts the map of the sys-
tem’s memory for physical devices. The results received
from the cold boot-based analysis were equal to the mem-
ory dump analysis. As in the scenario before, the runtime
of the plug-in was longer in case of the BMA application.
Compared to the LiME dump analysis with a duration of
2.18 s, the analysis with the BMA took 8.97 s. According
to Table 2, the application of other plug-ins yields compa-
rable runtime differences between the BMA and the LiME
dump analysis.
The plug-in linux_proc_maps returns the memory map-

pings of a single process. This renders results similar
to contents in /proc/<pid>/maps. For our measure-
ments, we requested the mappings of the init and the
rild process. The latter is responsible for the radio
functionality of an Android phone. In both cases, themea-
surements returned exactly the same results: nine entries
in case of the init process and 156 entries in case of the
rild process.
We finally requested the stack and heap memory seg-

ments of the rild and the init process with the plug-in
linux_dump_maps. The amount of data in bytes was, for
both processes, the same for the stack and heap. The data
of the stack of the init process turned out to be con-
sistent between the two acquisition methods. The same
holds for the rild process.
In every test case, the required time for executing a plug-

in which operates on the memory using the BMA was
significantly higher. This emerged as a result of the low
transfer rate of the UART interface. The average transfer
rate we measured with our hardware was at about 11.25
KB/s when we request large chunks of data. This speed
reduces when plug-ins make lots of small data requests
during the analysis due to the BMA’s protocol overhead.
For our purposes, the low transfer rate was acceptable,
since the plug-ins terminated within less than 45 s.

Offset NamePid Uid Gid ...
0xc000e000 init 1 0 0
0xde9da400 keystore 227 1017 1017
0xdd25ac00 d.process.acore 798 10003 10003
0xdcea3000 m.android.phone 828 1001 1001
0xdbf8e000 m.android.email 1480 10032 10032
0xdbeb7c00 droid.gallery3d 1505 10035 10035
0xdc1a8400 ndroid.exchange 1522 10033 10033
0xdcd0d000 ndroid.contacts 1689 10003 10003
0xdbb99c00 mod.filemanager 2028 10022 10022
0xdca5bc00 android.browser 2364 10020 10020

Listing 2 Truncated output of the plug-in linux_pslist acquired
during a user session.

The speed strongly increases due to the caching func-
tionality in our serial AS, which buffers previous requests.
Data once requested from the device is thereby stored
in the cache. Caching was, in particular, useful for plug-
ins that accessed the same sets of addresses frequently,
such as linux_lsof. Furthermore, all the plug-ins frequently
requested only small amounts of bytes at a time from

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 10 of 13

Table 2 Different Volatility plug-ins and their runtime using a dump file and the BMA

Plug-in Results (LiME dump) Results (BMA) Time (LiME dump) Time (BMA)

linux_pslist 230 entries 225 entries 03.54 s 24.23 s

linux_iomem 138 entries 138 entries 02.18 s 08.97 s

linux_proc_maps (init) 9 entries 9 entries 02.00 s 06.03 s

linux_dump_maps (init, heap) 340.0 KB 340.0 KB 01.98 s 35.84 s

linux_dump_maps (init, stack) 139.3 KB 139.3 KB 01.94 s 07.02 s

linux_proc_maps (rild) 156 entries 156 entries 05.38 s 18.55 s

linux_dump_maps (rild, heap) 380.9 KB 380.9 KB 02.05 s 41.48 s

linux_dump_maps (rild, stack) 139.3 KB 139.3 KB 02.06 s 08.29 s

the memory during the analysis. For example, the plug-in
linux_pslist requested about 93 KB of data in total, 4 bytes
in average, and due to caching we reduced this amount
to about 12 KB. The plug-in linux_iomem requested
about 58 KB of data in total, 9 bytes in average, and
due to caching, we reduced this amount to about 30
KB. The application of other plug-ins yields comparable
results. Considering the time for dump file creation in
other approaches, our framework can even provide faster
results.

