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Abstract—THz technology is considered a key element in
6G wireless communication because it provides ultra-high
bandwidths, considerable capacities, and significant gains.
However, wireless systems operating at high frequencies are
faced with uncertainty and highly dynamic channels. Reflecting
intelligent surfaces (RISs) can increase the range of the THz
communication links and boost the rate at the receiver. In
contrast to the existing literature, we investigate the scenario of
multiple access multi-hop (cascaded) RISs uplink THz networks
in a correlated channel environment. We show that our inspected
cascaded RIS system is over-determined and that the rate
maximization optimization problem is non-convex. To this end,
we derive a closed-form expression of the received power
and derive an analytical solution based on pseudo-inverse to
obtain optimum RISs’ phase shifts that maximize the received
signal power and hence increase the rate. In addition, we
utilize deep reinforcement learning (DRL), which is capable of
solving non-convex optimization problems, to obtain the optimum
cascaded RISs’ phase shifts at the receiver taking into account
the situation of the spatially correlated channels. Simulation
results demonstrate that the DRL algorithm achieves higher
rates than the mathematical sub-optimal method and the case
of randomized phases.

Index Terms—Wireless Communication, 5G, 6G, RIS, THz,
Machine Learning, Deep Reinforcement learning.

I. INTRODUCTION

THZ frequency bands (100 GHz - 10 THz) are considered
cornerstones in the 6G communication networks. THz

frequencies are favorable to support ultra-high bandwidths
and significant data rates. These frequency bands can
potentially provide considerable performance gains and
significant capacities. Nonetheless, the transition towards the
real and practical implementation of THz networks suffers
from molecular losses, highly dynamic and varying channels,
short-range links and communication distances, and the
reliance on line-of-sight (LOS) or narrow-beam links [1], [2].
To optimize the achievable data rate at the receiver (Rx),
this research paper examines the reflecting intelligent surface
(RIS) as a modern technology and promising solution. The RIS
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is a two-dimensional (2D) electromagnetic surface, precisely
metasurface, that constitutes a large number of semi-passive
scattering elements. Every element can be controlled via
a software-defined behavior to adjust the electromagnetic
properties (i.e. phase-shift) of the reflection of the incident
radio frequency (RF) signals upon the RIS elements [3], [4].
Thus, the RIS can instantly amend the wireless propagation
channel to improve the signal transmission, boost the received
signal power, and suppress the interference at the Rx.
Therefore, it improves the data rate in a cost-effective and
energy-efficient behavior and provides an innovative means to
attain the 6G Key performance indicators (KPIs) [5], [6].

Several research papers inspected the deployment of RIS
in THz networks to investigate its power in boosting the
coverage and improving the achievable data rate at the Rx
[7]–[16]. However, the following research studies [7]–[14]
utilized mathematical methods to solve their optimization
problems, whereas the research papers in [15], [16] employed
the deep reinforcement learning (DRL) method to solve the
joint design of the digital beamforming at the base station
(BS) and the analog beamforming at the RISs to combat
the propagation attenuations and molecular absorptions in
downlink broadcast THz system, which is a Base station
(i.e. single source) to multi-destination (i.e. users) scenario.
To the best of our knowledge, none of the studies in the
literature utilized the DRL technique to determine the solution
to the over-determined system of equations for the scenario of
multiple access multi-hop RIS uplink THz system, which is
multiple sources(i.e. users) to the same destination (i.e. Rx).

In this study, we examine the above-mentioned gap in the
literature by employing a DRL method, namely DDPG (deep
deterministic policy gradient (DDPG), to jointly obtain the
optimum RISs phase-shifts in the multi-hop RIS scenario to
maximize the received power for user 1 at the Rx. The main
challenge in our design while finding the optimum phases
at RIS1 and RIS2 jointly lies in the non-convexity because
of the constant modulus constraints of the RIS elements,
and computationally intractable cascaded RIS links. Thus, the
optimal solution to this optimization problem is not known,
and it is not feasible to find an analytical solution using
mathematical techniques. Further, employing the exhaustive
search isn’t practical for large-scale networks because of



it is high complexity [15], [16]. Therefore, to solve this
optimization problem, we leverage a DRL method, namely
the DDPG algorithm, to find out the possible solutions.

