8 research outputs found

    DDPG Performance in THz Communications over Cascaded RISs: A Machine Learning Solution to the Over-Determined System

    Get PDF
    THz technology is considered a key element in 6G wireless communication because it provides ultra-high bandwidths, considerable capacities, and significant gains. However, wireless systems operating at high frequencies are faced with uncertainty and highly dynamic channels. Reflecting intelligent surfaces (RISs) can increase the range of the THz communication links and boost the rate at the receiver. In contrast to the existing literature, we investigate the scenario of multiple access multi-hop (cascaded) RISs uplink THz networks in a correlated channel environment. We show that our inspected cascaded RIS system is over-determined and that the rate maximization optimization problem is non-convex. To this end, we derive a closed-form expression of the received power and derive an analytical solution based on pseudo-inverse to obtain optimum RISs' phase shifts that maximize the received signal power and hence increase the rate. In addition, we utilize deep reinforcement learning (DRL), which is capable of solving non-convex optimization problems, to obtain the optimum cascaded RISs' phase shifts at the receiver taking into account the situation of the spatially correlated channels. Simulation results demonstrate that the DRL algorithm achieves higher rates than the mathematical sub-optimal method and the case of randomized phases

    Orthogonal chirp-division multiplexing for performance enhanced optical/millimeter-wave 5G/6G communications

    Get PDF
    Orthogonal chirp-division multiplexing is deployed as a novel waveform in an optical/millimeter-wave system. Enhanced channel estimation gives a 5-dB receiver sensitivity improvement over a conventional OFDM implementation, and compatibility with 256-QAM at 60-GHz is experimentally demonstrated

    Swarm of UAVs for Network Management in 6G: A Technical Review

    Full text link
    Fifth-generation (5G) cellular networks have led to the implementation of beyond 5G (B5G) networks, which are capable of incorporating autonomous services to swarm of unmanned aerial vehicles (UAVs). They provide capacity expansion strategies to address massive connectivity issues and guarantee ultra-high throughput and low latency, especially in extreme or emergency situations where network density, bandwidth, and traffic patterns fluctuate. On the one hand, 6G technology integrates AI/ML, IoT, and blockchain to establish ultra-reliable, intelligent, secure, and ubiquitous UAV networks. 6G networks, on the other hand, rely on new enabling technologies such as air interface and transmission technologies, as well as a unique network design, posing new challenges for the swarm of UAVs. Keeping these challenges in mind, this article focuses on the security and privacy, intelligence, and energy-efficiency issues faced by swarms of UAVs operating in 6G mobile networks. In this state-of-the-art review, we integrated blockchain and AI/ML with UAV networks utilizing the 6G ecosystem. The key findings are then presented, and potential research challenges are identified. We conclude the review by shedding light on future research in this emerging field of research.Comment: 19,

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe

    From classical to quantum machine learning: survey on routing optimization in 6G software defined networking

    Get PDF
    The sixth generation (6G) of mobile networks will adopt on-demand self-reconfiguration to fulfill simultaneously stringent key performance indicators and overall optimization of usage of network resources. Such dynamic and flexible network management is made possible by Software Defined Networking (SDN) with a global view of the network, centralized control, and adaptable forwarding rules. Because of the complexity of 6G networks, Artificial Intelligence and its integration with SDN and Quantum Computing are considered prospective solutions to hard problems such as optimized routing in highly dynamic and complex networks. The main contribution of this survey is to present an in-depth study and analysis of recent research on the application of Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and Quantum Machine Learning (QML) techniques to address SDN routing challenges in 6G networks. Furthermore, the paper identifies and discusses open research questions in this domain. In summary, we conclude that there is a significant shift toward employing RL/DRL-based routing strategies in SDN networks, particularly over the past 3 years. Moreover, there is a huge interest in integrating QML techniques to tackle the complexity of routing in 6G networks. However, considerable work remains to be done in both approaches in order to accomplish thorough comparisons and synergies among various approaches and conduct meaningful evaluations using open datasets and different topologies

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Secure attack detection framework for hierarchical 6G-enabled internet of vehicles

    No full text
    International audienceThe Sixth Generation Heterogeneous Network (6G HetNet) is a global interconnected system that serves a myriad variety of applications and services across multiple domains such as satellite, air, ground, and underwater networks. It provides a platform for the development of novel Internet of Things (IoT) applications and services, particularly for the Internet of Vehicles (IoV), which encompasses all devices involved in intra-vehicle and inter-vehicle communications. However, this evolution towards a unified and huge cellular infrastructure creates new security challenges that require an intelligent attack detection framework to safeguard the network against cyber-security threats. This paper proposes a hierarchical attack detection framework for 6G-enabled IoV. This framework relies on the processing capacities of edge nodes to satisfy the main 6G Key Performance Indicators (KPIs), such as trustworthiness, latency, connectivity, data rate and energy consumption. Federated Learning (FL) and non-cooperative gaming are used to train attack models and improve the detection process over time. The cooperative detection process based on FL is executed by security entities, IoV devices, edge servers and Security Information and Event Management (SIEM) to improve the detection accuracy over time. To harden the security of the proposed attack detection framework, a robust Stackelberg security game is developed to identify malicious IoV devices and edge servers, and select suitable IoV devices and edge servers to participate in the training and attack detection processes. The identification and selection process mainly relies on computing a reputation score based on the activities of these IoV devices and edge servers. As compared to current security monitoring and detection solutions, our framework balances detection accuracy and reduced network overhead, specifically as the system scales up, i.e., when the malicious traffic is high. In addition, it mitigates threats from both external and internal adversaries
    corecore