7.2.2 Acquisition of sensitive user data

Pid FD Path
828 0 /dev/null
828 70 pipe:[12680]
828 71 /data/data/com.android.providers.telephony/
data-bases/mmssms.db
828 88 anon_{i}node:[4225]
828 89 /data/data/com.android.providers.telephony/
data-bases/telephony.db

Listing 3 Truncated output of the plug-in linux_lsof acquired
during a user session.

We show the potential of our framework for straight
data acquisition at the example of a real user session. Since
we already showed how we retrieve FDE keys with the
BMA, we focus on other sensitive assets in the follow-
ing. There is way more confidential information to detect,
which is potentially never made persistent and can only
be found in RAM. Therefore, we created a potential usage
scenario where the user enters confidential data on the
phone, which is masked in the following. After the sce-
nario, we reset the device, flashed and booted the BMA.
Then, we started an investigation using various Volatility
plug-ins.
The scenario starts by booting the phone, using it for

approximately 15 min and ends after leaving it idle for
about 1 min. During that time, the user carries out the
following activity:

• Create a new contact Secret Contact with phone
number 017* in the contacts application.

• Synchronize a previously set-up exchange account
within the mail application.

• Create a draft short message Top Secret Short
Message Draft to Secret Contact using the
messenger application.

• After a while, edit the stored short message draft to
Top Secret Message and send the message.

• Visit webpages with the browser and use search
engines. Log-in to pages with a user account and enter
confidential data, such as Top Secret Information.

• With the filemanager, create a new file /data/secret.-
txt and edit the file with the content Top Secret Text.

As a first step of the analysis, the investigator with
physical access to the device retrieves the process list
with linux_pslist (see Listing 2). The full list has 239
entries in total. The amount of processes that an inves-
tigator suspects private data to be contained is way
smaller. Inspecting the open file handles of the phone pro-
cess com.android.phone with the plug-in linux_lsof
reveals the potential sensitive file mmssms.db. The trun-
cated list is depicted in Listing 3. In total, the plug-in
finds 90 open files, but most of them can be left out of
consideration.

h13Top Secret Short Message Draft
Top Secret Message
004917*
Top Secret Short Message Draft

Listing 4 Truncated output of a file acquired with the plug-in
linux_find_file during a user session.

Using the plug-in linux_find_file, we searched the cor-
responding inode and retrieved the cached file contents
of about 103 KB. By dumping the strings of the read file,
we obtained about 105 strings. This helped us to quickly
recognize the recipient, the initial draft, and the edited
message, see the truncated output in Listing 4. The plug-
in linux_lsof is especially useful for determining open files
of processes, such as logs.
As a next step of the analysis, we retrieved the mem-

ory segments of the process com.android.exchange
using the plug-in linux_proc_maps. We suspected rele-
vant data of the process to be located in the processes’

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 11 of 13

heap segment. Listing 5 shows the output cut to the lines
containing the keyword heap.
PID Start EndFlags Pgoff Major Minor
Inode Path
1522 0x41a22000 0x41a2a000 rw- 0x0 0 0
0 [heap]
1522 0x41e82000 0x61a2a000 rw- 0x0 0 4
8872 /dev/ashmem/dalvik-heap

Listing 5 Snippet of the output of the plug-in linux_proc_maps
for the Android exchange process.

Using the plug-in linux_dump_maps, we retrieved
the heap segments. The string output of the Dalvik-
heap segment quickly revealed the mail account’s
username and password separated by a semicolon first-
name.lastname@*.de:*. Even though the Dalvik-heap seg-
ment seems to be large, the request for the segment was
quickly handled, because Volatility recognizes that the
segment is sparsely allocated.
We conducted the same steps for the process and-

