
Selecting Countermeasures for ICT Systems
Before They are Attacked

Fabrizio Baiardi*, Federico Tonelli, Alessandro Bertolini, and Roberto Bertolotti
Dipartimento di Informatica, Università di Pisa

Pisa, Italy
haruspex@di.unipi.it

Abstract

A countermeasure is any change to a system to reduce the probability it is successfully attacked. We
propose a model based approach that selects countermeasures through multiple simulations of the
behaviors of an ICT system and of intelligent attackers that implement sequences of attacks. The
simulations return information on the attacker sequences and the goals they reach we use to compute
the statistics that drive the selection. Since attackers change their sequences as countermeasures are
deployed, we have defined an iterative strategy where each iteration selects some countermeasures,
updates the system models and runs the simulations to discover any new attacker sequence. The
discovery of new sequences starts a new iteration. The Haruspex suite automates the proposed ap-
proach. Some of its tools acquire information on the target system and on the attackers and build
the corresponding models. Another tool simulates the attacks through the models of the system and
of the attackers. The tool to select countermeasures invokes the other ones to discover how coun-
termeasures influence the attackers. We apply the whole suite to three systems and discuss how the
connection topology influences the countermeasures to adopt.

Keywords: Risk Assessment and Management; Countermeasures; Scenario; Monte Carlo Method.

1 Introduction

An intelligent attacker, or simply attacker, aims to acquire some access rights on an ICT system to
exfiltrate or manipulate some information or to produce some unexpected behavior in a process the
system controls. In general, the attacker collects these all these rights, its goal, through a sequence of
attacks because one attack seldom grants all the rights of interest. An attacker selects the sequence to
implement according to its priorities and preferences.

This paper introduces and applies a model-based approach to select countermeasures for an ICT
system targeted by intelligent attackers. A countermeasure is any change to the system that reduces
the success probability of one attack or guarantees its failure. The proposed approach introduces one
model for the target system and one for each attacker. The system model describes attacks and their
attributes such as the rights each attack grants and its success probability. An attacker model lists its
goals and how it selects a sequence to these goals according to its priorities. The interaction between
these models simulates the attacker behaviors. Since the output of each simulation strongly depends
upon random events such as the success or the selection of attacks, we apply a Monte Carlo method
and run independent simulations. Each simulation returns information on the attacker sequences, the
goals they reach and the time this take. This defines a sample we use to compute the statistics to select
countermeasures.

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 6, number: 2, pp. 58-77
*Corresponding author: Dipartimento di Informatica, Largo Bruno Pontecorvo 3, 56127, Pisa, PI, Italy, Tel: +39-050-

2212762, Email: baiardi@di.unipi.it, Web: http://www.di.unipi.it/~baiardi

58

http://www.di.unipi.it/~baiardi

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Haruspex [1–3] is a suite of tools to increase the robustness of a system before or after its deployment.
Some tools build the system model and those of the attackers, other build a statistical sample through
an experiment that applies a Monte Carlo method with multiple simulations of a scenario where some
attackers target the system.

Haruspex adopts a divide et impera strategy that only requires the probabilities of simple events such
as the success of an attack. By collecting observations in multiple simulations, Haruspex tools return a
statistical sample to compute global probabilities, such as the one that an attacker reaches a goal. The
adoption of multiple simulations avoids the definition of a formal model that relates probabilities of
simple events to the global ones. Being model based, the tools only require the models of the system and
of the attackers and they can evaluate how countermeasures affect the probability that attackers reach
their goals even before the system is actually deployed and attacked.

This paper is focused on the manager, the Haruspex tool to select countermeasures. This tool imple-
ments a first experiment to discover the attacker sequences. After selecting countermeasures for these
sequences, it updates the system model and runs another experiment to discover the attacker sequences
against the new system version. If the attackers still reach their goals, the manager selects further coun-
termeasures, updates accordingly the system model, and it runs a new experiment till it discovers all the
sequences.

After describing the manager, we present a case study that applies the whole suite to three systems
and show how an increasing number of connections influences the countermeasures to deploy. The three
systems do not actually exist but they merges features of real systems we have analyzed through the suite.

The paper is structured as follows. Sect. 2 briefly reviews related works on vulnerabilities, attacks,
attacker, and attack simulation. Sect. 3 describes the building of the system model and of those of the
attackers as well as the simulation of the attackers. Sect. 4 describes the manager and outlines how it
iteratively selects countermeasures and evaluates their effectiveness. We compare the robustness of the
alternative versions of a system the manager considers through the security stress. Sect. 5 defines this
measure and then describes the case study. Lastly, Sect. 6 draws some conclusions and outlines some
future works.

With respect to our previous works [1–4], this one is focused on the selection of countermeasures and
it extends the one in the Parallel and Distributed Processing 2015 Conference [4] with a fully original
case study to outline the relation between the selection of countermeasures and the connection topology.
The original theoretical contribution of this work concerns the discussion of the problems posed by the
adoption of countermeasures that reduce the success probability of attacks but do not guarantee their
failure.

2 Related Works

We outline the contribution of the Haruspex suite by reviewing related works on attacks, plans, their
description, and countermeasures.

[5–11] review the simulation of ICT attacks but do not adopt the Monte Carlo method. [12, 13] dis-
cuss intelligent, goal-oriented terrorists. The model of attack sequences in [14] is similar to the Haruspex
one because it formally defines both pre and post condition of attacks but it does not discuss the prob-
ability of reaching a goal. [15] describes attack attributes and maps attacks into the proper countermea-
sures. [12, 16, 17] describe how the deployment of countermeasures affects the attackers. None of these
work discusses attack sequences.

[18, 19] analyze attack simulation in the framework of game theory. In the same framework, [20]
computes the best protection for alternative targets of an attacker. Instead, Haruspex focuses on an
effective protection for a single target by reducing the probability that attackers reach their goals and not

59

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

by diverting them to a distinct target [21, 22].
[23, 24] review agent-based simulation [25–27] consider multi objective optimization that underlies

the selection of sequences. [28] discusses the relation between planning and attack sequences under the
assumption that accurate and complete information on the target system is available. [10] models attacker
with partial information and [29] defines a notion of look-ahead but in a different perspective than Harus-
pex. Our attacker model is more general than those in these papers because we are not interested in the
optimal sequence or in the optimal strategy to select a sequence [30]. Instead, we focus on an accurate
modeling of how attackers:

• acquire information on the target system,

• select their sequence,

• change this selection because of countermeasures.