A. Contributions
Our contributions to this research paper can be summarized

as follows:
• We formulate the multi-hop RIS correlated channel

system that operates in the THz frequency range under
the scenario of two transmitting users.

• We formulate user 1’s rate optimization problem by
jointly optimizing the phase shifts at RIS1 and RIS2 while
the second user is considered an interferer and we show
that the problem is non-convex.

• We derive a closed-form expression of the received power
of the first user under the cascaded RIS correlated channel
scenario and we show that the system is overdetermined.

• We find a suboptimal solution to the over-determined
system to find cascaded RIS phases that maximize the
received power.

• We leverage DDPG to solve the optimization problem
which is non-convex and computationally intractable.
Moreover, we reveal the performance of DDPG
by solving the same problem with a sub-optimal
mathematical method such as pseudo-inverse and
comparing the performance of DDPG with the
mathematical technique.

• We simulate our suboptimal and DDPG solutions and
demonstrate that the DDPG algorithm is superior to
the sub-optimal mathematical method, and the random
generation case.

II. COMMUNICATION SYSTEM MODEL

In our system model, we consider a static topology in Fig. 1
where there are two users, transmitter 1 (Tx1

) and transmitter
2 (Tx2

) communicating with the Rx, via two multi-hop RISs.
Both users and the Rx are furnished with high parabolic
directional antennas, and they are transmitting to the center
of the RIS1, with diameter Dt for the two transmitters and
Dr for the Rx. The distances between user 1 and RIS1,
user 2 and RIS1, RIS1 and RIS2, and RIS1 and Rx are
represented as r11, r12, r2, and r3 respectively, whereas the
horizontal distances between user 1 and RIS1, user 2 and
RIS1, RIS1 and RIS2, and RIS2 and Rx are denoted as r11,h,
r21,h, r2,h, and r3,h respectively. The heights of the two
users Tx1

, and Tx2
, RIS1, RIS2, and Rx are represented as

hTx1
, hTx2

, hs1 , hs2 , and hr respectively. The number of
elements for RIS1 and RIS2 is denoted as V = Vx × Vy and
W =Wx×Wy elements respectively. Every RIS is furnished
with a controller that determines the perfect knowledge of the
channel state information (CSI). The channel model between
each transmitter u and RIS1, and between RIS2 and the Rx,
follow the rician fading model which is represented as:

ht,u =

√
K1

K1 + 1
h̄t,u +

√
1

K1 + 1
h̃t,u, (1)

hr =

√
K2

K2 + 1
h̄r +

√
1

K2 + 1
h̃r, (2)

where ht,u is the channel between each user u and RIS1,
K1 is the rician factor of ht,u. Further, the LOS component
for the channel ht,u is represented as h̄t,u ∈ C1×V , and the
non-LOS (NLOS) component is represented as h̃t,u ∈ C1×V .
Similarly, for the Rx channel hr, K2 is the rician factor,
the LOS component is represented as h̄r ∈ CW×1, and the
NLOS component is represented as h̃r ∈ CW×1.

Moreover, the channel between RIS1 and RIS2, hv,w ∼
CN (0,R), is spatially correlated and it follows the Rayleigh
fading model, where R represents the covariance matrix,
which is obtained based on the model of the exponential spatial
correlation. This is controlled by the correlation factor among
the adjacent reflecting units ρ ∈ [0, 1], which is represented
as:

[R]v,w = ρ|v−w|e|v−w|ξ (3)

where ξ denotes the angle of arrival. Increasing values of ρ
enhances the correlation among the elements of the channel
hw,v. In practical cases, the value of the correlation factor
ρ is less than 1, and thus, the correlations happen among
the adjacent elements with considerably reduced correlation
at huge distances.