roid.process.acore, which serves as Android’s con-
tact provider, for com.cyanogenmod.filemanager
and for com.android.browser. Inside anonymous
memory segments, we were able to find the contact Secret
Contact with phone number 017*. The browser’s mem-
ory segments contain vast amounts of loaded websites,
user account names, search queries, and text entered in
webmail and social media pages. This made it possible
to recover entered data, such as Top Secret Information.
The Dalvik-heap of the filemanager exposes the filename
/data/secret.txt and its content Top Secret Text.
In a further step of the investigation, we inspected

the data in the routing table cache with the plug-in
linux_route_cache. We recovered the hosts we recently
connected to during our browsing session, such as our
webmail page (see Listing 6).
Interface Destination Gateway
--------- ---------------- -------
wlan0 131.159.0.91 10.144.207.1
wlan0 173.194.112.136 10.144.207.1
wlan0 131.159.0.91 10.144.207.1
lo10.144.207.3910.144.207.39

Listing 6 Snippet of the output of the plug-in linux_route_cache
acquired during a user session.

In order to successfully and efficiently carry out an anal-
ysis, the investigator has to be aware of where Android
processes store their relevant data. Open-file handles and
the Dalvik-heap are the most probable locations to expose
such data. We were in knowledge of the data we were
searching for in our scenario. However, relevant processes
and data can be relatively quickly identified and filtered
from memory dumps.

7.3 Aspects of the implementation
As we read memory from a cold booted device, we need
to be aware of the decay of data. In case of corrupted

data, this means for example that the pointers in the
task_struct of the Linux kernel cannot be correctly
dereferenced. This causes the forensic analysis to fail at
some point, because previously running tasks cannot be
detected. In order to treat these cases, we propose to
extend forensics tools to work in combination with cor-
rupted data acquired by a cold boot attack. Heuristics can
help fix invalid pointers or to at least ignore them. How-
ever, our data remains in almost all of our test cases intact
so that we did not have to deal with this problem. This is
due to the reset attack where the battery is not removed.
The feasibility of the reset attack depends on whether the
specific device offers the hardware reset functionality or
not.
Another important aspect is that the target device must

air a UART port. A lot of devices have it even though
it is not visible at first glance. The UART port is often
integrated into the micro-USB port or the headphone
socket.
Care has to be taken considering the bootloader. Using

the Samsung Galaxy S4 device, the bootloader accepted a
simply crafted boot image, but the requirements changed
for the Nexus 5 bootloader. To figure out what the boot-
loader requires is not always obvious, but open source
bootloader code helps to recognize such requirements
[39]. Fortunately, most of the mobile device bootloaders
work similarly. Nevertheless, it is possible that bootload-
ers are capable of overwriting volatile data, which would
represent an inevitable problem.
The deployment of the BMA onto the device either

requires write access to the recovery partition at runtime
or a device where the bootloader can be unlocked for
flashing the BMA. However, write access is only possible
with root privileges. In case the bootloader is locked, it has
to be unlocked before flashing partitions. Unlocking the
bootloader normally leads to erasing all user data on per-
sistent storage. Persistent memory can then no longer be
recovered. But with our method, volatile memory remains
unimpaired when unlocking the bootloader and we do
not require root privileges on the phone. This means that
we are still able to recognize crucial contents of the pre-
vious session in RAM, which were possibly never made
persistent.
We expect that our framework can be used for further

topics because our implementation is easy to extend and
can be easily ported to other devices. The framework can
be used, for example, to evaluate whether it is possible to
access application memory running in the secure world of
the TrustZone [6].