Most works on attack sequences do not discuss the selection of countermeasures. This is likely due
to the lack of formal models to compute the success probability of a sequence. The taxonomy of attacks
in [31] focuses on a series of security incidents. [32] proposes a classification to map each vulnerability
into a distinct class. The theoretical approach in [33] analyzes attack sequences targeting distinct network
nodes and it is focused on the compromised level of each node. This approach cannot discover all the
sequences because they grow exponentially in the number of attacks. [34] describes the discovery of
attack sequences and it computes the success probability of each one in isolation without considering
that distinct sequences may be selected. [35–37] model the selection of countermeasures through attack
graphs but they neglect the success probability of a sequence. [38] considers goal oriented attackers. [39]
discusses a metrics to evaluate system robustness. [40, 41] discuss the measurement of the risk due to,
respectively, ICT systems and software components.

Sequences of attacks also play a critical role in intrusion detection. [42–45] correlate, attacks or alerts
from an intrusion detection system to discover attacks that belongs to the same sequence.

3 Haruspex Suite: Simulating a Scenario

The builder, the descriptor, and the engine are the suite tools that support the simulation of a scenario
where some attackers target a system S. The builder builds the model that describes the vulnerabilities in
the components of S and the corresponding attacks. Instead, the descriptor receives information about
each attackers and it builds the corresponding model. Both tools minimize the complexity of model
building to increase not only the accuracy of the simulation but also the complexity of the scenarios that
can be analyzed. The engine uses the models built by the other tools to apply the Monte Carlo Method
and run an experiment with multiple simulations. In this way, it returns a sample to compute the statistics
to select and evaluate countermeasures. In the following, we use the acronyms in Table 1.

3.1 The Builder

The system model of S is modular as it decomposes S into some components, each defining some op-
erations. Through the attacks enabled by the vulnerabilities in a component c, an attacker can illegally
acquire some access rights, or rights, to invoke some operations. Vulnerabilities in c are either known or
suspected. A known vulnerability is public when S is analyzed. Instead, suspected vulnerabilities may
be discovered and become public in the future. Haruspex introduces these vulnerabilities to support a
what-if approach that evaluates how some vulnerabilities affect the selection of countermeasures. As an

60

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Table 1: List of Components and Attributes
S the target system
n a node of S
c a component of S

op an operation of a component
ag an attacker
g a goal of an attacker
at an attack
v a vulnerability
na a node of an attack graph
ar an arc of an attack graph

r(na) the set of rights that na represents
v(at) the vulnerabilities enabling at

time(at) the time to execute at
pre(at) the rights to execute at
post(at) the rights acquired if at is successful
succ(at) the success probability of at
λ (ag) the look-ahead of ag
na(ag) the number of attacks before a new selection

sa a sequence of with l attacks
sa(i) the i− th attack of sa, where i≤ l

succ(ag,g,sa) the probability sa enables ag to reach g
p(sa,g) the plan corresponding to sa
cont(at) a countermeasure for at
cost(at) the cost of cont(at)
lowrisk an upper buond on the success probability of ag

example, we can evaluate how a stack overflow attack against S influences the countermeasures to adopt.
We pair a suspected vulnerability with the probability it becomes public at each time t.

Haruspex models an attacks at through a set of attributes. pre(at), the pre condition of at, includes
the rights an attacker needs to implement at. post(at), the post conditions of at, includes any rights an
attacker acquires if at is successful. succ(at), the success probability of at, models the complexity of the
actions of at as well as the likelihood of events enabling its execution. As an example, succ(at) is close
to zero if the attacker has to execute the corresponding actions in a small time window that it does not
control.

The builder receives a database with the vulnerabilities in the nodes and the interconnection structure
of S. If S already exists, this database is the output of a vulnerability scanning. The scanning of a
node n discovers the components that n runs and returns a list of their public vulnerabilities. Also the
interconnection structure components are scanned and their vulnerabilities added to the database.

If Haruspex is applied in the design of S, then the information in the database is deduced from public
vulnerabilities in the components to be adopted.

The builder discovers attack attributes by classifying each vulnerability v in its input database into
one of seven classes. Vulnerabilities in the same class enable attacks with similar pre and post conditions.
As an example, one class includes all the vulnerabilities of n that only attackers with an account on n can
exploit. The vulnerabilities that enable attacks that do not require an account on n belong to another class
because these attacks have a distinct precondition. The classification of v is driven by the description of

61

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

the attacks that v enables. We use the description in the Common Vulnerabilities and Exposures (CVE),
a de-facto standard for vulnerability description. The builder analyzes the CVE description of v and
considers its Common Vulnerability Scoring System score [46] to compute other attributes of the attacks
v enables such as their success probabilities and execution time. We refer to [2, 47] for a description of
the builder implementation and an evaluation of the accuracy of the classification.

The attack surface of n is an important attribute of the model of S. This surfaces describes how an
attacker sequence spreads among distinct nodes as it includes the attacks that other nodes of S can launch
against n. To compute this attribute, the builder integrates the information on the attacks enabled by the
vulnerabilities of n with the topology of the logical connections to/from n.

The builder stores the model of S in a database with the information previously described.

3.2 The Descriptor

An attacker ag owns the resources and the capability to violate the security policy of S to reach one of
its goals. Each goal g of ag is a distinct sets of rights. To create the model of ag the user supplies to
the descriptor information on the resources it can access to implement an attack and the operations ag
is entitled to invoke by its initial rights. A further critical information is the strategy of ag to select a
sequence of attacks according to its preferences and priorities [48]. We describe this strategy through
AttGr(S,ag), the attack graph of ag against S. AttGr(S,ag), is an oriented graph that represents all the
sequences of ag to reach g. Any node na of AttGr(S,ag) represents a set of rights r(na) and each arc ar
is labeled by an attack at(ar). If ar is an arc from ns to nd , then r(ns) includes pre(at(ar)) and r(nd) is
the union of r(ns) and of post(at(ar)). If r(ni) is the initial set of rights of ag then ni is the initial node
of AttGr(S,ag). A path from ni to any node n f where r(n f) is a goal of ag represents a sequence to reach
the goal. Another notion of interest is the one of plan. A sequence of attacks to reach one of its goals is
a plan if ag does reach the goal if it does not execute even one attack in the sequence.

If ag uses AttGr(S,ag) to select the sequence to implement, it always selects a plan, i.e. a sequence
without useless attacks. However, this is too complex for any real system because the time to build
AttGr(S,ag) is exponential in the size of S. As a consequence, ag builds and analyzes subAttGr(S,ag,λ (ag),c)
a small subset of AttGr(S,ag). c, the initial node of the subset, is the current node of ag, the one
that describes the current rights of ag. λ (ag), the other parameter that define the subset is a natu-
ral number, the look-ahead of ag. If λ (ag) = 0, then subAttGr(S,ag,λ (ag),c) only includes c and
the arcs leaving it. Here, ag randomly selects one of these arcs and the corresponding attack. If
λ (ag) > 0, then subAttGr(S,ag,λ (ag),n) includes c and the paths of AttGr(S,ag) from c with, at
most, λ (ag) arcs. If at least one of these paths leads to a goal, then ag ranks all and only the se-
quences paired with a path to a goal. Otherwise, it ranks all the sequences paired with a path of
subAttGr(S,ag,λ (ag),n). In both cases, the ranking considers the attributes of the attacks of each se-
quence. If no path in subAttGr(S,ag,λ (ag),n) leads to a goal, ag may select a sequence with useless
attacks. Hence, ag reduces the complexity of selection by analyzing a subset of AttGr(S,ag) but, as a
counterpart, it may select sequences with useless attacks.