III. END-TO-END RATE DERIVATION

In our scenario, the two users are sending their signals
at RIS1 from different distances and angles covering all the
elements of RIS1. The reflected power from the vth reflecting
element of the at RIS1 can be expressed as [17].

Pur,v =

(
λ

4π

)2
Gt,uG(θi1,u)G(θr,1)

r2tu
× |ht,uv|2|γv|2Pt, (4)

where Gt,u represents the Tx antenna gain of transmitter
Txu

; G(θi1,u) and G(θr,1) denote the gain of the reflecting
element from the incident and reflection angles respectively;
γv = γe−jαv symbolizes the reflection coefficient of the
vthreflecting element of RIS1; and rt,u denotes the distance
between user u and the RIS1 reflecting element v. Similarly,
the reflected power from the wth reflecting element of RIS2

due to being illuminated by the signal reflected by the vth

reflecting element of RIS1 is

Pur,vw =

(
λ

4π

)4
Gt,uG(θi1,u)G(θr,1)G(θi,2)G(θr,2)

r2tur
2
2

(5)

×|ht,uv|2|γv|2|hvw|2|γw|2Pt,

where hvw represents the (v, w) element of the RIS1-RIS2

channel matrix H, γw = γe−jφw symbolizes the reflection
coefficient of the wth reflecting element RIS2. Finally, the



Figure 1: Communication System Model.

received captured power at the Rx through channel hvw can
be written as follows:

Purx,vw =

(
λ

4π

)2Pur,vw
r23

Gr|hrw|2. (6)

Purx,vw =

(
λ

4π

)6
Gt,uG(θi1,u)G(θr,1)G(θi,2)G(θr,2)Gr

r2tur
2
2r

2
3

(7)

×|ht,uv|2|γv|2|hvw|2|γw|2|hrw|2Pt,

Further, user u’s total received power at the Rx is expressed
as [17]

PuRx = |
√
Lτ ,u

V∑
v=1

W∑
w=1

|ht,uv||γ||hvw||γ||hrw| (8)

e−j(ψtuv
+αv+ψvw+φw+ψrw+βU+β3))|2Pt,

where ψtuv
is the phase for the transmitter channel for user

u and vth reflecting element, ψvw is the phase for the hv,w
channel for vth and wth reflecting element, ψrw is the phase
for the Rx channel for wth reflecting element, |γ| is assumed
to equal 1.

βU and β3 designate the deterministic phases corresponding
to the traveled distance between each user u to RIS1 over the
first hop, and the traveled distance between RIS2 and the Rx
over the third hop. These phases are designated as follows:

βu = 2π × rtu/λ.

β3 = 2π × r3/λ. (9)

Lτ ,u = LFSPL,u × Labsorption (10)

Labsorption designates the absorption losses according to [18],
and LFSPL,u represents the free space path loss for each user
u, and it is written as:

LFSPL,τ,u =

(
λ

4π

)6
Gt,uG(θi1,u)G(θr,1)G(θi,2)G(θr,2)Gr

r2tur
2
2r

2
3

(11)

Therefore, equation (8) can be expressed as below:

PuRx = |
√
Lτ ,u

V∑
v=1

W∑
w=1

|ht,uv||hvw||hrw| (12)

e−j(ψtuv
+αv+ψvw+φw+ψrw+βU+β3))|2Pt,

The total received power for the first user can be maximized
by solving the following system of equations:

αv +φw +ψt1v +ψvw +ψrw + β1 + β3 = C, ∀v, w. (13)



where C designates any constant value. This means that the
power PuRx is maximum when C is equal to constant ∀v, w.
In this research paper, we will select C = 0. Hence, equation
(13) represents an over-determined system of equations with
V + W unknowns, and V × W equations. This problem is
almost always inconsistent and it has no solution. Nonetheless,
we will solve this problem using machine learning (ML) and
specifically the DRL method to obtain the unknowns αv and
φw, calculate the received power for the first user, and then
compare the results to the sub-optimal solution obtained from
the mathematical technique pseudo inverse.