8 Conclusions
In this paper, we presented a forensic framework for
mobile devices based on the cold boot attack. In contrast
to other state-of-the-art implementations, we do not boot

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 12 of 13

a full-fledged Linux kernel on the target device. Instead,
we boot our easily portable minimal BMA, which occu-
pies no more than 3 KB in the RAM. The BMA preserves
the data structures of the previously running kernel and
does not reset device memory. As we only overwrite con-
stant data in the kernel code section, this ensures that all
of the important kernel data remains available for analy-
sis. The BMA provides a serial communication interface.
This interface allows to dynamically request parts of the
main memory. Forensic analysis can thus be conducted on
the host system. For this purpose, we extended Volatility
with a serial communicationmodule for the analysis of the
target device’s memory.
We realized the framework for the Samsung Galaxy S4

and ported it to the Nexus 5 device in order to demon-
strate the feasibility of our approach. In our evaluation, we
compared our cold boot-based analysis with traditional
memory dump analysis using Volatility showing proper
results. We have shown that our BMA allows to request
full, genuine memory dumps and to efficiently gather
vital information based on the sustained kernel structures,
such as FDE keys and further confidential data.

Acknowledgements
The research leading to these results was supported by the “Bavarian State
Ministry of Education, Science and the Arts” as part of the FORSEC research
association.

Authors’ contributions
MH, supported by BT, developed the concept and design of the framework.
MH and BT both implemented and applied the prototypes for the framework.
MH worked on the acquisition and analysis of data in order to evaluate the
framework. Both authors elaborated on the manuscript and revised it until it
reached its final state. SW, HR, and GS have been involved in revising the
manuscript carefully for important intellectual content. GS actively supervised
the project from which the foundations of this work stem. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Fraunhofer Research Institute AISEC, Munich, Germany. 2University of Passau,
Passau, Germany. 3Technische Universität München, Munich, Germany.

Received: 11 January 2016 Accepted: 26 July 2016

References
1. T Müller, M Spreitzenbarth, in Proceedings of the 11th International

Conference on Applied Cryptography and Network Security. ACNS’13. FROST:
forensic recovery of scrambled telephones (Springer, Berlin, Heidelberg,
2013), pp. 373–388

2. Evaluating the privacy of Android mobile applications under forensic
analysis. Comput. Secur. 42, 66–76 (2014). doi:10.1016/j.cose.2014.01.004.
http://www.sciencedirect.com/science/article/pii/S0167404814000157

3. T Pettersson, Cryptographic key recovery from Linuxmemory dumps.
(Presentation, Chaos Communication Camp, Finowfurt near Berlin,
Germany, 2007)

4. Peter Gutmann, in Proceedings of the 10th Conference on USENIX Security
Symposium - Vol. 10. SSYM’01. Data remanence in semiconductor devices
(USENIX Association, Berkeley, CA, USA, 2001)

5. M Gruhn, T Müller, in Eighth International Conference on Availability,
Reliability and Security (ARES ’13). On the practicability of cold boot attacks
(IEEE Computer Society, Washington, DC, USA, 2013), pp. 390–397

6. ARM security technology: building a secure system using TrustZone
technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.
pdf. Accessed Dec 2015

7. R Agarwal, S Kothari, in Information Science and Applications. Lecture
Notes in Electrical Engineering, vol. 339. Review of digital forensic
investigation frameworks (Springer, Berlin, Heidelberg, 2015), pp. 561–571

8. A Hoog, Android forensics: investigation, analysis andmobile security for
Google Android. (Elsevier, Amsterdam, Netherlands, 2011)

9. EM Chan, JC Carlyle, FM David, R Farivar, RH Campbell, in Proceedings of
the 15th ACM Conference on Computer and Communications Security, CCS
’08. BootJacker: Compromising computers using forced restarts (ACM,
New York, NY, USA, 2008), pp. 555–564

10. AJ Haldermanand, SD Schoen, N Heninger, C William, P William, JA
Calandrino, AJ Feldman, J Appelbaum, EW Felten, Lest we remember:
cold-boot attacks on encryption keys. Commun. ACM. 52(5), 91–98 (2009)

11. Center for Information Technology Policy at Princeton University,
Memory Research Project Source Code (2015). https://citp.princeton.edu/
research/memory/code

12. J Sylve, Android Mind Reading: Memory Acquisition and Analysis with
DMD and Volatility. ShmooCon’12 (2012)

13. Azimuth Security: Dan Rosenberg: Re-visiting the Exynos memory
mapping bug. http://blog.azimuthsecurity.com/2013/02/re-visiting-
exynos-memory-mapping-bug.html. Accessed Dec 2015