To simulate in accurate way an attacker, we also consider how ag acquires the information to build
subAttGr(S,ag,λ (ag),n) through a vulnerability scanning. This scanning returns all the vulnerabilities
of the components in the scanned nodes and it delays ag for a time depending on these nodes. ag is
delayed to scan a node n only the first time it ranks a sequence with an attack enabled by a vulnerability
of a component running on n. Hence, the collection overhead increases with the number of nodes ag scans
for each selection that, in turn, increases with λ (ag). This is another compromise between accuracy and
overhead of a selection. We model insiders by pairing each attacker with the nodes it does not need to
scan because it already knows their vulnerabilities.

62

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

The Haruspex model of ag can specify distinct selection strategies according to the priorities of ag.
Among them:

1. random: returns any sequence with the same probability,

2. maxProb: returns the sequence with the best success probability,

3. maxIncr: returns the sequence granting the largest set of rights,

4. maxEff: returns the sequence with the best ratio between success probability and execution time.

None of these strategies neglects a sequence. As an example of a strategy that neglects a sequence,
considers the one that never selects a sequence with an attack a where succ(at) ≤ β . We discuss in the
following how this impacts the selection of countermeasures.

ag invokes again its selection strategy after implementing na(ag) attacks of the selected sequence.
na(ag) determines the compromise between the selection overhead and the ability of collecting more
accurate information on AttGr(S,ag) after some attacks. Furthermore, a low na(ag) enables ag to exploit
suspected vulnerabilities as soon as they are discovered.

3.3 The Engine

Using the model of S and those of the attackers in a scenario, the engine runs an experiment to analyze the
scenario. An experiment includes a number of independent runs that simulate, for the same time interval,
the discovery of suspected vulnerabilities and how each attacker selects and implements its sequence.
Initially, the engine determines the attacks each attacker can implement according to the resource it can
access. Then, at each time step of each run, first of all the engine determines the suspected vulnerabilities
that are discovered. Then, it considers each attacker ag that still has to reach at least one goal and it is idle
or it has just executed an attack. After building subAttGr(S,ag,λ (ag),n), the engine applies the selection
strategy of ag. If ag cannot select a sequence, then it is busy for the time to collect the information to
build subAttGr(S,ag,λ (ag),n) and then it waits for the discovery of a suspected vulnerability. If the
strategy returns a sequence sa, the engine sequentially simulates the first na(ag) attacks of sa and ag will
be busy for the time to select sa and the sum of times to successfully execute these attacks. The engine
repeats a failed attack for an user-defined number of times before selecting a distinct sequence. Anytime
an attack is successfully, the engine checks if ag has reached a goal.

At the end of each run, the engine inserts into the output database one observation that records,
among others, the sequence of each attacker, any goal it has reached, the time this has required. An
observation also records information on S such as the number of successful executions and failures of
each attack. Before starting a new run, the engine restores the initial state of S and of any attacker to
guarantee run independence.

The observations in the database define a sample to compute statistics of interest. The number of
runs in the experiment determines the confidence level of these statistics because each run returns one
observation. The user can either choose the number of runs in an experiment or define the confidence
level for some predefined statistics. In the latter case, engine starts a new run until reaching the required
level.

The current version of the engine is coded in Java and it runs on a highly parallel IBM cluster with
96 cores. We exploit run independence to map distinct runs onto distinct cores. This results in a linear
speed up.

63

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

4 The Haruspex Manager

This section describes how the manager selects countermeasures. For the sake of simplicity, we consider
scenarios with just one attacker ag with just one goal g. Generalization to multiple attackers with some
goals are straightforward. We also assume that the user of the manager specifies lowrisk, the highest
probability it is willing to accept that ag reaches g. In the following, we do not discuss the implementation
of cont(at), the countermeasure for at, but only the decrease of succ(at) that it produces.

4.1 Sequences and Their Success Probabilities

Countermeasures should reduce succ(ag,g,sa), the probability ag reaches g through sa, for any sequence
sa that ag may implement to reach g. succ(ag,g,sa) increases with the probability that ag selects sa as
well as with the success probability of sa. The former is related to the selection strategy of ag, while
the latter increases with the success probabilities of attacks in sa. After running a Haruspex experiment,
we approximate succ(ag,g,sa) as the percentage of runs where ag implements sa and reaches g. We
cannot approximate the probability that ag selects sa because ag may change its selection after some
attack failures.

A countermeasure affects sa if it changes the success probability of at least one of its attacks. This
change also affects the probability that ag selects sa. Hence, the countermeasure may also change
succ(ag,g,sqalt) where sqalt 6= sa by changing the probability that ag selects sqalt. As an example, thi
may happen if ag adopts the maxProb strategy. We have experimentally verified that a countermeasure
may force ag to select plans with a better success probability that it neglects before the countermeasure
is deployed. This extends to ICT security the Braess’s paradox for traffic control [49,50]. While in traffic
control the paradox is due to congestion, now ag neglects a plan with a better success probability because
of partial information on S due to a low λ (ag). Since we do not know them in advance, we can discover
all the sequences a countermeasure affect and their success probabilities by updating the model of S and
by running an experiment with the new model.

These considerations have led to the design of an iterative algorithm where the manager selects
some countermeasures and runs a new experiment to discover any new sequences ag implements and
their success probabilities. New iterations start till the overall success probability of ag is lower than
lowrisk. The update of the model of S exploits at best the Haruspex model based strategy to discover the
effectiveness of countermeasure before their actual deployment.

4.2 Mapping Sequences into Plans

To select cost effective countermeasures, the manager only deploys countermeasures for attacks that ag
has to implement to reach g. To this purpose, it applies the planner, a tool that maps each sequence sa
into the corresponding plan p(sa) to each sequence that ag implements to reach g in a run. We describe
now how the planner removes useless attacks through a backwards scans of sa.

Initially, the planner initializes t p(sa,g), the current approximation of p(sa), with the last attack of
sa. The planner also initializes use f ul to pre(sq(n))∪ (g− post(sq(n))). This variable is a set with the
rights that ag should own before executing the current attack to reach g. Initially, this set includes the
rights to execute sa(n) those in g that sa(n) does not grant.