1) Moore-Penrose Pseudo Inverse Method:
The Moore-Penrose pseudo-inverse solution for the
over-determined system is expressed as follows:

MΦ = K, (14)

where Φ with dimensions (V + W ) × 1 is the matrix that
represents RIS1 and RIS2 phase shifts, M with dimensions
(V ×W )× (V +W ) represents the binary matrix, and
K with dimensions (V ×W )× 1 represents the matrix
containing constant values such as the phase shifts of the
transmitter channel ht,u, the phase shifts of the channel
between RIS1 and RIS2 hv,w, and the phase shifts of the
Rx channel hr.

M+ = (MTM)−1MT, (15)

where M+ is pseudo-inverse of a matrix M. Thus, the
pseudo-inverse solution Φ is expressed as

Φ = M+K (16)

.
Moreover, the received signal-to-noise ratio (SINR for) Txu

at the Rx can be written as::

Ωu =
PuRx∑U

i=1
i ̸=u

P iRx + σ2
. (17)

Therefore, the data rate of user u is designated as:

Ru = log2(1 + Ωu). (18)

Our goal in this work is to obtain the values of the RIS1

and RIS2 phase shifts that maximize the rate for user 1.
Accordingly, the formulated problem at RIS1 and RIS2 is
to obtain the phase shift matrices αv and φw ∀v, w that
maximizes R1, and it is written as:

max
α,φ

U∑
u=1

log2 (1 + Ω1) , (19)

s.t.

C1 :|γv|2 = 1,∀v ∈ {1, 2, ..., V },
C2 :|γw|2 = 1,∀w ∈ {1, 2, ...,W},

Figure 2: DDPG Model.

The solution to the optimization problem is non-trivial,
it is an NP-hard problem, because of constant modulus
constraints of RIS1 and RIS2 reflecting elements that make
the problem non-convex. Thus, it is nearly not possible
to find out a mathematical solution for the cascaded RIS
optimization problem. To solve it, we utilize the DRL method,
namely DDPG, rather than solving the challenging problem
mathematically. The proposed DDPG scheme details are given
in section IV.

IV. PROPOSED DDPG SCHEME BASED RISS’PHASES
CONTROL

DDPG is a model-free RL method that merges the merits
of both the policy gradients and Q-learning algorithms. Taking
into consideration that the states in our scenario are dependent
on the output sum rate and channel gains, while the actions are
the RIS phase shifts, we are considering a continuous action
and a continuous state system. Thus, we chose to use DDPG
since its main advantage arises from the fact that it utilizes
both the continuous state and action spaces.

The DDPG algorithm consists of several vital elements.
These elements include the agents operating in our
communication system model which are the RIS1 and RIS2,
the states s(T ) represented by h(T )

t,u , h(T )
v,w, h(T )

r , and the
rate for user 1 of the previous state R(T−1)

1 , the reward r(t)

which is the rate for user 1 R(T )
1 at the current state, the action

a(t) which is represented by the phases of the RIS1 and RIS2,
the policy function µ, and the Q-value function Q(s, a|θQ)
which measures how good is the action. The goal of this
research paper is to improve the average rewards including the
instant and future rewards. The DDPG algorithm consists of
four neural networks that include the actor-network, the critic
network, the target critic network, and the target actor-network
to increase stability in the system.

A. DDPG Algorithm Framework

The goal of the DDPG scheme is to train the agents
RIS1 and RIS2 to take actions that maximize the long-term
average reward, which is in our system the rate of user 1
via the environment changes as shown in Fig. 2 taking into
consideration the constant modulus constraints mentioned



Algorithm 1 DDPG Algorithm-based Framework
1: Algorithm Initialization: Set the timestep T = 0 and initialize

the reply buffer of the DDPG agent D with capacity M.
2: Initialize the weights of the critic networks θQ, and actor

networks θµ randomly.
3: Initialize target network parameters: θQ

′
← θQ, and θµ

′
← θµ.