14. C Devine, G Vissian, in Proceedings of SSTIC ’09. Compromission physique
par le bus PCI (Thales Security Systems, Ulm, Germany, 2009)

15. M Becher, M Dornseif, CN Klein, in CanSecWest. FireWire: all your memory
are belong to us, (2005)

16. C Maartmann-Moe, Adventures with Daisy in Thunderbolt-DMA-land:
Hacking Macs through the Thunderbolt interface (2012). http://www.
breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-
land-hacking-macs-through-the-thunderbolt-interface

17. R-P Weinmann, in Proceedings of the 6th USENIX Conference on Offensive
Technologies.WOOT’12. Baseband attacks: remote exploitation of
memory corruptions in cellular protocol stacks (USENIX Association,
Berkeley, CA, USA, 2012), pp. 2–2

18. Rocker team flashing interface: RIFF Box. http://riffbox.org. Accessed Dec
2015

19. VLL Thing, K-Y Ng, E-C Chang. Live memory forensics of mobile phones,
vol. 7 (Elsevier, Amsterdam, Netherlands, 2010), pp. 74–82

20. D Apostolopoulos, G Marinakis, C Ntantogian, C Xenakis, in Collaborative,
Trusted and Privacy-Aware e/m-Services. IFIP Advances in Information and
Communication Technology, volu. 399. Discovering authentication
credentials in volatile memory of Android mobile devices (Springer,
Berlin, Heidelberg, 2013), pp. 178–185

21. C Hilgers, H Macht, T Müller, M Spreitzenbarth, in Proceedings of the 2014
Eighth International Conference on IT Security Incident Management & IT
Forensics. IMF ’14. Post-mortem memory analysis of cold-booted android
devices (IEEE Computer Society, Washington, DC, USA, 2014), pp. 62–75

22. J Sylve, A Case, L Marziale, GG Richard, Acquisition and analysis of volatile
memory from android devices. Digital Invest. 8(3–4), 175–184 (2012)

23. T Müller, FC Freiling, A Dewald, in Proceedings of the 20th USENIX
Conference on Security. SEC’11. TRESOR runs encryption securely outside
RAM (USENIX Association, Berkeley, CA, USA, 2011), pp. 17–17

24. J Götzfried, T Müller, in Proceedings of the 2013 International Conference on
Availability, Reliability and Security. ARES ’13. ARMORED: CPU-bound
encryption for Android-driven ARM devices (IEEE Computer Society,
Washington, DC, USA, 2013), pp. 161–168

25. T Müller, B Taubmann, FC Freiling, in Proceedings of the 10th International
Conference on Applied Cryptography and Network Security. ACNS’12.
TreVisor: OS-independent software-based full disk encryption secure
against main memory attacks (Springer, Berlin, Heidelberg, 2012),
pp. 66–83

26. A Skillen, D Barrera, PC van Oorschot, in Proceedings of the Third ACM
Workshop on Security and Privacy in Smartphones &Mobile Devices. SPSM
’13. Deadbolt: Locking down Android disk encryption (ACM, New York,
NY, USA, 2013), pp. 3–14

27. P Colp, J Zhang, J Gleeson, S Suneja, E de Lara, H Raj, S Saroiu, A Wolman,
in Proceedings of the 20th Int. Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’15. Protecting
data on smartphones and tablets from memory attacks (ACM, New York,
NY, USA, 2015), pp. 177–189

http://dx.doi.org/10.1016/j.cose.2014.01.004
http://www.sciencedirect.com/science/article/pii/S0167404814000157
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29 -GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29 -GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29 -GENC-009492C_trustzone_security_whitepaper.pdf
https://citp.princeton.edu/research/memory/code
https://citp.princeton.edu/research/memory/code
http://blog.azimuthsecurity.com/2013/02/re-visiting-exynos-memory-mapping -bug.html
http://blog.azimuthsecurity.com/2013/02/re-visiting-exynos-memory-mapping -bug.html
http://www.breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface
http://www.breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface
http://www.breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface
http://riffbox.org