The planner does not add sa(j) to t p(sa,g) if and only if:

1. no right in post(sa(j)) belongs to use f ul,

2. before executing sa(j), ag already owns any right in post(sq(j))∩use f ul.

64

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

In 1), sa(j) is useless because no right it grants belongs to g or to the precondition of a useful attack.
Instead, in 2) sa(j) is useless because it grants rights that ag owns initially or has already acquired
through previous attacks.

If sa(j) is useful, before analyzing sa(j−1), the planner removes from use f ul the rights in the post
condition of sa(j) and adds those in its pre condition.
At the end of the scanning, p(sa) = t p(sa,g).

This algorithm is correct provided that ag only executes attacks that grant some rights it does not
own. A problem is arisen if sa interleaves more than one plan because the algorithm returns just one of
these plans. We handle an interleaving by mapping any permutation of sa that is also a sequence, i.e.
where the first j−1 attacks grants the rights in the pre condition of the j− th one.

After discovering any plan p, the planner computes succ(ag,g, p) as the percentage of runs where
ag reaches g through sequences mapped into p.

4.3 Selecting Countermeasures for a Set of Plans

We assume that we know at least one countermeasure for each attack. If no countermeasure for at
is known, then cost(at) is infinite. If some countermeasures for at are available, cont(at) is the one
resulting in the largest reduction of succ(at). Ties are broken by selecting the cheapest one. As an
example, if a patch for some vulnerability in vuln(at) is known, then cont(at) applies this patch and it
guarantees the failure of at. Here, cost(at) is the one of the patching. As an alternative, cont(at) may
replace the component affect by vuln(at) with an equivalent one. An example where cont(at) only reduce
succ(at) is the adoption of a longer encryption key or the adoption of an intrusion detection system.

The selector is the manager module that receives Sp, a set of plans of ag to reach g, and returns a
set countermeasures to reduce the success probability of each plan in Sp. To minimize the number of
countermeasures, the selector considers the attacks the plans in Sp share because cont(at) affects all the
plans that execute at.

Initially, we assume that cont(at) guarantees the failure of at. Then, we discuss the general case.

4.3.1 Zero Success Probability

The selector computes the countermeasures for Sp by considering the coverages of Sp. A set of attacks is
a coverage [51] of Spif the countermeasures for its attacks affects any plan in Sp. The cost of a coverage
is the sum of the costs of the countermeasures for its attacks.

The selector computes all the coverages for Sp and it returns the cheapest one. When computing
a coverage, the selector neglects an attack at1 if all the plans that share at1 also share another attack
at2 such that cost(at2) < cost(at1). Furthermore, if some plans share more than one attack and their
countermeasures have the same cost, the selector only considers the countermeasure resulting in the
lowest success probability of the attack. The tool breaks further ties according to the ratio between the
success probability of an attack and its execution time [34, 52, 53].

The execution time of the selector is acceptable even if the coverage problem is NP-Complete pro-
vided that Sp is small or its plans shares a large number of attacks. Instead, the execution time sharply
increases if Sp is large and the plans share a low number of attacks. However, if ag can implement a large
number of plans, the deployment of countermeasures cannot result in a large robustness that requires an
extensive redesign of S.

If the selector returns a coverage with an infinite cost, then at least one plan only include attacks with
no countermeasure. The success probability of this plan is a lower bound on the success probability of
ag.

65

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

4.3.2 Non Zero Success Probability

If cont(at) only reduces succ(at) for at least one attack at, then we may have to select countermeasures
for distinct attacks in the same plan. Obviously, this may reduce the success probability of ag only
if sequences are not very short. As an example, a reduction of the success probability of each attack
in a sequence with two attacks can stop an attacker only if there are strong constrains on the time to
reach a goal. Here, a set of attacks is a coverage if the countermeasures for its attacks reduces at least
of δ the product of the success probabilities of the attacks in each plan. δ is a constant value that the
selector determines according to the number of attacks in the plan. The selector prefers coverages with
countermeasures that guarantee the failure of attacks.

In the following, we discuss further differences arising in this case.

4.4 Reducing the Success Probability of an Attacker

The manager runs a first experiment and it enters a loop. At first, each iteration applies the planner to
the output of the previous experiment to discover each plan p of ag to reach g and succ(ag,g, p). Then,
it invokes the selector to compute the countermeasures for these plans and it updates the model of S to
model the deployment. Then, the manager runs an experiment with the new model to discover any plan
ag successfully implements against the new version of S and its success probability. ag never executes
these plans in a previous experiment because it selects them only when some countermeasures affect
other plans. Only a new experiment can discover these plans because the simulation of the attacks of
ag against the previous versions of S cannot return information to support their discovery. If, in the new
experiment, the success probability of ag is still larger than lowrisk, the manager starts a new iteration.
Otherwise, it terminates after returning the countermeasures deployed in the last version.

The number of countermeasures the selector returns at each iteration strongly depends upon the
plans it receives. In a global approach, at the i− th iteration, the selector receives a set Spi with the
plans that ag implements in any iteration. Hence, at each iteration the selector may return a set of
countermeasures that is disjoint from those it has returned in the previous iterations. In the incremental
approach, instead, Spi only includes the plans ag executes in the i− th iteration. Then, the manager
extends the countermeasures previously deployed with those the selector returns.

A global approach minimizes the number of countermeasures because it considers the attacks some
plans share independently of the iteration that discovers a plan. Instead, the incremental approach cannot
anticipate the plans ag implements in the following iterations and the attacks they share with the previous
ones. As a counterpart, this approach minimizes the number of plans that each iteration transmits to the
selector.

The approach the manager adopts depends upon how countermeasures reduce the success probability
of attacks.

4.4.1 Zero Success Probability

If any cont(at) guarantees the failure of at, the output of the selector in an iteration guarantees the
failure of any plan, even if differs from the one of the previous iteration. Hence, Spi includes all the
plans the selector has received in the first i− 1 iterations and a subset, Cpi, of those ag executes in the
i− th experiment. We insert plans into Cpi according to succ(ag,g, p) and stop as soon as the sum of
succ(ag,g, p) for the remaining plans is lower than lowrisk. To reduce Cpi when ag executes a large
number of plans each with a low value of succ(ag,g, p), we bound its size as a fixed percentage of
successful plans in the i− th iteration. This reduces the computational overhead of each iteration at the
expense of the number of iterations because countemeasures may increase the success probability of
some plans.

66

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

4.4.2 Non Zero Success Probability

If some cont(at) only reduce succ(at), the selection of countermeasures for distinct attacks in a plan
may affect in an unexpected way the plan success probability. This may results in a loop where the
manager alternatively selects one of two sets of countermeasures. To avoid this loop, the manager
adopts an incremental approach. Since the manager may transmit the same plan to the selector in
distinct iterations, it also transmits the countermeasures previously selected.