4: for T = 1 to ∞ do
5: Observe the state s(T ) and select an action with exploration

OU noise a(T ) = µ(s(T )|θµ) + nT .
6: Execute the action a(T ) at RIS1 and RIS2.
7: Receive the immediate reward r(T ), observe the next state

s(T+1), and store the transition (a(T ), s(T ), r(T ), s(T+1)) in the
replay memory D.

8: Sample the mini-batch transitions from D randomly: B ←
{(s(i), a(i), r(i), s(i+1))} ∈ D.

9: Calculate the target Q-value: Q̃(s(i), a(i)|θQ
′
) = r(i) +

ΓQ(s(i+1), µ(s(i)|θµ
′
)|θQ

′
) where Γ is the discount factor.

10: Update the parameters θQ in the critic network by
minimizing the loss using the obtained target Q-value. L =
1

|B|
∑|B|

i=1

(
Q̃(s(i), a(i)|θQ

′
)−Q(s(i), a(i)|θQ)

)2
11: Update the parameters θµ in actor-network based on the

sampled policy gradient:
∇θµJ ≈ 1

|B|
∑|B|

i=1∇aQ(s(i), a(i)|θQ)∇θµµ(s(i)|θµ)
12: Update the target actor and critic networks using the soft

updates τ to increase the learning stability:
θQ

′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

13: end for

in eq 19. The agents modify the randomized phase shift
matrices, and the policy in a way that copes with the
random environmental statistical behavior to maintain a
long-term average reward, instead of an immediate response
to the channel random changes. The DDPG algorithm-based
framework is shown in algorithm 1.

V. NUMERICAL RESULTS

In this section, we assess the performance of the
DRL-based multi-hop RIS in THz networks. To demonstrate
the performance of the DDPG algorithm in our system, we
compare the results generated by DDPG with the pseudo
inverse solution, and with those generated by using random
phases. The default simulation parameters in our system are
revealed in Table I. We define the term distance ratio as the
ratio between the distance between user 1 and RIS1 rt1, and
the distance between user 2 and RIS1 rt2. Numerical results for
the data rates are calculated for 2 users and 1000 Monte-Carlo
simulations.

We reveal the results for maximizing the received power
for the first user at the Rx by plotting the rate for the
first user versus the distance ratio between the two users
using DDPG, and pseudo-inverse methods. Fig. 3 shows
a comparison between the results generated by DDPG,
pseudo-inverse, and the case of randomized phases (i.e.
without optimization) for a correlation factor equal to 0.9. It
is clear from the figure that as the distance ratio increases
the rate decreases because the interference between user 1

Table I: Parameters Used in Simulation

Simulation Parameters Values
Number of Users (U ) 2
The Speed of light c 3× 108

Carrier Frequency f 300× 109

Number of antennas per transmitterNt 1
Number of antennas at the Rx Nr 1

Wavelength (λ) 1× 10−3

Number of RIS 1 Reflecting Elements (V) 18
Number of RIS2 Reflecting Elements (W) 18

X-axis of RIS1 xr1 5
Y-axis of RIS1 yr1 10
height of RIS1 hr1 12
X-axis of RIS2 xr2 10
Y-axis of RIS2 yr2 10
height of RIS2 hr2 12

Distance between User 1 and RIS1 3 to 15
Distance between User 2 and RIS1 15
Heights of User 1 and User 2 ht 5

RIS1 and RIS2 Reflection Coefficients α 1
RIS1 and RIS2 half-power Spacing dx λ/2

RIS1 and RIS2 Element Spacing dy λ/2
Antenna diameter in meters Dt 0.12

X-axis of Rx xrx 20
Y-axis of Rx yrx 0
height of Rx hr 5

Bandwidth 2× 109 MHz
Noise power spectral density NPSD −174 dB/Hz

Noise figure at the RX FdB 10
Average Noise power in dB N0 −174 dB/Hz
Noise power in linear scale no 7.9621× 10−11