Huber et al. EURASIP Journal on Information Security (2016) 2016:17 Page 13 of 13

28. N Zhang, K Sun, W Lou, S Hou, YT Jajodia, in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security. ASIA
CCS ’15. Now you see me: hide and seek in physical address space (ACM,
New York, NY, USA, 2015), pp. 321–331

29. R Carbone, C Bean, M Salois, An In-Depth Analysis of the Cold Boot Attack:
Can It Be Used for Sound Forensic Memory Acquisition? (2011)

30. PM Chen, BD Noble, in Proceedings of the EighthWorkshop on Hot Topics in
Operating Systems.HOTOS ’01. When virtual is better than real (IEEE
Computer Society, Washington, DC, USA, 2001), p. 133

31. The Volatility Foundation: open source memory forensics. http://
volatilityfoundation.org. Accessed Dec 2015

32. Joey Hewitt: GitHub - Scintill/keysearch: Search an Android RAM dump
for Linux Dm-crypt (incl. LUKS/cryptsetup) Keys. https://github.com/
scintill/keysearch. Accessed Dec 2015

33. CyanogenMod: CyanogenMod Android kernel Samsung Jf. https://github.
com/CyanogenMod/android_kernel_samsung_jf. Accessed Dec 2015

34. Glass Echidna: Heimdall. http://glassechidna.com.au/heimdall. Accessed
Dec 2015

35. XDA Developers: What is the Samsung Anyway Jig? http://xda-
developers.com/what-is-the-samsung-anyway-jig. Accessed Dec 2015

36. Google: ADB Fastboot Install - A script to install ADB & Fastboot on Mac
OS X and/or Linux. https://code.google.com/p/adb-fastboot-install.
Accessed Dec 2015

37. S Lindenlauf, H Hofken, M Schuba, in 10th International Conference on
Availability, Reliability and Security (ARES ’15). Cold boot attacks on DDR2
and DDR3 SDRAM (IEEE, 2015), pp. 287–292. http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=7299495

38. M Huber, J Horsch, M Velten, M Weiß, S Wessel, in 11th International Conf.
on Information Security and Cryptology - Inscrypt. A secure architecture for
operating system-level virtualization on mobile devices (Springer, Berlin,
Heidelberg, 2015)

39. CodeAurora Forum: (l)ittle (k)ernel based Android bootloader. https://
codeaurora.org/blogs/little-kernel-based-android-bootloader. Accessed
Dec 2015

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://volatilityfoundation.org
http://volatilityfoundation.org
https://github.com/scintill/keysearch
https://github.com/scintill/keysearch
https://github.com/CyanogenMod/android_kernel_samsung_jf
https://github.com/CyanogenMod/android_kernel_samsung_jf
http://glassechidna.com.au/heimdall
http://xda-developers.com/what-is-the-samsung-anyway-jig
http://xda-developers.com/what-is-the-samsung-anyway-jig
https://code.google.com/p/adb-fastboot-install
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7299495
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7299495
https://codeaurora.org/blogs/little-kernel-based-android-bootloader
https://codeaurora.org/blogs/little-kernel-based-android-bootloader

	Abstract
	Keywords

	Introduction
	Related work
	Data interpretation
	Framework architecture
	Implementation
	Bare metal application
	Volatility extension
	The serial address space
	The volatility profile

	Device-specific realization
	Wrapping and deploying the BMA
	Booting the BMA
	Hardware setup
	Portability

	Evaluation
	Loss of information
	Decay based on the cold boot attack
	Decay during the analysis
	Information loss based on the size of the BMA

	Volatility plug-ins
	Comparison with LiME dump analysis
	Acquisition of sensitive user data

	Aspects of the implementation

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