4.5 Exiting the Iterations

The manager executes a finite number of iterations anytime any cont(at) results in the failure of at
because each iteration discovers and stops at least one of finite number of plans. However, the number
of iterations is unknown a priori because the manager discovers each plan as ag implements it in an
experiment. Since the success probability of ag decreases in a way that is not monotone, the user can
bound the manager execution time by bounding the number of iterations. When the manager reaches this
bound, it returns the best version of S it has discovered, i.e. the one with the lowest success probability
of ag.

If countermeasures only decrease the success probability of some attacks, then the incremental ap-
proach guarantees that the success probability of each plan steadily decreases because the number of
countermeasures that affect a plan never decreases. However, since countermeasures may increase the
success probability of ag, even now a bound of the number of iterations may be specified.

4.6 Avoiding Iterations

The manager can adopt a distinct algorithm if ag never neglects a plan. Hence, in distinct manager ex-
periments, ag selects distinct sequences till it executes all those it can select. In this way, it implements
the same sequences of an attacker that randomly selects its sequence. This implies that we can discover
all the sequences of ag through one experiment that adopts the random selection strategy. Since no in-
formation is available on the sequence execution order, this solution may be adopted only if any cont(at)
results in the failure of at.

5 Case Study and Evaluation of Results

We have applied the Haruspex suite to for three ICT systems: sys1, sys2 and sys3 with the same number
of nodes but a different, complex, interconnection topology. Each ICT system has 24 subnetworks and a
total of 36 distinct nodes running either Windows or Unix operating systems and provide a total of 175
services such as Telnet, SMB and Remote Desktop.

Fig.1, Fig.2 and Fig.3 show the three systems. Each figure shows the name of each subnet, the
number of its nodes and the bidirectional, logical connections among subnets. The topology of sys1
consists of 36 connections. sys2 has four more connections that link, respectively, subnet E and subnet
J, D and O, K and T , and N and U . sys3 includes four further connections that link E and U , D and T ,
J and N, and K and O. There are 1848 vulnerabilities that affect the components of each system. The
critical levels of these vulnerabilities ranges from critical to low.

Each system is the target of four attackers. Two attackers adopt the maxProb strategy, the other two
the maxIncr one. The attackers with the same strategy have distinct λ values in the set {1,2}. Each
attacker initially controls the node in the A subnet and it aims to reach the control of, or implement a
denial the service against, the node in the X subnet.

67

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Figure 1: Topology of sys1

Figure 2: Topology of sys2

In the following, we compare the various versions of each system that the manager considers through
the security stress. The security stress is a synthetic measure we have defined to evaluate and compare the
robustness of alternative version of a system. As a particular case, we apply it to evaluate the effectiveness
of the countermeasures the manager selects. First of all we describe this measure and then the selection
of countermeasures for the three systems.

5.1 Security Stress

The security stress is a synthetic evaluation of how a system resists to some attackers. Initially, we
consider a single attacker and generalizes at the end of this section. If ag attacks S to achieve g, StrS

ag,g(t),
the security stress of S at t, is the probability that ag achieves g within t. StrS

ag,g(t) evaluates the resistance
of S to the attacks of ag as t increases. S cracks at tc if ag always reaches g for times larger than tc. The

68

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Figure 3: Topology of sys3

resistance of S in a time interval decreases as the surface underlying StrS
ag,g(t) increases.

To explain why we use StrS
ag,g(t) to evaluate the robustness of S, let us considers two time under

the assumption they both exist. t0 is the lowest time when the success probability of ag is larger than
zero while t1 is the smallest time where this probability is 1. The value of t1− t0 evaluates how long S,
partially, resists to the attacks of ag before cracking. The attacks are ineffective till t0. Then, they are
more and more effective till S cracks at t1 as ag is always successful for larger times. The values of t0
and of t1 depend upon both some properties of S, such as the attack attributes, and some properties of ag,
such as the sequences it selects. In particular:

1. t0 depends upon the length of these sequences and the time the time to execute their attacks ;

2. t1 depends upon succ(at) that determines the average number of times ag repeats at;

3. t1− t0 depends upon the standard deviation of the length of the sequences of ag.

We approximate StrS
ag,g(t) as the percentage of the runs in an experiment where ag reaches g within

t. To evaluate the effectiveness of some countermeasures, we compare the robustness of S against the
one of Sc, the system that deploys the countermeasures. In general, StrSc

ag,g(t) is lower than StrS
ag,g(t) in

the time interval simulated in the Haruspex experiment. However, if some countermeasures forces ag to
select shorter sequences to reach g, StrSc

ag,g(t) may become larger than StrS
ag,g(t) and the two curves may

intersect.
If any scenario with multiple attackers, we consider the largest stress curve among those of the

attackers and denote the corresponding attacker as the most dangerous one. If no curve is larger than the
other, we consider a weighted sum of the curves.

An alternative definition of stress considers StrS
ag,g(n), the success probability of ag after executing

n attacks. This value includes both successful and failed executions and it evaluates both the effort of ag
and the opportunities of S to detect the activity of ag.

5.2 Selecting Countermeasures: A Case Study

Any Haruspex experiment described in the following has been implemented by the engine and it uses
the models returned by the builder and by the descriptor. Each experiment reaches a 95% confidence

69

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

level on the components that are the targets of the attacker. This results in about 50.000 runs that our
multicore architecture executes in about 10 minutes.

Figure 4: sys2: Stress Curves of the Four Attackers

Figure 5: sys3: Stress Curves of the Four Attackers

Fig.4 and Fig.5 show the stress curves of, respectively, sys2 and sys3 for each of the four attackers.
We do not show the corresponding curves for sys1 as they always overlap the x axis because no attacker
reaches its goal.

Fig. 6 shows the stress of sys2 due to the four attackers in terms of the number of attacks. This curve
shows that the success probability of attacker is larger than zero after, at least, 14 attacks. Fig. 7 shows
the corresponding stress for sys3. When targeting sys3, an attacker can reach its goal after, at least, 5
attacks, while the most powerful attacker always reaches its goals after 39 attacks.

The stress curves for sys2 shows that there is not a most dangerous attacker. The stress curve of the
one that adopts the maxIncr strategy with λ = 2 dominates the other ones for most of the time but the
first curve that reaches 1 is the one of the attacker with maxProb strategy and λ = 2. In the following,
we do not introduce a weighted sum of the curves of these two attackers and discuss each attacker
independently.

70

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Figure 6: sys2: Stress Curves of the Four Attackers using Attacks

Figure 7: sys3: Stress Curves of the Four Attackers using Attacks

The stress curve of the maxIncr attacker with λ = 2 shows that sys2 starts to crack after about 14
hours of attacks and it completely cracks after about 36 hours. Even the maxProbattacker with λ = 2
starts to crack sys2 after about 14 hours of attacks but it completely cracks sys2 after about 30hours. The
least dangerous attacker against sys2 adopts the maxProb strategy with λ = 1. This attacker starts to
crack the system after about 15 hours and it is always successful after 240hours.