Transmitters to RIS1 Path loss exponent 2
RIS2 to Rx Path loss exponent 2

Rician Factor 10
Coefficient of Soft Updates τ 1× 10−3

Batch size 128
Replay Buffer Capacity C 105

Number of episodes 10000
Critic-Network learning rate 3× 10−4

Actor-Network learning rate 1× 10−4

Target Critic-Network learning rate 3× 10−4

Target Actor-Network learning rate 1× 10−4

Discount factor of the future reward Γ 0.99

and user 2 increases. Further, DDPG achieves higher rates
than that of the pseudo-inverse, and randomized phases
case. Moreover, Fig. 4 reveals the rates for the DDPG
scheme versus the distance ratio for different correlation
factors. It is obvious that when the correlation factor ρ
increases, the data rates for the DDPG scheme increase.
The reason for that, increasing the correlation factor value,
will increase the learning efficiency of the DDPG scheme.
Therefore, the DDPG algorithm attains higher data rates than
other methods especially when the correlation factor ρ is high.

VI. CONCLUSION

In this research paper, a multiple access scenario with
a multi-hop RIS uplink system is considered to overcome
the short-range communications issues in THz networks,
to maximize the received power for the first user. The
maximization problem for the multi-hop RIS network is
over-determined because it consists of a number of equations
greater than the number of unknowns. Further, it is non-convex
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due to the constant modulus constraints at RIS1 and RIS2.
To solve this problem, we utilized the DDPG scheme which
possesses the ability to deal with over-determined systems
and non-convex optimization problems. DDPG finds out the
optimal RIS phases which in turn maximizes the received
power for the first user. Numerical results reveal that DDPG
attains rates higher than that of the pseudo-inverse solution and
randomized phases. Furthermore, DDPG shows the importance
of the correlation in the channels to optimize the learning
process and attain higher data rates.

REFERENCES

[1] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski
and M. Debbah, "Seven Defining Features of Terahertz (THz)
Wireless Systems: A Fellowship of Communication and
Sensing," in IEEE Communications Surveys and Tutorials, DOI:
10.1109/COMST.2022.3143454.

[2] M. Jian and R. Liu, "Baseband Signal Processing for Terahertz:
Waveform Design, Modulation and Coding," 2021 International Wireless
Communications and Mobile Computing (IWCMC), Harbin City, China,
2021, pp. 1710-1715, doi: 10.1109/IWCMC51323.2021.9498810.

[3] S. Gong et al., "Toward Smart Wireless Communications via Intelligent
Reflecting Surfaces: A Contemporary Survey," in IEEE Communications

Surveys and Tutorials, vol. 22, no. 4, pp. 2283-2314, Fourthquarter 2020,
doi: 10.1109/COMST.2020.3004197.

[4] R. Liu, Q. Wu, M. Di Renzo and Y. Yuan, "A Path to Smart Radio
Environments: An Industrial Viewpoint on Reconfigurable Intelligent
Surfaces," in IEEE Wireless Communications, vol. 29, no. 1, pp.
202-208, February 2022, doi: 10.1109/MWC.111.2100258.

[5] B. Zheng, C. You, W. Mei and R. Zhang, "A Survey on
Channel Estimation and Practical Passive Beamforming Design for
Intelligent Reflecting Surface Aided Wireless Communications," in
IEEE Communications Surveys and Tutorials, vol. 24, no. 2, pp.
1035-1071, Secondquarter 2022, doi: 10.1109/COMST.2022.3155305.

[6] Y. Liu et al., "Reconfigurable Intelligent Surfaces: Principles
and Opportunities," in IEEE Communications Surveys and
Tutorials, vol. 23, no. 3, pp. 1546-1577, thirdquarter 2021, doi:
10.1109/COMST.2021.3077737.