The stress curves of sys3 show that most dangerous attacker adopts the maxIncr strategy with λ = 2
and the least dangerous one is, for most of time, the one that adopts maxProb with λ = 1. The most
dangerous attacker starts to crack sys3 only after 7 hours while its attacks are always successful provided
that it has about 29 hours available. The least dangerous attacker completely cracks the system after 240
hours and starts to reach its goals after about 12 hours.

These curves show that a richer topology strongly may reduce the complexity of attacking a system.
In fact, when passing from sys1 to sys2, the number of connections increases of about 11% and this
enables any attackers to reach its goal. The same increase when passing from sys2 to sys3 reduces the
shortest time to reach a goal from 14 to 7 hours.

We have applied the manager to compute the countermeasures for sys2 and for sys3. The manager

71

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

adopts a global approach because countermeasures guarantee the failure of attacks. To avoid trivial
solutions, we have assumed that there is no countermeasures for attacks that may be the first or the last
ones of a sequence. These attacks are those the attacker can implement from the node it initially controls
and those against the attacker goal, the subnet X node.

With respect to sys2, we have applied the manager to each of the two attackers with λ = 2 and that
adopt, respectively, maxProb and maxIncr. The manager returns for both attackers the same set with
7 countermeasures that guarantees that they cannot reach their goal. Three of these countermeasures
concern the vulnerabilities on the SSH protocol in the nodes in the subnets M, T , and U . 3 further
countermeasures patch 3 weakness of the Telnet, Samba and SSL protocols in the subnet M node. The
last countermeasures changes a default password in subnet U node. By deploying countermeasures for
less than 1% of vulnerabilities, the manager stops all the plans of these attackers but, since they never
neglects a plan, the set of countermeasures also stops attackers that adopt distinct selection strategies.

The manager computes the countermeasures for the maxIncr attacker in 3 iterations while it com-
putes the same set in 4 iterations for the maxProb attacker.

Fig. 8 and Fig. 9 show the stress values of the versions of sys2 that the manager considers in its
iterations for the two attackers. The curve of the last version is not shown as it overlaps the x axis.

It is worth noticing that Fig. 9 shows an instance of the Braess’s paradox. The robustness of the
version at the third iteration is lower than the one at the second iteration because the countermeasures
that the manager selects in this iteration force the attacker to select longer sequences but with a better
success probabilities. This increase in the success probability of the attacker is revealed by an intersection
between the stress curves of the two versions. In this example, the attacker implements 412 distinct
plans against the first version of sys2, 443 against the second version and 438 against the third one. As
previously discussed, the attacker initially neglects some plans because of partial information on sys2
due to its λ .

The most dangerous attacker against sys3 adopts the maxIncr strategy with λ = 2. Fig. 10 shows
the stress curves of the versions of sys3 that the manager produces. The manager selects the same set
of countermeasures it computes to stop both attackers against sys2. These countermeasures are effective
even for sys3 because they prevent the most dangerous attacker to exploit the new connections that sys3
offers. This shows that a richer topology may not increase the complexity of defending a system because
the manager computes the countermeasures for sys3 in 3 iterations. However, this happens only when
the manager exploits at best shared attacks among plans. As an example, this may not occur if an
incremental approach is adopted. Even for sys3, the deployment of countermeasures for less than 1% of
all the vulnerabilities stops all the attackers.

Figure 8: sys2: Stress Curves at Distinct Iterations, maxIncr Attacker

72

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Figure 9: sys2: Stress Curves at Distinct Iterations, maxProb Attacker

Figure 10: sys3: Stress Curves at Distinct Iterations, maxIncr Attacker

We have also consider the deployment of countermeasures that only reduce the success probability
of attacks. As an example, by deploying a host intrusion detection system on each node that is the target
of one plan of the attacker, we reduce the success probability of the most dangerous attacker against sys3
to 0.4 under the assumption that the false negative rate of the detection system is, at most, 1%.

6 Conclusion

This paper has discussed how the Haruspex suite supports the selection of countermeasures for intelli-
gent attackers. These attackers aims to reach some predefined goals by composing the attacks enabled by
the system vulnerability into sequences. In Haruspex, two tools cooperate to discover an effective set of
countermeasures: the manager and the planner. These tools implement an iterative process where each
iteration implements a Haruspex experiment to discover how attackers changes their sequences as coun-
termeasures are deployed. This take into account that an intelligent attacker can select and implement
new sequences as old ones are affected by some countermeasures. We have presented a case study that

73

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

applies the suite to select countermeasures for three systems where the complexity of interconnection
topology increases. In this way, we have experimentally evaluate the influence of a richer topology on
the complexity of countermeasure selection. Our experiments show some cases where the complexity
of selecting a set of countermeasures does not increase with the number of connections provided that
the selection considers the attacks that distinct plans share. We have also shown an example where the
deployment of countermeasures increases the success probability of an attacker.

Future developments of the Haruspex suite concern the definition of more sophisticated models for
the attackers and for the system and the modeling of computer worms.

References

[1] F. Baiardi and D. Sgandurra, “Assessing ict risk through a monte carlo method,” Environment Systems and
Decisions, vol. 33, no. 4, pp. 486–499, 2013.

[2] F. Baiardi, F. Corò, F. Tonelli, and L. Guidi, “Gvscan: Scanning networks for global vulnerabilities,” in
Proc. of the 8th International Conference on Availability, Reliability and Security (ARES’13), Regensburg,
Germany. IEEE, September 2013, pp. 670–677.

[3] F. Baiardi, F. Corò, F. Tonelli, and D. Sgandurra, “A scenario method to automatically assess ict risk,” in Proc.
of the 22nd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing
(PDP’14), Turin, Italy. IEEE, February 2014, pp. 544–551.

[4] F. Baiardi, F. Tonelli, A. Bertolini, and R. Bertolotti, “Iterative selection of cost-effective countermeasures for
intelligent threat agents,” in Proc. of the 23nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP’15), Turku, Finland. IEEE, March 2015, pp. 595–599.

[5] V. Gorodetski and I. Kotenko, “Attacks against computer network: formal grammar-based framework and
simulation tool,” in Proc. of the 5th International Symposium on Recent Advances in Intrusion Detection
(RAID’02), Zurich, Switzerland, LNCS, vol. 2516. Springer-Verlag Berlin Heidelberg, October 2002, pp.
219–238.

[6] I. Kotenko, “Active vulnerability assessment of computer networks by simulation of complex remote attacks,”
in Proc. of the 1st International Conference on Computer Networks and Mobile Computing (ICCNMC’03),
Shanghai, China. IEEE, November 2003, pp. 40–47.