[7] T. V. Nguyen, T. P. Truong, T. M. T. Nguyen, W. Noh, and S.
Cho, "Achievable Rate Analysis of Two-Hop Interference Channel
with Coordinated IRS Relay," in IEEE Transactions on Wireless
Communications, DOI: 10.1109/TWC.2022.3154372.

[8] W. Mei and R. Zhang, "Cooperative Multi-Beam Routing
for Multi-IRS Aided Massive MIMO," ICC 2021 - IEEE
International Conference on Communications, 2021, pp. 1-6, DOI:
10.1109/ICC42927.2021.9500347.

[9] W. Mei and R. Zhang, "Multi-Beam Multi-Hop Routing for Intelligent
Reflecting Surfaces Aided Massive MIMO," in IEEE Transactions on
Wireless Communications, vol. 21, no. 3, pp. 1897-1912, March 2022,
DOI: 10.1109/TWC.2021.3108020.

[10] Q. Sun, P. Qian, W. Duan, J. Zhang, J. Wang and K. -K. Wong,
"Ergodic Rate Analysis and IRS Configuration for Multi-IRS Dual-Hop
DF Relaying Systems," in IEEE Communications Letters, vol. 25, no.
10, pp. 3224-3228, Oct. 2021, DOI: 10.1109/LCOMM.2021.3100347.

[11] Z. Zhang and Z. Zhao, "Weighted Sum-Rate Maximization
for Multi-Hop RIS-Aided Multi-User Communications: A
Minorization-Maximization Approach," 2021 IEEE 22nd
International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC), 2021, pp. 106-110, DOI:
10.1109/SPAWC51858.2021.9593114.

[12] A. Almohamad, M. Hasna, N. Zorba, and T. Khattab, "Performance
of THz Communications Over Cascaded RISs: A Practical
Solution to the Over-Determined Formulation," in IEEE
Communications Letters, vol. 26, no. 2, pp. 291-295, Feb. 2022,
DOI: 10.1109/LCOMM.2021.3132655.

[13] Y. Pan, K. Wang, C. Pan, H. Zhu and J. Wang, "Sum-Rate Maximization
for Intelligent Reflecting Surface Assisted Terahertz Communications,"
in IEEE Transactions on Vehicular Technology, vol. 71, no. 3, pp.
3320-3325, March 2022, doi: 10.1109/TVT.2022.3140869.

[14] J. Qiao, C. Zhang, A. Dong, J. Bian and M. -S. Alouini, "Securing
Intelligent Reflecting Surface Assisted Terahertz Systems," in IEEE
Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8519-8533,
Aug. 2022, doi: 10.1109/TVT.2022.3172763.

[15] C. Huang et al., "Hybrid Beamforming for RIS-Empowered Multi-hop
Terahertz Communications: A DRL-based Method," 2020 IEEE
Globecom Workshops (GC Wkshps, Taipei, Taiwan, 2020, pp. 1-6, doi:
10.1109/GCWkshps50303.2020.9367503.

[16] C. Huang et al., "Multi-Hop RIS-Empowered Terahertz
Communications: A DRL-Based Hybrid Beamforming Design,"
in IEEE Journal on Selected Areas in Communications, vol. 39, no. 6,
pp. 1663-1677, June 2021, DOI: 10.1109/JSAC.2021.3071836.

[17] K. Ntontin, A. -A. A. Boulogeorgos, D. G. Selimis, F. I. Lazarakis,
A. Alexiou and S. Chatzinotas, "Reconfigurable Intelligent Surface
Optimal Placement in Millimeter-Wave Networks," in IEEE Open
Journal of the Communications Society, vol. 2, pp. 704-718, 2021, DOI:
10.1109/OJCOMS.2021.3068790.

[18] J. Kokkoniemi, J. Lehtomäki and M. Juntti, "Simplified molecular
absorption loss model for 275–400 gigahertz frequency band," 12th
European Conference on Antennas and Propagation (EuCAP 2018),
2018, pp. 1-5, DOI: 10.1049/cp.2018.0446.