[7] D. Helbing and S. Balietti, “How to do agent based simulations in the future,” Santa Fe Institue Working
Paper, June 2011.

[8] S. H. Conrad, R. J. LeClaire, G. P. O’Reilly, and H. Uzunalioglu, “Critical national infrastructure reliability
modeling and analysis,” Bell Labs Technical Journal, vol. 11, no. 3, pp. 57–71, 2006.

[9] T. Brown, W. Beyeler, and D. Barton, “Assessing infrastructure interdependencies: the challenge of risk
analysis for complex adaptive systems,” International Journal of Critical Infrastructures, vol. 1, no. 1, pp.
108–117, 2004.

[10] E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K. Keefe, and W. H. Sanders, “Adversary-driven state-
based system security evaluation,” in Proc. of the 6th International Workshop on Security Measurements and
Metrics (MetriSec’10), Bolzano, Italy. ACM, September 2010, p. 5.

[11] I. Kotenko, A. Shorov, A. Chechulin, and E. Novikova, “Dynamical attack simulation for security information
and event management,” in Proc. of the 6th International Workshop on Information Fusion and Geographic
Information Systems: Environmental and Urban Challenges (IF&GIS’13), St. Petersburg, Russia, Lecture
Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, May 2013, pp. 219–234.

[12] D. Rios Insua, J. Rios, and D. Banks, “Adversarial risk analysis,” Journal of the American Statistical Associ-
ation, vol. 104, no. 486, pp. 841–854, 2009.

[13] D. M. Buede, S. Mahoney, B. Ezell, and J. Lathrop, “Using plural modeling for predicting decisions made
by adaptive adversaries,” Reliability Engineering & System Safety, vol. 108, pp. 77–89, 2012.

[14] S. Cheung, U. Lindqvist, and M. W. Fong, “Modeling multistep cyber attacks for scenario recognition,” in
Proc. of the 3rd DARPA information survivability conference and exposition (DIS-CEX’03), Washington DC,
USA, vol. 1. IEEE, April 2003, pp. 284–292.

74

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

[15] S. Barnum, “Capec schema description,” http://capec.mitre.org, [Online; accessed May-2015].
[16] J. Diamant, “Resilient security architecture: A complementary approach to reducing vulnerabilities,” IEEE

Security & Privacy, vol. 9, no. 4, pp. 80–84, July 2011.
[17] R. Bohme and T. Moore, “The iterated weakest link,” IEEE Security & Privacy, vol. 8, no. 1, pp. 53–55,

January 2010.
[18] V. Bier, S. Oliveros, and L. Samuelson, “Choosing what to protect: Strategic defensive allocation against an

unknown attacker,” Journal of Public Economic Theory, vol. 9, no. 4, pp. 563–587, 2007.
[19] K. Hausken and V. M. Bier, “Defending against multiple different attackers,” European Journal of Opera-

tional Research, vol. 211, no. 2, pp. 370–384, 2011.
[20] K. Hausken and F. He, “On the effectiveness of security countermeasures for critical infrastructures,” Risk

Analysis, December 2014.
[21] D. Florêncio and C. Herley, “Sex, lies and cyber-crime surveys,” in Economics of information security and

privacy III, B. Schneier, Ed. Springer New York, July 2013, pp. 35–53.
[22] ——, “Where do all the attacks go?” in Economics of Information Security and Privacy III, B. Schneier, Ed.

Springer New York, July 2013, pp. 13–33.
[23] C. M. Macal and M. J. North, “Tutorial on agent-based modelling and simulation,” Journal of simulation,

vol. 4, no. 3, pp. 151–162, 2010.
[24] R. J. Allan, Survey of agent based modelling and simulation tools. Science & Technology Facilities Council,

2010.
[25] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,”

Reliability Engineering & System Safety, vol. 91, no. 9, pp. 992–1007, 2006.
[26] K. Deb, “Multi-objective optimization,” in Search Methodologies, E. K. Burke and G. Kendall, Eds. Springer

US, July 2014, pp. 403–449.
[27] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for engineering,” Structural

and multidisciplinary optimization, vol. 26, no. 6, pp. 369–395, 2004.
[28] A. Futoransky, F. Miranda, J. Orlicki, and C. Sarraute, “Simulating cyber-attacks for fun and profit,” in Proc.

of the 2nd International Conference on Simulation Tools and Techniques (SIMUTools’09), Rome, Italy, March
2009, pp. 1–9.

[29] E. LeMay, W. Unkenholz, D. Parks, C. Muehrcke, K. Keefe, and W. Sanders, “Model-based security metrics
using adversary view security evaluation (advise),” in Proc. of the 8th Int. Conf. on Quantitative Evaluation
of SysTems (QEST’11), Aachen, Germany. IEEE, September 2011, pp. 191–200.

[30] E. Serra, S. Jajodia, A. Pugliese, A. Rullo, and V. Subrahmanian, “Pareto-optimal adversarial defense of
enterprise systems,” ACM Transactions on Information and System Security (TISSEC), vol. 17, no. 3, p. 11,
March 2015.

[31] J. D. Howard, “An analysis of security incidents on the internet 1989-1995,” DTIC Document, Tech. Rep.,
1997.

[32] S. Engle, S. Whalen, D. Howard, and M. Bishop, “Tree approach to vulnerability classification,” Department
of Computer Science, University of California, Davis, Tech. Rep. CSE-2006-10, May 2005.

[33] P. Ammann, J. Pamula, R. Ritchey, and J. d. Street, “A host-based approach to network attack chaining
analysis,” in Proc. of the 21st Annual Computer Security Applications Conference (ACSAC’05), Tucson,
Arizona, USA. IEEE, December 2005, pp. 84–95.

[34] C. Sarraute, G. Richarte, and J. Lucángeli Obes, “An algorithm to find optimal attack paths in nondeterminis-
tic scenarios,” in Proc. of the 4th ACM Workshop on Security and Artificial Intelligence (AISec’11), Chicago,
Illinois, USA. ACM, October 2011, pp. 71–80.

[35] K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling modern network attacks and coun-
termeasures using attack graphs,” in Proc. of the 25th Annual Computer Security Applications Conference
(ACSAC’09), Honolulu, Hawaii. IEEE, December 2009, pp. 117–126.

[36] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Network intrusion detection and countermea-
sure selection in virtual network systems,” IEEE transactions on dependable and secure computing, vol. 10,
no. 4, pp. 198–211, July 2013.

75

http://capec.mitre. org

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

[37] D. Baca and K. Petersen, “Countermeasure graphs for software security risk assessment: An action research,”
Journal of Systems and Software, vol. 86, no. 9, pp. 2411–2428, 2013.

[38] S. Evans, D. Heinbuch, E. Kyle, J. Piorkowski, and J. Wallner, “Risk-based systems security engineering:
Stopping attacks with intention,” IEEE Security & Privacy, vol. 2, no. 6, pp. 59–62, November 2004.

[39] I. Kotenko, E. Doynikova, and A. Chechulin, “Security metrics based on attack graphs for the olympic games
scenario,” in Proc. of the 22nd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP’14), Turin, Italy. IEEE, February 2014, pp. 561–568.

[40] A. Arora, D. Hall, C. Piato, D. Ramsey, and R. Telang, “Measuring the risk-based value of it security solu-
tions,” IT professional, vol. 6, no. 6, pp. 35–42, 2004.

[41] C. Alberts, J. Allen, and R. Stoddard, “Risk-based measurement and analysis: application to software secu-
rity,” DTIC Document, Tech. Rep., 2012.

[42] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-detection alerts,” in Proc. of the 4th Inter-
national Symposium on Recent Advances in Intrusion Detection (RAID’01), Davis, California, USA, LNCS,
vol. 2212. Springer-Verlag Berlin Heidelberg, October 2001, pp. 85–103.

[43] J. Zhou, M. Heckman, B. Reynolds, A. Carlson, and M. Bishop, “Modeling network intrusion detection
alerts for correlation,” ACM Transactions on Information and System Security (TISSEC), vol. 10, no. 1, p. 4,
February 2007.

[44] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks and collaborative intrusion
detection,” Computers & Security, vol. 29, no. 1, pp. 124–140, 2010.

[45] B. Morin, L. Mé, H. Debar, and M. Ducassé, “M2d2: A formal data model for ids alert correlation,” in
Proc. of the 5th International Conference on Recent Advances in Intrusion Detection (RAID’02), Zurich,
Switzerland, LNCS, vol. 2516. Springer-Verlag Berlin Heidelberg, October 2002, pp. 115–137.

[46] K. Scarfone and P. Mell, “An analysis of CVSS version 2 vulnerability scoring,” in Proc. of the 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM’09), Lake Buena Vista,
Florida, USA. IEEE, October 2009, pp. 516–525.

[47] F. Baiardi, F. Tonelli, F. Corò, and L. Guidi, “QSec: Supporting security decisions on an IT infrastructure,”
in Proc of the 8th International Conference on Critical Information Infrastructures Security (CRITIS’13),
Amsterdam, The Netherlands, LNCS, vol. 8328. Springer International Publishing, September 2013, pp.
108–119.

[48] M. Boddy, J. Gohde, T. Haigh, and S. Harp, “Course of action generation for cyber security using classical
planning,” in Proc. of the 15th International Conference on Automated Planning & Scheduling (ICAPS’05),
Monterey, California, USA. AAAI Press, June 2005, pp. 12–21.

[49] D. Braess, A. Nagurney, and T. Wakolbinger, “On a paradox of traffic planning,” Transportation science,
vol. 39, no. 4, pp. 446–450, 2005.

[50] H. Youn, M. T. Gastner, and H. Jeong, “Price of anarchy in transportation networks: efficiency and optimality
control,” Physical review letters, vol. 101, no. 12, p. 128701, 2008.

[51] R. Karp, “Reducibility among combinatorial problems,” in Proc. of the 1972 Symposium on the Complex-
ity of Computer Computations, New York, USA, ser. IBM Research Symposia, R. Miller, J. Thatcher, and
J. Bohlinger, Eds. Springer US, March 1972, pp. 85–103.

[52] C. Sarraute, O. Buffet, and J. Hoffmann, “POMDPs make better hackers: Accounting for uncertainty in
penetration testing,” in Proc. of the 26th Conference on Artificial Intelligence (AAAI’12), Toronto, Canada,
July 2012.

[53] C. Sarraute, “On exploit quality metrics – and how to use them for automated pentesting,” in Proc. of the 1st
8.8 Computer Security Conference (8.8’11), Santiago, Chile, November 2011.

——————————————————————————

76

Selecting Countermeasures for ICT Systems Before They are Attacked Baiardi et al.

Author Biography

Fabrizio Baiardi graduated in Computer Science at Università di Pisa where is a Full
Professor with Dipartimento di Informatica where he has chaired the degree on secu-
rity of ICT infrastructures. His main research interests in the computer security field
are formal approaches to risk assessment and management of complex ICT infras-
tructures. Fabrizio Baiardi has been involved in the risk assessment and management
of several systems and of industrial control systems with SCADA components. He
has authored several papers on ICT security and currently teaches several university

courses on security related topics.

Federico Tonelli has a master’s degree (110 cum laude) in Information Security. Cur-
rently, He won the call for became a Ph.D student (obtaining the first place with
99/100). Before, He was a scholarship holder and his research was about the vulner-
ability analysis in SCADA systems, funded by Enel Engeneering and Services. He
was born on June 3rd, 1985, he live and he also studied until high school in Leghorn.
Then, he studied Information Tecnology at University of Pisa and in the end he studied
Security Information at La Spezia, a displacement of University of Pisa.

Alessandro Bertolini has a master’s degree (109/110) in Computer Science. Now
he works in the “Haruspex Project”, a software dedicated to create models about real
computer network systems and do risk assessment by simulating various attacks with
intelligent and goal-oriented agents. Before, he worked in 2008 for six months in I.T.
department of Lucchini (Piombino, Li, Italy), then he collaborated with M.A.I.O.R.
Srl to realize “TTDAlgo”, a new tool based on algorithms of Operational Research
to create an optimized time-tables for the urban public transport. He was born on

May 13rd, 1981, he live and he also studied until high school in Piombino. Then, he studied Computer
Science at University of Pisa.

Roberto Bertolotti has a master’s degree (106/110) in Information Security. He wrote
the thesis on “Simulazione di attacchi scontro infrastrutture ICT” that won the inter-
national competition “Shared University Research Grant” of IBM Corporation. He
was born in La Spezia on April 26th, 1985, where he also studied Applied Informat-
ics and Informatics Security. He is the person who has installed and mainteins the
server multi-host that permits to use Haruspex (the program that generates million of
parallel simulation).

77

	Introduction
	Related Works
	Haruspex Suite: Simulating a Scenario
	The Builder
	The Descriptor
	The Engine

	The Haruspex Manager
	Sequences and Their Success Probabilities
	Mapping Sequences into Plans
	Selecting Countermeasures for a Set of Plans
	Zero Success Probability
	Non Zero Success Probability

	Reducing the Success Probability of an Attacker
	Zero Success Probability
	Non Zero Success Probability

	Exiting the Iterations
	Avoiding Iterations

	Case Study and Evaluation of Results
	Security Stress
	Selecting Countermeasures: A Case Study

	Conclusion

